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We prove weighted mixed Lp(Lq)-estimates, with p, q ∈ (1, ∞), and the corresponding

solvability results for higher-order elliptic and parabolic equations on the half space

R
d+1
+ and on general C2m−1,1 domains with general boundary conditions, which satisfy

the Lopatinskii–Shapiro condition. We assume that the elliptic operators A have leading

coefficients that are in the class of vanishing mean oscillations both in the time and the

space variables and that the boundary operators have variable leading coefficients. The

proofs are based on and generalize the estimates recently obtained by the authors in [6].

1 Introduction

In this paper, we study the higher-order parabolic equation

⎧
⎨

⎩

ut + (λ + A)u = f on (−∞, T) × �

tr∂�Bju = gj on (−∞, T) × ∂�, j = 1, . . . , m,
(1.1)

where � is a possibly unbounded C2m−1,1 domain in R
d, T ∈ (−∞, +∞], “tr” denotes the

trace operator, A is an elliptic differential operator of order 2m, and (Bj) is a family of
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2 H. Dong and C. Gallarati

differential operators of order mj < 2m for j = 1, . . ., m. The leading coefficients of A are

assumed to be in the class of vanishing mean oscillations (VMO) both in the time and

space variables, while the operators Bj are assumed to have variable leading coefficients.

In addition, we assume that near the boundary (A, Bj) satisfies the Lopatinskii–Shapiro

condition. Roughly speaking, it is an algebraic condition involving the symbols of the

principal part of the operators A and Bj with fixed coefficients, which is equivalent to

the solvability of certain systems of ordinary differential equations. See for example

[1, 20, 27, 33].

Below in Theorem 3.2, we establish weighted Lp(Lq)-estimates with p, q ∈ (1, ∞)

and the corresponding solvability results for (1.1) with time-dependent weights in

the Muckenhoupt class. This generalizes the recent result obtained by the authors in

[6, Theorem 3.5], where Bj are assumed to have constant leading coefficients and the

equation is only considered in the half space.

In contrast to the case when A has uniformly continuous leading coefficients, the

extension of the results in [6] to boundary operators with variable leading coefficients is

nontrivial and does not follow from the standard perturbation argument. In fact, under

the VMO assumption on the coefficients of A, in the case when the boundary operators

have variable leading coefficients, to apply the method of freezing the coefficients as in

[6, Lemma 4.6] one would need to show the mean oscillation estimates of [6, Lemma 4.5]

for an equation with inhomogeneous boundary conditions. To the best of the authors’

knowledge, this case is not covered by the known theory. Moreover, the well-known

localization procedure (see for instance [3, Sec. 8]) does not seem to directly apply to the

case p �= q, since we would need a partition of unity argument in both t and x.

Our proof is based on a preliminary result for the case p = q, Lemma 4.1, in

which the Lq(Lq)-estimate is shown as a combination of a recent result of Lindemulder

in [19] and the estimates in [6], as well as the available extrapolation theory (see

[2, Theorem 1.4] and [9, Theorem 2.5]) to extrapolate to p �= q. We also use in a crucial

way a version of the Fefferman–Stein sharp function theorem with Ap weights in spaces

of homogeneous type, which was recently established in [9].

Research on Lp(Lq)-regularity for higher-order equations as (1.1) has been

developed in the past decades by mainly two different approaches. On the one hand,

a partial differential equation (PDE) approach has been developed by a series of papers

by Krylov, Dong, and Kim. See for example [18], [7], [8], and references therein. In [8]

a new technique was developed to produce mean oscillation estimates for equations

in the whole and half spaces with the Dirichlet boundary condition, for p = q. These

results had been extended by the same authors in [9] to mixed Lp(Lq)-spaces with
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Higher-Order Parabolic Equations 3

Muckenhoupt weights and small bounded mean oscillation (BMO) assumptions on the

space variable, for any p, q ∈ (1, ∞). It is worth noting that in all these references as well

as others papers in the literature VMO coefficients were only considered for equations

with specific boundary conditions (Dirichlet, Neumann, conormal, etc.).

On the other hand, Lp(Lq)-regularity can be viewed in a functional analytic

approach as an application of a more general abstract result, namely that of maximal

Lp-regularity. Maximal Lp-regularity means that, under certain assumption on gj, for

all f ∈ Lp(R, Lq(Rd+)), the solution to the evolution problem (1.1) has the “maximal”

regularity in the sense that ut and Au are both in Lp(R, Lq(Rd+)). We refer to [3, 23, 32],

[14, 15], and [10, 11] for further information on autonomous and non-autonomous

problems and applications to higher-order equations.

In [3], Denk, Hieber, and Prüss obtained Lp(Lq)-regularity for any p, q ∈ (1, ∞)

for autonomous, operator-valued parabolic problems on the half space and on domains

with homogeneous boundary conditions of the Lopatinskii–Shapiro type. The leading

coefficients of the operators involved are assumed to be bounded and uniformly

continuous, and their proofs combine operator sum methods with tools from vector-

valued harmonic analysis. These results were generalized in [4] by the same authors to

Lp(Lq)-regularity for nonautonomous, operator-valued parabolic initial-boundary value

problems with inhomogeneous boundary data, under the assumption that t → A(t) is

continuous. See also Weidemaier [31] for the special case where m = 1, the coefficients

are complex-valued coefficients, and q ≤ p. Later, Meyries and Schnaubelt in [22]

further generalized the results of [4] to the weighted time-dependent setting, where the

weights considered are Muckenhoupt power-type weights. See also [21]. Very recently,

Lindemulder in [19] generalized the results of [22] to the setting of power weights both

in the time and the space variables. In all these results, the leading coefficients of the

operators are assumed to be bounded and uniformly continuous in both the time and

space variables.

In this paper, we relax the assumptions on the coefficients of the operators

involved to be VMO in the time and space variables, and with inhomogeneous general

boundary operators having variable leading coefficients and satisfying the Lopatinskii–

Shapiro condition. The main result of this paper is stated in Theorem 3.2 and in the

elliptic setting in Theorem 3.3. The results presented here generalize the ones in [6], in

which the boundary operators were assumed to have constant leading coefficients and

only the half space setting was considered.

The paper is organized as follows. In Section 2 we give the necessary preliminary

results and introduce the notation. In Section 3 we list the main assumptions on the
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4 H. Dong and C. Gallarati

operators and state the main theorem. In Section 4 we prove an auxiliary lemma needed

for the proof of the main theorem in the half-space case, which is given in Section 5.

Finally, in Section 6 we prove the main theorem in the general case by using the

estimates in the previous sections.

2 Preliminaries

In this section, we state some necessary preliminary results and introduce the notation

used throughout the paper.

2.1 Ap-weights

Details on Muckenhoupt weights can be found in [13, Chapter 9] and [28, Chapter V].

A weight is a locally integrable function on R
d with ω(x) ∈ (0, ∞) for almost

every x ∈ R
d. The space Lp(Rd, ω) is defined as all measurable functions f with

∥
∥ f

∥
∥

Lp(Rd,ω)
=

(∫

Rd

∣
∣ f

∣
∣p ω dx

) 1
p

< ∞ if p ∈ [1, ∞),

and

∥
∥ f

∥
∥

L∞(Rd,ω)
= ess. supx∈Rd | f (x)| .

We recall the class of Muckenhoupt weights Ap for p ∈ (1, ∞). A weight ω is said

to be an Ap-weight if

[ω]p = [ω]Ap := sup
B

(

−
∫

B
ω(x) dx

)(

−
∫

B
ω(x)

− 1
p−1 dx

)p−1

< ∞.

Here the supremum is taken over all balls B ⊂ R
d and −

∫

B = 1
|B|

∫

B. The extended real

number [ω]Ap is called the Ap-constant. In the case of the half space R
d+, we replace the

balls B in the definition by B ∩ R
d+ =: B+ with center in R

d+.

The following properties will be used. For the given ω ∈ Ap(R), an open interval

I ∈ R, and a measurable set E ⊂ I, it holds that

ω(E)/ω(I) ≥ C
(|E|/|I|)p, (2.1)

where C > 0 is a constant depending only on p and [ω]Ap and |E| is the Lebesgue measure

of E. Moreover, using a reverse Hölder’s inequality (see [13, Corollary 9.2.6]), there is a
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Higher-Order Parabolic Equations 5

positive number σ1 = σ1(p, [ω]p) such that p − σ1 > 1 and

ω ∈ Ap−σ1(R).

Consequently, instead of (2.1), we have

ω(E)/ω(I) ≥ C
(|E|/|I|)p−σ1 . (2.2)

The celebrated result of Rubio de Francia (see [24–26], [12, Chapter IV]) allows

one to extrapolate from weighted Lp-estimates for a single p to weighted Lq-estimates

for all q. The proofs and statement have been considerably simplified and clarified in

[2, Theorem 3.9]. The following version of the extrapolation theorem [2, Theorem 3.9]

will be needed. Its main feature is that, to prove (2.4) for a given ω ∈ Ap, p ∈ (1, ∞), the

estimate (2.3) as an assumption needs to hold only for a subset of Ap0 , not for all weights

in Ap0 . We refer to [9, Theorem 2.5] for further details.

Theorem 2.1. Let f , g : Rd → R be a pair of measurable functions p0, p ∈ (1, ∞) and

ω ∈ Ap. Then there exists a constant �0 = �0(p0, p, [ω]Ap) ≥ 1 such that if

‖ f ‖Lp0 (ω̃) ≤ C‖g‖Lp0 (ω̃) (2.3)

for some constant C ≥ 0 and for any ω̃ ∈ Ap0 satisfying [ω̃]Ap0
≤ �0, then we have

‖ f ‖Lp(ω) ≤ 4C‖g‖Lp(ω). (2.4)

2.2 Function spaces and notation

In this section we introduce some function spaces and notation to be used throughout

the paper.

We denote D = −i(∂i, . . . , ∂d) and we consider the standard multi-index notation

Dα = Dα1
1 · . . . · Dαd

d and |α| = α1 + · · · + αd for a multi-index α = (α1, . . . , αd) ∈ N
d
0 .

Denote

R
d
+ = {

x = (x1, x′) ∈ R
d : x1 > 0, x′ ∈ R

d−1}
and R

d+1
+ = R × R

d
+.

The parabolic distance between X = (t, x) and Y = (s, y) in R
d+1
+ is defined by

ρ(X, Y) = |x − y| + |t − s| 1
2m .
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6 H. Dong and C. Gallarati

For a function f on D ⊂ R
d+1
+ , we set

( f )D = 1

|D|
∫

D
f (t, x) dx dt = −

∫

D
f (t, x) dx dt.

For m = 1, 2, . . . fixed depending on the order of the equations under consideration, we

denote by

Qr(t, x) = (t − r2m, t) × Br(x), Q+
r (t, x) = Qr(t, x) ∩ R

d+1
+

the parabolic cylinders, where

Br(x) = {
y ∈ R

d : |x − y| < r
} ⊂ R

d

denotes the ball of radius r with center x. We use Q+
r to indicate Q+

r (0, 0). We also define

B+
r (x) = Br(x) ∩ R

d
+.

Let � be a domain in R
d+1 and T ∈ (−∞, ∞]. We denote

Q�
r (t, x) := Qr(t, x) ∩ (R × �).

Note that when � = R
d+, Q�

r (t, x) = Q+
r (t, x).

For Q = Q+
r (t, x) or Q�

r (t, x), we define the mean oscillation of f on Q as

osc( f , Q) := −
∫

Q
| f (s, y) − ( f )Q| ds dy

and we denote for R ∈ (0, ∞),

( f )


R := sup

(t,x)∈(−∞,T)×�

sup
r≤R

osc
(

f , Q�
r (t, x)

)
.

Next, we introduce the function spaces that will be used in the paper. For

p ∈ (1, ∞) and k ∈ N0, we define the standard Sobolev space as

Wk
p(�) = {

u ∈ Lp(�) : Dαu ∈ Lp(�) ∀ |α| ≤ k
}
.

For p, q ∈ (1, ∞) and −∞ ≤ S < T ≤ ∞, we denote

Lp((S, T) × �) = Lp
(
(S, T); Lp(�)

)
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Higher-Order Parabolic Equations 7

and mixed-norm spaces

Lp,q ((S, T) × �) = Lp
(
(S, T); Lq(�)

)
.

For parabolic equations, we denote for k = 1, 2, . . .,

W1,k
p ((S, T) × �) = W1

p

(
(S, T); Lp(�)

) ∩ Lp

(
(S, T); Wk

p(�)
)

and mixed-norm spaces

W1,k
p,q ((S, T) × �) = W1

p

(
(S, T); Lq(�)

) ∩ Lp

(
(S, T); Wk

q (�)
)

.

We will use the following weighted Sobolev spaces. For ω ∈ Ap(R) we denote

Lp,q,ω ((S, T) × �) = Lp
(
(S, T), ω; Lq(�)

)

and

W1,k
p,q,ω((S, T) × �) = W1

p

(
(S, T), ω; Lq(�)

) ∩ Lp

(
(S, T), ω; Wk

q (�)
)

,

where by f ∈ Lp,q,ω((S, T) × �) we mean

‖f ‖Lp,q,ω((S,T)×�) :=
( ∫ T

S

(∫

�

| f (t, x)|q dx
)p/q

ω(t) dt
)1/p

< ∞.

2.3 Interpolation and trace

The following function spaces from the interpolation theory will be needed. For more

information and proofs we refer the reader to [21, 29, 30].

For p ∈ (1, ∞) and s = [s] + s∗ ∈ R+\N0, where [s] ∈ N0, s∗ ∈ (0, 1), we define the

Slobodetskii space Ws
p by real interpolation as

Ws
p =

(
W [s]

p , W [s]+1
p

)

s∗,p
.

Let � be a C2m−1,1 domain in R
d and −∞ ≤ S < T ≤ ∞. For m ∈ N, s ∈ (0, 1], and

ω ∈ Ap(R), we consider weighted anisotropic spaces of the form

Ws,2ms
p,ω ((S, T) × �) = Ws

p

(
(S, T), ω; Lp(�)

) ∩ Lp

(
(S, T), ω; W2ms

p (�)
)

.
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8 H. Dong and C. Gallarati

For p ∈ (1, ∞), q ∈ [1, ∞], r ∈ R, ω ∈ Ap(Rd), and X a Banach space, we introduce

the Besov space Br
p,q(Rd) and the weighted X-valued Triebel–Lizorkin space Fr

p,q(Rd, ω; X)

as follows.

Let �(Rd) be the set of all sequences (ϕk)k≥0 ⊂ S(Rd) such that

ϕ̂0 = ϕ̂, ϕ̂1(ξ) = ϕ̂(ξ/2) − ϕ̂(ξ), ϕ̂k(ξ) = ϕ̂1(2−k+1ξ),

where k ≥ 2, ξ ∈ R
d, and where the Fourier transform ϕ̂ of the generating function

ϕ ∈ S(Rd) satisfies 0 ≤ ϕ̂(ξ) ≤ 1 for ξ ∈ R
d and

ϕ̂(ξ) = 1 if |ξ | ≤ 1, ϕ̂(ξ) = 0 if |ξ | ≥ 3/2.

Definition 2.2. Given (ϕk)k≥0 ∈ �(Rd), we define the Besov space as

Br
p,q(Rd) =

{

f ∈ S ′(Rd) : ‖f ‖Br
p,q(Rd) :=

∥
∥
∥
∥

(
2krF−1(ϕ̂kf̂ )

)

k≥0

∥
∥
∥
∥

�q(Lp(Rd))

< ∞
}

,

and the weighted X-valued Triebel–Lizorkin space as

Fr
p,q(Rd, ω; X) =

{

f ∈ S ′(Rd, X) : ‖f ‖Fr
p,q(Rd,ω;X) :=

∥
∥
∥
∥

(
2krF−1(ϕ̂kf̂ )

)

k≥0

∥
∥
∥
∥

Lp(Rd,ω;�q(X))

< ∞
}

.

Observe that Br
p,p(Rd) = Fr

p,p(Rd) by Fubini’s theorem. Moreover, we have the

following equivalent definition of Slobodetskii space

Ws
p(Rd) =

⎧
⎨

⎩

Wk
p(Rd), s = k ∈ N

Bs
p,p(Rd), s ∈ R+\N0.

Later on we will consider weighted X-valued Triebel–Lizorkin spaces on an interval

(−∞, T) ⊂ R. We define these spaces by restriction.

Definition 2.3. Let T ∈ (−∞, ∞] and let X be a Banach space. For p ∈ (1, ∞), q ∈ [1, ∞),

ω ∈ Ap(R), and r ∈ R we denote by Fr
p,q((−∞, T), ω; X) the collection of all restrictions of

elements of Fr
p,q(R, ω; X) on (−∞, T). If f ∈ Fr

p,q((−∞, T), ω; X) then

‖ f ‖Fr
p,q((−∞,T),ω;X) = inf ‖g‖Fr

p,q(R,ω;X),

where the infimum is taken over all g ∈ Fr
p,q(R, ω; X) whose restriction on (−∞, T)

coincides with f .
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Higher-Order Parabolic Equations 9

We will also use Besov spaces Bs
p,p(∂�) defined on ∂�. We refer the reader to

[30, Sec. 3.6] for the precise definition.

We will need the following spatial trace inequality. For full details about the

proof, we refer the reader to [4, Lemma 3.5] for the unweighted setting and to [21,

Lemma 1.3.11] where the weights considered are power-type weights in time. The

restriction of power-type weights only plays a role at t = 0 in order to have a well-

defined trace space. Thus, in the formulation below with t ∈ R, the power-type weight

can be replaced by any weight ω ∈ Ap(R); see for instance [19, Sec. 6.3] for details.

Lemma 2.4. Let p ∈ (1, ∞), ω ∈ Ap(R), m ∈ N, and s ∈ (0, 1] so that 2ms ∈ N. Then

the map

trx1=0 : Ws,2ms
p,ω

(
R

d+1
+

)
↪→ W

s− 1
2mp ,2ms− 1

p
p,ω (R × R

d−1)

is continuous.

3 Assumptions and Main Result

In the sequel, we assume that � is a (possibly unbounded) C2m−1,1 domain in R
d. Let

T ∈ (−∞, ∞], p, q ∈ (1, ∞), and m = 1, 2, . . .. We consider a 2m-th order elliptic

differential operator A given by

Au =
∑

|α|≤2m

aα(t, x)Dαu,

where aα : (−∞, T) × � → C. For j = 1, . . ., m and mj ∈ {0, . . . , 2m − 1}, we consider the

boundary differential operators Bj of order mj given by

Bju =
∑

|β|≤mj

bjβ(t, x)Dβu,

where bjβ : (−∞, T) × � → C. For convenience, here and in the sequel, we denote

Dxj = −i ∂
∂xj

.

We will give conditions on the operators A and Bj under which the Lp(Lq)-

estimates hold for the solution to the parabolic problem

⎧
⎨

⎩

ut(t, x) + (A + λ)u(t, x) = f (t, x) in (−∞, T) × �

Bju(t, x)
∣
∣
∂�

= gj on (−∞, T) × ∂�, j = 1, . . . , m.
(3.1)
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10 H. Dong and C. Gallarati

We also consider the corresponding elliptic problem

⎧
⎨

⎩

(A + λ)u = f in �

Bju
∣
∣
∂�

= gj on ∂�, j = 1, . . . , m,
(3.2)

where the coefficients of the operators involved are functions independent on t ∈ R that

is defined on �.

3.1 Assumptions on A and Bj

Denote

AH(t, x, D) :=
∑

|α|=2m

aα(t, x)Dα and BH
j (D) :=

∑

|β|=mj

bjβ(t, x)Dβ

to be the principal part of A and Bj, respectively, and

A
(t, x, ξ) =
∑

|α|=2m

aα(t, x)ξα

to be the principal symbol of A. For any (t0, x0) ∈ (−∞, T)×� and in a coordinate system

that will be specified later, taking the Fourier transform Fx′ with respect to x′ ∈ R
d−1

and letting v(x1, ξ) := Fx′(u(x1, ·))(ξ), we obtain

AH(t0, x0, ξ , Dx1)v := Fx′
(
AH(t0, x0, D)u(x1, ·)

)
(ξ)

=
2m∑

k=0

∑

|β|=k

ak,β(t0, x0)ξβD2m−k
x1

v

and

BH
j (t0, x0, ξ , Dx1)v := Fx′

(
BH

j (t0, x0, D)u(x1, ·)
)

(ξ)

=
mj∑

k=0

∑

|γ |=k

bj,k,γ (t0, x0)ξγ D
mj−k
x1 v.

We first introduce a parameter-ellipticity condition in the sense of [3, Definition 5.1].

(E)θ Let θ ∈ (0, π). For any t ∈ (∞, T) and x ∈ �, it holds that

A
(t, x, ξ) ⊂ �θ , ∀ ξ ∈ R
n, |ξ | = 1,

where �θ = {z ∈ C\{0} : | arg(z)| < θ} and arg : C\{0} → (−π , π ].
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Higher-Order Parabolic Equations 11

Before stating the Lopatinskii–Shapiro condition, we need to introduce some

notation. For each x̂0 ∈ ∂�, we choose a coordinate system such that x̂0 is the origin

and e1 is the normal direction at x̂0 (Here [ej]dj=1 denotes the standard basis of R
d.). We

assume that the (LS)θ–condition holds for any t0 ∈ (−∞, T) and x0 ∈ B2R0(x̂0) ∩ � with

respect to the above coordinate system, which can be stated as follows.

(LS)θ For each (h1, . . . , hm)T ∈ R
d−1, ξ ∈ R

m, λ ∈ �π−θ , t0 ∈ (−∞, T),

x0 ∈ B2R0(x̂0) ∩ �, and |ξ | + |λ| �= 0, the ordinary differential equation (ODE)

problem in R+

⎧
⎨

⎩

λv + AH(t0, x0, ξ , Dx1)v = 0, x1 > 0,

BH
j (t0, x0, ξ , Dx1)v

∣
∣
x1=0 = hj, j = 1, . . . , m

admits a unique solution v ∈ C∞(R+) such that limx→∞ v(x) = 0.

We now introduce a regularity condition on the leading coefficients, where ρ is

a parameter to be specified.

Assumption 3.1. (ρ) For |α| = 2m, there exist a constant R0 ∈ (0, 1] such that

(aα)


R0

≤ ρ.

Throughout the paper, we impose the following assumptions on the coefficients

of A and Bj.

(A) For the multi-index α, the coefficients aα are functions (−∞, T)×� → C and

‖aα‖L∞ ≤ K and satisfy Assumption 3.1 (ρ) with a parameter ρ ∈ (0, 1) to be

determined later. Moreover, A satisfies condition (E)θ .

(B) The coefficients bjβ : (−∞, T) × � → C satisfy

bjβ ∈ C
2m−mj

2m ,2m−mj ((−∞, T) × �) ,
∥
∥bjβ

∥
∥

C
2m−mj

2m ,2m−mj ((−∞,T)×�)

≤ K,

and

lim
|t|+|x|→∞

bjβ(t, x) = bjβ .

The (LS)θ -condition is satisfied by (A, Bj) for any A ∈ (E)θ , where Bj,

j = 1, . . ., m, are the boundary operators with coefficients bjβ .

We can now state the 1st main result of this paper.
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12 H. Dong and C. Gallarati

Theorem 3.2. Let T ∈ (−∞, ∞], p, q ∈ (1, ∞), and ω ∈ Ap((−∞, T)). Let � be a C2m−1,1-

domain with the C2m−1,1-norm bounded by K. There exists

ρ = ρ
(
θ , m, d, K, p, q, [ω]p, bjβ

) ∈ (0, 1)

such that under the assumptions (A), (B), and (LS)θ for some θ ∈ (0, π/2), the following

hold. There exists λ0 = λ0(θ , m, d, K, p, q, [ω]p, R0, bjβ) ≥ 1 such that for any λ ≥ λ0 if

u ∈ W1
p

(
(−∞, T), ω; Lq(�)

) ∩ Lp

(
(−∞, T), ω; W2m

q (�)
)

satisfies the problem (3.1), where f ∈ Lp,q,ω((−∞, T) × �) and

gj ∈ F
kj
p,q

(
(−∞, T), ω; Lq(∂�)

) ∩ Lp

(
(−∞, T), ω;B2mkj

q,q (∂�)
)

with kj = 1 − mj/(2m) − 1/(2mq), then it holds that

‖ut‖Lp((−∞,T),ω;Lq(�)) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp((−∞,T),ω;Lq(�))

≤ C‖ f ‖Lp((−∞,T),ω;Lq(�)) + C
m∑

j=1

∥
∥gj

∥
∥

F
kj
p,q((−∞,T),ω;Lq(∂�))∩Lp((−∞,T),ω;B

2mkj
q,q (∂�))

, (3.3)

where C = C(θ , m, d, K, p, q, [ω]p, bjβ) > 0 is a constant. Moreover, for any λ ≥ λ0,

f ∈ Lp,q,ω((−∞, T) × �), and

gj ∈ F
kj
p,q

(
(−∞, T), ω; Lq(∂�)

) ∩ Lp

(
(−∞, T), ω;B2mkj

q,q (∂�)
)

,

there is a unique solution u ∈ W1
p((−∞, T), ω; Lq(�)) ∩ Lp((−∞, T), ω; W2m

q (�)) to (3.1).

Using the same arguments as in [6, Theorem 3.6], from the a priori estimates for

the parabolic equation in Theorem 3.2, we obtain the a priori estimates for the higher-

order elliptic equation as well. The key idea is that the solutions to elliptic equations can

be viewed as steady state solutions to the corresponding parabolic cases. The argument

is quite standard, so we omit the proof. The interested reader can find more details in

[9, Theorem 5.5] and [17, Theorem 2.6].

We state below the elliptic version of Theorem 3.2. In this case the coefficients

of A and Bj are independent of t.
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Higher-Order Parabolic Equations 13

Theorem 3.3. Let q ∈ (1, ∞) and � be a C2m−1,1-domain with the C2m−1,1-norm bounded

by K. There exists

ρ = ρ(θ , m, d, K, q, bjβ) ∈ (0, 1)

such that under the assumptions (A), (B), and (LS)θ for some θ ∈ (0, π/2) the following

hold. There exists λ0 = λ0(θ , m, d, K, q, R0, bjβ) ≥ 0 such that for any λ ≥ λ0 and

u ∈ W2m
q (�) satisfying (3.2), where f ∈ Lq(�) and gj ∈ B2mkj

q,q (∂�) with kj = 1 − mj/(2m) −
1/(2mq) it holds that

∑

|α|≤2m

λ1− |α|
2m ‖Dαu‖Lq(�) ≤ C‖ f ‖Lq(�) + C

m∑

j=1

∥
∥gj

∥
∥
B

2mkj
q,q (∂�)

,

where C = C(θ , m, d, K, q, bjβ) > 0 is a constant. Moreover, for any λ ≥ λ0 and f ∈ Lq(�)

and gj ∈ B2mkj
q,q (∂�), there is a unique solution u ∈ W2m

q (�) to (3.2).

Note that in the case when � is bounded, for Theorem 3.3, the limit behavior of

bjβ in the assumption (B) is unnecessary.

Remark 3.4.

(i) For notational simplicity, we consider the scalar case only. However, with the

same proofs Theorem 3.2 and the corresponding elliptic results also hold if

one considers finite-dimensional systems of operators.

(ii) In [3, 4], [21, 22], and [19], the coefficients there considered are operator-

valued, with values in a Banach space with the unconditional martingale

difference (UMD) property (see [16] for details). In the unweighted setting

our proofs refer to these results, and we therefore believe that it is possible

to extend our results also to the case of operator-valued coefficients, with

values in a Hilbert space or in a UMD-Banach space. We do not deal with

these cases in order to not overburden the current paper. It would also be

very interesting to see whether our results can be extended to mixed-order

systems, say in the setting of [5]. This, however, is highly nontrivial and will

be studied in our future work.

4 An Auxiliary Result

Throughout the section, we assume that A and Bj consist only of their principal part.

Let

A0 =
∑

|α|=2m

āαDα
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14 H. Dong and C. Gallarati

be an operator with constant coefficients satisfying |aα| ≤ K and the condition (E)θ with

θ ∈ (0, π/2), and let

Bj =
∑

|β|=mj

bjβDβ ,

where the coefficients bjβ are also constants. In this section, we consider the problem

⎧
⎨

⎩

ut(t, x) + (λ + A0)u(t, x) = f (t, x) in (−∞, T) × R
d
+

Bju(t, x)
∣
∣
x1=0 = gj(t, x) on (−∞, T) × R

d−1.
(4.1)

We prove an auxiliary estimate, which is derived from a result in [19]. For a

weight ω ∈ Aq(R), we denote in the following Lq,ω(R × R
d+) := Lq(R, ω; Lq(Rd+)).

Lemma 4.1. Let T ∈ (−∞, +∞], q ∈ (1, ∞), and ω ∈ Aq(−∞, T). Let A0 and Bj be as

above. Assume that, for some θ ∈ (0, π/2), (A0, Bj) satisfies the (LS)θ -condition. Then for

any f ∈ Lq,ω((−∞, T) × R
d+) and

gj ∈ W
kj,2mkj
q,ω

(
(−∞, T) × R

d−1
)

with j ∈ {1, . . ., m}, mj ∈ {0, . . . , 2m − 1}, kj = 1 − mj/(2m) − 1/(2mq), and u ∈
W1,2m

q,ω ((−∞, T) × R
d+) satisfying (4.1) with λ ≥ 0, we have

‖ut‖Lq,ω((−∞,T)×R
d+)

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu‖Lq,ω((−∞,T)×R

d+)

≤ C‖ f ‖Lq,ω((−∞,T)×R
d+)

+ C
m∑

j=1

‖gj‖
W

kj ,2mkj
q,ω ((−∞,T)×Rd−1)

, (4.2)

with C = C(θ , m, d, K, q, bjβ , [ω]q) > 0. Moreover, for any λ > 0,

f ∈ Lq,ω

(
(−∞, T) × R

d
+
)

and gj ∈ W
kj,2mkj
q,ω

(
(−∞, T) × R

d−1
)

with j, mj, and kj as above, there exists a unique solution u ∈ W1,2m
q,ω ((−∞, T) × R

d+)

to (4.1).

Proof. Consider first T = ∞. For any ω ∈ Aq(R), let u ∈ W1,2m
q,ω (R+ × R

d+) be a solution

to (4.1).
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Higher-Order Parabolic Equations 15

Decompose u = v + w, where

• w ∈ W1,2m
q,ω (Rd+1

+ ) is the solution to the inhomogeneous problem

⎧
⎨

⎩

wt + (A0 + λ)w = f in R × R
d
+

Bjw
∣
∣
x1=0 = 0 on ∂Rd+1

+ , j = 1, . . . , m
(4.3)

• v ∈ W1,2m
q,ω (Rd+1

+ ) is the solution to the homogeneous problem

⎧
⎨

⎩

vt + (A0 + λ)v = 0 in R × R
d
+

Bjv
∣
∣
x1=0 = gj(t, x) on R × R

d−1, j = 1, . . . , m.
(4.4)

It follows directly from [6, Theorem 3.5 (i)] with p = q that the solution

w ∈ W1,2m
q,ω (Rd+1

+ ) of (4.3) satisfies

‖wt‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαw‖Lq,ω(Rd+1

+ )
≤ C‖ f ‖Lq,ω(Rd+1

+ )
(4.5)

with C = C(θ , K, d, m, q, bjβ , [ω]q).

Consider now (4.4). Since A0 and Bj have constant coefficients, using a scaling

t → λ−1t, x → λ−1/2mx, for a general λ ∈ (0, 1), we get that ṽ(t, x) := v(λ−1t, λ−1/2mx)

satisfies
⎧
⎨

⎩

ṽt(t, x) + (1 + A0)ṽ(t, x) = 0 in R × R
d
+

Bjṽ(t, x)
∣
∣
x1=0 = g̃j(t, x) on R × R

d−1,
(4.6)

where

g̃j(t, x) = λ−mj/2mgj(λ
−1t, λ−1/2mx).

Note that ω̃(t) := ω(λ−1t) ∈ Aq(R) and [ω̃]q = [ω]q. Applying [19, Lemma 6.6] to (4.6) with

p = q and γ = 0, we get that the solution ṽ ∈ W1,2m
q,ω (Rd+1

+ ) to (4.6) satisfies

‖ṽt‖Lq,ω̃(Rd+1
+ )

+ ‖D2mṽ‖Lq,ω̃(Rd+1
+ )

≤ C
m∑

j=1

‖g̃j‖
W

kj ,2mkj
q,ω̃ (R×Rd−1)

with C = C(θ , m, d, K, q, bjβ , [ω]q). We remark that although the estimate is not explicitly

stated in this reference, it can be extracted from the proof there.
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16 H. Dong and C. Gallarati

Now scaling back and using Definition 2.2, it is easily seen that

‖vt‖Lq,ω(Rd+1
+ )

+ ‖D2mv‖Lq,ω(Rd+1
+ )

≤ C
m∑

j=1

‖gj‖
W

kj ,2mkj
q,ω (R×Rd−1)

,

with the constant C independent of λ ∈ (0, 1). Sending λ → 0, we obtain that the above

estimate holds when λ = 0. Finally, by applying an argument of S. Agmon as in [17,

Theorem 4.1], from the above estimate with λ = 0 it follows that when λ > 0,

‖vt‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαv‖Lq,ω(Rd+1

+ )
≤ C

m∑

j=1

‖gj‖
W

kj ,2mkj
q,ω (R×Rd−1)

(4.7)

with constant C = C(θ , m, d, K, q, bjβ , [ω]q). Since u = w + v, by (4.5) and (4.7) we get (4.2)

with T = ∞ and C = C(θ , m, d, K, q, bjβ , [ω]q) > 0. The solvability follows directly by the

solvability argument in [6, Sec. 6] or the argument in [19, Lemma 6.6].

The proof for T < ∞ follows now the lines of [6, Lemma 4.1], so we omit the

details. �

5 Proof of Theorem 3.2 when � = R
d+

In this section, we prove Theorem 3.2 in the special case when � = R
d+. The proof is

divided into several steps. From Steps 1 to 3, we will assume p = q ∈ (1, ∞) and we

will show that the estimate (3.3) holds in this case. In Step 4, we will extrapolate the

estimate from the previous steps to the case p �= q and complete the proof.

Proof of Theorem 3.2 when � = R
d+. It suffices to consider T = ∞. For the general

case when T ∈ (−∞, ∞], we can follow the proof of [6, Lemma 4.1], so we omit the

details.

Recall that the lower-order coefficients in A are bounded by K. By moving the

terms aα(t, x)Dαu with |α| < 2m to the right-hand side of the equation and taking a

sufficiently large λ, we may assume the lower-order coefficients of A to be all zero.

Denote

Q̃r(t0, x0) = [t0 − r2m, t0 + r2m) × C+
2r(x0),

where C+
2r(x0) denotes a cube centered in x0 having side-length 2r and axes parallel to

the coordinate axes, intersected with the half space R
d+. As before, we use Q̃r to indicate

Q̃r(0, 0).
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Higher-Order Parabolic Equations 17

Let R be a large constant to be specified.

Step 1. We first consider the case p = q. We assume that there exists a constant

�0 ≥ 1 such that [ω]q ≤ �0 and we assume that u is supported in R
d+1
+ \ Q̃R. Fix a point

(t0, x0) ∈ R
d+1
+ \ Q̃R and set

A(t0, x0)u =
∑

|α|=2m

aα(t0, x0)Dαu.

Decompose u = u1 + u2, where u1 is a solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 + (λ + A(t0, x0))u1 = 0 in R
d+1
+

∑

|β|=mj

b̄jβDβu1 = −
∑

|β|<mj

bjβDβu

+
∑

|β|=mj

(b̄jβ − bjβ)Dβu + gj on ∂Rd+1
+ ,

(5.1)

and u2 is a solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂tu2 + (λ + A)u2 = f − (A − A(t0, x0))u1 in R
d+1
+

∑

|β|=mj

b̄jβDβu2 = 0 on ∂Rd+1
+ .

(5.2)

By Lemma 4.1, we first solve (5.1). It follows from Lemma 2.4 that

‖∂tu1‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lq,ω(Rd+1

+ )

≤ C
∥
∥
∥

∑

|β|<mj

bjβDβu
∥
∥
∥

W

2m−mj
2m ,2m−mj

q,ω (Rd+1
+ )

+ C
m∑

j=1

‖gj‖
W

kj ,2mkj
q,ω (∂Rd+1

+ )

+ C
∥
∥
∥

∑

|β|=mj

(bjβ − bjβ)Dβu
∥
∥
∥

W

2m−mj
2m ,2m−mj

q,ω (Rd+1
+ )

.

Since bjβ(t, x) → bjβ for |t| + |x| → ∞, given ε > 0 and taking R > 0 large enough it holds

that

sup
(t,x)∈Rd+1

+ \Q̃R

|bjβ − bjβ(t, x)| < ε.
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18 H. Dong and C. Gallarati

This and the parabolic interpolation inequality yield that

‖∂tu1‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lq,ω(Rd+1

+ )

≤ C
m∑

j=1

‖gj‖
W

kj ,2mkj
q,ω (∂Rd+1

+ )
+ CK

(
ε‖D2mu‖Lq,ω(Rd+1

+ )
+ ε‖ut‖Lq,ω(Rd+1

+ )
+ Cε‖u‖Lq,ω(Rd+1

+ )

)
.

(5.3)

Now, [6, Theorem 3.5] with w = 1 applied to (5.2) yields that for λ ≥ λ0, where λ0 =
λ0(θ , m, d, K, q, R0, [ω]q, bjβ) > 0, it holds that

‖∂tu2‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu2‖Lq,ω(Rd+1

+ )

≤ C‖ f ‖Lq,ω(Rd+1
+ )

+ C‖(A − A(t0, x0))u1‖Lq,ω(Rd+1
+ )

≤ C‖ f ‖Lq,ω(Rd+1
+ )

+ CK

∑

|α|≤2m

‖Dαu1‖Lq,ω(Rd+1
+ )

(5.4)

provided that ρ ≤ ρ̄, where ρ̄ > 0 is a constant depending only on θ , m, d, K, q, [ω]q, and

b̄jβ . Since u = u1 + u2, by (5.3) and (5.4), it follows that

‖ut‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu‖Lq,ω(Rd+1

+ )

≤ ‖∂tu1‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lq,ω(Rd+1

+ )

+ ‖∂tu2‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu2‖Lq,ω(Rd+1

+ )

≤ ‖∂tu1‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lq,ω(Rd+1

+ )

+ CK

∑

|α|≤2m

‖Dαu1‖Lq,ω(Rd+1
+ )

+ C‖ f ‖Lq,ω(Rd+1
+ )

≤ C‖ f ‖Lq,ω(Rd+1
+ )

+ CK‖gj‖
W

kj ,2mkj
q,ω (∂Rd+1

+ )

+ CK

(
ε‖D2mu‖Lq,ω(Rd+1

+ )
+ ε‖ut‖Lq,ω(Rd+1

+ )
+ Cε‖u‖Lq,ω(Rd+1

+ )

)
.

Now taking ε small enough so that CKε ≤ 1/2 and λ ≥ λ̄ := max{λ0, 2CKCε}, we get (3.3)

for u with support in R
d+1
+ \ Q̃R.

Step 2. Let ε be a small constant to be specified. For any (t0, x0) ∈ Q̃R+1,

by the stability of the (LS)θ -condition (see for instance [3, Remark 7.10]) and the
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Higher-Order Parabolic Equations 19

continuity of bjβ , there exists rt0,x0 ∈ (0, R0) such that the (LS)θ -condition is satisfied

by (A(t, x), Bj(t0, x0)) for any (t, x) ∈ Q̃rt0,x0
(t0, x0) and

sup
(t,x)∈Q̃rt0,x0

(t0,x0)

|bjβ(t0, x0) − bjβ(t, x)| < ε.

Assume that u is supported on Q̃
κ−2

t0,x0
rt0,x0

(t0, x0), where κt0,x0 is a large constant to be

determined later. We only focus on the case when x1
0 ≤ R0. The interior case x1

0 > R0

follows directly by [8, Sec. 5], since in this case there are no boundary conditions

involved.

Similarly, we decompose u = u1 + u2, where u1 is a solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 + (λ + A(t0, x0))u1 = 0 in R
d+1
+

∑

|β|=mj

bjβ(t0, x0)Dβu1 = −
∑

|β|<mj

bjβ(t, x)Dβu

+
∑

|β|=mj

(bjβ(t0, x0) − bjβ(t, x))Dβu + gj on ∂Rd+1
+ ,

(5.5)

and u2 is a solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂tu2 + (λ + A)u2 = f − (A − A(t0, x0))u1 =: h in R
d+1
+

∑

|β|=mj

bjβ(t0, x0)Dβu2 = 0 on ∂Rd+1
+ .

(5.6)

By Lemma 4.1, we first solve (5.5). It follows from Lemma 2.4 that

‖∂tu1‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lq,ω(Rd+1

+ )

≤ C
∥
∥
∥

∑

|β|<mj

bjβDβu
∥
∥
∥

W

2m−mj
2m ,2m−mj

q,ω (Rd+1
+ )

+ C
m∑

j=1

‖gj‖
W

kj ,2mkj
q,ω (∂Rd+1

+ )

+ C
∥
∥
∥

∑

|β|=mj

(bjβ(t0, x0) − bjβ)Dβu
∥
∥
∥

W

2m−mj
2m ,2m−mj

q,ω (Rd+1
+ )

≤ C
m∑

j=1

‖gj‖
W

kj ,2mkj
q,ω (∂Rd+1

+ )
+ CK

(
ε‖D2mu‖Lq,ω(Rd+1

+ )
+ ε‖ut‖Lq,ω(Rd+1

+ )
+ Cε‖u‖Lq,ω(Rd+1

+ )

)
.

(5.7)
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20 H. Dong and C. Gallarati

where in the last estimate we used the parabolic interpolation inequality and the

smoothness assumption of the coefficients bjβ .

In order to deal with (5.6), we exploit the property that u has a small support.

We shall first establish mean oscillation estimates in

X := Q̃
κ−1

t0,x0
rt0,x0

(t0, x0).

For this, we take a dyadic decomposition of X given by

Cn = {
Qn = Qn

i : i = (i0, i1, . . . , id) ∈ Z
d+1,

i0 = 0, . . . , 2nm − 1, ik = 0, . . . , 2n − 1, k = 1, . . . , d
}
,

where n ∈ Z, and for x0 = (x1
0, x′

0) ∈ R+ × R
d−1 and r0 := κ−1

t0,x0
rt0,x0 ,

Qn
i = {t0 − r2m

0 + r2m
0 2−nm+1([0, 1) + i0)}

× {
max(0, x1

0 − r0) + min(r0, x1
0)2−n([0, 1) + i1)

}

× {
x′

0 − r0(1, . . . , 1) + r02−n+1([0, 1)d−1 + (i2, . . . , id))
}
.

Then for any X ∈ X and Qn ∈ Cn such that X ∈ Qn, one can find X0 ∈ X and the smallest

r ∈ (0, R0) such that Qn ⊂ Q+
r (X0) and

−
∫

Qn
| f (Y) − f|n(X)| dY ≤ C −

∫

Q+
r (X0)

| f (Y) − ( f )Q+
r (X0)| dY (5.8)

with C = C(d, m), where f|n(X) = −
∫

Qn f (Y) dY. For x ∈ X , we define the dyadic sharp

function of f by

f 


dy(X) := sup
n<∞

−
∫

Qn�X
| f (Y) − f|n(X)| dY.

We also define the parabolic maximal function of a function f ∈ L1,loc(R
d+1
+ ) by

Mf (X) = sup
Q∈Q
X∈Q

−
∫

Q
| f (Y)| dY,

where

Q =
{
Q+

r (t, x) : (t, x) ∈ R
d+1
+ , r ∈ (0, ∞)

}
.
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Higher-Order Parabolic Equations 21

Recall that there is a positive number σ1 = σ1(q, [ω]q) such that q − σ1 > 1 and

ω ∈ Aq−σ1(R). We take q0, μ ∈ (1, q) satisfying q0μ = q
q−σ1

> 1. Then it holds that

ω ∈ Aq−σ1(R) = Aq/(q0μ)(R) ⊂ Aq/q0(R). (5.9)

Since u2 satisfies (5.6), by (5.8) and the mean oscillation estimates of [6, Lemma 4.6] with

κ = κt0,x0 and μ, ς satisfying 1
μ

+ 1
ς

= 1,

−
∫

Qn
|∂tu2(Y) − (∂tu2)|n(X)| dY +

∑

|α|≤2m
α1<2m

λ1− |α|
2m −

∫

Qn
|Dαu2(Y) − (Dαu2)|n(X)| dY

≤ Cκ
−(1− 1

q0
)

t0,x0

∑

|α|≤2m

λ1− |α|
2m (|Dαu2|q0)

1
q0

Q+
κt0,x0 r(X0)

+ Cκ

d+2m
q0

t0,x0
(|h|q0)

1
q0

Q+
κt0,x0 r(X0)

+ Cκ

d+2m
q0

t0,x0
ρ

1
q0ς (|D2mu2|qμ)

1
q0μ

Q+
κt0,x0 r(X0)

.

Taking the supremum with respect to all Qn � X, n ∈ Z, we see that for all X ∈ X ,

(∂tu2)



dy(X) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m (Dαu2)




dy(X)

≤ Cκ
−(1− 1

q0
)

t0,x0

∑

|α|≤2m

λ1− |α|
2m [M(|Dαu2|q0)(X)]

1
q0

+ Cκ

d+2m
q0

t0,x0
[M(|h|q0)(X)]

1
q0 + Cκ

d+2m
q0

t0,x0
ρ

1
q0ς [M(|D2mu2|q0μ)(X)]

1
q0μ .

(5.10)

By taking the Lq,ω(Rd+1
+ )-norms on both sides of (5.10) and applying Theorem 2.3

of [9] with p = q, we get for C = C(θ , d, m, K, q, [ω]q, bjβ , t0, x0),

‖∂tu2‖Lq,ω(X ) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m ‖Dαu2‖Lq,ω(X )

≤ C|I|−1(ω(I))1/q
(

‖∂tu2‖L1(X ) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m ‖Dαu2‖L1(X )

)

+ Cκ
−(1− 1

q0
)

t0,x0

∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu2

∥
∥

Lq,ω(Rd+1
+ )

+ Cκ

d+2m
q0

t0,x0

∥
∥h

∥
∥

Lq,ω(Rd+1
+ )

+ Cκ

d+2m
q0

t0,x0
ρ

1
q0ς

∥
∥D2mu2

∥
∥

Lq,ω(Rd+1
+ )

,
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22 H. Dong and C. Gallarati

where I := (t0−r2m
t0,x0

, t0+r2m
t0,x0

) and we also used (5.9) and the weighted Hardy–Littlewood

maximal function theorem to get, for instance,

∥
∥[M(D2mu2)q0μ]

1
q0μ

∥
∥

Lq,ω(X )
= ∥

∥M(D2mu2)q0μ
∥
∥

1
q0μ

Lq/(q0μ),ω(Rd+1
+ )

≤ C
∥
∥(D2mu2)q0μ

∥
∥

1
q0μ

Lq/(q0μ),ω(Rd+1
+ )

= C
∥
∥D2mu2

∥
∥

Lq,ω(Rd+1
+ )

with C = C(d, q, [ω]q). Since

aα̃α̃(t, x)D2m
x1

u2 = h − ∂tu2 −
∑

|α|=2m,α1<2m

aα(t, x)Dαu2 − λu2,

where α̃ = (m, 0, . . . , 0), we get

‖∂tu2‖Lq,ω(X ) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαu2‖Lq,ω(X )

≤ C|I|−1(ω(I))1/q
(

‖∂tu2‖L1(X ) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαu2‖L1(X )

)

+ Cκ
−(1− 1

q0
)

t0,x0

∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu2

∥
∥

Lq,ω(Rd+1
+ )

+ Cκ

d+2m
q0

t0,x0

∥
∥h

∥
∥

Lq,ω(Rd+1
+ )

+ Cκ

d+2m
q0

t0,x0
ρ

1
q0ς

∥
∥D2mu2

∥
∥

Lq,ω(Rd+1
+ )

. (5.11)

Because u2 = u − u1, by applying the triangle inequality and Hölder’s inequality, we

estimate the 1st term on the right-hand side of (5.11) by

C|I|−1(ω(I))1/q
(

‖∂tu2‖L1(X ) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαu2‖L1(X )

)

≤ C|I|−1(ω(I))1/q
(

‖∂tu‖L1(X ) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαu‖L1(X )

+ ‖∂tu1‖L1(X ) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαu1‖L1(X )

)

≤ C|I|−1(ω(I))1/q|I1|(ω(I1))−1/q
(

‖∂tu‖Lq,ω(X )

+
∑

|α|≤2m

λ1− |α|
2m ‖Dαu‖Lq,ω(X )

)

+ C‖∂tu1‖Lq,w(X )

+ C
∑

|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lq,w(X ), (5.12)
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Higher-Order Parabolic Equations 23

where

I1 :=
(

t0 −
(
κ−2

t0,x0
rt0,x0

)2m
, t0 +

(
κ−2

t0,x0
rt0,x0

)2m
)

,

and we used the fact that u is supported on Q̃
κ−2

t0,x0
rt0,x0

(t0, x0). Using (2.2),

|I|−1(ω(I))
1
q |I1|(ω(I1))

− 1
q ≤ C(|I1|/|I|)

σ1
q ≤ Cκ

− 4mσ1
q

t0,x0
. (5.13)

By the triangle inequality, we estimate the remaining terms on the right-hand side of

(5.11) by

C
(

κ
−(1− 1

q0
)

t0,x0
+ κ

d+2m
q0

t0,x0
ρ

1
qς

) ∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu2

∥
∥

Lq,ω(Rd+1
+ )

+ Cκ

d+2m
q0

t0,x0

∥
∥h

∥
∥

Lq,ω(Rd+1
+ )

≤ C
(

κ
−(1− 1

q0
)

t0,x0
+ κ

d+2m
q0

t0,x0
ρ

1
qς

) ( ∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu1

∥
∥

Lq,ω(Rd+1
+ )

)

+ Cκ

d+2m
q0

t0,x0

∥
∥h

∥
∥

Lq,ω(Rd+1
+ )

. (5.14)

Since u = u1 + u2 and h = f − (A − A(t0, x0))u1, from (5.11), (5.12), (5.13), and

(5.14) it follows that

∥
∥ut

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu

∥
∥

Lq,ω(Rd+1
+ )

≤ C
∥
∥∂tu1

∥
∥

Lq,ω(Rd+1
+ )

+ Cκ

d+2m
q0

t0,x0

∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu1

∥
∥

Lq,ω(Rd+1
+ )

+ Cκ

d+2m
q0

t0,x0

∥
∥ f

∥
∥

Lq,ω(Rd+1
+ )

+ C

(

κ
−

(
1− 1

q0

)

t0,x0
+ κ

d+2m
q0

t0,x0
ρ

1
q0ς + κ

− 4mσ1
q

t0,x0

)

·

(

‖∂tu‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m,

λ1− |α|
2m ‖Dαu‖Lq,ω(Rd+1

+ )

)

,
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24 H. Dong and C. Gallarati

which combined with (5.7) yields

∥
∥ut

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu

∥
∥

Lq,ω(Rd+1
+ )

≤ Cκ

d+2m
q0

t0,x0

m∑

j=1

∥
∥gj

∥
∥

W
kj ,2mkj
q,ω (∂Rd+1

+ )
+ Cκ

d+2m
q0

t0,x0

∥
∥ f

∥
∥

Lq,ω(Rd+1
+ )

+ CKCεκ

d+2m
q0

t0,x0

∥
∥u

∥
∥

Lq,ω(Rd+1
+ )

+ C

(

κ
−(1− 1

q0
)

t0,x0
+ κ

d+2m
q0

t0,x0
ρ

1
q0ς + κ

− 4mσ1
q

t0,x0
+ εκ

d+2m
q0

t0,x0

)

·

⎛

⎝‖∂tu‖Lq,ω(Rd+1
+ )

+
∑

|α|≤2m,

λ1− |α|
2m ‖Dαu‖Lq,ω(Rd+1

+ )

⎞

⎠ .

Now we take κt0,x0 sufficiently large, ε sufficiently small, and then ρ ≤ ρt0,x0 sufficiently

small such that

C

(

κ
−(1− 1

q0
)

t0,x0
+ κ

d+2m
q0

t0,x0
ρ

1
q0ς + κ

− 4mσ1
q

t0,x0
+ εκ

d+2m
q0

t0,x0

)

≤ 1/2,

and finally take λ ≥ λt0,x0 := max{λ0, 2CKCεκ

d+2m
q0

t0,x0
}, we get (3.3) for u with support in

Q̃
κ−2

t0,x0
rt0,x0

(t0, x0) and

C = C(θ , d, m, K, q, bjβ , t0, x0).

Observe that C, ρt0,x0 , and λt0,x0 all depend on (t0, x0). However, since Q̃R+1 is

compact, we can apply a partition of the unity argument and get a uniform constant C.

This will be done in the next step.

Step 3. Since Q̃R+1 is compact and

Q̃R+1 ⊂
⋃

(t0,x0)∈Q̃R+1

Q̃
κ−2

t0,x0
rt0,x0/2(t0, x0),

there exists a finite number N ∈ N of points (t0,i, x0,i) ∈ Q̃R+1, i = 1, . . ., N such that

Q̃R+1 ⊂
N⋃

i=1

Q̃
κ−2

t0,i ,x0,i
rt0,i ,x0,i/2(t0,i, x0,i).
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Higher-Order Parabolic Equations 25

Take ζi ∈ C∞
0 (Q̃

κ−2
t0,i ,x0,i

rt0,i,x0,i
(t0,i, x0,i)), i = 1, . . ., N, such that ζi = 1 on Q̃

κ−2
t0,i ,x0,i

rt0,i,x0,i/2(t0,i,

x0,i), and ζ0 ∈ C∞
0 (Rd+1

+ ) such that

ζ0(x) =

⎧
⎪⎨

⎪⎩

1 x ∈ R
d+1
+ \Q̃R+1

0 x ∈ Q̃R.

Let ζ = ∑N
i=0 ζ

q
i ≥ 1 in R

d+1
+ . Define ηi = ζi(ζ )−1/q. Then,

∑N
i=0 η

q
i = 1 in R

d+1
+ .

Now we define

ui(t, x) = u(t, x)ηi(t, x).

Observe that

⎧
⎨

⎩

∂tui + (A + λ)ui = fi in R
d+1
+

Bjui
∣
∣
x1=0 = gj,i on ∂Rd+1

+ , j = 1, . . . , m,
(5.15)

where by Leibnitz’s rule

fi = f ηi + u(ηi)t +
∑

|α|=2m

∑

|γ |≤2m−1

(
α

γ

)

aα(t, x)Dγ uDα−γ ηi

and

gj,i = gjηi +
∑

1≤|β|≤mj

∑

|τ |≤|β|−1

(
β

τ

)

bjβ(t, x)Dτ uDβ−τ ηi
∣
∣
x1=0.

Now applying the result in Step 2 to (5.15) we get for i = 1, . . ., N,

∥
∥(ui)t

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαui

∥
∥

Lq,ω(Rd+1
+ )

≤ Ci
∥
∥ fi

∥
∥

Lq,ω(Rd+1
+ )

+ Ci

m∑

j=1

∥
∥gj,i

∥
∥

W
kj ,2mkj
q,ω (∂Rd+1

+ )

with Ci = C(θ , d, m, K, q, [ω]q, bjβ , t0,i, x0,i), provided that λ ≥ λt0,i,x0,i and ρ ≤ ρt0,i,x0,i .

Applying the result in Step 1 to (5.15) with i = 0 we get a similar inequality, with

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny084/4991867 by Technical U

niversity D
elft user on 08 N

ovem
ber 2019



26 H. Dong and C. Gallarati

C0 = C(θ , d, m, K, q, [ω]q, b̄jβ). Observe that by the triangle inequality

∥
∥ηiut

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥ηiD

αu
∥
∥

Lq,ω(Rd+1
+ )

≤ ∥
∥(ui)t

∥
∥

Lq,ω(Rd+1
+ )

+ ∥
∥u(ηi)t

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαui

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|=2m

∑

|γ |≤2m−1

(
α

γ

)

λ1− |α|
2m

∥
∥Dγ uDα−γ ηi

∥
∥

Lq,ω(Rd+1
+ )

,

∥
∥ fi

∥
∥

Lq,ω(Rd+1
+ )

≤ ∥
∥ f ηi

∥
∥

Lq,ω(Rd+1
+ )

+ ∥
∥u(ηi)t

∥
∥

Lq,ω(Rd+1
+ )

+ CK

∑

|α|=2m

∑

|γ |≤2m−1

(
α

γ

)
∥
∥Dγ uDα−γ ηi

∥
∥

Lq,ω(Rd+1
+ )

,

and

∥
∥gj,i

∥
∥

W
kj ,2mkj
q,ω (∂Rd+1

+ )
≤ ∥

∥gjηi
∥
∥

W
kj ,2mkj
q,ω (∂Rd+1

+ )

+ CK

∑

1≤|β|≤mj

∑

|τ |≤|β|−1

(
β

τ

)
∥
∥Dτ uDβ−τ ηi

∥
∥

W

2m−mj
2m ,2m−mj

q,ω (Rd+1
+ )

,

where we used the boundedness of the coefficients aα and bjβ . After taking the q-th

power, and summing in i = 0, 1, . . ., N, letting

C = C0 + sup
i=1,...,N

C(θ , d, m, K, q, [ω]q, bjβ , t0,i, x0,i)

and taking the q-th root, we get

∥
∥ut

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu

∥
∥

Lq,ω(Rd+1
+ )

≤ C
∥
∥ f

∥
∥

Lq,ω(Rd+1
+ )

+ C
m∑

j=1

∥
∥gj

∥
∥

W
kj ,2mkj
q,ω (∂Rd+1

+ )
+ C

∥
∥u

∥
∥

Lq,ω(Rd+1
+ )

+ CK

∑

|α|=2m

∑

|γ |≤2m−1

(
α

γ

)

λ1− |α|
2m

∥
∥Dγ uDα−γ ηi

∥
∥

Lq,ω(Rd+1
+ )

+ CK

∑

1≤|β|≤mj

∑

|τ |≤|β|−1

(
β

τ

)

λ
1− |τ |

mj
∥
∥Dτ u

∥
∥

W

2m−mj
2m ,2m−mj

q,ω (Rd+1
+ )
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with C uniform in t0,i, x0,i, provided that

λ ≥ λ′ := max{λ̄, λt0,i,x0,i : i = 1, . . . , N},

ρ ≤ ρ′ := min{ρ̄, ρt0,i,x0,i : i = 1, . . . , N}.

This, combined with interpolation estimates and taking ε small and λ large,

gives (3.3) with p = q and ω ∈ Aq(R) such that [ω]q ≤ �0, that is,

∥
∥ut

∥
∥

Lq,ω(Rd+1
+ )

+
∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu

∥
∥

Lq,ω(Rd+1
+ )

≤ C
∥
∥ f

∥
∥

Lq,ω(Rd+1
+ )

+ C
m∑

j=1

∥
∥gj

∥
∥

W
kj ,2mkj
q,ω (∂Rd+1

+ )
, (5.16)

where kj = 1 − mj/(2m) − 1/(2mq) and C = C(θ , m, d, K, q, �0, bjβ) > 0.

Step 4. We now extrapolate the estimate from the previous step to p �= q. By

(5.16) and Definition 2.2, we have that for all ω ∈ Aq(R) such that [ω]Aq ≤ �0 there exist

constants λ′, ρ′, C > 0 depending on �0 such that for any λ ≥ λ′ and ρ ≤ ρ′,

∑

|α|≤2m

λ1− |α|
2m ‖Uα‖Lq(R,ω)

≤ C‖F‖Lq(R,ω) + C
m∑

j=1

‖Gj,1‖Lq(R,ω) + C
m∑

j=1

‖Gj,2‖Lq(R,ω),

where

Uα = ∥
∥Dαu

∥
∥

Lq(Rd+)
, F = ∥

∥ f
∥
∥

Lq(Rd+)
,

Gj,1 = ∥
∥2kkjF−1(ϕ̂kĝj)k≥0

∥
∥

�q(Lq(Rd−1))
, Gj,2 = ∥

∥gj
∥
∥
B

2mkj
q,q (Rd−1)

.

Since the above estimate holds for all of the Aq weights with uniformly bounded Aq-

constant, ρ′ and λ′ can be chosen uniformly. Therefore, by the extrapolation result

Theorem 2.1 it follows that, for all ω ∈ Ap, there exist a constant C′ depending on [ω]p

such that for all λ ≥ λ′ and ρ ≤ ρ′,

∑

|α|≤2m

λ1− |α|
2m ‖Uα‖Lp(R,ω)

≤ C′‖F‖Lp(R,ω) + C′
m∑

j=1

‖Gj,1‖Lp(R,ω) + C′
m∑

j=1

‖Gj,2‖Lp(R,ω).
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This yields

∑

|α|≤2m

λ1− |α|
2m

∥
∥Dαu

∥
∥

Lp(R,ω;Lq(Rd+))
≤ C

∥
∥ f

∥
∥

Lp(R,ω;Lq(Rd+))

+ C
m∑

j=1

∥
∥gj

∥
∥

F
kj
p,q(R,ω;Lq(Rd−1))∩Lp(R,ω;B

2mkj
q,q (Rd−1))

with C = C(θ , m, d, K, p, q, [ω]p, bjβ). As ut = f − (λ + A)u, the estimate (3.3) directly

follows. Finally, the solvability follows from the a priori estimate (3.3), Lemma 4.1, and

the method of continuity. The theorem is proved. �

6 Proof of Theorem 3.2 for General C2m−1,1 Domains

In this section, we complete the proof of Theorem 3.2 for general C2m−1,1 domains by

applying the technique of flattening the boundary.

Proof of Theorem 3.2. For each x̂0 ∈ ∂�, we find a coordinate system such that x̂0 is

the origin and e1 is the normal direction at x̂0. Since � is a C2m−1,1 domain with the

uniform C2m−1,1-norm bounded by K, there is a function ϕ ∈ C2m−1,1(B′
R1

) with R1 ∈
(0, R0) independent of x̂0, where B′

R1
is the ball of radius R1 centered at the origin in

R
d−1, such that ‖ϕ‖C2m−1,1(B′

R1
) ≤ K,

∂� ∩ BR1 = {x = (x1, x′) ∈ BR1 : x1 = ϕ(x′)},

and

� ∩ BR1 = {x ∈ BR1 : x1 > ϕ(x′)}.

Set

�(x) :=
(

x1 − ϕ(x′)
x′

)

, x ∈ B,

� : BR1 → �(BR1), x �→ y. The differential operators A and Bj, j = 1, . . ., m, are

transformed into the operators

A� =
∑

|α|≤2m

a�
α (t, y)Dα, B�

j =
∑

|β|≤mj

b�
jβ(t, y)Dβ

and act on functions defined on �(BR1) ∩ R
d+. As � is an isomorphism near the origin,

the parameter ellipticity of A� and, in particular, the condition (E)θ are preserved under
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the change of variables. Moreover, the transformed operators (A�, B�
j ) satisfies the (LS)θ -

condition on �(BR1) ∩R
d+; see [33, Theorem 11.3]. Finally, it is easily seen that the leading

coefficients of the new operator in the new coordinate system also satisfy Assumption

3.1 with a possibly different ρ, and the transformed function u� satisfies

⎧
⎨

⎩

∂tu
� + (A� + λ)u� = f � in (−∞, T) × �(BR1) ∩ R

d
+

tr
R

d+
B�

j u� = g�
j on (−∞, T) × (�(BR1) ∩ R

d−1), j = 1, . . . , m.

Therefore, the case when p = q follows from the results in the previous section and a

partition of the unity argument as in, for instance, [8, Theorem 6]. The general case is

then derived from the case when p = q and Theorem 2.1 as in Section 5. As before, the

solvability follows from the a priori estimate and the method of continuity. The theorem

is proved. �
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