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We prove weighted mixed Ly(Lg)-estimates, with p,q € (1,00), and the corresponding
solvability results for higher-order elliptic and parabolic equations on the half space
RZ*! and on general 2"~ 1! domains with general boundary conditions, which satisfy
the Lopatinskii-Shapiro condition. We assume that the elliptic operators A have leading
coefficients that are in the class of vanishing mean oscillations both in the time and the
space variables and that the boundary operators have variable leading coefficients. The

proofs are based on and generalize the estimates recently obtained by the authors in [6].

1 Introduction

In this paper, we study the higher-order parabolic equation

ur+A+Au=f on (—oo,T)xQ (@.1)

trypeBju = gj on (—oo0,T)xdQ, j=1,...,m,

where Q is a possibly unbounded ¢?m-11 domain in R%, T € (=00, +00], “tr" denotes the

trace operator, A is an elliptic differential operator of order 2m, and (B;)) is a family of
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2 H. Dong and C. Gallarati

differential operators of order m; < 2m forj =1, ..., m. The leading coefficients of A are
assumed to be in the class of vanishing mean oscillations (VMO) both in the time and
space variables, while the operators B;j are assumed to have variable leading coefficients.
In addition, we assume that near the boundary (4, B)) satisfies the Lopatinskii-Shapiro
condition. Roughly speaking, it is an algebraic condition involving the symbols of the
principal part of the operators A and B; with fixed coefficients, which is equivalent to
the solvability of certain systems of ordinary differential equations. See for example
[1, 20, 27, 33].

Below in Theorem 3.2, we establish weighted Ly (Ly)-estimates with p, g € (1, 00)
and the corresponding solvability results for (1.1) with time-dependent weights in
the Muckenhoupt class. This generalizes the recent result obtained by the authors in
[6, Theorem 3.5], where Bj are assumed to have constant leading coefficients and the
equation is only considered in the half space.

In contrast to the case when A has uniformly continuous leading coefficients, the
extension of the results in [6] to boundary operators with variable leading coefficients is
nontrivial and does not follow from the standard perturbation argument. In fact, under
the VMO assumption on the coefficients of A, in the case when the boundary operators
have variable leading coefficients, to apply the method of freezing the coefficients as in
[6, Lemma 4.6] one would need to show the mean oscillation estimates of [6, Lemma 4.5]
for an equation with inhomogeneous boundary conditions. To the best of the authors’
knowledge, this case is not covered by the known theory. Moreover, the well-known
localization procedure (see for instance [3, Sec. 8]) does not seem to directly apply to the
case p # q, since we would need a partition of unity argument in both ¢ and x.

Our proof is based on a preliminary result for the case p = q, Lemma 4.1, in
which the Ly(Lg)-estimate is shown as a combination of a recent result of Lindemulder
in [19] and the estimates in [6], as well as the available extrapolation theory (see
[2, Theorem 1.4] and [9, Theorem 2.5]) to extrapolate to p # q. We also use in a crucial
way a version of the Fefferman-Stein sharp function theorem with A, weights in spaces
of homogeneous type, which was recently established in [9].

Research on Ly,(Lg)-regularity for higher-order equations as (1.1) has been
developed in the past decades by mainly two different approaches. On the one hand,
a partial differential equation (PDE) approach has been developed by a series of papers
by Krylov, Dong, and Kim. See for example [18], [7], [8], and references therein. In [8]
a new technique was developed to produce mean oscillation estimates for equations
in the whole and half spaces with the Dirichlet boundary condition, for p = q. These

results had been extended by the same authors in [9] to mixed L,(Lg)-spaces with
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Higher-Order Parabolic Equations 3

Muckenhoupt weights and small bounded mean oscillation (BMO) assumptions on the
space variable, for any p, g € (1, 00). It is worth noting that in all these references as well
as others papers in the literature VMO coefficients were only considered for equations
with specific boundary conditions (Dirichlet, Neumann, conormal, etc.).

On the other hand, L,(Lg)-regularity can be viewed in a functional analytic
approach as an application of a more general abstract result, namely that of maximal
Lp-regularity. Maximal Lp-regularity means that, under certain assumption on gj, for
all f € Lp(R,Lq(]Ri)), the solution to the evolution problem (1.1) has the “maximal”
regularity in the sense that u; and Au are both in Lp(R,Lq(Ri)). We refer to [3, 23, 32],
[14, 15], and [10, 11] for further information on autonomous and non-autonomous
problems and applications to higher-order equations.

In [3], Denk, Hieber, and Priiss obtained Lp(Lg)-regularity for any p,q € (1,00)
for autonomous, operator-valued parabolic problems on the half space and on domains
with homogeneous boundary conditions of the Lopatinskii-Shapiro type. The leading
coefficients of the operators involved are assumed to be bounded and uniformly
continuous, and their proofs combine operator sum methods with tools from vector-
valued harmonic analysis. These results were generalized in [4] by the same authors to
Ly(Lg)-regularity for nonautonomous, operator-valued parabolic initial-boundary value
problems with inhomogeneous boundary data, under the assumption that ¢t — A(t) is
continuous. See also Weidemaier [31] for the special case where m = 1, the coefficients
are complex-valued coefficients, and g < p. Later, Meyries and Schnaubelt in [22]
further generalized the results of [4] to the weighted time-dependent setting, where the
weights considered are Muckenhoupt power-type weights. See also [21]. Very recently,
Lindemulder in [19] generalized the results of [22] to the setting of power weights both
in the time and the space variables. In all these results, the leading coefficients of the
operators are assumed to be bounded and uniformly continuous in both the time and
space variables.

In this paper, we relax the assumptions on the coefficients of the operators
involved to be VMO in the time and space variables, and with inhomogeneous general
boundary operators having variable leading coefficients and satisfying the Lopatinskii—
Shapiro condition. The main result of this paper is stated in Theorem 3.2 and in the
elliptic setting in Theorem 3.3. The results presented here generalize the ones in [6], in
which the boundary operators were assumed to have constant leading coefficients and
only the half space setting was considered.

The paper is organized as follows. In Section 2 we give the necessary preliminary

results and introduce the notation. In Section 3 we list the main assumptions on the

6102 J8qWBAON g0 UO Jasn Jjo@ AlsisAlun [eo1uyds | AQ 2981 661/7S0AUIUIWIEE0L 0| /I0P/10BISE-8]01lB-80UBAPE/UIWI/WOD dNO"dIWapEI.//:Sd)Y WO} POPEOjUMO(]



4 H. Dong and C. Gallarati

operators and state the main theorem. In Section 4 we prove an auxiliary lemma needed
for the proof of the main theorem in the half-space case, which is given in Section 5.
Finally, in Section 6 we prove the main theorem in the general case by using the

estimates in the previous sections.

2 Preliminaries

In this section, we state some necessary preliminary results and introduce the notation
used throughout the paper.

2.1 Ap-weights

Details on Muckenhoupt weights can be found in [13, Chapter 9] and [28, Chapter V].
A weight is a locally integrable function on RY with w(x) € (0,00) for almost

every x € R%. The space Lp(]Rd,a)) is defined as all measurable functions f with
1

”f”Lp(Rd'w) = (/}Rd ‘f‘pwdx)p <oo ifpell,o0),

and

Hf“LOO(]Rd,w) = €sS. SUPycpa | f(X)].

We recall the class of Muckenhoupt weights A, for p € (1, 00). A weight w is said
to be an Ap-weight if

1 p-1
[w]p = [a)]Ap = sup <][ w(x) dx) (][ w(x) pT dX) < 00.
B B B

Here the supremum is taken over all balls B ¢ R? and fz = ﬁ Jz- The extended real
number [w]a, is called the Ap-constant. In the case of the half space R%, we replace the
balls B in the definition by BN Ri =: B" with center in ﬁ

The following properties will be used. For the given w € Ap(R), an open interval
I € R, and a measurable set E C I, it holds that

w(E)/w() > C(IE|/II))?, (2.1)

where C > 0 is a constant depending only on p and [wla, and |E| is the Lebesgue measure

of E. Moreover, using a reverse Holder's inequality (see [13, Corollary 9.2.6]), there is a
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Higher-Order Parabolic Equations 5

positive number o1 = o1(p, [wlp) such that p — o1 > 1 and
w€Ap 5 R).
Consequently, instead of (2.1), we have
w(E) /o) > C(IE|/1I)"™. (2.2)

The celebrated result of Rubio de Francia (see [24-26], [12, Chapter IV]) allows
one to extrapolate from weighted Ly-estimates for a single p to weighted Lg-estimates
for all g. The proofs and statement have been considerably simplified and clarified in
[2, Theorem 3.9]. The following version of the extrapolation theorem [2, Theorem 3.9]
will be needed. Its main feature is that, to prove (2.4) for a given w € Ap,p € (1,00), the
estimate (2.3) as an assumption needs to hold only for a subset of Ay, not for all weights
in Ap,. We refer to [9, Theorem 2.5] for further details.

Theorem 2.1. Let f,g : RY > Rbea pair of measurable functions pg,p € (1,00) and
w € Ap. Then there exists a constant Ag = Ag(po, p, [w]Ap) > 1 such that if

1Ly, @ = Cllgllz,, @ (2.3)
for some constant C > 0 and for any @ € Ap, satisfying (o] Ap, = Ao, then we have
1 flLy @) < 4ClIGlLy@)- (2.4)

2.2 Function spaces and notation

In this section we introduce some function spaces and notation to be used throughout

the paper.

We denote D = —i(9;,...,94) and we consider the standard multi-index notation
D* =D{" -...-D}* and |a| = a1 + - - - + g for a multi-index & = (a1, ..., 2q) € Ng.

Denote

R:=|x=(x1,x)eR%:x; >0, ¥ eR¥!} and RY! =R xRZ,
The parabolic distance between X = (¢, x) and Y = (s, y) in Rﬁfﬂ is defined by

1
p(X,Y) = |x —yl|+ [t —s|2m.
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6 H.Dong and C. Gallarati
For a function f on D C ]Rﬁlr“, we set

1

(f)D=ﬁ

/ f(t, x)dxdt =][ f@t, x)dxdt.
D D

Form =1, 2, ... fixed depending on the order of the equations under consideration, we

denote by
Qr(t,x) = (t =", 8) x By(x), Qf(t,%) = Qr(t,x) NRIM

the parabolic cylinders, where
Br(x) = {yeRd tx—yl<r} c R®
denotes the ball of radius r with center x. We use Q;" to indicate Q; (0, 0). We also define
B (x) = By(x) NR%.
Let Q be a domain in R and T € (—o00, oo]. We denote
QS (t, x) := Qr(t,x) N (R x Q).

Note that when @ = R%, Q2(¢, x) = Q; (¢, x).

For Q = Q;' (t, x) or Of(t, x), we define the mean oscillation of f on Q as

osc(f, Q) :=][a |f(s,y) — (Hal dsdy

and we denote for R € (0, 00),

(f)lﬁq = sup sup osc (f, Q2 (t, x)) .
(t,x)e(—00,T)xQ r<R

Next, we introduce the function spaces that will be used in the paper. For

p € (1,00) and k € Ny, we define the standard Sobolev space as
WEQ) ={ueLy(Q): D'uely(Q) Vil <k}
For p,q € (1,00) and —oo < S < T < 0o, we denote

Lp((S, T) x Q) = Ly ((S, T; Lp())
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Higher-Order Parabolic Equations 7

and mixed-norm spaces
Lpq (S, T) x Q) = Lp ((S, T); Lg(2)) -
For parabolic equations, we denote fork =1, 2, ...,
WK (S, T) x Q) = W} ((S, T); Lp(@) N Ly ((s, T); WI’;(Q)>
and mixed-norm spaces

WLE (S, T) x @) = W} ((S, T); Lo()) N Lp ((s, T); WZ;(Q)) .

We will use the following weighted Sobolev spaces. For w € Ap(R) we denote
Lpgw (5, T) x Q) =Lp (S, T), 0; Le())

and
Whk (8, 1) x Q) = W (8, 1), 03 L() NLp ((S, 1), 0 WER)

where by f € Ly, g,,((S, T) x ) we mean

T p/q 1/p
IFNlzp g0 (s, T x9) = (/; (/Q |f(t, x)? dX) (t) dt) < 00.

2.3 Interpolation and trace

The following function spaces from the interpolation theory will be needed. For more
information and proofs we refer the reader to [21, 29, 30].

For p € (1,00) and s = [s] + s, € R;\Np, where [s] € Ny, s, € (0,1), we define the
Slobodetskii space WIS) by real interpolation as

s _ [s] [s]+1
WS = (Wp , W )S*’p.

Let Q be a ¢2m~11 domain in R% and —0co < S < T < oco. For m € N, s € (0, 1], and

w € Ap(R), we consider weighted anisotropic spaces of the form

WSATS((S, T) x ) = W5 ((S, T), ; Lp() N Lp ((s, T), ; ngS(Q)) .
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8 H. Dong and C. Gallarati

Forpe (l,00),qell,o0l, reR, we Ap(Rd), and X a Banach space, we introduce
the Besov space B;Iq(Rd) and the weighted X-valued Triebel-Lizorkin space Flr,,q(Rd, w; X)
as follows.

Let ®(R%) be the set of all sequences (¢x)k>0 C S(R%) such that

Po=0, 91(5) =9E/2) —PE), Pk =a1(27F1g),

where k > 2, ¢ € R%, and where the Fourier transform @ of the generating function
¢ € S(RY) satisfies 0 < ¢(¢) < 1 for & € R? and

p@E) =1 ifjg[ <1, @& =0 if|§]=3/2.

Definition 2.2. Given (¢g)k>0 € @ (R%), we define the Besov space as

By ®Y) = [f e S'®RY: Ifllgy, ma = H (2"F @)

<o0f,
k201l ¢, @, (R2))

and the weighted X-valued Triebel-Lizorkin space as

Fy  (RY, 0, X) = {f € S®RLX) : Wfllpy md wix) = H (zk’f—l(akf))kzo

<o0¢.
Lp(Re,0;04(X))

Observe that Blr, RY) = Flr,lp(]Rd) by Fubini's theorem. Moreover, we have the

(
D
following equivalent definition of Slobodetskii space

WER?), s=keN

w5 (RY) =
B ,(RY), s eRy\No.

Later on we will consider weighted X-valued Triebel-Lizorkin spaces on an interval

(—o0, T) C R. We define these spaces by restriction.

Definition 2.3. Let T € (—o0, 0] and let X be a Banach space. For p € (1,00), g € [1, 00),
w € Ap(R), and r € R we denote by F[,'q((—oo, T), w; X) the collection of all restrictions of
elements of F;'q(R, w; X)on (—oo, T). If f € Flr,lq((—oo, T), w; X) then

IFNE o ((—00 1,030 = INEIIGIES (R wi5),

where the infimum is taken over all g € Flr)’q(R, w; X) whose restriction on (—oo, T)

coincides with f.
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Higher-Order Parabolic Equations 9

We will also use Besov spaces B;IP(Z)Q) defined on 0Q2. We refer the reader to
[30, Sec. 3.6] for the precise definition.

We will need the following spatial trace inequality. For full details about the
proof, we refer the reader to [4, Lemma 3.5] for the unweighted setting and to [21,
Lemma 1.3.11] where the weights considered are power-type weights in time. The
restriction of power-type weights only plays a role at ¢ = 0 in order to have a well-
defined trace space. Thus, in the formulation below with ¢ € R, the power-type weight

can be replaced by any weight w € A,(R); see for instance [19, Sec. 6.3] for details.

Lemma 2.4. Let p € (1,00), w € Ap(R), m € N, and s € (0, 1] so that 2ms € N. Then
the map

2ms

5ol oms_ 1
trx=0 s WEAms (RET) o w7 P (R x R

is continuous.

3 Assumptions and Main Result

In the sequel, we assume that € is a (possibly unbounded) €2~ 1! domain in R<. Let
T € (—oo,00], p,q € (1,00), and m = 1, 2, .... We consider a 2m-th order elliptic

differential operator A given by

Au = Z ay(t,x)D%u,

le|<2m

where a4 : (=00, T) x 2 — C.Forj=1,..., mand m; € {0,...,2m — 1}, we consider the

boundary differential operators B; of order m; given by

Bju= Y  bjst,x)Dlu,

|Bl<m;

where bjg : (-0, T) x Q — C. For convenience, here and in the sequel, we denote
— _;0
DX]. = _lB_Xj'
We will give conditions on the operators A and B; under which the Ly(Lg)-

estimates hold for the solution to the parabolic problem

u(t,x) + A+ Mu(t,x) =f(t,x) in(—oo,T) x Q

Bju(t,x)|,, = gj on(—0o,T) x93, j=1,...,m.
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10 H. Dong and C. Gallarati

We also consider the corresponding elliptic problem

A+ Nu=f inQ
(3.2)
BJ-u|BQ=gj ondQ, j=1,...,m,

where the coefficients of the operators involved are functions independent on t € R that
is defined on Q.

3.1 Assumptions on A and B;

Denote

AH(t,x,D) := Z ay(t,x)D* and B;I(D) = Z bjlg(t,X)Dﬂ

lo|=2m |Bl=m;

to be the principal part of A and Bj, respectively, and

At x,6) = ) agt,x)E

lo|=2m

to be the principal symbol of A. For any (tp, Xp) € (—oo, T) x 2 and in a coordinate system
that will be specified later, taking the Fourier transform F, with respect to x’ € R4~!

and letting v(x, &) := Fy (u(x1,-))(§), we obtain
A (to, %0,€, D, )V = Fie (A% (t0, %0, Dutx1, ) 6)

2m
=" 3" aplto, x0)E DI v
k=0 |B|=k

and
B (t0,X0,&, Dx,)V i= Fx (Bf!(to, %o, D)ux1,)) (&)

mi
! y m]-fk
= Z Z bj,k,y (tOrXO)E DX1 V.

k=01|y|=k

We first introduce a parameter-ellipticity condition in the sense of [3, Definition 5.1].
(E)g Let0 € (0,7). Forany t € (00, T) and x € €, it holds that

Ay(t,x,6) C Xy, VEER" JE|=1,

where Xy = {z € C\{0} : |arg(z)| < 0} and arg : C\{0} — (—m, 7).
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Higher-Order Parabolic Equations 11

Before stating the Lopatinskii-Shapiro condition, we need to introduce some
notation. For each Xy € 92, we choose a coordinate system such that Xy is the origin
and e; is the normal direction at Xo (Here [e]~]]‘.7l:1 denotes the standard basis of R%.). We
assume that the (LS)y—condition holds for any ¢y € (=00, T) and xo € Bzg,(X0) N Q with

respect to the above coordinate system, which can be stated as follows.

(LS)y  For each (hi,...,hm)T € R & € R™, A € T,.9, to € (—o0,T),
Xo € Bagy(X0) N2, and |&| + |A| # O, the ordinary differential equation (ODE)

problem in R

v+ A (tg,x0,6,Dx)v=0, x>0,

B (to,x0,& Dx)V|, _o=Hhj, j=1,....m

admits a unique solution v € C*°(R;) such that limy_, o v(x) = 0.

We now introduce a regularity condition on the leading coefficients, where p is

a parameter to be specified.

Assumption 3.1. (p) For |¢|] = 2m, there exist a constant Ry € (0,1] such that

(aa)io =p.

Throughout the paper, we impose the following assumptions on the coefficients
of A and B;.

(A) For the multi-index «, the coefficients a, are functions (—oo, T) x 2 — C and
laullz,, <K and satisfy Assumption 3.1 (p) with a parameter p € (0,1) to be

determined later. Moreover, A satisfies condition (E)g.

(B) The coefficients bjg : (—oo, T) x Q — C satisfy

<K,

2m—m;
bjg € C 2 P ((—00,T) x Q) |bjg| 2zmom; <
C ((—00,T)x2)

J —ms
2m 2m m]

and

Lim  bjs(t,x) = bjs.

|t]+|x]— 00

The (LS)s-condition is satisfied by (4,B;) for any A € (E)g, where B,

j=1,..., m, are the boundary operators with coefficients Ejﬂ.

We can now state the 1st main result of this paper.
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12 H. Dong and C. Gallarati

Theorem 3.2. Let T € (—o00,], p,q € (1,00), and » € Ap((—o0, T)). Let Q be a ¢2m~1.1.

domain with the €™ 1 -norm bounded by K. There exists
p=p(0,mdK,p,qlolp bj) € 1)

such that under the assumptions (A), (B), and (LS)y for some 6 € (0,7 /2), the following
hold. There exists Ao = A10(¢, m, d, K, p, q, [wlp, Ro, bjg) > 1 such that for any A > Ag if

u € Wy (=00, 1), i Lg(D) N Lp (=00, T), 0 W™ ()

satisfies the problem (3.1), where f € Lp g,»((—00, T) x ©) and

ki 2mk;
95 € Fylg (=00, 1), @3 Lg(@)) N Ly (=00, T), ; Bgq * (42

with kj =1 —m;/(2m) — 1/(2mg), then it holds that

T
luellz, ((—o0,1)wiLq(2) + Z AT (| D* | ((—o0, 1) iLq ()

le]<2m

m
< ClflLp(—oo D wiLg@) + C Y ||gj||ij (3.3)

2mk; '
= p’q((—oo,T),a);Lq (SQ))ﬁLp((—oo,T),w;Bq’q J (0K2))

where C = C(@0,m,d,K,p,q,lolp, bjg) > 0 is a constant. Moreover, for any A > Aq,
f €Lpgw((—00,T) x Q), and

ki omk:
95 € Fylg (=00, T), 0; Lg(0)) N L (=00, T), i Bayg " (09))

there is a unique solution u € W;((—oo, T), w; Lg(R2)) N Lp((—00, T), w; ng(Q)) to (3.1).

Using the same arguments as in [6, Theorem 3.6], from the a priori estimates for
the parabolic equation in Theorem 3.2, we obtain the a priori estimates for the higher-
order elliptic equation as well. The key idea is that the solutions to elliptic equations can
be viewed as steady state solutions to the corresponding parabolic cases. The argument
is quite standard, so we omit the proof. The interested reader can find more details in
[9, Theorem 5.5] and [17, Theorem 2.6].

We state below the elliptic version of Theorem 3.2. In this case the coefficients

of A and B; are independent of .
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Higher-Order Parabolic Equations 13

Theorem 3.3. Letq € (1,00) and  be a >~ !'!_.domain with the C?™~!'! .norm bounded

by K. There exists
p=p@® m,dK,q,bjg) € (0,1)

such that under the assumptions (A), (B), and (LS)y for some 6 € (0,7/2) the following
hold. There exists Ao = Ao(d,m,d,K,q,Ro,bjg) > 0 such that for any A > Ao and
ue ng(Q) satisfying (3.2), where f € Ly(R2) and g; € Bsfgkf(asz) with kj =1 —-m;/(2m) —
1/(2mgq) it holds that

m
_ o]
3 Al En DUz, < Cll fllzg@ +CZ||gj||Bzmkj(am,
le|<2m j=1 aq
where C = C(0,m,d, K, q,bjg) > 0 is a constant. Moreover, for any A > Ag and f € Lg(2)

and g; € Bszkj (0€2), there is a unique solution u € ng(Q) to (3.2).

Note that in the case when 2 is bounded, for Theorem 3.3, the limit behavior of

bjs in the assumption (B) is unnecessary.

Remark 3.4.

(i) For notational simplicity, we consider the scalar case only. However, with the
same proofs Theorem 3.2 and the corresponding elliptic results also hold if
one considers finite-dimensional systems of operators.

(ii) In [3, 4], [21, 22], and [19], the coefficients there considered are operator-
valued, with values in a Banach space with the unconditional martingale
difference (UMD) property (see [16] for details). In the unweighted setting
our proofs refer to these results, and we therefore believe that it is possible
to extend our results also to the case of operator-valued coefficients, with
values in a Hilbert space or in a UMD-Banach space. We do not deal with
these cases in order to not overburden the current paper. It would also be
very interesting to see whether our results can be extended to mixed-order
systems, say in the setting of [5]. This, however, is highly nontrivial and will

be studied in our future work.

4 An Auxiliary Result

Throughout the section, we assume that A and B; consist only of their principal part.

Let
Ag = Z Go D

la|=2m
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14 H. Dong and C. Gallarati

be an operator with constant coefficients satisfying |a,| < K and the condition (E)y with
0 € (0,7/2), and let
Bi= ) bjD’,

|Bl=m;

where the coefficients Ejﬁ are also constants. In this section, we consider the problem

w(t, x) + (L + Ao)u(t, x) = f(t,x) in (oo, T) x RY
(4.1)
Eju(t'X)|x1=0 = g;(t, x) on (—oo, T) x RA-1,

We prove an auxiliary estimate, which is derived from a result in [19]. For a
weight w € A4(R), we denote in the following Lg,,,(R x Ri) =Le(R, ; Lq(]Rﬂir)).

Lemma4.1. Let T € (—oo,+0oc], g € (1,00), and w € Ag(—oo, T). Let Ag and 1_3J~ be as
above. Assume that, for some 6 € (0,7/2), (AO,IT?J-) satisfies the (LS)y-condition. Then for
any f € Lg((—00, T) x Ri) and

gj € ng;,zmkj <(—oo, T) x Rd_1>
with j € {1, ..., m}, m; € {0,...,2m — 1}, kj = 1 — m;j/(2m) — 1/(2mq), and u €
Wé;az)m((—oo, T) x Ri) satisfying (4.1) with A > 0, we have

1—m o
lwellz,, (—co,myxrd) T Y MmD UL, (oo, xRS
le]<2m

m
< Cllfll, (oo xrd) T C D lgjl (4.2)

k:,2mk;
= We  ((—00,T)xRI-1)’

with C = C(0,m,d, K, q,bjg, [wlg) > 0. Moreover, for any A > 0,

felgo ((—oo, T) x Ri) and g; e w0 ((—oo, T) x Rd—l)

with j, m;, and kj as above, there exists a unique solution u € Wél'f)m((—oo,T) X R‘l)
to (4.1).

Proof. Consider first T = oo. For any w € Ag(R), let u € Wéﬁm R4+ x Ri) be a solution
to (4.1).
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Higher-Order Parabolic Equations 15

Decompose u = v + w, where

1,2m mpd+1
R
+

o we Wy ) is the solution to the inhomogeneous problem

wi+ (Ao +Mw=Ff inRxR%

— (4.3)
Biw|, ,=0 on dRE, j=1,...,m
e VE W;f,m (Rf’l) is the solution to the homogeneous problem
Vi+(Ao+Mv=0 inRxR%
(4.4)

l_?jV|X1=0=gj(t,X) onR xR, j=1,...,m.

It follows directly from [6, Theorem 3.5 (i)] with p = g that the solution
w € Wy2™(RET) of (4.3) satisfies

1—m o
Iwell,, gy + D A TEID W, gany < CIFly, gan, (4.5)

le|<2m

with C = C(0,K,d, m,q,bjg, [wlg).
Consider now (4.4). Since Ag and B; have constant coefficients, using a scaling
t - A7 t, x - A"1/?Mx, for a general A € (0, 1), we get that (¢, x) := v(A~'t,A"1/?Mx)
satisfies
7e(t, %) + (1 + Ag)7(t,x) =0 inR x R?

_ (4.6)
Bjv(t,%)|, _o = §;(t, %) onR x R4 1,

where
gj(t,x) = A7/ A g (g, APy,

Note that @(t) := 0o (A 71t) € Ag(R) and [@]lg = [wlg. Applying [19, Lemma 6.6] to (4.6) with
p =qand y =0, we get that the solution v € Wc}l’f,m(R‘fl) to (4.6) satisfies

m
~ 2my a
< . . .
Vel ; ey + 1DV, o gay = CZ, - ”gJ||w§f;mkf(Rde—l>
j= :

with C = C(0,m,d, K, q, bjg, lwlg). We remark that although the estimate is not explicitly

stated in this reference, it can be extracted from the proof there.
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16 H. Dong and C. Gallarati
Now scaling back and using Definition 2.2, it is easily seen that

m

n 3
< : . .
||Vt||Lq,w(Ri+l) + ||D V”Lq,w(Ri-H) = c s ”g,]“W;C{a')kaJ(RXRd—I)'
]:

with the constant C independent of A € (0,1). Sending A — 0, we obtain that the above
estimate holds when A = 0. Finally, by applying an argument of S. Agmon as in [17,

Theorem 4.1], from the above estimate with A = 0 it follows that when A > 0,

m
1—M o 3
Ivell,, , @+ +| E<2m)» DV, @any = C 'El ||g]||W§£)2mkj(Rdeil) (4.7)
a|< j=

with constant C = C(#, m, d, K, q, bjg, [wlg). Since u = w + v, by (4.5) and (4.7) we get (4.2)
with T = oo and C = C(0, m,d, K, q,bjg, lwlg) > 0. The solvability follows directly by the
solvability argument in [6, Sec. 6] or the argument in [19, Lemma 6.6].

The proof for T < oo follows now the lines of [6, Lemma 4.1], so we omit the
details. |

5 Proof of Theorem 3.2 when Q = Ri

In this section, we prove Theorem 3.2 in the special case when Q@ = Ri. The proof is
divided into several steps. From Steps 1 to 3, we will assume p = q € (1,00) and we
will show that the estimate (3.3) holds in this case. In Step 4, we will extrapolate the

estimate from the previous steps to the case p # q and complete the proof.

Proof of Theorem 3.2 when Q = Ri. It suffices to consider T = oco. For the general
case when T € (—o0,¢], we can follow the proof of [6, Lemma 4.1], so we omit the
details.

Recall that the lower-order coefficients in A are bounded by K. By moving the
terms a,(t, x)Du with |o¢| < 2m to the right-hand side of the equation and taking a
sufficiently large A, we may assume the lower-order coefficients of A to be all zero.

Denote
Qr(to, x0) = [to — r*™, to + r*™) x CJ (x0),

where Cj (xo) denotes a cube centered in xo having side-length 2r and axes parallel to
the coordinate axes, intersected with the half space R‘fr. As before, we use Q, to indicate
Q-(0,0).
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Higher-Order Parabolic Equations 17

Let R be a large constant to be specified.

Step 1. We first consider the case p = q. We assume that there exists a constant
Ao > 1 such that [wl; < Ag and we assume that u is supported in @ \ O_R. Fix a point
(to, X0) € IR‘}FH \é_R and set

A(to, x0)u = Z aq(to, x0)D%u

lo|=2m

Decompose u = uj + up, where u; is a solution to

deur + (A + A(to, X0))us =0 in R¢*H
Z l_)j,gDﬁul = — Z bjﬂDﬂu
|Bl=m; |Bl<m; (5.1)
+ Z (I_leg — bjlg)D'Bu + g on 8Ri+l,
|Bl=m;

and u, is a solution to

duz + (A +A)uz = f — (A — A(to, x0)uy in R%H!

Z bjgDPu; =0 on BRJdFH. (5.2)

|Bl=m;

By Lemma 4.1, we first solve (5.1). It follows from Lemma 2.4 that

1— el
ldeuslly, , gary + ) A7EID U, gan

le|<2m
DB
<c| X bpdlul wmy, . +CZ||gJ|| o g
|f3|<m] Wq,w m J(R + q,w

+ C” > (s - bj,g)DﬂuH ooy
1Bl=m; Wo 2" J (Rd“)

Since bjg(t, x) — Ejﬁ for |t| + |x| — oo, given ¢ > 0 and taking R > 0 large enough it holds
that

sup |bJ/3 bjg(t, x)| < e.
(t, x)eRd“\aR
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18 H. Dong and C. Gallarati

This and the parabolic interpolation inequality yield that

1—% o
ldcuslly, , mas, + > Al urlly,  mas,

le]<2m

< CZ ||g]|| k; ka] BRdJrl + CK(8||D2mu“Lq,w(Ri+1) + 8”ut”quw(Ri+1) + C&‘”u”quw(RiJr1)>'

(5.3)
Now, [6, Theorem 3.5] with w = 1 applied to (5.2) yields that for A > Ao, where Ay =
%00, m,d,K,q,Ro, wlg, bjg) > 0, it holds that

1-Jd o
I9euzlly, , @ar) + Z AT DUzl gay

le|<2m

< C”f“Lq,w(Rde'l) + C”(A - A(to,XO))Ul ”Lq,w(Ri-H) (54)

o
< ClIflly,, @i, + Cx > D urlly, e,

le|<2m

provided that p < p, where ¢ > 0 is a constant depending only on 6, m, d, K, g, [wlg, and
Bj,g. Since u = u; + uy, by (5.3) and (5.4), it follows that

§ : -
2
”ut”Lq,w(RiJrl) + A m ||D u”quw(Ri+1)

le]<2m

- o
< 2
< [l9sur ”Lq,m(RiJrl) + E A m | D% u; ||Lq,(u(Ri+l)

le|<2m

+ loguall, | oy + Y AT D Uzl gan)

la|<2m

- o
< 2
< [l9sua ”Lq,m(RiJrl) + E A m | D u; ”Lq,m(RiJrl)

le|<2m

+Ck Y. ID*uslly, | ety +CIFly, @an,

le|<2m

< C||f||L »(REH) + CK”g]” k 2mk; i GRIH)

2m
+Ck <8I|D ully, ,@dy + 8||ut”Lq’w(Ri+l) + C“:”u”Lq,w(R‘i“)) )

Now taking ¢ small enough so that Cxe < 1/2 and » > A := max{Ag, 2CxC.}, we get (3.3)

for u with support in R%+! \ Qr.

Step 2. Let ¢ be a small constant to be specified. For any (to,x0) € Qr+1,
by the stability of the (LS)y-condition (see for instance [3, Remark 7.10]) and the
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Higher-Order Parabolic Equations 19

continuity of bjg, there exists ry, x, € (0,Rp) such that the (LS)y-condition is satisfied
by (A(t, x), Bj(to, Xo)) for any (¢, x) € éno,xo (to, Xo) and

lejﬁ(to,m) —Dbjg(t, x)| <e.

(tX)€0ry 4 (to,X0)

Assume that u is supported on éKfz "
t0.X0

0 (to, x0), where k4, x, is a large constant to be
determined later. We only focus on the case when Xé < Rp. The interior case x(l) > Rp
follows directly by [8, Sec. 5], since in this case there are no boundary conditions
involved.

Similarly, we decompose u = u; + uz, where u; is a solution to

du1 + (A + A(to, x0))u1 = 0 in REM
Z bjﬂ(to,Xo)Dﬂul = — Z bjﬂ(t,X)Dﬂu
|Bl=m; |Bl<m; (5.5)
+ > (bjslto,x0) — bjs(t, x)DPu+ g; on aR3H1,
|Bl=m;

and u; is a solution to

dquz + (A + A)uz = f — (A — A(to, x0))u; = h  in R4H!

Z bjﬁ(to,Xo)Dﬁuz =0 on B]Rﬁir“. (5.6)

|Bl=m;

By Lemma 4.1, we first solve (5.5). It follows from Lemma 2.4 that

1 el
ldeully,  gasy + ) ATEID Ul g,

le|<2m
m
50” > bjﬁDﬁuH e +CZ”gf”W’<j'2’"kj a1
Bl<m; Wy, TR j=1 g TORT

+CH Z (bjg(to, x0) —bjﬂ)D’SuH i

2 J d+1
|Bl=m; W o™ ®EH

m

, 2m

< C; ”gJ”WSZMkj(BIR‘f_“) + CK(8||D u”Lq,m(Ri+1) + SHutHLq,w(Ri“) + CSHuIqu,m(R‘f_“))'
]_

(5.7)
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20 H. Dong and C. Gallarati

where in the last estimate we used the parabolic interpolation inequality and the
smoothness assumption of the coefficients bjg.
In order to deal with (5.6), we exploit the property that u has a small support.

We shall first establish mean oscillation estimates in

X:=Q 0(t(),XQ).

Ktg.x0 10X

For this, we take a dyadic decomposition of X given by

Cp={Q"=0Q}: i= (o, i1,...,iq) € 29,

ip=0,...,2" —-1,ix=0,...,2" = 1,k=1,...,d},
_ o1
where n € Z, and for xo = (x}, x}) € Ry x R4 and rg := Ko ,x0 0. X0 1

Q} = {to — g™ + rg™27"" (0, 1) + o))
x {max(0, x — ro) + min(ro, x3)27 ([0, 1) + i1)}

x |x5 —1o(1,..., 1) + 7102710, DI + (i, ..., 10))}.

Then for any X € X and Q" € C,, such that X € Q", one can find Xy € X’ and the smallest
r € (0, Rp) such that Q" C Q; (Xp) and

][ |lf(Y) = fi,XD)]dY < C][ ILfF(Y) = (Nar el Y (5.8)
ar o (Xo)

with € = C(d, m), where f|,(X) = fanf(Y) dY. For x € X, we define the dyadic sharp
function of f by

Fo, 0 = Sup][ If¥) — fi, X1 dY.
n QrsXx

<00

We also define the parabolic maximal function of a function f € Ll,loc(RiJrl) by

Mf(X) = sup]t | f(V)|dY,
QeQJQ
XeQ

where

0= [oj(t,x) L (t,x) e RTT re (o,oo)}.
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Recall that there is a positive number o; = 01(q, [wlg) such that g —o; > 1 and

w € Ag_o, (R). We take qo, u € (1, q) satisfying gou = -~

@ € Ag-0, (R) = Ag/(goiy(R) C Ag/qo(R). (5.9)

Since u; satisfies (5.6), by (5.8) and the mean oscillation estimates of [6, Lemma 4.6] with

K = Ktyx, and 1, ¢ satisfying i + % =1,

][a B2(¥) = G @O1AY + 37 A8 1D (V) — (Duz)n (X) | dY

la]<2m
a1 <2m
—(1- 1 d+2m
< Ck E A o D%uy|% Ck h|%0
toXo (I 2l ) Qi . r(X)+ t0 (| | ) Qo r(X0)
\a|<2m 0%0 0-%0
d+2m 1 1
2m quy 401
+ Cx < (|D .
t() 10 (| | )a;toxo (Xo)

Taking the supremum with respect to all Q"™ > X, n € Z, we see that for all X € X,

Guf, X+ Y AT D Ui (X)

le|<2m,x1<2m

-1 _L) o 1
< gy ™ Z 2175 MDD uz|90) (X)) (5.10)

le]<2m

d+2m d+2m

+ Gy B IMRIT) GOV + Ciyy B pT07 M(D? M| 700 ()]0

By taking the Lq,w(Rf’l)—norms on both sides of (5.10) and applying Theorem 2.3
of [9] with p = q, we get for C = C(#,d, m, K, q, [wlq, bjg, to, X0),

i
9eualig, )+ D, AT =Dugll,, )

le|<2m,0; <2m

— _ lal
<l 1(w<1))1/q<||atuz||L1(X)+ > Al ||D“uz||L1(X>>

le|<2m,a;<2m

7(17%) 177 d+2m
+ Ct, %, Z A ”D uZHqu(Rd“ +CKt0XO ||h||qu(Rd+1)
le]<2m
d+2m

+ CKto X0 pqog ||D2mu2 ”Lq,w(Ri“)'
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22 H. Dong and C. Gallarati

where I := (tg— rto o’ to—i—rto XO) and we also used (5.9) and the weighted Hardy-Littlewood

maximal function theorem to get, for instance,

[ M@ w0 om g0 = M@ uz >"0“”§Zﬁqomw<m d+1)

< C| @*Mup)®"| wr = C[D*"ua| e

d+1
Lq/(qom,m(R;r ) )

with C = C(d, q, [wlg). Since

a&&(t,X)D,ZJ”uz =h — dsup — Z Ao (t, x)D%uy — AUz,

|la|=2m,x1 <2m

where & = (m,0,...,0), we get

_ ol
19Uzl )+ Y ATz (DUzllz,, )

le|<2m
— _ ol
< cl| 1(w(l>)”‘l<||atuz||L1<X>+ > altm ||D“uz||m)
le|<2m
d+2m
177
+CKt0Xo Z A ”D uZHqu(Rd“ +CKt0 ||h||qu(Rd+1)
le|<2m
d+2m 1
+ Chyyy P% [D*Muz| | gan). (5.11)

Because uy = u — uj, by applying the triangle inequality and Holder's inequality, we
estimate the 1st term on the right-hand side of (5.11) by

— _ lol
clr| 1(wa>>”4(||atuz||mx>+ Yo attom ||D“uz||L1(X>)

le|<2m

— _ el
< cl| 1(w<1))1/q<||atu||Ll<X)+ > Al |Dullp, )

le]<2m

_ ol
+ 10w, 0+ Y AlTom ||D°‘u1||L1(X>>

le|<2m

< C|I|—1<w<1>)1/‘1|11|(w(11>)—1/‘1(natunLq,wm

_ ol
+ Yl ||D°‘u||Lq,w(X)>+C||atu1||Lq,w<X)

le]<2m

_ ol
+C Y AT D UL, 1) (5.12)

le|<2m
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where

) 2m ) 2m
Iy :={to— (Kto,xortoyxo> to + (Kto,xorto,Xo) '

and we used the fact that u is supported on Q__» (to, x0). Using (2.2),

Kto.xo T'ty.xq

_ 4moy

I @)L l@@) "3 < CULI/INT < Cry T - (5.13)

By the triangle inequality, we estimate the remaining terms on the right-hand side of
(5.11) by

d+2m d+2m

-1-x _ ol
C<Ktoxo 0 +Ktox0 pIs ) Z PR HD 7"2”qu(11@"1+1 +CKto ”hHqu(Rd“)

le|<2m

—(1- qlo) d+2m - \Dtl .
< C Ko+ Kigy :0‘” Z M Dl g0 @®E

le|<2m

d+2m
+ Z )‘I_EHD Uy “L o @®I ) +CKto ||h”qu(Rd+1) (5.14)

le|<2m

Since u = u; + up and h = f — (A — A(tp, x0))u1, from (5.11), (5.12), (5.13), and
(5.14) it follows that

”ut”quw(Riﬂ)jL Z Al_iHD u”Lq ®IH1)

le|<2m

< C” dtU1 ”L H(REH) + CK,:0 Z A2 T ”D"‘ul ||Lq,u)(Ri+1)

la|<2m

d+2m (1 1) d+2m 1 4m51>

e 12 . +c(xtoxo P

l—M o
(Hatu”l’q’w(Riﬂ)—F > altam|p u||Lq’w(Riﬂ)),

le|<2m,
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which combined with (5.7) yields

_ |
||ut“Lq,w(Ri+1)‘F Z A1z ”Dau“Lq,w(Ri“)

le|<2m

d+2m m d+2m

= CKto Z ”gJ ” k 2mk; Rd‘H + Cx to ||f||qu(Rd+1)

d+2m (l—i d+2m 1 __4mo; d+2m
90 dnc q 40
+CKC€Kt0Xo “uHLq R + C\ Kto,x0 tx« toXo P F Ky xy T EKxy |
1— Jol
leully, a1, + > a7z D ully, @i+
la|<2m,

Now we take «y, x, sufficiently large, ¢ sufficiently small, and then p < py, x, sufficiently

small such that

—(1- 7) d+2m 1 __4moy d+2m
q0 q q0
¢ Kto.x0 tx Kto Xo p s + Kto,xo + EK¢5.,x0 =1/2,

d+2m

and finally take A > A4 5, = max{ko,ZCKCEKtO }, we get (3.3) for u with support in

2 to, Xo) and
,(to’Xortoxo( 0, X0)

c=C®,d mK, q, bjﬁr to, X0).

Observe that C, pt,,x,, and A¢ x, all depend on (tp, xo). However, since Qr41 is
compact, we can apply a partition of the unity argument and get a uniform constant C.

This will be done in the next step.

Step 3. Since Qg1 is compact and

Qr+1 C U O'(f_(fxorfol?‘o/2 (to, Xo),

(to.x0)€QR+1

there exists a finite number V € N of points (¢p;, xo,;) € éRH, i=1,..., N such that

QR+1 CUQ
i=1

to,i»X0,i)-
KtOEXO r‘olxo,i/z( 0,ir 0,1)
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Take ¢; € C(o)o(ék—z
0,

. (to,irX0i)),i=1,...,N,suchthat{; =1 on Q /Z(tori'
i%0,i *0,i

Tt “t0,i%0,;10,i%0,i

0,
xo,1), and o € C3(RE™) such that

1 xe RiJrl\éR_H
So(x) =

0 XGéR.

Let{=Y1o¢l>1in RZ*H!. Define n; = ¢;(¢)~/4. Then, YV, nf=1in RE*HL,

Now we define
u;(t, x) = u(t, x)n;(t, x).
Observe that

du; + (A+Mu; =f; in R
tUg i fl + (5.15)

d+1
Bjui|X1=0 =gji ondRY™, j=1,...,m,
where by Leibnitz’s rule

fi=fni+ubm):+ Z Z (i)aa(t,X)Dy uD*

le|=2m |y|<2m—1

and

B _
gji = gjni + Z Z (t)bfﬂ(t'X)DTUDﬂ i x,=0"

1=<|Blsm; |t|<IB]-1

Now applying the result in Step 2 to (5.15) we get fori=1, ..., N,

_lal
H(ui)t“l’q’w(Riﬂ)"‘ Z A om ||Daui||Lq,w(R‘j_“)

la|<2m

k:

m
=G ”fi”Lq,w(Rdjl) + G Z ”gj,i T (aRdH)

kj,2m
=1 Wao

with C; = C®,d, m,K,q,lwlg, bjs, to,i, X0,;), provided that » > Mto,i %o,z and p < Pto,i. %0
Applying the result in Step I to (5.15) with i = 0 we get a similar inequality, with
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Co=C0,d,mK,q,lolg, Bj/g). Observe that by the triangle inequality

kel
H”iut||Lq,w(IR<i“)Jr D M [mD*uly, e

la|<2m

H(uz)t”qu(Rdﬂ)-i-Hu(m)t”L L@ T Z T |D* ulHLq,m(Ri“)

loe|<2m

o Ia\
D DI Sl () Lo e P

le|=2m |y|<2m~—1
”fi”Lq,{,,(R‘i“) = ||f’7i “Lq,w(Ri“) + ||u(’7i)t||Lq,w(le_“)

+ Cx Z Z (j) ”DV uD“" 7 p; “Lq’w(Riﬁ—l)r

lol=2m |y|<2m—1

and

< lgimill ym

“gj:i ” W(’Z)kaj ORI ~ kj (ORI
e ¥OO% <)||Dfupﬁ il e
1<|Bl=m; |t <IBl-1 w2 (md

where we used the boundedness of the coefficients a, and bjz. After taking the g-th

power, and summing ini =0, 1, ..., N, letting

C=Co+ sup C@©,d, m,K,q,lwlg bjs, to,i X0,

and taking the g-th root, we get

lol
luelz,, geny + 20 A7 D], gan)

lo]<2m

= C”f”Lqm(]RdJrl + CZ ”gJ ‘ kj Zm](aRTrl Hu”L »RIY

j=1

+Cx Y D <y) AV | DY up*- il @)

lo|=2m |y|<2m—1

roe ¥ X (Ol e,
q,wm ' R

I<|Bl=m; |t|<|B|-1

)
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with C uniform in ¢g ;, xo ;, provided that

A > A i=max(h, Ay, xg; ti=1,...,N},
p = 10/ = mln{lar Pty i xo,i * i=1,... /N}

This, combined with interpolation estimates and taking ¢ small and A large,
gives (3.3) with p = g and w € A4(R) such that [wlg < Ao, that is,

ol
”ut”Lq,w(Rd;l)+ Z A am ”Dau“Lq,w(Ri“)

le|<2m

m
= CHf”quw(Ri“) + CZ ”9]“ W?,kaj(aRiﬂ), (5.16)
J=1 “

where kj =1 —m;/(2m) — 1/(2mq) and C = C(0, m,d, K, q, Ao, bjg) > 0.

Step 4. We now extrapolate the estimate from the previous step to p # g. By
(5.16) and Definition 2.2, we have that for all w € A4(R) such that [w]a, < Ao there exist
constants A/, o/, C > 0 depending on Ag such that for any A > 2’ and p < o/,

_ el
> AT || Ullz,®o)

la|<2m

m m
< ClIF |y +C Y _IGjlg®e) +C D 1G2
j=1 j=1

|Lg(®R,w),

where
Vo = ”Dau“Lq(Ri)' F= “f”Lq(lRi)'

Gj1 = ||2kk1']-'71(¢k§j)k20 ||zq(Lq(Rd*1))' Giz = ”ngBSYZ

Y a1y

Since the above estimate holds for all of the A; weights with uniformly bounded Ag4-
constant, o’ and A’ can be chosen uniformly. Therefore, by the extrapolation result
Theorem 2.1 it follows that, for all v € Ay, there exist a constant C' depending on [wlp

such that forall A > 1" and p < p/,

_ ol
> A || Ul @0

le|<2m

m m
< ClIFl,®w +C Y _IGilL,@a +C Y 1G) 2L, @0)-
j=1 j=1
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This yields

_ el
Y AT ”Dau”Lp(R,w;Lq(Ri)) = C“f”Lp(R,w;Lq(Ri))

le|<2m

m
C Ak mk:
+ 21: ||g] ”FS{q(R,w;Lq(Rd*I))ﬂLp(R,w;B;qk] (Rd-1))
J:
with C = C(0,m,d,K,p,q,lwlp,bjg). As us = f — (A + A)u, the estimate (3.3) directly
follows. Finally, the solvability follows from the a priori estimate (3.3), Lemma 4.1, and

the method of continuity. The theorem is proved. |

6 Proof of Theorem 3.2 for General C2™ 1! Domains

In this section, we complete the proof of Theorem 3.2 for general C?™~!'! domains by

applying the technique of flattening the boundary.

Proof of Theorem 3.2. For each Xg € 92, we find a coordinate system such that Xxq is
the origin and e; is the normal direction at Xo. Since Q is a €™ 1! domain with the
uniform C?"~!!-norm bounded by K, there is a function ¢ € C?*™ 11 (B ) with R, €
(0, Rp) independent of Xy, where B]’Rl is the ball of radius R; centered at the origin in
R4~ such that lelcm-r1g, ) < K,

QN Bg, = {x = (x1,x) € Bg, : x1 = (X},

and
QNBgr, ={x €Bg,: x1 > @)}
Set
O (x) := (Xl _X?(X/)>, X € B,
® : Br, - P(Bg,), x — y. The differential operators A and B;, j = 1, ..., m, are

transformed into the operators

A*= Y adw D, BY = Y bt yD

le|<2m |Bl<m;

and act on functions defined on ®(Bg,) N R‘i. As @ is an isomorphism near the origin,

the parameter ellipticity of A® and, in particular, the condition (E)g are preserved under
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the change of variables. Moreover, the transformed operators (A%, BJ‘.D) satisfies the (LS)y-
condition on ®(Bg,) N R<: see [33, Theorem 11.3]. Finally, it is easily seen that the leading
coefficients of the new operator in the new coordinate system also satisfy Assumption

3.1 with a possibly different p, and the transformed function u® satisfies

9:u® + (A% + Vu® =f® in (—oo, T) x ®(Br,) NRYE

trRiBJfbu‘D =g} on (—oc, T) x (®(Bg,) NR4Y), j=1,...,m.

Therefore, the case when p = g follows from the results in the previous section and a
partition of the unity argument as in, for instance, [8, Theorem 6]. The general case is
then derived from the case when p = g and Theorem 2.1 as in Section 5. As before, the
solvability follows from the a priori estimate and the method of continuity. The theorem

is proved. u
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