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Comparison of 3D structured illumination
microscopy configurations in terms of spectral
signal to noise ratio

VALERII BRUDANIN, BERND RIEGER, AND SJOERD STALLINGA*

Department of Imaging Physics, Delft University of Technology, The Netherlands
*s.stallinga@tudelft.nl

Abstract: Structured illumination microscopy (SIM) is a powerful method for high-resolution
3D-imaging that is compatible with standard fluorescence labeling techniques, as it provides
optical sectioning as well as an up to twofold improvement of lateral resolution over widefield
microscopy by combining illumination pattern diversity with computational reconstruction. We
present a quantitative analysis of the image quality of 3D-SIM using the spectral signal-to-noise
ratio (SSNR). In particular, we compare conventional woodpile illumination pattern based
3D-SIM, where the pattern is rotated and translated to acquire the set of raw images that is fed
into the reconstruction algorithm, to (square or hexagonal) lattice 3D-SIM, where the pattern is
only translated to assemble the input set of raw images. It appears that conventional 3D-SIM has
better SSNR than the considered cases of lattice 3D-SIM. In addition, we have also analyzed the
impact of the relative amplitude, angle of incidence and polarization of the set of illumination
plane waves on image quality, and show how two SSNR derived metrics, SSNR volume and
SSNR entropy, can be used to optimize these illumination pattern parameters.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Structured illumination microscopy [1–3] has attracted a lot of attention from the life sciences
community since its appearance at the end of the previous century. SIM is a super-resolution and
optical sectioning technique that enables large field-of-view live-cell imaging that is compatible
with all fluorophores. The general idea behind SIM is to bypass the diffraction limit by
downshifting high spatial frequencies within the band limit (Moire effect). This is achieved
by spatial modulation of the sample fluorescence, and can be implemented in many different
ways. Any microscopy technique involving non-uniform illumination can be interpreted as a
form of SIM. This list includes, among others, confocal laser scanning microscopy (CLSM) [4],
image scanning microscopy (ISM) [5–7], rescan confocal microscopy (RCM) [8], as well as 4pi
[9,10] and array illumination [11,12] techniques. What separates SIM from these techniques
is that the non-uniform illumination of the sample is spatially periodic, and is generally made
using the interference of a finite number of plane waves. We will also restrain our attention to
epi-illumination, as 4pi setups are not commonly used because of their experimental complexity.
Finally, we will consider only the linear SIM regime. The fluorophore response is directly
proportional to the illumination power in this regime, which entails that the resolution is limited
by a sum of excitation and emission wavevectors. Non-linear SIM makes a theoretically unlimited
resolution gain possible [13], but it requires high illumination power, and it results in increased
photobleaching and photodamage. Relatively low intensity non-linear SIM modalities were
proposed in combination with other methods [14], but their complexity prevents widespread
application.
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There are important differences between 2D-SIM and 3D-SIM concerning the illumination
pattern and the resolution increase that can theoretically be achieved. In the case of 2D-SIM,
all the illumination beams have the same angle of incidence on the focal plane, resulting in no
interference in the axial direction. As a result, 2D-SIM provides an up to twofold increase in
the lateral, but not in the axial, resolution. It does not provide Optical Sectioning (OS) because
there is a so-called missing cone in the 3D spatial frequency space. The historically first version
of SIM, however, did achieve OS using a smaller spatial frequency of the illumination pattern
modulation in combination with a quadrature based real space reconstruction, but did not give
any lateral resolution improvements [5,15]. This scheme was later applied in the context of light
sheet microscopy for improving OS [16]. Currently, the most powerful approach to achieve
both a lateral resolution improvement and OS is 3D-SIM, where a spatial modulation of the
illumination pattern in both the lateral and axial direction is used [17,18].

Conventional 3D-SIM illumination contains two obliquely incident plane waves and one
normally incident plane wave, all sharing the same linear polarization orthogonal to the shared
plane of incidence (s-polarization) so as to maximize the modulation depth of the illumination
pattern [19]. Such an illumination configuration is straightforward to implement experimentally,
but it gives rise to interference only in one direction in the lateral plane. The resulting interference
pattern exhibits a woodpile structure in 3D, with lateral cross-sections showing a striped pattern
in one lateral direction only. In order to achieve a sufficiently isotropic resolution gain, the sample
must be illuminated with this woodpile pattern rotated axially over at least three different angles.
This is an experimentally complicated and slow process and was first implemented mechanically
[17]. For 2D-SIM significant improvements in pattern switching speed were achieved recently
with fast fiber optics [20]. This technology, however, has not been extended to 3D-SIM until
now, as methods for fast and robust rotation of the polarization of the central beam are yet to be
developed.

An alternative to this state-of-the-art three-beam SIM is so-called lattice SIM [21–23]. It
engages more than two obliquely incident illumination waves to create a 2D intensity modulation
in the lateral plane. The standard SIM reconstruction procedure can be readily adjusted to this
case, and tedious illumination pattern rotations are avoided, as only 2D lateral shifts are required.
This enables a noticeable acceleration of image acquisition, making the technique more suitable
for imaging fast processes in living cells. A reduction in phototoxicity has also been reported
[22,23]. 2D Bravais lattices with quasi-isotropic resolution increase permit square and hexagonal
illumination patterns [21], which has been implemented by a number of groups [22,24,25]. Fully
3D illumination permits, in principle, other Bravais lattices [26]. In practice, however, we are
usually limited with epi-illumination, which excludes symmetry groups of regular polyhedrons.

Every linear SIM configuration provides up to a two-fold resolution improvement that is more
or less isotropic depending on the illumination scheme. In terms of the optical transfer function
(OTF) it can be said that the OTF support is extended twice in the lateral direction. For 3D-SIM
it is also extended in the axial direction, as the missing cone of spatial frequencies is filled. The
axial OTF extension is not that simple to describe, however, due to the toric shape of the native
widefield 3D-OTF. The shape and size of the OTF support is a key quality measure of any form
of SIM. However, in practice, the situation is complicated by the presence of noise. Several
noise sources can be suppressed or eliminated by engineering efforts, but shot noise cannot be
avoided. The number of photons detected by a camera pixel is discrete and obeys the Poisson
probability distribution. Spatial frequencies where the power of the signal is comparable with
the power of the noise do not add any information to the imaging, and reconstruction can even
result in image artifacts then. A detailed analysis of how noise of the acquired images propagates
to the final SIM reconstruction was done in [27]. It was shown that the final noise distribution
depends on the reconstruction procedure and is, generally, not white (flat in spatial frequency
space) but coloured (peaked in spatial frequency space). Furthermore, while the image contrast
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can be improved with regularization and apodization filters, the SSNR is independent of these
free-to-choose functions. The SSNR only depends on physical quantities, namely the native
widefield OTF, the characteristics of the illumination pattern, the noise level of the set of acquired
images, and the fluorescent object itself. The SSNR is non-zero in the same region in spatial
frequency space as the effective OTF, but it also assesses how reliably a given spatial frequency
can be resolved. Thus, it is the SSNR that defines the fundamentally achievable quality of the
reconstructed super-resolution image.

Previously, image quality inspection tools, such as SIMcheck [28] and SQUIRREL [29],
have been applied to test or monitor SIM imaging, but these tools do not relate the underlying
image formation to the proposed quality test measures. Li et al [30] compared the image
formation of several microscopy contrast modalities, but did not consider multi-dimensional
lattice illumination or the dependence of signal-to-noise characteristics on spatial frequency.
Ingerman et al [31] studied the the impact of noise on linear and non-linear SIM, but restricted
their attention to the 2D case. The goal of this paper is to improve on these previous works by
using the SSNR as a measure to compare state-of-the-art 3D-SIM to lattice 3D-SIM. Different
configurations of the illumination pattern are analysed in terms of their SSNR performance
and the effect of several experimental parameters (angle of incidence, polarization, and relative
beam power of the illumination plane waves) is evaluated. Pertinent differences between 2D
and 3D-SIM that play a role in our extension of [31] are the increased complexity and variety
of possible 3D illumination patterns, the role polarization of the illumination plane waves, and
possible trade-offs between axial and lateral SSNR performance.

2. Theoretical background

We will assume that we can create in the back focal plane (BFP) of the objective lens a desired
configuration of incoming plane waves, leading to a finite set of peaks in the Fourier space of
intensity distribution in the excited volume. The complex amplitude of the electric field in the
sample is:

E⃗(r⃗) =
M∑︂
i=1

A⃗i exp
(︂
2πik⃗i · r⃗

)︂
, (1)

where M is the total number of plane waves, A⃗i represents the amplitude and polarization vector
of a plane wave component with a spatial frequency vector k⃗i. The resulting intensity is:

h(r⃗) =
|︁|︁|︁E⃗(r⃗)|︁|︁|︁2
=

∑︂
l∈(x,y,z)

M∑︂
i,j=1

Re
{︂
AilAjl

∗exp
(︂
2πi

(︂
k⃗i − k⃗j

)︂
· r⃗
)︂}︂

=
∑︂
mp

amp exp
(︂
2πik⃗mp · r⃗

)︂
.

(2)

Here, the amp are the coefficients of the Fourier peaks of the intensity pattern, and the set k⃗mp is
the set of distinct spatial frequency vector differences k⃗i − k⃗j, and can be split into lateral (xy) and
axial (z) parts by:

k⃗mp = k⃗m + kax,pe⃗z, (3)
where the spatial frequency vectors are labeled by the lateral indices m = (m1, m2):

k⃗m = m1b⃗1 + m2b⃗2. (4)

Here basis vectors b⃗1 and b⃗2 span a Bravais lattice in the lateral (xy) part of reciprocal space. For
state-of-the-art 3D-SIM one of the components is always zero (m2 = 0), for lattice 3D-SIM both
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components can be non-zero. The Fourier transform of the illumination pattern is the sum of
delta-peaks:

ĥ(k⃗) = F
[︁
h(r⃗)

]︁
=
∑︂
mp

ampδ
(︂
k⃗ − k⃗mp

)︂
. (5)

where F[·] stands for the Fourier transform.
The basic illumination pattern is translated and rotated to:

hrn
(︁
r⃗
)︁
= h

(︁
R
(︁
αr, e⃗z

)︁ (︁
r⃗ − u⃗n

)︁ )︁
, (6)

where R
(︁
αr, e⃗z

)︁
is the rotation matrix for a rotation over an angle αr around the z axis e⃗z, and

where u⃗n is a set of lateral (xy) translations. The index r = 1, 2, . . . , Mr, where Mr is the total
number of rotations. For state-of-the-art 3D-SIM typically Mr = 3 or Mr = 5, for lattice SIM
Mr = 1. The lateral translations are:

u⃗n = un1a⃗1 + un2a⃗2, (7)

where a⃗1 and a⃗2 span the lateral (xy) Bravais lattice in real space, and which satisfy:

a⃗i · b⃗j = δij . (8)

The translation components un1 and un2 are chosen to satisfy:

Mt∑︂
n=1

exp
(︂
2πi

(︂
k⃗m − k⃗m′

)︂
u⃗n

)︂
= Mtδm,m′ = Mtδm1m′

1
δm2m′

2
. (9)

where Mt is the total number of illumination pattern translations. For state-of-the-art 3D-SIM
the translations are always one-dimensional (n2 = 0), for lattice 3D-SIM both components are
generally non-zero.

In this work we assume freely rotating emitters and that our imaging system satisfies Abbe’s
sine condition. The expression for the point spread function (PSF) in scalar imaging theory with
high numerical aperture is provided in Ref. [32] and reads:

g(v, u) = C
|︁|︁|︁|︁∫ αso

0
P(α) exp

(︃
iu
2

sin2(α/2)
sin2(αso/2)

)︃
J0

(︃
v

sin(α)
sin(αso)

)︃
sin(α)dα

|︁|︁|︁|︁2 , (10)

defined in terms of the corresponding dimensionless coordinates:

v =
2π
λ

rNA,

u =
4π
λ

z
[︂
ns −

√︁
ns − NA2

]︂
,

(11)

Here ns is the refractive index in object space, which is assumed to be constant, NA is the
numerical aperture of the system, NA = nm sin(αso), where nm is a refraction index of immersion
liquid, and αso is the semi-opening angle of the objective lens. The function J0(·) is the zeroth
order Bessel function, and P(α) =

√︁
cos(α) is the apodization function according to the sine

condition. The constant prefactor C is found from the condition that the sum of the PSF over all
N camera pixels is unity.

This normalization ensures energy conservation in the sampled space. We do not expect any
conclusions of this work to change substantially if a more elaborate vectorial PSF model [33] is
used instead.

Throughout this work the following parameters are used ns = nm = 1.5, so we do not consider
effects of refractive index mismatch. The semi-opening angle of the lens was chosen to be
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72◦, leading to NA ≈ 1.43. This choice of parameters hardly affect the results on SSNR if
the dependence of SSNR on spatial frequencies is given in units of the corresponding cut-off
frequencies of a widefield microscope, i. e. correctly rescaled.

In our analysis we follow a discrete image formation model, where the set of pixel positions in
real space r⃗k can be labeled with an integer index k = 1, 2, . . . , N, with N the number of pixels of
the camera, and where the set of pixel positions in Fourier space, i.e. the set of spatial frequency
vectors q⃗j, is labeled with an integer index j = 1, 2, . . . , N. The spectral signal to noise ratio
depends on the index j of the spatial frequency vector q⃗j by [27]:

SSNR(q⃗j) =
Ŝ(q⃗j)

N̂(q⃗j)
=

|D̂(q⃗j)|
2 |f̂ (q⃗j)|

2

V̂(q⃗j)f̂0 + Nσ2D̂(q⃗j)
, (12)

with Ŝj and N̂j corresponding to spectral signal and noise power respectively. Here σ2 denotes the
variance of the readout noise and f̂ (q⃗j) is the Fourier transform (FT) of the object intensity, where
f̂0 is a shorthand for the FT at spatial frequency zero. The functions D̂(q⃗j) and V̂(q⃗j) depend only
on the physical parameters of the system, namely the illumination pattern parameters and the
OTF of the microscope. Generalized expressions, valid for both state-of-the-art 3D-SIM and for
lattice 3D-SIM, for the case where the illumination pattern is held fixed relative to the image
plane are:

D̂(q⃗j) = Mt
∑︂
m

∑︂
r

|ĝ(m)(q⃗j − k⃗rm)
2 | (13)

V̂(q⃗j) = Mt
∑︂
m,m′

∑︂
r

ĝ(m)(q⃗j − k⃗rm)
∗ĝ(m

′)(q⃗j − k⃗rm′)ĝ(m−m′)(k⃗rm − k⃗rm′) . (14)

Here the rotated spatial frequency vectors are:

k⃗rm = R
(︁
−αr, e⃗z

)︁
k⃗m (15)

and the effective optical transfer functions ĝ(m) are the linear combinations:

ĝ(m)
(︁
q⃗j
)︁
=
∑︂

p
ampĝ

(︁
q⃗j − kax,pe⃗z

)︁
. (16)

Eq. (16) expresses the fact that we do not separate all Fourier components in the reconstruction
procedure. In case of state-of-the-art 3D-SIM, ĝ(m)(q⃗) is equal to the 3D-OTF ĝ(q⃗) of the
optical system when m corresponds to in-plane Fourier harmonics (i.e. with kz = 0) and to
(ĝ(q⃗ + kze⃗z) + ĝ(q⃗ − kze⃗z))/2 otherwise.

The concept of SSNR is closely related to the concept of Fourier ring correlation (FRC)
[34], which compares the consistency of two randomly split data halves across rings in spatial
frequency space. FRC is most often used for assessing resolution limits by finding the spatial
frequency where the FRC crosses a suitably chosen threshold. SSNR on the other other hand
gives a full picture of imaging performance across all spatial frequencies. On average, the two
quantities are related by [35]:

FRC ≈
⟨SSNR⟩

1 + ⟨SSNR⟩
, (17)

where the brackets indicate averaging over rings in spatial frequency space.
We will assume we are working in the shot noise dominated limit, which is realistic for modern

cameras, i.e., Nσ2D̂(q⃗j) ≪ V̂(q⃗j)f̂ (0⃗). Then we can separate in the expression for the SSNR the
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physical imaging system dependent part from the object dependent part:

SSNR(q⃗j) =
|D̂(q⃗j)|

2

V̂(q⃗j)
×

|f̂ (q⃗j)|
2

f̂ (0⃗)
≡ SSNR(q⃗j)

I × SSNR(q⃗j)
O . (18)

In the rest of this work we will focus on the imaging system dependent part SSNRI , which we call
the SSNR transfer function. While the actual SSNR eventually depends on the manifestation of
given spatial frequencies in the object, the illumination dose, fluorescence strength, and overall
photon detection efficiency, it is the SSNR transfer function SSNRI that suitable for a comparison
between the performance of different 3D-SIM systems.

The difference between the functions D̂(q⃗j) and V̂(q⃗j) depends very much on the degree of
overlap between the different OTF copies. In case the Fourier order overlap in the function V̂(q⃗j)

can be ignored, i.e. if:
g(m−m′)(k⃗rm − k⃗rm′) ≈ a0δm,m′ (19)

we find V̂(q⃗j) ≈ a0D̂(q⃗j), and SSNR(q⃗j)
I ≈ D̂(q⃗j)/a0, where a0 is the DC Fourier coefficient of

the illumination pattern. When the illumination pattern is normalized such that the sum over all
rotations and translations is equal to one we have a0 = 1/(MtMr). In this limit the general theory
of [27] reduces to the theory of [31]. It is expected that the degree of Fourier order overlap is
relatively high for e.g. spot array based 2D-SIM, where many Fourier orders participate, and
moderate for small pitch line pattern based 2D-SIM, with a limited number of Fourier orders that
are well separated in Fourier space. The degree of overlap is even smaller for state-of-the-art and
lattice 3D-SIM, because the 3D-OTF has a more peaked shape than the 2D-OTF. In order to
quantify this qualitative line of reasoning we computed the relative mean absolute difference:

RMAD =
∑︁

j
|︁|︁V̂(q⃗j)/a0 − D̂(q⃗j)

|︁|︁∑︁
j D̂(q⃗j)

(20)

for three cases analyzed in Ref. [27], namely for DMD-based spot array scanning SIM [12], the
Zeiss Elyra system used for single focal slice 2D-SIM [22] and the OMX Delta system used
for 3D-SIM, and found values of 8.4%, 5.7%, and 2.3%, respectively, in agreement with the
qualitative expectations.

The impact of a constant background b (in units photons/pixel) on the noise level is that it
adds spatially uniform noise with standard deviation

√
b to all raw images. This is the same in

overall appearance as Gaussian noise resulting from camera readout. The object DC component
f̂0 appearing in the noise variance in Eq. (12) can be split into a foreground and background part,
f̂0 = f̂0,s + Nb, and the relative importance of background for the SSNR thus follows the ratio
between the average number of foreground photons per pixel f̂0,s/N to the background per pixel
b. The noise arising from the uniform background obviously decreases the SSNR, but it does not
impact the imaging system dependent factor SSNRI we introduced in Eq. (18).

We will compare 3D-SIM configurations using two metrics based on the SSNR transfer
function. The first is the SSNR volume:

SSNRV =

N∑︂
j=1

SSNR(q⃗j)
I . (21)
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In the limit in which we can ignore the Fourier order overlap this expression simplifies to:∑︂
j

SSNR(q⃗j) ≈ MtMr
∑︂

j
D̂(q⃗j)

Mt
2Mr

∑︂
r

∑︂
m

∑︂
j

|︁|︁|︁|︁|︁∑︂p
ampĝ

(︂
q⃗j − k⃗rm − kax,pe⃗z

)︂|︁|︁|︁|︁|︁2
≈ Ĝ2

∑︂
mp

|︁|︁|︁|︁amp

a0

|︁|︁|︁|︁2
(22)

where Ĝ2 =
∑︁

j |ĝ(q⃗j)
2 |, and where we ignored the axial order overlap as well, i.e. cross-terms

ĝ
(︁
q⃗ − kax,pe⃗z

)︁
ĝ
(︁
q⃗ − kax,p′ e⃗z

)︁
for p ≠ p′ are neglected.

The ratio amp/a0 does not depend on the number of illumination pattern rotations and
translations, implying that the SSNR volume also does not depend on Mr and Mt. The reason lies
in the fact that eq. (13) and (14) apply to the same normalized illumination dose, meaning that an
increase in the number of raw images per reconstructed super-resolved image means a smaller
photon number per raw image. The SSNR volume depends only on the number and power of the
Fourier peaks and not on their location in Fourier space. It is shown in this work, in particular,
that the SSNR volume is insensitive to the angle of incidence of the plane waves on the sample
if they are s-polarized. This means that SSNR volume is uncorrelated to the resolution gain in
the limit where the Fourier orders do not overlap. The increase in the SSNR volume over the
widefield case is equal to the total power of all Fourier peaks except for the zero order peak.

From the above it follows that the SSNR volume is insufficient for the evaluation of the
potential resolution and isotropy of a given 3D-SIM configuration. One can come up with
different measures for this purpose. We will consider a configuration to be better when it results
in a more isotropic distribution of the SSNR in spatial frequency space. To that end we introduce
the SSNR entropy:

SSNRI
S = −

N∑︂
j=1

pj log(pj), (23)

with pj = SSNR(q⃗j)
I/SSNRV , as a second system quality metric based on the SSNR transfer

function.
The two chosen metrics SSNRV and SSNRS are always bigger for any SIM configuration than

for the corresponding quantities in widefield microscopy. It is therefore convenient to consider
their increase expressed in units of widefield SSNR volume and SSNR entropy respectively:

SSNRinc
V =

SSNRI
V − SSNRI

V ,widefield

SSNRI
V ,widefield

≈
∑︂
mp

|amp |
2 − 1

SSNRinc
S =

SSNRI
S − SSNRI

S,widefield

SSNRI
S,widefield

.

(24)

It can be seen that SSNRinc
V is independent of the microscope OTF. These quantities are positive

everywhere and are less then one in all our simulations.

3. SIM configuration analysis

Using the formalism from the previous chapter, we analyze the performance of known SIM
modalities. We compared widefield microscopy, state-of-the-art line pattern based 3D-SIM [17],
square lattice 3D-SIM [21–23] and hexagonal lattice 3D-SIM [21,22]. Schematic illustrations
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of BFP structures of the discussed SIM modalities are shown in Fig. 1. Animations of the
corresponding 3-dimensional illumination patterns can be found in Visualization 1 with a
representative frame shown in Fig 2. In the appendix we list the illumination electric fields for the
different configurations, as well as the resulting non-zero Fourier peaks k⃗mp and associated order
strengths amp. To illustrate the effect of the polarization on the SSNR, two versions of square
lattice SIM with five incident plane waves are considered. In the first case, the four obliquely
incident plan waves are s-polarized, while the normally incident plane wave is linearly polarized
at 45◦ with the planes of incidence of the obliquely incident plane waves. In the second case, all
five plane waves share the same circular polarization. The use of uniform circular polarization
may provide an advantage in experimental realization of lattice 3D-SIM. We also choose circular
polarization for the normally incident plane wave in hexagonal SIM, as no linear polarization of
a normally incident wave can provide equal interference with all the oblique ones in such cases.

Fig. 1. Back focal plane illumination configurations for different 3D-SIM configurations. a)
State-of-the-art 3D-SIM based on small pitch woodpile illumination pattern ("Conventional").
b) Square lattice 3D-SIM with linearly polarized plane waves ("SquareL"). c) Square lattice
3D-SIM with circularly polarized plane waves ("SquareC"). d) Hexagonal lattice SIM with
linearly polarized plane waves ("Hexagonal").

To match experimental practice the angle of incidence of the obliquely incident plane waves
θinc was chosen a bit less than a semi-opening angle of the lens αso: sin θinc/sinαso = 0.9,
providing a resolution increase up to 1.9 the diffraction limits in the lateral directions (Stokes
shift is ignored).

We define r as the ratio of field amplitudes of s-components of obliquely incident waves to the
x or y component of the normally incident one. Then the power of Fourier peaks is proportional
to r2 for those belonging to the qxqy-plane (lateral peaks) and to r for those that do not and are
responsible for an axial resolution increase (axial peaks). The zeroth peak height is equal to the
total power of illumination. Figure 3 shows qxqy and qxqz slices of the SSNR transfer function
for particular values of the parameter r, the motivation for which is explained later. We consider
natural units for spatial frequencies to be the cut-off frequencies of the widefield OTF. The
lateral cut-off frequency (LCF) corresponds to 2NA/λ, and the axial cut-off frequency (ACF) to
nm(1 − cos(αso)/λ. The observed peaks correspond to the illumination structure, that should be

https://doi.org/10.6084/m9.figshare.28079000
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Fig. 2. Illumination structure of the configurations of interest in the slice z = −λ (see
Visualization 1).

understood as the rotational average of the illumination Fourier peaks if the number of rotations
is higher than 1. In case of conventional SIM there are 6 lateral peaks - 2 per each rotation - and
12 axial ones (4 shown in the axial cross-section). Square lattice SIM with linearly polarized
plane waves shows 4 lateral peaks and 8 axial peaks, while square lattice SIM with circularly
polarized plane waves has 8 lateral peaks and 8 axial peaks. Hexagonal lattice SIM has 18 lateral
peaks and 12 axial peaks. A large number of peaks ensures a higher homogeneity of the SSNR,
but also requires a higher number of spatial shifts of the illumination pattern to disentangle the
different image Fourier orders. This number is at least equal to the number of projections of the
illumination peaks to the qxqy plane, but may also be bigger when the orthogonality condition
Eq. (9) is imposed. For example, hexagonal lattice SIM hence needs more raw images than
conventional SIM.

Several observations can be made comparing square lattice illumination configurations with
different polarization. The difference in polarization results in qualitatively different behaviour of
the SSNR. In the case of linearly (s) polarized waves, no diagonal peaks are present in the Fourier
domain. It means, in particular, that more raw images are required for the SIM reconstruction than
in the case of circularly polarized waves. It is also clearly seen that square lattice SIM with circular
polarization leads to a significant reduction of SSNR at high frequencies in comparison with
linear polarization. As it is shown in the Appendix, for square illumination patterns, s-polarized
waves give peaks with the magnitude r2 independent on the angle of incidence, whereas for
circularly polarized waves the amplitude of the same peaks changes to r4 cos4(θinc)), which is
considerably smaller for large θinc. The amplitude of the diagonal peaks in the latter case is
r4 sin4(θinc), which grows with θinc, but which has a lateral position in Fourier space closer to the
origin, i.e. it contributes to SSNR at smaller lateral spatial frequencies. Finally, an elliptically
shaped anisotropy can be noticed in the case of circularly polarized waves. It appears that this

https://doi.org/10.6084/m9.figshare.28079000
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Fig. 3. Slices of the SSNR transfer function SSNRI along qz = 0 and qy = 0. a) Widefield.
b) Conventional state-of-the-art SIM for Mr = 3 rotations and for r = 1. c) Square lattice
SIM with linearly polarized incoming plane waves, for r = 1. d) Square lattice SIM with
circularly polarized incoming plane waves, for r = 0.55. e) Hexagonal lattice SIM for r = 1.

effect is related to the choice of the mutual phases of the incoming plane waves, which we discuss
in more detail below.

In Fig. 4, radial averages of the SSNR transfer function are shown for two planes. The plane
qz = 0 shows how configurations compare in terms of lateral SSNR and the plane qz = −ACF
illustrates their axial performance, i.e., optical sectioning capabilities. Conventional SIM gives
the highest peak at both axial and lateral cut-off frequencies, as well as the highest curve at
super resolved frequencies above the LCF. An additional peak at the lower spatial frequency
LCF/

√
2 is seen for circularly polarized square lattice SIM, and two more peaks at

√
3LCF/2

and LCF/2 are present for hexagonal lattice SIM, in correspondence to the observed Fourier
structure. A poor performance of the configuration with circularly polarized waves in the lateral
plane compared to the other configurations is apparent. It is also noted that the diagonal peaks
hardly add any SSNR beyond the diffraction limit. Hexagonal lattice SIM shows high SSNR in
the qz = 0 plane, but shows the lowest radially averaged SSNR at qz = ACF. The SSNR transfer
function is more isotropic in this case than for other lattice SIM configurations, however, due to
its intrinsic hexagonal symmetry.

The SSNR of all the configurations depends crucially on two parameters: r and θinc. We
can employ global metrics SSNRI

V and SSNRI
S to investigate how their choice affects the SSNR.

We can then derive the parameter values that give the best SSNR performance. The ratio r of
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Fig. 4. Ring averaged SSNR transfer function. a) qz = 0. b) qz = −1 ACF

field strengths of obliquely incident and normally incident waves was found by maximizing
Eq. (22). This maximization results in r = 1 for conventional SIM and square lattice SIM with
s-polarized obliquely incident plane waves. For square lattice SIM with circularly polarized
obliquely incident plane waves, the optimal ratio depends on the angle of incidence of incoming
plane waves. It remains within the range of 0.5 − 0.6 for a broad range of angles, and is close
to 0.58 for θinc ≈ 58◦ used in this work. The SSNR volume for hexagonal lattice SIM has its
maximum at r → ∞, which corresponds to the limiting case of 2D SIM, where there is no
normally incident plane wave. This is due to the fact that the Fourier transform of the hexagonal
illumination pattern has more lateral peaks that axial ones. The highest SSNR entropy is achieved
for a finite value of r. It can be seen from the corresponding plot in Fig. 5 that to maximize SSNR
entropy the value r = 1 must be chosen. At this value all the magnitudes of the SSNR peaks
become the same for hexagonal lattice SIM. It turns out that the dependence of both SSNRinc

V and
SSNRinc

S on r is qualitatively similar. This happens because the angle of incidence θinc is close to
αso. Then the increase in SSNR volume is mostly due to the high spatial frequencies, and these
high spatial frequencies affect SSNR entropy the most.

We now analyze the effect of the angle of incidence of obliquely incident waves. The
dependence of global metrics on θinc at the same αso is plotted in Fig. 6. It appears that SSNRinc

S
grows monotonously with the angle of incidence. This is expected as more high spatial frequency
content is observed at a smaller interference pitch. The line for square lattice SIM with circularly
polarized obliquely incident plane waves has a smaller slope at big angles than for square lattice
SIM with linearly polarized obliquely incident plane waves. This happens due to the decrease
of height of the high spatial frequency lateral peaks as cos(θinc)

4 in the Fourier domain of this
configuration, as was mentioned before. The SSNRinc

V plot for this configuration even decreases
with the angle of incidence of the obliquely incident plane waves, also for the theoretically
approximated value according to Eq. (24). The reason for this is that the magnitude of the
axial peaks is proportional to 1 + cos(θinc) (see Appendix), so that their contribution to SSNRV
decreases quickly with θinc.

The SSNRinc
V plots allow to check how well the approximation of separated OTF copies in

Fourier space holds. Our results show that at high angles of incidence the agreement with Eq. (24)
is perfect, while at low angles deviations are observed. This is understandable, as then there
is more overlap between the displaced OTF copies in Fourier space. We also notice that the
deviation in SSNR volume from the theoretical approximation can be either an undershoot or
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Fig. 5. Relative increase in SSNR volume SSNRinc
V (a) and SSNR entropy SSNRinc

S (b) for
the 3D-SIM configurations of interest as a function of the ratio r between the amplitudes
of the obliquely incident plane waves and the normally incident plane wave. Dashed lines
in (a) show the theoretically approximated value of SSNRinc

V according to Eq. (24) and
the solid lines represent the numerically calculated values by summing over the voxels in
Fourier space. The values of SSNRinc

V and SSNRinc
S that correspond to the optimally chosen

parameters are indicated with circles.

Fig. 6. Relative increase in (a) SSNR volume SSNRinc
V and (b) SSNR entropy SSNRinc

S
for the 3D-SIM configurations of interest as a function of the normalized position of the
obliquely incident plane wave peak in the BFP of the objective lens. The dashed lines
corresponds to the theoretically approximated value of SSNRinc

V according to Eq. (24) and
the solid lines represent the numerically calculated values by summing over the voxels in
Fourier space.
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an overshoot. This depends on how the polarization of the plane waves influences the relative
phase of overlapping Fourier orders, and is thus subject to the design of the spatially periodic
illumination patterns. The reduction of SSNR volume for square lattice SIM with circularly
polarized obliquely incident plane waves originates from overlaps of laterally shifted OTF copies,
whereas the reduction for square lattice SIM with linearly polarized obliquely incident plane
waves originates from overlaps of axially shifted OTF copies. This is also apparent from the
curves in Fig. 4, which show that the circular polarization case performs worse in the lateral
direction but better in the axial direction compared to the linear polarization case. The good
SSNR performance for conventional SIM originates mostly from the overlap of the axially shifted
first order OTF copies, which have zero phase difference. We will discuss the effects of the
overlap of axially shifted OTF copies in more details in the following section, emphasizing that
the increase or decrease of the SSNR transfer function in the above-mentioned configurations
depends on the illumination parameters.

Another aspect where the polarization and relative phase of the normally incident plane wave
with respect to the obliquely incident ones has impact is the (lack of) symmetry in the final
SSNR. Figure 7 shows the SSNR transfer function of square lattice SIM with circularly polarized
waves along the qx and qy axes in the plane qz ≈ 0.21 ACF. We have chosen the illumination
plane waves in such a way that the obliquely incident plane waves interfere destructively at the
coordinate center r⃗ = 0⃗ (see Appendix). If the x and y-projections of the electric field of the
normally incident wave are not equal at this point, a difference between the SSNR curves along
the different axes is observed, i.e. an anisotropy in the SSNR arises. If they are the same, the
SSNR curves become identical (phase shift = π/4 case). A phase shift of π/2 switches the roles
of the axes, and a phase shift of π returns the electric field to the xz-plane, and the SSNR in this
case equals to the one for zero phase shift. The dependence of the SSNR on this phase choice is
small, however, noticeable only in the lower SSNR regions.

This effect is a consequence of the reconstruction procedure for 3D-SIM, which is, strictly
speaking, not 3D, as only two-dimensional displacements of the illumination pattern are used.
The reconstruction of spatial frequencies with high qz is made possible because the illumination
pattern is kept fixed w.r.t. the image plane of the microscope but not w.r.t. the sample [17].
As a result, the axially displaced copies of the OTF sharing the same lateral coordinates of the
center, are seen by the reconstruction procedure as one effective OTF (defined by Eq. (16)). In
conventional 3D-SIM this happens for the 1st order illumination pattern Fourier components.
These copies are fully separated in the axial direction when the illumination plane wave angle
of incidence is equal to the semi-opening angle of the lens, but overlap to some degree in the
realistic case when the incidence angle is somewhat smaller. The signal transfer of those spatial
frequencies that belong to both axially displaced OTF copies can then be amplified or diminished,
depending on the illumination coefficients amp (see Appendix). This effect is compensated to a
large extent by the fact that the affected spatial frequencies also receive signal via the central 0th
order OTF copy, and the zeroth order illumination Fourier peak is generally much higher then the
others. It does explain, however, the increase in SSNR volume of conventional 3D-SIM at small
angles of incidence of the obliquely incident waves, as seen in Fig 6. The first order illumination
pattern Fourier coefficients a101, a10−1, a−101, a−10−1 are all the same for this configuration (see
Appendix), as all three incident waves interfere constructively in the focal plane, and an amplified
SSNR transfer function is observed in all lateral directions of spatial frequency space. If instead
the relative phases of the plane waves are chosen sub-optimally, the axially displaced OTF copies
interfere destructively in the sum over displaced OTF copies that appears in the SSNR expression.
In such cases, we see a reduction of signal transfer and hence decrease in SSNR volume. This is
also the reason for the reduction in SSNR volume for square lattice SIM with linearly polarized
waves in Fig. 6). We conclude that it matters for SIM to have the highest contrast in the focal
plane: the woodpile structure of conventional SIM or its two-dimensional analogue for square
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Fig. 7. Dependence of the SSNR along kx and ky directions on the relative phase of the
normally incident waves in the configuration with five incoming circularly polarized waves
(SquareC). a) Phase = 0. b) Phase = π/4. c) Phase = π/2. d) Phase = π

lattice SIM with linearly polarized waves must have its brightest spots in the focal plane for
optimal signal transfer and hence SSNR.

To further illustrate this point we computed the ratios of SSNRV and SSNRS for constructive
(designated with ’+’) and destructive (designated with ’-’) interference cases for conventional
SIM. At sin θinc/sinαso = 0.9, that corresponds to the situation of highest practical relevance,
SSNRinc+

V /SSNRinc−
V ≈ 1.04 and SSNRinc+

S /SSNRinc−
S ≈ 1.01. This difference is very small.

However, if sin θinc/sinαso = 0.5, then SSNRinc+
V /SSNRinc−

V ≈ 2.4 and SSNRinc+
S /SSNRinc−

S ≈ 1.5.
This means that if, for some reason, a high angle of incidence of obliquely incident waves is not
achievable, the alignment of the woodpile pattern with the image plane by correctly setting the
relative phases of the plane waves becomes crucial.

The anisotropy in square lattice 3D-SIM is due to the signal amplification in one direction and
reduction in another. Any configuration with a circularly polarized normally incident wave will
suffer from directional anisotropy. In the case of square lattice 3D-SIM, these can be eliminated
by a correct choice of phase.

Hexagonal lattice 3D-SIM is theoretically even more complicated. It is not possible to select
the initial phase of the incoming plane wave to completely get rid of anisotropies, because the
polarization direction cannot be equally aligned with all three hexagonal diagonals. Moreover, if
one of the incoming oblique plane waves has a phase offset, it can lead to yet another kind of
anisotropy, caused by a change of magnitude of the illumination peaks in the Fourier domain.
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The magnitude of this anisotropy effect turns out to be rather small, the influence of anisotropy
for hexagonal lattice 3D-SIM in our simulations is barely noticeable. We also checked if a
circularly polarized central wave can be used instead of linear polarization at the angle of 45◦ in
the square lattice 3D-SIM configuration, and found that for high illumination angles of incidence
the SSNR transfer function anisotropy is negligible.

So far, all simulations were performed for the case of an ideal emission PSF. However, in real
experiments aberrations are always present to some extent. We have compared changes between
the SIM configurations in the SSNR metrics as a function of aberration strength for the three
most common aberrations, namely primary (Zernike) spherical aberration, coma and astigmatism.
It appears there are hardly differences between the SIM configurations in how SSNR volume
decreases with aberration strength, due to the high degree of separation of the OTF copies in
Fourier space. In fact, the curves nearly coincide with the curve for the widefield case. In contrast,
SSNR entropy does show different aberration response between SIM configurations. Figure 8
shows the decrease in SSNR entropy with aberration strength for the three primary aberration
modes. First, it appears that all SIM modes outperform the widefield case. This may be due to
the spatial frequencies near the centers of the OTF copies in Fourier space that are relatively
unaffected by aberrations, leading to a distribution of SSNR across spatial frequencies that is
more robust to perturbation by aberrations. Second, conventional and hexagonal lattice SIM
have slightly better aberration sensitivity than square lattice SIM. The intuition behind this is that
aberrations primarily affect the transfer of intermediate spatial frequencies, and with the more
isotropic SIM configurations there is more overlap of OTF orders to suppress this. The third
point of relevance is that the resilience towards rotationally symmetric aberrations like spherical
aberration is higher than towards asymmetric aberrations like astigmatism and coma.

Fig. 8. SSNR entropy of the different SIM configurations as a function of aberration
strength for the three primary Zernike aberrations, spherical aberration (a), coma (b), and
astigmatism (c). The aberration strength (root means square Zernike coefficient) is measured
in units of Maréchal’s diffraction limit (λ/(8

√
3) = 0.072λ).

4. Conclusion

In summary, we considered different 3D-SIM illumination configurations and calculated the
spectral signal-to-noise ratio (SSNR) in the shot-noise dominated regime to evaluate their potential
performance. In particular, we compared conventional 3D-SIM based on a woodpile shaped
illumination pattern that is translated and rotated for making a super-resolution reconstruction
possible to lattice 3D-SIM based on illumination patterns that only need translations. We
addressed lattice 3D-SIM configurations that use symmetric illumination patterns found in the
literature: square and hexagonal. It was shown that conventional 3D-SIM has superior SSNR
performance compared to all considered lattice 3D-SIM configurations. This assessment is
based on the SSNR transfer function, which separates out any sample effects, the illumination
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dose and light detection efficiency on the SSNR. This means that the comparison assumes
constant total illumination dose, and that a better SSNR is predicted for conventional 3D-SIM
with the same amount of phototoxicity and photobleaching. In other words, to achieve the
image quality of conventional SIM with lattice SIM, more photodamage must be delivered to the
sample. Even though lattice 3D-SIM does not yield as good SSNR as conventional woodpile
illumination 3D-SIM, it does offer some advantages in terms of experimental complexity and
potential acquisition speed. For lattice 3D-SIM there is no need to rotate the polarization of
the central illumination beam, it can remain fixed. Furthermore, rotation of the illumination
pattern, either by rotating a dove prism or the diffraction grating that produces the required set
of illumination beams, or by using complex optical devices such as Spatial Light Modulators
(SLMs), is not needed in the experimental setup. A 2D translation of a diffraction grating for
generating the different illumination beams by piezo elements, and static means to change the
polarization of the illumination beams are sufficient for lattice 3D-SIM.

We introduced two global metrics with clear physical meaning, SSNR volume and SSNR
entropy, allowing a quick comparison of the global behavior of SSNR in the whole spatial
frequency domain. These metrics can be used to compare the different illumination configurations,
to search for optimal experimental parameters, or to test theoretically made assumptions.

We demonstrated that the polarization of the incoming plane waves is relevant for the
overall imaging performance in 3D-SIM. In particular, we considered a square lattice 3D-SIM
configuration where the five contributing plane waves have the same circular polarization. This
may be advantageous from an experimental point of view and because more Fourier components
participate in the Fourier transform of the illumination pattern compared to square lattice 3D-SIM
based on linearly polarized incident plane waves, which could lead to a more uniform improvement
of SSNR across spatial frequency space. It turned out, however, that this configuration has poor
SSNR performance at high spatial frequencies. Another drawback that was revealed is that the
choice of phase of the normally incident wave matters if it is circularly polarized, as it leads,
in general, to anisotropy of the SSNR transfer function. This effect is a direct consequence
of the entire underlying theory of projective 3D-SIM [17]. It was shown that for small angles
of incidence, the choice of relative phases of all participating plane waves becomes important
for configurations with linearly polarized waves as well. In particular, both pattern shape and
position w.r.t. the focal plane matters in for 3D-SIM.

We investigated the impact of a deviation from the ideal scalar OTF due to aberrations, by
simulating the decay of the SSNR global metrics with aberration strength. It appears that
conventional SIM and lattice with hexagonal symmetry outperform square lattice SIM, and that
all SIM configurations outperform the widefield case. A differnt deviation from the ideal OTF
we did not consider is related to the assumption that a high-NA scalar PSF model is applicable.
Polarization effects in the emission light path are hence ignored in the analysis. This includes
polarization-dependent transmission effects at interfaces between media with potential refractive
index mismatch (sample - cover glass and cover glass - immersion fluid). However, the overall
conclusions of this work can be expected to be insensitive to the precise shape of the OTF, as its
highly peaked nature in 3D incoherent imaging systems plays a crucial role here.

In this work, we only considered 3D-SIM configurations that obey the orthogonality condition
of Eq. (9) for the illumination patterns, which provide a sufficient condition to extract the image
Fourier orders from the raw images. The closed form Eqs. (13) and (14) are only valid under this
constraint. It is also a sufficient, but not necessary, condition for having a total light exposure that
is uniform everywhere in the field of view. We have not investigated how deviations from this
assumption affect SSNR, although it seems likely from the theory of Ref. [27] that a violation
of the orthogonality condition Eq. (9) will lead to a growth of the noise power. This may be of
relevance for (pseudo)-random illumination microscopy [36].
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An illumination pattern generated with three incoming oblique plane waves has been considered
to generate hexagonal interference patterns for 2D-SIM [37]. A disadvantage of this triangular
interference is that plane waves, propagating at 120◦ angle with respect to each other, do not give
as dense an interference pattern as those resulting from diametrically opposite plane waves. This
reduces the achievable lateral resolution gain to

√
3 times the diffraction limit, as was also noticed

in Ref. [37]. Moreover, the extension of this configuration to 3D-SIM by adding a normally
incident plane wave lacks axial symmetry in the illumination pattern Fourier transform and hence
SSNR transfer function (it is symmetric under the inversion but not reflection). Our assessment
was that the triangular configuration is suboptimal for 3D-SIM and we did not analyze it further
in this manuscript.

An extension of the current work is to consider families of configurations that belong to the
same symmetry groups but show more complex axial behavior. For example, a lattice 3D-SIM
configuration with square symmetry but eight obliquely incident plane waves split into two groups
of four waves can be considered. Each group of four waves forms a square but have a different
angle of incidence on the sample. Such a configuration could improve lateral SSNR isotropy. It
would, however, be experimentally difficult to realize and would require a larger number of raw
images to obtain a full super-resolution reconstruction. It is straightforward to extend the analysis
of this work to the cases of SIM with enhanced axial resolution and beyond epi-illumination.
Despite the considerable experimental complexity of such setups, systematic attempts in this
direction are made by different groups [38–40]. In this case, compromise between axial and
lateral SSNR may be shifted towards the former and the effect of a mutual phases of incoming
plane waves may play a greater role.

Another extension of interest for the current analysis is to non-linear SIM [13], as under certain
assumptions lattice 2D-SIM configurations can result in better SNR in the non-linear regime
[31], as opposed to the linear regime, where we showed that conventional 3D-SIM has better
SSNR than lattice 3D-SIM. Possible realizations of non-linear SIM include SIM with saturation
of fluorescent labels [13], SIM with reversibly photoswitchable fluorescent labels [31] and SIM
with stimulated emission depletion [14]. The illumination-dependent response is different in
these cases, and hence optimal illumination parameters or, possibly, configurations with optimal
SSNR metrics could be different. The combination of SIM and light-sheet microscopy [41–43]
is a promising investigation direction as well. We can envision better axial SSNR, as optical
sectioning is now achieved physically rather then computationally, especially when normalized
for the total absorbed illumination dosage. It could also be fruitful to compare the SSNR
performance of SIM against other super-resolution methods based on non-uniform illumination,
such as ISM or RCM [6,8,44], and (pseudo-)random illumination microscopy [36]. Such a study
would provide an inroad to the interesting question which of the super-resolution flavour in the
family that gives up to twofold improvement over the diffraction limit is fundamentally better.

Finally, the introduced SSNR metrics could be used for a quantitative analysis of the SIM
reconstruction procedure itself, looking, for example, at effects of additional filtering, such as
notch filtering, or at spatial domain reconstructions [25,45].
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Appendix

The illumination electric field for the four considered SIM configurations is:

• Conventional SIM:

E⃗ = r(0, 1, 0) exp(i(k sin(θ)x + k cos(θ)z))
+ r(0, 1, 0) exp(i(−k sin(θ)x + k cos(θ)z))
+ (0, 1, 0) exp(ikz)

(25)

• Square lattice SIM with linearly polarized waves:

E⃗ = r(0, 1, 0) exp(i(k sin(θ)x + k cos(θ)z))
+ r(0,−1, 0) exp(−i(k sin(θ)x + k cos(θ)z))
+ r(1, 0, 0) exp(i(k sin(θ)y + k cos(θ)z))
+ r(−1, 0, 0) exp(−i(k sin(θ)y + k cos(θ)z))
+ (1,−1, 0) exp(ikz)

(26)

Table 1. Fourier structure of the illumination configurations. The positions of the peaks
in Fourier space are given by numerical factors mx , my , mz of the corresponding 3D

Bravais lattice vectors k⃗ = mx k sin θx̂ +my k sin θŷ +mz k (1 − cos θ) ẑ . In the
computation of the SSNR all Fourier component magnitudes are normalized by the

(0, 0, 0) component. a) State-of-the-art 3D-SIM based on small pitch woodpile
illumination pattern ("Conventional"). b) Square lattice 3D-SIM with linearly polarized

plane waves ("SquareL"). c) Square lattice 3D-SIM with circularly polarized plane waves
("SquareC"). d) Hexagonal lattice SIM with linearly polarized plane waves ("Hexagonal").

(a) Conventional

Position Magnitude

(0, 0, 0) 1 + 2r2

(±2, 0, 0) r2

(±1, 0, ±1) r

(b) SquareL

Position Magnitude Position Magnitude

(0, 0, 0) 2 + 4r2 ±(0, 1, 1) −r

(±2, 0, 0) −r2 ±(0, 1, -1) r

(0, ±2, 0) −r2 ± (1, 0, 1) r

± (1, 0, -1) −r

(c) SquareC

Position Magnitude Position Magnitude

(0, 0, 0) 2 + 8r2 ±(1, 0, 1) −(1 + cos(θ)r)

(±2, 0, 0) −2r2 cos(θ)2 ±(-1, 0, 1) (1 + cos(θ)r)

(0, ±2, 0) −2r2 cos(θ)2 (0, 1, ±1) −i(1 + cos(θ)r)

(±1, ±1, 0) −2r2 sin(θ)2 (0, -1, ±1) i(1 + cos(θ)r)

(d) Hexagonal

Position Magnitude Position Magnitude

(0, 0, 0) 2 + 6r2

(±2, 0, 0) −r2 (1/2,
√

3/2, ±1) ((∓
√

3 − i)/2)r

(±1, ±
√

3, 0) −r2 (-1/2,
√

3/2, ±1) ((∓
√

3 + i)/2)r

(0, ±
√

3, 0) −r2 (1/2, -
√

3/2, ±1) ((±
√

3 − i)/2)r

(±3/2, ±
√

3/2, 0) −r2 (-1/2, −
√

3/2, ±1) ((±
√

3 + i)/2)r

(±1, 0, 0) r2 (1, 0, ±1) −ir

(±1/2, ±
√

3/2, 0) r2 (-1, 0, ±1) ir
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• Square lattice SIM with circularly polarized waves:

E⃗ = r(cos(θ), i,− sin(θ)) exp(i(k sin(θ)x + k cos(θ)z))
+ r(− cos(θ),−i,− sin(θ)) exp(i(−k sin(θ)x + k cos(θ)z))
+ r(−i, cos(θ),− sin(θ)) exp(i(k sin(θ)y + k cos(θ)z))
+ r(i,− cos(θ),− sin(θ)) exp(i(−k sin(θ)y + k cos(θ)z))
+ (1, i, 0) exp(ikz)

(27)

• Hexagonal lattice SIM:

E⃗ =
5∑︂

j=0
r
(︃
− sin

(︃
2πj
3

)︃
, cos

(︃
2πj
3

)︃
, 0
)︃
×

exp
(︃
ik
(︃
sin θ cos

(︃
2πj
3

)︃
x + sin θ sin

(︃
2πj
3

)︃
y + cos θz

)︃)︃
+ (1, i, 0) exp(ikz)

(28)

In all cases the amplitude parameter r is defined as the ratio of the s amplitude of the obliquely
incident plane wave component and the x or y component of the normally incident plane wave
component. In the subsequent computation of the SSNR the spatially averaged intensity is
normalized to unity. The resulting illumination intensity has peaks in Fourier space at positions
k⃗ = mxk sin θx̂ + myk sin θŷ + mzk (1 − cos θ) ẑ, with numerical prefactors mx, my, mz and with
magnitudes as provided in Table 1. We mention that this parametrization of the Fourier peaks
does not correspond to an expansion in basis vectors of the Bravais lattice.

The illumination pattern peaks in Fourier space for the four considered SIM configurations are
further illustrated in Fig. 9.
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