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Abstract

The change in sea beds in double inlet systems is caused by a complex combi-
nation of factors such as sea level dynamics, water movement and suspended
sediment in the water. The unchanged water depth, the equilibrium seabed, in
inlet systems is important to know for shipping near harbours and wildlife in
nature reserves.

An idealized exploratory version of this complex system of morphodynamics
to find the equilibrium solutions is usually modelled in a depth- and width-
averaged way, which removes the vertical structure. Hence I will investigate
if it is possible to model the system in a width-averaged two-dimensional way
with the vertical structure intact and what are the consequences of retaining
the vertical structure?

To investigate this the construction of a two-dimensional model is described
and the solution methods posed. Following this the resulting equilibrium sea
beds are compared to the equilibrium sea beds found in depth-averaged one-
dimensional models to ascertain the importance of the vertical structure.

It was found that adding the vertical structure makes the resulting govern-
ing equations of the model more complex but can be solved with perturbation
techniques. Furthermore, for specific sets of parameters describing the system it
is possible to have multiple equilibrium sea beds, which suggests the existence of
bifurcations. Finally, it is possible to find a relation between the 1-dimensional
and 2-dimensional governing equations that results in both models producing
the same results.

Concluding, two-dimensional models compared to one-dimensional models add
an extra layer of complexity which allows for bifurcations but makes the model
computatively more expensive. Instead, using the relation found in this pa-
per in a one-dimensional model is preferred as in theory it results in the same
equilibrium sea beds found.
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Chapter 1

Introduction

1.1 Introduction

Tidal inlets are connections between the open sea and back barrier basins that
are otherwise sheltered from the open sea. These inlets are found in many shal-
low coastal regions around the world and are typically characterized by complex
water motion, caused by the tides, wind and density gradient, resulting in trans-
port of sediment and changes in bathymetry.

The evolution of the sea bed can be computed using so-called morphodynamic
models in which the hydrodynamics and sediment concentration are dynami-
cally coupled to the bed evolution. This allows the assessment of the temporal
bed changes. Apart from this information concerning the transient behaviour,
a relevant question is whether there exist so-called morphodynamical equilibria
for these systems. A sea bed is considered in equilibrium when the bottom
does not change any more, assuming outside forces are constant. Such an equi-
librium can thus be seen as the shape to which the sea bed will eventually evolve.

There are many scenarios why the knowledge of the existence and characteris-
tics of equilibria is important. First of all, a busy sea port which is connected to
the open sea through a tidal inlet system relies on the tidal inlet system being
of certain depth.
When the tidal inlet system is dredged to make it possible for larger ships to
travel through the inland ports, it is important to know how long it takes for
the sea bed to change such that the channel needs to be dredged again.

Second, for nature reserves, the fauna that breeds and lives in these areas de-
pends on specific characteristics of the breeding grounds, such as shallow waters.
However, these areas have often been changed in such a way that the sea bed is
not in equilibrium any more. Hence, an important question concerns whether
the resulting sea bed will allow the current fauna to thrive in these nature re-
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serves.

Not only human interventions, but also other incidents can have a lasting effect
on these systems. Climate change, for instance, could cause a permanent or
temporary rise in sea level. In view of this, it is important to assess the effects
of external forces on the equilibrium profiles. This is particularly important if
more than one morphodynamical equilibrium exists for the same forcing condi-
tions.
If this is the case it is possible that also temporary changes in outside forces
like hurricanes cause the sea bed to evolve to a different equilibrium, which can
have huge economical and ecological consequences.

1.1.1 Inlet system

A tidal inlet system is an opening in the shoreline connecting the open sea and
a body of water that is sheltered by barrier islands on the seaward side and
mainland on the other side. Tides play an important role in forcing the water
motion in these inlet systems. Due to the water motion, sediment is eroded from
the bed, transported and again deposited on the bed, resulting in a changing
bathymetry.

The tides consist of many different components, like the semi-diurnal M2 tidal
constituent and its first overtide M4. Also, the sea level is highly influenced by
other factors like the wind and seasons. The semi-diurnal tidal constituent is the
most important forcing component for the systems we consider. The temporal
behaviour of the resulting water velocity and sediment concentration is directly
related to the period of this semi-diurnal tide. However, significant evolution of
the sea bed occurs only after many semi-diurnal tidal cycles; hence the sea bed
evolution occurs on a much larger time scale.

Furthermore, there are two types of inlet systems: a single inlet system only
connected to the sea by one opening; and a multiple inlet system which is con-
nected to the sea by more than one tidal inlet. In the next section an example of
a single and a double inlet system is discussed in detail. A double inlet system
is a system that is connected by two inlets to the sea.

Single inlet system

An example of a single inlet system is the Frisian inlet system. The tidal inlet
of this system is located between the islands of Ameland and Schiermonnikoog
in the Wadden Sea, see Figure 1.1. It drains one of the back barrier basins
of the Wadden Sea. In 1969 the area of the back barrier basin was reduced
considerably as the Lauwers Sea was drained for reclamation of land.
Because of this sudden change, the sea bed between the barrier islands Ameland
and Schiermonnikoog and the Lauwerszee was no longer in equilibrium and the
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Figure 1.1: Single inlet system at the Lauwerszee
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system started to evolve on the morphodynamic time-scale.
Because the tidal inlet system is only connected to the sea at one side, it is to be
expected that the sediment will accumulate at the landward side and eventually
will rise until the sea bed reaches the water surface.
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Figure 1.2: Double inlet system in the Marsdiep-Vlie estuary

Double inlet system

A double inlet system is a system where the back barrier basin is connected to
the sea by two inlets. An example of such a system is the Marsdiep-Vlie inlet
system, see Figure 1.2. One inlet is found between Texel and the mainland at
Den Helder and the other inlet of this system is located between Terschelling
and Vlieland. Like the Frisian inlet system, this inlet system is not used by
large ships and is in general not dredged for commercial use because it is part
of the Wadden Sea Region, which is a nature reserve.

Because both ends of this tidal inlet system are connected to the sea, the water
in the system can travel from one end to the other. The water motion depends
on the difference in sea level between the inlets, as tidal waves can travel in both
directions and interfere in the basin itself. As the tidal waves move along the
coastline, the sea level between the inlets will usually vary slightly, resulting in
a different phasing of the tidal signal and possibly a different tidal amplitude.
When the two inlets are close together, the difference in sea level will usually
be characterized by a small phase difference.
The phase and amplitude difference in sea level between the two inlets in the
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Figure 1.3: Phase difference in sea level between the two inlets of Marsdiep-Vlie
inlet system

Marsdiep-Vlie inlet system is displayed in figure 1.3. The data for this plot is
obtained from the Department of Waterways and Public Works. [1]
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1.1.2 Morphodynamical model

To capture the temporal behaviour of this type of system various types of mod-
els can be used. Restricting our attention to model based on first physical
principles, we can distinguish two types: simulation and exploratory models.
Both models are based on physical laws. Simulation models include all known
processes and strive to represent the morphodymanic evolution as accurately as
possible [7]. These models make use of numerical integration techniques. Ex-
ploratory models are using simplified model formulations, and can be used to
evaluate specific phenomena in isolation.

Ideally, simulation models are the best way to model morphodynamics as all
known processes are included. However, the inclusion of all processes makes
the computations very expensive because the underlying governing equations
are complex resulting in long calculation times. Furthermore, the models are
so complex that it is often hard to explain why the model returned a certain
result. These two drawbacks make it difficult to assess whether small changes
in initial conditions or physical parameters can result in drastically different
morphodynamic behaviour.

The model used in this research is an exploratory model and aims to inves-
tigate the sea bed evolution of inlet systems by focusing on dominant processes.
When constructing an exploratory model, only the most important phenomena
are used in the calculations. This results in a model that is easier in use.

Using exploratory models in morphodynamics has the benefit that previous
exploratory models, that have been deemed as correctly modelling morphody-
namics, can be easily expanded to include more physical processes. The impact
of this expansion can be quantified easily by comparing the results of the ex-
panded model with results of the previous model.
A drawback of this research method is that the results may not be representa-
tive of behaviour in reality, because not all known processes are included in the
morphodynamical model. For this only simulation models can provide accurate
predictions.

Identifying the most important phenomena

To obtain insights in the importance of the various terms in the equations, the
equations are nondimensionalized. This is a commonly used method in math-
ematics which scales physical quantities with characteristic scales. This results
in dimensionless numbers that indicate the magnitude of the various terms. In
this way it becomes clear which terms in the equations are the dominant ones.
This process is sometimes called scaling.

Perturbation methods are used in mathematics to find approximate solutions in
equations that can not be solved exactly. By finding the most important terms
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in the equations and first solving the equations with those terms, perturbation
methods can be used to approximate the solution of equations. If an additional
layer is then added to also solve the equations for the less important terms,
an asymptotic expansion of the actual solution of the set of equations can be
constructed.

1.1.3 Previous research

In the field of exploratory models research has been conducted on both single
and double inlets. Often perturbation techniques are used to acquire approxi-
mate solutions of the exploratory model. Furthermore, spatial averaging is often
used to further simplify the models.
In spatial averaging, one or two dimensions, usually the width and depth are
averaged in the governing equations. The flow in the along-channel direction is
obviously the most important direction. The flow over the width and depth are
of less importance.
The importance of the width and depth can be investigated with exploratory
modelling. The disadvantage of averaging over a spatial direction is that only
averaged quantities are retained, and possible correlations are taken into ac-
count in a parametric way. In this way the spatial structure of that direction
is not resolved. For example, when averaging over the depth, there is no infor-
mation of the water velocity and sediment concentration at the sea bed, only
depth-averaged quantities are obtained.

Schuttelaars [9] describes the sea bed evolution in a single inlet system. This
is done in a width- and depth-averaged model. With these assumptions the
sea bed in equilibrium can be computed analytically. However because of the
averaging with respect to the depth, the dynamics of the water velocity and
sediment transport in the vertical direction can only be included parametri-
cally. This is due to the fact that the erosion of the sea bed and deposition of
sediment depends for a large part on the water velocity at the sea bed which
has to be linked to the velocity averaged over the depth. To take the vertical
dynamics better in account, ter Brake [11] included a new parametrisation of
the sediment depositions to capture the vertical dynamical behaviour as good as
possible. However, it is not possible to obtain analytical equilibrium solutions
to the equation of the sea bed evolution any more.

On the subject of double inlet systems the research conducted is very sparse.
Early research on the stability and existence of equilibrium solutions in double
inlets system is presented in van de Kreeke, [12]. In this article only the evolu-
tion of the cross-sectional areas of the inlets was modelled for the inlet systems.
Similar research on depth-averaged hydrodynamical was done in Brouwer et al.
[2], where the stability of double inlet systems was investigated allowing for
spatially varying hydrodynamics in the back barrier.
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Finally, research on morphodynamical models in a double inlet system has been
recently conducted in Xiao et al. [4], which uses a cross-sectionally averaged
model to analyse the sea bed evolution to find equilibrium solutions in double
inlet systems taking both the inlets and the back barrier basins as morphody-
namically active. In this model the water velocity and sediment concentration
on the vertical coordinate is not taken into account.

1.2 Research questions

The overview reveals a clear gap in knowledge: morphodynamics in 2DV-models,
in other words models that include processes in the vertical direction. No re-
search has been conducted on both single and double inlets. This raised the
following questions:

1. It is possible to construct a 2DV morphodynamical model incorporating
sea bed evolution to find equilibrium solutions of the sea bed?

2. How do morphodynamical behaviour and equilibrium solutions in a 2DV-
model compare to those of a one-dimensional width and depth-averaged
model?

3. Is it possible for an inlet system to have multiple equilibrium solutions?

To answer these questions an exploratory 2DV morphodynamical model is con-
structed. This model will be highly simplified to quantify the effects of not
averaging the vertical direction of the domain. This model is obtained by scal-
ing the equations. Next an asymptotic expansion is used to solve the most
important balances in the equations.
This model will focus on morphodynamical behaviour, thus using the change
in sea bed in one semi-diurnal tide cycle to update the sea bed. The hypothe-
sis is that this method will eventually lead to an equilibrium solution. This is
discussed in chapter 2 of this article. The outcome of this will answer research
question 1.
Because all governing equations are non-linear, numerical schemes are used to
solve them. As a compromise between speed and accuracy second order accu-
rate schemes are used to compute the solutions.

Research questions 2 and 3 are addressed in chapter 3. First of all, solutions to
the morphodynamical model discussed in chapter 2 are compared to solutions
found in 1-dimensional depth-averaged morphodynamical models. This com-
parison strives to find the impact of including the depth of the domain into the
equilibrium solutions found and will give an answer to research question 2.
Also in chapter 3, parameter sensitivity is performed to asses the importance of
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the single parameters defining the domain of computation. Furthermore, it is
investigated for which set of parameters multiple equilibrium solutions exist.
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Chapter 2

The mathematical model

This section describes the mathematical model that is developed to compute
the sea bed evolution in double inlet systems. This type of model can also be
used for single inlet systems but the formulation of the boundary conditions are
slightly more complex and will not be discussed in this thesis.

Firstly, the characteristics of the domain will be discussed. Then, the gov-
erning equations in the domain are discussed. The parameter values describing
the system are defined in Table 2.1. The values of these parameters are obtained
from observations.

Next, two methods for finding equilibrium solutions are presented. The first
method is to directly find a sea bed for which there is no temporal change in sea
bed and the second method is to iteratively update the sea bed using a time-
integration approach until the sea bed converges to an equilibrium solution.

Table 2.1: Table showing magnitude of important parameters
Parameter Symbol Dimension Magnitude
Semi-diurnal angular tide frequency σ s−1 1.4 · 10−4

Length of the inlet system L km 20
Height of the water column H m 10
Typical density of the water ρ0 kgm−3 1020
Amplitude of the semidiurnal tide M2 m 1.35

Phase difference of semidiurnal tide
between two ends of double inlet system

φ degrees 20

Vertical eddy viscocity Av m2s−1 0.012
Partial slip friction parameter s ms−1 0.049
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Figure 2.1: Top view of the domain

Figure 2.2: Side view of the domain
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2.1 Geometry

In Figures 2.1 and 2.2 the geometry of a double inlet system is shown, with
Figure 1 the top view and Figure 2 the side view respectively. The top view
shows that the inlet system is connected to the outer sea at x = 0 and x = L
which are straight lines, where its width is confined by two shorelines B1 and
B2 which are not necessarily straight lines, and can vary along the length of the
inlet system.
From the side view it can be seen that the domain is bounded at the top by a
free surface elevation z = ζ and at the bottom by the undisturbed water depth
z = −H. Both the free surface elevation ζ and the undisturbed water depth H
are dependent on the longitudinal coordinate x.

The length of the domain is constant and defined by L. The width of the
domain is given by B = B2 −B1 and the water depth by h = H + ζ.

2.2 Morphodynamic Model

A morphodynamical model describes the evolution of the bottom due to ero-
sion and deposition of sediment. The main initiator to this evolution of the
bottom is tidal motion, because this tidal motion results in stresses exerted at
the bed. Due to these stresses, sediment is suspended in the water column and
transported by advective and diffusive processes. Next, due to the weight of the
sediment it will sink to the bottom again, resulting in bed changes.

This difference in erosion of the sea bed and deposition of sediment on the
sea bed results in the evolution of the bed. From observations it is found that
typical changes in the water motion are much faster than those of the bottom.
Because of this, two time scales can be introduced which characterise these
changes, a short time-scale t for changes in water motion and a long time-scale
τ for changes in the sea bed. The short time-scale is related to the semi-diurnal
tidal cycle which characterizes the change in water motion; the sea bed H is
assumed to be constant during such a tidal cycle.

To capture the bed evolution the sediment, deposition and erosion have to be
calculated. For this some modules are needed:

1. the hydrodynamical module: this includes the water velocity in all direc-
tions u, v and w, and the free water surface elevation ζ,

2. the suspended sediment module that results in the suspended sediment
concentration c,

3. the bed evolution module that updates the location of the sea bed zb.
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2.2.1 Water motion

In this section the method to compute the water motion, consisting of the free
surface elevation and the water velocity, in a double inlet is described. This will
result in the leading order hydrodynamics equation. A more detailed approach is
found in the appendix. In physics and mathematics, the motion of viscous fluids
is described by a set of partial differential equations known as the Navier-Stokes
equations [6]:

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0, (2.1a)

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
= ρbx +

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

, (2.1b)

∂ρv

∂t
+
∂ρuv

∂x
+
∂ρv2

∂y
+
∂ρvw

∂z
= ρby +

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

, (2.1c)

∂ρw

∂t
+
∂ρuw

∂x
+
∂ρvw

∂y
+
∂ρw2

∂z
= ρbz +

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

, (2.1d)

with ρ the density, u, v and w the fluid velocity in respectively the x, y and z
direction, bi the outside body forces on the fluid in the i-direction and σij the
stress tensor. Eq. (2.1a) is known as the continuity equation and equations
(2.1b), (2.1c) and (2.1d) as the momentum equations.

The body forces bi are defined by the acceleration due to gravity and other forces
like the Coriolis force. The stress tensor σij can be rewritten as σij = −pδij+τij
with δij the unity tensor and τ the shear stress tensor. The turbulent shear stress
τ is then related to the velocity gradient via a closure scheme [8], giving:

τxx = 2ρAh
∂u

∂x
, τxy = τyx = ρAh

(
∂u

∂y
+
∂v

∂x

)
, (2.2a)

τyy = 2ρAh
∂v

∂y
, τxz = τzx = ρ

(
Av

∂u

∂z
+Ah

∂w

∂x

)
, (2.2b)

τzz = 2ρAv
∂w

∂z
, τyz = τzy = ρ

(
Av

∂v

∂z
+Ah

∂w

∂y

)
. (2.2c)

To solve these equations boundary conditions have to be imposed. First, at the
bottom, denoted by z = −H, no fluid can leave the domain, thus a no normal
flow boundary condition applies. Assuming the bottom to fixed in time, one
finds:

u
∂H

∂x
+ v

∂H

∂y
+ w = 0. (2.3)

The same type of boundary condition is imposed at the free surface elevation
z = ζ:

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
− w = 0. (2.4)
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The shear stresses τs and τb receptively at the bottom z = −H and the free
surface elevation z = ζ can be expressed in terms of the normally directed
stresses in each direction:

τs = −τxx
∂ζ

∂x
− τxy

∂ζ

∂y
+ τxz, (2.5a)

τb = τxx
∂H

∂x
+ τxy

∂H

∂y
+ τxz. (2.5b)

Apart from the boundary conditions (2.3) and (2.4), a second condition has to
be imposed; such as a free slip, no slip or partial slip condition. In this thesis
for the free surface elevation a free slip condition is imposed:

Av
∂u

∂z
= 0 at z = ζ,

and for the bottom a partial slip condition is used:

Av
∂u

∂z
= su at z = −H,

where s is the partial slip parameter.

The type of systems considered in this thesis are shallow. Because of this,
by scaling the vertical momentum equation (2.1d) it is found that an approxi-
mate balance exists between the terms ρbz and ∂σzz

∂z , where the latter term is

well-approximated as ∂σzz

∂z = −∂p∂z . Therefore, all other terms from the equation
can be removed.
Assuming incompressibility, using the Boussinesq approximation and assuming
the density of the water is equal throughout the domain, the resulting shallow
water equations read:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.6a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+

∂

∂x

(
Ah

∂u

∂x

)
+

∂

∂y

(
Ah

∂u

∂y

)
+

∂

∂z

(
Av

∂u

∂z

)
,

(2.6b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+

∂

∂x

(
Ah

∂v

∂x

)
+

∂

∂y

(
Ah

∂v

∂y

)
+

∂

∂z

(
Av

∂v

∂z

)
,

(2.6c)

∂p

∂z
= −ρg. (2.6d)

In deriving these expressions, the effects of the Coriolis forces have been ne-
glected. The vertical and horizontal eddy viscosity denoted by Av and Ah are
used to model the turbulence in both directions, parametrising the mixing by
effects of small scale turbulent motion. Furthermore, g is the gravitational ac-
celeration.
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Eq. (A.1d) can be solved to give p = pa + ρg(ζ − z), with the pressure at the
free surface elevation ζ equal to the atmospheric pressure pa.

To focus on the hydrodynamics in the x and z direction the equations are
averaged over the width, resulting in:

∂û

∂x
+
∂ŵ

∂z
+

1

B2 −B1

∂(B2 −B1)

∂x
û = 0, (2.7a)

∂û

∂t
+
∂û2

∂x
+
∂(ûŵ)

∂z
= g

∂ζ̂

∂x
+ Âv

∂2û

∂z2
. (2.7b)

With the assumption that in a straight channel the water motion in the y-
direction v is equal to zero and scaling all terms in equation (A.1c) can be
removed thus this equation can be removed in its entirety. Physical quantities
in equations (2.7a) and (2.7b) with a overhead tilde are width averaged. Fur-
thermore, the vertical eddy viscosity Âv is assumed to be constant. Note that
both terms with Ah are neglected as they are much smaller than the other terms.

The boundary conditions are width-averaged in the same way and give:

û
∂H

∂x
+ ŵ = 0 at z = −H, (2.8a)

∂ζ̂

∂t
+ û

∂ζ̂

∂x
− ŵ = 0 at z = ζ̂. (2.8b)

The shear stresses and the slip boundary conditions can be used to define the
boundary conditions:

sû = Av
∂û

∂z
at z = −H, (2.9a)

Av
∂û

∂z
= 0 at z = ζ. (2.9b)

The next step is to make the equations non-dimensional and finding the main
balance between the terms in the individual equations. This leads to:

∂û

∂x
+
∂ŵ

∂z
+

1

B2 −B1

∂(B2 −B1)

∂x
û = 0 (2.10a)

∂û

∂t
+ ε

∂û2

∂x
+ ε

∂(ûŵ)

∂z
=
∂ζ̂

∂x
+
∂2û

∂z2
, (2.10b)

with ε a small parameter defined as ε = U
σL . A detailed derivation can be found

in the appendix.
To solve these equations an asymptotic expansion of û, ŵ and ζ̂ is defined:

• û = R
[
(u0(x, z) + εu1(x, z) + . . .)eiσt

]
,

• ŵ = R
[
(w0(x, z) + εw1(x, z) + . . .)eiσt

]
,
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• ζ̂ = R
[
(ζ0(x) + εζ1(x) + . . .)eiσt

]
,

The asymptotic expansions are introduced into equations (2.10a) and (2.10b),
and the resulting equations are ordered depending on this small parameter.
Retaining only the leading order terms the following width-averaged shallow
water equations are obtained:

∂u0

∂x
+
∂w0

∂z
+

1

B2 −B1

∂(B2 −B1)

∂x
u0 = 0, (2.11a)

iσu0 − g ∂ζ
0

∂x
+Av

∂2u0

∂z2
= 0, (2.11b)

The boundary conditions at the free surface are rewritten as equivalent bound-
ary conditions at z = 0, using a Taylor expansion around z = 0:

u0
∂H

∂x
= −w0 at z = −H, (2.12a)

∂ζ0

∂t
= w0 at z = 0. (2.12b)

On the sea bed the boundary conditions read:

w0(x,−H) = −u0 ∂H
∂x

, (2.13a)

Av
∂u0

∂z
= su0. (2.13b)

To solve for u0, w0 and ζ0, first Eq. (A.10b) is solved for u0. This results in

u0(x, z) = − g

iσ

∂ζ0

∂x

(
1− s cosh(βz)

Avβ sinh(βH) + s cosh(βH)

)
, (2.14)

with β =
√

iσ
Av

. Substituting this expression for u0 in Eq. (A.10a), and inte-

grating this equation over the depth, leads to a differential equation for ζ0:

∂2ζ0

∂x2
+

1

B2 −B1

∂(B2 −B1)

∂x

∂ζ0

∂x
− σ2

gγ
ζ0 = 0, (2.15)

where γ is defined by

γ =
s sinhβH

Avβ2 sinhβH + sβ coshβH
−H

If γ(x) and 1
B2−B1

∂(B2−B1)
∂x both are constant in space, an analytical solution

can be obtained, otherwise a numerical scheme has to be used to solve Eq.
(A.14).

The free surface elevation ζ0 is prescribed at the seaward sides of the dou-
ble inlet system as equal to their respective value at the seas. In this thesis only
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the M2 tidal constituent will be considered. Hence, at the first inlet the sea
surface elevation reads:

ζ0(0, t) = AIM2
cos (σt) ,

with AIM2
the tidal amplitude at inlet I and σ the M2 tidal frequency. The free

surface elevation at the other inlet II, located at x = L, of the inlet system is
defined as

ζ0(L, t) = AIIM2
cos (σt− φM2

) .

Because there is a spatial difference between both entrances usually there is a
phase difference and an amplitude difference between the sea levels at inlets I
and II. In this thesis it is assumed that the amplitudes of the semi-diurnal tide
at both entrances are equal, in other words: AIM2

= AIIM2
, the phase difference

is denoted by ϕM2 .

2.2.2 Sediment concentration

The next step in calculating the evolution of a sea bed is the calculation of the
sediment concentration in the inlet system. This step is needed as the erosion
and deposition of sediment, which determine the sea bed evolution, both are
dependent on the sediment concentration. To derive an equation to compute
the sediment concentration, conservation of mass is used:

∂c

∂t
+
−→
∇ ·
−→
F = 0,

where
−→
F is the total sediment concentration flux in the inlet system and c is

the suspended sediment concentration. The sediment flux consists of three con-
tributions: advective, diffusive and settling flux. They are respectively defined
by:

Fa = c−→u + cwez,

Fd = −Kh∇c−Kv
∂c

∂z
ez,

Fs = −cwsez.

Where−→u is the 3-dimensional water velocity, ez the unit vector in the z-direction
and Kh and Kv the horizontal and vertical eddy diffusivity coefficient, respec-
tively. Furthermore, ws is the settling velocity. This leads to the following
partial differential equation:

∂c

∂t
+
∂(uc)

∂x
+
∂(vc)

∂y
+
∂(c(w − ws))

∂z
=
∂(Khcx)

∂x
+
∂(Khcy)

∂y
+
∂(Kvcz)

∂z
. (2.16)

Like the derived water motion equations this is a complex partial differential
equation and very difficult to solve. Thus, averaging, nondimensionalization
and collecting only the leading order terms is used to simplify the equation.
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By width-averaging and scaling Eq. (2.16) the following dimensionless equation
is derived:

∂ĉ

∂t
+ ε

(
û
∂ĉ

∂x
+ ŵ

∂ĉ

∂z

)
− w∗s

∂ĉ

∂z
− ε ∂

2ĉ

∂x2
−K∗h

∂2ĉ

∂z2
= 0. (2.17)

Parameters with an asterisk are nondimensional in this equation. With the
asymptotic expansion ĉ = c0 + εc1 + O(ε2), keeping leading order terms, the
following the main dimensionful balance is obtained:

∂c0

∂t
− ws

∂c0

∂z
−Kv

∂2c0

∂z2
= 0 (2.18)

This equation only contains derivatives in the vertical direction. Two boundary
conditions at z = 0 and z = −H are needed to be solve Eq. (2.18).
As the free surface elevation does not allow sediment to leave the system we
impose a no flux condition at z = ζ:

wsc
0 +Kv

∂c0

∂z
= 0. (2.19)

At the bottom the sediment flux is related to the erosion and deposition fluxes
of sediment:

Es = −Kh
∂c

∂x
nx −Kv

∂c

∂z
nz = wsc

∗ = wsρsa
|τb(t, x)|
ρ0g′ds

, (2.20a)

D = wscnz. (2.20b)

In this expression nx and nz define the components of the normally directed unit
vector at the bottom in the x and z-direction respectively. For the sediment
concentration at the sea bed z = −H a reference concentration c∗ is used [3, 5].
Furthermore, ρs is the sediment density, g′ the reduced gravity, a the erosion
coefficient and ds the grain size. The forcing term in this expression τb(t, x) is
the bed shear stress causes by the velocity of the water. The erosion coefficient
models the along-channel distribution of easily erodible sediment. It can be
expressed due to partial slip condition Eq. (2.13b) at the sea bed with:

τb = ρ0Kv
∂u0

∂z
= ρsu0.

The vertical eddy viscosity parameter Av is assumed to be equal to the eddy dif-
fusity parameter Kv. Because the bottom H does not depend on z the normally
directed component nz is equal to 1. Substituting asymptotic expansions for u
and c into Eq. (A.32) and retaining only leading order terms gives boundary
condition:

−Kv
∂c0

∂z

∣∣∣
z=−H

= wsρsa
s|u0(t,−H)|

ρ0g′ds
.

Since the leading order constituent of the water velocity u0 only consists of an
M2 tidal constituent, the absolute value of u0 will consist of a residual contri-
bution and even overtides. Since we focus on the morphodynamic evolution,
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driven by diffusive processes, it turns out that only the residual component is
needed. The residual part needed to determine the concentration, is obtained
by:

a0 =

∫ T

0

|u0eiσt|dt.

Finally, the bottom boundary condition becomes:

−Kv
∂c0

∂z
(t,−H) = wsρsa

sa0(x)

g′ds
.

Because only the residual contribution a0 is forcing the differential equation,
the solution will only consist of the residual component c00 of the leading order
sediment concentration c0. This residual term c00 does not depend on time, thus
the leading order differential equation for the concentration can be rewritten as:

ws
∂c00

∂z
+Kv

∂2c00

∂z2
= 0, (2.21)

which, together with the appropriate boundary condition, results in the follow-
ing solution:

c00(x, z) =
aρssa0
g′ds

exp

(
−ws(H + z)

Kv

)
. (2.22)

In this expression, the dependency of c00 on the longitudinal coordinate x is
hidden in a0, the tidally averaged absolute M2 velocity and H, the undisturbed
water depth.

2.2.3 Sea bed evolution

The last governing equation in this model is the sea bed evolution equation.
This equation describes the sea bed evolution due to the erosion of the sea bed
and the deposition of sediment. If more sediment is deposited than eroded the
sea bed will increase compared to the height of the initial sea bed.

It is assumed that the sea bed does not change significantly during a semi-
diurnal tide cycle. This means that the sea bed evolution equation does not
depend on the short time scale t associated with the semi-diurnal tide cycle but
only on the long time scale τ . This gives the following equation for the sea bed
evolution [13]:

ρs(1− p)
∂zb
∂τ

= D − Es,

where p is the porosity of the sediment and zb the height of the seabed measured
from a reference level. Furthermore, Es is the erosion of the seabed and D the
deposition of sediment.

In this model it is assumed that the dynamics in the inlet system does not
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influence the sea bed at the inlets. To achieve this the sea bed at the inlets has
to be fixed, requiring an extra diffusion contribution to be added:

ρs(1− p)
∂zb
∂τ

+ λ
∂2zb
∂x2

= D − Es.

This diffusion models the tendency of sediment to roll downhill. This addition
allows the sea bed to stay constant at x = 0 and x = L, which is captured by
the boundary conditions:

zb(0) = 0,

zb(L) = 0.

The magnitude of λ is assumed to be λ = 2 · 10−4 [9].

Now D − Es has to expressed in terms of c00. By integrating D − Es over
the width and depth, this can be expressed by:

(B2−B1)(−D+Es) =
∂

∂t

∫ ζ

−H
(B2−B1)ĉdz+

∂

∂x

∫ ζ

−H
(B2−B1)ûĉdz− ∂

∂x

∫ ζ

−H
(B2−B1)Kh

∂ĉ

∂x
dz,

(2.23)
with B2 and B1 the functions describing the shores of the inlet system. The
expression (B2−B1)ûĉ is of order O(ε) and denotes the advective hydrodynamic
behaviour which is not in the focus of this research thus will not be included.
Now averaging over a tidal period, substituting c and u with their respective
asymptotic expansions and Taylor expanding border z = ζ the leading order
expression becomes:

(B2 −B1)(−D + Es) = − ∂

∂x

∫ 0

−H
(B2 −B1)Kh

∂c00

∂x
dz. (2.24)

Because Eq. (2.24) is tidally averaged the term
∫ 0

−H(B2 − B1)c00 does not
depend on the short time scale t.
This relation between erosion of the sea bed and deposition of sediment can now
be substituted into the sea bed evolution equation to give:

(B2 −B1)ρs(1− p)
∂zb
∂τ

+ λ
∂2zb
∂x2

=
∂

∂x

∫ 0

−H
(B2 −B1)Kh

∂c00

∂x
dz. (2.25)

The right hand side of this expression is implicitly dependent on the sea bed zb.
Thus, when iteratively computing the sea bed evolution, the sea bed zb has to
be updated in order to compute it.

2.3 Solution methods

Alternatively, a hybrid method is possible to ensure the best accuracy.
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With all governing equations in place, a method to compute an equilibrium
is the next step. To obtain ζ0 and zb, a numerical scheme is used, using the
same grid for all variables.
To achieve numerical stability an implicit numerical method is preferred over
an explicit method but note that the right hand side of expression (2.25) can
not be solved implicitly because it is an non-linear term.
Let N be the number of grid points in the x-direction. The number of time
steps can not be determined a posteriori as it is uncertain when an equilibrium
will be achieved.

For this a threshold value TOL is introduced that determines if an equilib-
rium is achieved. If ||zb||2 ≤ TOL it can be assumed that the system is in
equilibrium. A good choice for this value is TOL = 10−10.

To arrive at such an equilibrium two methods can be used: minimization of
the sea bed evolution term or iterations over the sea bed evolution.
Note that the change in sea bed is determined by the difference in erosion and
deposition. Thus, if a sea bed Hmin can be found that minimizes this difference
such that ||zb||2 ≤ TOL, an equilibrium is found.

An alternative way is to start with an arbitrary bed profile H(x) and itera-
tively update the sea bed with the computed difference between erosion and
deposition and use the long time scale to converge to an equilibrium. Because
the bed changes are small, this process can be time consuming.

Lastly, a hybrid between these two methods can also be employed. First as-
sume a minimizing sea bed up to a larger tolerance and start the iteration from
this minimized sea bed. Starting closer to the equilibrium solution does reduce
the computation time and the fact that a minimizing sea bed is used it is almost
certain that the time integrator converges to an equilibrium.

2.3.1 Minimization

From the equation for sea bed evolution it follows that the sea bed will not
change if

M(H) =

(
∂

∂x

∫ 0

−H
(B2 −B1)Kh

∂c00(H)

∂x
dz − λ∂

2H

∂x2

)2

is equal to zero for all locations in the system. On the long time scale this
expression is only dependent on the sea bed H, thus by finding an H for which
M is equal to zero will give an equilibrium.
Because of the fact that H is defined on N grid points this gives N degrees
of freedom, thus N coefficients have to be minimized. As most unconstrained
nonlinear minimization methods are of order O(N2) this is not feasible in rea-
sonable time.
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A different approach would be to minimize over
∫ L
0
M(H)dx. This way only

a single value has to be minimized but the N degrees of freedom is implicitly
hidden in this value. Thus obtaining a true root is impossible.

Instead, the threshold parameter TOL is used and a function space over which
to minimize M(H) is defined.

All minimizing sea bed are constrained by the fact thatHmin(0) = Hmin(L) =
0. All functions in the function space C(R) which conform to these constraints
can be constructed by a set of basis functions defined as:

V :=

{
x 7→ di sin

(
iπx

L

)
: i ∈ N, di ∈ R

}
,

with the minimizing sea bed defined as:

Hmin =

n∑
i=1

di sin

(
iπx

L

)
,

with n the number of modes such that |M(Hmin)| ≤ TOL.

A numerical optimization scheme which can be used for this routine is the
Broydon-Fletcher-Goldfarb-Shanno algorithm. It uses approximations to the
Hessian matrices of M with a generalized secant method. The secant method
is an iterative root-finding algorithm and approximates the roots of M . In con-
trast to the better known Newton-Raphson method this algorithm is of order
O(n2) instead of O(n3) which should yield shorter computation times. When
increasing n the approximation of the equilibrium will improve.
The number of modes n to find a minimum such that |M(H)| ≤ TOL is much
smaller than the number of grid points N , thus this method is much smaller
than finding a sea bed H such that M(H) is equal to zero for all grid point.

2.3.2 Iterative method

The second method of finding an equilibrium solution is to iteratively update
the sea bed until

||∆zb||2 ≤ TOL,

with ∆zb = zi+1
b −zib, zib being the sea bed at iteration step i. With this method,

the initial sea bed can be chosen H(τ = 0) = H(x). Then the sea at iteration
j is:

Hj = h0 +

j−1∑
i=0

zib.

Figure (2.3) shows the iterative method in the form of a flowchart.
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H(τ = 0) = h0

ζ0

u0

c00

zb ||∆zb||2 ≤ TOL

Heq = H + zb

yes

H = H + zb

no

Figure 2.3: Flow chart displaying the process in the iterative method
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2.3.3 Hybrid method

Two different methods of finding equilibrium solutions have been discussed in
the previous sections. Both methods use different routines but this does not
mean that they cannot be combined.
The problem with the minimization routine is that a rough estimate of the equi-
librium can be found easily for around 10 modes, but converging to an accurate
equilibrium solution requires at least 100 or more modes to be included in the
minimizing sea bed. This is very slow. On the other hand, the sea bed evolu-
tion method converges to an equilibrium solution but very slowly when using
an arbitrary initial condition.

Because of this, using both methods in combination is a good method to find
equilibria in shorter computation time.
The first step is to find a minimizing sea bed using approximately 10 modes,
and then apply the sea bed evolution time integrator starting from this sea bed.

This also has the added benefit that with the minimization method it is pos-
sible to find multiple equilibrium solutions. Finding local minimizing sea beds
instead of global minimizing sea beds can be used for this.

2.4 Depth-averaged version

With the construction of the mathematical model with governing equations and
the two solution methods equilibrium solutions now can be found. The next
step is to investigate how the solutions to this 2DV-model relate to solutions
found in width and depth-averaged models, i.e. one-dimensional models.
One of the problems in depth-averaged model is that the erosion of sediment
from the sea bed can not be directly expressed in terms of the velocity at the
sea bed. This is because, by averaging over the depth, the dependence of u on
the z-direction has been removed, only the depth averaged velocity is known.

2.4.1 Conversion factor

A common way to circumvent this problem is to define a typical parameter U
that defines the relation between u0(x, z = −H) at the sea bed and the depth
averaged û0(x). This characteristic U is initially defined and usually does not
change during sea bed evolution. However, during the sea bed evolution the
sea bed changes in such a way that this characteristic U does not represent the
relation between u0(x, z = −H) and û0(x) any more. Depending on the change
in sea bed, this characteristic U has to be updated to give reliable results. From
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averaging the 2DV horizontal velocity over the depth this can easily be done:

û0(x) =

∫ 0

−H
u0dz =

∫ 0

−H
− g

iσ

∂ζ0

∂x

(
1− s cosh(βz)

Avβ sinh(βH) + s cosh(βH)

)
dz

= − g

iσ

∂ζ0

∂x

[
1− s sinh(βz)

βH(Avβ sinh(βH) + s cosh(βH))

]
.

The water velocity at the sea bed is given by:

u0(x,−H) = − g

iσ

∂ζ0

∂x

(
1− s cosh(βH)

Avβ sinh(βH) + s cosh(βH)

)
.

With these expressions the water velocity at the sea bed can be expressed in
terms of depth-averaged water velocity:

u0(x,−H) =

 1− s cosh(βH)
Avβ sinh(βH)+s cosh(βH)

1− s sinh(βH)
βH(Avβ sinh(βH)+s cosh(βH))

 û0(x).

Therefore, instead of using a characteristic U the conversion factor Fconv can
be used in depth-averaged models:

Fconv =
1− s cosh(βH)

Avβ sinh(βH)+s cosh(βH)

1− s sinh(βH)
βH(Avβ sinh(βH)+s cosh(βH))

2.4.2 Depth-averaged model

A depth-averaged morphodynamical model for double inlets is defined
in [10]. This model also consists of four governing equations:

iσgH2

iσH + r

∂2ζ

∂x2
+

(
∂

∂x

[
iσgH2

iσH + r

])
∂ζ

∂x
+ σ2ζ = 0,

u = − g

iσ + r
H

∂ζ

∂x
,

Kh
∂2c

∂x2
+
Khwsβ

Kv

∂H

∂x

∂c

∂x
+

[
w2
s

Kv
β +

Khws
Kv

(
β
∂2H

∂x2
+
∂β

∂x

∂H

∂x

)]
c = −

∣∣∣∣2uUπ
∣∣∣∣ ,

∂H

∂τ
= aKh

∂2c

∂x2
+ λ

∂

∂x

[
β
∂H

∂x
c

]
,

where the sediment parameter β is defined by:

β =
1

1− exp
(
− ws

Kv
H
)

and r the bed friction coefficient. This parameter r is taken equal to sU with
U the characteristic velocity. Using the derivation in Sect. 1.4.1, this can be
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replaced by the conversion factor Fconv to give a more representable morpho-
dynamical model.

When applying this conversion factor the results of this 1-dimensional model
and the results of the 2DV-model should approximately be the same apart from
the inclusion of along-channel diffusion in the 1D concentration equation.
When the conversion factor is not used the results will gradually differ as the
sea bed evolves.
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Chapter 3

Results

In this section the results of the 2DV morphodynamical model developed in the
previous section are discussed. First, the hydro- and morphodynamic results of
the developed model are shown for a characteristic domain and a characteris-
tic set of parameters, given in Table [3.1]. In this first experiment, the bed is
assumed to be flat and hence not in morphodynamical equilibrium. Next, the
equilibrium of the sea bed is computed.

Furthermore, a sensitivity analysis concerning some of the important param-
eters is performed:

• the length of the inlet system L,

• the depth of the inlet system at the inlet I and II H(0) and H(L),

• the partial slip parameter s, defining the friction of the water with the
seabed,

• the vertical eddy viscosity Av that models the mixing of the water in the
vertical direction,

• the settling velocity ws of the suspended sediment in the water,

• the relative phase difference of semi-diurnal tide φ between inlet I and II.

The influence of these parameters is displayed on the water velocity and sedi-
ment concentration for flat sea beds, and on the equilibrium solutions.

Finally, the results of the 2DV-model are compared with a one-dimensional
model. For this, four different types of one-dimensional models, introduced in
section 3.3, are considered:

• A depth-averaged model with settling parameter β and the conversion
factor Fconv,
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Table 3.1: Table describing all parameters in the basis system
Description Symbol Unit Value

Partial slip friction parameter s ms−1 0.014
Semi-diurnal angular tide frequency σ s−1 1.4 · 10−4

Length of the inlet system L km 59
Depth of the inlet system at the entrance H0 m 11.7

Typical density of the water ρ0 kgm−3 1020
Amplitude of the semi-diurnal tide AM2

m 0.62
Phase difference of semi-diurnal tide φM2

degrees 54
Vertical eddy viscosity Av m2s−1 0.012

Horizontal eddy viscosity Kh m2s−1 100
Settling velocity ws ms−1 0.01

Density of the sediment ρs kgm−3 2650
Erosion coefficient a - 10−5

Gravitational acceleration g ms−2 9.81
Grain size of the sediment ds m 2 · 10−4

• A depth-averaged model with settling parameter β,

• A depth-averaged model without settling parameter β,

• A depth-integrated model without settling parameter β.

The equilibrium solutions for different parameter choices are compared between
the 2DV-model and these four 1D-models.

3.1 Morphodynamics on an idealized domain

The 2DV-morphodynamic model derived in chapter 2 computes the sea bed
evolution on the long time scale in four steps: first, for a given bathymetry, the
sea level ζ0, the along-channel water velocity u0, the sediment concentration c00

are calculated and finally the sea bed evolution zb is obtained.

In this section the width of the inlet system is assumed to be constant and
the depth of the inlet at both entrances are assumed to be equal as well. Fur-
thermore, the amplitude and phase difference of tides between the two inlets is
assumed to be constant in time.
The values of the parameters used in this section are shown in table 3.1 showing
the values of parameters showed in this section.

3.1.1 Water motion

The complex amplitude of the sea level ζ0 is obtained using equation (A.14).

The actual along-channel sea level ζ̂0 during a semi-diurnal tidal cycle is given
by ζ̂0(t, x) = R(ζ0(x)eiσt). An example of the sea level for a flat sea bed during
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Figure 3.1: Sea level during a tide cycle in base system

Figure 3.2: Amplitude and argument of sea level for default parameter values,
see table 3.1

a semi-diurnal cycle can be seen in figure 3.1. It follows that during a tide cycle
the sea level will change between AM2 to −AM2 at both inlets because of the
relative phase difference φ, this will happen at different time t.

Although the sea bed evolution is dependent on time, it is assumed constant
over a tidal cycle, as the sea bed evolution is obtained after averaging over a
tidal cycle, i.e. the bed evolves only on the longer morphodynamic time scale
τ .
Instead of plotting a time series as in Figure [3.1], the free surface elevation can
also be captured in terms of amplitude and relative phase difference. These are
defined by:

Amp(ζ0) = |ζ0|,

Phase(ζ0) = atan2(=(ζ0),<(ζ0)).

In figure 3.2 the amplitude and phase of the free surface elevation. The am-
plitude of the sea level is greatest at both entrances of the inlet system and
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Figure 3.3: Water velocity at t = 0 in base system

decreases slightly in the interior. Furthermore, the argument in the inlet sys-
tem increases linear from 0 to φ. Using the free surface elevation, the water
velocity in the along-channel direction u0 can be obtained. The expression for
u0 is:

u0(x, z, t) = <
[
− g

iσ

∂ζ0

∂x

(
1− s cosh(βz)

Avβ sinh(βH) + s cosh(βH)

)
eiσt

]
Thus, in the x-direction the water velocity has a one-on-one relation with the
derivative of the sea level, while the water velocity in the z-direction only de-
pends on the term cosh(βz) and depends parametrically on water depth.

In Figure [3.3] the water velocity at t = 0 is plotted as a function of depth on
the vertical axis and the distance from the first inlet on the horizontal axis. In
the z-direction u0 is decreasing as it get closer to the sea bed at z = −H which
is evident from the the expression for u0. Indeed, for s/to/infty, the boundary
condition becomes u = 0 at the bed z = −H. For the x-direction the velocity
is monotonically decreasing, which is related to the decrease of the derivative of
ζ0 in the positive x-direction.

3.1.2 Sediment concentration

To obtain the suspended sediment concentration, necessary to calculate the
bed evolution, only the residual component of the absolute value of the water
velocity at the sea bed is needed. For this, the first Fourier coefficient denoted
by a0, is calculated, resulting in:

a0 =
2

T

∫ T

0

|u0(x, z, t)|dt =
2g

σπ

∣∣∣∣∂ζ0∂x

(
1− s cosh(βH)

Avβ sinh(βH) + s cosh(βH)

)∣∣∣∣
This term only depends on x and is similar to the absolute value of u0 in Figure
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Figure 3.4: Amplitude and argument of the water velocity in base system

Figure 3.5: Sediment concentration at t = 0 in base system

[3.4] for a flat sea bed and is monotonically decreasing.
As discussed in section (2.2.2, the sediment concentration in a double inlet

system can be computed with the main balance ws
∂c00

∂z +Kv
∂2c00

∂z2 = 0, ignoring
diffusion of sediment in the x-direction results in the expression:

c00 =
ρssaa0
g′ds

exp

(
−ws
Kv

(H + z)

)
.

In figure 3.5 the sediment concentration for t = 0 with the characteristic param-
eters is displayed for a flat sea bed. Most of the sediment will be concentrated
around the sea bed and in the longitudinal direction there is some variation in
the sediment concentration too.

3.1.3 Sea bed evolution

As a final step the sea bed evolution is computed using the non-homogeneous
diffusion equation, with the sea bed prescribed at the inlets. The resulting ref to equa-

tion
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Figure 3.6: Sea bed evolution after one semi-diurnal tide cycle in base system

change in sea bed after one semi-diurnal cycle is displayed in figure 3.6. The
change in sea bed is mainly determined by the second derivative of c00. Since
this term is very small, only after a large number of tidal cycles there will be
significant change in the location of the sea bed. From the figure it follows that
the sea bed will be slightly deepened in the entire inlet system.

3.1.4 Equilibrium solutions

Using the tidally averaged concentration the equilibrium sea bed can now be
calculated. This can be done by iteratively updating the sea bed H: the initial
bathymetry is used to get the water motion and suspended sediment concen-
tration, after which the sea bed is updated; with the updated sea bed the new
water motion and suspended sediment concentration are calculated resulting in
a sea bed update. This loop is repeated until an equilibrium is reached.
Figure 3.7 shows the equilibrium solution in a system with the characteristic
parameters.

Finding an equilibrium using the above approach is typically a very slow pro-
cess because the changes in the sea bed become smaller when approaching the
equilibrium. When the sea bed is in equilibrium the changes in the sea bed are
equal to zero, thus minimizing the sea bed evolution term D − Es for different
H is a way to approach the equilibrium solution and is much faster. This mini-
mizing sea bed is closer to the equilibrium solution than a flat sea bed. Because
of this, the iterative process described above will converge in less tidal cycles to
the equilibrium when taking the minimizing sea bed Hmin as the initial sea bed.

The basis functions over which the minimizing equilibrium solution is to be
found is the collection of sinus modes

H(x) =

∞∑
i=1

di sin

(
iπx

L

)
.
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Figure 3.7: Equilibrium solution for the characteristic parameters

By truncating the infinite series, taking n terms into account, this will result
in an approximation of the morphodynamic equilibrium sea bed. Increasing n
will lead to a better approximation, as shown in figure 3.8. In this figure, it is
shown that by increasing the number of modes i the difference of the resulting
minimizing sea bed Hi with the actual equilibrium |Heq −Hi| decreases. Thus
more modes result in higher accuracy.

3.2 Parameter sensitivity

In the previous section the equilibrium for one specific set of parameters was ob-
tained. In this section the sensitivity to parameters of the resulting equilibrium
solution is investigated. The parameters we focus on are:

• Friction parameter s; this term appears in the expressions for c00 and u0

as well as in the differential equation for ζ0,

• the settling velocity of the suspended sediment ws. This parameter ap-
pears in the expression for c00 and strongly determines its vertical profile,

• the vertical eddy viscosity and diffusivity coefficients Av and Kv,

• the relative phase difference φ, as this parameter has influences on the
water motion in the inlet system,

• the length of the inlet system and the depth at the seaward sides. These
parameters describing the domain as the boundary conditions are greatly
influenced by them. Therefore studying the influence of them is important.
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Figure 3.8: L2-norm of difference of minimizing sea bed with equilibrium for
different number of modes

The value of each of these parameter will be varied in an interval and its influ-
ence on the resulting equilibrium solution will be quantified.
Equilibrium solutions are obtained with time integration with a global mini-
mizing sea bed of one mode as initial condition. If the existence of multiple
equilibrium solutions is investigated local minimizing sea beds can be used to
find more than one equilibrium solutions for the same set of parameters.

3.2.1 Friction with the sea bed

The bed friction has a large influence on the water velocity in the water column
and at the sea bed. This strongly influences the magnitude of the suspended
sediment.

In figure 3.9 the equilibrium solutions for different values of s are shown.
Tt follows that the maximum depth of the equilibrium sea bed increases as s
is increased. Furthermore, the shape of the equilibrium solution seems to get
more symmetrical around x = L

2 as s is increased. This observation is continued
in Figure 3.10, where a contour plot of equilibrium bed profiles is plotted as a
function of the distance from the first inlet (horizontal axis) and for different
values of s (vertical axis). The relation between the maximum depth of the
equilibrium sea bed and the friction is shown in Figure 3.11 and appears to be
approximately linear with max(zb) increasing as s is increased.
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Figure 3.9: Equilibrium solution with different values for s

Figure 3.10: Contour plot of equilibrium solutions with different values for s
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Figure 3.11: xtremes of equilibrium solution with different values for s

3.2.2 Settling velocity

Next, the sensitivity of the morphodynamical equilibria with respect to the set-
tling velocity ws is investigated. As ws increases, the deposition of sediment
also increases. Hence it is expected that the resulting equilibrium sea bed is be
more shallow as ws is increased.

In figure 3.12 three equilibrium bed profiles are shown for three different
values of ws and confirms this correlation. A contour plot of equilibrium bed
profiles as a function of values for ws and the distance to inlet I can be seen in
Figure (3.13). Furthermore, Figure (3.14) displays the maximum of the equi-
librium sea bed as a function of values for ws and shows a monotone relation
between ws and max(zb) where max(zb) decreases as ws increases.
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Figure 3.12: Equilibrium solution with different values for ws

Figure 3.13: Contour plot of equilibrium solutions with different values for ws
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Figure 3.14: Extrmes of equilibrium solutions with different values for ws

3.2.3 Vertical eddy viscosity and diffusivity coefficient

Hypothesising what the contribution of the vertical eddy viscosity and diffusiv-
ity to the equilibrium sea bed is difficult as both the deposition of sediment and
erosion is not explicitly dependant on Av or Kv. But from the expression for c00

it shows that the second derivative decreases as Kv is increased which suggests
that the equilibrium sea bed gets shallower as Kv is increased.
This can be caused by the fact that more vertical mixing of water results in the
suspended sediment being more uniformly distributed in the domain and less
suspended sediment being near the sea bed, with less sediment in the region of
the sea bed less will be deposited.

The equilibrium bed profiles shown in figure (3.15) are quite different for
different values of the vertical mixing. Instead, the value of first mode of the
minimizing sea bed as a function of different values for ws, see Figure (3.16),
give a clearer image of the relation. Near the parameter value of Av = 0.03
there is a sudden change in minimizing sea bed which suggests the existence of
multiple branches of equilibrium solutions.

Thus, instead of calculating equilibrium solutions with globally minimizing
sea beds, locally minimizing sea bed can be used to find multiple equilibrium
sea bed with the same parameter values. In figure (3.17) the extremes of these
equilibrium solutions obtained from locally minimizing sea beds are shown as a
function of different values of Av.
This figure clearly shows two separate branches of equilibrium solutions: one
type of equilibrium solution has an extreme larger than the water depth at the
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Figure 3.15: Equilibrium solution with different values for Av

Figure 3.16: Minimizing d1 with different values for Av
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Figure 3.17: Extremes of equilibrium solutions for different values of Av

seaward sides and one with an extreme smaller than the water depth at the
seaward sides.
When using an equilibrium solution for a specific value of Av as the initial con-
dition and varying the value for Av slightly the subsequent new equilibrium
solution will generally be on the same branch as the initial condition. But for
two limit points this is not the case: These limit points are denoted in figure
(3.17) as h1 and h2. When increasing Av from h1 as an initial condition no
equilibrium solutions can be found and the time integration will always diverge
from the initial condition.
For the second limit point h2, when Av is decreased and h2 is taken as initial
condition the resulting equilibrium solution will have an extreme which is larger
than the water depth at the seaward sides thus lies on the other branch.

The existence of these two limit points suggests a third unstable branch con-
nects the two limit points. Because this branch will be unstable finding solutions
on this branch are impossible, but using minimization to find approximations
might be possible. Finally figure (3.18) shows the two equilibrium solutions
for Av = 0.0336. This figure shows the difference in shape of the equilibrium
solution.
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Figure 3.18: Two equilibrium solution for Av = 0.0336

3.2.4 Relative phase difference

From the set of parameters the relative phase difference φ is one of the most
impactful parameters on the resulting equilibrium solution to the sea bed evo-
lution equation. For large difference in phase the water velocity will be more
uniform along the inlet system, this is because during the semi-diurnal the water
velocity will generally only travel in one direction. Because of this uniformity
the second derivative of c00 will be small.

For small φ the water can travel from both inlets towards the centre of the
inlet system at the same time which causes a lot of sediment to accumulate in
the middle. For φ → 0 the shape of equilibrium solutions will not have the
characteristic sinusoid shape. The equilibrium sea bed profile for φ = 1◦ can be
seen in Figure 3.19. Important to note that instead of the interior being deeper
in the middle with the characteristic parameters this profile is shallower in the
interior. This is caused by the fact that the small phase difference results in
approximately equal waves coming from the inlets to the centre resulting in a
large inference near the centre of the inlet system.

From the assumption that the water velocity will be more uniform as φ
increases a relation can be obtained; for larger φ the sea bed will be more flat.
Figure (3.20) shows the equilibrium solution for three different values of φ. The
profile of the sea bed for φ = 21 draws the attention as the shape is not sinusoid
and the sea bed is more shallow in the interior compared to the inlets instead
of deeper. From this there seems to be a value for which the type of profile
switches from being deeper in the interior to being shallower.
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Figure 3.19: Equilibrium solution with different values for φ

Figure 3.20: Equilibrium solution with different values for φ
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Figure 3.21: Extremes of equilibrium solutions for different values of φ

Figure 3.22: Equilibrium solution for phi = 1
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To give insight in this change the extremes of all equilibrium bed profiles from
φ ∈ [0, 100] are plotted in Figure(3.21). From this figure it seems that for
φ ∈ [20, 35] there is an intermediate stage where the profile of the equilibrium
solution has two extremes: one minimum and one maximum. Figure (3.22)
shows an contour plot of the equilibrium solutions for different values of φ.
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Figure 3.23: Equilibrium solution with different values for L

3.2.5 Length of inlet system

The length of the inlet system influences the Reynold’s number thus can in-
fluence balances between the individual terms in the water velocity equation.
Longer inlet systems have larger Reynolds number thus the fluid flow will be
more turbulent and will result in more mixing of water. Furthermore, advec-
tive flow will be more important. But both diffusive and advective flow are not
present in this 2DV-model.

First, Figure (3.23) shows three equilibrium solutions for three different
values of L and Figure (3.24) shows the equilibrium solutions as a function of
the length of the inlet system L and the distance from inlet I in an contour
plot. it comes apparent that longer systems lead to deeper sea beds, this is
probably caused by the increase of mixing caused by the increase of turbulent
flow. Finally, Figure (3.25) shows the extremes of the equilibrium solutions as
a function of L. This figure the relation between the maximum depth of the
equilibrium sea bed and the length of the inlet system is monotone.
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Figure 3.24: Minimizing d1 with different values for L

Figure 3.25: Minimizing d1 with different values for L
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Figure 3.26: Equilibrium solution with different values for h0

3.2.6 Depth of inlet system

The last sensitivity analysis will be on the depth of the entrances of the inlet
system. Figure 3.26 shows three equilibrium solutions for three different values
of the water depth H and Figure 3.27 displays the extremes of the equilibrium
solutions as a function of the water depth H. From these figures it seems that
in general when the water depth gets smaller the sea bed gets deeper compared
to the water depth at the seaward sides. But at around H = 8.6 the extreme of
the equilibrium solution changes drastically.

This drastic change in extreme value of equilibrium solution could suggest
the exitence multiple equilibrium solutions for equal h0. Further investigation
can be done by analysing a contour plot of equilibrium sea beds as a function
of H close to this tipping point. Figure (3.29) shows all equilibrium solutions
for this range and the cause for the inflections points in minimizing d1 is the
sudden change of profile. The cause for the sudden change in extreme value
is a fast change in the shape of the sea bed. But from this investigation it
is clear that two equilibrium for the same value does not exist. The critical
value that signalizes the change in equilibrium profile divides the equilibrium
sea beds in two families. One family of equilibrium solutions has an interior
entirely deeper than the water depth at the sea beds and a second family with
its interior shallower than the water depth at the seaward sides.
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Figure 3.27: Extremes of equilibrium sea beds for as a function of water depth
at inlet

Figure 3.28: Contour plot of equilibrium solutions as a function of water depth
and distance from inlet
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Figure 3.29: Zoomed in contour plot of equilibrium solutions as a function of
water depth and distance from inlet

3.3 Comparison with depth-averaged models

In the study of morphodynamics, usually depth-integrated models have been
used. In these types of models there is no dependency on the z-direction thus
the water velocity at the sea bed is not calculated explicitly. This velocity at
the sea bed is very important in both the sediment concentration and the sea
bed evolution term.

In depth-averaged models this velocity at the sea bed is related to the depth-
averaged velocity since the vertical structure of the velocity is unknown. The
influence of this approximation is important to investigate. Also, to capture the
vertical structure of the suspended sediment concentration in a depth-averaged
model, a deposition parameter β that depends on the water depth is intro-
duced.
To get a better estimate of the velocity at the sea bed, the depth-averaged
velocity is multiplied by a conversion factor Fconv. It is expected that the mor-
phodynamic behaviour will be similar with the 2DV model.

3.3.1 Water motion

As expected, the addition of the conversion factor Fconv causes both the free
surface elevation ζ0 and the water velocity u0 to be the same in the 1-D and the
2-D model. This can be seen in Figs. 3.30 and 3.31, which show the free surface
elevation and water velocity for a spatially uniform sea bed H = h0. The free
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Figure 3.30: Difference in free surface elevation with uniform sea bed in 1D and
2D models

Figure 3.31: Difference in water velocity with constant sea bed in 1D and 2D
models
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Figure 3.32: Free surface elevation with non-constant seabeds in 1D and 2D
models

Figure 3.33: Water velocity with non-constant seabeds in 1D and 2D models

surface elevation and water velocity at the bottom for the 2-dimensional model
are compared to the free surface elevation and the depth-averaged velocity in
the 1-dimensional model.
The small difference between the result of both models can be accounted for by
the truncation error in the numerical scheme but should not affect the equilib-
rium solutions.

When the conversion factor is not used to compute the sea level and the
water velocity the solutions of the 1-D and 2-D model will diverge from one
another. Figures (3.32) and (3.33) show respectively the free surface elevation
and water velocity for sea bed H = h0 − d1 sin

(
πx
L

)
where d1 is varied in all

subplots. The difference in both the free water surface and water velocity when
Fconv is not used is apparent and can lead to quite different morphodynamic
equilibrium solutions.
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Figure 3.34: Difference in sediment concentration with constant seabed in 1D
and 2D models

3.3.2 Sediment concentration

When calculating the suspended sediment concentration in a depth-averaged
model, the conversion factor Fconv can be used to obtain the water velocity at the
sea bed H. However, when using Fconv in the bottom boundary condition does
not result in equivalent suspended sediment equations in the one-dimensional
and two-dimensional model as the one-dimensional model includes a diffusion
term in the horizontal direction which is not present in the two-dimensional
model.
From Fig. 3.34 it is shown that this addition does not greatly influence the sed-
iment concentration as the difference between the sediment concentration from
the one-dimensional model and the depth-averaged sediment concentration from
the two-dimensional model is marginal.

However, when Fconv is not used the sediment concentration computed in a
one-dimensional can differ from the two-dimensional model. Figure 3.35 shows
the sediment concentrations in both types of model with and without Fconv used.
Because, for the same water depth H, the calculated sediment concentration in
the one-dimensional model without using Fconv differs from the one-dimensional
model with Fconv this means the two types of models will lead to different equi-
librium solutions.
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Figure 3.35: Sediment concentration with non-constant seabeds in 1D and 2D
models

3.3.3 Equilibrium solutions

Because of the fact that both the water motion and sediment concentration yield
exactly the same solutions it suggests that the sediment concentration will be
equal as well. But because the equations describing the sea bed evolution differ
in the one and two-dimensional models this is not the case. The one-dimensional
model has an extra term added for the longitudinal diffusion.
This extra term in the one-dimensional model is not a large term but does lead
to differences in equilibrium solutions. This can be seen in figure (3.3), where the
equilibrium solutions from both models are compared. The equilibrium solution
in the one-dimensional in less deep over the whole domain than the equilibrium
solution in the two-dimensional model. Furthermore, the profiles differ in shape
as well. The equilibrium solution in the one-dimensional model is less symmet-
rical as it has a inflection point near inlet II which the two-dimensional solution
does not have. This inflection point can be caused by the longitudinal diffusion
term.

But generally, the two solutions are close together and if the diffusion term
is omitted this will lead to exactly the same sea bed.
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Figure 3.36: Equilibrium solution in 1D and 2D models
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Chapter 4

Conclusion and discussion

4.1 Conclusion

This section discusses the conclusions that can be drawn from the research
conducted throughout this article with respect to the research questions posed
in section 1.2 and from new insights found.

4.1.1 Two-dimensional model for morphodynamics

It can be concluded that it is possible to construct a two-dimensional model
without the structure in the vertical direction being averaged out. Further-
more, it is possible to numerically find solutions to the equations arising from
this model and the computations are not too expensive.

From the model and numerical schemes equilibrium sea beds can be found for
which the sea bed does not change any more. The model allows to investigate
the influence of varying the values of single parameters to the resulting equilib-
rium solutions.

Following this parameter sensitivity study some anomalies were found. First
of all, for some range of values of the vertical eddy viscosity and diffusivity Av
and Kv it is possible to have two separate equilibrium solutions. Although this
range does not represent natural values for these particular parameters it can
mean that for more sets of parameter values multiple equilibrium solutions ex-
ist.
Secondly, when increasing the water depth at the seaward sides H the pro-
file of the equilibrium sea bed solution changes rapidly from an interior water
depth deeper than the H to an interior water depth shallower than H. This
phenomenon is interesting as the water depth at the seaward side does change
quite frequently in practice.

In general, when varying a single parameter the existence of two types of equi-
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librium sea beds, one shallower in the interior and one deeper, comes up a lot.
For the range of parameter values this existence was shown for Av, φ and H.
And in between these types of equilibrium solutions an intermediate stage where
the equilibrium sea bed has two extremes can exist.

In conclusion, it is possible to construct simplified models simulating the mor-
phodynamics in double inlet systems and investigate the complexities. But in
practice this type of model can not be used as it is simplified too much and a
lot of factors have been removed in order to get solutions to the model.
As a proof of concept, this model shows potential and can expanded upon to
include more processes and reflect the real-life situation more accurately.

4.1.2 Comparison with one-dimensional models

In addition to constructing a two-dimensional model for morphodynamics the
results of the two-dimensional model were compared to the results of an already
existing one-dimensional model. The most important difference between the
two types of models is the structure in the vertical direction. To compute the
erosion and deposition of suspended sediment in the system it is necessary to
know the water velocity at the sea bed. One-dimensional models uses a charac-
teristic water velocity to relate the depth-averaged water velocity to the water
velocity at the sea bed. This value does not change when the sea bed is updated
thus will not be a good representation of this relation.

This becomes clear when comparing the calculated water velocity for differ-
ent sea beds. As the sea bed becomes less flat the calculated results diverge
more from one another. This of course also results in different equilibrium sea
beds.
From investigating this relation it became apparent that it is quite easy to relate
velocity at the sea bed to the depth-averaged water velocity with a conversion
factor Fconv. With this factor both the water velocity and the suspended sedi-
ment concentration will be exactly equal. The equilibrium solutions still differ
as the one-dimensional differential equation for sea bed evolution includes dif-
fusion in the longitudinal direction.

From this it is clear that is suffices to use one-dimensional models with con-
version factor as it does not make the solutions more accurate but are easier to
solve.

4.2 Discussion

Following the conclusion this section describes what, during the research, could
have been done better or needs more investigating. Furthermore, recommenda-
tions on subsequent researches on this topic will be given.
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First of all, although this type of two-dimensional model works well on dou-
ble inlet systems, this type of model can not be used on single inlet systems
in this form. This is because of the fact that the natural sea bed evolution in
single inlets causes sediment to accumulate at the end of the inlet system. This
will make the water depth at the end of the inlet equal to the free surface eleva-
tion at that point, which means that both finite difference and finite elements
methods can not be used to solve any differential equations on that domain.

The numerical scheme used for the time integration can be investigated upon
more. It is preferred to use a implicit scheme to ensure numerical stability, but
the difference in erosion and deposition can never be implicit. Because of this,
it is not known for what time steps the numerical scheme is stable. If this is
known the numerical scheme can be optimized to compute equilibrium solutions
faster by always using the largest time step for which the numerical scheme is
stable.

The value of the diffusion parameter λ in the time integration has been chosen
by previous research. But the sensitivity of this parameter has not been investi-
gated. Varying this parameter can result in very different equilibrium solutions.
The problem with choosing a smaller value is that the time steps which can
be used have to be smaller too. Because of this, the computation times will
increase significantly.

Furthermore, it is thesis it is chosen to only retain the leading order terms
in the governing equations. The consequence of this is that both diffusive and
advective flow is not present in the model. These types of flow can be very
influential in a morphodynamical model. Thus, including these types of flow in
the model can result in different equilibrium solutions and in more insights in
the complexities of morphodynamics in double inlet systems.
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Appendix A

Appendix A

A.1 Width-averaged model

A.1.1 Width-averaged shallow water equations

Derivation of width-averaged shallow water equations

The three-dimensional shallow water equations are given by:

∂u

∂x
+
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∂y
+
∂w

∂z
= 0 (A.1a)
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∂p

∂z
= −ρg (A.1d)

Equation A.1d can be solved directly if assumed that ρ is independant of the
depth z:

p = pa + ρg(H + ζ − z) (A.2)

Now equation A.1a can be integrated over the width of the domain to obtain
width-averaged equations. Let

û(x, z, t) =
1

B2 −B1

∫ B2

B1

udy, ŵ(x, z, t) =
1

B2 −B1

∫ B2

B1

wdy (A.3)

ζ̂(x, t) =
1

B2 −B1

∫ B2

B1

ζdy (A.4)
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The Leibniz integration rule is defined as:
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Now integrating over A.1a using equation A.5:∫ B2
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∂ŵ

∂z
= 0 (A.6d)

Both B1 and B2 are independant of z thus the last two terms in (A.6b)
disappear. Furthermore because of the boundary conditions (??) and (??) the
right hand side of (A.6d) is equal to zero.
Now the second equation (A.1b) can be integrated over the width, the term fv
is neglected in this equation because after averaging no water velocity in the
y-direction should be present. Starting with the left-hand side:∫ B2
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In (A.7c) Again the boundary conditions (??) and (??) are used and the fact
that B1 and B2 do not depend on z. Now the right-hand side can be integrated
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as well: ∫ B2

B1

−1

ρ

∂p

∂x
+

∂

∂x

(
Ah

∂u

∂x

)
+

∂

∂y

(
Ah

∂u

∂y

)
+

∂

∂z

(
Av

∂u

∂z

)
dy

(A.8a)

=

∫ B2

B1

1

ρ

(
∂ρ

∂x
g(H + ζ − z) + ρg

∂ζ

∂x

)
dy +

∂

∂x

∫ B2

B1

Ah
∂u

∂x
dy

+
∂

∂z

∫ B2

B1

Av
∂u

∂z
dy +

[
Ah

∂u

∂x

∂B1

∂x
+Av

∂u

∂z

∂B1

∂z
−Ah

∂u

∂y

]
B1

+

[
−Ah

∂u

∂x

∂B2

∂x
−Av

∂u

∂z

∂B2

∂z
+Ah

∂u

∂y

]
B2

(A.8b)

= g(B2 −B1)
∂ζ̂

∂x
+

∫ B2

B1

1

ρ

(
∂ρ

∂x
g(H + ζ − z)

)
dy +

∂

∂x

(
(B2 −B1)Âh

∂û

∂x

)
+

∂

∂z

(
Âv

∂û

∂z

)
(B2 −B1) +

[
Ah

∂u

∂x

∂B1

∂x
−Ah

∂u

∂y

]
B1

+

[
−Ah

∂u

∂x

∂B2

∂x
+Ah

∂u

∂y

]
B2

(A.8c)

The third shallow water equation is not integrated in the width because it
describes the velocity change in the y-direction, which is not present in the
width-averaged shallow water equations.

Pertubation techniques for width-averaged shallow-water equations

Now all width-averaged shallow water equations have been calculated some as-
sumptions are made to make the equations easier to work with. First of all, the
functions describing the eddy viscocity coefficients in the horizontal direction
Ah are assumed to be much smaller than one. Thus, in this case the terms
containing this function can be removed from the equations.
Furthermore, the vertical eddy coefficent function Av is assumed to be constant.
The main reason for this is that the function can only be computed numerically
which is almost impossible on such a large domain, a value can be assigned
based on experimients.
Also for the sake of simplicity the density ρ is assumed to constant and equal to
ρ0. After removing all terms which can be neglected the width-averaged shallow
water equations look like this:

∂û

∂x
+
∂ŵ

∂z
+

1

B2 −B1

∂(B2 −B1)

∂x
û = 0 (A.9a)

∂û

∂t
+
∂û2

∂x
+
∂(ûŵ)

∂z
= g

∂ζ̂

∂x
+ Âv

∂2û

∂z2
(A.9b)

Let δ(x) = 1
B2−B1

∂(B2−B1)
∂x . The second width-averaged shallow water equation

can be scaled to make it dimensionless, this is done so the seperated terms can
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be compared better:

∂û

∂t
+

∂û2

∂x
+

∂(ûŵ)

∂z
= g

∂ζ̂

∂x
+ Âv

∂2û

∂z2

1+
U

σL
+

U

σL
=

gAM2

σUL
+

Âv
σH2

O(1)+ O(ε)+ O(ε) = O(1)+ O(1)

Nondimentional term Typical parameter Order Value
∂û
∂t 1 1 1
∂û2

∂x
U
σL O(ε) 0.135

∂ûŵ
∂x

U
σL O(ε) 0.135

∂ζ̂
∂x

gAM2

σUL O(1) 1.39

Âv
∂2û
∂z2

Âv

σH2 O(1) 0.857

Now writing û = <[(u0(x, z)+εu1(x, z))eiσt], ŵ = <[(w0(x, z)+εw1(x, z))eiσt]

and ζ̂ = <[(ζ0(x)+εζ1(x))eiσt] this set of equations can be solved for the leading
order functions u0, w0 and ζ0:

∂u0
∂x

+
∂w0

∂z
+ δ(x)u0 = 0 (A.10a)

iσu0 − g
∂ζ0
∂x

+ Âv
∂2u0
∂z2

= 0 (A.10b)

Solution to width-averaged leading-order shallow water equations

Now equation (A.10b) can be solved:

u0(x, z) = C1(x) exp

(√
Av
iσ
z

)
+ C2(x) exp

(
−
√
Av
iσ
z

)
(A.11)

From boundary conditions (??) it follows that C1(x) = C2(x), The other bound-
ary condition gives:

u0(x, z) = − g

iσ

∂ζ0
∂x

(
1− s cosh(βz)

Avβ sinh(βH) + s cosh(βH)

)
(A.12)

Where β =
√

Av

iσ . Plugging this in equation (A.10a) gives:

w0(x, z) =
g

iσ

(
z − s sinh(βz)

Avβ2 sinh(βH) + sβ cosh(βH)

)(
∂2ζ0
∂x2

+ δ(x)
∂ζ0
∂x

)
+
g

iσ

∂ζ0
∂x

s sinhβz(HxAvβ coshβH + sHx sinhβH)

2(Avβ sinhβH + s coshβH)2
+ C3(x)

(A.13a)
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Using the first boundary condition of (??) gives C3(x) = ζ0iσ. Now assuming
H is a constant and using the second boundary condition of (??) an ordinary
differential equation for the water level ζ0 can be constructed:

∂2ζ0
∂x2

+ δ(x)
∂ζ0
∂x
− σ2

gγ
ζ0 = 0 (A.14)

Where:

γ =
s sinhβH

Avβ2 sinhβH + sβ coshβH
−H

In this case the general solution to ζ0 is:

ζ0(x) = c1e
α1x + c2e

α2x (A.15)

Where the integration constant α1 and α2 are equal to:

α1 = −δ
2

+

√
δ2 + 4σ2

gγ

2
, α2 = −δ

2
−

√
δ2 + 4σ2

gγ

2
(A.16)

In the case of a single inlet the functions c1 and c2 can be written as:

c1 =
−α2AM2

eα2L

α1eα1L − αeα2L
(A.17a)

c2 = AM2
+

α2AM2
eα2L

α1eα1L − αeα2L
(A.17b)

Finally, with the double inlet system the functions c1 and c2 can be written as:

c1(t) = AM2 (A.18a)

c2(t) =
AM2(eiφM2 − eα2L)

eα1L − eα2L
(A.18b)

In a more general case, where H is not assumed to be constant, the ordinary
differential equation cannot be solved exact. A finite difference scheme to solve
ζ has to be used. The differential equation would look like:

T1(x)
∂2ζ0
∂x2

+ T2(x)
∂ζ0
∂x

+ T3(x)ζ0 = 0

Where:

T1(x) =
s sinhβH(x)

Avβ2 sinhβH(x) + sβ coshβH(x)
−H(x) (A.19a)

T2(x) = δ(x)T1(x) +Hx(x)

(
1− s coshβH(x)

Avβ2 sinhβH(x) + sβ coshβH(x)

)
+
s sinhβH(x)(Hx(x)Avβ coshβH(x) + sHx(x) sinhβH(x))

2(Avβ2 sinhβH(x) + sβ coshβH(x))2

(A.19b)

T3 = −σ
2

g
(A.19c)
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A.1.2 Width-averaged concentration equation

Derivation of width-averaged concentration equation

The sediment concentration equation is given by:

∂c

∂t
+
∂(uc)

∂x
+
∂(vc)

∂y
+
∂(c(w − ws))

∂z
=

∂

∂x

(
Kh

∂c

∂x

)
+
∂

∂y

(
Kh

∂c

∂y

)
+
∂

∂z

(
Kv

∂c

∂z

)
(A.20)

By integrating over the width of the channel the left hand side of this equation
can be simplified to:

∂

∂t

∫ B2

B1

cdy +
∂

∂x

∫ B2

B1

ucdy +
∂

∂z

∫ B2

B1

c(w − ws)dy

+

[
c

(
v − ∂B2

∂x
u

)]B2

+

[
−c
(
v − ∂B1

∂x
u

)]B1

(A.21a)

= (B2 −B1)
∂ĉ

∂t
+

∂

∂x
((B2 −B1)ûĉ) + (B2 −B1)(ĉ(ŵ − ws))

+

[
c

(
v − ∂B2

∂x
u

)]B2

+

[
−c
(
v − ∂B1

∂x
u

)]B1

(A.21b)

The right hand side of equation (A.20) can be integrated over the width in the
same way:

∂

∂x

∫ B2

B1

Kh
∂c

∂x
dy +

∂

∂z

∫ B2

B1

Kv
∂c

∂z
dy +

[
Kh

(
∂c

∂y
− ∂B2

∂x

∂c

∂x

)]B2

+

[
−Kh

(
∂c

∂y
− ∂B1

∂x

∂c

∂x

)]B1

(A.22a)

=
∂

∂x

(
(B2 −B1)Kh

∂ĉ

∂x

)
+ (B2 −B1)Kv

∂2ĉ

∂z2

+

[
Kh

(
∂c

∂y
− ∂B2

∂x

∂c

∂x

)]B2

+

[
−Kh

(
∂c

∂y
− ∂B1

∂x

∂c

∂x

)]B1

(A.22b)

All terms between brackets in equations (A.21b) and (A.22b) are equal to zero
because there is no flux through the side boundary. Because of this −→n (c−→u −
Kh
−→
∇c) = 0 where −→n = (−∂B1

∂x , 1) at y = B1 and −→n = (∂B2

∂x ,−1) at y = B2.

Furthermore, let the fluctation terms c′ and u′ be written as c′ = c −
∫ B2

B1
cdy

and u′ = u−
∫ B2

B1
udy. Then it is assumed that that correlations ∂

∂x

∫ B2

B1
u′c′dy

can be modeled as dispersive contribution thus become equal to zero. Thus, the
width-averaged sediment concentration equation is equal to:

∂ĉ

∂t
+ û

∂ĉ

∂x
+ (ŵ − ws)

∂ĉ

∂z
= δ(x)Kh

∂ĉ

∂x
+Kh

∂2ĉ

∂x2
+Kv

∂2ĉ

∂z2
(A.23)
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Perturbation analysis of the width-averaged concentration equation

Now the width-averaged concentration equation is derived the main balance
between the terms can be assessed. First of all, Kh and Kv are assumed to be
equal to Ah and Av. Thus, all terms with Kh are assumed to be equal to zero
because Av << 1. The equation now becomes:

∂ĉ

∂t
+ û

∂ĉ

∂x
+ (ŵ − ws)

∂ĉ

∂z
= Kv

∂2ĉ

∂z2
(A.24)

Now making the equation dimensionless results in:

∂ĉ

∂t
+ û

∂ĉ

∂x
+ ŵ

∂ĉ

∂z
− ws

∂ĉ

∂z
= Kv

∂2ĉ

∂z2
(A.25a)

1+
U

σL
+

U

σL
− ws

σH
=

Kv

σH2
(A.25b)

O(1)+ O(ε)+ O(ε)− O(1) = O(1) (A.25c)

Now write ĉ(t, x, z) = c0(t, x, z) + εc1(t, x, z). The leading order width-averaged
sediment concentration equation is given by:

∂c0
∂t
− ws

∂c0
∂z

= Kv
∂2c0
∂z2

(A.26)

Solution to leading order width-averaged concentration equation

By writing c0 = c00 + <(e2iσtc04) and using the Fourier series for |u0| equation
(A.26) can be rewritten in two equations:

−ws
∂c00

∂z
= Kv

∂2c00

∂z2
(A.27a)

2iσc04 − ws
∂c04

∂z
= Kv

∂2c04

∂z2
(A.27b)

(A.27c)

The constituent c00 does not depend on t because the forcing term a0 does
not depend on t thus the derivative is zero. The boundary conditions for these
equations are:

wsc
00 +Kv

∂c00

∂z
− 0 at z = 0,−Kv

∂c00

∂z
=
wsρssaa0
g′ds

at z = −H(x)

wsc
04 +Kv

∂c04

∂z
− 0 at z = 0,−Kv

∂c04

∂z
=
wsρssa(a2 − ib2)

g′ds
at z = −H(x)

This gives:

c00(x, z) =
ρssaa0
g′ds

exp

(
−ws
Kv

(H + z)

)
(A.28a)

c04(x, z) = A

(
−ws − λ
ws + λ

exp

(
−ws + λ

2Kv

)
+ exp

(
−ws − λ

2Kv

))
(A.28b)
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Where λ =
√
ws + 8iσKv and

A =
wsρs

sa(a2−ib2)
g′ds

−ws−λ
2 exp

(
ws+λ
2Kv

H
)

+ ws−λ
2 exp

(
ws−λ
2Kv

H
)

A.1.3 Morphodynamic Equilibrium Condition

The time evolution equation for the bed reads:

−ρs(1− p)
∂H

∂t
= D − Es (A.29)

where p is defined by the porosity of the sediment and D and Es are given by
the deposition of sediment and erosion of the seabed. The result from equation
(A.22b) and (A.21b) can be used to find a relation between D and Es. First,
(A.22b) and (A.21b) are depth averaged:

∂

∂t

∫ ζ

−H
(B2 −B1)ĉdz +

∂

∂x

∫ ζ

−H
(B2 −B1)ûĉdz − ∂

∂x

∫ ζ

−H
Kh(B2 −B1)

∂ĉ

∂x
dz =

−(B2 −B1)

[
wsĉ+Kh

∂ĉ

∂x

∂H

∂x
+Kv

∂ĉ

∂z

]−H
+ (B2 −B1)

[
∂ζ̂

∂t
+ û− ŵ

]ζ

+(B2 −B1)ĉ

[
û
∂H

∂x
+ ŵ

]−H
+ (B2 −B1)

[
wsĉ−Kh

∂ĉ

∂x

∂ζ̂

∂x
+Kv

∂ĉ

∂z

]ζ
(A.30a)

Because of boundary conditions (??) and (??) and the fact that there is no flux
through the sea surface the last three terms of the right hand side of (A.30a)
are equal to zero.
Deposition flux normal to the seabed is defined by the term:

D = wsĉnz (A.31)

The erosional sediment flux is given by:

Es = −Kh
−→
∇c−Kv

∂c

∂z
−→nz (A.32)

By integrating over the width this equation becomes Es = −Kh
∂ĉ
∂xnx−Kv

∂ĉ
∂znz.

The normal vector components are given by nx = 1
|−→n |

∂H
∂x and nz = 1−→n . This

gives the relation:

(B2 −B1)(−D + Es) =
∂

∂t

∫ ζ

−H
(B2 −B1)ĉdz

+
∂

∂x

∫ ζ

−H
(B2 −B1)ûĉdz − ∂

∂x

∫ ζ

−H
Kh(B2 −B1)

∂ĉ

∂x
dz (A.33a)
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