
 
 

Delft University of Technology

Sampling of alternatives in random regret minimization models

Guevara, C. Angelo; Chorus, Caspar G.; Ben-Akiva, Moshe E.

DOI
10.1287/trsc.2014.0573
Publication date
2016
Document Version
Accepted author manuscript
Published in
Transportation Science

Citation (APA)
Guevara, C. A., Chorus, C. G., & Ben-Akiva, M. E. (2016). Sampling of alternatives in random regret
minimization models. Transportation Science, 50(1), 306-321. https://doi.org/10.1287/trsc.2014.0573

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1287/trsc.2014.0573
https://doi.org/10.1287/trsc.2014.0573


Guevara, Chorus&Ben-Akiva 1 

SAMPLING OF ALTERNATIVES IN RANDOM 

REGRET MINIMIZATION MODELS 

C. ANGELO GUEVARA (corresponding author) 

Faculty of Engineering and Applied Sciences 

Universidad de los Andes, Chile 

Mons. Álvaro del Portillo 12.455, Las Condes, Santiago, Chile. 

Tel: 56-2-2618-1364 

Fax: 56-2-2618-1642 

caguevara@miuandes.cl 

CASPAR G. CHORUS 

Faculty of Technology, Policy and Management 

Delft University of Technology 

Jaffalaan 5, 2628BX, Delft, the Netherlands 

E: c.g.chorus@tudelft.nl 

MOSHE E. BEN-AKIVA 

Department of Civil and Environmental Engineering 

Massachusetts Institute of Technology 

Cambridge, MA 02139, USA 

mba@mit.edu 

Key Words: Sampling of Alternatives, Random Regret Minimization. 

Post print version of http://dx.doi.org/10.1287/trsc.2014.0573 (Informs)

mailto:aguevara@uandes.cl
mailto:c.g.chorus@tudelft.nl
mailto:mba@mit.edu


Guevara, Chorus&Ben-Akiva  2 

ABSTRACT 

 
Sampling of alternatives is often required in discrete choice models to reduce the computational 

burden and to avoid describing a large number of attributes. This approach has been used in many 

areas, including modeling of route choice, vehicle ownership, trip destination, residential 

location, and activity scheduling. The need for sampling of alternatives is accentuated for 

Random Regret Minimization (RRM) models, because, different from Random Utility Models 

(RUM), the regret function for each alternative depends on all the alternatives in the choice-set. 

In this paper we develop and test a method to achieve consistency, asymptotic normality and 

relative efficiency, while sampling alternatives in a class of models that includes RRM. The 

proposed method can be seen as an extension of the approach used to address sampling of 

alternatives in Multivariate Extreme Value (MEV) models. We illustrate the methodology using 

Monte Carlo experimentation and a case study with real data. Experiments show that the 

proposed method is practical, performs better than an uncorrected model, and results in estimates 

that are statistically equal to those obtained with a model considering all the alternatives. 
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1 INTRODUCTION 

Various types of discrete choice models that are relevant in transport modeling 

involve huge choice-sets. This is the case, for example, for models of route choice, trip 

destination, residential location or activity scheduling. Two types of difficulties may arise 

when the choice-set is too large. The first is the computational burden of managing a 

large number of alternatives and the second is the need to gather the data to describe 

them. Both difficulties may arise in estimation and in forecasting. In this article we 

consider the former, proposing a solution method for Random Regret Minimization 

(RRM) models. 

In the context of the classical Random Utility Maximization-based (RUM) Logit 

model (McFadden, 1974), a convenient method has been proposed (McFadden, 1978) to 

obtain a consistent estimator for model parameters with a sample of alternatives. This 

estimator capitalizes on the fact that, due to its independently and identically distributed 

(iid) errors, the RUM-based Logit model exhibits the IIA-property. McFadden´s (1978) 

result concerning the sampling of alternatives for Logit has been profusely used over the 

years. Examples abound in many areas such as route choice (see. e.g. Fosgerau et al. 

2013; Frejinger et al., 2009), vehicle ownership (Berkovec & Rust, 1985), trip destination 

(Carrasco, 2008), residential location (Lee and Waddell, 2010) and activity based 

modeling (see. e.g., Daly et al 2013; Bradley et al, 2010; Bowman and Ben-Akiva, 2001). 

Although very convenient from a modeler’s perspective, this IIA-property is often 

considered to be restrictive in terms of the implied behavior of decision-makers. Over the 

past few decades, this observation has led to the development of a number of alternative 

discrete choice model forms whose errors are not iid. While still featuring closed form 

choice probabilities, these models do not exhibit the IIA property as they allow for 

correlation among the errors associated with different (subsets of) alternatives. A 

prominent example of this category is the Nested Logit model (Ben-Akiva, 1973), which 

was shown a few years after its inception to belong to the more general family of closed 

form choice models based on a Multivariate Extreme Value (MEV) distribution 

(McFadden, 1978). More recently, MEV Mixture models have been proposed which 

allow for even more flexibility in terms of the specification of the error term distribution 

and related behavioral implications and substitution patterns (e.g., McFadden & Train, 

2000).  

The problem of sampling of alternatives in non-Logit models has been only recently 

studied. Guevara and Ben-Akiva (2013a) and Guevara (2010) proposed a method to 

achieve consistent estimation while sampling alternatives in MEV models, providing 

examples for the Nested Logit and the Cross Nested Logit. The method consists in 

developing a proper correction of a term that gets truncated because of the sampling. 

Also, Guevara and Ben-Akiva (2013b) proposed a method for estimation while sampling 

alternatives in Logit Mixture models, showing also that a naïve approach, in which the 

kernel of the mixture is replaced by McFadden´s (1978) correction for Logit, does 

achieve consistent estimation. With this, Guevara and Ben-Akiva (2013b) provide 

theoretical support for previous empirical results suggesting the suitability of the naïve 
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approach for Logit Mixture models (McConnel and Tseng, 2000; Nerella and Bhat 

(2004); Azaiez, 2010; Lemp and Kockelman, 2012). 

Recently, a choice model has been proposed that does not exhibit the IIA-property 

even though (when written in Logit-form) its errors are iid. This Random Regret 

Minimization (RRM) model (Chorus, 2010), which is the focus of this paper, is based on 

a regret minimization-based decision rule. The model postulates that when decision 

makers choose among alternatives, they try to avoid the situation where a non-chosen 

alternative outperforms a chosen one in terms of one or more attributes. This translates 

into a regret function for a considered alternative that by definition features all attributes 

of all competing alternatives. Since its introduction a few years ago, the RRM model has 

been successfully estimated and applied by various authors in the context of a variety of 

different choice contexts, involving – to name a few examples – travelers choices among 

vehicle types, destinations, modes, routes, departure times, and driving maneuvers; 

politicians’ choices among policy options; patients choices among medical treatments; 

and tourists’ choices among leisure activity-locations. An overview of recent studies 

empriically comparing RRM with RUM models can be found in Chorus et al. (2014). 

One disadvantage of the RRM model, which was highlighted in Chorus (2012), is that 

runtimes may suffer from combinatorial explosion when choice-sets become very large. 

This issue of course is a direct result from the behavioral postulate, incorporated in the 

regret function, that every alternative is compared with every other alternative in the 

choice-set in terms of every attribute. 

The combinatorial explosion of RRM, compared to Logit, is illustrated in Figure 1, 

which depicts estimation time (ordinates axis) as a function of the number of alternatives 

(J) in the choice-set (abscissas axis). The results were obtained from 10 Monte Carlo 

simulations for each value of J between 50 and 1000, in steps of 50. The estimation time 

of each simulation is depicted in grey with a small symbol (a dot for RRM and a triangle 

for Logit) and the average within the 10 repetitions for each J is depicted with a larger 

dark symbol. Both the RRM and the Logit models consider only one attribute and 1000 

observations. Figure 1 shows that the average estimation time for RRM as a function of J 

is fitted almost perfectly by a quadratic function, reflecting the computational problems 

that arise with RRM models with large choice-sets. In turn estimation time for the Logit 

is almost flat with J. 
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Figure 1: Estimation Time of a RRM and Logit Models as a Function of the 

Number of Alternatives (J) 

 

As a consequence, finding a proper way to estimate RRM models on sampled choice-

sets is an important condition for the model to be useful in the context of choice 

situations involving very large numbers of alternatives. At this point it should be noted 

that, since RRM model does not exhibit the IIA-property, McFadden’s (1978) result does 

not apply. As mentioned, this is the case even when – such as is the case for RRM-based 

Logit models – errors are distributed iid.  

This paper extends the work of Guevara and Ben-Akiva (2013a) by presenting an 

estimator for the RRM-based Logit model in the context of sampled choice-sets (section 

2). Furthermore, it analyzes the conditions required for consistency, asymptotic normality 

and efficiency and determines the correct expansion factors required in some relevant 

examples (section 3). Then it illustrates the methods and studies the finite sample 

properties of the estimators using Monte Carlo experimentation (section 4) and real data 

(section 5). The article finishes summarizing the main results, their possible implications 

and suggestions for future lines of research. 

2 ESTIMATION AND SAMPLING OF ALTERNATIVES IN 
RANDOM REGRET MINIZATION MODELS 

We consider the RRM model proposed by Chorus (2010). The behavioral assumption 

behind the RRM model is that individual n chooses alternative i, within the choice-set Cn, 

if i minimizes the anticipated regret he or she may get from that decision. The regret is 

defined as a measure of how much worse is the chosen alternative i, regarding each 

attribute m, compared to all other alternatives j ≠ i. 
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For example, if m refers to a price attribute, then 0m . Therefore, if an agent n 

chooses alternative i he or she will perceive a price regret  imnjmnm xx   if imnjmn xx  , 

and zero otherwise, for each alternative j other than i. Formally, if m is the only attribute, 

the regret function ijmnR
 
can be summarized by the expression shown in Eq. (1). 

   imnjmnmijmn xxR  ,0max  (1) 

The regret function described in Eq. (1) is difficult to implement in practice for 

estimation because it is not differentiable. For that, Chorus (2010) proposes to 

approximate ijmnR  by the expression shown in Eq. (2) 

       
imnjmnmimnjmnmijmn xxxxR   exp1ln,0max

,
 (2) 

which can be seen either as a plausible approximation (see Figure 1 in Chorus, 2010) or 

as the result of assuming unobserved heterogeneity in the regret function. 

The regret function inR
 
of alternative i for agent n is completed by summing ijmnR

 
over all the attributes m and alternatives j ≠ i in the choice-set Cn, as shown in Eq. (3).

 

    

 



ij
Cj

M

m

imnjmnmin

n

xxR
1

exp1ln  , (3) 

Finally, it is considered that the individual seeks minimizing a random regret 

function ininin RRR  , where εin is a random term, whose negative is assumed to be 

independent and identically distributed (iid) Extreme Value (0,μ). Under those 

conditions, the probability that agent n will choose alternative i will correspond to the 

model shown in Eq. (4) 

  









n

jn

in

Cj

R

R

n
e

e
iP





, (4) 

where the scale parameter μ is indistinguishable from the overall regret scale, and 

therefore, for convenience, is normalized to equal 1. 

Consider now that the researcher samples a subset Dn with 
nJ

~
 elements from the true 

choice-set Cn that is considered by the decision maker. As was stated before, the 

sampling may be needed for reducing the computational burden and/or facilitate data 

collection. For estimation purposes, Dn must include  the chosen alternative i, and then Dn 

is not independent of i. If i is not included in Dn, a probability measure constructed 

combining i and the elements in Dn may not be well defined, since it may be larger than 

one. Also, if i is not included in Dn, the likelihood may be unbounded, precluding model 

estimation. 

Define  nDi,  the joint probability that agent n would choose alternative i and that 

the researcher would draw the set Dn. Using the Bayes theorem, this joint probability can 

be rewritten as shown in Eq. (5) 

          nnnnn DDiiPiDDi  ||,  , (5) 
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where  nDi |  is the conditional probability of choosing alternative i, given that the set 

Dn was drawn, and  iDn |  is the conditional probability that the researcher drew the set 

Dn, given that alternative i was chosen by the agent. 

Since the events of choosing each one of the alternatives in Cn are mutually exclusive 

and totally exhaustive, we can write the probability  nD  of constructing the set Dn as 

shown in Eq. (6) 

          



nn Dj

nn

Cj

nnn jPjDjPjDD ||  , (6) 

where the second equality holds because   nn DjjD  0| . 

Substituting Eq. (6) and the choice probability  iPn  shown in Eq. (4) into Eq. (5), Eq. 

(7) is obtained by canceling and re-arranging terms. 

  
 

 









n

njn

nin

Dj

jDR

iDR

n
e

e
Di

|ln

|ln

|




  (7) 

The direct application of Mcfadden´s (1978) result on sampling of alternatives for 

Logit can be used to show that maximizing a log-likelihood based on the expression 

shown in Eq. (7) would yield consistent estimators of the model parameters. 

Eq. (7) shows two things about the conditional probability  nDi | . The first is that 

the form of the probability is very similar to Eq. (4), except for the term  jDn |ln , 

which is known as the sampling correction. The second is that the summation in the 

denominator is only over the alternatives in Dn.  

However, Eq. (7) does not yet offer a practical solution for the sampling of 

alternatives in random regret models. The problem is that, even though the denominator 

of the choice probability depends only on Dn, the argument Rin still depends on the full 

choice-set Cn. 

In this paper, we adapt Eq. (7) to the problem of sampling of alternatives in random 

regret minimzation models by replacing Ri by an estimator that depends only on the 

subset Dn. We analyze the conditions required for consistency, asymptotic normality and 

efficiency, determine the correct expansion factors required in some relevant examples, 

and illustrate the finite sample properties of the estimators using Monte Carlo 

experimentation and real data. 

The results on consistency, asymptotic normality and efficiency are summarized by 

the following theorem, which is a generalization of the result of Guevara and Ben-Akiva 

(2013a) to a class of models that includes the RRM model: models whose utility function 

depends on the full choice set. 

 

Theorem: Consider N observations, a choice-set Cn of cardinality Jn, and two subsets 

nn CD   and nn CD 
~

. To simplify notation, we will assume that the cardinality of nD  

and nD
~

is 
nJ

~
, but this is not essential and can be generalized. If:  

a) the choice model is of the Logit form, in the sense that it can be written as 
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 
 

 





n

njn

nin

Cj

CW

CW

n
e

e
iP , 

where  nin CW is any continuous and twice differentiable function of the attributes 

xjn of all the alternatives in Cn , and a set of parameters β*. Note that  nin CW  

includes, but is not limited to, the regret function defined in Eq. (3). 

b)  nin DW
~ˆ  is an unbiased estimator of inW  

c) The variance of  ni DW
~ˆ is bounded and decreases with 

nJ
~

. Since  ni DW
~ˆ is also 

unbiased, this also means that  ni DW
~ˆ is also consistent; 

d)   nn DjjD  0|  and   nn DjjD  0| , which holds when the chosen 

alternative is included in Dn; 

 

then, the maximization of the quasi-log-likelihood function 

  
   

   














N

n

Dj

jDDW

iDDWN

n

nnD

n

nnnjn

nnin

e

e
DDiLQ

1
|ln

~ˆ

|ln
~ˆ

1

ln
~

,|ˆlnˆ




  (8) 

yields, under general regularity conditions, consistent estimators of the model parameters 

β*, as 
nJ

~
 increases with N at any rate. If 

nJ
~

 increases faster than N , the estimators of 

the model parameters will be consistent, and asymptotically normal:  

  N
a

11*,Normal~ˆ 
ΩRR  (9) 

 

where 
 

















 D
Var n |*ln

Ω  and 
 

















'

|*ln2



 D
E nR , where 

 
   

   









n

nnnjn

nnin

Dj

jDCW

iDCW

n
e

e
Di

|ln

|ln

|




 . This variance-covariance matrix can be approximated by 

the BHHH estimator (Berndt, et al. 1974), using  nn DDi
~

,|̂ , evaluated at the optimal 

values. 

 

Note that the variance-covariance matrix attained with Eq. (8) is then the same 

that is attained by maximization of the impractical quasi-log-likelihood  

  
   

   














N

n

Dj

jDCW

iDCWN

n

nD

n

nnnjn

nnin

e

e
DiQL

1
|ln

|ln

1

ln|ln




 . (10) 

This implies that the feasible estimator proposed in Eq. (8) is relatively efficient, in the 

sense that it yields estimators that are as asymptotically efficient as the estimators 

obtained when considering the full choice-set to calculate  nin CW . They are not globally 

efficient because some efficiency is lost when sampling alternatives in Eq. (10). 
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Finally, if Jn is finite and the protocol is sampling without replacement, 
nJ

~
 needs 

to increase only up to 
nn JJ 

~
 to achieve the asymptotic distribution shown in Eq. (9). 

 

Proof: The proof is analog to the procedure used by Train (2009, pp. 247-257) for 

simulated maximum likelihood. In the appendix we provide a summarized demonstration, 

highlighting principal parts, and including a justification for the main assumptions that 

are required in the theorem. 

 

Two cases are differentiated in the theorem: when Jn is infinite and when Jn is finite. 

When Jn is infinite, it is relevant to answer the question of whether or not a choice 

model with an infinite choice-set is, in general and in particular for the RRM, relevant 

and well defined. Models with infinite choice-sets had been previously considered, 

among others, for spatial choice, labor demand and route choice. Examples of those are 

the works of McFadden (1976), Ben-Akiva and Watanatada (1981), Dagsvik (1989) and, 

more recently, Fosgerau et al. (2013). In addition, the validity of the RRM as J goes to 

infinity can be proven by induction. First, the RRM model is well defined for J=2. Then, 

if RRM is well defined for an arbitrary J, it can be shown that it will be well defined for 

J+1. Nevertheless, numerical limitations in the estimation and forecasting of a model 

with an infinite choice set would make the model intractable, which is of course precisely 

what motivates the need for sampling of alternatives. 

It is pertinent also to clarify what the theorem achieves when Jn is finite. For finite Jn, 

and if the protocol is sampling with replacement, 
nJ

~
 will have to grow infinitely with N 

to achieve consistency. Instead, when the protocol is sampling without replacement, if 
nJ

~
 

grows with N, it will eventually reach 
nJ . At that point the variance of  nin DW

~ˆ  will be 

zero because inin WW ˆ  and the quasi-loglikelihood in Eq.(8) would become the same as 

the quasi-loglikelihood in Eq.(10), achieving consistency. 

Despite that the theoretical results hold asymptotically, the Monte Carlo experiments 

in Section 4 show that for finite N (1000 in the example) and finite Jn (1000), 
nJ

~
 as small 

as 30 can result in proper estimators. Moreover, depending on the behaviour of  inWVar ˆ  

for small 
nJ

~
, the theorem sheds some light on the speed of convergence, which can be 

useful in practice. For example, if one would like to maintain the statistical properties 

attained when 30
~
nJ  and 1000N , but with N =2000, the theoretical result states that 

nJ
~

 would have to be, at least, 45, because 

1000

2000
3045

~
nJ . 
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3 APPLICATION OF THE METHOD IN PRACTICE 

3.1 Introduction 

For the application of the theorem to the RRM model in practice, it is convenient 

to note first that what occurs if, in Eq. (3), the incumbent alternative is included in the 

regret function. 

      2lnexp1ln
~

1

MRxxR in

Cj

M

m

imnjmnmin

n

 
 

  (11) 

Eq. (11) implies that the inclusion of the incumbent alternative implies the addition of 

the same constant  2lnM  to all the alternatives, where M is the number of attributes. 

Since this same constant cancels out, considering the incumbent alternative in the regret 

function has no impact in the choice probability shown in Eq. (4). For the rest of the 

paper we will consider the definition of the regret function including the incumbent 

alternative, as in Eq. (11). This will facilitate the notation of the different versions of the 

practical application of the method. Also, to save notation, we will skip the tilde from inR
~

. 

We propose the following inR̂
 
as a feasible approximation of inR

 

     
 


nDj

M

m

imnjmnmjnin xxwR
~

1

exp1lnˆ 
.
 (12) 

The expansion factors wjn in inR̂  needed for attaining unbiasedness, as required by the 

theorem, would have to have the following form 

 
 jn

jn

jn
nE

n
w

~

~
 , (13) 

where jnn~  corresponds to the number of times alternative j is included in the sample for 

agent n, and  jnnE ~  is its expected value (see Guevara and Ben-Akiva, 2013a, Appendix 

B for a demonstration of an equivalent case). Note that if the protocol used to draw 

alternatives is sampling without replacement, 1~ jnn  and  jnnE ~  corresponds to the 

probability of sampling alternative j. 

The expansion factors wjn would depend on the sampling protocol used and, 

importantly, on whether or not the subset nD  used to write the sampling correction 

 jDn |ln
 
in Eq. (7) is the same as the subset  nD

~
 
used to build the expansion factors 

wjn. 

We what follows we will explore three methods to construct in practice the expansion 

factors shown in Eq. (13). These methods are analog to some of the approaches explored 

by Guevara and Ben-Akiva (2013a, 2013b) for the problem of sampling of alternatives in 

MEV and Logit Mixture, respectively. 
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3.2 Expansion Factors when Re-sampling is Possible 

Consider first the case when the researcher has full control of the data and is able to 

sample a set Dn from Cn to build the sampling correction  iDn |ln , and to sample a 

different set nD
~

 from Cn to construct the expansion factors wjn needed to build inR̂ . To 

save notation we will consider that both Dn and nD
~

have the same cardinality J
~

 for all 

individuals, but this is not essential and can be generalized. 

The expansion factors required depend on the protocol used for building nD
~

. In what 

follows we consider as an example that the protocol is a simple random sample without 

replacement. Note that the chosen alternative does not need to necessarily be in nD
~

. The 

sampling in this case is random from all the elements in Cn. This is crucial for the 

simplicity and practicality of applying this version of the method. 

In such a case the expansion factors in inR̂  that are needed to achieve a an unbiased 

estimator of inR , are the following for each alternative j: 

 
  J

J
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~

  (14) 

To describe the likelihood function required to estimate the model we need to specify 

also the sampling protocol used to build the set Dn , to be able to determine McFadden´s 

(1978) sampling correction. Consider, for example, that the protocol used in this case is 

the following. In a first step, the chosen alternative for each observation is included. 

Then, non-chosen alternatives are randomly sampled, without replacement, to make a 

total of J
~

. Under this setting, it can be shown that the sampling correction will 

correspond to 
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, 

a term that, for this particular sampling protocol, is constant across alternatives and, 

therefore, cancels out in the calculation of the quasi-log likelihood function shown in Eq. 

(8). 

To summarize, given the particular sampling protocols for Dn and nD
~

described, the 

conditional probability of choosing alternative i, given that the sets Dn and nD
~

 were 

drawn, can be approximated by 
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 (15) 

Therefore, according to the theorem, a model estimated using the quasi-log-likelihood 

function built using Eq. (15) will result in consistent and asymptotically normal 

estimators of the model parameters and the variance-covariance matrix of the estimators 

can be obtained using the BHHH estimator. This estimation tool is practical because it 
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can be applied in canned estimation software such as BIOGEME (Bierlaire, 2003) or 

ALOGIT (Daly, 1992) with minor modifications, making it very attractive for 

practitioners. 

Finally, note that the intuition behind Eq. (15) is direct. If, for example, 10 out of 

1000 alternatives are sampled randomly to build nD
~

, the regret function has to be 

calculated with the 10 alternatives, and then amplified by 100 to correct for the fact that 

regret is otherwise underestimated due to the smaller (sampled) choice set. Besides, note 

that since for this particular sampling protocol the expansion factor is the same for all the 

alternatives, the JJw
nj

~
 term comes out of the sum and becomes indistinguishable 

with the overall utility scale.  

Things become more troublesome when the researcher is forced to use instead the 

same set Dn to build the term inR̂ . We will discuss this in the next section. 

3.3 Expansion Factors when Re-Sampling is Not Possible 

Consider now that the researcher does not have full control of the data and is not able to 

sample two sets Dn and nD
~

. This can occur when the researcher is using a database 

previously processed and for which he or she does not have access to the original source, 

for example, because of privacy concerns. 

If the protocol used to build Dn (and therefore also nD
~

) was to draw first the chosen 

alternative and then to sample 1
~
J

 

alternatives randomly, the expansion factors required 

to attain unbiasedness are the following (see Guevara and Ben-Akiva, 2013a, Appendix C 

for a demonstration of an equivalent case). 
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There is a crucial difference between Eq. (16) and Eq. (14). The expression shown in 

Eq. (16) depends on the choice probabilities, which are unknown beforehand in an 

application with real data. To avoid this limitation in practice, we postulate two methods 

called Pop.Shares and 1_0. 

 

Method Pop.Shares: 

One way to approximate the choice probabilities needed for the calculation of the 

expansion factors is to use the population shares Hj of each alternative. Replacing choice 

probabilities by population shares in Eq. (16), the expansion factors implied by this 

procedure become the following: 

 
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An advantage in this case is that the expansion factors wjn can be directly calculated 

without incurring additional computational costs. Although the true population shares are 

not available in a real application, good approximations of them may be available from 

different sources (e.g., census or flow counts), or directly from the sample, provided it is 

random. In case the Hj has to be gathered from the sample, it could be calculated as 

N

y

H n

jn

j


 , 

where jny equals 1 if individual n chooses alternative j, and zero otherwise. 

To summarize, given the particular sampling protocol described for Dn, the 

conditional probability of choosing alternative i, given that the set Dn was drawn, can be 

approximated by 
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 (17) 

The Pop. Shares method could be easily implemented in canned estimation software 

with minor modifications, making it attractive for practitioners. The disadvantage is that 

the approximation  jPH nj   may be too rough, potentially causing important biases. 

This approach is studied using Monte Carlo experiments in Section 4. 

 

Method 1_0: 

Another approach to avoid the need for the choice probabilities is to approximate 

them by considering that they take value 1 for the observed chosen alternative, and 0 for 

the non-chosen ones. Replacing these assumptions in the example described in Eq. (16) 

the expansion factors in this case would be the following: 

 1jnw  if j is the chosen alternative 

 
1

~
1






n

n
jn

J

J
w  if j is not chosen. 

It should be noted that the 1_0 approach to address the problem of estimation while 

sampling alternatives is the same as the one that was implicitly considered, by Frejinger 

et al. (2009) and by Lee and Waddell (2010), in a different context. 

To summarize, given the particular sampling protocol described for Dn, the 

conditional probability of choosing alternative i, given that the set Dn was drawn, can be 

approximated by 
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 (18) 

 

The advantages and disadvantages of this procedure are similar to those of the 

Pop.Shares method: it can be directly implemented without using additional information 

and without incurring additional computational costs. Additionally, this method can be 

easily implemented in canned estimation software with minor modifications, making it 

attractive for practitioners. The disadvantage is that this approximation may be too rough 

and may cause important biases. This approach is studied using Monte Carlo experiments 

in Section 4. 

4 MONTE CARLO EXPERIMENTS 

4.1 Introduction 

In this section we report three Monte Carlo experiments that serve the purpose of 

illustrating the application of the different versions of the sampling method outlined in 

the previous sections. A secondary purpose of the experiments is to shed light on the 

relative performance of the variations of the method in finite samples, but having in mind 

that the results in this respect are only valid in the context of the experiments considered.  

4.2 Assessment of different versions of the method 

In the first experiment we analyze the empirical finite sample properties of each 

version of the method in recovering the true parameters of the model, depending on the 

number of alternatives sampled J
~

. The setting of this experiment is summarized by 

Figure 2. The true or underlying model is a RRM model with 1000 alternatives and 1000 

observations, with a single attribute x distributed Uniform (-1,1) and with parameter 

1 . The motivation for considering a single attribute in this experiment, was for being 

able to estimate the true model considering a number of alternatives as large as 1000 to 

be used as a benchmark. 
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Figure 2 Structure of the Random Regret Model for the Monte Carlo Experiment 

1000N 1000J ; 50 and 30 15,  5,
~
J  

 

The methodology used to implement the RRM model shown in Figure 2 for the 

Monte Carlo experimentation consists of several steps. First, the choice probability was 

calculated using the true value of the parameter ( 1 ) in Eq. (3). Then, these choice 

probabilities were used to build a discrete cumulative distribution function by alternative. 

Afterwards, a random number Uniform (0,1) was generated for each observation. Finally, 

the chosen alternative was determined as the inverse of the cumulative distribution 

function, evaluated for each random number. 

The sampling protocol used to draw alternatives Dn from the choice-set Cn in this 

experiment was the following. First, the chosen alternative for each observation was 

included. Then non-chosen alternatives were randomly sampled, without replacement, to 

make a total of 50 and 30 15, 5,
~
J . The sampling protocol used to draw alternatives nD

~
, 

when it was considered to be different from nD , was a simple random sample of 

J
~

alternatives from Cn. 

Under this setting we estimated the model using five different methods. The first 

method corresponds to the True model, a model where all alternatives are considered in 

the choice-set. This model acts as a benchmark, both in terms of the maximum quality 

that can be attained for the estimators, and of the maximum estimation time. 

The second estimation method corresponds to a Truncated version of the problem 

where only the elements in the subset Dn are used to build the term 

   



nDj

injn

Truncated

in xxR exp1lnˆ . This method acts as a benchmark in terms of the 

minimum quality that can be attained for the estimators. 

The third estimation method considered is Re-sampling, method in which an 

alternative set nD
~

 is sampled to build the term 
inR̂ . In this application, nD

~
 was drawn as 

a random sample without replacement, so that the expansion factors are calculated 

as
J

J
w jn ~ . The quasi-loglikelihood considered in this case is the one shown in Eq. (15). 

The fourth estimation method considered is Pop. Shares. In this case nn DD 
~

, the 

expansion factors are calculated using the sample shares as an approximation of the 

choice probabilities, and the quasi-loglikelihood is the one shown in Eq. (17).  

The final estimation method considered is 1_0. In this case again nn DD 
~

 the 

expansion factors are calculated using the observed choice as an approximation of the 

choice probabilities, and the quasi-loglikelihood considered in this case is the one shown 

in Eq. (18). 

1000 
1 j 
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The model was generated 100 times, for different values for J
~

. For each repetition of 

the model we regenerated the attribute x, the choices and the sets nD and nD
~

. Estimation 

was performed using the BFGS (Fletcher, 1980) algorithm coded in the optim package of 

the open-source software R (R Development Core Team, 2008), on an IBM eServer with 

a CPU Intel Xeon X5560 of 2.80GHz and 12 GiB RAM. 

For each model estimated we report the following statistics to assess the empirical 

finite sample properties of each method in estimating the model coefficient β. 

 

Bias: Difference between average estimator within the 100 repetitions and the true value 

of the parameter. The Bias should tend to zero if the mean of the sampling 

distribution is equal to the true value. 

Root Mean Squared Error (RMSE): Square root of the sum of the sampling variance 

and the square of the bias. The smaller the RMSE, the better is the method in terms of 

small sample efficiency. 

t-test: Ratio between the bias and the sampling standard deviation of the average of the 

estimators. This statistical test can be used to test the null hypothesis that the mean of 

the sampling distribution is equal to its respective true value. 

Count: Number of times the estimator of each repetition is within a 75% confidence 

interval of the true value constructed using the sampling variance from all the 

repetitions. This statistic is usually termed the empirical coverage. The larger this 

statistic is, the better the performance of the method. The closer to 75 this statistic is, 

the closer its empirical distribution is to its theoretical sampling distribution. 

 

Together with these statistics, we report in Table 1 the respective J
~

, the estimation time 

in minutes (Time), and the number of times -within the 100 repetitions- that the model 

was not estimable because of an error in the optimization procedure (Error). 

 

Table 1: Statistical Analysis of ̂  for Different Methods to Estimate RRM 

Model with Sampling of Alternatives, Varying J
~

 

Method Bias RMSE t-test Count J
~

 Time [min] Error 

True 0.005105 0.08092 0.06322 76 1000 64.61 0 

Truncated 

347.0 390.4 1.939 12 5 0.002615 0 

284.4 288.6 5.794 0 15 0.01639 0 

270.8 273.1 7.703 0 30 0.05473 0 

259.0 260.2 10.15 0 50 0.1447 0 

Resampling 

0.3848 0.6276 0.7763 0 5 0.002875 68 

-0.01060 0.4702 0.02255 88 15 0.01984 0 

0.06234 0.5419 0.1158 94 30 0.07124 0 

0.02292 0.3844 0.05972 97 50 0.1841 0 

Pop Shares 

0.06136 0.8994 0.06838 0 5 0.003164 4 

-0.06717 0.3184 0.2158 75 15 0.02044 0 

-0.01191 0.3216 0.03705 90 30 0.07146 0 

-0.01601 0.1993 0.08058 85 50 0.1813 0 
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1_0 

363.9 414.1 1.841 0 5 0.004880 19 

292.5 296.7 5.923 0 15 0.02359 0 

287.8 290.0 8.155 0 30 0.09929 0 

287.9 289.0 11.30 0 50 0.3138 0 

J=1000; N=1000; β=1; 100 repetitions; One attribute, distributed U(-1,1) 

 

The estimation results are also summarized in Figure 3. The abscissa corresponds to 

the J
~

and the ordinate depicts the estimator ̂ of the single model parameter. The value 

of 1000
~
J  is not presented in scale, and the values of ̂  are limited to those between 

0.0 and 2.0. The true value of 0.1  is highlighted with a horizontal line. The 

estimators obtained for each method and repetition, are drawn in grey with the respective 

symbols detailed in the legend of Figure 3 for each method. The average of the 

estimators, within the 100 repetitions, is marked with a larger symbol for each method. 

The estimators of the True model, the one estimated using 1000
~
J , are depicted 

with a dot in Figure 3. As expected, this model performs well. The average of the 100 

repetitions is almost equal the true value of 0.1 , and each repetition is close and 

symmetrically around it. This is reaffirmed by the statistics deployed in Table 1. The Bias 

is about 0.5%. The RMSE is about 8% and t-tests are far below the critical value of 1.984 

to erroneously reject the null hypothesis that 0.1 . Also, none of the 100 repetitions 

failed, and the empirical coverage was 76, almost equal to its nominal value of 75. 

Finally, the estimation time was, in average, about 1 hour per repetition. 
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Figure 3: Estimators for Different Methods. 100 Repetitions for Various ( J
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The estimators of the Truncated method, the one estimated ignoring the impact of the 

truncation of the regret function caused by the sampling, are depicted with an ‘x’ in 

Figure 3. As expected, although the Bias decreases with J
~

 (see Table 1), the results are 

still very poor for 50
~
J . Not even one estimator falls in the range of 0.0-2.0 depicted in 

Figure 3. Table 1 shows that the Bias is above 25000% compared to the true value, and 

so does the RMSE. Also, for all values of J
~

, the t-test is above 1.984, the threshold for 

erroneously rejecting with 95% confidence the null hypothesis that the mean of the 

sampling distribution is equal to its respective true value. It is interesting that the best 

value of the t-test occurs for 5
~
J , which can be explained by noting that the sample 

variance is larger for such small J
~

. Finally, none of the 100 repetitions of the estimation 

procedure failed and the estimation time was, on average, less than 10 seconds for 

50
~
J . As a conclusion and completely in line with expectations, the Truncated method 

performs extremely poor in all aspects for small J
~

, although it can be noted that results 

improve as J
~

 grow, slightly, but steadily. 

The estimators of the Resampling method, which is obtained by maximizing the 

quasi-loglikelihood shown in Eq.(15), are depicted with a circumference in Figure 3. This 

estimation method performs acceptably with J
~

as small as 30. From that point, the Bias 

is below 6% and the t-test is far below the critical value for rejecting the null hypothesis 

that β is equal to its true value. The RMSE is not as small as with the True model, but 600 

times below the Truncated one. Also, it is interesting that 68 out of 100 of the repetitions 

failed for 5
~
J , but none failed for larger J

~
. This may be explained because the 

fundamental part of the method is to gather a proper estimate of the regret function with a 

reduced number of alternatives, and maybe with 5
~
J  the estimator of inR  is so poor that 

it results in the estimation procedure becoming unbounded or undefined. Another 

possible explanation is that there might be a limitation of the estimation procedure BFGS 

in this context.  

The estimation time of the Resampling method took about 11 seconds in average for 

50
~
J , which is very similar to the Truncated method, and about 350 times smaller than 

that of the True model. Finally, the Count for the Resampling method is higher than the 

nominal value of 75. This may reflect that 100 repetitions may not be enough, in this 

case, for providing a proper account of the sampling distribution, or that the finite sample 

distribution is not well behaved. As a conclusion, these results suggest that, although the 

Resampling method works asymptotically, various finite sample properties, particularly 

the Bias, are acceptable with J
~

as small as 30 out of 1000. However, statistical testing 

with finite samples should be treated with care since results suggest that the t-tests may 

have low power. Further investigation in this final issue is needed. 

The estimators of the Pop. Shares method, the one obtained by maximizing the quasi-

loglikelihood shown in Eq.(17), are depicted with a cross in Figure 3. This method 

performs as well as the Resampling method. For some values of J
~

, Pop. Shares is 

superior and for others Resampling is superior. Failed estimations occur also only for  

5
~
J , but now in only 4 out of 100 repetitions, which suggests that this method is more 
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robust with regard to this respect. Estimation times are also of the same order of 

magnitude as for the Resampling method. As with the Resampling method, the Count in 

this case is larger than its nominal value. As a conclusion, the results suggest that the 

Pop. Shares method works as well as the Resampling method for finite samples. 

Finally, the estimators of the 1_0 method, the one obtained by maximizing the quasi-

loglikelihood shown in Eq.(18), are depicted with an inverted triangle in Figure 3. Results 

obtained with this method are very poor, in fact almost as poor as the results obtained 

with the Truncated method. As a conclusion, although the 1_0 method works 

asymptotically, the finite sample properties in this application are far from acceptable. 

The Resampling and the Pop. Shares methods both showed substantially better results. 

 

4.3 Sensitivity to the variance of x 

The second experiment is devised to analyze the relative performance of the methods 

when changing the variance of the data. The experiment is equivalent to the one 

described in the previous section in various aspects. There is also only one attribute x, the 

true parameter is 1 , and there are 1000 observations. In turn, the true choice-set in 

this case has 500 alternatives for all individuals, and 30 alternatives are sampled. The 

attribute x is distributed Uniform  limlim , xx  , where limx varies from 0.2 to 3.0, in steps 

of 0.2. The data were generated 100 times and the estimators of the five methods are 

reported in Figure 4 and Table 2. In Table 2, only the results for limx = 0.2, 1.0 and 3.0 are 

reported. 
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Figure 4: Estimators for Different Methods. 100 Repetitions 

30
~

;1000;500  JNJ ; X follows  limlim , xxU   

 

The working hypotheses are fourfold. (1) A larger variance x will reflect in a larger 

variance of the statistic that is being estimated (Rin) by the proposed method, which 

implies that a larger size J
~

 of the sampled choice set would be needed to attain the same 

level of error at a given confidence level. (2) A larger variance of x would also imply a 

larger variance of the choice probability, implying that a larger N would be needed to 

maintain the statistical properties. This would impact both the true model and the 

estimation with sampling of alternatives. (3) If the variance is too large, this may 

eventually cause numerical problems in the estimation methods. (4) Finally, an increase 

in the variance of the attribute will increase the level of information, improving the 

efficiency of the estimator. 

Figure 4 and Table 2 show that, just as for the experiments reported in Section 4.2, 

the methods Truncated and 1_0 have a poor performance. No realizations in the range 

0.0-2.0 are observed for both methods. Furthermore, the Resampling and Pop. Shares 

methods show very similar performance as reported in the previous sub-section. For 

limx =1.0 and smaller, both methods perform very well, with biases below 9%, small 

RMSE and t-tests bellow the critical value to erroneously reject the null hypothesis that 

the coefficient is equal to its true value. Things become worse for larger limx , both for 

Resampling and for the Pop. Shares method. This can be explained by a mixture of 

hypothesis 1 and 2. The fact that the Bias grows for limx >1.6, even for the true model, 

suggest that from that point onwards, the second hypothesis is more relevant, which 

means that a larger N is required to maintain good statistical properties. 

 

Table 2: Statistical Analysis of ̂  for Different Methods to Estimate RRM 

30
~

;1000;500  JNJ , X follows  limlim , xxU   

Method 
limx  Bias RMSE t-test Count Time[min] Error 

True 

0.2 0.001229 0.034632 0.035514 75 17.39 0 

1.0 -0.010732 0.071602 0.151598 77 17.21 0 

3.0 0.130163 0.504423 0.267089 79 18.54 0 

Truncated 

0.2 143.9 144.4 11.75 0 0.09732 0 

1.0 125.6 126.1 11.94 0 0.1113 0 

3.0 52.73 52.94 11.27 0 0.1108 0 

Resampling 

0.2 -0.02873 0.05970 0.5490 62 0.0686 0 

1.0 -0.05144 0.3231 0.1613 97 0.07934 0 

3.0 -0.4710 0.5009 2.765 4 0.1007 0 

Pop Shares 

0.2 0.00008789 0.05354 0.001641 76 0.0677 0 

1.0 -0.08756 0.1569 0.6725 60 0.08052 0 

3.0 -0.4961 0.5148 3.605 3 0.09911 0 

1_0 
0.2 226.5 226.9 18.15 0 0.1136 0 

1.0 142.3 142.7 13.34 0 0.1374 0 
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3.0 58.23 58.42 12.38 0 0.1355 0 

 

There is no support for hypothesis 3 for the range of values of limx analyzed, as none 

of the estimations failed. There is also no support for hypothesis 4 for the range of 

limx considered. For all cases the RMSE grows with limx , which suggests that the effect in 

terms of efficiency is offset by the other effects. For smaller limx (not reported) the 

adjustment got slightly deteriorated in a similar way for both the Resampling and the 

Pop. Shares method. 

As a conclusion, results suggest that the variance of the data impacts the J
~

that is 

needed to attain a certain statistical quality of the estimators. This implies that it is not 

possible to suggest a proper J
~

for all contexts – for example, as a given fraction of J. In 

Section 4.4 we propose a method to choose the number of alternatives to be sampled in 

practice. 

4.4 Selection of J
~

 in practice 

The third Monte Carlo experiment was devised to illustrate how one may decide 

which J
~

to use in a practical application. In general, as was highlighted in the previous 

sub-section, it is not possible to provide a recommendation for J
~

 as a fraction of J. The 

J
~

needed will depend, among other things, on the distribution of the data, the number of 

attributes, the true value of the parameters, the number of observations N, the 

optimization procedure, and the computing capabilities. The choice of a proper value for 

J
~

involves a trade-off between estimation time and quality of the estimators. The larger 

J
~

, the longer it will take to estimate the model, but the better the estimates will be.  

In a practical application, the researcher will have a single database. To assess the fit 

of the model for a given J
~

, the researcher can sample R sets  JDr

~
 and  JDr

~~
, obtaining 

a respective series of r̂ . With this, the following two statistics can be calculated: 

 



R

r

r J
R 1

~ˆ1ˆ    and  







 




R

r

rr
R 1

ˆ
ˆˆ

1

1
ˆ 


. 


 ˆˆ  can be seen as an estimator of the noise of the estimation parameter, which is 

equivalent to the concept of noise described for the estimation of the score in the 

demonstration shown in the Appendix. The larger the J
~

, the smaller the 


 ˆˆ  will be. 

Eventually, when J
~

=J, 0ˆ 2
ˆ 

 . 


 ˆˆ  is a measure that the researcher may want to 

constrain and trade-off with estimation time, when choosing the J
~

 to be used in practice. 

If the researcher is able to estimate the model with the full choice-set to obtain  C̂ , 

̂  can be used to estimate what can be defined as the sampling bias  C ˆˆ  . Note that 

this bias is not the same as the one we considered in the context of the previous 

experiments. In those experiments, the bias was calculated with respect the true value of 

the parameter. In this case, the bias is calculated with respect to the estimator obtained 
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when considering the full choice-set and for a given dataset. This notion of bias is 

equivalent to the concept of bias described for the estimation of the score in the 

Appendix. The larger J
~

, the smaller the sampling bias will be. Eventually, when J
~

=J, 

the sampling bias will be zero.  C ˆˆ   is thus a measure that the researcher may want 

to constrain and trade-off with estimation time when choosing the J
~

 to be used in 

practice. 

If the researcher is not able to estimate the model with the full choice-set to obtain 

 C̂ , ̂  can still be used directly to choose the proper J
~

, by checking its stability. This 

is analog to the way that number of draws has to be chosen when estimating a model by 

simulated maximum likelihood, as suggested by Chiou and Walker (2007). 

To illustrate this procedure we report a Monte Carlo experiment in which the true 

model has 1000 alternatives, there are 1000 observations and a single attribute x 

distributed Uniform (-1,1) with parameter β=1. The estimation of the true model for a 

particular realization of x, results in  C̂ =0.9322 and is performed in about 57 minutes.  

Table 3 summarizes the statistics obtained using the Pop. Shares method for various 

J
~

, considering R=30 repetitions for each J
~

. It should be remarked that the repetitions in 

this case as not the same as in the previous experiments where x, the choices and the 

choice-sets were regenerated each time. In this case, the only thing that changes across 

repetitions is  JDr

~
 =  JDr

~~
. For completeness, we also include in Table 3 the number of 

times, within the 30 repetitions, that the optimization procedure failed. 

 

Table 3: Practical Determination of J
~

 

J
~

 
Sampling 

Bias ̂  
 ˆˆ  Time 

[Seconds] 
Error 

5 -0.08610 0.8461 0.3090 0.1663 4 

15 0.09320 1.025 0.6257 1.180 0 

30 -0.03381 0.8984 0.1526 3.792 0 

50 -0.02142 0.9107 0.1278 10.29 0 

100 -0.001991 0.9302 0.0893 45.40 0 

 J=1000; N=1000; 30 Repetitions; Population Shares Method 

 C̂ =0.9322; Time (C)=57 minutes 

 

To choose a proper J
~

, the researcher would have to make a decision on the 

acceptable sampling bias, shift in ̂ , noise 


 ˆˆ ; and on a desirable estimation time. An 

additional criterion would also be to consider not having errors in the estimation 

procedure. These criteria could be accomplished, for example, for 30
~
J , because it has 

a sampling bias below 5%, 


 ˆˆ of about 15% , estimation time below 5 seconds, the shift 

in ̂  about 1%, and not a single failed estimation within the 30 repetitions. 
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4.5 Conclusion 

The Monte Carlo experiments show that the method we proposed for sampling of 

altrnatives in the context of RRM models, is practical. Results suggest that, in the context 

of the experiments, Pop. Shares and Resampling versions of the method seem to provide 

acceptable results for samples of alternatives as small as 30 out of 1000 alternatives. 

They also illustrate that the sample size that is needed for obtaining a given level of 

quality of the estimates, depends on many features, including the distribution of the data. 

This means that it is not possible to provide a simple criterion for the choice of the proper 

sample size, such as that J
~

has to be some fraction of the true J. In turn, the approach 

described in Section 4.4 is recommended, to decide based on the trade-off between 

estimation time and goodness of fit. 

Besides, the experiments suggest that, although the finite sample bias can be small for 

small values of J
~

, the power of the t-tests with finite samples may be low. This can be 

inferred from the observation that empirical coverage tended to be larger than its nominal 

value for most cases. This issue should be analyzed in further research. 

Finally, it should be remarked that the relative assessment of the methods reported in 

this section is only valid for the experiments reported, and does not represent a complete 

description of the finite sampling properties of the estimators. 

5 APPLICATION WITH REAL DATA 

Finally, in this section we revisit a real data experiment used by Chorus (2010) to 

demonstrate the RRM model. The data concern revealed parking choices and was 

collected by Van der Waerden et al. (2008) at the campus of Eindhoven University of 

Technology. The choice set consists of 14 parking lot alternatives and 350 cases (which 

is the sample used for estimation by Chorus, 2010). 

The choice model considers four attributes of the parking lots. The first is 

NR_SPACES, which corresponds to the number of spaces available at each parking lot. 

The second is ROOM_MANEUV, which is a dummy that takes value 1 if the parking lot 

has extra space for making maneuvers. The third attribute is RIGHT_OF_WAY, which is 

a dummy that takes value 1 if the driver has right-of-way when leaving the parking lot. 

The fourth and last attribute is DISTANCE, which corresponds to the distance between 

agent’s workplace and the parking lot, and is discretized as follows: equals 1 when the 

distance is approximately 100 meters; equals 2 when distance is approximately 300 

meters; and equals 3 when it is approximately 500 meters. 

Although the choice set may not seem particularly large (J=14), as a proof of concept 

of the method we preferred not to generate a pseudo-synthetic experiment with a larger 

choice set (as in Bierlaire et. al, 2008) but using the real data as they were. The reason is 

that a pseudo-real dataset will not really offer fundamentally new insights compared to 

the experiments described in Section 4; additionally, this model will allow illustrating the 

behavior of the method with various attributes and providing additional support to the 

statement that the choice of the proper J
~

cannot be specified as a given fraction of J. 
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Table 3 summarizes the estimators obtained for the true RRM model of parking lot 

choices, using all the 14 alternatives available. These results are the same as the ones 

reported by Chorus (2010). In what follows we will use the Resampling method to 

estimate the model with sampling of alternatives, varying J
~

from 2 to 14. The model was 

estimated 30 times for each J
~

.  

We report in Figure 5 the average estimators ̂ within the 30 repetitions. The values 

of  C , which is the corresponding parameter attained with the true model as reported 

in Table 3, are depicted with a dashed line. We also report a bandwidth of 10% deviation 

from each  C . As expected, all ̂ get closer to  C  as J
~

grows. However, the speed 

of convergence is heterogeneous. On the one hand, ̂ for NR_SPACES is within the 10% 

bandwidth form J
~

=2.  On the other hand, for DISTCANCE, this occurs only as J
~

=13 

out of 14.  

 

Table 3: RRM True Model of Parking Lot Choices 

 ̂  s.e 

NR_SPACES 0.08671 (0.01430) 

ROOM_MANEUV 0.09066 (0.02750) 

RIGHT_OF_WAY 0.03387 (0.02763) 

DISTANCE -1.444 (0.4517) 

L(0)  -923.7 

L( ̂ ) -404.7 

2  0.5619 

N 350 

J 14 
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Figure 5: ̂  as a Function of J
~

 for the RRM of Parking Lot Choice 

 

In Figure 6 we report the standard deviation 


 ˆˆ  for each J
~

. Note that 0ˆ ˆ 
  for 

J
~

=14. This value is depicted with a dashed line. As expected, all 


 ˆˆ shrinks as J
~

grows. 

However, as with ̂ , the behavior is heterogeneous. 


 ˆˆ for NR_SPACES is always below 

0.04, while for DISTANCE, it only occurs for J
~

=14.  

The heterogeneity in ̂  and


 ˆˆ illustrates that, when choosing  J
~

 in a model with 

various attributes the researcher would have to consider some type of norm to account for 

the degree of convergence of the full vector of parameters. A robust strategy could be to 

consider the convergence of the worst behaved parameter. In addition, the fact that for 

one of the parameters a somehow reasonable convergence is attained only for J
~

=93% of 

J serves to illustrate that the choice of J
~

cannot be settled as a fixed fraction of J. 

 

 

J
~

J
~

J
~

J
~

̂

̂̂

̂
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Figure 6: 


 ˆˆ  as a Function of J
~

 for the RRM of Parking Lot Choice 

 

 

6 CONCLUSION 

This article proposes a method to obtain of consistent, asymptotically normal, and 

efficient estimators (i.e., efficient relative to any other estimator using the same sample) 

for the problem of sampling of alternatives in the context of Random Regret 

Minimization models (RRM). In light of the fact that runtimes of RRM models increase 

almost quadratically with choice-set size, finding a proper way to estimate RRM-models 

on sampled choice-sets is a crucial condition to ensure that the RRM approach remains a 

feasible and attractive alternative for Random Utility Maximization-models (RUM) in the 

context of (very) large choice-sets. Given that the RRM-model, even when written in 

Logit form (i.e., with iid errors), does not exhibit the IIA property, McFadden’s (1978) 

result cannot be applied to obtain a proper correction term when choice-sets are sampled. 

To overcome this situation, a tailor-made correction approach for RRM-models is 

presented in this paper, which is a direct extension of the approach developed by Guevara 

and Ben-Akiva (2013a) to address a similar problem in RUM-based MEV models. 

In line with expectations, Monte Carlo experiments showed that sampling of 

alternatives causes a significant bias in the estimators of the RRM-model parameters and 

in the estimated shares when no correction is applied. In addition, these experiments as 

well as an application on real data show that the proposed method for correcting the 

terms that get truncated because of the sampling, performed reasonably well. In cases 

where the researcher has full control of the data and it is possible to obtain an additional 

sample to expand the sum of the exponentials, the method proposed is easily applicable. 

When it is not possible to re-sample, the method requires knowledge of the choice 

J
~

J
~

J
~

J
~


 ˆˆ


 ˆˆ


 ˆˆ


 ˆˆ
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probabilities in order to build the expansion factors. In this final case, one practical 

approximation methods showed reasonably good results. 

The sample size required to obtain good estimators while sampling alternatives in 

Random Regret models will vary on a case-by-case basis and cannot be expressed as a 

percentage of the cardinality of the true choice-set. Using synthetic and real data, we 

show that in general, an appropriate strategy to determine if the size of the sample of 

alternatives is large enough is to test the stability of the estimators with different number 

of alternatives sampled and to analyze the sampling bias and noise. 
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Appendix 

 

The demonstration of the theorem is analog to the two step procedure used by Train 

(2009, pp. 247-257) to derive the asymptotic distribution of simulation-based estimators. 

The first step consists in the derivation of the distribution of the approximated score  
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The second step is to derive the distribution of ̂ , noting that ̂  is the root of  the 

equation   0ˆˆ g .  

In what follows we provide a summarized account of the first step, just to highlight 

why  nin DW
~ˆ  needs to be an unbiased estimator of inW , and why the variance of 

inŴ  

needs to be bounded and decrease with J
~

, what also means that  nin DW
~ˆ  is a consistent 

estimator of inW . The reader is referred to Train (2009, pp. 247-257) or Guevara and Ben-

Akiva (2013a), for further details. 

To simplify the notation we will assume that DDn

~~
 for all n. Consider  ĝ  in the 

vicinity of the true values β* in the following form 

               
    

321

*ˆ*ˆ**ˆ**ˆ

AAA

gEgggEgg   . 

The first term  *1 gA   is the statistic that is being approximated by  *ˆ g . The 

second term A2 corresponds to the bias of the estimator of  *g  and the third term A3 is 

the noise of the approximation. 

The noise (A3) corresponds to the deviation of  *ˆ g  from its expected value, which 

will depend on a particular draw of the alternatives to construct the choice-set D
~

. Since 

 ni DW
~ˆ is bounded and decreases with 

nJ
~

, we can claim that the same occurs with the 

variance of the noise. This can be expressed as   JSAVar nn

~
3  , where Sn is the 

variance of A3 for a given n when 1
~
J . Then, by the generalized version of the central 

limit theorem (see, e.g., Train, 2009, pp.246), the noise A3 will have the following 

limiting distribution: 

 JAN d ~
,0Normal3 S , 

where S is the population mean of Sn. Consequently, the asymptotic distribution of the 

noise A3 will be  

 NJA
a ~

,0Normal~3 S , 

and the noise will vanishes as N increases, even if J
~

is fixed. 



Guevara, Chorus&Ben-Akiva  31 

The bias term A2 can be studied by taking a second order Taylor’s approximation of 

 nin DW
~ˆ  around   innin WDW 

~ˆ . Noting that     ninn gWg ,ˆ , it follows that 
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Then, taking expectations (over possible realizations of the set nD
~

), recalling that 

 nin DW
~ˆ  is an unbiased estimator of inW , and considering that the discrepancy on has zero 

mean, this Taylor’s approximation can be rewritten as 
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The fact that   nWVar  is bounded and decreases with J
~

 can be captured by the 

expression    JKWVar nn

~ˆ  , where Kn is a scalar. Then, the expected value of the bias 

A2 can be rewritten as 
J

Z
A ~2   , where Z is the sample average of
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The bias A2 will vanish as N increases, if and only if  J
~

 increases also with N. 

Otherwise,  ĝ  will be an inconsistent estimator of  g . Instead, an even stronger 

assumption is required to achieve asymptotic normality. To understand why, consider the 

bias A2 normalized for sample size N. 

Z
J

N
AN ~2  . 

This term will vanish as N increases, if and only if J
~

 increases faster than N . 

Otherwise, the estimator  ĝ  will have neither a limiting nor an asymptotic distribution.  

In summary, if J
~

 increases with N at any rate,     gg pˆ , and when  J
~

 

increases faster than N ,  ĝ  will be asymptotically Normal. Given that 

    gg pˆ , the limiting and asymptotic distributions of  ĝ  will be the same as 

those of  g . 


