

Delft University of Technology

Enhancing Change Prediction Models using Developer-Related Factors

Catolino, Gemma; Palomba, Fabio; De Lucia, Andrea; Ferrucci, Filomena; Zaidman, Andy

DOI
10.1016/j.jss.2018.05.003
Publication date
2018
Document Version
Submitted manuscript
Published in
Journal of Systems and Software

Citation (APA)
Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F., & Zaidman, A. (2018). Enhancing Change Prediction
Models using Developer-Related Factors. Journal of Systems and Software, 143(9), 14-28.
https://doi.org/10.1016/j.jss.2018.05.003

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2018.05.003
https://doi.org/10.1016/j.jss.2018.05.003

Enhancing Change Prediction Models using Developer-Related Factors

Gemma Catolino1, Fabio Palomba2, Andrea De Lucia1, Filomena Ferrucci1, Andy Zaidman3

1University of Salerno, Italy — 2University of Zurich, Switzerland — 3Delft University of Technology, The Netherlands
gcatolino@unisa.it, palomba@ifi.uzh.ch, adelucia@unisa.it, fferrucci@unisa.it, a.e.zaidman@tudelft.nl

Abstract

Continuous changes applied during software maintenance risk to deteriorate the structure of a system and threat its
maintainability. In this context, predicting the portions of source code where specific maintenance operations should
be focused on may be crucial for developers to prevent maintainability issues. Researchers proposed change prediction
models based on product metrics, while recent papers have shown the adaptability of process metrics to the same context.
However, we believe that existing approaches still miss an important information, i.e., developer-related factors that are
able to capture how complex is the development process under different perspectives. In this paper, we firstly investigate
three change prediction models that exploit developer-related factors (e.g., number of developers working on a class) as
predictors of change-proneness of classes and then we compare them with existing models. Our findings reveal that these
factors might improve in some cases the capabilities of change prediction models. Moreover, we observed interesting
complementarities among the prediction models. For this reason, we devised a novel change prediction model exploiting
the combination of developer-related factors and product and evolution metrics. The results show that such model is up
to 20% more effective than the single models in the identification of change-prone classes.

Keywords: Change Prediction, Mining Software Repositories, Empirical Study

1. Introduction

Software systems are subject to continuous evolution,
driven by changes in the requirements imposed by the
stakeholders on the one hand and by the resolution of
bugs threatening their reliability on the other hand [42].
Unfortunately, the more changes developers apply to the
software system the more complex the system is likely to
become, thereby eroding the original design and possibly
reducing the overall maintainability [55]. While change is
unavoidable, it needs to be controlled by developers. In
this context, the up front identification of code elements
potentially exhibiting a higher change-proneness may be
important for developers for two main reasons: on the one
hand, change-proneness can be considered as a quality in-
dicator that can be used to warn developers when touching
code that should be refactored [69]; on the other hand, de-
velopers can plan preventive maintenance operations, such
as refactoring [27], peer-code review [3, 9], and testing [66],
aimed at increasing the quality of the code and reducing
future maintenance effort and costs [27].

Change prediction is the branch of software engineering
aimed at identifying the entities more prone to be mod-
ified in the future, helping developers in both planning
preventive maintenance actions and keeping the complex-
ity of source code under control [39]. Previous research
focused on (i) the analysis of the factors influencing the
change-proneness of classes [11, 22, 37, 51, 66] and (ii) the
definition of prediction models able to support developers

by recommending the classes on which preventive mainte-
nance actions should be performed [64, 33, 65, 34].

An important body of previous work has explored the
possibility to use product metrics (e.g., the Chidamber
and Kemerer Object Oriented metric suite [18]) as indi-
cators of the change-proneness of classes. In this case,
the underlying assumption is that classes having low code
quality are more prone to be modified in the future. As
an example, Zhou et al. [69] proposed a change predic-
tion model relying on cohesion, coupling, and inheritance
metrics, finding that code metrics can be exploited for pre-
dicting change-prone classes, while the number of lines of
code often represents a confounding effect worsening the
performance of prediction models..

In the recent past, Elish et al. [24] investigated the
role of process metrics in the context of change prediction
models. More specifically, they devised the so-called evo-
lution metrics, i.e., metrics characterizing the history of a
class under different perspectives (e.g., the number of past
modifications of a class in a certain time window). After-
wards, they found that a change prediction model based
on such evolution metrics performs better than the one
built using code metrics.

Despite the effort devoted by the research community
over the years, we believe that current approaches missed
an important piece of information, i.e., they do not con-
sider developer-related factors, which can provide infor-
mation on how developers perform modifications and how
complex is the development process. In our previous pa-

Preprint submitted to Elsevier May 3, 2018

per [15] we conjectured that such aspects can be a useful
source of information to predict classes more likely to be
changed in the future. To verify the conjecture, we empir-
ically evaluated the performance of three prediction mod-
els based on developer-related factors previously defined
in literature. Specifically, we experimented the (i) Basic
Code Change Model (BCCM) proposed by Hassan [35]
which relies on the entropy of changes applied by devel-
opers, (ii) the Developer Changes Based Model (DCBM)
devised by Di Nucci et al. [21] that considers to what ex-
tent developers apply scattered changes in the system, and
(iii) the Developer Model (DM) proposed by Bell et al. [8]
which analyzes how many developers touched a code ele-
ment over time. Although such models were originally pro-
posed in the context of bug prediction, we selected them
since they are based on metrics possibly influencing the
change-proneness of classes as well. For instance, the lack
of coordination between multiple developers working on
the same code element may lead to the introduction of de-
sign pitfalls that negatively influence the maintainability
of source code [40], possibly making it more change-prone.
Furthermore, to have a comprehensive view of the useful-
ness of developer-related factors in change prediction, we
also compared the performance of the experimented mod-
els with the ones proposed by Elish et al. [24] and Zhou et
al. [69].

The results demonstrated that the experimented pre-
diction reached an overall F-Measure ranging between 57%
and 68% and an Area Under the ROC Curve (AUC-ROC)
ranging between 56% and 70%. Among them, the DCBM
model was the one obtaining the highest accuracy. When
compared to the model exploiting the evolution metrics
devised by Elish et al. [24], we found that the developer-
based prediction models improved the F-Measure up to
12% and the AUC-ROC up to 15%. More importantly,
all the investigated prediction models showed interesting
complementarities in the set of change-prone classes cor-
rectly predicted. Indeed, we discovered that different mod-
els capture different change-prone instances, paving the
way for new prediction models exploiting a combination
of the predictors used by the investigated models.

In this paper, we extend our previous work [15] with
the aim of (i) designing a combined change prediction
model that exploits the complementarities among the in-
vestigated product, process, and developer-based models
and (ii) increasing the generalizability of our findings by
considering a larger dataset. More specifically, we:

1. Devise and evaluate the performance of a new change
prediction model based on a combination of the met-
rics used by the previously investigated models. On
the basis of the complementarities discovered among
the investigated change prediction models, we per-
formed a detailed study—exploiting the Information
Gain algorithm [58]—with the aim of finding the
subset of predictors more relevant for the identifi-
cation of change-prone classes. Then, we exploited

them to build and evaluate a combined change pre-
diction model.

2. Extend the empirical evaluation of developer-based
change prediction models and their comparison with
the state of the art. While we previously analyzed
197 releases of 10 software systems having a total of
105,693 commits and 358 developers, this study con-
siders 192,274 commits made by 657 developers over
408 releases of 20 software systems having different
size and scope.

On the one hand, the results of the study confirm
our previous findings showing the usefulness of developer-
related factors in change prediction. On the other hand,
we found that the novel combined change prediction model
clearly outperforms the baseline models, being more accu-
rate in the predictions by up to 23% in terms of F-Measure.

Structure of the paper. In Section 2 we discuss back-
ground and related literature on change prediction. In
Section 3 the design of the empirical study is described,
while Section 4 reports the results achieved when evaluat-
ing the performance of the experimented change prediction
models. Section 5 discusses the threats that could affect
the validity of our study. Finally, Section 6 concludes the
paper.

2. Background and Related Work

In this section we firstly present a background on the
problem of change prediction and how it can be used to
improve the quality of source code; then, we overview the
related literature.

2.1. The problem of predicting change-prone classes

Change-prone classes represent pieces of code that, for
different reasons, tend to change more often: this may be
due to the importance of a class for the business logic of the
system or because it is not properly designed by developers
(e.g., in presence of code smells [37, 54]). Keeping track
of these classes can be relevant to create awareness among
developers about the fact that these classes tend to change
frequently, possibly hiding design issues that should be
solved.

It is important to note that this type of classes must not
be confused with bug-prone code elements. The two sets of
classes might have some relationships but they still remain
conceptually disjoint. In the first place, bug-proneness in-
dicates source code that is more likely to have bugs in the
near future, thus, the fact that a class has bugs does not
imply that it changes more often. Secondly, bug-prone
classes might also be change-prone (changes are made to
correct faults), but corrections are not the only reason for
changes, as classes might change due to software evolu-
tion. Thus, change- and bug-proneness of classes might
have some relation, but are not the same.

2

Change prediction models represent an established way
to identify change-prone classes [69]. In this context, a su-
pervised technique is exploited, where a set of independent
variables (i.e., metrics characterizing a class) are used by a
Machine Learning classifier (e.g., Logistic Regression [41])
to predict a dependent variable (i.e., the change-proneness
of classes). In a real-case scenario, change prediction mod-
els might be directly integrated in developers software an-
alytics dashboards (e.g., Bitergia1), thus continuously
providing feedback on the source code classes that are
more likely to change in the future. Such feedback can
be used by developers as input for performing preventive
maintenance activities before putting the code into pro-
duction: for instance, in a continuous integration (CI) sce-
nario, developers might want to refactor the code before
the CI pipeline starts to avoid warnings given by static
analysis tools [10, 68]. Similarly, change prediction models
might be useful for project managers in order to properly
schedule maintenance operations.

2.2. Related Work

The change-proneness of classes has been frequently in-
vestigated in the last decade by the research community
under two main perspectives. On the one hand empirical
studies were conducted with the aim of analyzing the fac-
tors influencing the phenomenon [11, 22, 37, 51, 66], while
other studies investigated the role of product and evolu-
tion metrics as predictors of the future change-proneness
of classes [8, 24, 67]. In the following we summarize the
related literature on previous research.

2.2.1. Factors Influencing Change-proneness of Classes

Di Penta et al. [22] firstly investigated the rela-
tion between classes involved in design patterns [29] and
change-proneness, finding that three design patterns, i.e.,
Adapter, Abstract Factory, and Command, tend to
make classes more change-prone with respect to the other
classes of a software system. These findings were subse-
quently confirmed by Bieman et al. [11] in the context of
an industrial case study involving three proprietary sys-
tems. Also Posnett et al. [57] analyzed the influence of
pattern roles on change-proneness, showing that the size
seems to be a stronger determinant of change-proneness
than design patterns.

Specularly, Khomh et al. [37] analyzed how bad design
patterns (a.k.a., bad code smells [27]) affect the change-
and bug-proneness of classes. They showed that smelly
classes are significantly more likely to be the subject of
changes and bugs than other classes. Moreover, systems
containing a high number of smells are likely to be more
change prone. On the other hand, Kim et al. [51] showed
that refactoring is a key activity to reduce the change-
proneness of classes.

1https://www.bitergia.com

Finally, Lindvall [43] found that the size of a class can
influence the propensity to change, in fact large classes
are statistically more change-prone than classes having a
small size, and that developers tend to apply more changes
to such classes during maintenance and evolution [44].
Further studies showed that coupling metrics are rele-
vant measures to estimate the changeability of source code
[1, 2, 13].

Our findings provide additional insights into the fac-
tors influencing the change-proneness of classes, since we
show that developer-related factors play a relevant role in
change prediction.

2.2.2. Predicting Change-Prone Classes

Most of the work conducted with the aim of predicting
classes that are more likely to change in future releases
of a software system refers to the usage of the structural
information extracted from source code [47].

Chaumun et al. [17] and Tsantalis et al. [67] provided
evidence of the usefulness of CK metrics [18] for change
prediction. The statistical analyses conducted by Lu et
al. [46] and Malhotra et al. [48] clarified which Object
Oriented metrics are better suited for change prediction,
reporting a set of cohesion, coupling, and inheritance met-
rics that should be used in this context. On the basis
of these results, several prediction models based on prod-
uct metrics have been devised. For instance, Romano et
al. [59] relied on code metrics for predicting change-prone
fat interfaces, while Eski et al. [25] proposed a model
based on both CK and QMOOD metrics [6] to estimate
change-prone classes and to determine parts which should
be tested first and more deeply.

Other previous research tried to estimate the change-
proneness of classes using alternative methodologies. For
instance, the combination between dependencies mined
from UML diagrams [62] and code metrics has been pro-
posed [64, 33, 65, 34]. Also genetic and learning algorithms
have been proposed in this context [49] [50] [56]. Specifi-
cally, Malhotra et al. [49] validated the CK metrics suite
for building an efficient software quality model which pre-
dict change prone classes with the help of Gene Expres-
sion Programming. Marinescu [50] reported the goodness
of GAs for both change- and bug-prediction, while Peer
et al. [56] devised the use of adaptive neuro-fuzzy infer-
ence system (ANFIS) to estimate the change-proneness
of classes. Later on, Zhou et al. [69] showed that size
metrics may lead to multi-collinearity [53] when mixed to-
gether with other cohesion and coupling metrics. As a
result, they suggested to avoid using the LOC metric in
product-based change prediction models [69].

The studies by Elish et al. [24] and Girba et al. [30]
are the closest to our work. Elish et al. [24] reported the
potential usefulness of evolution metrics for change predic-
tion. Girba et al. [30] defined a tool that suggests change-
prone code elements by summarizing previous changes. In
a small-scale empirical study involving two systems, they

3

observed that previous changes can effectively predict fu-
ture modifications.

Besides the evolution metrics defined by Elish et al.
[24] and Girba et al. [30], in this paper we also analyzed
the role of developer-related factors that have shown to
be relevant for prediction purpose in other contexts [21].
More importantly, we show that the combination of prod-
uct, process, and developer-related metrics may provide
better performance when predicting change-prone classes.

3. Empirical Study Design

The goal of the empirical study is to evaluate the use-
fulness of metrics capturing the complexity of the develop-
ment process for predicting change-prone classes, with the
purpose of improving the allocation of resources in preven-
tive maintenance activities (e.g., refactoring, code review,
etc.) by focusing the attention on such classes. The qual-
ity focus is on the prediction accuracy and completeness of
the investigated approaches, while the perspective is that
of both researchers and practitioners: the former are in-
terested in evaluating the effectiveness of using developer-
related factors within change prediction model; the latter
are interested in understanding the actual applicability of
change prediction models.

The context of the study consists of twenty open
source software systems having different size and scope.
Specifically, starting from the list of open source projects
available on Github2, we randomly selected the systems
among those having more than 500 commits and more than
10 developers: in this way, we selected projects having
enough change history and developer-related information
for our study. Table 1 shows the characteristics of the
considered systems, in particular (i) the software system’s
evolution that we took into account, (ii) the average per-
centage of change-prone classes identified among all the
time windows analyzed (more details later in this section),
and (iii) the size in terms of number of commits, aver-
age number of developers in the considered time windows,
classes, and KLOCs. Overall, our study considers 408 re-
leases, 192,274 commits, and 657 developers.

3.1. Research Questions

The study addresses the following research questions:

RQ1: To what extent are developer-based pre-
diction models able to correctly estimate the
change-proneness of classes?

RQ2: How does the performance of developer-
based prediction models differ from the ones of
existing change prediction models?

RQ3: What is the complementarity between
the developer-based models and the existing
change prediction models?

2https://github.com

RQ4: Is a combined change prediction model
able to boost the performance of existing mod-
els?

The first research question (RQ1) aims at measuring
the extent to which change prediction models built using
developer-related factors can be useful when employed in
the prediction of change-prone classes. With RQ2 our
goal is to compare the performance of the experimented
developer-based models with the ones previously defined
in literature, while in RQ3 we measure the complementar-
ity between the developer-based and existing change pre-
diction models. Once we have assessed the performance
of the individual change prediction techniques, in RQ4
we aim at investigating the performances of a combined
model built taking into account the metrics used by the
different investigated models.

3.2. Experimental Setup

To perform the study we set up an experimental en-
vironment to run both the developer-based and the base-
line change prediction models. This lead to (i) the selec-
tion of the developer-based models, (ii) the identification
of the baseline techniques, (iii) the definition of the de-
pendent variable that the models need to classify, i.e., the
change-proneness of the classes in our dataset, (iv) the ma-
chine learning technique to use for classifying the change-
proneness of classes, and (v) the validation strategy to
assess the performance of the models.

Developer-based Change Prediction Models. To
understand the predictive power of developer-related fac-
tors in change prediction, we decided to test the per-
formance of three prediction models (we refer to them
as developer-based models since they rely on developer-
related factors):

1. The Basic Code Change Model (BCCM) defined by
Hassan [35], based on the entropy of changes applied
by developers in a given time period α. More in
detail, the model construction comprises two steps.
Firstly the so-called feature introduction modifica-
tions, i.e., changes applied in the time window α
with the aim of introducing new or enhancing ex-
isting features, are identified. To this aim, for each
analyzed commit, it runs a keyword-based technique
able to distinguish three types of modifications, i.e.,
(i) Fault Repairing modifications (FR), (ii) General
Maintenance operations (GM), and (iii) Feature In-
troduction modifications (FI), based on the analysis
of the commit message:

• FR modifications are identified as those whose
commit message contains references to an issue,
i.e., “fix”, “bug fix”, “#ID”.

• GM operations do not reflect the implemen-
tation of features and are identified using

4

Table 1: Characteristics of the Software Projects in Our Dataset

System Period % Change-prone Classes #Releases #Commits #Dev. #Classes KLOCs
Apache Ant Jan 2000-Jul 2014 35% 22 13,054 55 83-813 20-204
Apache Cassandra Mar 2007-Jan 2012 22% 13 20,026 128 305-586 70-111
Apache Lucene May 2004-Mar 2013 33% 44 13,784 62 376 - 5,506 102 - 142
Apache Poi Jun 2003-Nov 2012 34% 25 5,472 21 763 - 2,854 154 - 542
Apache Synapse Sep 2004-Oct 2010 22% 14 2,432 24 141 - 826 182 - 372
Apache Velocity Nov 2000-Aug 2012 19% 24 12,924 22 188 - 872 238 - 527
Apache Xalan Jan 1999-Dec 2011 22% 28 10,489 38 214 - 663 142 - 231
Apache Xerces Nov 1999-Feb 2014 19% 16 5,471 34 162-736 62-201
ArgoUML Oct 2002-Dec 2012 28% 16 19,961 31 777-1,415 147-249
aTunes Aug 2005-Apr 2010 31% 31 6,276 21 141-655 20-106
FreeMind Jun 2000-Feb 2012 28% 16 722 13 25-509 4-103
JEdit Jan 2005-Jun 2012 24% 29 24,340 18 228-520 39-166
JFreeChart Feb 1999-Jul 2013 33% 23 14,099 15 86-775 15-231
JHotDraw Jan 2001-Dec 2012 23% 16 1,121 27 159-679 18-135
JVLT Jan 2007-Dec 2012 29% 15 623 16 164-221 18-29
pBeans Sep 2010-Sep 2015 28% 15 3,894 31 187 - 520 51 - 112
pdfTranslator Oct 2008-Apr 2014 25% 21 1,038 18 383 - 471 16 - 48
Redaktor Aug 2006-Dec 2011 31% 13 16,287 17 284 - 729 31 - 139
Serapion May 2009-Mar 2013 26% 9 11,982 35 55 - 398 23 - 211
Zuzel Nov 2004-Jan 2010 31% 18 8,279 31 119 - 392 119 - 293
Overall - - 408 192,274 657 25-1,415 4-542

keywords like “copyright”, “re-indent”, and
“cleanup”.

• All the other modifications are marked as FI.

Once the FI modifications are identified, the entropy
of the changes on a certain class ci in the time period
α is computed exploiting the concept of Shannon
entropy [63] as in the following equation:

entropy(ci, α) = −(pk · log2 pk) (1)

where pk indicates the probability with which ci was
changed with respect to feature introduction modi-
fications in the considered time period. Such prob-
ability is simply computed considering the fraction
between the number of feature introduction modifi-
cations applied on ci in the time period α over the
total number of feature introduction modifications in
α. For instance, suppose that the class ci underwent
one FI change in the time window, while the total
amount of FI changes applied in the same window are
four. The entropy of ci will then be −(1/4 · log2 1/4).
It is important to note that this model can be con-
sidered developer-based since the entropy metric not
only filters the types of changes performed on a cer-
tain class in a time period, but it also estimates how
difficult its development was through the analysis of
the entropy of the changes performed by developers.

2. The Developer Changes Based Model (DCBM) pro-
posed by Di Nucci et al. [21]. It uses the struc-
tural and semantic scattering of the developers that
worked on a code element in given time period α as
predictors. The scattering metrics are computed for
each class c as in the following equations:

StrScatPredc,α =
∑

d∈developersc,α

StrScatd,α (2)

SemScatPredc,α =
∑

d∈developersc,α

SemScatd,α (3)

where developersc,α represents the set of developers
that worked on the class c during the time period α,
and the functions StrScatd,α and SemScatd,α return
the structural and semantic scattering, respectively,
of a developer d in the time window α. Given the
set CHd,α of classes changed by a developer d dur-
ing a time period α, the structural scattering of a
developer is computed as follow:

StrScatd,α = |CHd,α| × average
∀ci,cj∈CHd,α

[dist(ci, cj)] (4)

where dist is the number of packages to traverse in
order to go from class ci to class cj . More specifically,
it is computed by applying the shortest path algo-
rithm on the graph representing the systems pack-
age structure. As for the semantic scattering of a
developer, it is based on the textual similarity of the
classes changed by a developer in the time period α
and it is computed as:

SemScatd,α = |CHd,α| ×
1

average
∀ci,cj∈CHd,α

[sim(ci, cj)]

(5)
where the sim function returns the textual similarity
between the classes ci and cj according to the mea-
surement performed using the Vector Space Model

5

(VSM) [4]. The metric ranges between zero (no tex-
tual similarity) and one (the textual content of the
two classes is identical).

3. The Developer Model (DM) devised by Bell et al.
[8] relies on the number of developers that worked
on a specific component of source code in a given
time period α. In the first place, the set Devs(ci, α),
which composed of the developers that committed
at least one change to a certain class ci during the
time period α, is computed. Then, the number of
developers for ci is given by the cardinality of the
set |Devs(ci, α)|.

While the selected models have originally been defined
in the context of bug prediction, the choice to use them
for change prediction was guided by the will to explore
the role of different aspects of the development process
on the change-proneness of classes. For instance, having
a high entropy of changes might indicate the presence of
a complex development process where developers apply
changes in an undisciplined manner that lead to source
code that is less maintainable and possibly more change-
prone in the future.

Baseline Change Prediction Models. In our work,
we identified two main baseline techniques for the predic-
tion of change-prone classes. The first one is a product-
based prediction model. Among all the models relying on
code metrics as predictors [47], we used as baseline the
model by Zhou et al. [69], which relies on a set of cohesion
(i.e., the Lack of Cohesion of Method — LCOM), cou-
pling (i.e., the Coupling Between Objects — CBO — and
the Response for a Class — RFC), and inheritance met-
rics (i.e., the Depth of Inheritance Tree — DIT). We also
added the Lines of Code (LOC) metric as an additional
independent variable with the aim of evaluating whether
this metric actually represents a confounding factor [69],
or rather if larger classes are more likely to be modified.
In the following, we refer to this model as CM, i.e., Code
Metrics Model.

In the second place, we selected the Evolution Model
(EM) proposed by Elish et al. [24], which relies on the set
of metrics shown in Table 2; these metrics capture different
aspects of the evolution of classes, e.g., the change density
or the date of birth of a class. Moreover, this model di-
rectly uses the number of previous changes of a class to
predict its future change-proneness: basically, it exploits
the concept of “change-caching”, i.e., classes that under-
went more changes in the past will likely undergo more
changes in the future since they encapsulate most of the
complexity of the system. It is worth noting that the total
amount of changes metric differs from the entropy measure
proposed by Hassan since (i) it has no filter on the types
of changes applied on the class, while the entropy metric
only considers modifications aimed at adding or enhanc-
ing features and (ii) it does not capture the development
complexity aspect, as opposite to the entropy metric that

Table 2: Independent variables considered by Elish et al. [24].

Acronym Metric
BOC Birth of a Class
FCH First Time Changes Introduced to a

Class
FRCH Frequency of Changes
LCH Last Time Changes Introduced to a

Class
WCD Weighted Change Density
WFR Weighted Frequency of Changes
TACH Total Amount of Changes
ATAF Aggregated Change Size Normalized

by Frequency of Change
CHD Change Density
LCA Last Change Amount
LCD Last Change Density
CSB Changes since the Birth
CSBS Changes since the Birth Normalized

by Size
ACDF Aggregated Change Density Nor-

malized by Frequency of Change
CHO Change Occurred

is able to estimate how difficult was the development of a
class c in a certain time period [35].

Being composed of several metrics, each of the base-
line models might potentially suffer of multi-collinearity
[53], which arises when two or more independent variables
are highly correlated with each other, possibly causing a
decrease in the overall performance of the model. To en-
sure a fair comparison with the developer-based models,
we performed a feature selection preprocessing [45] with
the goal of discarding the non-relevant features.

Specifically, for each baseline we exploited the infor-
mation gain algorithm [58], a function able to quantify
the gain provided by including each metric in a prediction
model. In our context this algorithm is able to rank the
metrics according to their ability to predict the change-
proneness of classes. More formally, letM be the combined
change prediction model, let F = {f1, . . . , fn} be the set
of features composing M , the algorithm [58] measures the
difference in terms of entropy from before to after the set
F is split on a variable fi using the following formula:

InfoGain(M,fi) = E(M)− E(M |fi) (6)

where the function E(M) represents the entropy of M
when it includes the feature fi, and the function E(M |fi)
represents the entropy of M when it does not include fi
as a feature. The entropy is computed as reported in the
following equation:

E(M) = −
n∑
i=1

prob(fi) log2 prob(fi) (7)

The algorithm quantifies how much uncertainty in M was
reduced after splitting M on predictor f1. In the context of

6

our work, we applied the Gain Ratio Feature Evaluation
algorithm implemented in the WEKA toolkit [32] which
ranks f1, . . . , fn in descending order based on the
contribution provided by fi to the decisions made by M.

The output of the algorithm is represented by a ranked
list where the more relevant features, i.e., the ones having
the higher expected reduction in entropy are placed at the
top. We set the cut-off point of the ranked list equal to
0.1, as suggested by Quinlan [58]. As a result, we excluded
FCH, LCH, WFR, ATAF, CHD, LCD, CSBS, and ACDF
from the Evolution Model. In the case of CM, instead,
none of the metrics were filtered out. However, we found
the LOC metric to be the less important metric for the
model, with an expected reduction of 0.11: this somehow
confirms the findings by Zhou et al. [69] on the relatively
low power of this metric in capturing change-prone classes.

For sake of readability, in Table 3 we report the (i)
abbreviations used over all the paper, (ii) the names, and
(iii) a brief description of the investigated models.

Computing the Change-Proneness of Classes.
To evaluate the performance of the change prediction mod-
els, we needed an oracle reporting the actual change-prone
classes. To the best of our knowledge, a public oracle re-
porting the ground-truth for the phenomenon taken into
account is not available in literature. Thus, we needed to
build our own oracle. To this aim, we followed the guide-
lines provided by Romano et al. [59], which considered
a class as change-prone if, in a given time period TW, it
underwent a number of changes higher than the median
of the distribution of the number of changes experienced
by all the classes of the system. In particular, for each
pair of commits (ci , ci+ 1) of TW we run ChangeDis-
tiller [26], a tree differencing algorithm able to extract
the fine-grained code changes between ci and ci+ 1. The
complete list of change types identified by ChangeDis-
tiller is provided in Table 4: as shown, we considered
all of them while computing the number of changes. It is
worth noting that the tool ignores white space-related dif-
ferences and documentation-related updates, so that only
the changes applied on the source code are considered.
Moreover, ChangeDistiller is also able to identify re-
naming operations: in this way, we could handle cases
where a class was modified during the change history, thus
not biasing the counting of the number of changes.

We made the oracle reporting the change-prone classes
of all the twenty considered systems publicly available in
the online appendix [16].

Classifier Selection. The next step concerned the
identification of the machine learning technique to use
to classify the change-proneness of classes. The related
literature proposes several alternatives (e.g., Tsantalis et
al. [67] relied on Logistic Regression [41], while Romano
and Pinzger [59] suggested the use of Support Vector Ma-
chine [12]), however it is still unclear which classifier is
able to give the best overall performance.

For this reason, we experimented with several classi-

fiers previously used for prediction purposes from the re-
search community, i.e., ADTree [28], Decision Table Ma-
jority [38], Logistic Regression [41], Multilayer Perceptron
[60], Support Vector Machine [12], and Naive Bayes [36].
We empirically compared the results achieved when ap-
plying each classifier on each experimented baseline model
on the software systems in our study (more details on the
adopted procedure can be found in Section 3.3), and Lo-
gistic Regression [41] provided the best performance for
all the tested prediction models. Thus, in this paper we
report the results of the models built with this classifier.
A comprehensive report of the comparison of the different
classifiers is included in the online appendix [16].

Validation Strategy. To assess the performance of
the experimented prediction models we split the evolution
history of the subject systems into three-month time peri-
ods and we adopted a three-month sliding window to train
and test the change prediction models. Specifically, start-
ing from the first time window TW1 (i.e., the one starting
from the first commit), we trained each model on it, and
tested its performances on the time window TW2 (i.e., the
subsequent three-month period). Then, we moved three
months forward to the next time window, training the
classifier using the data available in TW2 and testing the
model on TW3. This process has been repeated until the
end of the evolution history of the subject systems.

The choice of the validation methodology was based
on three aspects. Firstly, all the models refer to a spe-
cific time window of size α in which their own predictors
have to be computed. Therefore, this validation technique
better fits the characteristics of the experimented models.
Secondly, developer-related metrics aim at capturing the
dynamics among developers in a given period of time: con-
sidering larger time windows (e.g., entire releases) would
be not conceptually correct, as such metrics would put
together things happened far in the time. Thirdly, this
methodology has been widely used in recent years to test
the performance of prediction models [21, 35]. Moreover,
the choice of considering three-month periods is based on
(i) the results of previous work, such as the ones by Has-
san [35] and Di Nucci et al. [21], and (ii) the findings of the
empirical assessment we performed on such a parameter,
which showed that the best results for all experimented
techniques are achieved when using three-month periods.
In particular, we tested time windows of size α = 1, 2, 3, 6
months. A report of the results is available in the replica-
tion package [16].

3.3. Analysis Method

To answer RQ1, we firstly ran the previously selected
developer-based prediction models, i.e., BCCM, DCBM,
and DM, on every three-month window of the change his-
tory of the systems considered. Then, we computed three
well-known Information Retrieval metrics, namely accu-
racy, precision and recall [4], defined as follow:

7

Table 3: Summary of the five investigated change prediction models

Abbreviation Name Description
BCCM [35] Basic Code Change Model It is based on the entropy of changes applied by developers in a

given time period.
DCBM [21] Developer Changes Based Model It takes into account the developers structural and semantic scat-

tering. The first measures how “structurally”
far the code components modified by a developer in a given time
period are. The second capture how much
spread in terms of implemented responsibilities the code compo-
nents modified by a developer in a given time period are.

DM [8] Developer Model It relies on the number of developers who modified a code com-
ponent in a give time period.

EM [24] Evolution Model Based on a set of historical metrics shown in Table 2.
CM [69] Code Metrics Model It relies on a set of cohesion (i.e., LCOM), coupling (i.e., CBO

and RFC), and inheritance metrics (i.e., DIT).

accuracy =
TP + TN

TP + FP + TN + FN
(8)

precision =
TP

TP + FP
(9)

recall =
TP

TP + FN
(10)

where TP is the number of change-prone classes classified
as such by a prediction model; TN denotes the number of
non-change-prone classes correctly classified by the model;
FP and FN measure the number of classes for which a
prediction model fails in identifying the change-proneness
of classes by declaring these classes as change-prone (FP)
or non-change-prone (FN). As an aggregate indicator of
precision and recall, we also reported the F-Measure, a
metric defined as the harmonic mean of precision and recall
[4]:

F -Measure = 2 ∗ precision ∗ recall
precision+ recall

(11)

In addition, we computed three more metrics. In the
first place, we considered the Area Under the ROC Curve
(AUC-ROC): this metric quantifies the overall ability of
a prediction model to discriminate between change-prone
and non-change-prone classes. The closer the AUC-ROC
to 1, the higher the ability of the classifier to discriminate
classes that will change less or more in the future. On the
other hand, the closer the AUC-ROC to 0.5, the lower the
accuracy of the classifier.

Then, we computed the Matthews Correlation Coeffi-
cient (MCC) [5], a regression coefficient that combines all
four quadrants of a confusion matrix, thus also considering
true negatives. Its formula is:

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

where TP, TN, and FP represent the number of (i) true
positives, (ii) true negatives, and (iii) false positives, re-
spectively, while FN is the number of false negatives. Its
value ranges between 1 and +1. A coefficient equal to +1

indicates a perfect prediction; 0 suggests that the model
is no better than a random one; and 1 indicates total dis-
agreement between prediction and observation.

Thirdly, we computed the Brier score [14, 61], which
measures the distance between the probabilities predicted
by a model and the actual outcome. Formally, the Brier
score is computed as follows:

Brier-score =
1

N

N∑
i=1

(pc − oc) (13)

where pc is the probability predicted by the model on a
class c, oc is the actual outcome for class c, and N is
the cardinality of the dataset. Lower Brier scores indicate
better classifier performance, while higher scores indicate
lower performance.

Finally, we also statistically compared the AUC-ROC
achieved by the experimented prediction models. To this
aim, we exploited the Mann-Whitney test [19] (results are
intended as statistically significant at α=0.05). Further-
more, we estimated the magnitude of the measured dif-
ferences by using Cliff’s Delta (or d), a non-parametric
effect size measure [31] for ordinal data. We followed well-
established guidelines to interpret the effect size values:
negligible for |d| < 0.10, small for |d| < 0.33, medium for
0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [31].

To answer RQ2 and compare the developer-based
models with those previously defined in literature, we ran
the baseline change prediction models, i.e., EM and CM,
over the three-month windows of the change history of the
systems in the dataset. Subsequently, we compared the
experimented models using the same procedures and met-
rics used in the context of RQ1. Moreover, we statistically
compared the AUC-ROC achieved by such models.

To answer RQ3 and analyze the complementarity be-
tween the exploited models, we investigated to what extent
different models correctly classify the change-proneness of
different classes. To this aim, we exploited the overlap
metrics. Specifically, for each pair mi and mj of the ex-
perimented prediction models, we computed the overlap
between the sets of true positives correctly identified by
both models (denoted by corrmi∩mj) and the percentage

8

Table 4: Change types extracted by ChangeDistiller. ‘X’ sym-
bols indicate the types we considered when computing the change-
proneness of classes, ‘–’ .

ChangeDistiller Our Study
Statement-level changes
Statement Ordering Change X
Statement Parent Change X
Statement Insert X
Statement Delete X
Statement Update X
Class-body changes
Insert attribute X
Delete attribute X
Declaration-part changes
Access modifier update X
Final modifier update X
Declaration-part changes
Increasing accessibility change X
Decreasing accessibility change X
Final Modified Insert X
Final Modified Delete X
Attribute declaration changes
Attribute type change X
Attribute renaming change X
Method declaration changes
Return type insert X
Return type delete X
Return type update X
Method renaming X
Parameter insert X
Parameter delete X
Parameter ordering change X
Parameter renaming X
Class declaration changes
Class renaming X
Parent class insert X
Parent class delete X
Parent class update X

of change-prone classes correctly classified by mi only and
missed by mj (denoted by corrmi\mj) defined as follows:

corrmi∩mj =
|corrmi ∩ corrmj |
|corrmi ∪ corrmj |

% (14)

corrmi\mj =
|corrmi \ corrmj |
|corrmi ∪ corrmj |

% (15)

where corrmi represents the set of change-prone classes
correctly classified by the prediction model mi.

As for RQ4, we aimed at devising a combined model
using a mix of the features exploited by the prediction
models investigfated in the previous research questions. It
is important to note that a simple combination obtained
by featuring together all the predictors used by the five

models might lead to sub-optimal results because of over-
fitting [52]. To avoid this issue, we identified the subset
of predictors actually leading to the best prediction per-
formance. Thus, we re-applied the Gain Ratio Feature
Evaluation algorithm [58] as done in RQ1, using 0.1 as
cut-off point. As a result, only the relevant features were
considered when building the combined model.

To ensure a fair comparison with the stand-alone pre-
diction models, i.e., the ones exploiting the considered pre-
dictors in isolation, we measured the performance of the
combined model using the same set of metrics previously
exploited and computed the statistical difference of AUC-
ROC between the combined and the stand-alone models.

4. Empirical Study Results

In this section we report the results achieved in the
study. Tables 5 and 6 report the performance of the exper-
imented change prediction models over the twenty consid-
ered subject systems. For sake of clarity, in the following
we discuss each research question independently.

4.1. RQ1: Performance of Developer-based Models

Looking at Table 5, we can immediately provide quan-
titative answers to our first research question. In the first
place, while developer-based models tend to perform well,
it is worth noting that none of them achieves an overall
accuracy higher than 77%. Even if this value is still quite
positive, it is also important to highlight that a notable
percentage of classes (at least 23%) is not correctly classi-
fied while using the models independently. Thus, the prob-
lem of identifying the change-proneness of classes seems to
be not easily addressable by employing models based on
single aspects of the development process.

Among the three developer-based models investi-
gated, DCBM [21] tends to perform better than
the others, achieving the best scores in term of all
the quality metrics computed, i.e., accuracy=77%,
precision=65%, recall=72%, F-Measure=68%, AUC-
ROC=70%, MCC=65%, BS=38%. Based on these re-
sults, we can claim that the way developers apply changes
in the system has an influence of the likelihood to make
the touched classes more change-prone. The superiority of
DCBM is particularly evident in the comparison with the
DM model (i.e., the model based on the number of devel-
opers), where the F-Measure is 9% higher and the Brier
Score is 20% lower. This result highlights that it is not sim-
ply the number of developers working on a class that influ-
ences the change-proneness, but rather the way developers
apply (scattered) changes to the system. Our findings con-
firm, in the context of change prediction, previous findings
achieved by Di Nucci et al. [21], which showed the superi-
ority of the DCBM model in predicting bugs. For instance,
consider the case of the class org.gjt.sp.BufferHistory
of the JEdit system. Between August and October 2009
(i.e., one of the three-month periods considered in our

9

Table 5: Performance (in percentage) achieved by the investigated change prediction models.
A=Accuracy; P=Precision; R=Recall; F-M=F-Measure; AR=AUC-ROC; MCC= Matthews Correlation Coefficient ; BS = Brier-Score

Project
BCCM DCBM DM
A P R F-M AR MCC BS A P R F-M AR MCC BS A P R F-M AR MCC BS

Ant 72 65 79 72 82 62 43 71 63 71 67 66 72 34 48 51 57 55 51 55 57
Cassandra 77 84 90 87 84 59 39 65 67 68 67 64 51 53 71 49 60 54 62 58 48
Lucene 60 58 71 64 60 59 47 75 73 64 68 71 72 37 49 54 58 56 58 53 47
Poi 79 70 85 77 77 66 34 50 55 59 57 55 53 46 75 46 49 47 60 59 48
Synapse 59 69 57 62 56 60 40 72 75 78 76 75 63 38 62 57 52 54 62 55 48
Velocity 75 62 58 60 64 65 41 79 61 64 62 74 69 36 56 61 72 66 61 50 51
Xalan 75 66 67 66 67 60 44 84 77 74 75 74 60 36 52 47 62 53 53 53 52
Xerces 87 69 71 70 62 64 35 69 66 75 71 52 55 62 76 73 66 69 62 54 51
ArgoUML 89 87 88 87 93 67 37 87 93 81 86 93 64 40 62 57 61 58 52 53 54
aTunes 63 58 62 60 67 66 39 61 52 55 54 53 54 52 66 75 50 60 63 54 46
FreeMind 35 35 28 31 59 68 40 68 42 45 44 70 59 42 63 62 64 63 63 53 49
JEdit 78 42 74 58 62 69 41 55 48 52 50 52 52 46 62 70 35 47 59 55 55
JFreeChart 71 45 67 56 55 67 45 73 42 62 52 55 68 35 64 45 61 53 57 54 67
JHotDraw 97 77 59 67 79 62 44 97 66 72 69 75 66 35 62 61 69 65 61 52 45
JVLT 80 50 50 50 50 61 41 81 51 76 62 59 63 38 49 44 48 46 52 54 56
pBeans 70 56 56 56 77 63 44 73 62 75 68 64 62 45 53 49 55 52 52 51 51
pdfTranslator 75 75 57 65 71 60 39 69 65 70 67 65 66 43 63 51 61 56 61 53 55
Redaktor 70 73 64 68 64 63 43 82 68 67 67 67 67 43 54 47 60 53 58 54 58
Serapion 68 63 63 63 72 68 48 71 70 86 77 73 68 37 61 60 56 58 57 53 54
Zuzel 55 72 65 68 66 66 49 84 71 73 72 67 67 39 55 51 55 53 55 50 58
Overall 71 61 63 62 68 63 43 77 65 72 68 70 65 38 58 54 60 57 56 53 52

study) the class was modified 19 times by one developer,
being a change-prone class since its number of changes was
higher than the median number of changes of the time win-
dow. The DM model predicted the class as non-change-
prone. However, in the same time period such developer
performed 36 modifications spread over five different pack-
ages, thus accumulating a high level of both semantic and
structural scattering. The scattered changes applied by
the developer led to a decreasing of the cohesion of the
modified classes (i.e., overall, the LCOM3 increases 16%
in such classes): interestingly, the LCOM of the class
org.gjt.sp.BufferHistory is the one increasing more
(from 3 to 12). This made it more prone to be changed
since they encapsulated different responsibilities. Due to
the high scattering of the developer, DCBM correctly pre-
dicts the change-proneness of the class. Thus, the results
seem to delineate that the scattered changes applied by
developers can produce some forms of software degrada-
tion that have effects on the change-proneness of classes.
The statistical analyses conducted (see Table 7) confirm
the superiority of DCBM with respect to DM (α < 0.01,
d = 0.83).

A similar discussion can be held when comparing the
DCBM and BCCM models. From Table 5 we can observe
that DCBM is able to obtain an F-Measure almost 6%
higher than the alternative model, with an MCC 2% higher
and a reduction of the Brier Score of 5%. Once again, the
improvement is statistically significant (α < 0.01) with a
large effect size (d = 0.71). The gain provided by DCBM is
also visible when considering the other evaluation metrics:
for instance, the accuracy is about 6% higher, while the
recall 9% and the AUC-ROC 2%. From a practical point

3It is worth remarking that the lower the LCOM the higher the
cohesiveness of a class.

of view, this result indicates that the scattering metrics
can capture the change-proneness of classes with a higher
accuracy than the entropy of changes. This is due to the
fact that DCBM works at a higher level of abstraction
than BCCM [35]. Specifically, it considers the way devel-
opers apply changes rather than the changes themselves,
allowing the model to be more efficient when the change
process is not chaotic, but developers continuously per-
form modifications over different parts of the system. To
better understand the reasons behind the different per-
formance of these models, let us consider the case of the
class chartMeter.Legend belonging to the JFreeChart
system. Between April and June 2005, the class under-
went 10 of the total 16 changes applied in that time win-
dow and was, therefore, considered as change-prone (the
median of the time window was 3). In this case, the en-
tropy of changes involving this class is low (i.e., -0.13),
since most of the effort has been devoted to maintain
it. However, the two developers performing modifica-
tions in the time window not only apply changes to the
chartMeter.Legend class, but also to other classes in-
volving 3 different packages. All these modifications were
related to the visualization of chart legends, and indeed
different other classes related to visualization components
(e.g., the chart.VerticalBarRenderer class) were modi-
fied. However, the changes applied by developers had the
effect of reducing the overall quality of such classes, mak-
ing them more prone to be changed in the future. For
instance, the CBO of chartMeter.Legend reached 8 (+3
with respect to the previous version). This example seems
to confirm the hypothesis behind the good performance
of the DCBM, namely the negative effect that scattering
changes have on the maintainability of classes.

Another interesting example is related to the perfor-
mance achieved by the two models on aTunes. As shown

10

Table 6: Performance (in percentage) achieved by the investigated change prediction models.
A=Accuracy; P=Precision; R=Recall; F-M=F-Measure; AR=AUC-ROC; MCC= Matthews Correlation Coefficient ; BC = Brier-Score

Project
EM CM Combined Model
A P R F-M AR MCC BS A P R F-M AR MCC BS A P R F-M AR MCC BS

Apache Ant 68 65 49 56 59 57 53 56 55 61 58 52 51 51 95 95 88 91 97 71 35
Apache Cassandra 88 79 85 82 91 65 40 61 61 65 63 59 55 52 83 87 93 90 92 81 31
Apache Lucene 79 69 72 70 63 55 49 58 55 66 60 62 50 49 82 78 68 73 75 76 32
Apache Poi 60 64 62 63 68 60 45 68 70 61 65 58 52 53 84 74 89 81 82 74 27
Apache Synapse 82 68 75 71 59 53 50 70 72 71 71 58 52 49 75 82 83 82 81 83 28
Apache Velocity 65 46 66 54 63 54 55 69 58 58 58 66 53 54 83 66 70 68 78 74 32
Apache Xalan 59 69 49 57 60 55 53 58 57 61 59 63 52 62 88 81 76 78 79 80 34
Apache Xerces 76 69 73 72 65 68 46 81 69 71 70 61 55 33 91 76 81 78 66 73 35
ArgoUML 67 39 82 53 61 56 48 73 73 45 55 76 54 60 87 72 75 73 78 82 27
aTunes 62 6 50 10 50 60 39 56 42 48 45 52 55 57 82 69 73 71 83 79 29
FreeMind 57 75 44 56 59 56 50 52 55 36 44 75 52 62 79 65 64 64 74 71 39
JEdit 75 48 53 51 63 60 37 54 42 50 45 50 51 59 81 69 72 70 68 70 31
JFreeChart 79 69 51 59 62 58 43 58 48 55 52 67 52 54 81 69 72 70 68 70 31
JHotDraw 60 38 78 51 60 53 48 42 46 27 34 50 52 56 98 75 85 80 84 64 28
JVLT 76 74 75 74 63 56 46 41 37 43 40 50 52 48 88 69 83 75 66 81 33
pBeans 71 64 70 67 60 54 50 59 67 69 68 64 54 50 79 67 79 73 71 78 27
pdfTranslator 58 58 49 53 62 59 54 63 71 70 70 59 55 58 74 73 75 74 79 73 28
Redaktor 56 41 59 48 61 59 47 72 59 71 64 68 53 50 86 72 79 75 72 69 29
Serapion 65 43 76 55 62 56 52 71 55 61 58 64 53 57 77 77 92 84 79 69 32
Zuzel 59 36 47 41 59 54 44 71 59 64 61 68 53 56 91 78 77 77 78 72 34
Overall 68 58 60 59 61 56 49 71 63 64 64 70 64 43 77 70 74 72 70 64 42

Table 7: Wilcoxon’s t-test p-values of the hypothesis F-Measure
achieved by a model is > than the compared model. Statistically
significant results are reported in bold face. Cliff Delta d values are
also shown.

Compared models p-value Cliff Delta Magnitude
DCBM - BCCM < 0.01 0.71 large
DCBM - DM < 0.01 0.83 large
DCBM - EM < 0.01 0.73 large
DCBM - CM < 0.01 0.82 large
BCCM - DM 0.04 0.41 medium
BCCM - EM 0.02 0.21 small
BCCM - CM < 0.01 0.68 large
DM - EM 0.95 0.07 negligible
DM - CM 0.02 0.46 medium
EM - CM 0.43 0.02 negligible

in Table 5, BCCM has a very low precision of 6%: from
a deeper analysis into the likely causes that have lead to
this result, we discovered that in this system there are
only five active developers that performed on average 10
changes per period to the core classes of the system (i.e.,
the 13 classes contained in the com.fleax.atunes.gui).
At the same time, other 11 changes have been performed
on average on the other classes of the system. The entropy
of changes computed on the core classes has been gener-
ally higher than the one of other classes, leading BCCM to
identify all these classes as change-prone. However, in dif-
ferent time periods only a subset of such core classes have
been actually change-prone, meaning that BCCM identi-
fied a high number of false positives (thus, having a low
precision). On the other hand, the usage of scattering met-
rics allows the DCBM model to be more precise when de-
tecting change-prone classes: indeed, in aTunes the code
components changing more often are characterized by a
higher semantic scattering than non-change-prone classes
(+13% on average), thus making DCBM to be more effec-
tive.

To broaden the scope of the discussion, we can gener-
ally observe that models previously used in the context of
bug prediction achieve good performance also when em-
ployed in the identification of change-prone classes. This
is somehow unexpected and seems to delineate a direct
relationship between the complexity of the development
process and several maintainability issues, including the
change- and bug-proneness of classes. We plan to perform
an extensive analysis of the impact of developer-related
factors on a wider range of maintainability problems, as
well as of the interplay between change- and bug-proneness
of classes as part of our future research.

Summary for RQ1. The investigated developer-
based models achieve quite positive results. Among
them, the DCBM prediction model obtains the high-
est performance, having an overall F-Measure equals
to 68% and an accuracy equals to 77%. The superior-
ity of DCBM is statistically significant and has a large
effect size when compared to the other two models.

4.2. RQ2: Comparison between Developer-based and
State-of-the-art Models

The results achieved by the baseline change prediction
models investigated in this study (i.e., EM and CM) are
reported in Table 6. As it is possible to see, the EM model
achieves a similar overall F-Measure as the DM and BCCM
models (i.e., 59%) but worse than the DCBM model (-9%
in terms of F-Measure and +11% considering the Brier
Score). This is confirmed by the analysis reported in Table
7: indeed, the differences between DCBM and EM are
statistically significant (α < 0.01) and the magnitude is
large (d = 0.77).

Generally, it is important to remark that EM is the
only model that directly measures the previous number of

11

changes of a class to predict its future change-proneness:
our results indicate that this feature is not able to char-
acterize the future change-proneness of classes better than
other predictors. This result confirms previous findings
by Ekanayake et al. [23] on the variability of the change-
proneness of classes during different stages of software evo-
lution. As a consequence, the previous knowledge about
the number of changes a class underwent is not always
suitable to correctly identify change-prone classes in fu-
ture versions of a software system. Further analyzing the
predictions provided by EM, we discovered that it is gen-
erally effective when a class has a central role in the archi-
tecture of a system and, as such, usually undergoes a high
number of changes. For example, in the JHotDraw sys-
tem, the class svg.io.SVGFigureFactory is responsible
for performing the main functionality of the entire project,
i.e., it manages the graph creation. This class is present
in the system since its first commit and it was frequently
modified by developers among all the time windows ana-
lyzed. In this case, the predictors used by the EM model
(e.g., previous changes and birth date) are particularly ef-
fective since they characterize well the change-proneness
of the class. On the other hand, the performance de-
creases in cases where a significant restructuring of the
system’s architecture is applied, since the responsibilities
of several code artifacts are modified and, therefore, pre-
dictors such as the birth date or the previous changes are
less meaningful. For instance, in the time window rang-
ing between December and February 2006 the Apache
Ant developers performed an entire restructuring of the
system, which led to the removal of some old classes as
well as the re-distribution of the responsibilities of several
code artifacts4. As a consequence, the data considered by
the EM model was not sufficient to correctly predict the
change-proneness of classes: in fact, the accuracy achieved
by the model in that time window was 43%. Noticeably, in
the same time period the DCBM and DM models reached
an accuracy equal to 87% and 83%, respectively. As ex-
pected, in the considered period the developers were busy
modifying the source code and, thus, models relying on
such information were performing better.

On the one hand, our results confirm previous findings
on the potential usefulness of the evolution metrics in the
context of change prediction [24]. On the other hand, we
also found how the “change-caching” concept exploited by
this model is valid for classes having a central role in the
system, while it has less effect in other cases. At the same
time, we showed that (i) other metrics based on developers
can be effectively used for prediction purpose, and (ii) they
seem to capture information orthogonal with respect to
the EM model, i.e., they capture characteristics of the
phenomenon that other metrics are not able to identify.

Switching the attention to the results obtained by the
model relying on code metrics, we can observe that it con-

4As indicated in the release notes of the version 1.7.1, which cor-
respond to that time period: http://tinyurl.com/hqwazgg

stantly performs worse than the developer-based predic-
tion models. Indeed, the CM model has an overall F-
Measure always lower than BCCM, DCBM, and DM.

For instance, DCBM achieves an average F-Measure
10% higher than the model based on code metrics (68%
vs 58%). The superiority of DCBM is also confirmed
when considering all the other evaluation metrics, i.e.,
accuracy=+15%, precision=+7%, recall=+14%, AUC-
ROC=+9%, MCC=+13%, BS=-17%. This result con-
tradicts previous findings [46, 69], demonstrating that
the use of code metrics is not enough to efficiently
predict change-prone classes. A clear example is the
class xerces.dom.ElementImpl of the Apache Xerces
project. During the time window between May and July
2007, the class experienced only three changes (i.e., it is
non-change-prone because the median was 9) applied by
two different developers, who focused all their activities on
the maintenance of classes belonging to the xerces.dom

package. As a consequence, the value of their scattering
metrics is zero, since they never performed modifications
outside the scope of the package [21]. Thus, the DCBM
model correctly marked this class as non-change-prone. At
the same time, the class has an LCOM=28 and a CBO=7.
Both the metrics are higher than the average metric val-
ues of the other classes composing the system, and for this
reason the CM model wrongly marked the class as change-
prone.

Summary for RQ2. Developer-based prediction
models generally perform better than the existing mod-
els. This is particularly true when considering the
DCBM model, which has an overall F-Measure that
is 10% higher than the CM model and 9% higher than
the EM model.

4.3. RQ3: Complementarity of the Investigated Models

Table 8 reports the complementarity between each pair
of prediction models. For sake of readability, the results
have been aggregated by considering the overall overlap
between the models, taking into account all the systems.
It is worth remarking that in this analysis we only consid-
ered the set of correct instances predicted by each model
(i.e., the true positive instances). A complete report of the
findings on each system is available in the online appendix
[16].

The results in Table 8 highlight a reasonable level of
complementarity between all the investigated prediction
models, meaning that they are able to correctly identify
different sets of change-prone classes. To better under-
stand the reasons behind such complementarity, we an-
alyzed the predictions provided by the different models.
Firstly, it is worth discussing the complementarity between
DCBM and the other models. When considering the rela-
tionship between scattering and code metrics, we observed

12

Table 8: Overlap among the experimented change prediction models.

A=BCCM A=DCBM A=DM A=EM A=CM
A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A

B=BCCM - - - 60 24 16 56 20 24 56 18 26 55 18 27
B=DCBM 60 16 24 - - - 51 19 30 53 20 27 43 23 35
B=DM 56 24 20 51 30 19 - - - 60 20 20 57 19 24
B=EM 56 26 18 53 27 20 60 20 20 - - - 47 32 21
B=CM 55 27 18 43 35 23 57 24 19 47 21 32 - - -

a consistent set of change-prone classes (i.e., 43%) classi-
fied by both the prediction models, but at the same time
in almost 35% of the cases the only model able to cor-
rectly predict the change-proneness is the DCBM model.
Finally, 23% of change-prone classes have been identified
using only code metrics. This result highlights the high
complementarity between the two models, showing that
different predictors work well on different sets of classes.

As for the comparison between DCBM and DM, we ob-
served that 51% of the predicted change-prone classes are
in the intersection, while 30% of change-prone classes are
detected correctly only by the DCBM model. Finally, the
change-proneness of a smaller percentage of classes (19%)
can be detected solely using the DM model. Thus, the
two models partially complement each other, making pre-
diction improvements conceivable. An interesting case ex-
plaining when the DM model is able to outperform the
DCBM model can be found in the FreeMind project (the
smallest one of our dataset). Here the seven developers of
the system often perform changes to a few classes located
in the two core packages. Due to the small structure of the
system, the scattering metrics cannot correctly capture the
developers’ activities and, thus, they always have low val-
ues. In such case, the DM model produces more reliable
predictions: indeed, it is worth noting that this project is
the only one where the DM model performs better than
the DCBM one (see Table 5).

The discussion is similar when comparing the DCBM
and BCCM models. Even if the model based on scat-
tering metrics generally achieved better performance than
the BCCM model (Table 5), we observed an interesting
complementarity that may lead to an additional improve-
ment in the prediction through a combination. In fact,
Table 8 shows that the change-proneness of almost 40% of
classes can be correctly detected by only one of the two
models (i.e., 24% of correct prediction have been made
only by DCBM, 16% only by BCCM). Moreover, it is
worth noting that the complementarity between BCCM
and the other models is high as well. For instance, when
compared to the CM model, we found 27% of correct
predictions performed by the BCCM only and a further
18% of classes for which the change-proneness has been
identified using code metrics. An interesting example is
represented by the class thrift.CassandraServer which
had a value of LCOM=44 and an RFC=23 in the time
window between March and May 2010. In that period,
this class has been changed 13 times, being classified as

an actual change-prone class since the median number of
changes was 10. However, the BCCM model was not able
to correctly mark this class as change-prone, as it always
changed together with a few other classes of the system
(on average, 2 classes). As a consequence, the entropy of
changes is low. On the other hand, the poor quality of the
class was a relevant indicator of the change-proneness.

Furthermore, it is important to note that also the evo-
lution metrics have nice complementarity to the other
models. For instance, when comparing EM and BCCM,
we observed that in 18% of the cases the change-proneness
of classes can be correctly identified by the EM model
only. At the same time, the contribution provided by the
EM model is still more valuable in comparison to the CM
model, where 32% of the change-prone classes are identi-
fied by using only the evolution metrics. An interesting
example of a change-prone class correctly classified by EM
and missed by CM is present in the ArgoUML project.
During the time period between October and December
2006, the class ui.ProjectBrowser underwent 19 changes
(more than the median of the period), while it has been
introduced at the beginning of the project. Even though
the structural metrics do not indicate issues in the main-
tainability of this class (i.e., LCOM=6, CBO=2, DIT=2,
RFC=4), it tends to change frequently. In this case, the
CM model does not recognize the change-proneness of the
class, while the evolution metrics are able to classify it as
change-prone. Conversely, an example of a class identified
by CM and missed by EM in the same ArgoUML project
is generator.GeneratorJava. This class has been intro-
duced during the time window between March and May
2006 (i.e., in the middle of the observed history), where it
underwent 10 changes—two more than the median. Since
the class has not been introduced in the early stages of
software development, the EM model was not able to cor-
rectly mark this class as change-prone. On the other hand,
the class contains a well-known design issue, i.e., it is af-
fected by a Complex Class code smell. Thus, the code
metrics are particularly high (e.g., LCOM=49) and effec-
tive in capturing the change-proneness of the class.

All in all, the analyses conducted show that the prob-
lem of change prediction cannot be solved by only relying
on a subset of metrics considered. More importantly, dif-
ferent models are able to capture different change-prone
classes: from a practical point of view, this means that
the investigated developer-based metrics can nicely com-
plement evolution metrics, possibly providing additional

13

performance improvements when combined. At the same
time, the CM model can provide further insights, being
able to correctly recognize the change-proneness of a good
portion of classes missed by other models (e.g., CM iden-
tified 21% of classes that the EM model was not able to
identify).

Summary for RQ3. All the investigated models show
nice complementarities, being able to correctly capture
the change-proneness of the different classes. As a con-
sequence, our findings reveal the possibility to achieve
a better level of performance when considering a com-
bination of the predictors considered in this study.

4.4. RQ4: Performance of the Combined Model

The first step in the definition of a combined change
prediction model consisted of pruning the non-relevant
metrics through the application of the Gain Ratio Fea-
ture Evaluation algorithm [58], whose results are reported
in Table 9. As it is possible to see, both scattering metrics
included in the DCBM model provide a significant contri-
bution to the overall reduction of the entropy of the model:
in particular, the gain provided by the structural scatter-
ing is quantifiable at 0.44, while the semantic scattering
provides a gain of around 0.37. Also the entropy of changes
and the frequency of modifications metrics exploited by
the BCCM and EM, respectively, provide a strong con-
tribution to the model (i.e., 0.41 for the former, 0.33 for
the latter). The results also show that other process met-
rics such as weighted change density and birth date of a
class (used by the EM model) still help in the reduction
of the uncertainty of the model during the classification of
change-prone classes. Interestingly, the algorithm found
that the CBO and RFC metrics, measuring coupling and
complexity of a class, respectively, might contribute to the
improvement of the prediction accuracy.

Conversely, the other metrics exploited by the con-
sidered models provide an information gain lower than
the threshold of 0.10, thus their usefulness can be con-
sidered limited. It is important to point out that also
the LOC metric gives a limited contribution when predict-
ing change-prone classes (expected reduction=0.08): this
means that the mere analysis of the size of a class cannot
characterize the number of changes that developers will
apply on it.

Based on these results, we devised a combined change
prediction model that only exploits the metrics reported
in bold in Table 9.

The results achieved by such a combined model are
reported in Table 6 and clearly show its superiority with
respect to the stand-alone models experimented in the pre-
vious research questions. Indeed, the overall F-Measure,
AUC-ROC, and MCC of the combined model are 12%,
10%, and 9% higher than DCBM (i.e., the best model
resulting from RQ2), respectively. Also the Brier Score

Table 9: Gain provided by each feature to the prediction of change-
prone classes.

Metric Info Gain
Struct. scattering 0.44
Change entropy 0.41
Semant. scattering 0.37
Change frequency 0.33
CBO 0.27
RFC 0.19
Weighted-Change-Density 0.15
Birth-Date 0.11
LCOM 0.08
LOC 0.08
Number of developers 0.08
Last-Change-Amount 0.08
Total-Amount-Changes 0.07
Changes-Since-Its-Birth 0.06
Change-Occurred 0.05
DIT 0.05

is 7% lower, meaning that the independent variables ex-
ploited by the combined model are better related to the
dependent variable.

When compared to the other stand-alone models, the
results are still more evident, since the overall F-measure
of the combined model is 18%, 21%, 23%, and 22%
higher than the one of BCCM, EM, DM, and CM, re-
spectively. These results confirm that different stand-
alone models complement each other leading to higher ac-
curacy of the classification of change-prone classes. We
found an example of the capabilities of the combined
model in the classification of the change-proneness of the
class synapse.ServerManager belonging to the Synapse
project. In the time window between October and De-
cember 2008 the class was change-prone since it changed
23 times while the median was 12. In this case, the only
stand-alone model able to correctly classify the class as
change-prone is the CM one: the values of CBO and RFC
were higher than the average of the period, while the
only developer committing changes to this class performed
focused modifications, thus leading the developer-based
models to fail in the prediction. The combined model has
instead been able to correctly classify this instance based
on the structural information considered. Similarly, the
combined model has been able to properly classify the
change-proneness of all the classes mentioned in the ex-
amples presented in the previous sections. For example,
both the classes svg.io.SVGFigureFactory (contained
in JHotDraw) and chartMeter.Legend (JFreeChart)
have been correctly predicted as change-prone, likely be-
cause of the presence of change frequency and scattering
metrics as independent variables of the combined model.

The statistical tests confirm the quantitative results
described so far. Indeed, as shown in Table 10 all the
comparisons reveal that the combined model performs sta-

14

Table 10: Wilcoxon’s t-test p-values of the hypothesis F-Measure
achieved by a model is > than the compared model. Statistically
significant results are reported in bold face. Cliff Delta d values are
also shown.

Compared models p-value Cliff Delta Magnitude
Combined Model - DCBM < 0.01 0.66 large
Combined Model - BCCM < 0.01 0.73 large
Combined Model - DM < 0.01 0.77 large
Combined Model - EM < 0.01 0.78 large
Combined Model - CM < 0.01 0.81 large

tistically better than all the baselines. Thus, to conclude
the discussion we can claim that an effective combination
of metrics covering different aspects related to complexity
of software development, previous history, and structural
characteristics of classes can be significantly more effec-
tive in the identification of the classes more likely to be
changed in the future. As a consequence, the model might
better support developers interested in planning preven-
tive maintenance activities.

Summary for RQ4. The combined model has an
overall F-measure equals to 77%, while the overall ac-
curacy is 85%. When comparing the performance of the
combined model with the ones achieved by the stand-
alone ones, we found that the accuracy improves by up
to 23% in terms of the F-Measure.

5. Threats to Validity

This section describes the threats that can affect the
validity of our study.

Construct Validity. Threats to construct validity
concern the relationship between theory and observation.
We exploited the guidelines provided by Romano et al.
[59] in order to build a golden set reporting the actual
change-prone classes present in each of the analyzed time
windows. This strategy has been widely used in the past
to assess the change-proneness of classes [24, 25, 69], and
it is recognized as an efficient way to distinguish change
and non-change prone classes [59]. However, we are aware
that this definition of change-proneness does not take into
account the type and severity of changes, as well as the
effort spent by developers when changing the source code:
we still preferred relying on the definition by Romano et
al. [59] because of the lack of other established definitions
that characterize the change-proneness of classes.

In our study, we considered state-of-the-art change pre-
diction models relying on their exact definitions. Some of
them might account for approximations when computing
the independent variables: for instance, the BCCM model
defined by Hassan [35] uses a keyword-based approach to
distinguish the feature introduction modifications adopted
for the computation of the entropy of changes. We are
aware that more sophisticated approaches might be more
precise in the classification of feature introduction and en-

hancements, however the improvement of existing tech-
niques is out of the scope of this paper.

As for the construction of the combined model, we
firstly controlled for multi-collinearity [52] applying an ef-
fective feature selection algorithm such as information gain
[58].

Internal Validity. Threats to internal validity con-
cern factors that might have influenced our results. As
for the evaluation procedure, we had the need to exploit
change history information to compute the metrics com-
posing the experimented developer-based models. Thus,
the evaluation design adopted in our study is different
from the ten-fold validation [20] generally exploited in the
context of change prediction. In particular, we split the
change history of the object systems into three-month time
periods and we adopted a three-month sliding window to
train and test the experimented bug prediction models.
This type of validation is typically adopted when using
process metrics as predictors [35], although it might be
penalizing when using code metrics [21].

Furthermore, other temporal-based validation strate-
gies, i.e., (i) using the entire change history accumulated
until a release Ri as training set and data of the release
Ri+1 as test set or (ii) using the data coming from a re-
lease Ri and tested with the data of Ri+1, could have been
considered. However, we believe that these strategies do
not fit well for prediction models relying on developer-
related metrics: indeed, these metrics measure the dynam-
ics among developers in a certain period of time, and thus
taking into account time windows larger than 3 months
would have been conceptually wrong, since developer-
based metrics would have put together information hap-
pened far in the time.

This observation is also supported by experimental re-
sults. Specifically, we evaluated the performance of the
experimented models when considering the two alterna-
tive validation strategies. In the first case, we trained the
models using the entire change history accumulated until
a release Ri, while we tested it on the data of the release
Ri+1. Then, we adopted this procedure for all the system
releases. As a result, we noticed that the performance of all
the models decreased by up to 13% with respect to mod-
els trained using only the information of the previous three
months. In the second case, we tested the models using
a release-by-release scenario, finding that all the models
tend to perform notably worse (on average, -6% in terms
of F-Measure) than the three-month sliding window case.
A complete report of these additional analysis is available
in our online appendix [16].

Another threat is related to the use of developer-
based and evolution metrics as predictors of the change-
proneness of classes. Indeed, they somehow encapsulate
the concept of change, possibly producing an “interplay”
between independent and dependent variables of a predic-
tion model. While the model proposed by Elish et al. [24]
directly uses the number of changes a class in a previous

15

time window as predictor of the future change-proneness of
that class, we carefully verified whether this possible inter-
play produced unreliable results, finding that the useful-
ness of the model is limited to the cases where a class has
a central role in the system. As for the BCCM, DCBM,
and DM models, it is important to note that all of them
rely on metrics able to capture how complex is the de-
velopment process under different perspectives (e.g., the
number of developers who worked on a code component).
Thus, they provide a higher abstraction level and do not
directly measure the change-proneness of a class.

Conclusion Validity. Threats to conclusion valid-
ity refer to the relation between treatment and outcome.
In order to evaluate the change prediction models we used
metrics such as accuracy, precision, recall, F-Measure, and
AUC-ROC, which are widely used in the evaluation of the
performance of prediction models. Moreover, we inter-
preted the results also looking at the indications given by
other metrics, i.e., MCC and Brier Score, and applying
appropriate statistical procedures, i.e., the Wilcoxon [19]
and the Cliff’s tests [31], to understand whether the differ-
ences in the performance of the experimented models were
significant.

External Validity. As for the generalizability of the
results, we analyzed twenty different systems from differ-
ent application domains and having different characteris-
tics (size, number of classes, etc.). However, we are aware
that our study is based on systems developed in Java only,
and therefore future investigations aimed at corroborating
our findings on a different set of systems would be worth-
while.

6. Conclusion

Predicting the classes more likely to change in the fu-
ture is an effective way to focus preventive maintenance
activities on specific parts of a software system. While
several researchers relied on code or evolution metrics to
build change prediction models, little knowledge is avail-
able on the actual usefulness of developer-related factors
in this context. This paper aims at bridging this gap,
by providing (i) an empirical analysis of the performance
achieved by three developer-based change prediction mod-
els on a set of twenty software systems and (ii) a com-
prehensive combined change prediction model exploiting
developer-, process-, and product-metrics able to consider
different aspects of software development. Specifically, the
contributions made by this paper are:

1. A large scale empirical investigation into the
role of developer-related factors in change
prediction. To this aim, we analyzed the perfor-
mance attained by three prediction models relying on
metrics able to capture how complex is the develop-
ment process under different perspectives [7, 21, 35].

2. A comparison between developer-based and
other state-of- the-art change prediction mod-
els. We compared the prediction capabilities of
models based on developer-related factors with two
baseline approaches, i.e., the Evolution Model [24]
and the Code Metric model [69].

3. An analysis of the complementarity between
the investigated models. We evaluated the or-
thogonality of the different experimented models by
computing overlap metrics and providing qualitative
examples to understand under which situations a
given model performs better than others.

4. A combined change prediction model. We ex-
ploited the complementaries between the standalone
models to derive the set of metrics mostly connected
with the phenomenon of interest, i.e., the change-
proneness of classes, and devised a novel hybrid
change prediction model.

The achieved results provide several findings:

• Developer-based change prediction models generally
show good performance. Among them, the DCBM
proposed by Di Nucci et al. [21] in the context
of change prediction shows the best performance,
reaching an overall F-Measure of 68% and an ac-
curacy equals to 77%;

• Developer-based change prediction models work bet-
ter than a model built using code metrics. In partic-
ular, when developers apply focused modifications in
a given time period they are able to keep the com-
plexity of the source code under control even in the
cases where the code metrics highlight design issues.

• The studied models show interesting complemen-
taries, indicating that different metrics are suit-
able for predicting the change-proneness of different
classes.

• The devised combined change prediction model has
an overall F-Measure of 77% and outperforms the
standalone baselines by up to 23%.

Our future research agenda includes a deeper investi-
gation into the factors leading classes to be more change-
prone. At the same time, we envision to perform an exten-
sive analysis of a wide range of maintainability problems
and how they are impacted by developer-related factors.
Part of this analysis is to study the relationship between
these developer-related factors and the interplay between
change-proneness and bug-proneness. Finally, part of our
future research agenda includes (i) the analysis of the per-
formance of the considered models in a cross-project set-
ting and (ii) the definition of a new metrics of change-
proneness that can effectively take into account the type
and severity of changes, as well as the effort spent by de-
velopers when performing changes on the source code, and
(iii) the replication of the study in an industrial context.

16

References

[1] Abdi, M., Lounis, H., and Sahraoui, H. 2006. Analyzing
change impact in object-oriented systems. In 32nd EUROMICRO
Conference on Software Engineering and Advanced Applications
(EUROMICRO’06). IEEE, 310–319.

[2] Arisholm, E., Briand, L. C., and Foyen, A. 2004. Dynamic
coupling measurement for object-oriented software. IEEE Trans-
actions on Software Engineering 30, 8, 491–506.

[3] Bacchelli, A. and Bird, C. 2013. Expectations, outcomes,
and challenges of modern code review. In Proceedings of the In-
ternational Conference on Software Engineering (ICSE). IEEE,
712–721.

[4] Baeza-Yates, R., Ribeiro-Neto, B., et al. 1999. Modern in-
formation retrieval. Vol. 463. ACM press New York.

[5] Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., and
Nielsen, H. 2000. Assessing the accuracy of prediction algorithms
for classification: an overview. Bioinformatics 16, 5, 412–424.

[6] Bansiya, J. and Davis, C. G. 2002. A hierarchical model for
object-oriented design quality assessment. IEEE Trans. Softw.
Eng. 28, 1, 4–17.

[7] Bell, R. M., Ostrand, T. J., and Weyuker, E. J. 2011. Does
measuring code change improve fault prediction? In Proc. Int’l
Conf. on Predictive Models in Software Engineering (PROMISE).
ACM, 2.

[8] Bell, R. M., Ostrand, T. J., and Weyuker, E. J. 2013. The
limited impact of individual developer data on software defect
prediction. Empirical Softw. Engg. 18, 3, 478–505.

[9] Beller, M., Bacchelli, A., Zaidman, A., and Jürgens, E.
2014. Modern code reviews in open-source projects: which prob-
lems do they fix? In 11th Working Conference on Mining Software
Repositories (MSR). ACM, 202–211.

[10] Beller, M., Bholanath, R., McIntosh, S., and Zaidman,
A. 2016. Analyzing the state of static analysis: A large-scale
evaluation in open source software. In Proceedings of the 23rd
International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE Computer Society, 470–481.

[11] Bieman, J. M., Straw, G., Wang, H., Munger, P. W., and
Alexander, R. T. 2003. Design patterns and change proneness:
an examination of five evolving systems. In Proc. Int’l Workshop
on Enterprise Networking and Computing in Healthcare Industry.
40–49.

[12] Bottou, L. and Vapnik, V. 1992. Local learning algorithms.
Neural Comput. 4, 6, 888–900.

[13] Briand, L. C., Wust, J., and Lounis, H. 1999. Using coupling
measurement for impact analysis in object-oriented systems. In
Proc. Int’l Conf. on Software Maintenance (ICSM). IEEE, 475–
482.

[14] Brier, G. W. 1950. Verification of Forecasts expressed in terms
of probability. Monthly Weather Review 78, 1, 1–3.

[15] Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F., and
Zaidman, A. 2017a. Developer-related factors in change predic-
tion: An empirical assessment. In Proceedings of the 25th Interna-
tional Conference on Program Comprehension. ICPC ’17. IEEE
Press, Piscataway, NJ, USA, 186–195.

[16] Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F.,
and Zaidman, A. 2017b. Developer-related factors in change pre-
diction: An empirical assessment - replication package - http:

//tinyurl.com/y79ttbwa.
[17] Chaumun, M. A., Kabaili, H., Keller, R. K., and Lustman,

F. 1999. A change impact model for changeability assessment
in object-oriented software systems. In Proc. Conf. on Software
Maintenance and Reengineering (CSMR). IEEE, 130–138.

[18] Chidamber, S. and Kemerer, C. 1994. A metrics suite for
object oriented design. IEEE Trans. on Softw. Engineering 20, 6,
476–493.

[19] Conover, W. J. 1998. Practical Nonparametric Statistics 3rd
Edition Ed. Wiley.

[20] Devijver, P. A. and Kittler, J. 1982. Pattern Recognition:
A Statistical Approach.

[21] Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G.,
Oliveto, R., and De Lucia, A. 2017. A developer centered bug
prediction model. IEEE Trans. on Softw. Engineering, to appear.

[22] Di Penta, M., Cerulo, L., Gueheneuc, Y. G., and Antoniol,
G. 2008. An empirical study of the relationships between design
pattern roles and class change proneness. In Proc. Int’l Conf. on
Software Maintenance (ICSM). IEEE, 217–226.

[23] Ekanayake, J., Tappolet, J., Gall, H. C., and Bernstein,
A. 2012. Time variance and defect prediction in software projects.
Empirical Software Engineering 17, 4-5, 348–389.

[24] Elish, M. O. and Al-Rahman Al-Khiaty, M. 2013. A suite of
metrics for quantifying historical changes to predict future change-
prone classes in object-oriented software. Journal of Software:
Evolution and Process 25, 5, 407–437.

[25] Eski, S. and Buzluca, F. 2011. An empirical study on object-
oriented metrics and software evolution in order to reduce testing
costs by predicting change-prone classes. In Proc. Int’l Conf Soft-
ware Testing, Verification and Validation Workshops (ICSTW).
IEEE, 566–571.

[26] Fluri, B., Wuersch, M., PInzger, M., and Gall, H. 2007.
Change distilling: Tree differencing for fine-grained source code
change extraction. IEEE Transactions on Software Engineer-
ing 33, 11.

[27] Fowler, M., Beck, K., Brant, J., Opdyke, W., and
Roberts, D. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley.

[28] Freund, Y. and Mason, L. 1999. The alternating decision tree
learning algorithm. In icml. Vol. 99. 124–133.

[29] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-oriented Soft-
ware. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[30] Girba, T., Ducasse, S., and Lanza, M. 2004. Yesterday’s
weather: Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proc. Int’l Conf. Softw. Maintenance
(ICSM). IEEE, 40–49.

[31] Grissom, R. J. and Kim, J. J. 2005. Effect sizes for research:
A broad practical approach 2nd Edition Ed. Lawrence Earlbaum
Associates.

[32] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. 2009. The weka data mining soft-
ware: an update. ACM SIGKDD explorations newsletter 11, 1,
10–18.

[33] Han, A.-R., Jeon, S.-U., Bae, D.-H., and Hong, J.-E. 2008.
Behavioral dependency measurement for change-proneness predic-
tion in uml 2.0 design models. In 32nd Annual IEEE International
Computer Software and Applications Conference. IEEE, 76–83.

[34] Han, A.-R., Jeon, S.-U., Bae, D.-H., and Hong, J.-E. 2010.
Measuring behavioral dependency for improving change-proneness
prediction in uml-based design models. Journal of Systems and
Software 83, 2, 222–234.

[35] Hassan, A. E. 2009. Predicting faults using the complexity of
code changes. In Int’l Conf. Software Engineering (ICSE). IEEE,
78–88.

[36] John, G. H. and Langley, P. 1995. Estimating continuous
distributions in bayesian classifiers. In Proc. Conf. on Uncertainty
in artificial intelligence. Morgan Kaufmann, 338–345.

[37] Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., and Antoniol,
G. 2012. An exploratory study of the impact of antipatterns on
class change-and fault-proneness. Empirical Softw. Engg. 17, 3,
243–275.

[38] Kohavi, R. 1995. The power of decision tables. In European
conference on machine learning. Springer, 174–189.

[39] Koru, A. G. and Liu, H. 2007. Identifying and characteriz-
ing change-prone classes in two large-scale open-source products.
Journal of Systems and Software 80, 1, 63 – 73.

[40] Kraut, R. E. and Streeter, L. A. 1995. Coordination in
software development. Commun. ACM 38, 3, 69–81.

[41] Le Cessie, S. and Van Houwelingen, J. C. 1992. Ridge esti-
mators in logistic regression. Applied statistics, 191–201.

[42] Lehman, M. M. and Belady, L. A., Eds. 1985. Program Evolu-
tion: Processes of Software Change. Academic Press Professional,
Inc.

17

[43] Lindvall, M. 1998. Are large C++ classes change-prone? An
empirical investigation. Software-Practice and Experience 28, 15,
1551–1558.

[44] Lindvall, M. 1999. Measurement of change: stable and change-
prone constructs in a commercial c++ system. In Proc. Int’l Soft-
ware Metrics Symposium. IEEE, 40–49.

[45] Liu, H. and Motoda, H. 1998. Feature Selection for Knowl-
edge Discovery and Data Mining. Kluwer Academic Publishers,
Norwell, MA, USA.

[46] Lu, H., Zhou, Y., Xu, B., Leung, H., and Chen, L. 2012. The
ability of object-oriented metrics to predict change-proneness: a
meta-analysis. Empirical software engineering 17, 3, 200–242.

[47] Malhotra, R. and Bansal, A. 2015. Predicting change using
software metrics: A review. In Int’l Conf. on Reliability, Infocom
Technologies and Optimization (ICRITO). IEEE, 1–6.

[48] Malhotra, R. and Khanna, M. 2013. Investigation of rela-
tionship between object-oriented metrics and change proneness.
International Journal of Machine Learning and Cybernetics 4, 4,
273–286.

[49] Malhotra, R. and Khanna, M. 2014. A new metric for pre-
dicting software change using gene expression programming. In
Proc. Int’l Workshop on Emerging Trends in Software Metrics.
ACM, 8–14.

[50] Marinescu, C. 2014. How good is genetic programming at
predicting changes and defects? In Int’l Symp. on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC). IEEE,
544–548.

[51] Miryung Kim, Tom Zimmermann, N. N. 2014. An empirical
study of refactoring challenges and benefits at Microsoft. IEEE
Transactions on Software Engineering 40.

[52] O’Brien, R. 2007. A caution regarding rules of thumb for vari-
ance inflation factors. Quality & Quantity 41, 5, 673.

[53] O’brien, R. M. 2007. A caution regarding rules of thumb for
variance inflation factors. Quality & Quantity 41, 5, 673–690.

[54] Palomba, F., Bavota, G., Di Penta, M., Fasano, F.,
Oliveto, R., and De Lucia, A. 2017. On the diffuseness and
the impact on maintainability of code smells: a large scale empir-
ical investigation. Empirical Software Engineering, 1–34.

[55] Parnas, D. L. 1994. Software aging. In Proc. of the Interna-
tional Conference on Software Engineering (ICSE). IEEE, 279–
287.

[56] Peer, A. and Malhotra, R. 2013. Application of adaptive

neuro-fuzzy inference system for predicting software change prone-
ness. In Advances in Computing, Communications and Informat-
ics (ICACCI), 2013 International Conference on. IEEE, 2026–
2031.

[57] Posnett, D., Bird, C., and Dévanbu, P. 2011. An empiri-
cal study on the influence of pattern roles on change-proneness.
Empirical Software Engineering 16, 3, 396–423.

[58] Quinlan, J. R. 1986. Induction of decision trees. Mach.
Learn. 1, 1, 81–106.

[59] Romano, D. and Pinzger, M. 2011. Using source code met-
rics to predict change-prone java interfaces. In Proc. Int’l Conf.
Software Maintenance (ICSM). IEEE, 303–312.

[60] Rosenblatt, F. 1961. Principles of neurodynamics. percep-
trons and the theory of brain mechanisms. Tech. rep., DTIC Doc-
ument.

[61] Rufibach, K. 2010. Use of Brier score to assess binary predic-
tions. Journal of Clinical Epidemiology 63, 8, 938–939.

[62] Rumbaugh, J., Jacobson, I., and Booch, G. 2004. Unified
Modeling Language Reference Manual, The (2Nd Edition). Pear-
son Higher Education.

[63] Shannon, C. E. 1948. A mathematical theory of communica-
tion. Bell system technical journal 27.

[64] Sharafat, A. R. and Tahvildari, L. 2007. A probabilistic ap-
proach to predict changes in object-oriented software systems. In
Proc. Conf. on Softw. Maintenance and Reengineering (CSMR).
IEEE, 27–38.

[65] Sharafat, A. R. and Tahvildari, L. 2008. Change predic-
tion in object-oriented software systems: A probabilistic approach.
Journal of Software 3, 5, 26–39.

[66] Soetens, Q. D., Demeyer, S., Zaidman, A., and Pérez, J.
2016. Change-based test selection: An empirical evaluation. Em-
pirical Softw. Engg. 21, 5, 1990–2032.

[67] Tsantalis, N., Chatzigeorgiou, A., and Stephanides, G.
2005. Predicting the probability of change in object-oriented sys-
tems. IEEE Transactions on Software Engineering 31, 7, 601–614.

[68] Vassallo, C., Panichella, S., Palomba, F., Proksch, S.,
Zaidman, A., and Gall, H. Context is king: The developer
perspective on the usage of static analysis tools. to appear.

[69] Zhou, Y., Leung, H., and Xu, B. 2009. Examining the poten-
tially confounding effect of class size on the associations between
object-oriented metrics and change-proneness. IEEE Transactions
on Software Engineering 35, 5, 607–623.

18

