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Summary

Delamination is one of the common failure types in the fiber composites. The trailing
edge in the wind turbine blades, for example, is one of the structural components where the
delamination is driven by mode III under predominantly flapwise loading. There has been
an extensive effort in developing test procedures and test specimens for determination of the
delamination toughness in mode I and mode II delamination while the mode III is neglected
due to its complexity, on the one hand, and the lack of a reliable test procedure and numerical
model for the mode III delamination toughness testing on the other hand. Therefore, the cur-
rent project aims for developing an experimental test specimen capable of extracting cohesive
laws using the J integral approach. To this end, the FEM is utilized for the analyses of various
parameters.

Delamination can be modeled using Progressive Failure Analysis where the crack initia-
tion and crack evolution are studied. The present thesis covers both aspects of the Progressive
Failure Analysis in the unidirectional fiber composites. Before starting the mode III, mode
I and II test specimens are analyzed to establish requirements for proper three-dimensional
simulation. The reliable numerical model from this step is the fundamental model for the
mode III delamination analysis. In the first part of the project, the Double Cantilever Beam
cross-section is optimized to give the pure mode III. LEFM is invoked for the analyses of this
section (Small Fracture Process Zone). The results have shown that the pure mode III cannot
be accomplished and there always exists an induced coupling mode II under anti-plane load-
ing. Furthermore, the results suggest higher mesh density is required at the free surface to
further investigate the 1/\/7-singularity at this location.

The second part of the thesis covers the Cohesive Zone Modeling (Large Fracture Process
Zone) whereby the crack evolution is simulated by the cohesive elements. The implemented
cohesive law is validated by the J integral. The bilinear cohesive law has been successful in
simulating the crack extension for Large-Scale Bridging condition. The traction-separation
law has been validated through the resistance curve generated by the FEM and derivation of
the resistance w.r.t the tangential end-opening.

The commercial code, ABAQUS, is utilized in this study for the Finite Element Analyses.
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CHAPTER 1
Introduction

1.1 Motivation

Offering light-weight and high stiffness and strength compared to metals have made fiber-
reinforced composites (from now on fiber composites) a suitable choice for the aerospace and
wind turbine industry. Versatile mechanical properties, as well as strength to weight ratio can
be obtained by changing fiber lay-up, fiber/matrix volume fraction, etc. Advanced carbon
fibers, for example, have zero thermal expansion which makes them a good choice for space
projects. Due to high fatigue resistance, composites are utilized in high frequency rotating
parts such as wind turbine blades and helicopter blades. Despite these advantages, there are
several shortcomings regarding fiber composites, for instance, the presence of the voids and
impurities inherited from the manufacturing process and the complexity in both material and
mechanical aspects. The weak interface and anisotropy have made the failure mechanism of
fiber composites entirely different from metals.

One of the most current failures in fiber composites is delamination. Delamination is the
separation of two adjacent composite layers due to the weakness of interface bonding (figure
1.1). The frequent causes of delamination are the manufacturing process, impact (for example
dropping a tool during inspection), matrix cracking, free edges and holes, resin pockets and
geometrical discontinuities such as ply-drops (Kassapoglou, 2015). The existence of voids
and impurities during the manufacturing process creates pre-existing internal cracks that can
extend under static and cyclic loading. Usually, the matrix is more prone to failure in the
transverse loading because of lower stiffness and strength compared to the fibers. Transverse
stresses that exceed the interlaminar strength cause the delamination.

Composite plies

é Delamination

- J

Composite plies
Figure 1.1: Delamination.
Delamination crack growth is a mixed-mode crack extension; therefore, it is analyzed

through fracture mechanics and a damage model (for instance, Cohesive Zone Modeling in
the present thesis). Fracture mechanics started in the early 1950s parallel to the manifestation
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of larger and more complicated structures. In fact, catastrophic failure in structures due to the
existence of micro-voids and their propagation under fatigue led to the development of a new
field in the Material Science known as the Fracture Mechanics. Generally speaking, crack
surface displacement can be divided into three modes (Irwin and Kies, 1954) as illustrated in
figure 1.2. Unlike metals, where the crack tends to grow in mode I (Pook, 2013), delamination
could occur in each one of these three modes; mode 1, mode II, mode III or a combination of
them, known as the mixed-modes, e.g., mode I+II.

A"/

Mode 1 Mode 11 Mode 111

Figure 1.2: Fracture modes. Arrows show the loading condition. The crack surfaces are shown in red.

The prediction of crack growth is the backbone of the fracture mechanics. Damage in
form of crack evolution, which results in material degradation, is the principle of the damage
tolerant design. Not all the damages can cause failure, only the ones with a critical size can
grow and turn into material separation. Thus, it is of paramount importance to identify

1. The crack initiation or its critical size which stays within the scope of fracture mechan-
ics.

2. The crack extension and the residual strength (the load-bearing capacity after crack
growth) of the structure’.

In the unidirectional composite laminates, the fibers have higher strength in the longitu-
dinal direction and lower in the transverse directions which makes the unidirectional fiber
composites susceptible to delamination under anti-plane loading. In the present work, the out-
of-plane delamination, equivalent to mode III in fracture mechanics, in the unidirectional fiber
composites will be investigated.

The Finite Element Method (FEM) has had a substantial influence on the fracture mechan-
ics improvement and this project is no exception. ABAQUS as an accepted and powerful
Finite Element (FE) package is utilized for the FE analyses in this project. Notes regarding
the FE implementation in ABAQUS will be explained where applicable.

I'The residual strength is not covered in this study.



CHAPTER 2
Background

In this chapter, the essential theoretical background in the Linear Elastic Fracture Mechan-
ics (LEFM) in two-dimension and three-dimension as well as the Cohesive Zone Modeling
(CZM) are explained. Next, the research objective, questions, test method, and the state-
of-the-art research regarding mode III delamination toughness testing along with the thesis
outline are presented.

2.1 LEFM

LEFM is a division of fracture mechanics that assumes a very small Fracture Process Zone
(FPZ) (the gray-shaded area in figure 2.1) compared to the other geometrical dimensions, e.g.
width, length and crack length. As the name indicates, LEFM is based on the assumptions of
linear relation between the stress and strain, a brittle, homogeneous material and a continuous
crack front'. In fracture mechanics, the region where the LEFM is applicable is called the
"K-dominated zone" (figure 2.1). The K-dominated zone can be understood as a universal
stress field that communicates the load and geometry under the condition of the LEFM of the
Small-Scaled Fracture Process Zone (Bao and Suo, 1992).

The Stress Intensity Factor (SIF), K, concept was firstly developed by [rwin (1957) based
on Westergaard (1939) solution. K is the first term of a series expansion of stresses and in-
cludes a 1/,/r-singularity (blue curve in figure 2.2) close to the crack tip where r is the distance
in front of the crack tip. The rest of the terms are neglected since they are not singular and
their values tend to zero at the crack tip. In the LEFM, the stress in the "K-dominated zone"
tends to infinity and therefore, the solution fails in the vicinity of the crack tip. Far from the
crack tip, the stress falls and the solution equals to zero where the K-dominated zone vanishes.
Under Small-Scaled Fracture Process Zone or the so-called Small-Scale Yielding (SSY) the
crack tip load distribution and geometry can be described only by a single parameter, K. Ki,
K11 and Ky indicate the SIF for mode I, mode II and mode III, respectively.

In the LEFM, the stress field at the vicinity of a crack in terms of K and the distance from
the crack tip can be written as (Irwin (1957), Williams (1961))

K
\/7.

The conventional definition of crack is used in the present work. Crack in two-dimension is addressed by
the "crack tip" and in three-dimension by the "crack front".
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K-dominated zone

Fracture Process Zone

Figure 2.1: K-dominated zone shown in mode I (6=0).

xZ

022

o, T

O 12
-«
r l
0
xl
Crack

Figure 2.2: The crack tip coordinate system. =0 corresponds to the crack plane.

where 0;; denotes the stress tensor (i is the normal vector of the surface that the stress acts
on and j is the direction of the stress), f; j(G) is a function of angle, 6, around the crack tip
and r is the distance from the crack tip. r and 0 are the polar coordinates depicted in figure 2.2.

The Displacement vector can be written as

Kyr
G

where u; is the displacement, G is the shear modulus and g;(0) is a function of 6 which
determines the displacement field for various angles around the crack tip. Irwin’s solution

u; = g,-(e) 5 i:1,2,3 (2.2)



2.2 J integral 5

from (Tada et al., 2000) for an isotropic material is presented in Appendix A.

Since K describes the strength of the stress field in the K-dominated zone, it could be uti-
lized as a fracture criterion. The critical value of the SIF is called the fracture toughness and is
denoted for example by Kjc for mode L. If K1 > Kj¢, fracture occurs. Hence, the crack growth,
for instance, in a wind turbine blade can be predicted by extracting the SIF and comparing
it with the fracture toughness from the experiment based on the principle of autonomy. Ac-
cording to the principle of autonomy, two different bodies under distinct loading conditions
and pre-crack lengths but identical materials have similar behavior at the crack tip/front under
SSY (Broberg (1999), Rice (1968b)).

2.2 Jintegral

Energy Release Rate (ERR), G, is another alternative concept to K in the LEFM and is
defined as the decrease in the potential energy during the crack extension. The G nonlinear
companion is the J integral which enables the material to be nonlinear elastic. In the linear
elastic materials, the J and G are equal; therefore, in the following the J integral in the two
and three-dimension will be explained.

2.2.1 The two-dimensional J integral

J integral is a path-independent integral on a contour that encloses the crack (figure 2.3)
and in two-dimension is defined as (Rice, 1968a)

J= / (dez—n%ds) (2.3)
r dxy

where

€
W:/ Gl'jdé‘ij , T,~:G,~jnj , dxp=mds and dx; = nads
0

i is a free and j is a dummy index according to the Einstein’s summation convention
and they take 1 and 2, I' is the closed integral contour, W is the strain energy density, o;;
is the stress tensor, n; is the outward unit vector normal to the contour (figure 2.3), u; is the
displacement vector, ds is a small element of the contour and g;; is the strain tensor. Under
LEFM conditions, J and K for an isotropic material with a straight crack extension can be
related through the set of Eq.(2.4).



2 Background

K¢
JI - F
Kii
Ju= 5 (2.4)
KZ
Jrp = — 1L
m= -~
where
E'=E For plane stress
E
= 142 For plane strain (2.5)
E
G=——
2(1+v)

and Vv is the Poisson’s ratio.

Crack

Figure 2.3: Definition of the coordinate system and integration path, I', for the J integral in two-dimension.

ABAQUS uses the rings of elements (surface integral) to calculate the J integral. The first
contour includes the crack tip. The second contour embraces not only the crack tip but also
the first row of the elements around the crack tip. The next subsequent contour is defined by
adding the previous contours (ABAQUS, 2017). The 10th contour is illustrated in figure 2.4
which encompasses the previous contours and the 10th ring of elements.
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Figure 2.4: ABAQUS uses surface integral to calculate the J integral. The 10th surface contour is shown in gray.

2.2.2 The three-dimensional J integral

Bakker (1984) showed that the J integral in three-dimension is a path-independent integral
and can be written as

J= /Wn1 ds—/(Wm Ojjnj=— ou )ds (2.6)
r dxi

if the crack front is orthogonal to xl-dlrectlon and the crack plane is parallel to the xjx3
plane. In the above equation, ds is a small element of the contour I that lies on the plane
x1xp. If the J integral is not constant along the crack front, a more generalized form of the J
integral can be given according to Eq.(2.7) (Amestoy et al. (1981), Bakker (1984), Chiarelli
and Frediani (1993)).

Jk:/(Wnk— I dS+/ W6k3 G,3a )dS , k=1,2,3 2.7)
r 8 Xk 8 X3 &

in which §; j 1s the Kronecker delta, § is a closed surface and dS is a small element of the
surface (figure 2.5). The integration domain for dS is defined in the crack plane (indicated
by yellow color in figure 2.5) and bounded from one traction free (Sp) to another traction free
surface (S7) as illustrated in figure 2.5. The value for the J; integral in Eq.(2.7) is calculated
locally for each contour, I, which belongs to the plane P, and is always normal to a unit vector
tangent to the crack front and parallel to x3-axis (figure 2.5). As a result, the J integral is the
summation of the two integrals on path I" and domain S and independent of both path I" and
domain S. For a straight crack front and symmetric body, k = 1 in Eq.2.7 and the second term
vanishes. In addition, for a non-straight crack front when k = 1,2; 83 and 8,3 is zero; hence,
there will be no contribution of W to J; and J5.

Kitagawa et al. (1980) suggested an average value for the J integral analogous to Eq.(2.6)
where the local J values are integrated and then divided by the length of the crack front. If the
crack front is the same as the specimen width, B then
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P,: Plane orthogonal to crack plane

N,
N

Crack front

\

P2 Crack plane

Figure 2.5: Definition of the local coordinate system and integration path, I', and domain S for the three-
dimensional J integral.

1 8u,~
J=z /S2 (Wny — T,-&x1 )YdA (2.8)

The coordinate system for Eq.(2.8) is shown in figure 2.6. Kitagawa et al. (1980) assumed
a straight plane for the crack extension and traction free surfaces Sp and S;. It looks that
Eq.(2.8) is suitable for the analytic solution since it sums up the local J integrals and then
divides them by the width to determine the global J value. Consequently, the J integral unit

becomes —5-
m

X,

Figure 2.6: Surface contour for the J integral in three-dimension.
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In three-dimension, ABAQUS uses Eq.(2.7) to compute the J integral locally (volume
integral); hence, in contrast to the two-dimensional case where the output for the J integral
is one value, a series of J values along the crack front coordinate will be obtained. The final
value of the J from FEM can be calculated by integrating the surface under the J-x3 plot and
dividing it by the length of the crack front.

2.3 Fracture Mechanics of Unidirectional Fiber
Composites

As mentioned, the fracture of the fiber composites is too complex as it depends on various
parameters. Toubal et al. (2013) observed that the effect of anisotropy decreases as the ratio

of the longitudinal to the transverse Young’s modulus, E—ll, increases. The fiber orientation

also has a considerable effect on K. Sih et al. (1965) shg\%ved that the 1/,/7-singularity in an
isotropic material can be extended to the orthotropic one. In an orthotropic material, despite
the fact of crack growth in the direction of fibers and mixed-mode displacements in case of
fiber misalignment with the crack, the principles of the LEFM are applicable conditionally
since the distribution of the stresses at the crack tip is much important (Parhizgar, 1979).

2.4 Large-Scale Bridging

Under SSY condition, the stresses can be described by the K and R-curve (section 2.5.2);
however, by further increase in the size of the FPZ, the K and R-curve lose their meanings
(Bao and Suo, 1992). The LEFM is no more applicable and the R-curve will be different
according to the geometry and stiffness (Spearing and Evans, 1992). In addition to the SSY
and Large-Scale Yielding (LSY), there is an intermediate FPZ in composites, known as Large-
Scale Bridging (LSB) (Sgrensen and Jacobsen, 2000). The length of this FPZ, L., is longer and
its height is shorter than the size of the K-dominated zone, forming a long narrow strip FPZ
(figure 2.9(a)). Therefore, to explain the LSB problems, it is essential to establish a parameter
which is (a) a material property and (b) independent of the size and geometry so that it can be
utilized in complex structures. It has been shown that the Cohesive Zone Modeling (CZM) is
able to model the failure process zone for the LSB condition (Sgrensen and Jacobsen, 2003).
This topic will be covered in the next section.

2.5 Cohesive Zone Modeling

To overcome the peculiar stress singularity in the LEFM and provide a more realistic
model for the material separation, Dugdale (1960) proposed a yield strip model to realistically
present the details of the physics of the fracture. Dugdale set the maximum value of the co-
hesive force equal to the material yielding strength, 6,. Subsequently, the maximum local
stress value was limited to o, and the stress singularity vanished. The result was the length
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of a narrow strip of a plastic zone ahead of a crack in an infinite plate under mode I. Later,
Barenblatt (1962) introduced the "cohesive zone" based on the atomic force and coalescence
of the micro-voids. In contrast to Dugdale’s model where the cohesive force was restricted
to oy, Barenblatt assumed a cohesive law in which the cohesive traction, T', was defined as
a function of the crack ligament, for example x, T'(x). Through the years Barenblatt’s model
was evolved and the crack ligament coordinate was replaced with the crack opening, 8, T(9).
Since then, Cohesive Zone Modeling (CZM) has drawn much attention and has been used
extensively in crack extension, delamination, crack path prediction and so on. Along with the
CZM, Virtual Crack Closure Technique (VCCT) has been exploited for simulating the failure
process zone in fiber composite laminae. Table 2.1 provides an overview of both VCCT and
CZM. The main advantages of CZM like damage onset prediction, independency of a pre-
existing crack and its proved ability in progressive failure analysis in layered composites have
made the CZM an attractive tool for the delamination analysis.

Damage ininitian

Separation T

Elastic regime ’ ) /
> T

Damage evolution / s
Material degradation

Figure 2.7: An schematic of a bilinear cohesive law. Figure 2.8: Cohesive traction decomposition.

Figure 2.7 illustrates a bilinear cohesive law (or traction-separation law), frequently used
for the delamination in composites. The stress increases until a certain level, 7. or the cohesive
strength (the green area in figure 2.7). At this point, there is a loss in the stiffness of the
material (crack initiation) and the damage, D, is zero. The cohesive stress reduces as the
material stiffness degrades, D=1, until the critical separation, &., occurs; when the cohesive
traction vanishes (the red area in figure 2.7). At this level, the length of the FPZ is known as
the cohesive length, L.. It is worth-mentioning to note that the cohesive element used in the
present work has an infinite thickness. There is an alternative in CZM by ABAQUS without
the cohesive element that is not covered here. Some features of the cohesive law presented in
figure 2.7 are listed below:

e To minimize any unwanted crack opening before the crack initiation, the slope of the line
in the elastic regime should be set to a high value. The opening in the elastic regime is
undesired since it causes the crack opening before reaching the cohesive strength. Very
high values for the slope of the elastic region will lead to computational error in FEM;
hence, it is preferred to opt for a value that is neither too high to circumvent FE error
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Table 2.1: VCCT against CZM ABAQUS (2017).

VCCT CZM
Requires a pre-existing crack No need for a pre-existing crack
Cannot predict the crack onset Crack initiation can be determined

Dedicated to brittle fracture Suitable for both the brittle and LSB
fracture

Requires ERR for mode I, II and III,
Requires ERR for mode I, II and III elastic modulus, cohesive traction
and elasticity matrix

Crack propagates when the stress exceeds
the cohesive strength and fully developed
when the cohesive traction is zero

Crack propagates when the ERR exceed
the fracture energy

Initially the uncracked regions are Initially the uncracked regions are bonded
bonded rigidly according to the elastic cohesive law
Highly-dependent on mesh size Highly-dependent on mesh size

Difficult to apply for complex structures | Can be applied to complex structures

Need to know the crack path

Need to know the crack front in advance . . .
(Needless of crack front in three-dimension)

nor too low to make the interface less stiff. Generally speaking, the traction-separation
can be explained through Eq.(2.9).

T, K Kps Ky 5n
T= Ti = Kns Kss Kst 5s =Ké (29)
Tl" Kl’lt Kst Ktt 51‘

where T is the traction vector, K is the stiffness matrix and J is the separation. The
subscripts n, s and ¢ are the traction components (figure 2.8) referring to the normal and
the two transverse directions. Considering the cohesive elements with finite thickness,
h., the strains in the 7, s and ¢ directions can be written as

8}’!: SS: gt:_

Oy

5, 8
he
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Replacing the stiffness matrix components with the suitable values to mimic the elastic
behavior in different directions, finally for a finite thickness cohesive element, the elastic
behavior in the cohesive zone can be explained by Eq.(2.10).

Tn Enn Ens Ent &n
T — 7} — Ens Ess Est SS - EE (2.10)
T Eyw Eg Ey &

where F is the elasticity matrix. One should notice that the elastic parameters in the
elasticity matrix are given as interface properties. They are not the material properties
since, for example, the effect of the Poisson’s ratio is neglected and all the element of
the stiffness matrix are chosen based on the experience and observation.

e As a rule of thumb the end-opening in the elastic region, 8¢, should not exceed 0.056,
(Schwalbe et al., 2012).

e The area under the curve determines the fracture toughness, J.. According to Rice
(1968a), by shrinking the integration path to the crack surfaces (figure 2.9(b)), the J
integral in the form of cohesive law can be written as

¢
Jo= /0 T(5)ds .11

where 9, is the critical separation when the traction is vanished depicted in figure 2.9(a)
and J, is the fracture toughness. The derivation is shown in Appendix B.

Evolved crack tip

Composite laminate X, /

[TTIIITIIITIrroo
L

c

A

Composite laminate

Initial crack tip

Figure 2.9: (a) LSB in a Double Cantilever Beam specimen loaded by bending moments(b) Integration path, I,
for the cohesive zone.
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e A bilinear cohesive law can be defined by two out of these three parameters: T, 0*
and J.. According to the cohesive law shape, ABAQUS is able to calculate the third
parameter.

2.5.1 Cohesive element

In order to mimic the crack growth, certain elements apart from the bulk elements are re-
quired for the cohesive zone. Cohesive elements behave according to the defined cohesive law
and are placed in all the possible locations where the crack may propagate.

Since cohesive elements are not a part of the bulk material, it is desired to model the cohe-
sive elements with a finite thickness. If the element thickness is sufficiently small, the volume
is negligible. In addition, the displacements as the output varies only between the top and the
bottom surface of the element (Schwalbe et al., 2012). Figure 2.10 shows a cohesive element
with its local coordinate system. The coordinate system is necessary so that the normal and
transverse directions can be identified before the mesh generation. The cohesive element in-
cludes a top and a bottom surface which are at an initial distance from each other, /.. Only
the rotational degrees of freedom, ur of the cohesive element are limited meaning that they
can only translate in the normal and transverse directions (u, # 0, us; # 0 and u, # 0 while
ur, = uryg = ur; = 0). It is also worth mentioning that the cohesive elements only describe the
material separation not the material deformation (i.e. the cohesive element does not include
the effect of the Poisson’s ratio).

Top surface

I

Bottom surface Thlckness direction

Figure 2.10: A linear three-dimensional cohesive element with 8-nodes (black dots) and 4 integration points
(crosses) with its local coordinate system.

The deformed state of a cohesive element in the two-dimensional is shown in figure 2.11.
The local coordinate system rotates as the cohesive element deforms and the opening can be

written as
5* — Un4 -U, n2
Ut - U2
where the superscripts denotes the node numbers and U is the local displacement of the
cohesive element.
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Continuum element

Figure 2.11: Deformed state of a cohesive element in the two-dimensional with the local coordinate system in
the presence of continuum elements from the bulk material (Brocks et al., 2003).

Another critical parameter regarding the cohesive elements is their length (or quantity) in
the cohesive zone. This is important from two perspectives: (a) too few cohesive elements
cannot capture the correct displacement and stress required for the fracture energy calculation
(b) too many cohesive elements make the FE analysis much time-consuming. Falk et al. (2001)
recommended 4 to 6 number of cohesive elements along the cohesive length, L.. Moés and
Belytschko (2002) suggested at least 10 cohesive elements within the active cohesive zone.
Davila et al. (2001) used the cohesive elements with the length of 1.25 mm for the analysis
of a composite Double Cantilever Beam (DCB) specimen. Turon et al. (2007) opted for an
adaptive mesh approach whereby pre-defining the number of cohesive elements, ne?, together
with the corresponding cohesive strength , T, from Hillerborg et al. (1976), the minimum
cohesive strength was calculated to be used in the cohesive law.

_ E
T = min{T.,T.} = min{T,, WQLCC}

In the above equation, G is the fracture toughness and can be replaced according to its
corresponding value for mode I, II and III. As a result, the length of the active cohesive
zone lengthened by picking the minimum value of 7" and well-suited for capturing the stress.
Schwalbe et al. (2012) preferred to provide some guidelines rather than giving an exact solu-
tion for the number of elements. The guidelines are

e /. should be much smaller than the cohesive element length in two-dimension and the
cohesive element area in three-dimension.

o . << OF
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e /. should be much smaller than any geometrical dimension ,e.g, height, width and
length.

Concerning the previous research in the field of the number of the cohesive elements in
the cohesive zone, it is concluded that for the purpose of the delamination where the crack
path is straight, determined in advance and along the crack plane; the above guidelines from
Schwalbe et al. (2012) will be efficient. Furthermore, a mesh convergence study of the stress
can reassure the selected cohesive element size.

2.5.2 The R-curve

Usually, failure does not catastrophically occur in materials. There is a material resistance
to the crack growth which is well-described by the concept of "Resistance curve" or R-curve
(figure 2.12). Crack blunting by plasticity and fiber bridging (figure 2.9(a)) are the main rea-
sons for resistance in metals and fiber composites. In fact, the R-curves shows the dissipated
energy, Jg, versus the crack extension. The subscript R is used to differentiate the R-curve.
Before the initiation of the crack growth, energy is required to separate the two surfaces at
the crack tip and subsequently to overcome the fiber bridging. Therefore, the specimen can
sustain the applied load until a certain level, Jy. Further increase in the load causes the crack
onset and the crack length extends where both the J and crack length increase. In composites,
this step usually starts by matrix fracture which has a lower strength compared to the fibers.
In the meanwhile, the fibers do not break and still carry the load behind the crack tip/front
while the crack tip/front is dynamically moving from one interface to another (the "Initial"
and "Evolved" crack tips in figure 2.9). If the load level becomes sufficiently large to break
the fibers, there exists a critical opening displacement, 6*, where the fibers do not carry any
load, T=0, and the FPZ takes a self-similar opening profile, &, and length, L.. Consequently,
the R-curve attains a constant value (steady-state), J;.

When the integral path is shrunken to include the lower and upper crack surfaces and the
crack tip, by applying the energy balance through the J integral equation one can write the J
integral in the form of resistance (Rice, 1968a).

6*
JR:/ T(8)dd + Jip (2.12)
0

where Jyp, is the J value at the crack tip and in fact is equal to Jy in the R-curve in figure
2.12. If Jg = Jo, the crack propagates.
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5*
If 5'<5, then Jp — / T(8)d8 +Jyp
0

2R
\\\‘:

Figure 2.12: An schematic of the R-curve.

2.5.3 Determination of the cohesive law

The cohesive law can be determined either from the micro-mechanical or phenomenolog-
ical model. The micro-mechanical model involves different micro-mechanisms and scattered
input variables (for the case of brittle fracture) while the phenomenological model are inde-
pendent of the geometry, loading and failure mechanisms. Therefore, the phenomenological
models are widely-used for the cohesive law.

There has been several approaches for verification of the cohesive law based on the phe-
nomenological model such as fitting the R-curves from the experiment with the theory or
adjusting the cohesive strength to give the same value of end-opening from the experiment.
Another method, also used in this thesis, is by recording the resistance, Jg, and local open-
ing from the R-curve (i and Ward (1989), Z. Suo and FAN (1992)). One can show that the
cohesive law then can be determined by Eq.(2.11)

_ dJR
 dé*
The derivation of Eq.(2.13) is given in Appendix B.

T(8%)

(2.13)

2.6 Research Objectives and Questions

The objective of the present project is to optimize a unidirectional fiber composite fracture
mechanics test specimen for Mode I1I, with the aim of developing a test specimen geometry
that allows stable crack growth and can be analyzed in the framework of the J integral so that
it can be used also for the Large-Scale Bridging problems.

The proposed project can be divided into three phases:
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e Phase 0: Developing the LEFM Finite Element model in two-dimension and three-
dimension with sufficiently fine mesh focused at the crack tip/front to extract the K} and
K11 and comparing them with the available results from literature.

e Phase 1: The LEFM Finite Element modeling to find a cross-section capable of giving
K.

e Phase 2: The cohesive zone Finite Element modeling and testing the accuracy of the
implemented cohesive law by recording the crack growth resistance (in the form of the
J integral) and the local opening.

In the proceeding, the detailed explanation regarding each phase together with the research
questions will be discussed.

2.6.1 Phase 0: Mode I and II FE modeling

The phase naming justifies the reason why "Phase 0" is not included in the objective but
is essential since the whole study will be performed on the evolved model from this phase.
Fundamental research questions for "Phase 0" are

1. What is the best geometry, based on the previous works, for the delamination toughness
testing in mode I and II that primarily can be further developed to mode III and is
secondly equipped with a closed-form solution for the J integral independent of the
cohesive parameters that can be later compared with the J integral from Eq.(2.11)?

2. How to implement the LEFM model in ABAQUS?

3. Is there any analytic solution in the literature which removes the dependency of the Ky
from the initial crack length and applied boundary condition?

2.6.2 Phase 1: Mode III FE modeling

After accomplishing the sophisticated LEFM Finite Element model, the effect of several
geometrical modifications, listed below, on Kyjjc will be investigated.

Variation in the width and height

Side-grooves

Added beams

Orthotropy

The material in the first three cases has isotropic mechanical properties. The mechanical
properties only change in the last case where the effect of orthotropy will be studied.

The research questions regarding "Phase 1" are
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1. How do the geometry modifications like side-grooves affect the mesh generation in the
three-dimensional model?

2. What are the possible approaches to assure a reliable FE model for each scenario?

3. How to compare the Kjjc obtained from the FE model to the analytic solution?

2.6.3 Phase 2: CZM and cohesive law determination

The CZM includes the cohesive law formulation, the crack preparation simulation and the
cohesive law determination. The cohesive law and parameters for the present project are for-
mulated through a series of experiments at the Technical University of Denmark (DTU). In
this study thus "Phase 2" only involves the crack extension simulation and cohesive cohesive
determination. The Jr values along with the local opening are extracted from ABAQUS.

The research questions regarding "Phase 2" are

1. What are the required parameters for the cohesive law?

2. How to characterize the LSB condition in ABAQUS?

2.7 State of the art

There has been an extensive tendency towards the determination of the delamination tough-
ness, FE analysis and standardization for mode I, II and the mixed-mode I-II of the fiber
composites. In contrast, mode III delamination toughness, Gc, due to its complexity and
difficulty in the experimental setup on the one hand, and the lack of a robust FE code, on the
other hand, has been considered to a lesser extent. In this section, an overview of the recent
researches in the field of delamination toughness testing under anti-plane loading in compos-
ites will be presented. Figure 2.13 illustrates the specimen geometries that have been used in
the fracture toughness testing.

The Split Cantilever Beam (SCB) (Donaldson, 1988) is one of the first specimens used
to analyze the delamination in mode III and fracture toughness testing (figure 2.13(a)). The
complete setup includes two aluminum plates attached to the specimen to remove the torsional
moment around the longitudinal axis. The result showed a higher portion of mode II compared
to mode III. Hwang and Hu (2001) suggested the Simplified Split Cantilever Beam (SSCB)
(figure 2.13(a)) where the aluminum plates were replaced with the aluminum blocks at the end
of the specimen. Good results were obtained using this specimen, even though the mode II
further increased from the center to the edges.

The Modified Split Cantilever Beam (MSCB) (figure 2.13(a)) utilized a secondary pair
of the loads at the delamination front to create the pure out-of-plane shear. Khoshravan and
Moslemi (2014) obtained 97% of the total ERR, driven by the mode III; however, the mode II
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Figure 2.13: (a) SCB, SSCB, MSCB, SST (b) DCB (c) ECT, ECT-a, 6ECT (d) 4PBP (e) ERCT (f) TS test
specimen geometries.

was still dominant at the crack edges.

Another test method performed by the Split Shear Torsion (SST) (figure 2.13(a)) specimen.
The SST is identical to the MSCB specimen but thinner. The result showed a highly elevated
mode II at the edges (Horner et al., 2015).

A novel test for two composite laminates (LLopez-Menéndez et al. (2016), Lopez-Menéndez
et al. (2017)) was designed by placing a Double Cantilever Beam (DCB) specimen (figure
2.13(b)) between to horizontal rails. The mode III loading was created via the torque. As a
result, the anti-plane shear was accomplished by sliding the gripper along the rails. The Gnc
was dominated close to the delamination front. Farther away from the delamination front, the
Guic was more pronounced.

One of the test methods which has drawn much attention recently is the Edge Crack Ten-
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sion (ECT) (figure 2.13(c)) (Lee, 1993)2. PENNAS D. et al. (2007), Browning et al. (2010),
Browning et al. (2011) ,Mehrabadi and Khoshravan (2012) did a comprehensive study on the
ECT specimen to optimize the geometry for the mode III delamination toughness testing. In
this test, the Gryc fell from the specimen center to the edges and was reported between 90%-
97%. Being highly dependent on the pre-existing crack length, ag, and the overhang length
(the distance from the applied load to the edges) in the fiber longitudinal direction are the two
main drawbacks of the ECT specimen. Other ECT-derived specimens like the 6-point Edge
Crack Torsion (6ECT) (Pereira et al., 2011) and ECT-a ((Suemasu, 1999), (Ge et al., 2016))
yielded the same mode-mixity at the edges with predominantly mode II.

The 4-point Bending Plate (4PBP), figure 2.13(d) (Morais and Pereira, 2009) is the less ex-
pensive version of the ECT test with two delamination fronts. Despite the good results for the
Gic, the 4PBP exhibited the same dependency on the overhang length and specimen length
in the y-direction. Furthermore, there is always a possibility of the asynchronous delamination
at the loading points that makes the reproducibility of this test questionable.

In another category of the mode III delamination toughness testing, the delamination front
has a circular shape. The Edge Ring Crack Torsion (ERCT) (Ge et al., 2016), figure 2.13(e),
and the Torque Shell (TS) tests (Cricri and Perrella, 2017), figure 2.13(f), are listed in this
category. The disadvantage of both methods is the susceptibility of the Gc to the initial de-
lamination size.

Some authors have focused on the evaluation of the theory and the available FE tools. Ko-
tousov et al. (2013), Berto et al. (2015) and Campagnolo et al. (2015) proposed a study on
the stress state under the tearing mode. They shrank the specimen to a half-disk (and a rectan-
gular plate in another case) to further include the behavior of all the possible test specimens.
They found out that in addition to the three conventional fracture modes, there were two other
coupled modes which could initiate the crack even when the Kyj = Ky = 0. Additionally, in
the three-dimensional, there was an infinite number of terms in the classical two-dimensional
approach for the SIF the that were able to generate the singularity.

Table 2.2 categorizes the specimens that have been mentioned above for the fracture tough-
ness testing.

Table 2.2: Mode III delamination toughness testing test methods.

Group name \ Covered specimens
DCB-type SCB, SSCB, MSCB, SST, DCB
ECT-type ECT(MECT), ECT-a, 6ECT, 4PBP

Torsional-type | ERCT, TS

In conclusion, there is a dependency on the initial crack length as well as the geometry in

2This test is also known as the Modified Edge Crack Tension (MECT) test.
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all the specimen types and yet no robust testing approach has been established for character-
izing the Gypc in composites. This gave rise to investigate the delamination front of the SST,
MSCB and ECT specimens in the micro-scale (Johnston et al. (2014), Johnston and Davidson
(2014), Horner et al. (2015)). The Photomicroscopy revealed the existence of the transverse
cracks in the matrix due to the embedded insert (for the sake of seam creation). These matrix
cracks initiated in advance to the delamination; therefore, the pure mode III delamination was
not accomplished. As a result, the data reduction method (ASTM D5528-01, 2014), frequently
used in the fracture toughness testing which is based on the hypothesis of a crack extension
under pure delamination becomes invalid. Since the dissipated energy from the delamination
and matrix cracking are not distinguishable. To arrest these transverse cracks in the matrix, the
plies on the top and bottom of the delamination interface should be stacked such that the plies
prevent the matrix cracks from opening. From another point of view, it has been observed that

in all the tests under prescribed loading condition can cause unstable crack extension (Ander-
son, 2005).

To the knowledge of the author, there has not been conducted a research topic analogous
to the present work to explore the effect of various parameters on mode III delamination
toughness. A DCB specimen is chosen in this study for two reasons.

1. The crack growth for the DCB specimen is stable which is an essential requirement for
the CZM (Z. Suo and FAN, 1992). By applying the prescribed displacement, not only a
stable crack growth is obtained but also The J integral solution will be independent of
the initial delamination length.

2. Under the LSB, the J integral depends on the cohesive parameters. The DCB specimen
benefits from a closed-form solution for the J integral in both LEFM and LSB condition.

The researches in the field of fiber composites mode III CZM are limited. [srar et al. (2017)
and Cricri and Perrella (2017) suggested a bilinear cohesive law for the mode I1I delamination
under the ECT and TS test methods. Cricri et al. (2015) utilized the TS test to compare the
results from the experiment with an exponential cohesive law. The aforementioned works
were performed by the specimens that the result was proved to be geometrically-dependent.
Additionally, they fundamentally lack a systematic procedure for the cohesive law validation
which raises the doubt about the obtained result.

The approach based on the potential function by S¢rensen and Kirkegaard (2006) can be
extended to mode III and thus suggests an approach to determine mode III and mixed-mode
cohesive laws.

2.8  What Remains to Be Done?

The delamination toughness is required for the calculations regarding the residual strength
and the number of cycles a structure can withstand under fatigue. Material degradation and
load-bearing capacity of the structures are of paramount importance when a composite lamina
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undergoes mode [-II-IIT simultaneously. Wang (1983) showed that the contribution of mode
IIT under simultaneous mode I-II-III was several times larger than mode I and II and its value
was more pronounced at the hole, free edges and corners (Tvergaard and Hutchinson, 2008).
It was discussed in the former section that the obtained results for the delamination toughness
determination are more or less under question due to the existence of transverse cracks in the
matrix; therefore, it is needed to study various possible factors which may influence the mode
IIT delamination toughness in the absence of all possible phenomena such as matrix cracks.
Next, the cohesive law should be determined with a proven method so that it can be extend to
real structures.

2.9 Relevance to Wind Industry

Wind turbine blades, as the largest rotating components of a wind turbine, are more prone
to damage during their service life. The blade gravitational and bending moments scale by
power 3 and power 1 of the rotor diameter, respectively (Jamieson, 2011). Therefore, the over-
all structural load is proportional to the rotor diameter to the power of 4. Furthermore, longer
blades impose higher manufacturing and repairing cost to the manufacturers.

According to Sgrensen et al. (2004) and Branner, Kim; Ghadirian (2014), delamination is
one of the most frequent failures in the aerodynamic skin and spar sandwich panel laminates
of the wind turbine blades. For instance, mode I delamination due to buckling or compression
in the flange and the web of the main spar and mode III at the trailing edge when the flapwise
and out-of-plane shear loading are the most dominant load cases (Eder et al., 2014). The lines
mentioned above highlight the importance of developing reliable design tools which lower the
blade weight while enhance the damage tolerance of the wind turbine blades.

2.10 Relevance to Aerospace Industry

Unique mechanical properties along with noticeable weight reduction and better fuel econ-
omy have made composites a good choice for the airplane primary structures such as fuse-
lage, wings and control surfaces. Using composites, new AIRBUS A380 and Boeing 787
Dreamliner could have accomplished 25% (AIRBUS, 2018) and 20% (Boeing, 2008) weight
reduction, respectively. This rising trend in replacing airplanes metallic components with fiber
composites requires robust damage analysis theories. The lack of a reliable model for damage
initiation and evolution along with the fail-safe criterion in aeronautic parts lead to more con-
servative designs. As a result, due to the restrictive certification and inspection standards for
the aerospace structures, the manufacturing cost will increase and inspections are performed
within short intervals. In conclusion, the current study contributes to the progressive analysis
failure of the fiber composites in the aerospace industry where the delamination is more likely
due to severe structural loading and complex geometries. The current researches in the field of
damage and structural reliability in Instituto Nacional de Tecnica Aeroespacial (INTA) (Javier
S. Millan (2016), Millan and Armendariz (2015)) also emphasizes the importance of delami-
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nation in the composite aeronautical parts.

2.11 Thesis Outline

The background, required tools, research objectives, approaches and the literature review
were explained. In the remainder, the chapters are organized such that in chapter 3 and 4, the
mode I and II FE model in two-dimension and three-dimension are developed and verified
with the analytic solutions. Chapter 5 and 6 cover the effect of the geometrical changes to
the DCB specimen that may affect Ky;. Chapter 7 and 8 provide an overview of the added
elastic beams and orthotropy on K. Chapter 9 covers the CZM. Finally, the conclusion and
the future perspective will be discussed in chapter 10.
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CHAPTER 3

Two-dimensional analysis of
Mode I and Mode 11

In this chapter and the subsequent, the FE modeling for the mode I and II in two-dimension
and three-dimension will be explained. This is important for two main reasons: (a) to reassure
of the developed FE model by comparing the result with the literature. (b) reasonable mesh
quality which is the driving parameter in capturing singularity and computational time. The
FE models for the mode I and mode II in two-dimension are covered in this chapter.

3.1 Model
3.1.1 Finite Element Model

The geometry of the DCB specimen, shown in figure 3.1, with the applied moments on the
top and bottom ends create a symmetric condition whereby for the FE model only half of the
specimen suffices (figure 3.2).

Rigid body constraint
Tie constraint
T — Crack X,

9 <A

U IE Cw= b
a > X, 2H ) @ )
(\ x RP-1 I DCB specimen
M L B Rigid body ~ — Crack

Figure 3.1: The geometry and loading of the two- Figure 3.2: The two-dimensional DCB specimen FE
dimensional DCB specimen under mode 1. model under mode I.

The geometrical dimensions are ag = SH and L = 5ap where ag is the length of the pre-
existing crack, H is the specimen height and L is the specimen length. The criteria for selecting
the aforementioned dimensions are first, to create a long specimen where the beam theory is
applicable and secondly, to remove the effect of the boundary condition on the stress field on
the crack tip.
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3.1.1.1 Rigid body versus Rigid body constraint

A rigid body can be defined in ABAQUS either as discrete or analytical. However, a rigid
body constraint is used to transfer the motion or constraint (here a point known as the "Ref-
erence Point"(RP)) to a system (ABAQUS, 2017).

In order to apply the rotation at the end of the DCB specimen, the rigid body constraint
is utilized. The RP-1 is created and connected to the rigid body through a Rigid body con-
straint. Consequently, the RP-1 rotation can be conveyed through the rigid body. The rigid
body is then attached to the end of the DCB specimen through a Tie constraint. The transla-
tional degree of freedom in the x-direction, u;, and x,-direction, u,, at the right end of the
specimen and along the crack ligament are limited.

An isotropic material with the Young’s modulus, E=200GPa, the shear modulus, G=80GPa
and the Poisson’s ratio, v=0.3 is assumed.

3.1.2 Element

Capturing the singularity at the crack tip requires an element capable of calculating the
stress accurately. The second-order quadrilateral element is therefore selected (reasoning will
be provided in the next section). The second-order quadrilateral element family, figure 3.3, for
both the plane stress and plane strain, are listed below.

CPS8: 8-node biquadratic plane stress quadrilateral
CPS8R: 8-node biquadratic plane stress quadrilateral Reduced integration
CPES: 8-node biquadratic plane strain quadrilateral

CPES8R: 8-node biquadratic plane strain quadrilateral Reduced integration

e | ® ® o ®
X D x X X
‘
|
|
i
|
® x X x O ® (]
!
|
|
|
i
X X3 X X-mmm oo X
® ® ® ® ® L

Figure 3.3: CPS8 and CPES elements (left). CPS8R and CPESR elements (right).

The reduced integration versions of the elements are chosen for the plane stress and the
plane strain studies. Both elements have eight nodes and four integration points.



3.1 Mode 1 27

3.1.3 Elements at the crack tip

In the FEM, there are two common types of the elements for the LEFM analysis in litera-
ture. The collapsed element, figure 3.4(c), which generates triangular elements, figure 3.4(a),
and the non-collapsed element, figure 3.4(d) which forms rectangular elements, figure 3.4(b),
at the crack tip. In the collapsed elements, the coordinate of the nodes at the crack tip are the
same. For example, nodes 1, 8 and 3 share a common coordinate while this is not the case for
the non-collapsed elements.

In addition, it is required to shift the mid-nodes of the elements surrounding the crack to

the quarter point in the direction of the crack tip as demonstrated in figure 3.4 (Henshell and
Shaw (1975), Barsoum (1976)). By moving the nodes, the 1/,/7-singularity appears in the Ja-

cobian matrix.
(a)
(A
4

3
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Figure 3.4: Elements configuration at the crack tip for the (a) collapsed (b) non-collapsed elements. Crack
surfaces are shown in red. ABAQUS node numbering and the quarter shift in the mid-nodes for the single (c)
collapsed and (d) non-collapsed element.

The collapsed and triangular elements, as well as the non-collapsed and rectangular ele-
ments, may be used interchangeably. The analyses will be done by both the triangular and
rectangular elements to opt for the best choice of the element at the crack tip. The Number of
contours for extracting the SIF is set to 10 and the "Maximum tangential stress" is selected as
the crack initiation criterion (Erdogan and Sih, 1963). According to, this criterion that is based
on the hypothesis originated from the brittle fracture, the crack starts to grow in a direction
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where the tangential stress is maximum and the shear stress is zero. The maximum of the
tangential stress can be calculated by differentiating it w.r.t to the angle, 6.

3.1.4 Mesh

Before selecting the proper mesh size, several criteria are required for the mesh study. To
this end, the convergence of the SIF or J integral is chosen in fracture mechanics (Kuna, 2013)
FE analysis. In addition to the SIF, two other measures, one regarding the stress and the other
based on the normal opening are added to guarantee the mesh quality around the crack tip.

The "10% stress field" is the length in front of the crack where the maximum relative error
between the theoretical and FEM stress (for example 02, for mode I) is equal or less than 10%.
In other words, Eq.(3.1) holds.

K-field () = < 10% 3.1)

(Gzz,th — Gzz,ms) < 100
022.th

The subscript "th" and "FE" denote the results from the theory and FEM, respectively.
Eq.(3.1) is presented for mode I and also can be used as a definition for the K-dominated zone
in two-dimension (Sgrensen and Jacobsen, 2000). Figure 3.5 illustrates the definition of the
K-dominated zone according to Eq.(3.1).

——— Theoretical K-field
———FEM

OnaOnre ) 100/<10%

622,[}1

(

Crack

xl
Figure 3.5: Schematic of the 10% stress field.

The displacement of a node in the distance of x; = 0.02H behind the crack in the x;-
direction (figure 3.6) is chosen as another mesh criterion. Charalambides et al. (1992) discov-
ered that the K-dominated zone for the DCB specimen is approximately within a distance of
0.01H or one percent of the specimen height. Hence, the mesh is fined within a distance of
x1 = 0.02H on both the front and behind the crack tip (the yellow-shared area in figure 3.7).
R is the radius of the half-circle centered at the crack tip and [ is the length of the rectangular
placed on the crack tip.
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Figure 3.6: Definition of the crack opening for the mesh convergence in mode I.
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Figure 3.7: The mesh quality around the crack tip (a) triangular elements (b) rectangular elements. R = 0.02H
is the radius of the yellow half-circle centered at the crack tip. £ = 0.04H is the length of the yellow rectangular
placed on the crack tip.

3.1.4.1 Mesh convergence

The results for the FE model with the triangular elements at the crack tip are presented in
table 3.1 and figure 3.8 whereas the results for the rectangular elements are shown in table 3.2
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and figure 3.9. ne refers to the number of elements in front of the crack within the length of
0.02H as illustrated in figure 3.7.

According to figures 3.8 and 3.9, for both element types at the crack tip, by increasing
ne to more than 16 no more noticeable improvement will be observed. Although ne=8 gives
good results for the stress and displacement, it does not create enough number of elements
in the K-dominated zone (as a rule of thumb there should be at least 10 elements within this
domain). Therefore, ne=16 is chosen for the FE analysis. The rest of the specimen is meshed
with a maximum mesh transition of 1:4.

Table 3.1: The mode I mesh convergence study with the triangular elements at the crack tip.

Plane stress Plane strain
ne KoKl 00 10% stress field / H u [ 4 Kn—Kure | 00 10% stress field / H Uz /up 4
Kin relative error [%] relative error [ %] Kin relative error [%] relative error [ %]

2 0.3847 - - 0.3830 - -
4 0.0108 0.0054 0.0047 0.0140 0.0054 0.0193

0.0348 0.0201 0.0046 0.0352 0.0201 0.0146
16 0.0368 0.0227 0.0030 0.0373 0.0227 0.0067
24 0.0384 0.0226 0.0006 0.0383 0.0226 0.0015

Table 3.2: The mode I mesh convergence study with the rectangular elements at the crack tip.

Plane stress Plane strain
e ’K“h—KI_FE 100 10% stress field / H u /g 4 Kn—Kure | 00 10% stress field / H uz/up 4
Kin relative error [%] relative error [ %] Kin relative error [%] relative error [ %]

2 0.0428 - - 0.0443 - -
4 0.0137 0.0123 0.0116 0.0134 0.0097 0.0061

0.0173 0.0201 0.0008 0.0172 0.0201 0.0042
16 0.0184 0.0220 0.0002 0.0184 0.0220 0.0010
24 0.0179 0.0226 0.0004 0.0181 0.0226 0.0007

3.1.4.2 Element size

The smallest element dimensions that are available around the crack tip for both types are
given in table 3.3. The dimensions are also illustrated in figure 3.10.

Table 3.3: Two-dimensional mode I smallest element dimension.

Parameter Triangular element Rectangular element
Aspect ratio (ej,/e;) 0.1000 0.9984
Smallest element size (e;) [mm)] 4.953E-03 4.953E-03
Smallest element size/H 4.953e-04 4.953e-04

3.1.5 Result and discussion

Figure 3.11 depicts the steps for calculating the theoretical mode I SIF, K . The reaction
moment, M, from the FEM is used in the J integral equation. The J integral can be determined
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Figure 3.8: The mode I mesh convergence study with the triangular elements at the crack tip (uo and uy , are
extracted from a distance of x; = 0.02H and 6=0).

for pure mode I either for the plane stress or plane strain condition from Eq.(3.2). Finally,
Irwin’s equation, Eq.(2.4), is invoked to calculate K g,. The results are presented in table 3.4.

12M?

~ E'B’H?
where E’ is selected from Eq.(2.5). The derivation is provided in Appendix C for an
isotropic material..

(3.2)
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1.0005 —— w w w 1.0485 —— —— —9
L:'; ~ 1} —e— Plane stress‘ 1 L:n ~ 1.048 | —e— Plane strain| |
| N |
0.9995 L—— ; ; ; 1.0475 L—— ; ; ;
24 8 16 24 24 8 16 24
Number of elements within 0.02H Number of elements within 0.02H
= 0.025 Z0.03
) 5
R= R=
S 0.02} £ 0.021
§ —e— Plane stress § —e— Plane strain
= 0.015¢ =001}
3 1S
< <
0 0
g 0.01 L ; ; ; g 0 ; ; ;
— 2 4 8 16 24 — 2 4 8 16 24
Number of elements within 0.02H Number of elements within 0.02H
0.327 —— : : : 0.3598
0.3596 +
= = :
S 5{ 0.3265 | —e—Plane stress‘ ) g“ —e—Plane strain
0.3594 +
0.326 L—— ; ; ; 0.3592 L—— ; ; ;
24 8 16 24 24 8 16 24
Number of elements within 0.02H Number of elements within 0.02H

Figure 3.9: The mode I mesh convergence study with the rectangular elements at the crack tip (4> and uy ;, are
extracted from a distance of x; = 0.02H and 6=0).

Extract moment Calculate the J C;l(lculegzrﬂl © (fjomp?;e trflsults
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from the FEM rom Eq.(3.2) Eq.(2.4) with the FEM

Figure 3.11: The flowchart for calculating K7 ¢, from the J integral.
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Figure 3.10: The geometry and dimensions of the two-dimensional triangular (left) and rectangular (right) ele-
ments at the crack tip.

Table 3.4: The J integral and SIF values for mode I.

Problem Element at
condition  the crack tip /oot Kiw/Kipe  Kn
Triangular 0.0018  0.9996 0

Rectangular  0.0018 0.9998
Triangular 0.0018 0.9996
Rectangular  0.0018 0.9998

Plane stress

Plane strain

o O O

In table 3.4, the J integral is normalized with the product of the maximum bending stress,
Op, at the end of the specimen and the specimen height, H. o}, is defined according to Eq.(3.3)
. Mxi
Op = T

where M is the applied moment, x; is the maximum distance from the neutral axis and for
mode I and II is x, while it is defined as x3 for mode III. / is the second moment of area of the
cross-section. In table 3.4, the values for the FE mode I SIF, K| rg, is extracted from the 10th

contour. The results for K7 from both the theoretical solution and FEM are very close and the
pure mode I is accomplished.

(3.3)

The size of the K-dominated zone can be determined from one of the criteria mentioned
below:

e K-field, /g~0.01): The one percent specimen height based on Charalambides et al. (1992)

e K-field(joq): The 10% deviation between the theoretical and FEM solution mentioned
in section 3.1.4

e Singularity exponent: The first term in the series expansion of the stress at the crack
tip has a power of -0.5. It can be written as Eq.(3.6).

Gy = 1 (3.4)

where A is the singularity exponent.
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The normalized 6y, is plotted along the normalized crack ligament coordinate' for the
plane stress to compare the results from the theory (Eq. (A.1)) and FE with the triangular
(figure 3.12) and rectangular elements (figure 3.13) at the crack tip. The logarithmic scale is
also presented to provide a better insight of the LEFM solution.
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Figure 3.12: (a) Asymptotic (b) Logarithmic 0, along the crack ligament for the plane stress condition with the

triangular elements at the crack tip (6 = 0).
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Figure 3.13: (a) Asymptotic (b) Logarithmic o5, along the crack ligament for the plane stress condition with the

rectangular elements at the crack tip (0 = 0).

IThe term Asymptotic refers to the situation where a quantity or parameter is getting close to another one
via a curve. In this essence, the stress component, e.g., 022 in mode I, gets closer to the crack tip and tends to

nonphysical infinite stress at the crack tip.



3.1 Mode I 35

The length of the K-dominated zone predicted by the K-field( g, is virtually two time
larger than K-field(,/q~0 1) It appears that the stress in the first rectangular element fails to
capture the correct stress value.

The plane strain plots for the triangular and rectangular elements at the crack tip are shown
in figures 3.14 and 3.15. Once more the very first rectangular element is not able to give the
correct stress at the crack tip.

8 y T T 10%
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7l —— Theoretical solution| |
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Figure 3.14: (a) Asymptotic (b) Logarithmic 6,; along the crack ligament for the plane strain condition with the
triangular elements at the crack tip (6 = 0).
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Figure 3.15: (a) Asymptotic (b) Logarithmic 05, along the crack ligament for the plane strain condition with the
rectangular elements at the crack tip (6 = 0).
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A power curve is fitted to the first 20 elements (ignoring the first element at the crack tip)
in front of the crack to find A. The values are reported in table 3.5 for ne=16 and ne=24. The
A from the collapsed elements are closer to -0.5. Better A values are obtained with the finer
mesh (ne=24); however, by further reducing the element size, ABAQUS is not able to generate
the triangular elements at the crack tip. The minimum difference between the obtained results
and the known solution (-0.5) is 1.23%.

Table 3.5: A values for the two-dimensional mode 1.

Problem Element at

condition  the crack tip A(ne=16)  A(ne=24)

Plane stress Triangular -0.5175 -0.5123
Rectangular -0.5273 -0.5123
Triangular -0.5176  -0.5123

Plane strain Rectangular -0.5226 -0.5123

The stress contours for the triangular (figure 3.16) and rectangular (figure 3.17) elements
at the crack tip show higher oy, values for the plane strain condition. This reveals that the
stress state at the crack tip under mode I for a thin specimen is lower than a thick specimen.

Figure 3.16: The o0y, contours under plane stress (left) plane strain (right) using the triangular element at the
crack tip.

3.2 Mode Il

3.2.1 Finite Element Model

The full DCB specimen is modeled for mode II (figure 3.18). For the FE model, figure 3.19,
two identical moments in the form of prescribed rotations are applied in the same direction
at the end of the specimen, on the two RP-1 and RP-2 reference points. All the translational
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Figure 3.17: The 0, contours under plane stress (left) plane strain (right) using the rectangular element at the
crack tip.

and rotational degree of freedom are limited at the right end (cantilever beam). The geometry,
material and elements are similar to the mode I.
Rigid body constraint
Tie constraint

X,

X, — Crack 0 l;_» X,

H ! M 0
I a, X 2H N
x RP-1 BN Rigid body — Crack

M L x RP-2 1 DCB specimen

Figure 3.18: The geometry and loading of the two- Figure 3.19: The two-dimensional DCB specimen FE
dimensional DCB specimen under mode II. model under mode II.

3.2.2 Mesh

The similar mesh convergence criteria from section 3.1.4 are borrowed except for the nor-
mal opening. For the mode II, the horizontal distance of the two nodes, Au;, one on the top
and another on the bottom part of the pre-cracked region of the specimen at the distance of
x1 = 0.02H behind the crack tip are chosen. A schematic of Au; is illustrated in figure 3.20.

3.2.2.1 Mesh convergence

ne=2 cannot capture the stress and displacement adequately; therefore, it is excluded from
the mesh convergence study. The mesh convergence with the triangular elements at the crack
tip for both the plane stress and plane strain is presented in table 3.6 and figure 3.22. The
result for the rectangular elements at the crack tip are presented in table 3.6 and figure 3.22.
With respect to the previous explanation and justification in section 3.1.4.1, ne=16 is selected
for the mode II analysis.
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Figure 3.20: Definition of Au; for the mesh convergence in mode II.

Table 3.6: The mode I mesh convergence study with the triangular elements at the crack tip.

Plane stress Plane strain
ne  |Knn—Kuee| 00 10% stress field / H Auy Juy g, Kun—Kure | o 100 10% stress field / H Auy fuy g,
Kii.m relative error [%] relative error [ %] K relative error [%] relative error [%]
4 0.0472 0.0673 - 0.0532 0.0673 -
8 0.0185 0.0678 0.2442 0.0176 0.0678 0.2683
16 0.0186 0.0697 0.8440 0.0089 0.0697 0.9275
24 0.0279 0.0703 0.2648 0.0263 0.0703 0.2910

Table 3.7: The mode II mesh convergence study with the rectangular elements at the crack tip.

Plane stress Plane strain
ne K —Ku e 100 10% stress field / H Auy fuy g, K —Knpe | 100 10% stress field / H A”‘l/”’l,th
Kt relative error [%] relative error [ %] KiLin relative error [%] relative error [%]
4 0.0068 0.0466 - 0.0068 0.0466 -
8 0.0008 0.0483 1.1234 0.0007 0.0483 1.2345
16 0.0185 0.0491 0.5489 0.0202 0.0495 0.8620
24 0.0187 0.0494 0.1804 0.0182 0.0494 0.0556

3.2.2.2 Element size

The dimension of the smallest element (figure 3.10), available at the crack tip, for both the
triangular and rectangular elements, is given in table 3.8.

Table 3.8: Two-dimensional mode II smallest element dimension.

Parameter Triangular element Rectangular element
Aspect ratio (e, /e;) 0.0982 1.000
Smallest element size (¢;) [mm)] 4.953E-03 4.961E-03

Smallest element size/H 4.953E-04 4.961E-04
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Figure 3.21: The mode II mesh convergence study with the triangular elements at the crack tip (Au; and u; 4,
are extracted from a distance of x; = 0.02H and 6=0).

3.2.3 Result and discussion

Eq.(3.5) provides the closed-form solution of the J integral in pure mode II. The steps for
deriving the theoretical mode II SIF, Kjj ¢, are identical to the mode I and is shown in figure
3.23.

_9M?
- E'B*H?

E' can be determined based on the plane stress or plane strain condition from Eq.(2.5).
The derivation is given in Appendix D for an isotropic material. The FE mode II SIF, Ky rg,
is extracted from the 10th contour. The results for the J integral and the SIF from the theory
and FEM are presented in table 3.9. The obtained values show a pure mode II and negligible
difference between the Ki ¢, and Ky pg.

J (3.5
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Figure 3.22: The mode II mesh convergence study with the rectangular elements at the crack tip (Au; and u; 4,

are extracted from a distance of x; = 0.02H and 6 = 0.

Extract moment
from the FEM

Calculate the J

from Eq.(3.5)

Calculate
the KII,th
from Eq.(2.4)

Compare results
from the theory
with the FEM

Figure 3.23: The flowchart for calculating K ¢, from the J integral.
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Table 3.9: The J integral and SIF values for mode II.

Problem Element at
condition  the crack tip J/opH Ky Kin/Kure
Triangular 0.0005 O 0.9998
Rectangular  0.0005 O 0.9998
Triangular 0.0005 O 0.9999
Rectangular  0.0005 O 0.9998

Plane stress

Plane strain

The normalized in-plane shear stress, 075, versus the normalized crack ligament coordinate
for the plane stress are plotted in figures 3.24 and 3.25
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Figure 3.24: (a) Asymptotic (b) Logarithmic o7, along the crack ligament for the plane stress condition with the
triangular elements at the crack tip (6 = 0).

Figure 3.26 and 3.27 provide an overview of the asymptotic and logarithmic of o7, along
the crack ligament.

As the plots indicate, with the same number of elements around the crack tip, the rectangu-
lar elements are able to capture the singularity better than the triangular, where the triangular
elements fail to follow the theoretical asymptotic solution. In the logarithmic scale from the
very first elements, the rectangular elements can create a linear behavior while at least, the
first element in the triangular elements, o1, does not correspond to the theory.

The singularity exponent for the mode II can be defined by Eq.(3.6).

o1 =1 (3.6)

The obtained values for A are presented in table 3.10. The values are extracted by a power
curve fit to the first 30 elements (ignoring the first element at the crack tip) in front of the crack
tip. Another curve fitting study with a finer mesh ,ne=24, produces better results for the A with
the triangular elements, although no improvement is observed in the asymptotic solution.
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Figure 3.25: (a) Asymptotic (b) Logarithmic o}, along the crack ligament for the plane stress condition with the
rectangular elements at the crack tip (6 = 0).
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Figure 3.26: (a) Asymptotic (b) Logarithmic o/, along the crack ligament for the plane strain condition with the
triangular elements at the crack tip (8 = 0).

Table 3.10: A values for the two-dimensional mode II.

Problem Element at

condition  the crack tip (ne =16)  A(ne =24)

Plane stress Triangular -0.5202 -0.5083
Rectangular -0.4891 -0.5239

Plane strain Triangular -0.5200 -0.5082
Rectangular -0.4866 -0.5260

A comparison between the o7, contours for the plane stress and plane strain, figures 3.28
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Figure 3.27: (a) Asymptotic (b) Logarithmic &;, along the crack ligament for the plane strain condition with the
rectangular elements at the crack tip (6 = 0).

and 3.29, implies higher stress values for the thicker specimen.

Figure 3.28: The o1, contours under lane stress (left) plane strain (right) conditions using the triangular element
at the crack tip.
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Figure 3.29: The 6/, contours under lane stress (left) plane strain (right) conditions using the rectangular element
at the crack tip.

3.3 Collapsed against non-collapsed elements at the
crack tip

Achieving asymptotic solution, Barsoum (1977) suggested not only to shift the mid-nodes
of the elements at the crack tip to the quarter point in the direction of the crack but also to col-
lapse the nodes at the crack tip. He also attributed the poor result of the rectangular elements
to the generation of singularity on the boundary of these elements.

The two-dimensional analysis of the mode I and II provided the opportunity to explicitly
compare the collapsed (triangular) and non-collapsed (rectangular) elements at the crack tip.
To study the effect of each element type at the crack tip, all the stress components are extracted
on the crack plane (6=0) for pure mode I, figure 3.31, for a very small distance ahead of the
crack tip where the K-dominated zone is guaranteed. According to the theory (Eq. (A.l))
under mode I, 611 = 0y in the K-dominated zone on the crack plane (6=0). Comparing the
stress from the FEM to the theory, figure 3.31, clearly shows that for the triangular elements
at the crack tip, 022 pg = 022, follow each other while a difference between the obtained
o11,rE and 02 is visible (figure 3.31(a) and (b)) that is not vanished with a higher mesh
density around the crack tip. In contrast to the analytic solution for the triangular elements ,
O11,FE 7 O Fg. There is no agreement among 011, rg, 622 r and 0, for the rectangular
elements at the crack tip (figure 3.31(c) and (d)).

Another weak point about the rectangular elements is the presence of maximum four ele-
ments around the crack tip (figure 3.4(b)) which provides poor calculation of the stresses at
different angles around the crack tip. However, the triangular elements can be generated in
higher numbers at the crack tip (figure 3.4(a)) that comes with the shortcoming of poor aspect
ratios for the triangular elements. To provide an overview of the above-mentioned lines, 0,7
is plotted for mode I-plane stress condition in figure 3.30. The rectangular elements are un-
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able to provide good results for 6, while the triangular elements can follow the theoretical
solution from Eq.(A.1).

2n/3
5n/6 /6
——Theoretical solution
T 0 o Triangular
Rectangular
77/6 117/6
47/3 57/3

3n/2

Figure 3.30: The normalized 0, with E extracted in the x;-direction within a radial distance of r=14.77um
around the crack tip from mode I-plane stress.

ABAQUS counters the mesh generation for the triangular elements at the crack tip with a
higher mesh density; therefore, a finer mesh (ne >24) cannot be accomplished with this type
of elements at the crack tip. Based on the above-mentioned observations and the suitability of
the triangular elements at the crack tip, shown by Barsoum (1977), Barsoum (1976), Pontjo
Utomo and Hamid R. Nikraz (2007), the analysis in the next chapter for the three-dimensional
case of the mode I and II will be continued by the triangular elements at the crack tip (this
topic will be further discussed in section 4.1.3).

Barsoum (1977) attributed the inappropriateness of the rectangular elements at the crack
tip to their poor calculation of the SIF, although according to the aforementioned lines, the
weakness of the rectangular elements at the crack tip might be due to their weakness in the
stress calculation which requires further research in this field. Table 3.11 summarizes the
finding from the FE analysis of the DCB specimen under pure mode I and II loading.

Despite the poor aspect ratio (but not larger than 1:10) in the triangular elements compared
to the rectangular, the triangular elements capture the singularity and the SIF accurately. It is
also noteworthy that the element aspect ratio differs from one problem to another and as to the
author’s knowledge, does not always result in wrong FE calculation.
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Figure 3.31: Stress components along the crack ligament in the mode 1. (a) Triangular elements-plane stress (b)
Triangular elements-plane strain (c) Rectangular elements-plane stress (d) Rectangular elements-plane strain.

Parameter Triangular element Rectangular element
Stress calculation along the ligament Good Poor
Aspect ratio Poor Good
Capturing singularity Good Good
Near-crack mesh generation Medium Good
Stress for different angles at the crack tip Good Poor

Table 3.11: The collapsed against the non-collapsed elements at the crack tip.



CHAPTER 4

Three-dimensional analysis of
Mode I and Mode 11

This chapter covers the three-dimensional FE model for the mode I and I1. After achieving
the proper mesh size in two-dimensions, the proper mesh size in the width direction needs to be
determined. Furthermore, the SIF which is a two-dimensional concept can be evaluated in the
three-dimensional. The developed FE model from this chapter will be used in the subsequent
chapters as the fundamental model for the analyses of mode III.

4.1 Model
4.1.1 Finite Element Model

First, to avoid the effect of boundary condition on the crack front and secondly, to create
a beam-like specimen, the specimen dimensions are set to ap = SH, L = 30H and B = 10H
where B is the specimen width depicted in figure 4.1. Due to symmetry in both geometry and
loading, only a quarter of the DCB specimen is enough for the FE model (figure 4.2). In the
FE model, the translational degree of freedom at the right end and along the crack ligament are
limited in the x; and x;-direction, respectively. In addition, the symmetry in the x3-direction
1s fulfilled by applying u3=0. Similar to the two-dimensional model, the Reference Point (RP-
1) rotation, indicated in figure 4.2, is transferred through the Rigid body constraint to the
specimen. The reaction moment will be extracted from the RP-1 in the post-processing.

— Crack

s

2H

N L
A M

Figure 4.1: The geometry and loading of the three-dimensional DCB specimen under mode I.
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Figure 4.2: The three-dimensional DCB specimen FE model under mode I.

An isotropic material with the same mechanical properties from the two-dimensional anal-
ysis is assumed (E=200GPa, G=80GPa and v=0.3).

4.1.2 Element

The plane stress and plane strain conditions cannot be differentiated in the three-dimensional
model since the specimen undergoes a combination of both of them. Hence, an element from
the quadratic 3D Stress family is selected. There are two elements in this family shown in
figure 4.3.

C3D20: 20-node quadratic

C3D20R: 20-node quadratic Reduced integration

The quadratic elements are suitable for contour integrals as well as Linear Elastic prob-
lems. In this study, the reduced version, C3D20R, will be used. C3D20R has 20 nodes and
8 integration points and by fining the mesh close to the crack front, the reduced version can
succeed in calculating the stress accurately.

Figure 4.3: C3D20 (left) and C3D20R (right) elements.
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4.1.3 Triangular (Collapsed) elements at the crack front
revisited

For the elements at the crack front, there are two possible choices similar to the two-
dimensional. One is the triangular (collapsed) and another is the rectangular (non-collapsed)
element. After accomplishing reasonably-fine mesh (which will be elaborated in the next sec-
tion), the stress components are plotted along the crack width, figure 4.4. "0" and "1" on the
horizontal axis correspond to the specimen center and the free surface, respectively.

—e—09
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g13(]
——o11
4033

023

s
s

(a) (b)

Figure 4.4: Different stress components along the crack width in mode I. (a) triangular (collapsed) and (b)
rectangular (non-collapsed) elements. The results are extracted from the distance of x;=3.125um from the crack
front and at the crack plane (x,=0).

According to the explanation provided in section 3.3, and figure 4.4(a), 611 and 0, are
very close along the crack front for the triangular elements. In contrast, for the rectangular
elements at the crack front (figure 4.4(b)), 01; and 02, discrepancy increases from the free
surface to the center along the specimen width. The stresses have been plotted for several
coordinates (x;=3.125um, 2.5um and 1.66um) in front of the crack, along the crack plane
for the rectangular elements and every time they yield the same trend as shown in figure
4.4(b)'. From now on, according to the above-mentioned lines and discussion in section 3.3,
the analyses will be performed by the triangular (collapsed) elements at the crack front.

! Although it is clear that by getting far from the crack tip, the K-dominated zone vanishes and LEFM is not
applicable.
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4.1.4 Mesh
4.1.4.1 Mesh strategy

To apply the mesh transition along the width and height simultaneously, the specimen is
broken into several parts that are assembled using the Tie constraint, as shown in figure 4.5.
The red lines indicate the applied Tie constraints. To remove the possibility of discontinuities
in the contour integral calculated by ABAQUS, all the first 10 integral contours stays within
the first part. The maximum mesh transition is 1:4. Figure 4.6 provides an overview of the
mesh quality in the vicinity of the crack and mesh transition.

= Tie constraint

(72

Figure 4.5: The three-dimensional DCB specimen consists of several parts assembled by the Tie constraint.

4.1.4.2 Mesh convergence

Due to the failure of the "10% stress field" criterion (Eq.(3.1)) in the three-dimensional, it
is replaced with the "Stress triaxiality coefficient", 77, and is defined according to Eq.(4.1).

A%
(611——#622):‘/ For mode Iif 6 =0

011+ 022
033
L= ton "
v(ou +0mn) =vVv Formode Il if 6 = 90°
011+ 022

T. for mode I and in the crack plane (8 = 0) is equal to the Poisson’s ratio (Eq. (A.1))
under the plane strain condition. If the plane strain prevails, for mode II when 8 =90°, T,
and v are equal (Eq. (A.2)). In addition, 7 is a measure of the sufficient number of elements,
especially at the free surface which will be discussed later in this section.

Performing the mesh study for K7 with two lengths of the pre-existing crack, (a) agp = 15H
and (b) ag = 5H, it 1s conceded that for a thin specimen with the longer pre-crack length, Ky
becomes negative at the free surface which implies undesired crack closure in mode 1. After
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Figure 4.6: The mesh quality and transition in the three-dimensional model. (a) isometric and front view (b)
bottom view.

B
all, Ky convergence is highly dependent on the — ratio where only for the ratios more than

8, K relative error from the FEM and theory converges to less than a percent. Figure 4.7
summaries the above-mentioned lines.
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Figure 4.7: K1 mesh convergence for different T ratios and two pre-crcak length, ag = 15H and ap = 5H. The

last two values of the relative error are not given due to negative values of K at the free surface.

The same number of elements along the crack ligament from the two-dimensional model
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will be used and only the number of elements along the crack front varies. The mesh con-
vergence study is presented in table 4.1 and figure 4.8. Here, ne refers to a cylinder with the
radius of 0.02H and a height equal to the specimen width.

Table 4.1: The Mode I mesh convergence in three-dimensions.

KoK Mz/uz,rh Mz/uz,th
ne % x 100 |v—T,| relative error [%] relative error [%]
Ri ' . .
in the middle at the free surface
204800 0.7324 0.0114 - -
256000 0.5891 0.0190 0.1619 0.0052
341248 0.7324 0.0180 0.1588 0.0005
1.01 — T T 0.02 —
1.005 | |8 oot
i
: f il | X 0.016
<< o |
g &‘ :04014
0-995 20 0012}
0.99 L L 0.01 L
s < : 3 . :
Number of elements within a cylinder (R=0.02H) %10° Number of elements within a cylinder (R=0.02H) %10°
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Figure 4.8: Mode I mesh convergence in the three-dimensional. (a) Ky (b) v and T relative error (c) up and uy s,

B
at the free surface (x3 = 5), x1=0.02H and 6=0 (d) u and u, ;, at the center (x3 = 0), x;=0.02H and 6=0.

As mentioned at the beginning of this section, 7, can provide the quality of the mesh at
the free surface. Having plotted the T along the crack front for various ne, figure 4.9, one
can observe more elements are required at the free surface (red box) due to the jump in 7,
for the last element. T is constant and approximately close to the Poisson’s ratio along the
90% of the width; however, by reaching the free surface the plane stress condition becomes
pronounced and 7; drops. ABAQUS could not manage the model with higher mesh density
since the number of output parameters exceeds the software defaults; hence, the mesh with
ne=341248 is accepted for the mode I FE analysis.
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Figure 4.9: Distribution of T, through the specimen width in mode I (x; = 3.125um, x, = 0).

4.1.4.3 Element size

The smallest element dimensions, available at the crack front, are given in table 4.2. Figure
4.10 illustrates the element dimensions.

%

Figure 4.10: The geometry and dimension of the collapsed element at the crack front in three-dimensions.

Table 4.2: Three-dimensional mode I smallest element dimensions.

Parameter Dimension
en[mm)] 1.227E-03

en/H 1.227E-04
e, [mm] 75.00E-03
ew/H 0.0075
e;[mm] 12.50E-03
e;/H 0.0013
eh/el 0.0982
ew/er 6.000

en/ew 0.0164
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4.1.5 Result and discussion

The procedure of calculating K, follows the same formulation mentioned in the two-
dimensional analysis. The results are presented in table 4.3. Pure mode I is achieved and the
normalized SIF together with the stress components are plotted along the normalized crack
width in figure 4.11.
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Figure 4.11: (a) SIF (b) stress components (at x; = 3.125um and x, = 0) along the crack front for mode I.

Table 4.3: The J integral and SIF values for the three-dimensional mode 1.

J/opL  Kim/Kipe Kn  Km
0.0018 0.9996 0 0

The stresses in figure 4.11 are extracted at the distance of 3.125um ahead of the crack.
Looking at 011 and 07, reveals that the K-dominated zone size is much smaller than 0.01H
predicted by Charalambides et al. (1992) and 4um reported by Pook et al. (2014). Another
study was performed to find the exact size of the K-dominated zone where 011 = 0> and it
was concluded that even at the distance of 1.66um, o1 and 02, are not equal. In the present
work, it is assumed that the K-dominated zone is achieved when |0}; — 022| < 10% which is
accomplished within the distance of x; = 3.125um.

The asymptotic and the logarithmic normalized 05, along the normalized crack ligament
are plotted in figures 4.12 and 4.13. There are several noteworthy observations regarding these
plots:

e At the normalized distance of 0.005 from the crack tip in figure 4.12(a), 0> is com-
pressive and therefore, in the corresponding logarithmic scale, the negative 6>, does not
appear.
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e Unfortunately, it is impossible to increase the number of elements in the x3-direction due
to the previous issue with the number of outputs and exceeding the allowable number of
elements (a million).

e Another limitation is the width to the height ratio which resembles the specimen to a
plate rather than a beam.

At the center, however, there is no compression. Another important observation is the
dramatic drop in 0»; at the mid-nodes of the collapsed elements at both the free surface and
center. This might be attributed to the quarter point shift in the mid-nodes of the first row of
the elements at the crack front. Surprisingly, the mide-node of the first element value corre-
sponds to the theoretical 07,.
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Figure 4.12: Asymptotic 02, (a) at the free surface (x3 = 5) (b) in the center (x3 = 0) along the crack ligament

(6=0).

The singularity exponent is extracted from a power curve fit to 6, along the crack ligament
at the free surface and in the center (figure 4.13) wherein the former corresponds to the plane
stress and the latter to the plane strain. As shown in table 4.4, the singular field is achieved in
the center in contrast to the free surface. Another study can determine the exact distance from
the free surface where the singular field breaks and of course is out of the scope of the present
project.

B
Table 4.4: A values for three-dimensional Mode I at & = 0 (free surface and center correspond to x3 = 5 and

x3 = 0, respectively).

Free surface Center
-2.010 -0.5242
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Figure 4.13: Logarithmic o, (a) at the free surface (x3 = 5) (b) in the center (x3 = 0) along the crack ligament
(6 =0).

The 0, contours, figure 4.14, show higher stress values due to higher stress triaxiality
compared to the free surface (lower triaxiality) (T.L.Anderson, 2004).

B
Figure 4.14: Mode I 02, contours at the free surface (x3 = 5 left) and in the center (x3 = 0, right).

4.2 Mode II
4.2.1 Finite Element Modeling

The complete mode II model is shown in figure 4.15. Because of the symmetry in the
geometry, half of the specimen suffices the FE modeling (figure 4.16). To fulfill the symmetry,
the specimen is chopped into half in the x3-direction and clamped at the right end like a
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cantilever beam. The dimensions are ag = 15H, L = 30H and B = 2H. After the successful
mesh convergence for the half-model, the complete model will be used for extracting the SIF
and stress plots. The material and elements remain the same as mode 1.

Tie constraint

Rigid body constraint

X, — Crack 4 77
7/
NS —k M 6 4
.+ 2H A3
M

x RP-1 B Rigid body — Crack
v L x RP-2 1 DCB specimen

N
K
A
]

Figure 4.15: The geometry and loading of the three- Figure 4.16: The three-dimensional DCB specimen FE
dimensional DCB specimen under mode II. model under mode II.

4.2.2 Mesh
4.2.2.1 Mesh convergence

The mesh criteria in the three-dimensional model for mode II are similar to the tow-
dimensional study; however, as mentioned earlier in this chapter, the "10% stress field" is
replaced with the stress triaxiality coefficient, 7;. The mesh study plots are given in figure
4.17 and table 4.5.

Table 4.5: The Mode II mesh convergence in three-dimensions.

KooK Auy [Auy g, Auy [Auy g,
ne ‘KIT x 100 |v—T,| relative error [%] relative error [%]
' in the middle at the free surface
81920 0.8980 0.0537 - -
102400 0.8912 0.0540 0.0124 0.0504
136704 0.4821 0.0539 0.0227 0.0140
204800 0.8958 0.0540 0.0410 0.0012
409600 0.8911 0.0540 0.0671 0.0145
819200 0.8961 0.0541 0.0147 0.0058

Although the mesh size can be immediately determined from figure 4.17 and table 4.5, the
mesh quality at the free surface is another essential requirement for the final decision. To this
end, T is plotted for different number of elements, ne, at the angle of 8 = 90° along the crack
front. As demonstrated in figure 4.18 some of the element sizes, i.e., ne=81920, ne=102400
and ne=136704 are incapable of capturing the stress at the free surface. Concerning the ob-
tained result, ne=204800 is chosen for the mode II FE analysis.
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Figure 4.17: Mode II mesh convergence in the three-dimensional. (a) Ky (b) v and T, relative error (c) Au; and
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uy g, at the free surface (x3 = 5), x1=0.02H and 6=0 (d) Au; and u, ;, at the center (x3 = 0) x;=0.02H and 6=0.
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Figure 4.18: Distribution of 7, through the specimen width in mode II (x; = 3.125um, x, = 0).
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4.2.2.2 Elements size

Table 4.6 summarizes the dimensions of the smallest element size, present at the crack
front, for mode II.

Table 4.6: Three-dimensional mode II smallest element dimensions.

Parameter Dimension
e,[mm] 12.50E-03

en/H 12.50E-04
ey [mm] 50.00E-03
ew/H 0.0050
e;[mm] 1.227E-03
e;/H 1.227E-04
eh/el 10.19
ew/er 40.75
en/ew 0.2500

4.2.3 Result and discussion

To calculate Kjy g, the same steps from figure 3.23 apply. The SIF and stress components
along the crack front are plotted in figure 4.19.

2 : ! ! 35

o Ky oo
s Ky 30% o1
5 9
Lo} Kirrl|d 251 913 i
—o—o11
2 K 33
1+ 1 T23
15+ Bl
& é 0.5 SERU
| S

-0.5

0.5 1 -1 -0.5

wE ok
WS o

(a) (b)

Figure 4.19: (a) SIF (b) stress components (at x; = 3.125um and x, = 0) along the crack front for mode II.

The mode-mixity with the predominant mode II is visible. Ky g is constant along the
crack front and escalates at the free surfaces. Ky g also has its maximum value at the free
surfaces and changes sign due to the sign shift in 6,3. The normalized values for the J integral
as well as the SIF are provided in table 4.7.
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Table 4.7: The J integral and SIF values for the three-dimensional mode II.

J/opL  Kire/Kure Kure/Kinm Kuoire/Kinre
3.976e-04 -4.953e-04 1.009 0.1815

Mode I is negative and negligible whereas the ratio of mode III to mode II in FEM is
18.15%. The asymptotic and logarithmic plots for o7, through the crack front at the free
surface and center are provided in figures 4.20 and 4.21. 07, is positive along the crack
ligament. The linear behavior can be seen both at the free surface and the specimen center
which brings the fact that the K-field is approximately constant along the crack front for mode
II.

35

—e—FEM —e—FEM

3019 Theoretical solution 16 |- Theoretical solution| -
K — field( m=~0.01) K — field( m=0.01)

25+

10 -

=

0 L L 0 L L
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
il Ty
H i
(a) (b)

B
Figure 4.20: Asymptotic 0}, (a) at the free surface (x3 = E) (b) in the center (x3 = 0) along the crack ligament
(6 =0).

A values, table 4.8, implies successful 1/,/7-singularity both in the center and at the free
surface.

B
Table 4.8: A values for three-dimensional mode IT at 6 = 0 (free surface and center correspond to x3 = 5 and

x3 = 0, respectively).

Free surface Center
-0.5572 -0.5227

Figure 4.22 depicts 01> contours at the free surface and center of the specimen. o7, has
higher values at the free surface and by moving towards the middle of the specimen this values
reduces. Unlike the mode I, it appears that the crack in mode II tends to open from the edges
rather than the center.
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Figure 4.21: Logarithmic o, (a) at the free surface (x3 = 5) (b) in the center (x3 = 0) along the crack ligament
(6=0)

B
Figure 4.22: Mode II 6}, contours at the free surface (x3 = 5 left) and in the center (x3 = 0, right).

An important observation is regarding the presence of 0,3 at the free surface where it
is expected to be zero. There are two point of views for this phenomenon. The former is
regarding Benthem (1977), Pook et al. (2014) and Pook et al. (2015) where they believe that
the SIF is a two-dimensional concept and it loses its meaning when it reaches the free surface;
therefore, discussing the stress components in x3-direction (073, 633 and 033) is futile and
makes no sense. The latter belongs to Murakami and Natsume (2002). They believe that
this increase in 0»3 is due to the peculiarity of FEM calculation and with a very fine mesh at
the crack, 03 vanishes. To investigate the result from Murakami and Natsume (2002), the
distribution of 03 are extracted for two different coordinates, x;=3.125um and x;=12.5um
(figure 4.23) in the crack plane. o053 drops dramatically at x;=12.5um ahead of the crack.
Therefore, it is observed that 6,3 decays by moving in the direction ahead of the crack.
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B

Figure 4.23: o, along the crack front at the distances x;=3.125um and x;=12.50um from the crack tip along
the crack plane (6 = 0).

4.3 Conclusion

Achieving a sophisticated model with the correct element types at the crack is an essential

and fundamental part of mode III analysis. The findings through the analysis of mode I and II
in two-dimensions and three-dimensions are summarized below.

e The triangular (collapsed) elements are preferred at the crack tip/front. The rectangular

(non-collapsed) elements only produce the singularity on the side of the element that
is normal to the crack plane. Furthermore, the singularity is created by only four of
the rectangular elements (manually the mid-point is distorted to the quarter point in the
crack tip direction) which makes the use of the rectangular (non-collapsed) elements
undesired.

B
Thin specimens (E > 8) with short pre-crack length (C;I—O = 5) are suitable for mode I

LEFM study. The findings from Caprino (1990) also approves the application of thin
specimens for mode I interlaminar fracture toughness testing. However, at the free

B ) .
surface (x3 = 5), 0>, becomes negative after few elements ahead of the crack which

makes the observation of the linear behavior of 0, along the crack ligament in the
logarithmic scale impossible. Further study is necessary in the three-dimensional mode
I with higher mesh densities at the surface since the current results are only based on the
limitation of a million elements.

In order to capture the stress, a denser mesh is required at the free surface. This is also
possible through a biased mesh strategy where the maximum element length in the x3-
direction is available in the middle of the specimen. The element length decreases by



4.3 Conclusion 63

moving from the center to the free surface. An illustration is presented in figure 4.24.
Reducing the computational cost due to lower number of elements is the privilege of
this approach while due to the segmentation of the DCB specimen, the mesh transition
from one segment to another requires further effert and consideration.

Figure 4.24: Biased mesh strategy in mode II. Denser elements are created at the free surface.

e In the DCB specimen, the K-dominated zone is much smaller than 0.01H (for the cur-
rent model, 0.01H=100pm) measured by Charalambides et al. (1992). Similar to the
obtained results from figure 3.31, there is a difference between 01 g and 022 g where
the difference is not vanished but reduced by smaller element size in the x;-direction.
Regarding the limitation in the maximum number of elements, the minimum difference
between 011 rg and 02 rr could be obtained at 1.66m that shows still 611 rg # 022 FE
in the K-dominated zone along the crack plane (6 = 0).

e The obtained result for the SIF show a coupling between mode II and III (Pook, 2013)
which requires a separate study and a model with a higher mesh density at the free
surface.

. B -B . . .
e The non-vanishing 0,3 at x3 = 5 and x3 = — is discussed and it is concluded that

this topic might be due to the insufficiently-fine mesh at the free surfaces and requires
further studies.

e Under LEFM condition, ABAQUS calculates Ky, Ky and Ky from the J integral by
Eq.(2.4) (ABAQUS, 2017). The J integral itself is calculated by the surface integral and
rings of elements. In addition, 6,3 decays further away from the crack tip. Therefore,
it is expected that the effect of 0,3 (which has its maximum value in the first ring of
the elements and the smallest area during the surface integration) becomes very small
for the J integral extracted from the 10th contour. As a result, Kjy should have a very
small value when not extracted from the 1st and 2nd contours. The author has no clear
explanation for this observation.
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e Based on the observations so far, it appears that the first element at the crack tip is
unable to provide correct stress calculation which might be due to the distortion of the
mid-nodes. Currently, by the development of the computational techniques, a separate
research is recommended between the distorted and non-distorted elements at the crack
tip to investigate the effect of the non-distorted elements on the obtained results, more
specifically the singularity at the free surface.



CHAPTER 3

Effect of Width and Height
Ratio on Kyyg

After succeeding a robust FE model in the previous two chapters, in the current and the
next three chapters, the effect of several parameters will be studied to determine if the pure
mode III is possible to achieve with the available theory and tools. This chapter focuses on the
effect of width and height on Ky;; which provides the opportunity of monitoring both the thick
and thin specimens under mode III.

5.1 Finite Element Model

The full DCB specimen for mode III is shown in figure 5.1. For the FEM, the specimen is
fully modeled (figure 5.2) like a cantilever beam where the prescribed rotations are applied at
the end of the specimen to create the anti-plane loading. Similar to the mode II, the length of
the pre-existing crack, ag = 15H, the total beam length, L = 30H, and the specimen width is
B=2H.

The material, elements, crack definition and mesh strategy are similar to the three-dimensional
mode I and II.

. . Tie constraint
Rigid body constraint

X,

X, — Crack
‘ : <7
Ml
- TE R o (N
. a, B
M (A . x RP-1 BN Rigidbody ~ — Crack
v L x RP-2 [ DCB specimen

Figure 5.1: The geometry and loading of the DCB Figure 5.2: The DCB specimen FE model under mode
specimen under mode III. III.

5.2 Elements Size

The smallest element dimensions according to figure 4.5 are listed in table 5.1.
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Parameter Dimension
ep[mm] 1.227E-03

en/H 1.227E-04
ey, [mm] 125E-03
ew/H 0.0125
e;[mm)] 12.50E-03
e;/H 0.0013
eh/el 0.1000
ew/er 10.00
en/ew 0.0098

Table 5.1: Mode III smallest element size.

Despite the poor aspect ratios which originates from the triangular (collapsed) elements at
the crack front that is more pronounced for the element height to length and element height
to width ratios, analyses from chapter 4 have shown the element dimensions in table 5.1 are
capable of providing reasonable results (ne = 81920 in table 4.5 and figure 4.17); however,
in the case of achieving mode III, the suitable mesh size will be determined by the mesh
convergence.

5.3 The J integral

The same methodology as mentioned for the three-dimensional mode I and II is utilized
to determine the theoretical mode III SIF, Kjj; ¢,. The steps are illustrated in figure 5.3. The
J integral under pure mode III evaluated along the external boundaries can be calculated by
Eq.(5.1). The derivation is provided in Appendix E for an isotropic material.

12M?
Jm = 5.1
W= ey (5.1)
Compare results
Extract moment Calculate J Calculate K | from theoretical
from FEM from Eq.(5.1) from Eq.(2.4) solution

with FEM

Figure 5.3: The flowchart for calculating Ky ¢, from the J integral.
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5.4 Efftect of Width

In this section, the height of the specimen is kept constant and the specimen width varies.

B
The distribution of Kj; and Kpjy through the specimen thickness for the ratios of — =1, 2, 4
and 8 are shown in figure 5.4. The plots show that Ky and Kjyp vary across the width of the

. .. . B .
specimen (x3-direction) but the results are nearly independent of the I ratio.

Because of the negligible Ky values, only K1 and K1 from FEM will be plotted from now
on. The coupling between Kjy and Ky with dominantly mode II is visible. This time, K
changes sign, due to 077, along the crack front and is virtually two times larger than Kyjy at the
free surface.

t
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Figure 5.4: Mode III-Effect of width: Distribution of (a) K rg (b) Kiire through the crack front for different

B .
— ratios.
H

B
The SIF and stress components have been plotted along the crack front for all the i ratios.

B
They all follow the similar behavior. Therefore, only the plots for I =4 are illustrated in

figure 5.5.

B 4
The asymptotic and logarithmic 6,3 plots for — = — are demonstrated in figures 5.6 and

5.7. Itis evident that 6,3 for the first element has a negative value in figure 5.6(a); thus, another
analysis with a finer mesh in the vicinity of the crack in the xj-direction does not improve the
result and the negative 03 is still available. Surprisingly, by extracting the Ky pg from the
2nd contour, non of the Ky values are negative whereas it was expected that at least for the
free surface Ky becomes negative.
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Figure 5.5: Mode III-Effect of width: (a) SIF (b) stress (at x; = 3.125um and x; = 0) components along the

crack front for E =4,
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Figure 5.6: Mode III-Effect of width: Asymptotic 0»3 (a) at the free surface (x3 = 5) (b) in the center (x3 = 0)

B
along the crack ligament (6 = 0) for T =4.

Eq.(5.2) gives the formula for mode III singularity exponent. The calculated A values by

fitting a power curve for various — ratios are listed in table 5.2. The 1/,/7-singularity cannot be

accomplished at the free surface by increasing the specimen width, there is only a very narrow
thickness in the center where the K-dominated zone is obtained.

023 = pr* (5.2)

Despite having achieved the asymptotic behavior at the free surface, increasing the width,
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Figure 5.7: Mode III-Effect of width: Logarithmic >3 (a) at the free surface (x3 = 5) (b) in the center (x3 = 0)

B
along the crack ligament (6 = 0) for T =4.

B
Table 5.2: Mode II-Effect of width: A values for different I ratios at 0 = 0 (free surface and center correspond

B
tox3 = 5 and x3 = 0, respectively).

B A

H Free surface Center
1 -1.636 -0.5402
2 -1.822 -0.5317
4 -1.954 -0.5258
8 -2.049 -0.5229

A deviates much from -0.5. On the contrary, in the middle, for all the ratios the singular field
is obtained. Furthermore, A is converging to -0.5.

The pre-crack part of the DCB specimen is divided into two parts: (a) the vicinity and
(b) far from the crack tip (table 5.3). In each part, the dominant mode can be differentiated
which provides useful information especially for the CZM. The beam displacements behind
the crack, u;, up and us3; at the free surface and center are normalized with the maximum beam
deflection, Oy, and is calculated from Eq.(5.3). u;, up and u3 correspond to mode II, mode I
and mode III displacements, respectively (figure 5.9).

M a02
Sy = ——— 53
max 2EI ( )
where M is the moment, q is the pre-crack length and [/ is the second moment of area.
0»3 contours (figure 5.8) shows higher 6,3 values at the free surface. As a result, the

deformation are more pronounced at the edges.
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Table 5.3: Mode III-Effect of width: Dominant modes in the vicinity and far from the crack behind the crack tip

B B
at 6 = —m for i =4 (free surface and center correspond to x3 = ) and x3 = 0, respectively).

The vicinity of the crack tip Far from the crack tip

Free surface

Center

Mode 11
Mode III

Mode III
Mode III

B
Figure 5.8: Mode III-Effect of width: Mode III 6,3 contours at the free surface (x3 = —, left) and in the center

B
(x3 = 0, right) for T =4.
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Figure 5.9: Mode III-Effect of width: Specimen displacements behind the crack tip (6 = —n) (a) away from the

B
crack tip (b) in the vicinity of the crack tip for i =4.
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5.5 Effect of Height

H
In this section, the effect of the specimen height on mode III for four different ratios of 7

will be analyzed. The Ky; and Kpy distribution through the crack for the various height scenar-
ios are given in figure 5.10. Similar to the effect of width, Kjy is independent of the specimen

H
geometry while the thinnest specimen, 7 =38 gives the highest value of K.
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Figure 5.10: Mode III-Effect of height: Distribution of (a) Ky rg (b) Kt pe through the crack front for different

H
— ratios.

To illustrate the SIF and stress components distribution along the crack front, only the
H
result for — =4 are illustrated in figure 5.11. The rest follows the same trend. Similar obser-

vations from the effect of width applies.

H
Surprisingly, by plotting 0,3 for B =4 in figure 5.12(b), one can see the reduced number

of elements which stays within the 0.01H criterion (Charalambides et al., 1992) for the size
of the K-dominated zone. This is interesting since the element size along the x3-direction is
the same for all the elements at the crack front. This might raises to the fact of removing the
K-dominated zone in the specimen center by reducing the specimen width. The logarithmic
plots for 0,3 along the crack ligament are given in figure 5.13.
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Figure 5.11: Mode III-Effect of height: (a) SIF (b) stress components along the crack front for n =4,
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Figure 5.12: Mode III-Effect of height: Asymptotic 0,3 (a) at the free surface (x3 = 5) (b) in the center (x3 = 0)

H
along the crack ligament (6 = 0) for n =4,

The values of A, table 5.4, in the center further approve destroying the K-dominated zone
in the specimen center by reducing the specimen width. Another study with a finer mesh in
the x3 and x;-directions could not make any improvement to A values. It is likely that for the

larger 7 the specimen width controls the size of the K-dominated zone.
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Figure 5.13: Mode III-Effect of height: Logarithmic 6,3 (a) at the free surface (x3 = 5) (b) in the center (x3 = 0)

H
along the crack ligament (6 = 0) for B =4.

H
Table 5.4: Mode III-Effect of height: A values for different 5 ratios at @ = 0 (free surface and center correspond

B
to x3 = — and x3 = 0, respectively).

2
H A
B Free surface Center
1 -1.636 -0.5402
2 -1.843 -0.5845
4 -1.858 -0.7756
8 -1.902 -0.8098

The dominant modes behind the crack tip, table 5.5 and figure 5.14, are identical to the
effect of height; however, the size of the predominantly mode II in the vicinity of the crack is
noticeably reduced.

Table 5.5: Mode III-Effect of height: Dominant modes in the vicinity and far from the crack behind the crack

H B
tip at @ = —r for 3 =4 (free surface and center correspond to x3 = ) and x3 = 0, respectively).

The vicinity of the crack tip Far from crack tip
Free surface Mode 11 Mode II1
Center Mode III Mode III
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Figure 5.14: Mode III-Effect of height: Specimen displacements behind the crack tip (6 = —) (a) away from

H
the crack tip (b) in the vicinity of the crack tip for n =4

Figure 5.15 demonstrates the 03 contour plots. 03 has an approximately constant size
and value at both the free surface and center of the specimen which is caused by reducing the

specimen width.

B
Figure 5.15: Mode III-Effect of height: Mode III 0,3 contours at the free surface (x3 = 5 left) and in the center

H
(x3 =0, right) for 5 =.

5.6 Conclusion

e It was shown by Benthem (1977) and Bazant and Estenssoro (1979) that the rh -singularity
at the free surface is a function of the Poisson’s ratio and varies from O (v = 0) to 0.604
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(v = 0.4) for the mode II and III. When v = 0.3, the corresponding A=0.598 which
shows that the theory by Bazant and Estenssoro (1979) should be revisited with models
with higher mesh densities at the free surface.

e The obtained results agree with the work of Pook et al. (2014) and Pook et al. (2015)
who performed a dedicated study on a plate and a disk with different width and a very
fine mesh under anti-plane loading using the commercial code, ANSYS. They found out
that ahead of the crack, at the free surface 0,3 increases as one moves towards the crack
tip. o712 is also maximum at the free surface and there is a coupling between 0,3 and
O12.

e Another study with a shorter pre-crack length (ayp = 5SH) is conducted to investigate
whether the length of crack may affect the distribution of Kyjy along the crack front. It
has been concluded that the thin specimens (B >> H) are not suitable for mode III
fracture toughness testing. Especially, in the case of short pre-crack which result in a

much likely plate rather than a beam specimen (figure 5.16). Higher I ratios for the

case of short crack causes Ky relative error and mode II portion to increase negatively
and positively.

e Specimen with H >> B forces the singular field at the center to vanish (It was shown

H
that under the higher 7 the size of the K-dominated zone is driven by the specimen

width). In addition, with higher — ratios, Ky relative error and Ky pg decreases in

negative and positive fashions (figure 5.17).

e As expected, Kyyy is independent from the initial crack length and geometry.
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CHAPTER 6
Effect of Side-grooves on Ky

In this chapter, the effect of side-grooves on Ky will be discussed. The side-grooves
along the specimen length provide the opportunity of studying the effect of width variation
and material removal or charge simultaneously on Kiyy.

6.1 Side-grooves

The possible strategies for the side-grooves are shown in figure 6.1. In the "Inward" strat-
egy (figure 6.1(a)), the material is removed from the sides of the specimen resulting in sharp
edges while for the "Outward" strategy (figure 6.1(b)), material is added to the sides. To re-
duce the possibility of stress concentration at the free surfaces of the Inward strategy, another
sample with rounded edges is added to the list, the "Inward curve" as shown in figure 6.1(c).

1 DCB specimen

X,
N Taper angle

Figure 6.1: Mode III-Effect of side-grooves: Possible strategies (cross-sectional view). (a) Inward (b) Outward
(c) Inward curve.

6.2 The J integral

The similar approach mentioned in section 5.3 is invoked to calculate Ky . The only
difference is in the J integral equation. In order to reduce the effect of specimen width, B,
Eq.(5.1) is replaced with Eq.(6.1). B is also changed to Bt where Begr is the length of the
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crack front, shown with red dashed lines in figure 6.1. With this approach, the effect of
specimen width is minimized.

M2
J=
EBegl

where M and [ are the bending moment and the second moment of area, respectively.

6.1)

6.3 Effect of Inward Side-grooves

The SIF and stress components distribution through the crack front for the Inward groove
are plotted in figure 6.2 (the plots for the Inward curve strategy are identical). The coupling
between mode II and mode III appears once more. Mode I is negligible compared to the other
two modes but has higher values when is compared to a complete specimen from chapter 5.

6 . . | 60

4+ ] 40 -

207

-20 - —e—092|

—*—012

013
-40 —o—011 |

& KH —A—033

Kirr 93

-6 I I I 60 . ) )
-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
T3 Z3
Beyy Beyy
(a) (b)

Figure 6.2: Mode III-Effect of side-grooves: (a) SIF (b) stress (at x; = 3.125um and x, = 0) components along
the crack front for the Inward groove strategy.

Plotting the asymptotic 0,3 along the ligament, figure 6.3, one is able to immediately
recognize the fewer number of elements in the center, figure 6.3(b), compared to the free
surface, figure 6.3(a), which is the effect of reducing the crack front length (here equal to
Begr) discussed in section 5.5 where in spite of the existence of the 1/,/~singularity there are
fewer elements that fits inside the 0.01H criterion for the K-dominated zone size which further
indicates that this criterion for the size of the K-dominated zone can be influenced when the
geometry of the DCB specimen is changed. The same plot for 0»3 in the logarithmic scale,
figure 6.3, gives the linear solution which is more pronounced in the center.
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Figure 6.4: Mode III-Effect of Inward groove: Logarithmic 63 (a) at the free surface (x3 = %ﬁ) (b) in the

center (x3 = 0) along the crack ligament (6 = 0).

6.4 Effect of Outward Side-grooves

In comparison with the Inward and Inward curve side-grooves, the Outward demonstrates
an entirely different distribution of the SIF along the crack front. Figure 6.5 provides an
overview of the SIF and stress components along the crack front. Both Kj; and Kypp suddenly
change sign at the free surface (the green boxes in figure 6.5(a)). The result from another
model with a finer mesh yielded the similar dramatic jump in Ky and Kpyy. It appears that the
FEM cannot calculate the stress correctly and requires a mesh with a higher density. No clear
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explanation has been found for this phenomenon.
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Figure 6.5: Mode III-Effect of side-grooves: (a) SIF (b) stress (at x; = 3.125um and x, = 0) components along
the crack front for the Outward groove strategy.

The asymptotic, figure 6.6, and logarithmic, figure 6.7, plots of 6,3 along the crack lig-
ament show the failure of the linear solution at the free surface in logarithmic scale (figure
6.7(a)). 023 1s compressive at the free surface which leads to invalid values in the logarithmic
plot. The negative 0,3 was also observed in the effect of width and height; however, the only
negative value belonged to the first element.
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Figure 6.6: Mode III-Effect of Outward groove: Asymptotic 053 (a) at the free surface (x3 = 7) (b) in the

center (x3 = 0) along the crack ligament (6 = 0).
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Figure 6.7: Mode III-Effect of Outward groove: 03 (a) at the free surface (x3 = %ﬁ) (b) in the center (x3 = 0)
along the crack ligament (6 = 0).

6.5 Inward against Outward Grooves

Figure 6.8 recap the FEM distributions of Ky and Ky for all the side-grooves. Table
6.1 summarizes A values for the three side-groove strategies in the center and free surface
of the specimen. As expected from figure 6.4, the best A values are obtained by the Inward
strategy. Comparing the obtained results from table 6.1 with Bogy (1971) shows that >3
should be present on the vertex at the free surface for the Inward side-groove while there is
no !/,/r-singularity for the Outward side-groove. The A values proposed by Bogy (1971) is
also provided in table 6.1. The taper angle, shown in figure 6.1, from Bogy (1971) is different
from the FE model for the Inward side-groove, however it still provide a good perspective.

Table 6.1: Mode III-Effect of side-grooves: A values for different side-groove strategies at 8 = 0 (free surface

Begr .
and center correspond to x3 = %ﬁ and x3 = 0, respectively).

Groove type A proposed by Bogy (1971) A from current study

Taper angle[deg] Free surface Taper angle[deg] Free surface Center
Inward 120 -0.384 112.5 -0.987 -0.5192
Outward 75 Not available 67.5 Not available -0.5380
Inward curve - - - -1.528 -0.5301

Figure 6.9 shows 0,3 contours where higher values occur at the free surface.
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Figure 6.8: Mode III-Effect of side-grooves: Distribution of (a) Ky rg (b) Knrre through the crack front for
side-groove strategies.

B
Figure 6.9: Mode IlI-Effect of side-grooves: Mode III 6,3 contours at the free surface (x3 = %ff, left) and in

the center (x3 = 0, right) for the Inward groove strategy.

Figure 6.10 and table 6.2 summarizes the dominant mode behind the crack in the vicinity
and away from the crack tip.
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Figure 6.10: Mode III-Effect of side-grooves: Specimen displacements behind the crack tip (6 = —r) in the
vicinity of the crack tip. (a) Inward (b) Outward side-grooves.

Table 6.2: Mode III-Effect of width: Dominant modes in the vicinity and far from the crack behind the crack tip

at @ = —n for the side-groove strategies (free surface and center correspond to x3 = % and x3 =0, respectively).

Side-groove type The vicinity of the crack tip Far from the crack tip
Inward Free surface Mode 11 Mode 111

Center Mode II1 Mode 111
Outward Free surface Mode II Mode III

Center Mode II1 Mode 111
Inward curve Free surface Mode II Mode 111

Center Mode II1 Mode III

6.6 Conclusion

e Shrinking the whole DCB specimen to a cylinder shown in figure 6.1 1 reveals admittedly
that as long as there is a free surface, a coupling between mode II and III exist. Kotousov
et al. (2013) named this coupling term as the "coupling mode I1°".

e According to the obtained result; in practice, if possible, material should be removed
from the sides of the specimen. Adding material to the specimen in mode III fracture
toughness testing specimens removes the 1/,/7-singularity. Figure 6.12 summaries the
mode III SIF relative error and the portion of mode I and II w.r.t the mode III SIF
obtained from FEM.
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CHAPTER /
Effect of Added Beams on Kyyg

So far it has been concluded that there is always a coupling mode II when the specimen
undergoes the anti-plane loading. To reduce the effect of coupling mode II, in the present
and next chapter several measures are taken into account. The current chapter is divided into
two main sections. In the first, the effect of the elastic property of the added beams will be
investigated. In the second, neutral axis of the DCB specimen is manipulated to study its effect
on the coupling mode II.

7.1 Added Elastic Beams

The configurations of the added elastic beams are shown in figure 7.1. In the horizontal
case (figure 7.1(a)), the elastic beams are added to the sides in the direction of shear loading.
In the vertical case (figure 7.1(b)), the DCB specimen is sandwiched between two identical
elastic beams. For the last case, the width of the horizontal beam changes while the elastic
behavior is kept the same as the DCB specimen. The purpose of the third case is to shift the
neutral axis in the x3-direction to the added beams.

‘ H” Elastic beam
H" H" 1 DCB specimen
X X5 e Crack
H#Z B#l
B#Z B#I
Bf?Z

(a) (b)

Figure 7.1: Mode III-Effect of added beams: Possible strategies (cross-sectional view). (a) Horizontal beams
(b) Vertical beams (superscripts #1 and #2 refer to the DCB specimen and the elastic beam, respectively).

7.2  Finite Element Model

The previous method by the Reference Point (RP) and Rigid body constraint for the
applied moments at the end of the specimen, cannot be utilized for the elastic beams because of
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not generating the pure out-of-plane shear loading which is due to the difference in the elastic
properties between the DCB specimen and elastic beams. As a result, the reaction moments
around the x; and x3 are non-zero. Instead, the prescribed displacement is exploited. In this
approach, the RP and Rigid body constraint are replaced with the displacements shown in
figure 7.2(a) and (b) at the specimen end. Two local coordinate systems are created on the top
and bottom part of the cracked section of the specimen as illustrated in figure 7.2(a) and (b).
Then, the displacement is applied by a line equation, x; = mx3, where m is the magnitude. The
applied displacements will cause the crack to open. The specimen dimensions and mechanical
properties remain the same. The length and height of the elastic beams are similar to the DCB
specimen while the elastic beam width is only half of the specimen. The Poisson’s ratio for
the elastic beam ,v*2, is assumed 0.28.

X;
1 DCB specimen - - Crack
[ Elastic Beam Applied displacement

Figure 7.2: The DCB and horizontal elastic beam FE model under mode III using prescribed displacement. (a)
Isometric view of the top configuration (b) Isometric view of the bottom configuration.

7.3 The J integral

Due to the prescribed displacements, the reaction moments are not valid in the ABAQUS
output file. This is because of the zero values for the slopes in the nodal displacement vector.

The method shown in figure 7.3 is used to calculate the reaction moment and J integral. Ac-
#1

cording to the flowchart, u3 in the position of x3 = - behind the crack (0 = — 1) in the xx3
plane is extracted from FEM (B! is the DCB specimen width). Then, using a MATLAB script
by Chernov (2018), a circle is fitted to u3 based on Pratt (1987) method so that the radius of
the curvature, p, can be determined. Next, the curvature, K, is calculated from Eq.(7.1).
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1
K= "——3m——~ 7.1
(p+BT %) o
where X3 is the neural axis position along the x3-direction calculated by shifting the coor-
B#l
dinate system to x3 = — - for the ease of calculation. For the horizontal beam configuration,

X3 1S

#1 B"! #lpg#l | p#2  phl B* #2 rr#2
E TBH-I—E B-l—TBH

X3 = EFIBFL#I | pR2 g (7.2)

and for the vertical configuration

#1 (B#l) #lpp#l | p#2 (B#z) #2 2
E" | — |B"H" +E BN B"™"H
2

E#1 p#l [r#l + E#2 B2 [y#2

The superscripts #1 and #2 denote the DCB and the elastic beam, respectively. After that,
The equivalent cross-sectional second moment of area, /, is calculated from Eq.(7.4). In the
second moment of area calculation, the coordinate system is set back to its original position
in the middle of the DCB specimen.

(7.3)

X3 =

2
7 LH#lB#ﬁ L gtigh (% _ §>

12 2

1 E#2 3 E#2 B#2 3 2
" = o (ﬁH#ﬁ) B* 4 (FH’”) B* (3#1 + —x3> (7.4)
L

The moment, M, for the J integral is determined from Eq.(7.5) and when inserted into
Eq.(5.1), the width and height are converted in the form of second moment of area, the J
integral can be written as Eq.(7.6).

M = kE*'I (7.5)

Mt M
- pripmitg  EIBH]

(7.6)

Finally, Kjj1 1, 1s calculated from the procedure explained in figure 5.3.
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Figure 7.3: The effect of added elastic beams: The flowchart for calculating the J integral.

7.4 Efftect of Added Horizontal Elastic Beams

The ABAQUS J integral code terminates if there exists a wedge element (figure 7.4(b))
inside the contour integral. By mirroring the mesh from the DCB specimen to the elastic

beam, wedge elements (C3D15) are generated at the vertex of the elastic beam where it is
#1

connected to the DCB specimen | x3 = iT as demonstrated in figure 7.4(a). Therefore,

ABAQUS J integral terminates the analysis. ABAQUS is able to create the quadratic elements
(C3D20) in the presence of the collapsed elements when the mid-nodes are shifted to the
quarter point in the crack definition dialogue box in the ABAQUS CAE', unless the wedge
elements are created. A good mesh transition from the DCB specimen to the elastic beam
requires manual modifications in the ABAQUS input file that is beyond the scope of this study.
Consequently, in the following, because of the above-mentioned issue, the beams are meshed
with quadratic elements (C3D20) in the form of cubes which along with the different elastic

properties of the DCB specimen and the elastic beam make the calculation of the stresses on
#1

B
the free surfaces | x3 = :l:T difficult for ABAQUS. As a result, 03 instead of the free

surface is extracted in from a plane within a distance of d=0.0625mm from the free surface

'ABAQUS CAE is the ABAQUS Graphic User Interface (GUT).



7.4 Effect of Added Horizontal Elastic Beams 91

B#l B#l
X3 = iT F0.0625mm | as illustrated in figure 7.5. x3 = :l:T F0.0625mm in the mid-

node of the first row of the elements at the free surface shown in figure 7.5.

- mmC3DI5 .

\ W C3D20 8
DCB Specime \

(@) (b)

Figure 7.4: (a) The wedge elements (C3D15) inside the elastic beam created at the vertex of the DCB specimen
(b) C3D15 element which has 15 nodes and 9 integration points terminates the ABAQUS J integral.
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Figure 7.5: Schematic of the distance from the free surface, d.

The elastic behavior of the horizontal beams is influenced by increasing their Young’s
#2

modulus. The analyses have been conducted for the 7 ratios of 2, 3, 4 and 5. Although
the obtained results are similar, the differences will be explained accordingly. The distribution
of the SIF and stresses through the specimen width are shown in figure 7.6. The obtained
results show the non-zero and larger 0y, compared to the previous scenarios; however, Ki rg
is negative that is K pg=0.

The asymptotic, figure 7.7, and logarithmic, figure 7.8, plots from FEM show a good
agreement with the theoretical solution both at the free surface and center compared to the
previously obtained results.
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Figure 7.7: Mode III-Effect of horizontal elastic beams: Asymptotic 623 (a) near the free surface (x3 = -
E#? B? 1
0.0625mm) (b) in the center (x3 = 0) along the crack ligament (8 = 0) for W=2 and B3

Another interesting observation occurs when the neutral axis in the x3-direction is located
inside the elastic beam. The 0.01H criterion for the K-dominated zone size by Charalambides
et al. (1992) is influenced which brings this fact that it cannot provide an estimation of the

K-dominated zone size when the neutral axis in the x3-direction is outside the DCB specimen
#2

(figure 7.9). For the Fl ratios which shifts the neural axis outside the DCB specimen, the
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Figure 7.8: Mode III-Effect of horizontal elastic beams: Logarithmic >3 (a) near the free surface (x3 = -

E#2 B#Z 1
0.0625mm) (b) in the center (x3 = 0) along the crack ligament (6 = 0) for ﬁ=2 and B = 7

FEM requires a finer mesh in the x;-direction focused at the crack tip. The lower number of
elements inside the K-field(, jy=~0.o1) 18 visible in figure 7.9.
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Figure 7.9: Mode III-Effect of horizontal elastic beams: (a) Asymptotic (b) logarithmic 0,3 along the crack
#2 B#Z 1

ligament (6 = 0) in the specimen center (x3 = 0) for ﬁ=5 and B3

Plotting the distribution of Kyj and Ky along the crack width, figure 7.10, make it difficult
to observe any improvement made by increasing the beam elastic property.
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Figure 7.10: Mode III-Effect of horizontal elastic beams: Distribution of (a) Ky rg (b) Knrre through the crack
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7.5 Effect of Added Vertical Elastic Beams
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Figure 7.11: Mode III-Effect of vertical elastic beams: (a) SIF (b) stress (at x; = 3.125um and x, = 0) compo-
E#Z H#2
nents along the crack front for WZS and 7= 1.
#2
In the following, the results for the —==5 will be discussed. The distribution of the SIF

and stresses along the crack front, figure 7.11, is similar to the horizontal beams case. From

the asymptotic and logarithmic plots (figures 7.12 and 7.13), once more it can be seen that
#2

by increasing the 7 ratio, there are fewer elements that remains within the K-field . /u~o.01)
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criterion; thus, by increasing the elastic beam Young’s modulus, the FEM demands a model
with a higher mesh density at the crack front in the x3-direction.
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Figure 7.12: Mode III-Effect of vertical elastic beams: Asymptotic 0»3 (a) at the free surface (x3 = 7) (b) in
#2 Jai
the center (x3 = 0) along the crack ligament (6 = 0) for —==5 and — = 1.
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Figure 7.13: Mode III-Effect of vertical elastic beams: Logarithmic 0,3 (a) at the free surface (x3 = 7) (b) in
#2 H#
the center (x3 = 0) along the crack ligament (6 = 0) for ﬁ=5 and e =1.

To provide a comparison between the horizontal and vertical cases for the elastic beams,
023 is also extracted from a distance of d=0.0625mm from the free surface for the vertical
elastic beams so that the singularity exponent, A, can be compared at the free surface and a



96 7 Effect of Added Beams on Ky

distance close to that. Figure 7.14 illustrates the difference in the two aforementioned loca-
tions. Very close to the free surface, 0,3 is always positive in the vicinity of the crack and

the linear behavior in the logarithmic scale is much pronounced. Table 7.1 summarizes the
#1

A values at the free surface (x3 = T), d=0.0625mm from the free surface (demonstrated

in figure 7.5) and center (x3 = 0). There is a remarkable drop in A from approximately -1.9
BHl #1

evaluated at x3 = - to approximately -0.72 at x3 = — — 0.0625mm. To sum up, it appears

pHl #1
that singularity exponent might differ from x3 = — tox3 = - 0.0625mm which requires

a dedicated model with a very fine mesh at the free surface in the x3-direction.

40

10?

T
—— FEI\’I(d:o)
Theoretical solution
K — field( m~0.01)
+FE1\"I(d:().0625mm) B

I
PO

10t F

ge 1w

107 [e—FEM ;)
——Theoretical solution

- K — field/g=o.01)
—o—FEM (4-0.0625mm)
-5 ‘ : ‘ 102 : -
0 0.005 0.01 0.015 0.02 1074 1073 102
T x
ﬁ#l ﬁ#l
(a) (b)
Figure 7.14: Mode III-Effect of vertical elastic beams: (a) Asymptotic (b) logarithmic o3 along the crack
#1 #1 #2 #2
B E
ligament (6 = 0) at x3 = > and x3 = EEE 0.0625mm for ﬁ=5 and e =1.

#2
Table 7.1: Mode III-Effect of added elastic beams: A values for different 7 ratios at 8 = O (free surface and

#1 #2
center correspond to x3 = - and x3 = 0, respectively). For the horizontal elastic beams, B = % and for the
#2
vertical elastic beams, H— =1.
H#l
E#2 A(Horizontal elastic beams) A(Vertical elastic beams)
E#1 Free surface d=0.0625mm Center Free surface d=0.0625Smm Center
2 - -0.6446 -0.5245 -1.941 -0.7263 -0.5263
3 - -0.6388 -0.5239 -1.944 -0.7269 -0.5250
4 - -0.6354 -0.5241 -1.946 -0.7275 -0.5241
5 - -0.6332 -0.5239 -1.947 -0.7279 -0.5234

The FE distribution of Ky and Kjy for various elastic ratios is given in figure 7.15. Kjy
remains unchanged whereas, Ky distribution in the 50% of the middle span steps up.
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"Horizontal Varying Width Beams" refers to the similar added horizontal beams that their
#2

elastic behaviour is constant (for all the cases E:I) while their width w.r.t to the DCB spec-
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#2

imen , along the x3-direction changes from 2 to 5. Figure 7.16 illustrates all the strategies

B
for the "Horizontal Varying Width Beams".

The distribution of the SIF and different stress components through the crack width is
shown in figure 7.17. The first noticeable difference compared to the horizontal and vertical
elastic beams is the higher 0,, values which are negative except for a distance close to the free
surface. Another worth-mentioning observation is the constant 0,3 along the width. There is
a drop in 0»3 at the free surface that does not vanish with a very fine mesh, in the x3-direction,
near the free surfaces. The coupling mode II prevails as before.

1.5 T T ; 80

Figure 7.17: Mode III-Effect of horizontal varying width: (a) SIF (b) stress (at x; = 3.125um and x; = 0)
#2 #2
E

B
components along the crack front for ﬁ=5 and o= 1.

Due to the oscillatory behavior of 0,3 along the ligament, the corresponding values are
extracted from a distance of d=0.0111mm from the free surface. Once more, few elements are
fitted in the K-field(; /g~ o1) criterion. The size of the K-dominated zone seems to become
larger in the center (figures 7.18 and 7.19).

#2

Plotting the distribution of the Ky, 7.20(a), for various B ratios, it appears on the sur-

face that the coupling mode II effect vanishes when B*? goes to infinity. However, the non-
normalized plots show that the coupling mode is not affected at all and the increase in Kiyy
makes this illusion. For all the cases in figure 7.20(b), a sudden drop in Ky rg is clearly visible
at the free surfaces.

A values for the case of horizontal varying width are given in table 7.2. The horizontal
varying width case provides better results for the singularity exponent than the horizontal
elastic beams.
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#2 #2
Table 7.2: Mode III-Effect of horizontal varying width: A values for different B ratios at 8 =0, 7= 1 (free
#1

surface and center correspond to x3 = - and x3 = 0, respectively).

B72 A

p#1  Freesurface d=0.111mm Center
2 - -0.6923 -0.5279
3 - -0.6899 -0.5257

4 - -0.6871 -0.5125

5

- -0.6865 -0.5115
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7.7 Stress Contours and Dominant Modes

The o>3 contours for all the strategies, figure 7.21 to 7.23, show higher stress at the free
surface which indicates that the elastic beam did not change the way of crack opening. Ac-
cording to figures 7.21 to 7.23, the region where the specimen experience the higher stress
value (gray-shaded area in figures 7.21 to 7.23) is larger at the free surface than the specimen
center; therefore, the crack propagates from the edges to the specimen center.

Figure 7.21: Mode III-Effect of horizontal elastic beams: Mode III 6,3 contours close to the free surface (x3 =

B#l E#Z B#Z 1
—— —0.0625mm, left) and in the center (x3 = 0, right) for <— =5, = —) .

2 E*1 B 2
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Figure 7.22: Mode III-Effect of vertical elastic beams: Mode III 0,3 contours at the free surface (x3 = - left)
E#2 H#2 >

and in the center (x3 = 0, right) for (ﬁ =5, HA 1
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Figure 7.23: Mode III-Effect of horizontal varying width: Mode III 0,3 contours close to the free surface

Bt #2 £
(x3 = - - 0.0111mm, left) and in the center (x3 = 0, right) for (— =5, A= 1).

The dominant modes in the vicinity, figure 7.24, and far from the crack are summarized in
table 7.3.

Table 7.3: Mode III-Effect of added beams: Dominant modes in the vicinity and far from the crack behind the
1

crack tip at 8 = —x (free surface and center correspond to x3 = - and x3 = 0, respectively).
Strategy The vicinity of the crack tip Far from the crack tip
Horizontal beams Free surface Mode II Mode III
Center Mode III Mode III
Vertical beams Free surface Mode 11 Mode III
Center Mode 11T Mode III
Horizontal varying Free surface Mode 11 Mode III

width Center Mode III Mode III
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7.8 Co

BT

nclusion

e The coupling mode II, 11, is an inseparable part of the mode III. The elastic behavior
of the horizontal or vertical beams along with the neutral axis in the x3-direction and
second moment of area do not influence II°.

#1

e The singularity term power, A, are found at the free surface, x3 = - an a distance

close to

#1
that, x3 = > 0.0625mm, for the vertical elastic beams where A shows a
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remarkable difference. Theses different obtained values for the singularity exponent
requires further models with extremely fine mesh with good transition from the DCB
specimen to the beams before reaching a conclusion.

e The K-field(; /g~ o1) criterion for the K-dominated zone comes from a DCB specimen
with the regular geometry. When the DCB specimen is sandwiched between the hori-
zontal and vertical beams, the K-field, /g~ 1) criterion is affected.

e By increasing the elastic beam Young’s modulus and shifting the neutral axis in the x3-
direction outside the DCB specimen, the FE models should be equipped with a higher
mesh density in the x;-direction (the direction of the crack ligament).

e The effect of the wider horizontal beams leads to the maximum mode III, figure 7.25.
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CHAPTER &
Effect of Orthotropy on Kjpg

For the final chapter of studying the effect of different parameters on Kjy, the isotropic
material is replaced with an orthotropic material. The specimen is loaded in its strongest direc-
tion; therefore, the effect of increasing the longitudinal Young’s modulus, in the unidirectional
composite laminate (typical layup for wind turbine blades and most aerospace structures) on
Ky is the topic of the present chapter.

8.1 Material

In this section, two unidirectional laminates, according to table 8.1 are selected for the
effect of orthotropy. The former is a Glass/Epoxy (Bak et al., 2013) and the latter is a Car-
bon/Epoxy laminate (Tsai and Hahn, 1980).

Table 8.1: Mechanical properties of unidirectional laminates.

Property Symbol Unit Glass/Epoxy Carbon/Epoxy
Fiber volume fraction Ve - 0.5 0.7
Longitudinal Young’s modulus En GPa 39.5 181.0
Transverse Young’s modulus Ey» GPa 12.1 10.3
In-plane Poisson’s ratio Vi2 - 0.2750 0.2800
Out-of-plane Poisson’s ratio Vo3 - 0.3329 0.2800
In-plane shear modulus G GPa 4.54 7.17
Out-of-plane shear modulus Go3 GPa 4.54 7.17

As can be seen from the above table, for the Glass/Epoxy composite laminate, s

22
approximately 3 and the same ratio is around 17 for the Carbon/Epoxy laminate. It is assumed

that E33 = E»), V13 = Vo3 and G13 = G»3 (transverse isotropy).

8.2 Specimen Dimensions

The stress in an orthotropic material depends on the elastic constants. For all the analyses
in this chapter, the specimen longitudinal axis coincides with the fiber direction; thus, the spec-
imen is loaded in its strongest direction. For the tow-dimensional (plane) problems, Z. Suo
and FAN (1992) suggested a rescaling technique using a scaling parameter, A, whereby the
end-zone length or the length of the pre-crack should be multiplied by A4 In other words,
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a longer specimen is required for the orthotropic fracture test specimens compared to the
isotropic. A can be determined from Eq.(8.1).
A= En (8.1)
Eyy
where E1; and E», denote the longitudinal and transverse Young’s modulus, respectively.
Table 8.2 compares the dimensions of the isotropic and orthotropic specimens used in this
project. For both specimens, ag and L are multiplied by A4 Tt s worth-mentioning that
the rescaling approach is based on the tow-dimensional compatibility equations for the or-
thotropic materials (Z. Suo and FAN, 1992) and it is unclear if it remains correct for the
three-dimensional problems.

Table 8.2: The DCB specimen dimensions with an isotropic material against an orthotropic material.

Dimension Symbol Unit Isotropic Glass/Epoxy Carbon/Epoxy
Pre-existing crack length ao mm 150 210 330
Specimen length L mm 300 420 660
Scaling factor A - 1 1.34 2.05

8.3 Element Dimensions

Due to the change of material and also the complexity which originates from the orthotropy,
the regular mesh size from table 5.1 is not able to provide the correct values of the SIF (some
of the values become zero along the crack front). Table 8.3 summarizes the smallest element
size used at the crack tip for the study of orthotropy.

Table 8.3: Mode III-Effect of orthotropy: Smallest element size.

Parameter Dimension
ep[mm] 5.450E-04

en/H 5.450E-05
e,[mm] 125E-03
ew/H 0.0125
e;[mm] 8.333E-03
e;/H 8.333E-04
eh/el 0.0654
ew/er 15.00
en/ew 0.0044

8.4 The J integral

The J integral, assuming pure mode III, can be calculated from Eq.(8.2). Detailed deriva-
tion is given in appendix F.
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12M?
Jin= ——— 8.2
= E Ry (8.2)
The compliance matrix, .S, for an orthotropic material is
-1 .
B 4 ¥ A R 0
Eqq Enn En
1
A N ¢ 0
Ey  Exn Ex
[(S11 S12 S5 0 0 0 v v 1
S5t S» S3 0 0 0 S 32— 9 000
g |53 S S 00 0 By Ex Ex 8.3)
10 0 0 Sy O 0| 1 '
0O 0 O 0 S5 O 0 0 0 Gon 0 0
(0 0 0 0 0 Se >
1
0 0 0 O — 0
G3i
0 0 0 0 0 !
i G2
where the Poisson’s ratios are determined from Eq.(8.4).
E; ., .
Vl'j:le'E for i#j and i,j=1,2,3 (8.4)

j
Another compliance matrix, S, is built according to Eq.(8.5) (Banks-Sills et al., 2005).

8i383;
33

S’ is a symmetric matrix and S’y = S5, = 0. For the plane strain, the J integral and SIF for
all three modes are related through Eq.(8.6) (Banks-Sills et al., 2005).

D() |

Sij = Sij—

where i,j=1,2,4,5,6 (8.5)

where

For the plane stress, Eq.(8.8) correlates the J integral and SIF (Paris and Sih, 1965).

S1S Sy 2§ S S S22 ZS S 1
(VB (5 o
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In order to calculate 6,3 along the crack ligament for an orthotropic material Eq.(8.9) is
exploited.

Ky 1
R 8.9
V27X © <\/COS(0)+S3Sill(9)> (89

where s3 is the conjugate root of the below equation.

023 =

Ss553 — 284553+ S44 =0 (8.10)

Since 0,3 is extracted along crack plane (6=0), the real part of Eq.(8.9) is 1 and the same
equation for the isotropic material will be obtained. Next, Eq.(8.6) will be used for Ky .

8.5 Effect of Orthotropy

The obtained results are identical for both cases. In the following, the plots for the Glass/E-
poxy laminate will be presented. Figure 8.1 illustrates the distribution of the SIF and various
stress components along the crack front. Similar to the isotropic material, the coupling mode
Il is present and the maximum Kjy and Kpjy occurs at the free surface.
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Figure 8.1: Mode III-Effect of orthotropy: (a) SIF (b) stress (at x; = 2.083um and x, = 0) components along
the crack front for the Glass/Epoxy laminate.

The asymptotic, figure 8.2, and logarithmic scale, figure 8.3, show the singularity in the
specimen center.
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Figure 8.2: Mode III-Effect of orthotropy: Asymptotic 0,3 (a) at the free surface (x3 = 5) (b) in the center
(x3 = 0) along the crack ligament (6 = 0).
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Figure 8.3: Mode III-Effect of orthotropy: Logarithmic 0,3 (a) at the free surface (x3 = 5) (b) in the center
(x3 = 0) along the crack ligament (6 = 0).

Comparing the distribution of Kyyy through the specimen width, figure 8.4(b), show a con-
vex shape for the Carbon/Epoxy laminate. At the first sight, it appears to be the effect of
scaling parameter mentioned in section 8.2; however, scaling the specimen width and height
by A *, the convex shape of Kjyy is not influenced.

A values are given in table 8.4. The singularity is accomplished in the center.
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Figure 8.4: Mode III-Effect of orthotropy: Distribution of (a) Ky re (b) Ky pe through the crack front for the
Glass/Epoxy and Carbon/Epoxy composite laminates.

Table 8.4: Mode III-Effect of orthotropy: A values for the two unidirectional composite laminates at 0 = 0 (free

B .
surface and center correspond to x3 = 5 and x3 = 0, respectively).

Cre . A
Unidirectional laminate Free surface  Center
Glass/Epoxy -1.030 -0.4998
Carbon/Epoxy -1.046 -0.4975

Table 8.5 summarizes the dominant modes in the vicinity and far from the crack. A com-
parison of the dominant modes close to crack is illustrated in figure 8.5 for both composite

laminates.

Table 8.5: Mode III-Effect of orthotropy: Dominant modes in the vicinity and far from the crack behind the

crack tip at 8 = —x (free surface and center correspond to x3 = 5 and x3 = 0, respectively).
Composite laminate The vicinity of the crack tip Far from the crack tip
Glass/Epox Free surface Mode I1 Mode III
poxy Center Mode 11T Mode III
Free surface Mode II Mode III

Carbon/Epoxy Center Mode III Mode 1T
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Figure 8.5: Mode III-Effect of orthotropy: Specimen displacements behind the crack tip (8 = —7) in the vicinity

of the crack tip. (a) Glass/Epoxy (b) Carbon/Epoxy.

The 033 stress contours are also shown in figure 8.6. 6,3 in higher at the free surface.

B
Figure 8.6: Mode III-Effect of orthotropy: Mode III 6,3 contours at the free surface (x3 = 5 left) and in the

center (x3 = 0, right) for the Glass/Epoxy laminate.

8.6 Conclusion

e Similar results to the isotropic material are obtained for the orthotropic materials; there-
fore, all the geometrical modifications discussed from chapter 5 to 7 can be extended
to the unidirectional laminates on the assumption that the crack growth direction and
crack tip displacements are less important than the intensity of the stresses at the crack
tip/front when the crack initiates (Parhizgar, 1979). Figure 8.7 illustrates the relative

error as well as the portion of Ky gg and Ky pE.
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e The elastic constant have no influence on the coupling mode II.

e The FE model with the orthotropic properties requires a finer mesh in the x;-direction
(in the direction of the crack ligament) compared to its identical isotropic model.
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CHAPTER 9
Cohesive Zone Modeling

The second part in the Progressive Failure Analysis, damage evolution in the form of crack
growth, is the main topic of this chapter. Delamination is simulated by the defined cohesive
law and parameters in ABAQUS. As a result, the dissipated energy for the crack extension is
extracted from the solver and finally used in the validation step of the cohesive law. Therefore,
this chapter is divided into two sections. The former is the CZM and the latter is the cohesive
law determination.

9.1 Finite Element Model

As mentioned earlier in chapter 2, in the CZM, in addition to the bulk materials, there exist
other self-destructive elements or the so-called "cohesive elements". The cohesive elements,
indicated by red color in figure 9.1, are placed between the top and bottom parts of the DCB
specimen. The local coordinate system of the cohesive elements is also shown in red with the
capital letter X; where i=1 ,2 ,3.

L
X,
A B
13
X; 2H
X, ‘

g I Cohesive Elements
v [ 1 DCB specimen

1

Figure 9.1: The CZM of the DCB specimen in ABAQUS. The blue color shows the global coordinate system
(DCB) while the red indicates the local cohesive element coordinate system.

For the crack growth simulation, a longer specimen (L >> ay) 1s required. The dimensions
are ap = 5H, B=72H and L = 75H. Bear in mind that the choice of the short pre-crack length
in figure 9.1 does not cause any issue since the study does not concern with the LEFM.

The bulk material is the same isotropic material with £ = 200GPa, G = 80GPa and v =0.3.
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9.2 Defining the cohesive law
There are three main steps for defining each cohesive law:
e The elastic formulation
e Damage initiation criterion

e Damage evolution

9.2.1 The elastic formulation

In this section, the elastic properties for the elastic regime (the green area in figure 2.8)
will be defined. The elasticity matrix is (units in MPa)

Enn Ens Ent 25 O O
E = Ens Ess Est - 0 25 0
E,: Eyg E; 0O 0 25

and the cohesive strength vector is (units in MPa)

Tpe 1.2
T.={ T,cp =412
T 1.2

where the superscripts n, s and ¢ denote the normal, the first and second transverse direc-
tions corresponding to the X3, X; and X3 axes in figure 9.1.

9.2.2 Damage initiation criterion

After increasing the load to a certain level, for instance the cohesive strength, the damage
starts. Therefore, a damage initiation criterion is required for the solver. Several damage initi-
ation criteria are implemented in ABAQUS. Among which the common Quadratic nominal
stress is chosen. According to the Quadratic nominal stress, crack opens when Eq.(9.1)

holds.
2 2 2
T, T, T,
{<T>} +{—T }+{—Tt} = 9.1)
n,c 8,¢ te

T, in Eq.(9.1) is placed between two angles, (), that is 7}, is effective when its value is
positive (tension). If 7, becomes negative then it is replaced with zero in Eq.(9.1) since the
crack closure occurs.
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9.2.3 Damage evolution

This section covers the red area in figure 2.7. ABAQUS is equipped with the linear and
exponential damage evolution unless otherwise a user-subroutine can be substituted. The
cohesive law exploited in this project is a bilinear law which has a linear damage evolution
shape. In practice, it was shown that the fracture energy, J., and the cohesive strength, T, can
better describe this part of the cohesive law (Schwalbe et al., 2012). The critical separation,
0., is calculated by ABAQUS according to the damage evolution shape. The fracture energy

is set to 1.2 —. 0. is determined from Eq.(9.2) (units in mm).
mm
2
2J. 2x1.2
0, = =——"""=_172 9.2
¢ T, 1.2 ) ©2)
1.2
1.2
The damage evolution follows the set of the equations below.
T _ (1-D)T, ifT,<0
"\ T, ifT, <0
T,=(1-D)T, (9.3)

T, = (1-D)T,

where T is the calculated traction from Eq.(2.10) or the traction components from the elas-
tic cohesive law without damage and D is the damage. When D=1 the material is separated.

9.2.4 Element

The model includes two element types. The first belongs to the bulk material while the sec-
ond is the cohesive element. Since the damage, D, is unavailable in the post-processing when
quadratic elements are selected for the bulk material, the linear element, C3D8R, is chosen
(figure 9.2(b)). C3D8R is the reduced version of the C3D8 element which has one integration
point. Enough number of C3D8R is assured in the width and height. The displacements are of
paramount importance in this study and are accurately calculated in the nodes. The element
dimensions for the bulk material are given in table 9.1 The linear cohesive element, COH3D8,
is illustrated in figure 9.2(a) with its local coordinate system. There is only one layer of the
cohesive elements between the two parts of the bulk material.

9.3 Mesh

The mesh criteria from Schwalbe et al. (2012) are utilized in the present study. Also the
mesh is fine enough to cater the known mesh strategies in section 2.5.1 for the CZM. To this
end, the cohesive element height, &, is set to 0.01H.
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Table 9.1: Bulk material element (C3D8R) dimensions for the CZM.

Parameter Dimension
ep[mm)] 2E-03

en/H 2E-04
e,[mm] 2E-03
ew/H 2E-04
e;[mm] 2E-03
e;/H 2E-04
€n / €] 1
ew/er 1
ey / €y 1
Top surface
8 7
X,
6 :
3 ;
hCI . Mxl g

¥ . . .
Bottom surface TThlckness direction

(a) (b)
Figure 9.2: (a) COH3DS (b) C3DS8R element.

e The cohesive element width and height are set to 2mm; hence, /. is negligible compared
to the element area (0.lmm< < 4mm?).

o /. << 0, (0.lmm<< 2mm)

e /. is incomparable with other geometrical dimensions, e.g, H, W, L and ay.

9.4 Result and Discussion

The damaged specimen is shown in figure 9.3.
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Figure 9.3: The damaged DCB specimen by the CZM.

When the specimen is loaded, the value of the left-hand side of Eq.(9.1) will increase, as
illustrated by the blue curve in figure 9.4(a), until it equals 1 where the crack starts growing.
Before the crack initiation, the material degradation is zero (red curve in figure 9.4). The high
values in the elasticity matrix prevent the crack from opening at this level. As soon as the
crack extension starts, the material degrades and its corresponding value in ABAQUS rises
gradually to 1. At this point, the energy in the form of resistance acquires a constant value
and is refered as the steady state, Jg;. The FPZ is easily transferred through the specimen in a
self-similar fashion meaning that the FPZ attains a self-similar opening, d., and length, L., as
demonstrated in figure 9.4(b).

! /

Separation occurs at this point

Crack growth initiation point ’_Cmck srowth initiation

——Material degradation

S

(a)

T
BT
um
< < >
< >

Initial crack front Evolved crack front

(b)

Figure 9.4: (a) The crack growth initiation and material degradation plots (b) The initial and evolved crack fronts
when the FPZ takes a self-similar opening profile.

The coordinates in the xjx3 plane along with the displacements on the top and bottom
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surfaces of the cohesive elements are extracted from ABAQUS. The local opening for each
element is calculated from Eq.(9.4).

U,g — Ué USZ - Us; U,Z - Ut;
E3 Un_Un * US_US * Ut _Ut
p— p— p— ‘4
R 07/ G N VN G M §7/ e G
Uy —U, Ui —Uy Ut -u

The superscripts refer to the node numbers in figure 9.2 and U is the local displacement
of the cohesive element. The local openings normalized with the critical opening, d., along
the X», X; and X3 directions are plotted in figure 9.5. According to the plots, the mode III
is dominated far from the evolved crack front, §" ~ 48;". The mode I is negligible w.r.t to
other two modes. In conclusion, mode III is accomplished under LSB condition. Next, the
implemented cohesive law needs to be verified.

9.5 Cohesive Law validation

The FE model is identical to figure 9.1. Only two points shown in green in figure 9.6 are

added on the sides of the specimen at x3 = 5 to record the local openings.

X Reference points for

V recording reaction moments

P S—
| N

Reference points for
recording displacements

Figure 9.6: The FE model used for extracting the applied moments and separation in the CZM.

The J integral values in the form of resistance, Jg, can be determined by Eq.(5.1) and
are plotted against the opening in figure 9.7(a). The normalized Jgr with the critical fracture
energy, J., increases with the end-opening and reaches the steady-state, Jys, at the normalized

6 *
distance, 5L=1. To find the corresponding traction values for the mode III, 7;, Eq.(2.13) is
¢ .c
invoked under the assumption that the contribution of mode II is negligible. The definition
of derivation, Eq.(9.5), is used to calculate the derivative of the Jr w.r.t to the tangential end-
opening, &,".
dJg JR.ii = JR (ii-1)

Ti(6") = =5 = 9.5
t, ( t ) 85[ 8*t7ii_5*t’(il‘_]) ( )
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Figure 9.5: (a) §;" in the x;x3 plane corresponding to the sliding opening (Mode II). (b) &, in the x;x3 plane
corresponding to the normal opening (Mode I). (c) 8" in the x1x3 plane corresponding to the tangential opening
(Mode III).

where i indicates the increment in the applied moment and 6*; is extracted from x3 = 5

The corresponding derived traction for mode 111, 7;, versus the local opening is shown in figure
9.7(b). There exists enough number of elements both in the elastic and damage evolution
regions. The implemented cohesive law is also plotted which show a good agreement with the
FEM result. Therefore, from the FEM, the implemented cohesive law is verified and can be
used for the LSB problem under mode III delamination.
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Figure 9.7: (a) Fracture resistance, Jr, versus tangential end-opening, & (b) tangential traction, 7;, versus
tangential end-opening, &;".

9.6 Cohesive Law Parameter Study

The use of a bilinear Traction-Separation Law (TSL) due to maximum two required pa-
rameters (two out of T, d. and J.) for the definition of the cohesive law (here T, and J.)
provides the opportunity of examining the cohesive parameters under LSB condition. In this
section, the effect of the critical separation, 0., which indirectly gives a measure of the active
cohesive zone size will be investigated. In addition to the implemented cohesive law from the
previous section (TSLO6 in table 9.2), seven other cohesive laws (TSLO1 to TSLOS, TSLO7
and TSLO8) are examined as listed in table 9.2. For all the cohesive law the elastic behavior is
the same as explained in section 9.2.1. Using the cohesive elements in ABAQUS, one should
know that all the cohesive zone parameters must be the same, unless otherwise, the work of
the separation becomes path dependent (Goutianos and Sgrensen, 2012).

Table 9.2: Effect of cohesive parameters: Different traction-separation laws for the cohesive law parameter study
(F is the elasticity matrix and the values are given in section 9.2.1).

T, Oc 1 ([ T.d.
™5 m E(EH>

TSLO1 3.072 3.125E-03 0.0048
TSLO2 1.536 6.250E-03 0.0048
TSLO3 0.768 1.250E-02 0.0048
TSLO4 0.384 2.500E-02 0.0048
TSLO5 0.192 5.000E-02 0.0048
TSLO6 0.048 2.000E-01 0.0048
TSLO7 0.024 4.000E-01 0.0048
TSLO8 0.012 8.000E-01 0.0048
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Plotting the R-curve from the reaction moment according to Eq.(5.1) in figure 9.8(a), one
is able to identify coupling mode II and mode III with predominantly coupling mode II for
lower 0. where the size of the active cohesive zone is small. By increasing J., the FPZ un-
dergoes mode III, the effect of the coupling mode II becomes less and the assumption for
determination of the cohesive law from Eq.(9.5) is applicable. This observation also confirms
the results from chapter 5 to 8 whereby under Small-Scaled Fracture Process Zone (LEFM)
there is a contribution of the coupled mode II. Suppose the coupled mode II and mode III are
incorporated in calculating resistance, then Jg is a function of both sliding end-opening, &;",
and tangential end-opening, & ". It can be written as

& &*
Tr(8,°,87) = /0 Ty(8,, 8,)d8, + /O T,(8,,8,)dd, 9.6)

Consequently, assuming that the cohesive laws are differentiable from Jg, the cohesive
traction can be determined from the equations below.

g DR(38° g D38
16,8 = 90 pera - PO
S t

Figure 9.8(b) provides an overview of Jg against the tangential end-opening. For TSL0O2
and more clearly TSLO1, 6" > & .

9.7

In the following, by ignoring the contribution of the coupled mode II in TSLOI1 to TSLOS,
i.e., assuming that it is a pure mode III problem, the derived traction-separation plots together
with the implemented cohesive laws are demonstrated in figure 9.9(a). It can be seen that
by decreasing 0., there would be a difference between the implemented cohesive law and the
results obtained from FEM. Conversely, the implemented cohesive laws agree with the FEM
results as the size of the active cohesive zone enlarges , i.e. , TSL0O6 to TSLOS in figure 9.9(b).

It is also advantageous to compare the cohesive parameters obtained from FEM with the
implemented cohesive parameters. To this end, 7; at the crack initiation and complete separa-
tion, J., along with the area under the curve which is equal to the work of separation, J., are
extracted from FEM. The second column in table 9.3 shows the peak tangential traction, 7 .,
normalized by the corresponding implemented cohesive strength from FEM. The difference
for all the TSLs except TSLO1 is around 5%. The second column provides the cohesive trac-
tion (normalized by the corresponding cohesive traction) calculated at d. where it is expected
that 7;=0. The last column in table 9.3 gives J. normalized by the implemented fracture en-
ergy. The values should be close to 1. It is noteworthy to mention that the number of elements
play a key role for the results obtained in table 9.3 (especially for TSLOS, the green plot in
figure 9.8(b)); however, by increasing O, the difference between the implemented and FEM
cohesive laws reduces.
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Table 9.3: Effect of cohesive parameters: The difference between the obtained values of T, and J. from both the
implemented cohesive and FEM results for various cohesive laws.

TSL# Normalized 7(; ), Normalized T; rg at 0. Normalized J. g

TSLO1
TSLO2
TSLO3
TSLO4
TSLOS5
TSLO6
TSLO7
TSLO8

0.8522
0.9546
1.0254
1.0510
1.0521
1.0569
1.0541
1.0582

0.1065
0.0318
0.0219
0.0355
0.0881
0.0362
0.0346
0.0242

1.025
0.993
1.004
0.909
0.684
0.940
0.957
0.948
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Figure 9.8: Effect of cohesive parameters: (a) Fracture resistance, Jgr, versus sliding, §,°, and tangential end-
opening, & (b) Fracture resistance, Jg, versus tangential end-opening, &, for different cohesive laws in table
9.2.
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Figure 9.9: Effect of cohesive parameters: Tangential traction, 7;, versus tangential end-opening for (a) TSLO1
to TSLOS (b) TSLO6 to TSLOS.



CHAPTER 10

Conclusion and Future
Perspective

The Double Cantilever Beam (DCB) specimen under mode I, mode II and mode III is
analyzed by FEM and compared with the theory. For the FEM, ABAQUS as a reliable Finite
Element package is utilized; therefore, all the conclusions are based on the results obtained
from this commercial code.

e The two-dimensional mode I and II results from the LEFM Finite Element model agree
with the theory for both the plane stress and plane strain conditions; however, the pri-
mary weakness appears in the three-dimensional analysis. In the three-dimensional
mode I, the Finite Element model is unable to provide enough number of points for
the normal stress, 0y, along the crack ligament at the free surface. The insufficient
number of points originates from inadequate number of elements in the specimen lon-
gitudinal direction due to exceeding a million number of elements for the whole model
and limitation in computational time. The smaller specimens for the mode II and III
allow a finer mesh at the free surface; however, the 1/\/7-singularity is not still accom-
plished. Furthermore, a noticeable difference between the singularity exponent, A, is
observed at the free surface and the plane very close to the free surface. The results are
in agreement with the obtained from Pook et al. (2014) and Pook et al. (2015) who had
an element size virtually ten times smaller than the elements used in this study.

e In LEFM, the effect of the mid-node distortion in the elements at the crack tip should
be investigated thoroughly since the stress is not calculated correctly in these elements.
With the improvement in the computational power, it might be unnecessary to move
the mid-nodes to the quarter point since there is a possibility of influencing the stress
calculation at the free surface by such elements. Overall, it is believed that a Finite
Element model with a very fine mesh at the free surface is needed before commenting
on whether the 1/,/7-singularity at the free surface exists or the distorted elements at the
crack tip may affect the stresses at the free surface.

e The three-dimensional LEFM analysis of mode II reveals a coupling mode III, due to
the presence of shear stress, 0,3, at the crack tip and the first ring of the elements where
the mid-nodes are shifted to the quarter point. ABAQUS uses the surface integral to
calculate the J integral and K is determined from the J values. Using the surface integral
and sufficiently fine mesh (element size of 0.013% specimen height in the specimen
longitudinal direction with aspect ratios no more than 10) the effect of the first and the
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second contour in the surface integral becomes negligible. Next, a user subroutine in
the post-processing can extract the J values by ignoring the first and second contours
during the surface integral which may remove the decaying 6,3 in mode II and mode III
at the free surface.

The importance of the collapsed elements (the element type whereby the nodes at one
of the sides of the element coinciding the crack tip have similar coordinates) at the crack
tip/front is explicitly discussed in LEFM. It is shown that despite providing good result
for the Stress Intensity Factor by the non-collapsed elements, they can only produce
singularity on the element boundary and are not recommended for the LEFM analyses.
Furthermore, there can be only four non-collapsed elements at the crack tip/front which
makes the stress calculation for different angles around the crack difficult for these ele-
ments.

In LEFM, the size of the K-dominated zone in the DCB-type specimens is very small
(Iess than 0.013% of the specimen height) and by moving from the center to the edges,
its size shrinks.

Based on the obtained results, in LEFM, there is always a coupling mode II, I, under
anti-plane loading which induces the mode I1I. Therefore, the pure mode III, in the form
of what usually is expected, is not achievable and of course is not limited only to case
studies in the present project. For Small Fracture Process Zone, the coupling mode II
is dominant in the vicinity of the crack. Further away from the crack, for the Large
Fracture Process Zone, i.e, Large-Scale Bridging condition; the specimen acts like a
beam under anti-plane loading.

The DCB specimens with low thickness are not suitable for mode III delamination
toughness testing in LEFM. By reducing the thickness, the singularity field inside the
specimen vanishes.

Among several LEFM case studies for the suitable cross-section for mode III delami-
nation toughness testing, the horizontal beams on the side of the applied rotation with
the width five times larger than the DCB specimen is capable of generating mode III
although the coupled mode II cannot be vanished. The cross-section is illustrated in
figure 10.1.

A
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Figure 10.1: The optimum cross-section for mode III delamination toughness testing.
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e Unlike the mode I where the crack opens from the center to the edges, in mode II and
III the crack extends from the edges to the center. The result from the Cohesive Zone
Modeling also confirms this observation for mode III.

e The bilinear cohesive law under the assumption of neglecting mode II can be utilized for
the Large-Scale Bridging problems and the crack evolution for the DCB specimen with
the isotropic material. For Large Fracture Process Zone, far from the evolved crack front
is predominated by the mode III. The DCB specimen exhibits a stable crack growth. The
validation of the cohesive law using the J integral works well with the DCB specimen
which makes it a suitable specimen for the Large Fracture Process Zone modeling under
anti-plane loading. The result from the Cohesive Zone Modeling can be extended to the
DCB specimen with the unidirectional fibers. The next step is to evaluate the FEM with
the result from a lab specimen.

e For the Large-Scale Bridging condition, A cohesive parameter study using a bilinear
cohesive law has been performed. It is shown that by increasing the critical separation,
d¢, the specimen undergoes mode III and the effect of the coupled mode II becomes
negligible unless, another cohesive law is required that cover both the sliding (mode II)
and tangential (mode III) separation.

10.1 Recommendations for Further Studies

e Further studies is required for the three-dimensional mode I to clarify: (a) the reason for
negative normal stress, 027, very close to the crack tip at the free surface, (b) existence
of the 1/,/7-singularity at the free surface and (c) the effect of pre-crack length on the
mode I Stress Intensity Factor, Kj.

e The Finite Element mesh transition both in the specimen longitudinal and in the direc-
tion of height and width can be optimized.

e The Finite Element model from chapter 7, Effect of Added Beams on Ky, needs to be
improved in mesh transition from the specimen to the elastic beams.

e A separate study among the fracture mechanics FE packages is necessary for the LEFM
to compare different codes.

10.2 Limitations

There has been more than 50 Finite Element Analyses with models from 10000 to 900000
elements. The computational time for a Finite Element model with 500000 elements and
20 Cores each with the frequency of 2.8 GHz is about 60 hours. Furthermore, the maximum
number of elements, a million, and the variety of the cases does not give the chance of creating
a model with extremely fine mesh; however, the present work can be used as a guideline for
the detailed studies of each case in the future.
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APPENDIX A

LEFM stress and displacement
fields for an 1sotropic material

The stress fields for mode I are
(1 in 0 in 39))
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in which r and 6 are the polar coordinates as shown in figure 2.2, ¢ is the stress, subscripts
1, 2 and 3 denotes the x;, x, and x3 directions and V is the Poisson’s ratio.

The displacement fields for mode I are
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G is the shear modulus and u denotes the displacement.



APPENDIX B

Cohesive traction
determination from J integral

B.1 Jintegral for the CZM

Integrating Eq.(2.3) along the path I" shown in figure 2.9, the first term in the J integral
drops (dx;=0) and the equation is written as

Ju; Le du;
J— Oiini—rdx| = — o;inj—dx B.1
/r T 9x /o T ox ®D

where T(8) = —ojjn;j, u; and L. are replaced by 6 and 0%, respectively. Rewriting the
above equation gives

& 95
J= /0 T(8)5-dn (B.2)
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Since —dx; = d &, the J integral for the cohesive model will be
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B.2 Cohesive law derivation from the J integral

Differentiating Eq.(2.12) w.r.t 0* gives

dJ d &
S5 = T5e (/0 T(5)d8) (B.4)

When differentiating, the Ji;p is removed since it is not a function of 6*. According to the
Leibniz’s rule for differentiation

d h(x) d d h(x) 9
dx (/g f(X,t)dt) = f(X,h(x))ah(X) _f(x,g(x))ag(x) —l—/g af(x,t)dt (B.5)
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The Eq.(B.4) by matching each term from the Leibniz’s rule can be written as
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e (/0 (8 ,5)d6) = T(3,8%) G5~ T(87,0) 55 +/O A

The second term on the right hand side of the Eq.(B.6) is zero. Furthermore, 7(8*,6) =

dé (B.6)

aT (6
T(6); thus, % = 0 and the third term on the right hand side vanishes. Eq.(B.6) reduces

to

e (/O (5 ,6)d5) = T(5",6) (B.7)

Rewriting Eq.(B.7) gives
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APPENDIX C

J integral solution for pure
mode |
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Figure C.1: The DCB specimen configuration for mode I and the integration path for the J integral.
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The fracture surfaces are assumed traction free. Hence the J integral is the contributions
from I’ toI's
J=h+h+l+Js+Js (C.D

The first term in Eq.(2.3) for I'; and I's is zero since dx, = 0. The only present stress
component is 07;. Calculating the traction according to 7; = o;;n; also makes the second term
in the J integral for I'; and I'4 zero. I3 is also stress free and therefore J3 = 0. In conclusion,
Eq.(C.1) reduces to the summation of J; and Js. Because of symmetry the J integral for both
I'1 and I's will be the same. In the following, the derivation will be explained for the Js. The
same steps applies to J1. According to Eq.(2.3)
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By Assuming the linear elasticity, the strain energy density, W, can be written as

1
WZEGHSH (C.3)
aul . . e .
ni=-1, dS = —dx», T = &1 and the integration limit is from H to zero. Assuming
X1

ap >> H and a long specimen, the beam theory applies and the bending stress w.r.t to the
defined coordinate system, can be written as
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Substituting the above-values in Eq.(C.2) leads to
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Following the same methodology for I'; yields the same resultas the J5. Finally
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J integral solution for pure
mode 11
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Figure D.1: The DCB specimen configuration for mode II and the integration path for the J integral.

Assuming traction free fracture surfaces, the J integral can be written as

J=h+h+I+Js+Js (D.1)

The first term in the J integral (Eq.(2.3)) for I'; and I'4 is zero. Due to the applied loading
and boundary condition, the only present stress component is 071 and the normal vector for
both I'; and I'4 is np = £1. As a result, the resultant traction for both I'; and I'4 becomes
zero. The second term in the J integral equation vanishes for both I'; and I'4 and J, = J4 = 0.
Rewriting Eq.(D.1) gives

J=h+J3+Js (D.2)

Because of symmetry, the derivation of the J; and Js will be the same and only the steps

for J; will be presented.

According to Eq.(2.3)
8 u;
J = / WdX2 — G,‘jl’lj—dS (D.3)
r Ix
Assuming linear elasticity, the strain energy density, W, will be

1
W = 5611811 (D.4)
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u ) e . .
ni=-1, dS = —dx», 7 €11 and the integration limit is from zero to —H. Assuming

8x1

ap >> H and a long specimen, the beam theory applies and the bending stress w.r.t to the
defined coordinate system, can be written as
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Substituting Eq.(D.4) and Eq.(D.5) along with all the above-mentioned parameters in

Ep.(D.3) yields
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Assuming the Hooke’s law, 011 = E€;y
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The J integral for I'3 is

du;
Js = / <de2—cr,~jnj—”ds> (D.8)
r, dx;

d
where nj=1, dS = dx,, a—ul = €11 and the integration limit is from —H to H. Applying the
X1

beam theory, the bending stress is
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Substituting Eq.(D.4), Eq.(D.9) and the above parameters in Eq.(D.8) provides
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Rewriting Eq.(D.2) yield the final J value for pure mode II
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APPENDIX E

J integral solution for pure
mode 111

A three-dimensional model of the DCB specimen along with the integral contour is shown
in figure E. 1.

e
.

Figure E.1: The DCB specimen configuration for mode III and the integration path for the J integral.
According to figures E.1, the J integral can be written as

J=hh+Dh+I3+J4+J5 (E.1)

Since the only present stress is 071, the traction for the I' and I'; will be zero and Eq.(2.8)
is applicable. Expanding the J integral from this equation, one have

1
J= B /r (O11€11 + 022822 + 033633 + O12Y12 + 03232 + 031131 )dX2
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Under the assumption of pure mode III and symmetry, the only present stress component is
o11. Calculating the traction for the I, I'3, I'4 reveal that these paths are traction free. dx; =0
for the I'; and I'4 and the I'; is stress free. In conclusion, the J integral for the DCB specimen
reduces to

(E.2)

- /r (01311 + 032n2 + 03313)
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J=J+Js (E.3)

Derivation for I's , due to symmetry, will be done in the following. The same is applicable
toI7.

1 aul
Js = — w dA E.4
5= B ( ny— 8x1 ) (E4)

The strain energy density, W, (the first term in Eq.(E.2)) by assuming the linear elasticity
is

1
= 5011 (E.5)

i =¢€11 and T = —o7;. Rewriting Eq.(E.2) for
X1

I's and integrating in both the x, and x3 directions at the same time, gives
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According to Hook’s law
o1 =FE¢e; (E7)
Substituting Eq.(E.7) in Eq.(E.6) and rewriting the Js
H %>
5= /0 o} dxs (E.8)
where the bending stress, oy is
MX3 1
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Plugging Eq.(E.9) into Eq.(E.8) yields
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Following the same procedure for I'; gives the same equation as Eq.(E.10). The final value

for J is
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APPENDIX F

J integral solution for pure
mode III for an orthotropic
material

The integration contour is similar to the contour illustrated in figure E.1. Due to the same
geometry and loading condition both Eq.(E.3) and Eq.(E.4) hold. The derivation will be ex-
plained for I's. The J; follows the same steps.

The stress-strain for an orthotropic material by assuming linear elasticity, can be related
through the below equation set.
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Next, strain energy density, W, is can be written as
1
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Since o7 is the only present stress component, Eq.(F.2), reduces to:

1 (o
— (%1 F,
w=3(5) 3
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By implementing Eq.(F.3) in Eq.(E.4) and with regard to what explained for the J integral
in Appendix E for the rest of terms, one can find the Js.
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Following the same steps for the J; will give the same equation as Eq.(F.6). Finally, by
summing up both J; and Js, the final value of the J is derived.
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J=J +Js = ——
15 = p e

E7)



APPENDIX G

Prescribed Rotation against
Prescribed Displacement

In all the plots, "pr" and "pd" denote the prescribed rotation and prescribed displacement.
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Figure G.1: Mode 1-Comparison between the prescribed rotation and displacement: Distribution of (a) SIF (b)
stress components (at x; = 3.125um and x, = 0) along the crack front.
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Figure G.2: Mode 1-Comparison between the prescribed rotation and displacement: Distribution of 65, along

B
the crack ligament (6 = 0) (a) at the free surface (x3 = E) (b) in the center (x3 = 0).
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Figure G.3: Mode 1-Comparison between the prescribed rotation and displacement: Distribution of o, along

B
the crack ligament (6 = 0) (a) at the free surface (x3 = 5) (b) in the center (x3 = 0) in logarithmic scale.

Table G.1: Comparison of mode I result for applied moment through prescribed rotation and prescribed displace-
ment

Ki /K1 FE
Prescribed rotation 1.032
Prescribed displacement 1.032
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