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Abstract

ASML’s wafer scanners are crucial machines in the production of integrated circuits (ICs).
An important performance parameter in these photo-lithographic machines is the so-called
overlay error, which is a measure for the accurate stacking of multiple layers during the photo-
lithography process in the xy-plane. The overlay performance is, amongst others, hampered by
thermal disturbances. Currently, a thermo-mechanical feedforward model is used to predict the
heating effects and, subseqently, this information is used to compensate for overlay (substrate
deformation) by active control.

Some of the model parameters, used in the thermo-mechanical feedforward, are not accu-
rately known which result in inaccurate overlay compensation. The model parameter accuracy
can be improved by using experiments subjected to model parameter calibration. Unfortunately,
model parameter calibration may be hampered when choosing an insufficient experimental set-
up. For example, it can lead to severe model parameter correlation. One way to improve overlay
performance is to calibrate the model parameters of the thermo-mechanical feedforward model
by means of an optimal conducted experiment.

The information matrix is used to capture the information content of an experiment. This
matrix is the key ingredient in order to investigate the performance of an experiment when sub-
jected to model parameter calibration. By using competent objective functions, the information
content of the information matrix can be captured by one single expression. Subsequently, this
single expression can be used to perform optimization of the experiment.

Two experimental cases of the thermo-mechanical feedforward model are optimized using
two different objective functions. Case 1 contains the heat capacitance cp of the substrate and
the IR/EUV ratio as model parameters, and case 2 contains the tangential burl stiffness Gzy and
the IR/EUV ratio as model parameters. A D-optimality objective function, which is the deter-
minant of the information matrix, and an ACE1-optimality objective function, which focusses
on the correlation between specified model parameter and the eigenvalues of the information
matrix associated to the same model parameters. The Simulated Annealing algorithm is used
to perform the complex experiment optimization problem that originates by the characteristics
of the feedforward model. Eventually, it is possible to acquire an optimal experiment which can
increase model parameter accuracy and, therefore, give a reduction of worst-case overlay error
by 54.4% and 9.4% when considering a 95% confidence bounce for model parameter case 1 and
2, respectively.
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1
Introduction

ASML’s wafer scanners are crucial machines in the production of integrated circuits (ICs). An
important performance parameter in these photo-lithographic machines is the so-called overlay
error. It is desirably small (order of one nanometer, i.e., 1× 10−9 m ) for the accurate stacking
of multiple electrical layers. An important part of a wafer scanner is a positioning module that
is servo-controlled in six motion degrees of freedom (DOFs). This positioning module holds the
substrate, i.e. the silicon disk on which the ICs are processed. The substrate is attached to
the positioning module via a clamp. For good overlay, the substrate must be positioned very
accurately with respect to the imaging optics in the photo-lithographic machine. In view of
the required (sub-)nanometer performance, this accurate positioning and hence good overlay is
hampered by structural deformations of the substrate that are inevitably induced by thermal
disturbances.

Substrate on top of 
the positioning module

Reflective maskImaging optics

Light source

Figure 1.1: Inside of the EUV wafer scanner ASML machine. EUV light shines on the reflective
mask in order to construct a light pattern. Subsequently, the EUV light continues through the
imaging optics and will end up at the substrate.
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1.1 Motivation and Problem Definition

In order to improve the understanding of the photo-lithograpic machine and the previously men-
tioned overlay error, its inside is depicted in Figure 1.1. To put it simply, the photo-lithography
process goes as follows: Extreme Ultra-Violet (EUV) light is generated by the light source and
reflected against the mask. This mask is used to generate a light pattern, desired by the cus-
tomer for the lithography process. The EUV light continues through the imaging optics were
the pattern is reduced, and eventually the light pattern is printed on the substrate.

The overlay is a measure for the accurate stacking of multiple layers during the photo-lithography
process in the xy-plane. A different measure for the accuracy of the photo-lithography process
is focus. Like a photo camera, the focus plays an important role in the sharpness of an image.
It is not different for the ASML machine, and it is desired to have the focal point of the lens at
the surface of the substrate (in z-direction) for maximum sharpness of the image. The overlay
and focus performance are, amongst others, hampered by thermal disturbances. In van de Wal
(2014) an overview is given of the thermal problems that will arise during development of these
photo-lithographic machines and what kind of measures should be taken to cope with them.

During the generation of EUV light in the light source, infra-red light (IR) is generated as
well. This effect is not desirable. IR does not contribute to the lithography process and it is
directly translated into a thermal load. Several components in the photo-lithographic machine
will influence the overlay performance due to thermal loads. For instance, when the imaging
optics are heated due to IR they will deform and, subsequently, a distorted image is the result.
Another example would be a temperature difference of the substrate and substrate clamp. Stud-
ies have shown that this temperature difference gives rise to deformations of the substrate and
its clamp, due to thermo-mechanical behaviour, which will lead to serious overlay errors. How-
ever, the photo-lithographic machine can – in addition of active cooling and heating – deal with
these type of errors by adjusting its set point (e.g., adjust imaging optics, substrate positioning
module, or mask positioning module). Therefore, it is useful to predict these deformations of
the substrate and send this information back into the machine in order to improve the overlay
performance.

- confidential -



Chapter 1. Introduction Page 3
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
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Figure 1.2: Overlay error due to substrate deformation caused by heating. Patterns are not
properly stacked on top of each other due to different heat load (second layer).

A two layer exposure is schematically shown in Figure 1.2. Before exposure, the substrate and
the layer are conditioned at temperature T0. During exposure layer one is illuminated by three
light beams, which is the result of the mask. For convenience, the mask is represented as if light
passes through, but in reality light is reflected in the desired pattern. The first layer is subjected
to thermal loads due to EUV and IR and the temperature rises to T1. Hence, deformations will
arise, and the imaging of the pattern is performed at the expanded layer. When the exposure
is completed, the substrate and the layer are conditioned to initial temperature T0 over again
and the layer and its pattern will shrink.

Next, a second layer is deposited on the substrate. Before the second exposure, the substrate
and its layers are conditioned at temperature T0. A new mask with a different pattern is used
due to the lithography design specifications. This new mask generates a pattern which contains
only two light beams. As a result, the thermal load is less compared with the exposure of layer
one, which was illuminated by three light beams. During exposure, the temperature rises to T2.
Since the thermal load is less, T2 < T1 and thus layer two will deform less. Subsequently, the
imaging of the pattern is performed on a less expanded layer. When the exposure is complete
and the system is at T0 an overlay error is the result.

In Figure 1.3 the position control loop of the positioning module is depicted. A feedforward is
present in the form of a thermo-mechanical model. This model predicts the substrate defor-
mation when it is processed by the machine, or in other words, when the substrate is exposed
to thermal loads. The input of the thermo-mechanical model is expose information such as
routing of the substrate or dose input (amount of energy per area that hits the surface of the
substrate). The output of the model is the deformation of the substrate in x, y, and z direc-
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tion. Subsequently, this information is converted into information that is manageable for the
machine in order to correct for the predicted substrate deformation. This step is performed in
the metrology mapping block. Afterwards, the position reference (or set point) is corrected by
∆r and the new set point r is fed into the feedback control loop.

Metrology
mapping

Position
controller (K)

Force 
actuator

Position
sensor

Thermo-
mechanical FF

model

Optimization
algorithm

Machine
mechanics∆r

r e

Expose
information
e.g. routing

Position
reference -

x, y,   z FocusOverlay

Figure 1.3: Position controller of the positioning module implemented in the machine (without
optimizer). A thermo-mechanical model is present to provide feedforward. The optimization
algorithm provides calibrated parameters for the feedforward model (not present currently).

In Figure 1.3, an optimization block can be seen as well. The thermo-mechanical model depends
on several thermal and mechanical parameters [p1 ... pk ... pK]T . In theory, the values of these
model parameters are known, but in reality they might differ slightly. In order to improve the
accuracy of the model, the parameters need to be calibrated. The calibration of the parameters
is the function of the optimization block. The input of this block is an overlay measurement
obtained from the machine (red dotted line). The outputs of the block are the optimized pa-
rameters which are fed in the feedforward model. It was shown in van der Meulen (2015) that
the optimization algorithm has difficulties in finding the correct values when the feedforward
parameters [p1 ... pk ... pK]T are poorly distinguishable from the overlay measurement, or so to
say, are non orthogonal to each other.

The feedforward model contains exposure information – also called recipe – as an input (e.g.
routing and dose), see Figure 1.3. By changing the recipe, for instance the routing of the
exposure, the overlay error differs. The following question comes to mind if it is possible to
optimize the recipe such that the thermo-mechanical model parameters, belonging to overlay
error, become orthogonal to each other. When such an optimized recipe exists, it is rather
convenient to acquire the correct model parameters. Lets keep this in mind for now.

Problem overview In order to gain insight and to enlarge the overview of the problem, the
Delft Systems Approach is applied (Veeke et al., 2008). It is stated that every problem can be
expressed in a function block as shown in Figure 1.4. The main goal is to improve the overlay
performance. This can be achieved in several ways, and one is to calibrate the model parameters,
as was explained previously. This latter represents the function as shown in Figure 1.4. Un-
calibrated model parameters enter the function and as a result, calibrated model parameters
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come out. Within the function several blocks can be found.

Initialize Evaluate

Transformation
(optimization)

OutputInput

Function

Process

Standards Realization

Requirements Performance

Un-calibrated  
parameters

Function

control

Calibrated  
parameters

Figure 1.4: Simplified block diagram of the system.

Within function control the initialize and evaluate blocks are located. The initialize block
translates the requirements of the function into standards which are measurable in the system
(or process). The real results of the process are measured in terms of these standards. For
example, if the requirement is to find an optimum in the lowest amount of time possible (vaguely
defined) then the initialize block will translate this requirement into a measurable standard, say
to find an optimum in one minute or less. This standard is measurable and is evaluated in
the evaluate block. The evaluate block checks whether the requirements are achieved. When
it happens to be that the requirements are often violated, it could indicate an infeasibility of
the standards. The evaluate block will intervene by passing this information to the initialize
block. Subsequently, the initialize block will adjust the standards such that the system remains
feasible. Function control is responsible for guarding of the feasibility as well.

In process the transformation block can be seen. This block contains the task of the func-
tion, the actual transformation from the input to the output. In this simplified representation
it cannot be seen how the transformation is done, a so-called black box approach. The input
and output block are illustrated as well. The ingoing information is often provided in a form
that cannot be handled by the transformation block. The input block will encode the input to
manageable input for the transformation block. The same holds for the output block, only the
encoding part is replaced by decoding.

In Figure 1.4 the transformation block is a ”black box”, but for now it is opened by just a little
(see Figure 1.5). It can be divided into two separate transformation blocks. Transformation 1
represents the actual optimization of the thermo-mechanical model parameters. Transformation
2 represents the optimization of the recipe in which the thermo-mechanical parameters obtain
the best possible orthogonal property to each other. Subsequently, the optimized recipe is used
in transformation 1 (the blue arrow) to improve the optimization of the thermo-mechanical
model parameters.
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Figure 1.5: The simplified ”black box” is opened a little. Two transformations take place.
Transformation 1 ensures for the calibrated model parameters. Transformation 2 ensures an
optimal recipe that is used by transformation 1 to accomplish excellent calibrated parameters.
The blue block in transformation 2 is of most interest in this thesis.

In transformation 1, the input passes a filter (red rectangle). This filter checks whether the un-
calibrated parameters lie within a predefined range. This could be necessary for the optimization
algorithm to ensure convergence. Next, the un-calibrated parameters enter the gradient-based
optimization step and new parameters are calculated. For now, this optimization step is out
of scope, since it is successfully used in previous analysis. The new parameters are checked
for feasibility by the filter and are, subsequently, fed into the feedforward model simulation –
together with the optimized recipe – and an exposure is simulated. When the simulation is
done, the result is compared with the machine overlay measurement with the same optimized
recipe. Subsequently, the decide block decides to take action yes or no. This will depend on the
objective function. When the objective function is not satisfied, intervention takes place and
a new optimization step is performed. When the optimization is completed a decoding takes
place. This block converts the result from the feedforward simulation into thermo-mechanical
parameters, which are calibrated.

The input in transformation 2 passes an encoding block. The encoding block converts the un-
calibrated parameters into parameterized parameters which are fed into the feedforward model
simulation block. A feasible starting recipe is generated as well and goes into the undefined op-
timization algorithm. This optimization algorithm is supposed to generate a new recipe which
is more convenient with the objective function. It is unknown how this optimization algorithm
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is built. The new recipe is checked for feasibility by the filter. Next, a simulation is performed
and the overlay result is measured and converted into a measurable orthogonality dependency.
Subsequently, the decide block determines to take action yes or no. Intervention takes place
when the objective function is not satisfied and the optimization algorithm continues. When
the optimization is completed, the decoding function provides the optimized recipe. Thereafter,
this recipe is fed into transformation 1 and is used in the machine overlay measurement. This
machine overlay measurement will eventually end up in the compare block of transformation 1.

Transformation 2 is still an unknown process, especially the undefined optimization algorithm
(blue block). Therefore, the main research question in this thesis is:

How to make the appearance in measurements of the physical parameters subject to calibra-
tion more orthogonal via optimization of the experiment that provides these measurements?

That is to say, numerical optimization of the overlay experiment via the recipe (for example,
routing and dose input).

In order to be able to answer the main research question, several sub questions must be
defined. By observing transformation block 2 in Figure 1.5 the following questions arise:

1. How to convert the information content of an measurement into a measurable criterion
for the rate of orthogonality or parameter distinguishability?

2. What type of optimization algorithm is capable of efficiently optimizing an experiment
which partly consists of non-continuous design parameters?

3. What is an adequate intervene process for the optimization algorithm?

Although transformation block 1 is known and currently used, still some questions arise:

4. Is the gradient-based optimization algorithm the most efficient and applicable method for
parameter calibration?

5. What is the measure of the parameter calibration which decides converges and do there
exist more suitable measures?
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1.2 Structure of the Thesis

The thesis will be contained in two parts. The first part consists of a literature study, supported
by several examples, which will be a useful ”toolbox” to understand the principles of experiment
design and everything that comes with it.

The second part consists of the application of experiment design to a simplified thermo-
mechanical feedforward model, which is the main matter of the new piece of information.

PART I - Literature and Analysis Tools

Chapter 2 In this chapter, the current available thermo-mechanical model of ASML used for
feedforward is described.

Chapter 3 In this chapter, several sensitivity methods are described for their efficiency and
application. Illustrations are made by using simple examples.

Chapter 4 In this chapter, state of the art experiment design techniques are described and
illustrated.

Chapter 5 In this chapter, linear and non-linear regression techniques are explained in order
to provide statistical information about model parameters.

Chapter 6 In this chapter, a preliminary calibration investigation on the thermo-mechanical
feedforward model of ASML is performed to obtain insight of the model behaviour. The current
problems are highlighted as well.

PART II - Application of Experiment Design

Chapter 7 In this chapter, a simplified thermo-mechanical model is made and explained in
detail.

Chapter 8 In this chapter, the simplified thermo-mechanical model is analysed for its char-
acteristics and behaviour.

Chapter 9 In this chapter, the standard available experiments are investigated for their
performance in the context of model parameter accuracy during estimation.

Chapter 10 In this chapter, the experiment design techniques are used to find an optimal
experiment by means of an optimization algorithm. Subsequent, the optimal experiments are
compared with the standard experiments.

Chapter 11 In this chapter, the conclusions and recommendations of this study are given.
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2
Thermo-Mechanical Model of ASML

As is described in Castelijns (2014), the purpose of the thermo-mechanical feedforward model
is to correct for the effects of substrate heating on overlay and focus. The model consists of
a core and a shell layer. The latter is used to simulate an exposure sequence and to feed the
core model with relevant parameters. The core model is a so-called 2.5D model. These type
of models can represent surfaces in the third dimension (z), but they are limited by one single
elevation only. This implies that folded surfaces cannot be represented by 2.5D models.

A schematic overview of the implementation of the thermo-mechanical feedforward model
is given in Figure 2.1.

Simulate exposure

Transient thermal
model

Deformation
matrix [nm/K]

Calibration parameters

Substrate heating
scale factor

X

X

Deformation per exposurex, y, z

Thermo-mechanical

model
Recipe user parameters

Core

Shell

Figure 2.1: Schematic overview of the thermo-mechanical feedforward model. It consists of a
core and a shell layer. The latter is used to simulate an exposure.

In essence the core model is a transient dynamic thermal model which the user input acts upon.
Thermal equations are solved numerically in order to acquire the temperature distribution
in the substrate in space and time. Subsequently, the substrate deformation is obtained by
multiplying the temperature distribution of the substrate by pre-calculated thermo-mechanical
relations. These relations are, in turn, calculated offline by using a finite element method
(FEM). They form a big data set, called deformation matrix or C-matrix Meulenbroeks (2014).
Since the time constants of the thermal problem are relatively large compared to the mechanical
time constants (eigenfrequencies) no dynamic coupling is modelled. Therefore, the deformation
calculation can be separated from the thermal calculation.

In Figure 2.1, a substrate heating scale factor is included. Currently, when performing an
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overlay simulation, this scale factor is used to linearly scale the substrate deformation result
in order to tune the model such that it (almost) overlaps a real overlay measurement. The
substrate heating scale factor is, in fact, a tuning parameter to improve the accuracy of the
model. However, this scaling factor is unnecessary when a successful experiment design is
obtained. The designed experiment ensures an orthogonal (or close to orthogonal) relation
between the model parameters in the overlay measurement, which in turn, can be used to
obtain model parameters with high accuracy.

2.1 Exposure Sequence

As was mentioned previously the thermo-mechanical model consists of two parts, namely a core
and a shell layer. The exposure sequence is located in the shell layer.

A substrate exposure consists of a number of field exposures. In each field the scanning
motion is in y-direction when projecting the image onto the resist. The exposure beam projected
on the substrate is called slit. In between the fields the slit moves from one field to the other,
also known as step move. During the step move there is no exposure light present, but an extra
unspecified heat load may still act upon the substrate. Each field has a dimension of 26×33
mm2 (width×height). When a smaller image is exposed the illumination and projection beam
are partly blocked by blades, which effectively cuts off the image projected on the substrate.
The slit size will be reduced, but the full slit may still project infra-red light coming from the
exposure beam onto the substrate, since the blades do not block infra-red.

Field

Slit
Routing

y

x
Step move

Figure 2.2: Multiple fields on a substrate. A scanning motion of the exposure beam in y-
direction is represented. This routing is not fixed and can be chosen by the user.

The scan and step moves are subject to recipes. The recipe determines the exposure information
like routing, field lay-out, and physical dose that is applied to the substrate. In order to achieve
a successful lithography process, the substrate must receive a certain amount of energy. The
scanning speed is relevant to determine the received amount of energy. It can be calculated by,

vscan =
Φ

dose
(2.1)
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where Φ is the slit power per meter (W m−1) and dose the energy per area (J m−2) which is
defined by the user. In addition, Φ is calculated according:

Φ =
PEUV

b0
(2.2)

Here, PEUV is the power coming from the light source – at substrate level – that is used for
the lithography process (100% EUV tranmission assumed) and b0 is the default slit width, i.e.,
26 mm.

2.2 Physical Representation of Model

The substrate is clamped with an electrostatic clamp which, in turn, is clamped to the position-
ing module. A large number of burls make up the surface at the interface between the substrate
and the clamp. The same holds for the interface between the clamp and the positioning module.
The components between substrate and cooling water form a thermal barrier. In Figure 2.3 the
layout of the model is given.

The mechanical model consists of all components. This model is used to calculate the deforma-
tions at substrate level or, in other words, it is used to obtain the deformation C-matrix.

The thermal model consists of the substrate and the clamp, but the positioning module is
omitted. In this area the heat transfer is limited and the clamp is conditioned by cooling water
as well. The positioning module is not omitted in the mechanical model, since it has a strong
influence on the deformation profile. The clamp is divided in several (material) layers. The
burls are not implemented in the geometry, but the thermal resistance is taken into account via
the heat transfer coefficient from substrate to clamp. The clamp has cooling water channels
located in the middle (see Figure 2.3).

Substrate

Clamp

Positioning Module

Thermal Model LayoutMechanical Model Layout

Substrate

layer 2 

layer 1
Burls

Cooling water

Clamp

Figure 2.3: Layout of the model. The mechanical model layout contains the positioning
module. The thermal model layout contains the clamp and substrate only. This latter model
is used to calculate transient thermal behaviour.

2.3 Exposure Heat Load

The main heat load of the substrate and its clamp is due to EUV and infra-red (IR) light
coming from the exposure beam or light source. An overview is shown in Figure 2.4. An extra
unspecified heat load (UHL), not related to EUV or IR, is present as well. The UHL is not
modelled in detail, but a simplified fixed heat load is added which represents the extra heat
load. The following assumptions are made in the application of the heat loads:
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– EUV is fully absorbed by the substrate due to the photo-resist. All photon energy is
converted into heat.

– IR is partly reflected at the substrate surface.

– IR is party absorbed in the substrate.

– IR is partly transmitted through the substrate.

– UHL is fully absorbed by the substrate.

Eventually, all heat will be removed from the system by the cooling water in absence of additional
heat load.

Water cooling

IR UHLEUV

IR
reflect

IR
trans

IR
absorb

Figure 2.4: Representation of the applied heat load. Some infra-red (IR) light is reflected
or transmitted to the clamp. Extreme Ultra-Violet (EUV) light and an extra unspecified heat
load (UHL) are both absorbed by the substrate.

The total heat load Pload is a summation of the loads depicted in Figure 2.4. It can be described
by

Pload = P IR + PEUV + PUHL (2.3)

Note that PUHL continues to be present during the step moves. The EUV heat load is determined
according

PEUV = Φ · b0 · fdose (2.4)

where fdose is introduced, compared to equation (2.2). This is done to take into account the
uncertainty of the absolute power measured by the energy sensor. The IR heat load at the
substrate surface level is proportional to the EUV power and is determined according:

P IR = RIR/EUV · PEUV (2.5)

The factor RIR/EUV is the ratio of IR present in the EUV power at substrate level. Not all
IR power will end up in the substrate and may be reflected from the substrate or transmitted
trough the substrate into the clamp. The following can be written in order to determine this
quantity:

CIR,substrate = RIR/EUV (1− rsub) (1− tsub) (2.6)

CIR,clamp = RIR/EUV (1− rsub) tsub (2.7)

CIR,reflect = RIR/EUV · rsub (2.8)
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Where rsub is the reflective coefficient of IR on the substrate and tsub is the transmission
coefficient of IR through the substrate. Subsequently, the IR can be separated according:

P IR = RIR/EUV · PEUV →


P IR,substrate = CIR,substrate · PEUV

P IR,clamp = CIR,clamp · PEUV

P IR,reflect = CIR,reflect · PEUV

(2.9)

Currently, the heat load due to PUHL is incorporated in the P IR contribution. This is accom-
plished by increasing the IR/EUV ratio mentioned in equation (2.5). The heat load PUHL is
set to zero and as a consequence, the UHL is not applied during step moves. Alternatively, the
whole substrate heating can be scaled to account for the larger total heat load.

The total load at the substrate and clamp can be written as:

Psubstrate = (1 + CIR,substrate)PEUV (2.10)

Pclamp = CIR,clamp · PEUV (2.11)

Which eventually becomes,

Pload = Psubstrate + Pclamp

= PEUV (1 + CIR,substrate + CIR,clamp) (2.12)

It should be noted that these equations only hold for a full slit exposure. When a smaller image
is exposed the illumination and projection beam are partly blocked by blades. In order to cope
with the blading, the equations must be adjusted by a little. This is done in Castelijns (2014,
p. 29).

2.4 Governing Equations

In order to find the governing equations of basic thermal analysis in a solid, one can write the
conservation of energy equation for an infinitesimal volume in the solid V (Rixen, 2011a), see
Figure 2.5.

∂e

∂t
+
∂qi
∂xi
− σij

∂εij
∂t
−Q = 0 ∈ V (xi) (2.13)

Where e(εij , T ) is the internal energy density and is typically a function of the state of strain
εij and the temperature T . In addition, qi represents the heat flux and σij represents the
mechanical stresses in the directions of R3. The heat source of the solid (in V ) is captured in
Q. The first term in equation (2.13) represents the change of thermal energy which is created
by the divergence of the heat flux (the second term). The third term represents the power
produced by stresses related with the strain rates and the last term Q represents the internal
heat source.
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Figure 2.5: Conservation of energy in an infinitesimal volume. Not all heat fluxes qi, stresses
σij and strains εij are depicted.

The power produced by strain rates is assumed to be small, due to the slow thermal expansion
behaviour, and is therefore disregarded. Furthermore, it is assumed that the internal energy e
is not a function of the strains, due to small deformations. Therefore, the time derivative of the
internal energy can be written as:

∂e

∂t
= ρc(T )

∂T

∂t
(2.14)

Where ρ (kg m−3) is the mass density of the solid and c (J kg−1 K−1) the specific heat of the
material. It could be possible that the specific heat is temperature dependent, but it is often
assumed to be constant within a certain temperature range. Due to the small temperature
range in which the feedforward model is subjected to, the heat capacity is:

c(T ) = c = constant (2.15)

By combining equation (2.13) and (2.14) and neglecting the power produced by strain rates,
the basic thermal equation becomes:

ρc
∂T

∂t
+
∂qi
∂xi

= Q ∈ V (xi) (2.16)

Fourier’s law is used to describe the heat flux within the solid. It is given by:

qi = −k ∂T
∂xi

i = 1, 2, 3 (2.17)

The parameter k is known as the thermal conductivity and, in this case, its representation
is scalar (isotropic material is assumed). It can be seen that the heat flux is related to the
gradient of the temperature. When combining Fourier’s law with the basic thermal equation,
the thermal problem writes:

ρc
∂T

∂t
− k∂

2T

∂x2
i

= Q ∈ V (xi), i = 1, 2, 3 (2.18)
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2.5 Discretization

A finite difference scheme is used in order to perform spatial discretization of the model. Each
layer in the thermal model consists of a 2D square grid made of rectangular cells. One cell
represents the control volume of the corresponding thermal node. The default cell size is 6.5×6.5
mm2 and the height (z-direction) may vary per layer. The total span area of the model is
325×325 mm2, which translates to 50×50 cells with default cell size. Since the grid is square
and the substrate and clamp are round, not all cells will contribute to the solution. The cell
outside the system are isolated and their temperature will remain zero. The same holds for the
heat transfer and diffusion.

In the feedforward model, the substrate grid layer is refined in order to improve the accuracy
and to enhance the description of the model near the edges. The cell size at substrate level is
6.5×3.25 mm2, resulting in a grid of 50×100 cells. The refinement is done in y-direction since
it will improve the interpolation, which was mentioned in Section 2.6.1.

2.5.1 State Space

The continuous equation (2.18) can be rewritten in the following form:

∂T

∂t
=

k

ρc

∂2

∂x2
i

T +
Q

ρc
⇒ Ṫ =

1

ρc

(
k∇2T +Q

)
(2.19)

Where ∇ is the Laplace-operator which is a differential operator. In order to solve the thermo-
mechanical problem, equation (2.19) is discretized and subjected to the spatial grid. The
following well-known state space notation is obtained:

Ṫ = AT + E−1Q

y = Cx + Du (2.20)

The state vector T (K) contains the temperature in the substrate, the clamp and the cooling
water subjected to the spatial grid points. The system is exposed to an external load Q which
is explained in Section 2.3. Matrix E (J m−3 K−1) represents the thermal mass density, i.e.
ρc. The output vector y (m) contains the substrate deformations and is calculated by the
deformation matrix C (as was mentioned on page 11). The model does not contain direct
mechanical loads, which are represented by u. Therefore, this last part is omitted.

In general the A matrix describes the dynamics of the system. The dynamical part of
the total feedforward model is the thermal model only (see Figure 2.3). Hence, the A matrix
contains the thermal diffusion and heat transfer and no mechanical relations. The matrix is
built in the following manner:

A = E−1 (K + H) (2.21)

The thermal conductivity parameters for all layers and cooling channels are separated into
two matrices. Matrix K describes the diffusion and thermal convection in the channels in the
horizontal plane and H describes the heat transfer between the layers in the vertical plane.
In Castelijns (2014) a description is given how these thermal diffusions and convections are
calculated.

2.6 Numerical Implementation

In this section the implementation of the scan move, and the implementation of the time inte-
gration are described.
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2.6.1 Scan Move

The scan motion is based on a constant scan velocity in y-direction solely. This is calculated
according equation (2.1), which follows from the recipe. Due to the imaging optics the slit is
curved. This will influence the scan distance as is shown in Figure 2.6. The scan length is given
by y2 − y1 = (y4 − y3) + d.
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Figure 2.6: Scan move across a field. The y-coordinates of the field are [y3, y4]. The scan start
and end y-coordinates are [y1, y2]. d represents the bounding box slit thickness.

Per exposure (per field) a buffer is necessary in order to store the temperature states for a
certain amount of slit positions. The deformation per field will be determined on a grid, which
is defined by the coordinates (xdeform, ydeform). While the slit moves across the field, accord-
ing the thermal time step ∆t, the central y-coordinate yslit passes across several pre-defined
y-coordinates yn,deform, with n the number of pre-defined grid coordinates per field. The cen-
tral yslit coordinate may not necessarily coincide with the pre-defined ydeform coordinates (see
Figure 2.7). The y-grid is given by:

yn,deform = y3 +

(
y4 − y3

N − 1

)
n n = 0, 1, . . . , N − 1 (2.22)

where N is the number of rows, which is 10 for a full field in this case. For each thermal time
step it is verified whether one of the yn,deform is found between yslit(td) and yslit(td+ ∆t). When
this happens to be, the temperature state for the corresponding position yn,deform is calculated
and stored. This calculation is a linear interpolation between T (td) and T (td + ∆t). The
interpolation is given by:

Tn,deform = φT (td) + (1− φ)T (td + ∆t) (2.23)

with,

φ = 1 +

(
yn,deform − yslit(td)

yslit(td)− yslit(td + ∆t)

)
(2.24)

This interpolated temperature state Tn,deform is stored in the thermal buffer, representing the
position yn,deform for the field that is being exposed. Once the scan of the field is completed
and the thermal buffer is filled the deformations are calculated by multiplying the results with
the deformation C-matrix. The deformation grid of the exposed field is obtained.
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Pre-defined y-coordinates

Figure 2.7: Pre-defined y-coordinates in a field. The central y-position of the slit may not
necessarily coincide with the pre-defined y-coordinates.

2.6.2 Numerical Solution Scheme

In order to obtain the solution in time domain, the state-space representation (equation (2.20))
is integrated. The continuous time integration of the state-space system is described by

x(t) = eA(t−t0)x(t0) +

ˆ t

t0

eA(t−τ)Bu(τ)dτ (2.25)

where x represents the temperature state in the time domain. The discrete equivalent writes:

x(td + ∆t) = eA∆tx(td) +

ˆ td+∆t

td

eA(td+∆t−τ)Bu(τ)dτ (2.26)

The matrix exponential is calculated according the Taylor expansion.

eAt = I + At+
(At)2

2!
+

(At)3

3!
+ . . . (2.27)

The Euler forward integration (explicit) scheme is used, which leads to a first order Taylor
expansion of the matrix exponential given above.

Stability The thermal differential equations are solved explicitly, i.e., the next state of the
system is determined via calculations of the current state. It is important to investigate the
numerical stability, which is not the same as stability of the model itself. It is possible, even
when the model is stable by its nature, that numerical integration creates instability due to an
incautious selected time-step. Each numerical integration scheme has its own stability region.

A global stability analysis is performed on the feedforward model (Rook, 2014). In order to
obtain the stability criterion for the Partial Differential Equations (PDEs), the Von Neumann
stability analysis is performed. For an explicit Euler integration scheme the Fourier number
(Fo) for heat conduction in horizontal direction must satisfy the following criterion:

Foh =
k

ρc(T )

∆t

min(∆x2,∆y2)
≤ 1

4
(2.28)

A similar characteristic number can be defined for the vertical heat conduction between the
layers:

Fov =
h

ρc(T )

∆t

∆z
≤ 1

2
(2.29)
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Here, h is the average heat transfer coefficient (W m−2 K−1) and ∆z is the thickness of the
layer. The feedforward model uses a time-step of 5 (ms) as a default. This is sufficient to
guarantee stability for the Fourier numbers. What appears to be more critical for stability is
the convection term. This can be characterized by the so-called Courant number,

Co = u
∆t

∆x
≤ 1 (2.30)

where u represents the flow velocity in the cooling channels and ∆x represents the 1D spacing
of the channel grid. In other words, the numerical integration scheme remains stable when a
flow particle does not skip a discretized cell – due to the flow velocity – with length ∆x within
a single time-step evaluation. For the default time-step, the Courant number is within the
stability criterion.

Time Step Sensitivity The time-step has an important role for the numerical error that
appears during integration. The error that occurs at every individual time-step is called the
local truncation error ε. For the Euler integration scheme, the local truncation error ε is of
order O(∆t2). The global error E, equation (2.31), is more important. This global truncation
error is the result after integration over the time-span t = 0 . . . T . For the Euler forward scheme
E is of order O(∆t). It is necessary to investigate the accuracy of the model due to numerical
integration. In Castelijns (2014) it was stated that the overlay error budget is 2.5 nm. It should
be noted that the overlay budget is adjusted for the next generation machines to sub-nanometers.

E =

(
T

∆t

)
ε (2.31)

The problem is solved in a two-way fashion. First the differential equations of the thermal part
are solved by means of integration. Subsequently, the mechanical deformations are obtained by
multiplying the thermal results with the C-matrix. Therefore, it is difficult to see the direct
influence of the time-step in the overlay budget. In order to be able to give an impression of
the accuracy of the feedforward model due to the selected time-step, the following must be done.

According Schwab and Delhaes (2009) the approximate solution of the problem is given by,

y = ŷ + C1∆tp (2.32)

with ŷ the true solution – which is unknown – and C1∆tp the truncation error. For the Euler
integration scheme p = 1. It is noticeable that the equation contains two unknowns, the
true solution ŷ and the coefficient C1. These unknowns can be determined by integrating the
system twice. The first time integration is performed from t = 0 to t = T with time-step ∆t.
Subsequently, the second time integration is performed from t = 0 to t = T as well, but with half
the time-step ∆t/2. The solutions are referred to as y∆t and y∆t/2 respectively. The following
equations are obtained:

y∆t = ŷ + C1∆tp (2.33)

y∆t/2 = ŷ + C1

(
∆t

2

)p
(2.34)

By subtracting the two equations the unknown coefficient C1 is determined:

y∆t − y∆t/2 = C1

(
∆tp −

(
∆t

2

)p)
⇒ C1 =

y∆t − y∆t/2

∆tp −
(

∆t
2

)p (2.35)
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By filling in C1 into equation (2.34):

ŷ − y∆t/2 = −(y∆t − y∆t/2)

(
∆t
2

)p
∆tp −

(
∆t
2

)p
Next, the global error E can be determined. However, the global error only gives its bounds
(plus or minus) and the best result for the global truncation error is given by:

E = |ŷ − y∆t/2| =
1

2p − 1
|y∆t/2 − y∆t| (2.36)

It should be noted that for the Euler scheme a truncation error was assumed only. The condi-
tion error, due to finite computer precision, becomes important at a much smaller time-step.

This type of time-step analysis was not performed yet and may be necessary during development
of the parameter optimization algorithm. In Castelijns (2014) a simple time-step sensitivity was
performed. The integration was done with multiple time-steps, varying from ∆t = 0.1 ms to
∆t = 5 ms. Afterwards, the simulations were compared against the simulation with the smallest
time-step. For the default time-step of 5 ms it was stated that the absolute error was 0.3 nm.
In order to be able to perform simulations with sub-nanometer accuracy, the time-step might
need to be adjusted.

2.7 Model Assumptions

The following assumption where made within the model.

– DGL heat load model is out of scope. No detailed model is available yet. The impact of
DGL heat load is small compared to the EUV and IR heat load and therefore a fixed core
load can be taken into account.

– No wafer slip assumed, it occurs above a certain thermo-mechanical stress. In other words,
thermal stress must remain bounded for model to be valid.

– Continues EUV, light source is always on during the step move.

– Non-uniformity properties of the substrate are neglected, mechanical anisotropy as well.
Non-uniform reticle patterns are not assumed (no realistic for customer use).

– Burls geometry simplified.

– DGL incorporated in the PIR term. In this way the DGL is not present during step moves.
When simulation is done, the model is scaled linearly to account for the extra total heat
load.
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3
Sensitivity Analysis Methods

Sensitivity information of a system is useful for several reasons. It gives valuable insight into
the behaviour of the system and it is useful for optimization algorithms. But besides that,
sensitivity information is used to construct statistical information about the model parameters
as well. The latter will be explained in Chapter 4.

In this chapter, two sensitivity methods are described and investigated for their accuracy and
efficiency. These methods are the direct sensitivity method and the adjoint sensitivity method.
In Section 3.1, the sensitivity methods are subjected to a static problem. In Section 3.2 the
sensitivity methods are subjected to a transient problem. Finally, a conclusion is formed about
which methods is best suited for the thermo-mechanical feedforward model.

3.1 Static Problems in a General Case

Consider the general formulation for a mechanical static problem:

Ku = f (3.1)

Here, K is the stiffness matrix, u the displacement vector (state of the system), and f the
externally applied force vector. The model parameters of the system are stored in the vector
p ∈ RM where M is the number of model parameters. When the system is subjected to an
optimization problem, an objective function φ is required. Often, this objective function is a
specified measure of the state of the system. Therefore, the objective function is dependent on
the state u. However, the state vector is dependent on the model parameters p and thus the
objective function is represented by:

φ(u(p)) (3.2)

EXAMPLE 3.1

During this report, several examples will come along to illustrate some principles
and definitions that are necessary to gain knowledge of the principle of optimal ex-
periment design. In this example an academic model is constructed which represents
an arbitrary mechanical system. The system is represented by,

Ku = f (3.3)
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with:

K =

[
A 0
0 B

]
, f =

[
sin(ωt)

cos(ωt− γ)

]
(3.4)

The model parameter are represented by p = [A B]T. The parameter ω is a constant
and is therefore not assigned as a model parameter. Furthermore, t represents time
and γ is used as an experiment design variable which can influence the force vector
f and thus the state of the system. The state is determined according:

u1 =
1

A
sin(ωt)

u2 =
1

B
cos(ωt− γ) (3.5)

The objective function of interest is chosen to be:

φ(u(p)) =
uTu

2
(3.6)

For gradient-based optimization purposes, gradient information of the form,

dφ(u)

dpm
(3.7)

is necessary to find the minimum of the objective function in the design space Ω, the space
where the parameters p are defined in. Gradient-based optimization algorithms are often more
efficient in finding a minimum compared to direct-search optimization algorithms. Direct-
search optimization algorithms uses straight objective function evaluations – in a clever way –
in order to find a minimum of the objective function. A drawback of gradient based optimization
algorithms is the requirement of differentiable functions.

The direct and adjoint sensitivity methods are described in Section 3.1.1 and Section 3.1.2
respectively. It will be seen that the adjoint method becomes more efficient when the number
of model parameters is larger than the number of objective responses.

3.1.1 Direct Sensitivity Analysis

Direct sensitivity analysis (SA) for static problems of the form given in equation (3.1) can be
calculated by:

dφ(u(p))

dpm
=

∂φ

∂pm︸︷︷︸
=0

+
∂φ

∂uT

du

dpm
(3.8)

The first term is often zero, since the objective function is not directly related to the design
parameters p, but a measure made from the state u. In this section, this term will be neglected.
In order to obtain du

dpm
, 3.1 is differentiated. This will give:

dK

dpm
u + K

du

dpm
=

df

dpm
⇒ du

dpm
= K−1

(
df

dpm
− dK

dpm
u

)
(3.9)

Notice that for every design parameter in p, a system of equations must be solved. For large
problems with many design parameters this could be an inefficient method, even when the
stiffness matrix is factorized. Finally, the sensitivity information is obtained by substitution of
3.9 into 3.8.

dφ(u(p))

dpm
=
∂φ(u(p))

∂uT
K−1

(
df

dpm
− dK

dpm
u

)
(3.10)
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3.1.2 Adjoint Sensitivity Analysis

The adjoint sensitivity method is used in order to improve the efficiency of the calculations
by removing the state sensitivity du

dpm
from the objective sensitivity equation. The objective

function is rewritten in the form:

φ∗(u(p)) = φ(u(p)) + λT (Ku− f) ∀ λ 6= 0 (3.11)

Where λ is a so-called LaGrange multiplier and is free to choose, except the zero vector since
that would result in the direct method. Notice that the addition of the second term has no
influence on the objective function, since its product is zero. Now follows,

dφ∗(u(p))

dpm
=
∂φ(u(p))

∂uT

du

dpm
+ λT

(
dK

dpm
u + K

du

dpm
− df

dpm

)
(3.12)

where λ is chosen such that:(
∂φ(u(p))

∂uT
+ λTK

)
du

dpm
= 0 ⇒ λTK = −∂φ(u(p))

∂uT

⇒ λ = −K−1∂φ(u(p))

∂u
(3.13)

In contrast to the direct sensitivity method, the system must be solved once, which is indicated
by the latter equation. Solving the system is the most expensive computational step. By
substituting this result into 3.12, a reduced expression for the sensitivity is obtained:

dφ∗(u(p))

dpm
= λT

(
dK

dpm
u− df

dpm

)
(3.14)

The state sensitivity is not present anymore and it can be observed that only one equation,
which involves K−1, must be solved in order to obtain λ. When λ is known, the sensitivity for
all the design parameters can be determined without intensive computational effort.
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EXAMPLE 3.2

In this example, the direct and adjoint sensitivity method is performed onto the
academic model, given in Example 3.1, in order to give more insight about the
difference in both methods.

Direct Method For the direct sensitivity method, the first step is finding the
state derivative, which can be accomplished by using 3.9:

du

dp1
=

[
A−1 0

0 B−1

]([
0
0

]
−
[
1 0
0 0

] [
u1

u2

])
=

[
A−1 0

0 B−1

] [
−1
0

]
u1

=

[
−A−1

0

]
u1 (3.15)

And,

du

dp2
=

[
A−1 0

0 B−1

]([
0
0

]
−
[
0 0
0 1

] [
u1

u2

])
=

[
A−1 0

0 B−1

] [
0
−1

]
u2

=

[
0

−B−1

]
u2 (3.16)

Finally, the direct sensitivity for the objective φ(u(p)) can be obtained by:

dφ(u(p))

dp1
=
∂φ(u(p))

∂uT

du

dp1
= uT

[
−A−1

0

]
u1

dφ(u(p))

dp2
=
∂φ(u(p))

∂uT

du

dp2
= uT

[
0

−B−1

]
u2 (3.17)

It can be seen that for each model parameter sensitivity, a full system must be solved
as seen in 3.15 and 3.16. For this small example the computations are easy, but when
K becomes large, it is useful to factorize it according to the Cholesky decomposition,
or other techniques, and perform backward- and forward substitutions to obtain the
solution.

Adjoint Method For the adjoint method the objective function is extended by:

φ∗(u(p)) = φ(u(p)) + λT (Ku− f) ∀ λ 6= 0 (3.18)

As was seen in Section 3.1.2, the state sensitivity ∂u
∂pm

can be cancelled when the
LaGrange multiplier is chosen as:

λ = −K−1∂φ(u(p))

∂u
= −

[
A−1 0

0 B−1

]
u = −

[
A−1u1

B−1u2

]
(3.19)

By using 3.12, the adjoint sensitivity can be written into:

dφ∗(u(p))

dpm
= λT

(
dK

dpm
u− df

dpm

)
(3.20)
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Which will result in the same sensitivity as the direct method.

dφ∗(u(p))

dp1
= −

[
(A−1u1 B−1u2

]([1 0
0 0

] [
u1

u2

]
−
[
0
0

])
= u1

[
−A−1 0

]
u

dφ∗(u(p))

dp2
= −

[
(A−1u1 B−1u2

]([0 0
0 1

] [
u1

u2

]
−
[
0
0

])
= u2

[
0 −B−1

]
u (3.21)

The adjoint formulation allows more efficient computations of the sensitivities, but
this only holds when the number of responses in φ are less than the number of model
parameters M . When calculating the LaGrange multiplier, the system in 3.19 is
solved, which is the most expensive calculation in the adjoint method. However,
this calculation only needs to be done once. When λ is obtained, calculations of the
sensitivities with respect to the model parameter are efficient. This is in contrast
to the direct method, since a backward- and forward substitution is required for
every sensitivity with respect to the model parameters. When the system is large,
the difference in computational effort becomes more clear.

3.2 Transient Problems

In the following subsections, a description is given on how to obtain a sensitivity analysis for
transient problems, e.g., the thermo-mechanical feedforward model described in Chapter 2. The
transient problem of the feedforward model is described by the discrete equations:

Tk+1 = ATk + E−1Qk (3.22)

yk = CTk (3.23)

Here, Tk contains the temperature states at time instant k = 1, . . . , N−1, Qk is the (heat) input
vector, and yk are the substrate deformations. The matrix A contains the system dynamics and
C is known as the deformation matrix, which translates changing temperatures to mechanical
deformations. Matrix E−1 contains the thermal mass density. In the static problem, the
sensitivity was given by equation (3.7). For the transient case – together with the line of
thought of experiment design – the sensitivity of the objective function is given by,

dφ(yN (p))

dpm
(3.24)

where yN are the substrate deformations with N the last time instant. In Section 3.2.1 the
direct sensitivity method for the transient model is described and in Section 3.2.2 the adjoint
sensitivity method for the transient model is described.

3.2.1 Direct Sensitivity Analysis in Discrete Time

The direct sensitivity method for transient problems can be obtained by:

dφ(yN (p))

dpm
=
∂φ(yN (p))

∂yT
N

dyN
dpm

(3.25)
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Furthermore,

dyN
dpm

=
dC

dpm
TN + C

dTN

dpm
(3.26)

according to 3.23. In order to obtain the end value dTN
dpm

, the following equation must be solved:

dTk+1

dpm
=

dA

dpm
Tk + A

dTk

dpm
+
dE−1

dpm
Qk + E−1dQk

dpm
(3.27)

The system matrix sensitivities can be obtained by a simple finite difference scheme, but the
direct sensitivity for the thermal state must be solved by performing a time integration. It can
be observed that M transient simulations are required in order to obtain the sensitivities for all
model parameters, which is computationally expensive. This is similar to the direct sensitivity
approach for the static case.

3.2.2 Adjoint Sensitivity Analysis in Discrete Time

The adjoint sensitivity method is used in order to improve the efficiency of the calculations.
The discrete equations (3.22) and (3.23) are used. The objective function is rewritten in the
form:

φ∗(yN (p)) = φ(yN (p)) + µT (yN −CTN ) +
N−1∑
k=0

λT
k

(
Tk+1 −ATk −E−1Qk

)
∀ µ,λ 6= 0 (3.28)

In contrast to the static adjoint sensitivity, two types of LaGrange multipliers are present,
µ and λ, since the transient problem is described in state-space (two equations). As before,
the additional parts do not contribute to the objective function, since their products are zero.
Subsequently, the sensitivity problem writes:

dφ∗(yN (p))

dpm
=
∂φ(yN (p))

∂yT
N

dyN
dpm

+ µT

(
dyN
dpm

− dC

dpm
TN −C

dTN

dpm

)
+

N−1∑
k=0

λT
k

(
dTk+1

dpm
− dA

dpm
Tk −A

dTk

dpm
− dE−1

dpm
Qk −E−1dQk

dpm

)
(3.29)

The LaGrange multipliers are free to choose, except zero, and when using smart selections for
µ and λ, the sensitivity problem reduces. The first term can be cancelled when:(

∂φ(yN (p))

∂yT
N

+ µT

)
dyN
dpm

= 0 ⇒ µ = −∂φ(yN (p))

∂yN
(3.30)

Subsequently,(
−µTC + λT

N−1

) dTN

dpm
⇒ λN−1 = CTµ (3.31)

By using 3.30 and 3.31, the sensitivity problem can be rearranged to:

dφ∗(yN (p))

dpm
=

N−2∑
k=0

λT
k

(
dTk+1

dpm
− dA

dpm
Tk −A

dTk

dpm
− dE−1

dpm
Qk −E−1dQk

dpm

)
+

λT
N−1

(
− dA

dpm
TN−1 −A

dTN−1

dpm
− dE−1

dpm
QN−1 −E−1dQN−1

dpm

)
−

µT dC

dpm
TN (3.32)
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The problem can be reduced further by choosing λk:(
−λTkA + λT

k−1

) dTk

dpm
= 0 ⇒ λk−1 = ATλk (3.33)

And, (
−λT

N−1A + λTN−2

) dTN−1

dpm
⇒ λN−2 = ATλN−1 (3.34)

When all intermediate solutions are combined, the final equation for the sensitivity problem
writes:

dφ∗(yN (p))

dpm
= −µT dC

dpm
TN +

N−1∑
k=0

λT
k

(
− dA

dpm
Tk −

dE−1

dpm
Qk −E−1dQk

dpm

)

(3.35)

It can be seen that the state sensitivities are successfully removed from the objective sensitivity
equation. Furthermore, it can be noticed that the adjoint sensitivity problem for transient
systems – in contrast to the direct method – reduces the number of simulations (solving the
state-space problem) to only one. This is represented by the backward simulation to obtain the
LaGrange multipliers λk.

3.3 Conclusion

The direct- and adjoint sensitivity methods are explained for a static problem and for a tran-
sient problem. It is useful to determine which method is best suitable to obtain sensitivities for
the thermo-mechanical feedforward model.

For static problems the adjoint method is preferable when the number of responses in the
objective is less than the number of model parameters. The direct method needs to solve a
system for every model parameter. This can be done efficiently when factorizing the stiffness
matrix and performing backward- and forward substitutions. However, when the system is
large, the adjoint method is still more efficient.

For transient problems it was seen that the adjoint method requires a backward time inte-
gration in order to obtain the LaGrange multipliers. This is far more efficient than using the
direct method, which requires a simulation for every model parameter. In theory the adjoint
method seems a good alternative to calculate the sensitivities, but one practical problem arises.
The storage of the LaGrange multipliers can become a problem when the system matrices are
large and the transient simulation is long. In perspective, the existing thermo-mechanical feed-
forward model consists of approximatley 105 DOFs. The time span of one simulation is around
30 seconds with a time step of 0.001 s, resulting in N = 30 000 integration steps. One would
need a full three dimensional matrix of 105×105×30 ·103 to store all the LaGrange multipliers.
This requires ≈ 2.1 PetaByte of storage.

The thermo-mechanical feedforward model requires transient simulations to obtain overlay
deformations. The overlay sensitivity with respect to the model parameters is of interest. In
general, the overlay response is much larger than the number of model parameters, since the
overlay is directly linked to the mesh size of the model. In addition, the overlay response
is not determined by the last temperature state of the simulation (as was assumed in the
derivation of the adjoint sensitivity for transient problems), but intermediate temperature states
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are necessary. For the adjoint method, this requires extra sets of calculations of the LaGrange
multipliers. This makes it almost impossible to store all the LaGrange multipliers in the available
memory. In summary, it can be concluded that the direct sensitivity is the most suitable method
to obtain sensitivity information for the thermo-mechanical feedforward model.
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4
State of the Art Experiment Design

In this chapter, a summary of the most important aspects for experiment design are given.
Experiment design is useful in order to enhance the distinguishability or information content of
model parameters from the overlay experiment. Multiple literature exists which enlightens the
principles of experiment design. However, the information in Rojas et al. (2006) and Bernaerts
et al. (2004) is mainly set to application of experiment design and the main working principles of
experiment design are briefly described. In Garcia (1999), the basic objective function principles
for optimization are briefly explained, but no thorough understanding of the main principles of
experiment design are enlighten. The material in Atkinson and Hunter (2012) is very useful in
understanding the core principles of experiment design by investigating the parameter regression
field. However, the latter is limited by exploration of the type of objective functions used
for experiment design. Finally, in Franceschini and Macchietto (2007) and Franceschini and
Macchietto (2008) a complete description of the main principles of experiment design, together
with a deeper understanding and new competitive objective functions are given.

Throughout this chapter, the standard form of the model is given at first, followed by
the required sensitivities used for experiment design. Next, the variance-covariance between
parameters is explained and illustrated by means of an example. The measurement errors
are explained and in the last section, a thorough description of experiment design with the
associated objective functions is given.

4.1 Mathematical Model

A mathematical model is considered in the form of a very general system of implicit differential
algebraic equations (DAEs). The system is given by:{

f(ẋ(t),x(t),u(t),w,p, t) = 0

y(t) = h(x(t))
(4.1)

where f is assumed to have continuous first partial derivatives with respect to its arguments,
t is the time between 0 and τ . In most cases, h(x(t)) is a “selector” function, selecting those
state variables that are measured. Furthermore, the system implies:

– an M -dimensional set of parameters p to be estimated. The vector p̂ contains the best
currently available estimate.

– an nu-dimensional set of time-varying control inputs u(t).

– an nw-dimensional set of constant controls w.

– an ns-dimensional set of state variables of the system x(t).
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– an nresp-dimensional set of measured response variables y(t).

– an neq-dimensional set of DAEs f and an nresp-dimensional set of relations h between the
measured response variables
maty(t) and the state variables x(t).

4.2 Sensitivity of Responses to Parameters

The goal of experiment design is to construct experimental data such that fitting a model to this
experimental data establishes the model parameter estimates with the lowest possible variance.
Therefore, it is important to evaluate how much a variation of the model parameters influences
the output of the system. This information is given in a first-order sensitivity matrix Q and
will be used later.

Q =


∂y1
∂p1

. . . ∂y1
∂pM

...
. . .

...
∂ynresp
∂p1

. . .
∂ynresp
∂pM

 (4.2)

The entries in the matrix are obtained by partial differentiation of 4.1. In dynamic models,
the matrix Q is time-varying and changes at every instant of t. This time-varying sensitivity
matrix Qr is defined by:

Qr =


∂yr
∂p1

∣∣
t1

. . . ∂yr
∂pM

∣∣
t1

...
. . .

...
∂yr
∂p1

∣∣
tnsp

. . . ∂yr
∂pM

∣∣
tnsp

 (4.3)

Here, Qr represents the sensitivity matrix of the rth response variable and nsp represents the
sampling time instant.

4.3 Variance-Covariance of Parameters

The variance-covariance matrix indicates the correlation of parameters in terms of their as-
sociated responses. In probability and statistics theory, the covariance is a measure of how
much two random variables – or parameters – change together in relation. This information
is valuable when an experiment measurement is used for parameter estimation. The variance-
covariance matrix reveals the underlying connection for parameters in a certain model (e.g., the
feedforward model). The variance-covariance matrix V in the parameter space is known by:

V =
(
QTQ

)−1
(4.4)

Here, Q is the sensitivity matrix defined in 4.2. The correlation coefficient matrix C is a scaled
version of the covariance matrix V and is used in practice. The correlation coefficient matrix
C is defined by:

C =
Vi,j√

Vi,i
√
Vj,j

i, j = 1, . . . ,M (4.5)

Each entry in C ranges from -1 to 1 and indicates the correlation between the different param-
eters. When the absolute value is 1, it indicates a 100% correlation between two parameters
and, hence, they are not distinguishable from the experiment measurement. When the value of
the C matrix is zero, it indicates an orthogonal relation between the concerned parameters and,
consequently, the parameters are uniquely distinguishable from the experiment measurement.
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Note that the diagonal terms are always equal to 1. It can be concluded that it is desired to
obtain a square identity matrix of dimension RM , since it will indicate orthogonality between
all parameters and thus unique distinguishability from the experiment measurement.

According to Dekking et al. (2005, p. 140) a covariance of zero between two parameters
(off-diagonal entries in C) does not imply two parameters being independent, only uncorrelated.
This implies that one parameter could influence the remaining parameter. However, the opposite
is true. When two parameters are independent from each other, they have a covariance of zero.
It is not known how this will translate in a successful experiment design so far, but it is useful
to keep in mind. Furthermore, it should be noted that the correlation matrix C is always
symmetric.

EXAMPLE 4.1

In this example, the correlation matrix C will be clarified by means of some illus-
trations. To illustrate the correlation matrix, the model explained in Example 3.1
is used, but with a slight modification. The system is still represented by,

Ku = f

where the stiffness matrix remains:

K =

[
A 0
0 B

]
(4.6)

However, the displacement vector u is represented by:

u =

[
sin(ωt)

cos(ωt− γ)

]
(4.7)

This can be interpreted as a prespecified deformation profile for the mechanical
system. As a consequence, the force response f = [f1 f2]T is given by:

f1 = A sin(ωt)

f2 = B cos(ωt− γ) (4.8)

In this example, ω is a constant and fixed at 1 rad s−1. The variance-covariance ma-
trix V is necessary to obtain the correlation matrix C. The time-varying sensitivity
matrix Qr, given in 4.3, is necessary to construct V. The response f is measured
and consists of two individual responses f1 and f2, hence the index r goes up to two.
Since the response f is measured, the sensitivity is linear in the model parameters
p and given by:

Q1 =


∂f1
∂p1

∣∣
t1

∂f1
∂p2

∣∣
t1

...
...

∂f1
∂p1

∣∣
tend

∂f1
∂p2

∣∣
tend

 =

 sin(ωt1) 0
...

...
sin(ωtend) 0



Q2 =


∂f2
∂p1

∣∣
t1

∂f2
∂p2

∣∣
t1

...
...

∂f2
∂p1

∣∣
tend

∂f2
∂p2

∣∣
tend

 =

0 cos(ωt1 − γ)
...

...
0 cos(ωtend − γ)

 (4.9)
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The time t varies from t1 to tend. In order to construct the variance-covariance
matrix, a slight modification of 4.4 is necessary due to the time-varying sensitivity
matrices (this will be seen in Section 4.5.1).

V =

[
2∑
r=1

2∑
s=1

QT
r Qs

]−1

(4.10)

The model parameters A and B are both set to the value 1. Three different cases
will be investigated, which consist of three different values for the experiment design
parameter,i.e., γ = 0, γ = 1/4π and γ = 1/2π.

Case 1 The experiment design parameter γ is evaluated at a value of 0. This
implies a pure sine and cosine function in the displacement vector. An artificial
experiment is performed by calculating the force response when the system is con-
strained in u. The displacement vector varies during time and the obtained response
f is depicted in Figure 4.1.

Q1 =

 sin(ωt1) 0
...

...
sin(ωtend) 0

 , Q2 =

0 cos(ωt1)
...

...
0 cos(ωtend)

 (4.11)

Time (s)
0 2 4 6

F
or
ce

(N
)

-2

-1

0

1

2
Response functions for γ = 0

f1

f2

Figure 4.1: System response with γ = 0. A pure sine and cosine function can be
seen, which are orthogonal to each other.

A sine and cosine response is visible, as is expected. The correlation between the
model parameters A and B in f can be calculated according to 4.5 with the time-
varying sensitivity matrix in 4.11. For γ = 0, the correlation matrix C for the model
parameters is expressed by:

C =

[
1 0
0 1

]
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It can be seen that C represents an identity matrix. This indicates an orthogonal
relationship of A and B in the measured system response f and no correlation exists.
The model parameters are perfectly distinguishable from the measurement.

Case 2 In the following case, the experiment design parameter is set to γ = 1/4π.
The cosine function in the displacement vector is shifted in phase. This has an
influence in the time-varying sensitivity matrix.

Q1 =

 sin(ωt1) 0
...

...
sin(ωtend) 0

 , Q2 =

0 cos(ωt1 − 1
4π)

...
...

0 cos(ωtend − 1
4π)

 (4.12)

A new experiment is performed with a different experiment parameter γ. The
obtained response f is depicted in Figure 4.2.
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Response functions for γ = 1/4π
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f2

Figure 4.2: System response with γ = 1
4π. A phase shift in f2 can be observed.

As before, a sine and cosine function are illustrated, but the cosine function is
shifted in phase due to the experiment design parameter. The correlation between
the model parameters A and B in f is calculated and given by:

C =

[
1 −0.706

−0.706 1

]
The correlation matrix C is not an identity matrix, since the off-diagonal terms are
negative non-zero. This indicates a negative correlation between parameter A and
B, or rather, the parameters A and B are less distinguishable from the response f.
When performing least squares estimation, it might take more iterations to estimate
the model parameters A and B from the measured response. The found estimates
are most likely uncertain, since the combination of A and B is estimated as well.

Case 3 In this last case, the experiment design parameter is set to γ = 1/2π. With
this amount of phase shift, the cosine function can be rewritten in terms of a sine
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function without any phase. Therefore, the time-varying sensitivities are given by:

Q1 =

 sin(ωt1) 0
...

...
sin(ωtend) 0

 , Q2 =

0 sin(ωt1)
...

...
0 sin(ωtend)

 (4.13)

A new experiment is performed with a different experiment parameter γ. The
obtained response f is depicted in Figure 4.3.
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f1

f2

Figure 4.3: System response with γ = 1
2π. The phase shift in f2 is such that both

responses are overlapping.

From the figure, it can be seen that both responses overlap each other and cannot
be distinguished any more. This can be seen by the time-varying sensitivities as
well. Both Q1 and Q2 contain the same information. The correlation matrix is
given below.

C =

[
1 −1
−1 1

]
It can be seen that C is degenerated and has rank 1. This implies that the model pa-
rameters are no longer distinguishable, since the parameter space has been reduced
to 1 dimension. This concludes that the model parameters can not be individually
estimated, only their combination. This is the worst-case scenario for experiment
design and is far from optimal.

4.4 Response and Measurement Errors

The measured response of the ith experiment can be expressed as:

ŷi(t) = yi(t) + ηi(t) i = 1, . . . , nexp (4.14)
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with ŷi as the true response of all response variables and ηi(t) the experimental measurement
error in the ith experiment. This stochastic component is assumed to be multivariate normally
distributed with,

E[ηi] = 0 and E[ηi,ηj ] =

{
Σy i = j

0 i 6= j
(4.15)

where Σy is the variance-covariance matrix of the experimental errors:

Σy =


σ2
y1 σ2

y1y2 . . . σ2
y1ynresp

σ2
y2y1 σ2

y2 . . .
...

...
...

. . .
...

σ2
ynrespy1

. . . . . . σ2
ynresp

 (4.16)

Equation (4.15) implies that different measurements are independent, but measurements of mul-
tiple responses (y1, y2, . . . , ynresp) taken under the same experimental conditions are subjected to
a certain variance. The off-diagonal terms of matrix Σy imply a correlation between the output
responses. It is assumed that noise is not related between the individual response variables
ŷi. Hence, the off-diagonal terms in 4.16 are zero. In Franceschini and Macchietto (2007), a
description is given on how to find the elements in 4.16.

4.5 Experiment Design

When designing an optimal experiment, the variables that will control the experiment are
determined. All the control variables which can be manipulated and optimized during the
design are collected in the so-called design vector ϕ.

ϕ = ϕ(u(t),y0, τ,w) (4.17)

Here, u(t) is the vector of time-varying input controls which will influence the experiment, y0

contains the initial conditions, w is the time-invariant input controls vector, and τ represents
the experiment duration. The design vector ϕ must be constrained to lie within the experiment
design space Φ. The space Φ is the space where the experiment can exist, or in other words, the
allowable range of all the design variables included in the vector ϕ. For example, illumination
of the substrate cannot be performed outside the surface area of the substrate and is therefore
excluded from the experiment design space.

4.5.1 Standard Metrics to Measure the Information Content of an Experi-
ment

Improving parameter precision in mathematical terms is equivalent to decreasing the size of
the confidence regions of the model parameters. In other words, reducing the values in the
parameter variance-covariance matrix. By using the Bayesian formulation of the high posterior
density region, the following expression for the marginal posterior covariance can be obtained:

V(p̂,ϕ) =

[nresp∑
r

nresp∑
s

σ̃rsQ
T
r Qs + Σp(p̂)−1

]−1

(4.18)

where nresp is the number of responses. The parameter variance-covariance matrix VM×M is
symmetric and depends on:

� The dynamic sensitivity coefficients of the rth response, Qr in equation (4.3).
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� The variance-covariance matrix of the experimental measurements Σy (σ̃rs is the (r,s)
element of the inverse of Σy, see equation (4.16)).

� An initial approximation of the variance-covariance matrix (Σp) of the model parameters,
which contains preliminary information on the parameter uncertainty (same structure as
equation (4.16)). This initial approximation can often be neglected, according to Box and
Lucas (1959).

In Franceschini and Macchietto (2007) an adapted version of equation (4.18) is given, which is
capable of defining an information matrix M which includes multiple experiments. The infor-
mation matrix can be rewritten into the variance-covariance matrix by V(p̂,ϕ) = [M(p̂,ϕ)]−1

and is given by:

M(p̂,ϕ) =

nexp∑
i=1

nresp∑
r

nresp∑
s

σ̃rs,iQ
T
r,iQs,i + M0 (4.19)

Here, M0 is optional and represents the initial approximation of the parameter uncertainty
(similar to equation (4.18)), and nexp is the number of experiments. As can be seen, the time-
varying sensitivity matrix might change when different experiments with different experimental
conditions are performed.

D-optimality

E-optimality

A-optimality Ellipse of α%
confidence

p


p


Figure 4.4: Geometrical interpretation of the standard criteria for the experiment design. The
grey area represents the confidence region of the parameters (typically, 90% or 95%).

The experiment design algorithm can either minimise a suitable metric of V, or maximise the
equivalent metric of M by varying the elements of the design vector ϕ. Various metrics have
been suggested that all aim at the goal of mapping the information in the variance-covariance
matrix into a scalar number. The most common criteria are:

1. D-optimality, which minimises the determinant of the variance-covariance matrix, or max-
imises the determinant of the information matrix.

2. E-optimality, which minimises the largest eigenvalue of the variance-covariance matrix, or
maximises the smallest eigenvalue of the information matrix.

3. A-optimality, which minimises the trace of the variance-covariance matrix, or maximises
the trace of the information matrix.
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In Figure 4.4, a geometrical interpretation is illustrated for a two parameter case. The uncer-
tainty associated with the estimates of the parameters can be represented by joint parameter
confidence regions (typically, at α = 90 % or 95% confidence region). From Figure 4.4, the
D-optimal criterion aims at minimising the area of this joint confidence region, the E-optimal
criterion aims at reducing the size of its major axis, and the A-optimal criterion aims at reducing
the dimensions of the enclosing box around the joint confidence region.

The D-optimal criterion is the most used of the three standard criteria cited above, due to
some appealing properties:

� Easy geometrical interpretation, see Figure 4.4.

� Theoretical invariance with respect to any non-degenerated transformation applied on the
model parameters (such as scaling).

� Yielding of optimal experiments that correspond to replications of a small number of
different experimental conditions.

However, the D-optimal criterion is not free from drawbacks. It tends to give excessive impor-
tance to the most sensitive model parameter. Although the confidence region volume is reduced,
due to the decrease in the variance of this sensitive model parameter, the uncertainties of all
the other parameters may remain large.

By some authors (Goodwin, 1987; Munack and Posten, 1989; Vanrolleghem et al., 1995;
Zullo, 1991; Pauw, 2005), the A-optimal criterion is considered unreliable. This criterion does
not include the off-diagonal terms of the variance-covariance matrix in the objective function,
which is an appreciable loss of information. As a consequence, this criterion is not desired for
cases of high correlations between the model parameters p.

The drawbacks of the standard criteria have led to the search for alternatives. As a result,
the modified E-optimality was created. This criterion aims at minimizing the condition number
of the information matrix. The condition number is the ratio between the largest and smallest
eigenvalue. This enforces a joint confidence region of the parameters that is as spherical as
possible. The modified E-optimality is often used, but it is valid only for two-parameter models
according to Franceschini and Macchietto (2007). Also, it has a significant drawback: its mathe-
matical property (ratio of eigenvalues) implies that the criterion is discontinuous and, therefore,
can cause convergence problems when used with a gradient-based optimisation algorithm. An-
other limitation of the modified E-optimality criterion is that due to the pure shape criterion,
ellipsoids with large volumes may be obtained since eigenvalues could be increased. One could
think of combining several criteria, i.e., a combination of the modified E-optimality criterion and
the D-optimality criterion. However, this could be difficult to implement successfully, since the
D-optimality criterion tends to lose the spherical shape and the modified E-optimality criterion
does not guarantee an equal or less confidence area (determinant) during optimization. It could
be possible that one criterion reduces the confidence area, while the other criterion increases
the confidence area.

The described standard criteria seem to be difficult to implement successfully for the feedfor-
ward model. The feedforward model contains many parameters and is expected to be correlated.
The A-optimal criterion is, according to literature, not reliable and the modified E-optimal cri-
terion only holds for two parameters. Therefore, these criteria are not suitable. The D-optimal
and E-optimal criteria might be useful when a subset of parameters in the feedforward model
are used, although a reduction of the correlation between parameters is preferable, which is
neglected in these criteria.
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EXAMPLE 4.2

In this example, the confidence ellipsoids together with the optimality criteria are
illustrated. The construction of the confidence ellipsoids is explained in Chapter 5.
The slightly modified academic model, used in Example 4.1, is considered again.

The confidence ellipsoids, or confidence regions, graphically illustrate the region
where there is a 1 − α confidence that the true model parameters lie within that
region after parameter estimation (e.g., least squares). A small confidence region
implies low variation of the model parameters and thus implies a high accuracy
of the associated model parameters. Experiment design focusses on reducing the
confidence regions. Note, for two model parameters, the concept can be made
visible with ellipsoids. This cannot be graphically illustrated for more than 2 model
parameters, but the concept remains the same.

In order to construct the confidence regions, the information matrix must be
built according to equation (4.19). The variance σ2 is set to 1 N. For now, this
value is arbitrarily chosen and represents the variance of the measurement noise
while measuring the response f. It is assumed that there is no difference of the
variance between f1 or f2. The initial approximation M0 is not required, and thus
the information matrix for one experiment nexp = 1 is given by:

M =
1

σ2

2∑
r=1

2∑
s=1

QT
r Qs (4.20)

As in Example 4.1, three different experiments are performed by changing the ex-
periment design parameter to γ = 0, γ = 1/4π and γ ≈ 1/2π. For these cases, the
confidence regions are constructed. As before, the model parameters A and B are
equal to 1.

Case 1 The experiment design parameter is set to γ = 0. An experiment is
performed and the information matrix M is calculated:

M =

[
250 0
0 250

]
(4.21)

In Figure 4.5, the 95% confidence region of the parameters A and B is illustrated.
As was seen before, this situation creates an orthogonal relation of the geometric
functions with respect to the parameters A and B. The correlation matrix turned
out to be an identity matrix, hence the information matrix is a diagonal matrix with
the eigenvalues located at the diagonal. The confidence region of the parameters
is constructed by the variance-covariance matrix V, which is the inverse of M. As
can be seen in the figure, the confidence region is circular, since the eigenvalues of
the information matrix are equal.
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Figure 4.5: 95% confidence region for γ = 0. Confidence region is small which
translates to high accuracy of model parameters. The confidence shape is circular
due to zero correlation and equal eigenvalues. As was seen before, the responses are
orthogonal.

Next, the D-, E-, and A-optimality criteria are calculated to gain insight of their
working principle. The D-optimality criterion determines the surface area of the
confidence region, the E-optimality criterion determines the smallest eigenvalue of
the information matrix and the A-optimality criterion calculates the trace of the
information matrix. The criteria are listed in Table 4.1 under case 1.

Case 2 In this case, the experiment design parameter is set to γ = 1/4π. An
experiment is performed and the information matrix M is calculated:

M =

[
250 176.4

176.4 250

]
(4.22)

The confidence region is illustrated in Figure 4.6, which is an ellipsoidal shape
due to the correlation and thus the difference in magnitude of the eigenvalues.
This correlation was found in Example 4.1 as well. The set-up of the performed
experiment is less desirable for parameter estimation due to increasing correlation
(or reduction of distinguishability) and an increase of the uncertainty, which is
represented by the increasing confidence region.
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Figure 4.6: 95% confidence region for γ = 1/4π. Confidence region is slightly larger
than for γ = 0, which yields in less accuracy of model parameters.
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The D-, E-, and A-optimality criteria are calculated and are listed in Table 4.1
under case 2.

Case 3 In this case, the experiment design parameter is set to γ ≈ 1/2π, since
γ = 1/2π results in a singular information matrix and the confidence region cannot
be constructed. In this way, it can be seen what happens when the model parameters
are close to non-distinguishability. As before, an experiment is performed and the
information matrix M is calculated:

M =

[
249.5 248.3
248.3 249.5

]
(4.23)

The information matrix is almost singular. The confidence region is obtained and
illustrated in Figure 4.7. The parameter space in M is almost reduced to rank 1,
which is indicated by the small eigenvalue that is approaching zero (see Table 4.1
the E-optimality criterion for case 3). The bounds of the confidence region are
significantly larger than previous cases. This results in very poor accuracy of the
model parameters and, therefore, this set-up of the experiment is the worst-case
scenario for parameter estimation.
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Figure 4.7: 95% confidence region for γ ≈ 1/2π. The bounds of the confidence
region are significantly larger than for previous cases. Accuracy of the model pa-
rameters is very poor and this set-up of the experiment is the worst-case scenario.

The D-, E-, and A-optimality criteria are calculated to see how the criteria are
effected by the poor experiment design. The result is listed in the Table 4.1 under
case 3.

Table 4.1: Optimality criteria for case 1 with experiment design parameter γ = 0, case 2 with
γ = 1/4π and case 3 with γ ≈ 1/2π.

Case 1 Case 2 Case 3

criterion objective value objective value objective value

D 1.60 · 10−5 3.20 · 10−5 1.70 · 10−3

E 250 73.3 1.2

A 500 500 499
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Conclusion By illustrating the confidence regions graphically, it is evident that
non-correlated orthogonal response sensitivities result in the highest accuracy of the
model parameters during parameter estimation. When observing the corresponding
optimality criteria, listed in Table 4.1, it is noticeable that the A-optimality criterion
seems invariant for changes of the experiment. This can be explained by the fact
that the experiment design parameter γ, in this model, affects the correlation only.
In Section 4.5.1, it was explained that this criterion was not classified as reliable by
several authors due to the fact that the correlation is neglected. From this example,
it is clear that the trace of M never changes.

The D-optimality seems an appropriate criterion when looking at the tables.
The values correspond to the surface area of the confidence regions, which matches
with the illustrations. It should be noted that the D-optimality criterion may not
perform well when the number of model parameters is increased.

The E-optimality seems to be an appropriate criterion too. The decreasing
values in the tables are corresponding to the increasing confidence regions. However,
other eigenvalues are not included and might be affected in a negative sense.

4.5.2 Alternative Formulations Based on Standard Experiment Design Cri-
teria

It is difficult to find a criterion that is able to reduce the complex information in the variance-
covariance (or information) matrix to a scalar value. The standard based criteria have their
strong points, but they are not free from drawbacks. Therefore, several alternative formulations
have been proposed for objective functions φ which are based on (minor) modifications of the
standard criteria.

One of the proposed modifications is the following objective function:

φ = (1− β) log Λ̄− β log |M| (4.24)

Here, β is a weighting factor and Λ̄ and |M| are, respectively, the condition number and the
determinant of the information matrix. It can be noticed that this objective function is a
generalization of the D-, E-, and modified E-optimality criteria. By choosing β equal to 0,
0.5 and 1, the modified E-optimal, the E-optimal and the D-optimal criterion are obtained,
respectively. Unfortunately, no recommendations are given on how to choose the weighting
factor β. Also, these criteria only work well for two-parameter models. The feedforward model
contains more than two parameters and, therefore, this criterion is not suitable for experiment
design for the feedforward model.

A new alternative criterion to the traditional D-optimal criterion was proposed by Pritchard
and Bacon (1978) Franceschini and Macchietto (2007). This criterion measures the overall
correlation of parameters and uses this information directly as an objective function to be
minimized:

φ =

 ∑
i,j i 6=j

C2
ij

(M2 −M)

1/2

(4.25)

Where Cij is a correlation entry of the correlation matrix and M is the number of model
parameters. It has been shown that these kind of design criteria are limited to two-parameter
models. In addition, it was shown that design criteria that aim only at reducing parameter
correlation, are likely to produce a large confidence region for the parameters. This is the result
when no further information content of M is included in the design.
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4.5.3 Association Between Eigenvalues and Parameters

In the next subsection, new metrics are developed to measure the information content. In
order to understand the underlying principle of these new metrics, the association between
eigenvalues-eigenvectors with their corresponding model parameter will be clarified.

For one experiment, the information matrix can be written as:

M(p̂,ϕ) =

nresp∑
r=1

nresp∑
s=1

σ̃rsQ
T
r Qs (4.26)

This result is achieved by using equation (4.19). The information matrix can be diagonalized
into eigenvalues with their corresponding eigenvectors by:

M = XΛXT (4.27)

where Λ is a diagonal matrix containing the eigenvalues of the information matrix and X is
a matrix containing the normalized eigenvectors corresponding to its eigenvalue. From the
inverse of the information matrix, a hyper-ellipsoid can be obtained in the parameter space,
which represents the true joint confidence region of the parameters. The eigenvectors represent
the orientation of the ellipsoidal confidence region with respect to the parameter axes, whereas
the eigenvalues determine the relative lengths of the axes of the ellipsoid. See Figure 4.8 for a
geometrical interpretation.

When the eigenvectors are parallel to the parameter axes, the correlation between the pa-
rameters is zero. A rotation of π/4 rad of the principle axis of the ellipsoid with respect to
the parameter axis indicates a full correlation of the parameters. Furthermore, the eigenvalue
of the information matrix indicates the experiment information content of the corresponding
parameter. A large eigenvalue in M will result in a confidence region with a small uncertainty
for that particular parameter, which is desired.
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Figure 4.8: Interpretation of eigenvalues and eigenvectors. The eigenvectors represents the
orientation of the ellipsoidal confidence region with respect to the parameter axes. The eigen-
values determine the relative lengths of the axes of the ellipsoid. In the figure, the parameters
are fully correlated.

4.5.4 Newly Developed Metrics for Information Content Measurement

A new approach was developed by Franceschini and Macchietto (2008). Four novel criteria were
proposed, all of which work directly on the parameter correlation matrix in order to reduce
the interaction between (selected) parameters by means of suitable objective functions and/or
constraints. The new criteria can cope with highly correlated parameters and are capable of
reducing the confidence region. They are referred to as: PAC design, ACE design, E-AC design,
and AC-V design.

The PAC design formulation only aim to decrease parameter correlations, whereas the other
three (ACE, E-AC and AC-V designs) combine a correlation reduction with the traditional aim
of standard experiment design (by improvement of the information matrix). For example, the
E-AC design maximises the information content of the experiment in the objective function,
while bounding all the correlation coefficients in constraints. Basically, these criteria improve
the information matrix via traditional experiment design, but are constrained by a certain
allowable parameter correlation bound. Mathematically written as,

max
ϕ∈Φ

f(M(p̂,ϕ)), g = C2
ij

∣∣
i 6=j < εC

ij (4.28)

where g represents the constraint, Cij is the correlation coefficient between parameters i and j,
and εC

ij represents the bound on this correlation coefficient. The ACE, E-AC and AC-V criteria
aim at finding the best possible trade-off between correlation reduction and information content
enhancement.

PAC Design The aim of this design criterion is to eliminate, or when not possible, reduce
the correlation between the parameters without using additional experiment information. This
criterion involves the correlation coefficients only and two different formulations can be defined.
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CRITERION PAC 1:
The objective is to minimize the sum of the square of the upper triangular of the correlation
coefficients.

φ = min
ϕ∈Φ

M−1∑
i=1

M∑
j=2

C2
ij(p̂,ϕ) i 6= j and j > i (4.29)

CRITERION PAC 2:
The objective is to minimize the largest correlation coefficient (selected based on the values of
the correlation matrix C at the base point, the starting point of the values), subject to upper
bounds on the acceptable magnitude of each of the other correlation coefficients. A different
bound εC

kl can be set for each of the correlation coefficients involved in the constraint g:

φ = min
ϕ∈Φ

C2
ij(p̂,ϕ) (4.30)

with i, j such that:

Cij = max C
∣∣
basepoint

i, j ∈ {1,M} (4.31)

g = C2
kl(p̂,ϕ)

∣∣∣ k 6=l
k,l 6=i.j

< εC
kl k, l ∈ {1,M} (4.32)

The PAC criterion 2 can be more advantageous when the model contains a large number of
parameters, since a sum over all the entries may be a difficult function to minimize in terms of
obtaining a flat response or obtaining several minima.

ACE Design The PAC design aims at reducing the correlation between the model param-
eters. No experimental information is included which can result in large confidence regions.
Reduction in correlation surely enhances the estimation of the parameters, but the optimal
designed experiments are not expected to be necessarily informative.

The ACE design criterion combines the PAC design formulation and the enhancement of the
information content. The main aim of the ACE design remains reducing the correlation between
the model parameters, the PAC objective function with its constraint is used. As an addition,
an extra constraint is introduced to ensure at least a minimum level for the information content
of the experiments. Like the PAC design, two variants of the ACE design can be adopted:

1. Criterion 1: the information content is expressed by means of a single eigenvalue.

2. Criterion 2: the information content is expressed by means of two or more eigenvalues.

CRITERION ACE 1:
The first ACE criterion objective can be expressed as:

φ = min
ϕ∈Φ

C2
ij(p̂,ϕ) (4.33)

And containing:

Cij = max C
∣∣
basepoint

i, j ∈ {1,M} (4.34)

g1,2 =

C
2
kl(p̂,ϕ)

∣∣∣ k 6=l
k,l 6=i,j

< εC
kl k, l ∈ {1,M}

λi − λ0
i > ελi i ∈ {1,M}

(4.35)
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A bound is introduced for one eigenvalue of the information matrix M, where λi represents
the new desired eigenvalue and λ0

i its initial value. Depending on the desired accuracy, the
bound ελi can be chosen. Unfortunately, there are no guidelines how to determine ελi , since it
is model dependent and problem. As was mentioned previously, when the correlation between
parameters is eliminated, the eigenvalues represent the information content of the experiment
for their corresponding parameter. Hence, the information content for a specific parameter can
be enhanced by choosing ελi positive. The lowest eigenvalue in the information matrix is a
logical choice for λi. In this way, the design will enhance the information content of the most
uncertain parameter.

CRITERION ACE 2:
The second ACE criterion objective is similar and can be expressed as:

φ = min
ϕ∈Φ

C2
ij(p̂,ϕ)

But containing more constraints:

Cij = max C
∣∣
basepoint

i, j ∈ {1,M} (4.36)

g1 = C2
kl(p̂,ϕ)

∣∣∣ k 6=l
k,l 6=i,j

< εC
kl k, l ∈ {1,M} (4.37)

g2,...,nλc
= λi − λ0

i > ελi i ∈ {1,M} (4.38)

Here, nλc is the number of constraints for the chosen eigenvalues to bound. The objective of
ACE 2 is to minimize the correlations and simultaneously increase the information content of
the experiment for more than one parameter. It should be noted that the higher nc is, the
more difficult it is to find bounds that result in a feasible optimization problem. One way to
overcome this issue is to loosen ελi per constraint (descending order) by choosing this bound
slightly above zero or, in the end, zero itself. That is to say, the first constraint could be tight,
the second constraint a little bit less, etcetera.

E-AC Design The E-AC design criterion is a modification of the ACE design criterion. The
objective function aims to maximize one of the eigenvalues, and thus the information content
of the experiment. The eigenvalue to maximize is free to choose and, therefore, the objective
function is given by:

φ = max
ϕ∈Φ

λi(p̂,ϕ) i ∈ {1,M} (4.39)

A constraint is applied and deals with the reduction of correlation coefficients by keeping the
values below a certain bound εC

ij .

g = C2
ij(p̂,ϕ)

∣∣∣
i 6=j

< εC
ij

{
i = 1, . . . ,M − 1

j = 2, . . . ,M
(4.40)

The less strict the constraints are, the larger the eigenvalue will be. An upper bound for λi to
obtain is the value achieved while using the standard E-optimality criterion (optimization of
eigenvalues, correlation constraint is neglected). A lower bound for λi is the value found with
PAC design, which does not include information content. Therefore, one can state:

λi
∣∣
PAC

< λi < λi
∣∣
E-optimal

i ∈ {1,M} (4.41)

This is the range in which the solution is found.
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AC-V Design The AC-V design criterion uses the same structure as the ACE design criterion.
The largest correlation coefficients are partly involved in the objective function and are partly
bounded by constraints. In the ACE design, extra constraint were added in order to enhance
the information content of the experiment. In the AC-V design, extra constraints are introduced
as well, however, these new constraints are not applied at the eigenvalues but at the variance
of one or more parameters. The objective function is given by:

φ = min
ϕ∈Φ

C2
ij(p̂,ϕ) (4.42)

With i, j chosen such that:

Cij = max C
∣∣
basepoint

i, j ∈ {1,M} (4.43)

g1 = C2
kl(p̂,ϕ)

∣∣∣ k 6=l
k,l 6=i,j

< εC
kl k, l ∈ {1,M} (4.44)

g2,...,nVc
= Vii < εVi i ∈ {1,M} (4.45)

where Vii is the variance of the ith parameter, nVC is the number of constraints for the variance,
and εVi is a specified upper bound for the variance in entry Vii. By constructing the design
criterion in this way, no association between parameters and eigenvalues is required. According
to Franceschini and Macchietto (2008), this design is very suitable for cases where residual
parameter correlations are expected due to model structure. Residual parameter correlation is
expected for the feedforward model. Therefore, this criterion might be interesting to use for the
experiment design optimization.

To identify a suitable value for the bound εV
i , the relationship between the standard deviation

of a parameter and its t value can be adopted (Bard, 1974):

ti =
∆pi√
Vii

(4.46)

Where ∆pi is the difference in the parameter value and represents the desired accuracy, or
range, of the parameter. The standard error of the parameter is represented by

√
Vii. More

detail about the t-distribution will be given in Chapter 5. A value for εV
i can easily be calculated

after choosing the desired confidence level 1− α and the desired parameter accuracy ∆pi.

εV
i =

(
∆pi

t
(

1+α
2 , N −M

))2

(4.47)

Here α is the right tail probability level (typically α = 0.05 which results in 95% confidence
level) and N is the number of measurement data responses.

It should be noted that variations between objective functions and constraints for the above
mentioned criteria are possible to obtain new design criteria.

In Table 4.2 all the mentioned optimality criteria are listed enriched with a description. This
table allows for choosing a proper objective function for the right optimization problem .
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Table 4.2: Optimality criteria with description which will help to make a proper selection of
objective function for right problem.

criterion description

D
Standard criterion which targets at the volume of confidence region. Usually good

performance for 2 model parameters. This criterion is often used for first try.

E
Standard criterion which targets at the smallest eigenvalue of the information matrix. Can

be used for multiple model parameters, but affects only one parameter.

A
Standard criterion which targets at the trace of the information matrix. Considered

unreliable by most authors, but can be used when correlation is not present

mod. E

Modification of E-optimality. Tries to obtain a spherical joint confidence region by

optimizing the condition number of the information matrix. Often used, but only valid for

2 model parameters.

PAC 1
Criterion aims at reducing the largest correlation between a set of parameters. No further

constraints.

PAC 2
Criterion aims at reducing all correlation entries. May be advantageous when number of

model parameters is high. Local minima may appear, or flat responses.

ACE 1
Criterion aims at reducing the largest correlation between a set of parameters, but

constraining one eigenvalue in order to keep an required information level.

ACE 2
Criterion aims at reducing the largest correlation between a set of parameters, but

constraining multiple eigenvalue in order to keep an required information level.

E-AC
Criterion aims at improving selected eigenvalue, implying information content, while

constraining the correlations between model parameters.

AC-V

Criterion aims at reducing the largest correlation between a set of parameters, but instead

of constraining the eigenvalues the variance is constrained. Advantage: no association

between parameters and eigenvalues needs to be established.
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5
Nonlinear Regression Analysis

In this chapter a brief review of linear regression and an introduction to nonlinear regression is
given. These analyses are useful to investigate the rate of (non)linearity of the analytical model.
The obtained information gives insight for model parameter estimation.

At first, a brief review of linear regression is given to provide basic knowledge. Subsequently,
the linear case is extended to the non-linear case where new techniques, like profiling, are
explained.

5.1 Linear Regression

A thorough grounding in linear regression is fundamental to understanding non-linear regression.
Therefore, a brief review of linear regression is provided.

Linear regression provides estimates and other inferential results for the model parameters
p = [p1, p2, . . . , pM ]T in the model:

Yn = p1Qn1 + p2Qn2 + · · ·+ pMQnM + Zn

= (Qn1, . . . , QnM ) p + Zn (5.1)

In the above given model description, the random variable Yn represents the response for n =
1, 2, . . . , N with N = nresp and it consists of a deterministic part and a stochastic part. The
deterministic part, (Qn1, . . . , QnM ) p, depends upon the model parameters p and the so-called
regressor variables Qnm with m = 1, 2, . . . ,M with M the number of model parameters. The
stochastic part, which is represented by Zn, is a disturbance which perturbs the response for
case n. In matrix notation, the model can be represented by:

Y = Qp + Z (5.2)

Where Y is the response vector, Z the vector of random disturbances and Q the sensitivity
matrix defined in equation (4.2). The disturbance mean is assumed to be,

E [Z] = 0 (5.3)

and thus the expected mean of the model:

E [Y] = Qp (5.4)

Therefore, in Bates and Watts (1988) Qp is called the expectation function. Note that for linear
models derivates with any of the model parameters are independent of all the model parameters.
Furthermore, it is assumed that Z is normally distributed with

Var [Z] = σ2I (5.5)

where I is the identity matrix and σ2 the variance defined in Section 4.4.
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5.1.1 Least Squares Estimates

The least square estimation technique allows one to estimate model parameters with experi-
mental data. In order to do so, the residual sum of squares is minimized which is described by:

S(p) = ||y−Qp||2 (5.6)

This equation calculates the summation of the error of all the experimental data with respect
to the expectation plane. In Figure 5.1 experimental data of an arbitrary linear model is
represented (dots) and the estimated linear model to describe the experimental data (red line)
found by minimization of S(p).

y

x

ε

Figure 5.1: Least square regression for a linear model. Experimental data error ε is minimized
with respect to expectation plane.

In terms of linear algebra, one can say that y does not lie within the column space of Q.
The closest solution, or the minimum of the residual vector S(p), is found by an orthogonal
projection of y onto the column space of Q. In Figure 5.2 a geometrical interpretation for
M = 2 case is illustrated. The projection of y onto the column space of Q can be written as:

Qp̂ = proj(y) (5.7)

The residual vector is found when the projection is subtracted by y.

Qp̂− y = proj(y)− y (5.8)

From the figure, it can be seen that the residual vector is an orthogonal vector of the column
space of Q. However, this orthogonal vector is the same as the null space of QT.

Qp̂− y ∈ C(Q)⊥, C(Q)⊥ = N(QT) (5.9)

Subsequently,

Qp̂− y ∈ N(QT) (5.10)

Since the residual vector is a member of the null space of QT the inner product equals:

QT (Qp̂− y) = 0 (5.11)

And thus:

QTQp̂ = QTy (5.12)
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And finally the estimated model parameters p̂, which corresponds to the minimum of S(p), are
determined by:

p̂ =
(
QTQ

)−1
QTy (5.13)

y

proj(y)=

- yQp

Col(Q)

Qp

Figure 5.2: Geometrical interpretation of the least squares method. Minimized residual vector
S(p) is the orthogonal vector Qp̂− y onto the column space of Q.

The least square estimator has a number of desirable properties as shown in Bates and Watts
(1988):

1. The least squares estimator p̂ is normally distributed. This follows because the estimator
is a linear function of Y, which in turn is a linear function of Z. Since Z is assumed to
be normally distributed, p̂ is normally distributed.

2. E [p̂] = p: the least squares estimator is unbiased.

3. Var [p̂] = σ2
(
QTQ

)−1
: the covariance matrix of the least squares estimator depends on

the variance of the disturbances and on the derivative matrix Q. The variance of p̂ can
be coupled to the variance-covariance matrix found in Section 4.5.1.

Furthermore, the 1 − α ellipsoid joint confidence region, as seen in Section 4.5.1, can be con-
structed according

(p− p̂)T QTQ (p− p̂) ≤Ms2F (M,N −M ;α) (5.14)

where

s2 =
S(p̂)

N −M
(5.15)

is the variance estimate based on N −M degrees of freedom and F (M,N −M ;α) the upper
α quantile for Fisher’s F distribution with M and N −M degrees of freedom. The marginal
confidence region for a single model parameter p can be found according the t-value and is
described by:

p̂m ± se(p̂m)t(N −M,α/2) (5.16)
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Here, the t-value t(N −M,α/2) is the upper α/2 quantile for Student’s T distribution with
N −M degrees of freedom. The standard error se of the parameter estimator is given by:

se(pm) = s

√{
QTQ

}−1

mm
(5.17)

Or equivalent to,

se(pm) =
√

Vmm (5.18)

where Vmm is the mth diagonal entry of the variance-covariance matrix given in equation (4.18).
The t-test is used to establish the statistical significance of the model parameter estimates.

EXAMPLE 5.1

In this example, linear regression techniques are applied at the system used in
Example 4.1. This model is linear in its model parameters when the system is
constraint in the deformation u and the force vector f is measured as the response.

Ku = f, with K =

[
A 0
0 B

]
, u =

[
sin(ωt)

cos(ωt− γ)

]
The model parameters are set to A = 1 and B = 2, ω = 1 rad, t is the time vector
from t1 up to tend and for now the experiment design parameter γ = 0. A nominal
simulation is performed and subsequent, noise is added to represent an experiment
with measurement noise. Both responses are illustrated in Figure 5.3.
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Figure 5.3: Nominal simulation of the system on the left. On the right, response
of the system with noise, which acts as a measured experiment.

The measured response of the experiment is constructed according,

fη = f + η (5.19)

where η represents normally distributed noise with mean zero and:

var[η] = σ2I (5.20)
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The variance is assumed to be σ2 = 0.01 N2. Since the model has two responses in
time, the response f is a matrix. In order to use the information of both responses
during least square, the responses must be summed:

y =
2∑
j=1

fη,j (5.21)

The measured responses used for linear least square estimation is illustrated in Fig-
ure 5.4. From y the model parameter p could be estimated. Since the model is linear
in the model parameters, the least square estimator is described by equation (5.13).
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ce
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)
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-2

-1

0

1
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3
Responses f1 and f2 combined

y

Figure 5.4: Individual responses f1 and f2 are summed to use the information of
both during least square.

Note that only one response is present, the time-varying sensitivity matrix is reduced
to r = 1 and is given by:

Q =


∂y
∂p1

∣∣
t1

∂y
∂p2

∣∣
t1

...
...

∂y
∂p1

∣∣
tend

∂y
∂p2

∣∣
tend

 =

 sin(ωt1) cos(ωt1)
...

...
sin(ωtend) cos(ωtend)

 (5.22)

The least square estimates are obtained using Q and y. The result is listed in the
table below.

Table 5.1: Least square estimates for design parameter γ = 0.

p true value p̂ value error (%)

A 1 1.0019 0.19

B 2 1.9960 0.20

From Table 5.1 it can be seen that the true values are not found, but no further
statistical information of the estimates is available as well. Normally, one would
perform multiple experiments and construct statistical data. This is not necessary
and statistical information about the model parameters can be obtained using the
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regression techniques described in Section 5.1.1. The Student t-test can be used
to determine the marginal confidence bounds of the estimates p̂. The variance
is known, thus the variance estimate s can be substituted by σ. Therefore, the
standard error se is given by:

se =
√

(2σ2)

√{
QTQ

}−1
= 0.14

√[
250 0
0 250

]−1

(5.23)

The variance σ2 is multiplied by a factor 2 due to the summation in y. Using
equation (5.16) the 95% marginal confidence bounds for the estimators are:

Â = 1.0019± 0.0089 · 1.9647 = 1.0019± 0.0175

B̂ = 1.9960± 0.0089 · 1.9647 = 1.9960± 0.0175 (5.24)

Since the parameters are uncorrelated, the Student t-test is reliable. However, the
parameters A and B are multivariate distributed and the joint confidence region
represents the true confidence bounce. These bounds can be calculated according
equation (5.14) and are given by:

Â = 1.0019± 0.022

B̂ = 1.9960± 0.022 (5.25)

The confidence bounds are slightly higher, as is expected. It can be stated that the
true parameters p lie within these bounds with a confidence of 95%.

Multiple experiments can be performed with the associated least square estimation.
This allows one to graphically verify the estimates and their confidence. Each
experiment is ”measured” with a different set of noise. The 95% confidence region
of the true parameters is constructed for one hundred realization, which implies
that once per 20 estimates an estimate will fall outside the ellipsoid. The result can
be seen Figure 5.5.
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Figure 5.5: One hundred least square estimates for γ = 0. The dotted lines
represents the marginal confidence bounds.
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Some of the estimates fall outside of the confidence region, but this is expected
due to the chosen level of confidence. When increasing the confidence level, the
ellipsoid will become larger and more estimates will fall within. The dotted lines
represents the marginal confidence interval of the parameters. When the system is
uncorrelated, these marginal bounds can be used to check whether the parameters
fall within the confidence region.

Next, the experiment design parameter is set to γ = 1/4π. A correlation of A and B
is introduced and it is expected that this correlation will influence the accuracy of
the estimates. As before, a nominal simulation is performed. Subsequent, multiple
noise responses are made and added to the nominal simulation. This represents
multiple experiments, which are subjected to least squares estimation.
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Figure 5.6: Nominal simulation of the system on the left. On the right, response
of the system with noise, which acts as a measured experiment.

The time-varying sensitivity matrix is not the same as before, since the experiment
design parameter has changed. The new sensitivity matrix – used for least square
estimation – is described by:

Q =

 sin(ωt1) cos(ωt1 − 1/4π)
...

...
sin(ωtend) cos(ωtend − 1/4π)

 (5.26)

The result of the obtained estimates p̂, together with the confidence region of the
true parameters p, is illustrated in Figure 5.7. It can be seen that most of the
estimates lie within the confidence region, as was seen in the previous case. Due
to the correlation, the confidence bounds has increased and accuracy of the model
parameters are reduced. The value of the bounds are:

Â = 1.0± 0.0249

B̂ = 2.0± 0.0249 (5.27)

Also, due to correlation the t-values cannot be used to check whether the estimates
p̂ lie within the confidence region. The lower-left and upper-right corner of the
square that is made by the marginal confidence bounds, represents regions wherein
the estimates pass the t-test. However, when looking at the true joint confidence
ellipsoid, these regions cannot be identified as valid.
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Figure 5.7: One hundred least square estimates for γ = 1/4π. The dotted lines
represents the marginal confidence bounds.

5.1.2 Lack of Fit

The Lack of Fit (LOF) test is used to check whether or not the model response explains the
observed data in a satisfactory way. The LOF can be determined using the Pearson’s chi-square
test and is calculated according:

χ2 =
S(p̂)

σ2
(5.28)

The Pearson’s chi-square test is a statistical test to evaluate if the difference between observed
categorical data can be explained by chance. The χ2 value is compared with a reference value
calculated from the chi-square distribution. When the χ2 value is higher than the reference
value, there is a significant lack of fit at level α. Otherwise, when the χ2 value is lower than the
reference value, the difference between the observed data can be assigned due to chance.

It should be noted that the chi-square may lead to erroneous results when the sample size
is small. Type II errors may occur, which is the failure of rejecting a false hypothesis. When
the sample sizes are small, the Fisher’s exact test must be used instead.
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EXAMPLE 5.2

In this example two responses of the model described in Example 5.1 are subjected
to the Pearson’s chi-square test.

At first, a nominal experiment is performed and extended with normally dis-
tributed mean zero noise in order to represent an experimental measurement. This
measurement is constructed as is described in equation (5.21). Subsequent, the
model parameters are estimated by means of the least squares method. The found
estimates are:

p̂ =

[
1.01
1.97

]
(5.29)

A simulation with p̂ as the model parameters is performed and the response f(p̂) is
obtained. In order to compare the measurement and the simulated response, f(p̂)
is summed in the same manner. In Figure 5.8 the measurement response and the
simulated response f(p̂) are illustrated.
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Figure 5.8: Measurement and simulated response f(p̂) are illustrated. Simulated
responses overlaps measurement in satisfactory way. 492.7235

From the figure, it seems that the simulated response overlaps the measurement in
a satisfactory way. Using the Pearson’s chi-square test this can be verified. The
LOF value is calculated according equation (5.28) and its value is:

χ2 = 492.7 (5.30)

The reference χ2
ref value for a 1− α confident can be found in associated chi-square

distribution tables. The χ2
ref value for a system of N −M degrees of freedom, with

N the number of responses (time samples), and a confidence of 95% is:

χ2
ref = 551.0 (5.31)

It can be seen that χ2 < χ2
ref, which implies that the differences in responses can

totally be assigned by the measured noise.
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Next, a simulation is performed with found estimates which are significantly devi-
ated from the nominal parameters. The estimates are given by:

p̂ =

[
1.1
1.85

]
(5.32)

The simulated response f(p̂) is obtained and, as before, the measured and simulated
response are illustrated in Figure 5.9.
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Figure 5.9: One hundred least square estimates for γ = 1/4π. 590.6923

It can be seen that the simulated response shows similar behaviour as the measure-
ment, but it does not overlap as satisfactory as before. The corresponding χ2 value
is:

χ2 = 796.1 (5.33)

This value is larger than the reference χ2
ref value, which implies that the simulated

response falls in the right probability tail of the chi-square distribution. There is
only 5% chance, or less, that the difference between the measured and simulated
response can be allocated to noise. Hence, the found estimates are not reliable and
the least square estimation has failed.

5.2 Nonlinear Regression

Linear regression is a powerful method to analyse data described by models which are linear
in the model parameters. Unfortunately, most models do not behave linear in their parameters
and thus linear regression techniques must be extended.

A nonlinear regression model can be written in the form,

Yn = f(Qn,p) + Zn (5.34)
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where f is the expectation function. The nonlinear model is of exactly the same form as
equation (5.1), except that the responses of the expectation function are nonlinear related in
the model parameters. That is, according Bates and Watts (1988), at least one of the derivatives
of the expectation function with respect to the model parameters depends on at least one of
the model parameters. Since the expected responses of f depends on the model parameters p,
the following can be written:

ζn(p) = f(Qn,p) n = 1, 2, . . . , N (5.35)

The nonlinear regression model becomes:

Y = ζ(p) + Z (5.36)

With the same assumption of Z as in the linear case. That is, the disturbance is normally
distributed with:

E[Z] = 0 (5.37)

Var[Z] = σ2I (5.38)

5.2.1 Least Squares Estimates

For the nonlinear model, estimation of the model parameters is quite different. There exists no
solution of the form seen in equation (5.13). The nresp-vectors ζ(p) span a M -dimensional sur-
face called the expectation surface in the response space. The least squares estimates correspond
to the point on the expectation surface,

ζ̂ = ζ(p̂) (5.39)

which is closest to response data y. Therefore, p̂ is found by minimizing the sum of residuals
defined by,

S(p) = ||y− ζ(p)||2 (5.40)

In contrast to the linear case, there is no analytical solution for the minimization of equa-
tion (5.40). However, an approach suggested by Gauss is to use a linear approximation of the
expectation surface and iteratively improve the least squares estimate until there is no chance.
This method is modification of the Newton method and is known as the Gauss-Newton method.
It is used in least squares problems only, unlike the Newton method.

Different types of algorithms do exists and might be more advantageous depending on the
type of problem. The Levenberg-Marquanrt algorithm is a popular algorithm when stability
issues arise. In short, this algorithm begins with the Steepest-Descent search method (due to
stability) and gradually converts to the Gauss-Newton method.

In Figure 5.10 a geometrical interpretation of the Gauss-Newton method is illustrated. The
heavy solid line is a slice of the expectation surface ζ, which is non-linear. The linear approx-
imation of the expectation surface W is indicated by the straight line which is the tangent
of the expectation surface at initial point p̂0. The linearised expectation surface is calculated
according:

W =
∂f(Q,p)

∂p
(5.41)

Next, the response y is projected onto the tangent plane and, hence, new approximated param-
eters p̂1 are obtained. These parameters are used to create a new approximation at ζ(p̂1) and
the process is repeated until convergences is obtained.
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Figure 5.10: A geometrical interpretation of the Gauss-Newton iteration increment calcula-
tion. The heavy solid line is a slice of the expectation surface ζ, which is non-linear. The linear
approximation of the expectation surface is indicated by the straight line which is the tangent
of the expectation surface at initial point p̂0. Next, the response y is projected onto the tangent
plane and, hence, new approximated parameters p̂1 are obtained. These parameters are used to
create a new approximation at ζ(p̂1) and the process is repeated until convergences is obtained.

Convergence The Gauss-Newton iterative method can be used to solve a non-linear least
squares problem. Several measures exist to determine the stability of the iterations or, they
tell when converges has reached. One measure could be the size of each parameter increment
relative tot the previous parameter value. Another convergence criterion used is the relative
change in the sum of squares and converges is achieved when this change is small. However, as
discussed in Bates and Watts (1981), compliance even with both relative change criteria does
not guarantee convergence.

The main criticism of these criteria is that they indicate lack of progress rather than conver-
gence. Bates and Watts (1988) suggest a new convergence criterion based on the geometry of
the non-linear least squares problem. From previous, it is known that a critical point is reached
when the residual vector is orthogonal to the expectation surface and thus the tangent plane
W. This orthogonality of the residual vector to the tangent plane can be used as a convergence
criterion. A tolerance levels needs to be established since perfect orthogonality may not be
reached due to numerical errors. One way to do this is to consider the statistical variability in
the least squares estimates, but unfortunately, this involves the unknown least squares vector
p̂, see Bates and Watts (1988). A so-called relative offset convergence criterion is eventually
made which is described by,

||QT
1 (y− ζ(pi))||/

√
M

||QT
2 (y− ζ(pi))||/

√
N −M

(5.42)

where Q1 and Q2 are the firstM andN−M columns of the QR-decomposition of W respectively.
Note, Q1 and Q2 must not be confused with the sensitivity matrix Q. The index i indicates
the current estimate of the model parameter p̂. Equation 5.42 measure the scaled length of the
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tangent plane component of the residual vector relative to the scaled orthogonal component of
the residual vector. Therefore, this criterion is related to angle of the residual vector that it
makes with the tangent plane. Small relative offset of convergence corresponds to an angle near
90°. According Bates and Watts (1988), to declare converges a relative offset equal or less than
0.001 is required. See Figure 5.11 for a geometrical interpretation.
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Figure 5.11: Geometrical interpretation of orthogonal convergence criterion. The dotted line
represents a slice of the expectation surface and z = y− ζ(pi) represents the residual vector at
estimate pi. QR-decomposition is used to determine the project of z onto the tangent plane W
and to determine the orthogonal part of z.

EXAMPLE 5.3

In this example a non-linear least square estimation is performed. The academic
model explained in Example 3.1 will be used. For the non-linear least squares, the
response must behave non-linear in the model parameters. This is the case for the
deformation vector u. The model is written as:

u = K−1f (5.43)

It can be seen that the response of u behaves non-linear in the model parameters
due to the inverse of K. The model represents a mechanical system with stiffness A
and B which is subjected to a known force function over time. Hence, deformations
u will arise. As before, ω and t are a constant and the time vector respectively and
γ is the experiment design parameter.

A nominal experiment is performed with p = [1 2]T (model parameters A and B
respectively) and the experiment design parameter γ = 0. The deformation response
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vector u is obtained and, like the linear least squares case, the deformation responses
are summed in order to obtain one response in time. This response is illustrated in
Figure 5.12.
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Figure 5.12: Nominal simulation for deformation response vector u.

In order to simulate an experiment measurement, noise is added according,

uη = u + η (5.44)

where η represents normally distributed noise with mean zero and:

var[η] = σ2 (5.45)

The variance is assumed to be σ2 = 0.01 m2. The nominal simulation with the
addition of noise is used as a measured experiment subjected to the non-linear least
square estimation, see Figure 5.13. The least square estimation is performed with
the Gauss-Newton iterative method, which minimizes the residual vector S(p).

S(p) = ||uη − u(p)||2 (5.46)

The orthogonality criterion of the residual vector is used to determine when con-
verges has been reached.
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Figure 5.13: Nominal simulation with the addition of noise in order to represent
an experimental measurement uη.

In Figure 5.14 it can be seen that convergence has been reached after four iterations.
When the algorithm stops, the residual vector is (approximately) orthogonal to the
expectation plane, indicating the least squares solution which is listed in Table 5.2.
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Figure 5.14: Least squares estimation for a non-linear model. Orthogonality cri-
terion reduces per iteration, indicating convergence.

From the table it can be seen that parameter B has a 10 times larger error. Since
the model is non-linear, confidence ellipsoids cannot be constructed. However, the
Pearson’s chi-square test can be used to check whether the response of the estimates
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represents the measured experimental response. The chi-square value is:

χ2 = 244.6 (5.47)

This value is far below the reference value given in Example 5.2. Therefore, the
found estimates can be marked as reliable.

Table 5.2: Least square estimates for design parameter γ = 0.

p true value p̂ value error (%)

A 1 0.9979 0.21

B 2 2.0600 2.90

When the same procedure is repeated, but with design parameter γ = 3/8π, it
is expected that due to correlation the estimates error is worse. When observing
Table 5.3, it can be seen that this is indeed the case.

Table 5.3: Least square estimates for design parameter γ = 3/8π.

p true value p̂ value error (%)

A 1 0.9824 1.79

B 2 2.0851 4.08

5.2.2 Profiling

Joint and marginal confidence regions as seen before are not directly applicable to non-linear
models. One could linearise the model around p̂ and obtain the tangent plane W. The joint
confidence region would be described by,

(p− p̂)T WTW (p− p̂) ≤Ms2F (M,N −M ;α) (5.48)

and the marginal confidence region by equation (5.16) with,

se(pm) = s
√{

WTW
}
mm

(5.49)

Statistical information is obtained, however, it is not known if this data is reliable due to
non-linearities. In order to investigate the non-linearity of the model profile techniques can be
applied.

5.2.2.1 t-profile

The t-profiling technique is useful to determine the marginal confidence interval for a non-
linear model parameter pm. It must be noticed that all the important information about the
parameters is embodied in the sum of squares function given in equation (5.40). The marginal
confidence can be represented by its sum of squares according:

St = S(p̂)

[
1 +

t2(N −M ;α/2)

N −M

]
(5.50)
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Here St represent the value of the sum of squares for the required marginal confidence interval.
When the system is linear in its model parameters, equation (5.50) can be written as equa-
tion (5.16), since the standard error remains constant and the mapping of the points on the
expectation surface back to the parameters space is easy.

In order to construct the non-linear marginal confidence interval, the surface of the sum
of squares must be profiled at first which is described in Ruckstuhl (2010); Asprey and Naka
(1998); Watts (2010). In the following steps, the calculations that are required to obtain the
desired information is given.

1. Begin with a least squares estimation of the model for all parameters. The estimates p̂
are found.

2. Select the profile parameter pm, which is the parameter that is investigated for its confi-
dence interval.

3. Specify increment ∆ for pm. This increment can be determined according,

δ(pm) =
pm − p̂m
se(p̂m)

(5.51)

which is equivalent to the t-value. The standard error is calculated from linearisation at
the point of interest.

4. Initialize pm = p̂m and p̃(pm) = p̂. Where p̃(pm) is the profile trace vector and contains
all parameters in p̂ except the profile parameter pm. Therefore, the profile trace vector is
dependent on the profile parameter.

5. Increment pm = pm + ∆.

6. Perform least squares estimation, e.g. Gauss-Newton, to converge and obtain p̃(pm) and
S̃(pm). It should be noted that during the least squares estimation pm is fixed and
constant, and the remaining parameters in p̃(pm) are free.

7. Store pm, p̃(pm) and S̃(pm), the profile sum of squares.

8. Repeat step 3 to 7 as necessary in order to make sure that the increments are reaching
the t-value that is required to calculate the desired −α confidence.

9. When finished, repeat the process for a different profile parameter pm until all parameters
are profiled.

Note, although several least squares problems must be solved, this is not computational intensive
due to good initial estimates.

The next step, in order to obtain the non-linear marginal confidence intervals, is to convert
the profile sum of squares in terms of likelihood regions or confidence regions. First for con-
venience, the profile parameter values pm needs to be studentized according equation (5.51).
Subsequently, convert the profile sum of squares S̃(pm) to t-values according,

τ(pm) = sign(pm − p̂m)

√
S̃(pm)− S(p̂m)

s
(5.52)

which is derived from equation (5.50). Here, τ(pm) is called the profile t function with S̃(pm) =
St. When the profile parameters and profile sum of squares are converted into t-values, the
non-linear marginal confidence can be plotted, see Figure 5.15. When the system is linear, the
t-profile is a straight line with slope 1. This reference line is illustrated as the dashed line. When
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the t-profile deviates from the reference line, non-linearity of the associated model parameter
is revealed. However, if the deviation is small and the t-profile is nearly linear, one can safely
assume that the situation can be approximated by the tangent plane W.

δ(p
m
)

τ(p
m
) 0

-2

2

-4

4

0 2 4-2-4

0
.9
9

0
.9
9

0
.8
0

0
.8
0

Figure 5.15: t-profile curve for one model parameter. The dashed line has slope 1 and
indicates full linearity. The t-profile line is curved, which reveals the non-linearity of model
parameter pm. The t-values τ(pm) can be used to determine the marginal confidence intervals
and, subsequently, the corresponding parameter value can be determined by δ(pm).

The marginal confidence region can be determined using the t-value τ(pm) on the vertical axis.
The parameter value associated to the confidence level can be found through the profile curve
onto the horizontal axis.

5.2.2.2 Profile Traces

Another useful plot is the profile trace obtained during t-profiling. For example, after evaluating
the t-profile likelihood for p1, p̃m can be plotted versus p1 (e.g., p̃2 versus p1, p̃3 versus p1, ...
etc.). This procedure can be continued for all profile parameters with the associated profile
trace parameters. Plots of the profile traces provide useful information on how the parameters
interact. For a linear model, the profile traces on a plot pm versus pn consists of straight lines.
The angle of intersection depends upon the correlation between the parameters. When the
parameters are uncorrelated the profile traces intersect at an angle of 90°. Perturbations of one
parameter does not influence the value of the other parameter. When full correlation exists,
the profile traces coincide and are not distinguishable.

When the model is non-linear, the profile traces will be curved. This curving provides
information on how the parameter estimates affect one another and provides information on the
shape of the confidence regions. If the non-linear confidence contours will be long and thin, the
profile traces will be close together. When the contours are nearly elliptical, the profile traces
will be straight (linear case). In Figure 5.16 the profile traces for p1 and p2 are illustrated. The
solid line is obtained by plotting the profile parameter p1 versus the profile trace parameter
p̃2 and the dashed line is obtained by plotting p2 versus p̃1. The curving profile traces reveals
the non-linearity between the parameter estimates. The intersection of the profile traces is not

- confidential -



Chapter 5. Nonlinear Regression Analysis Page 69

perpendicular, hence correlation between the parameters is present. For convenience, two levels
of (non-linear) confidence regions are plotted.

p


p


Figure 5.16: Profile trace plot for non-linear system. The curving lines reveal non-linearity
between parameter estimates. The angle of intersection indicates correlation between the pa-
rameters. Two level of non-linear confidence regions are plotted.

5.2.2.3 Profile Pair Sketches

For non-linear problems, confidence regions are hard to obtain since there is no analytical so-
lution. However, using the profile sum of squares and the profile traces, very accurate approxi-
mations to the 2-dimensional confidence regions can be created. This gives a visual indication
of the region and the non-linear dependence of parameter estimates upon each other. To de-
termine, for instance, a 95% confidence contour, the intersection of the trace of p̃2 on p1 needs
to be found. This intersection for p1 occurs at the point of desired confidence found from the
previous t-profiling (see Figure 5.15). The intersections will give two points on the contour. In
addition, at these points it is known that the tangent to the contour must be vertical, since they
represents the confidence bounds in p1 direction. This is represented in Figure 5.16. Similarly,
two more points can be determined from the trace of p̃1 on p2 and it is known that the tangent
to the contour of these points must be horizontal.

By using the available information of the t-profling, the points on the contour, the direction
of their tangents and the fact that the contour is bounded by the parameter values at these
points, very accurate interpolations of the confidence contour for non-linear models can be
created (such as Figure 5.16). In Bates and Watts (1988), these interpolations are called profile
pair sketches. The method of the interpolation is described in appendix C.
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EXAMPLE 5.4

In this example, the academic model is subjected to the profiling technique. The
non-linear form used in Example 3.1 is examined, since profiling techniques are
applicable to non-linear models only (where non-linearity occurs in the model pa-
rameters).

T-profiling of the parameters p is performed. The necessary steps are listed in
Section 5.2.2.1 and the first step is performing a least-squares estimation from an
experiment measurement. One would use the profiling techniques in order to ob-
tain more information about the least-squares estimates. A nominal simulation
with p = [1 2]T is performed with experiment design parameter γ = 0. Normally
distributed noise is added to represent a real experimental measurement with asso-
ciated measurement noise. The variance σ2 = 0.01 m, as was seen in the previous
example. A non-linear least square estimation is performed which resulted in:

p̂ =

[
1.0046
2.0351

]
(5.53)

Both parameters are subjected to the profiling and in order to determine the incre-
ment ∆, the standard error is required. The system is linearised around p̂ and the
tangent plane W is obtained, see equation (5.41). From this linearised expectation
plane, the standard error can be determined.

se(p1) = σ

√{
WTW

}−1

11
= 0.009

se(p2) = σ

√{
WTW

}−1

22
= 0.037 (5.54)

The increments are chosen between a t-value of [−3 3], this will make sure that a
confidence of 99% is included. When using equation (5.51) the profiling region per
parameter can be determined and, subsequent a suitable increment can be chosen.
The bounds are calculated and given by:

0.9775 ≤ p1 ≤ 1.0317

1.9241 ≤ p2 ≤ 2.1461 (5.55)

First, parameter p1 is subjected to profiling, which makes p2 the trace parameter
stored in the trace vector p̃(p1). Note, for convenience the vector notation is used
for the profile trace vector, but in this example the profile trace vector is actually a
scalar value. The profile parameter is fixed at p1 = p̂1 and a least squares estimation
is performed on the trace parameter p2. When the least squares algorithm has con-
verged, the profile trace vector p̃(p1) and the residual S̃(p1) vector are stored. Next,
the profile parameter p1 is incremented with ∆ and a new least square estimation
is performed. This process is repeated until the last increment.

The same procedure is executed for profile parameter p2 and trace vector p̃(p2).
When all the profile information is obtained, the true t-values can be calculated
according equation (5.52). All the required information is available in order to plot
the t-profiling plots, which are illustrated in Figure 5.17.
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Figure 5.17: t-profiling for p with γ = 0. The dotted line represent the response
for a linear system, the solid line represent the real response.

In the figure, the dotted line with slope 1 represents the response for a linear system
and the solid line represents the t-value response for the system investigated. At
the point [0, 0] the lines coincide and the associated model parameter values are
the least squares solution. Any deviation unveils non-linear behaviour of the model
parameters. From the left figure, it can be seen that the solid line is almost linear
an approximated by the dashed line. For this experiment, the model parameter A
behaves approximately linear. The same can be concluded for B (right figure), al-
though the deviation is slightly larger. This comes from the fact that this parameter
is more uncertain when observing the standard error in equation (5.54).

With the profiling information, the profile trace vectors and the true confidence
regions (profile pair sketches) can be obtained. The true confidence region, the
profile trace vectors and the confidence region made by the linear approximation
are illustrated in Figure 5.18.
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Figure 5.18: True confidence region with profile trace vectors for γ = 0. The
confidence region of the linear approximation represent the true confidence region
quite accurate. The trace plots intersect perpendicular, indicating no correlation
between the model parameters.

The design parameter γ = 0, and as a consequence the model parameters are un-
correlated as was seen in previous examples. This un-correlation can be seen in
the figure by the perpendicular intersection of the profile trace vectors, but it is
also evident from the fact that, for instance for the trace plot p1, a perturbation
of p1 does not result in a variation of p2. The trace plot remains horizontal for
the whole domain. As a consequence of the un-correlated relation, the shape of the
confidence ellipsoid is circular. The confidence region of the linear approximation is
very similar to non-linear confidence region. This is expected, since the t-profiling
plot showed little deviation from the linear reference line. The approximated con-
fidence region is least accurate in the direction of p2, which again can be explained
by the information obtained from the t-profiling plot. It can be concluded that a
linear approximation of the least squares solution can be used to obtain statistical
information about the estimates p̂.

The same procedure is performed once more, but the experiment design parameter
is set to γ = 2/5π. It is known that this will introduce significant correlation between
the model parameters. A least squares estimation is performed on the new measured
experimental response, constructed in the same manner as before. The least squares
estimates are:

p̂ =

[
1.0318
1.8847

]
(5.56)

The t-profiling technique is performed and the t-profile plots are illustrated in Fig-
ure 5.19.
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Figure 5.19: t-profiling for p with γ = 2/5π. The dotted line represent the response
for a linear system, the solid line represent the real response.

In contrast to Figure 5.17, the solid lines deviate more from the dashed line. This
indicates that the system behaves more non-linear in the model parameters when the
experiment is performed with γ = 2/5π. The true confidence region together with
the trace vector can be constructed and are illustrated in Figure 5.20. The profile
trace plots are almost coinciding, indicating severe correlation between the model
parameters. This is also evident when looking at the individual trace plots. For
the trace plot of p1, a perturbation of p1 results in a variation of p2 when subjected
to least squares estimation. This is not the case when γ = 0. The t-profiling plots
showed considerable non-linear behaviour of the model parameters, which affects
the ellipsoid shape of the true confidence region. It follows the direction of the trace
plots and becomes banana shaped. From the figure, it is obvious that the linearised
confidence region cannot be used as an approximation of the true confidence region.
Therefore, every applied linear regression technique – on this experiment – cannot
be considered reliable.
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Figure 5.20: True confidence region with profile trace vectors for γ = 2/5π. The
confidence region of the linear approximation represent the true confidence region
not accurate. The trace plots almost coincide, indicating severe correlation between
the model parameters.
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6
Preliminary Calibration Investigation

A preliminary investigation of the calibration of the model parameters on the thermo-mechanical
model of ASML was performed in van der Meulen (2015). In this investigation, several analyses
of the thermal model parameters were done, e.g., sensitivity analysis and correlation analysis.
This is necessary to select a well chosen subset of thermal parameters in order to perform the
calibration successfully.

Next, a gradient-based optimization algorithm (mentioned in Section 1.1, Figure 1.5) was
used in order to estimate the real model parameters.

6.1 Sensitivity Analysis

In this section, the sensitivity of overlay for each thermal model parameter when it is subjected
to a certain variation is investigated. Furthermore, the distinguishability of the thermal model
parameter from the overlay measurement is analysed.

Figure 6.1: Deformation grid in xy-plane for field 50.

The thermo-mechanical FF model incorporates 18 thermal parameters. On the basis of a recipe,
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a load case is constructed. The load case that is used in this preliminary calibration investigation
consists of 87 fields that are exposed on one substrate. Each field contains a deformation grid,
see Section 2.5. In Figure 6.1 the deformation grid in the xy-plane, for field 50, is illustrated.

The response on terms of overlay can be expressed by the following vector,

y =
[
∆x1 . . . ∆xg . . . ∆xG ∆y1 . . . ∆yg . . . ∆yG

]T
(6.1)

in which g = 1, . . . , G and G the number of grid points for all the fields. It is difficult to use a
real overlay measurement that is obtained from a machine. Therefore, in order to investigate
the sensitivity of the thermal parameters, a reference simulation is performed with the true
(nominal) parameter values p. For the parameter values p̂ – the thermal parameters to be
calibrated – the response ymodel(p̂) is obtained. Now, the residual function is defined by:

r(p̂) = ymodel(p̂)− yref(p) (6.2)

The residual function is a measure for the error between the model and the simulated overlay
measurement in general. For analysis and optimization purposes, it is convenient to express the
residual function (column) as a scalar. This is realized by the objective function φ. The objective
function simplifies the interpretation in terms of (worst-case) absolute substrate deformation
and is defined by:

φ(p̂) = ρ (Vr(p̂)) (6.3)

Here, ρ is known as Huber’s function. It shall be a symmetric, positive-definite function with a
unique minimum at zero. Huber’s function is defined by:

ρ(x) = max(|x|) (6.4)

The matrix V is a weighting matrix. This matrix scales the residual vector r(p̂) to be indepen-
dent and identically distributed with a variance that equals one. Here, the weighting matrix V
can be interpreted as the conversion from the unit m to the unit nm and is defined by:

V = 1 · 109 I (6.5)

The matrix I denotes the square identity matrix of appropriate dimensions.

6.1.1 Thermal Parameter Variation

In this section, the residual function is adjusted. The reference response yref(p) is not subtracted
any more. This enables to distinguish whether a positive perturbation of each thermal parameter
p̂ with respect to its true (nominal) parameter value p increases or decreases the objective
function.

r(p̂) = ymodel(p̂) (6.6)

The objective function is evaluated, where each parameter p̂ is perturbed with respect to its
true (nominal) parameter p. The perturbation is chosen as an increase of c% (from 1% to 100%)
with respect to the nominal parameter value or as c% when the parameter is a ratio for which
the nominal parameter value is equal to zero. The results are shown in Figure 6.2.
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Figure 6.2: Diagram of maximum absolute objective function values φ(p̂) for perturbation
∆p̂ of each thermal parameter p̂ with respect to its true (nominal) parameter value p.

From this analysis, it can be seen that the objective function behaves linear for most of the
thermal parameters. An exception is given by the specific heat capacity and density of the
substrate and of layer 2. For those parameters, the objective function behaves almost linear.
This behaviour can be explained by equation (2.21), and for convenience, was given by:

A = E−1 (K + H)

The matrix E−1 contains the information of the density ρ and the heat capacity c for the
different type of materials. They appear as the inverse, which explains the non-linear behaviour
in Figure 6.2. In equation (2.18), the product of the density and heat capacity are used. Hence,
they are not distinguishable and a variation of these parameters results in a similar sensitivity.

From Figure 6.2 it can be seen that five parameters show the largest sensitivity, substrate
specific heat capacity, substrate density, reflection of IR at substrate, ratio of IR/EUV at sub-
strate level, and IR transmission ratio. A positive perturbation of the IR/EUV ratio result in
an increasing objective function, whereas a positive perturbation of the IR transmission ratio,
the reflection of IR at substrate, the specific heat capacity and density of the substrate, result in
a decreasing objective function. An increasing objective function implies an increasing impact
on substrate deformation and a decreasing objective function implies a decreasing impact on
substrate deformation. This kind of sensitivity information is useful to determine a subset of
thermal parameters that is used for calibration.

It should be noted that the same kind of analysis is performed for the focus error. Similar
results are achieved with the same thermal parameters. These results can be found in van der
Meulen (2015).
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6.2 Thermal Parameter Distinguishability from Overlay Mea-
surements

The parameter variation for each thermal parameter p̂ manifests itself as a certain shape via
the residual function r(p̂) (column vector), see Figure 6.3. The mismatch of the correspond-
ing parameters is not distinguishable from the overlay measurement when two shapes of the
residual function are identical. The parameters are uniquely distinguishable from the overlay
measurement when the residual shapes are not identical to each other.

Figure 6.3: An overlay measurement of the substrate. Each thermal parameter p̂ manifests
itself as a certain shape in the residual function r(p̂) via its gradient.

A measure for the correlation between the shapes of the thermal parameters is given by the
correlation coefficient matrix C. This correlation matrix is explained in Section 4.3 in “State
of the Art Experiment Design”.

Several simulations with constant input parameters ϕ (e.g., routing, dose, ...) are performed
in order to obtain the necessary residual sensitivity ri

∆p̂i
with i = 1, . . . ,m. Subsequently, the

correlation matrix C is constructed which is illustrated in Figure 6.4.
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Figure 6.4: Correlation coefficient matrix C for parameter variations ∆p̂. The grey fields are
discussed in Section 6.4.1.

From the figure it is clear that parameter i = 3 (Reflection of IR) and j = 4 (Ratio of IR/EUV)
are not distinguishable from the overlay measurement, since their value is equal to -1 (blue
numbers). This is understood from the fact that the product (1−p3) ·p4 determines the amount
of IR light that is supplied to the substrate. Hence, it is useless to optimize or calibrate for
both parameters. The same holds for several other parameters. They are colored in Figure 6.4
as well.

Some parameters do have a high correlation value, but are still beneath absolute value 1.
This indicates that it is possible to distinguish the thermal parameters, but it will often hamper
the optimization algorithm due to poor distinguishability.

6.3 Thermal Parameter Subset Selection

The previously performed sensitivity- and correlation analysis was done in order to select a
well-chosen subset of thermal parameters. This subset of parameters is used for calibration. In
van der Meulen (2015) a ranking based on the previous analyses is given. The ranking is based
on the expected maximum absolute objective function φ(p̂) values. The results of the ranking
and thus the final subset of parameters is given in Table 6.1.
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Table 6.1: Overview of thermal parameter subset selection with ranking for overlay, focus,
and choice of the final subset.

no. ranking for overlay ranking for focus final subset

1 Ratio of IR/EUV at substrate Ratio of IR/EUV at substrate level Combined IR thermal load

parameter2 Reflection of IR at substrate Reflection of IR at substrate

3 Substrate specific heat capacity IR transmission ratio IR transmission ratio

4 Substrate density Burl conductivity inner Burl conductivity inner

5 IR transmission ratio Substrate specific heat capacity

6 Substrate density

Since the ratio of IR/EUV at substrate level and the reflection of IR at substrate level are
not distinguishable from the overlay measurement, these thermal parameters are combined
into one thermal parameter ”Combined IR thermal load parameter”. This thermal parameter
determines the IR heat load that is supplied to the substrate. In Section 6.2 it can be seen
that the product of heat capacity and density of the substrate and the IR transmission ratio are
not distinguishable from the overlay measurement. The product of specific heat capacity and
density implies the calibration of substrate-to-substrate variation. However, the IR transmission
ratio implies the calibration of product-to-product variation. Hence, the latter is included in
the subset.

6.4 Numerical Optimization

In the following section several optimization are performed in order to find an initial overlay
experiment optimization and to calibrate the thermal parameters.

Optimization Algorithm The optimization algorithm is a gradient-based optimization al-
gorithm for non-linear least squares alike problems. This algorithm is extensively described in
Tinnemans (2010). The parameter optimization problem is posed as:

p = arg min φ(p̂) p̂ ∈ Ω (6.7)

Here, Ω ∈ Rm is the feasible set of parameters and p ∈ Ω is a (local) minimum of the objective
function φ(p̂).

Lower and upper bounds (constraints) are applied to the optimization problem of the thermal
parameters which will influence Ω. The parameters which are ratios, are bounded with a lower
bound of 0 and an upper bound of 1. The thermal parameters that represent a physical quantity
are bounded by a lower bound of 0.7 times the nominal parameter value p and an upper bound
of 1.3 times the nominal parameter value p. For now, these bounds for the latter parameters
are arbitrarily chosen.

6.4.1 Thermal Parameter Subset Optimization

In order to succeed the calibration of the thermal model parameters, a subset of parameters
was selected (see Section 6.3). The gradient-based optimization algorithm is applied in order to
calibrate the subset of parameters with an overlay measurement. The parameters are given by:

1. Combined IR thermal load parameter

2. IR transmission ratio
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3. Burl conductivity inner

In the following paragraphs the overlay measurement is obtained from simulation and two
cases are investigated . An overlay measurement without the addition of measurement noise is
considered and an overlay measurement with the addition of measurement noise is considered.
Furthermore, LB and UB represent the lower-, and upper bound respectively. Step represents
the absolute step size that is used to calculate the first order derivatives or the residual function
for each parameter.

No Measurement Noise The subset of parameters is optimized for calibration. The results
are shown in Table 6.2. A comparison of the columns final and true reveals that the true
(nominal) parameter values are returned by the optimization algorithm. The result is achieved
after 6 iterations. This implies that the distinguishability of the corresponding parameters is
sufficient. In Figure 6.4 it can be seen that the corresponding entries are equal to -0.9, 0.6, and
-0.9 (see the grey boxes in the figure), which relates to a high correlation. It can be concluded
that a high correlation without any measurement noise is not sufficient to let the optimization
algorithm fail. All the thermal parameters are correctly retrieved, since their appearance was
not identical in the overlay measurement. However, the number of iterations of the optimization
algorithm could be high for highly correlated parameters.

Table 6.2: Results of the thermal parameter subset optimization, without the presence of
measurement noise.

no. parameter LB UB step initial final true

1 IR transmission ratio 0 1 0.01 0.1 0 0

2 Combined IR thermal 0.2188 0.4063 0.0031 0.3438 0.3125 0.3125

load parameter

3 Burl conductivity 1050.0 1950.0 15.0 1650.0 1500.0 1500.0

inner

Measurement Noise In reality, the overlay measurement suffers from measurement noise.
This noise is taken into account via a modification of the simulated response yref(p), which was
explained in Section 6.1. A disturbance η is added which leads to the following response:

yref,η(p) = yref(p) + η (6.8)

Here, η denotes a vector of appropriate dimension and its entries are normally distributed
random variables with mean = 0 nm and 3∗ standard deviation = 0.5 nm1. The residual function
r(p̂) is now defined by:

r(p̂) = ymodel(p)− yref,η(p) (6.9)

The new residual function is used for this optimization and, for completeness, the total objective
function is given below together with the required definitions.

φ(p̂) = ρ (Vr(p̂)) (6.10)

ρ(x) =
xTx

2
(6.11)

V = 1 · 109 I (6.12)

1Information obtained from Hein Castelijns (ASML) d.d. April 09, 2014.

- confidential -



Page 82 6.4. Numerical Optimization

An initial investigation for 1 run is performed. The gradient-based optimization algorithm is
executed for 1 arbitrary realization of the disturbed response yref,η(p). The results for the
case with the addition of measurement noise are shown in Table 6.3 and are achieved after 12
iterations. Although it is not shown, the objective function decreases in the first two iterations,
whereas the objective function hardly decreases in the remaining iterations. This suggests a
change in the stopping criterion of the optimization algorithm to limit the duration of the
optimization.

It can be seen that the true (nominal) parameters are not returned by the optimization
algorithm. Nevertheless, the parameter values after optimization are close to the (nominal)
parameters. This is easily observed when the deviations of the optimized parameters are ex-
pressed in terms of percentages (see the final column). These percentages are +0.75%, -0.18%,
and -1.5% for the IR transmission ratio, the combined IR thermal load parameter, and the
burl conductivity inner, respectively. Notice that these percentages are equal to +10% before
optimization. Hence, this implies that convergence is achieved.

Table 6.3: Results of the thermal parameter subset optimization with the addition of mea-
surement noise for 1 run.

no. parameter LB UB step initial final true

1 IR transmission ratio 0 1 0.01 0.1 0.0075 0

(+0.75 %)

2 Combined IR thermal 0.2188 0.4063 0.0031 0.3438 0.3119 0.3125

load parameter (-0.18 %)

3 Burl conductivity 1050.0 1950.0 15.0 1650.0 1477.0 1500.0

inner (-1.5 %)

Next, a statistical analysis for 100 runs is performed. The gradient-based optimization algorithm
is executed for 100 different realizations of the disturbed response yref,η(p). The results of the
statistical analysis are shown in Table 6.4. Here, the columns Mean and Std contain the mean
and the standard deviation of the corresponding parameters. Both the mean and the standard
deviation are expressed in terms of a percentage with respect to the true (nominal) parameter
value T as well. These percentages are found in the columns (.-T/T) and (./T), respectively.
The dot denotes the value that is expressed in terms of a percentage. It can be noticed that
the mean and standard deviation of the IR transmission ratio are directly converted into a
percentage, since the true parameter value is equal to 0.

Table 6.4: Results of the thermal parameter subset optimization with the addition of mea-
surement noise for 100 (different) runs of yref,η(p).

no. parameter true initial mean (.-T/T) std (./T)

1 IR transmission ratio 0 0.1 0.00495 +0.50 % 0.0071 0.71 %

2 Combined IR thermal 0.3125 0.3438 0.3140 +0.48 % 0.0026 0.83 %

load parameter

3 Burl conductivity 1500.0 1650.0 1514 +0.94 % 36 2.4 %

inner
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6.4.2 Optimization of Overlay Experiment

The motivation for optimization of the overlay experiment is to make the appearance of two
physical parameters in overlay more orthogonal. For now, two physical parameters are used
to illustrate the concept. The goal is to improve the optimization problem described in Sec-
tion 6.4.1, such that it is efficiently solved by the optimization algorithm.

Parameter i = 1 (IR transmission ratio) and parameter j = 2 (overall flow rate through clamp)
are considered in order to calibrate. The experimental input parameter to be optimized, is
selected as the effective source power at substrate level. Recalling Figure 1.5, the optimization
that is going to be performed is illustrated in the transformation 2 block. Thus, the thermal
model parameters are not calibrated by this optimization.

The initial experimental input parameter value is equal to û = 44.2 W m−1. The optimal
input parameter u∗ is unknown. The objective function is defined as:

φ(û) = C(i, j) (6.13)

The correlation coefficient matrix C is calculated according equation (4.5). The results of the
optimization of the experimental input parameter are listed in Table 6.5. The optimal input
parameter u is equal to u = 39.2512 W m−1. In Table 6.5 it can be seen that the correlation
coefficient matrix C shows a decrease in the off-diagonal term from 0.4039 to 0.3962. Although
this is an improvement of orthogonality between the thermal parameter i = 1 and j = 2, it
can be considered as a small improvement. Apparently, this experimental input parameter is
not very well able to improve the distinguishability of these two thermal model parameters.
Nevertheless, the concept works.

Table 6.5: Results of overlay experiment optimization for the input parameter source power
at substrate level.

parameter unit original optimized

Effective source power at sub-

strate level
W m−1 44.2 39.2512

Correlation coefficient matrix -

[
1 0.4039

0.4039 1

] [
1 0.3962

0.3962 1

]

6.5 Conclusion Preliminary Calibration

In this preliminary calibration investigation, it is shown that the subset of thermal parameters
can be estimated from an experiment to their true values, without the presence of any mea-
surement noise. When measurement noise is included, the subset of thermal parameters can
be estimated as well. However, their true values are not found. When performing multiple
experiments together with the associated parameter optimization, a statistical expression can
be made for each thermal parameter (see Table 6.4). Unfortunately, this method requires mul-
tiple experiments which can become quite expensive. An alternative method, as is described in
Chapter 5, might be useful, since only one experiment is sufficient to present statistical data of
the thermal parameters.

Optimization of the correlation coefficient between parameters is useful to enhance param-
eter estimation, and therefore improves overlay performance. The concept of optimization for
overlay experiments is described in Section 6.4.2, where the correlation between IR transmission
ratio and the overall flow rate through clamp was optimized by adjusting the effective source
power at substrate level. A small improvement was achieved, as can be seen in Table 6.5. The
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concept works, but even more improvement of the overlay experiment might be achieved by
using more sophisticated experiment design methods as described in Chapter 4.

By extending the preliminary calibration investigation, useful information can be achieved when
using more advanced methods. Overlay experiments could be optimized, for enhancement
of parameter estimation, using more sophisticated objective functions and valuable statical
information about the model parameters can be achieved within a single experiment.
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7
Simplified Thermo-Mechanical Model

In Chapter 2 the thermo-mechanical feedforward model is explained. The purpose of this model
is to correct for the effects of substrate heating on overlay and focus. Although the performance
of the feedforward model is satisfactory, there are some beneficial reasons to build a simplified
version in Matlab of this model. These reasons are listed below:

– Thermal and mechanical parts can be combined in one model.

– Fast evaluation for different mechanical parameters is possible. Currently, the mechanical
part is solved via a pre-calculated (Ansys) deformation matrix C.

– It is easy to modify the geometry.

– A good understanding of the model and working principle is obtained.

It is of great importance that the simplified Matlab model can capture all relevant aspects of
substrate heating and overlay performance. The purpose of this model is to apply experiment
design techniques and for proof of concept.

At first, the Finite Element Method (FEM) used for the simplified Matlab model is ex-
plained. Next, the model layout along with its assumptions is given, followed by the governing
equations that are required to perform simulations. Thereupon, the modelling of the applied
heat load is described and finally, the input design parameters are given together with a vali-
dation of the simplified thermo-mechanical feedforward model.

7.1 Finite Element Method

The simplified version of the thermo-mechanical feedforward model is built in Matlab using
the Finite Element Method toolbox made by Jeroen de Best. This toolbox is able to describe
thermo-mechanical problems and is extensively described in de Best (2015). In this section,
relevant aspects of the FEM toolbox are given to provide background information of the working
principles on the simplified model.

7.1.1 Thermal Equation

The thermal differential equation and its derivation used to describe thermal interaction with
an infinitesimal small volume is already given in Section 2.4. For convenience, the thermal
differential equation will be repeated.

ρc
∂T

∂t
− κ∂

2T

∂x2
i

= Q ∈ V (xi), i = 1, 2, 3 (7.1)
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Here ρ, c and κ are the mass density (kg m−3), heat capacitance (J kg−1 K−1), and heat con-
ductivity (W m−1 K−1), respectively, in the volume V . The heat load is expressed by Q in
W.

7.1.2 Mechanical Equations

The mechanical equations are derived from the conservation of momentum principle. A force
balance in x direction can be described as:

− σxdydz + (σx + dσx) dydz − τxydxdz + (τxy + dτxy) dxdz−

τxzdxdy + (τxz + dτxz)dxdy + fxdxdydz = ρdxdydz
∂2u

∂t2
(7.2)

Where σ are the normal stresses in N m−2, τ the shear stresses in N m−2, fx the applied body
force in N m−3, ρ the density in kg m−3, u the displacement in x direction in m and t is the
time in s.

V

σ
x 

+ dσ
x

x

y
z

dy

dx

dz

σ
x 

τ
xy 

+ dτ
xy

τ
xz 

+ dτ
xz

τ
xy 

τ
xz

f
x 

Figure 7.1: Conservation of momentum in an infinitesimal volume. Not all normal stresses σ
and shear stresses τ are depicted.

In order to derive the normal- and shear stresses at a small deviation of the initial positions, a
first order Taylor expansion is used (see de Best (2015)):

σx + dσx = σx +
∂σx
∂x

dx (7.3)

σy + dσy = σy +
∂σy
∂y

dy (7.4)

σz + dσz = σz +
∂σz
∂z

dz (7.5)

After substitution of these equations into equation (7.2) and dividing by dxdydz, the following
result is achieved:

∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ fx =
ρ∂2u

∂t2
(7.6)
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Similar equations are achieved for the directions y and z.

∂σy
∂y

+
∂τxy
∂x

+
∂τzy
∂z

+ fy =
ρ∂2v

∂t2
(7.7)

∂σz
∂z

+
∂τyz
∂y

+
∂τxz
∂x

+ fz =
ρ∂2w

∂t2
(7.8)

Here, v and w are the displacements in y and z direction respectively. Hooke’s law is used to
convert stresses into strain:

σ = Hε (7.9)

With ε the strain vector and H the Hooke’s matrix

H =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 (7.10)

where E is the Young’s modulus (Pa) and ν the Poisson ratio (-). When combining Hooke’s
equation together with the conservation of momentum equations, the mechanical solution can
be written as:

∇T · σ + f = ρ
∂2u

∂t2
→ ∇T ·Hε+ f = ρ

∂2u

∂t2
(7.11)

Where the nabla operator ∇, stress vector σ, force vector f, and displacement vector u are
defined as:

∇ =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


, σ =



σx
σy
σz
τxy
τyz
τxz

 , f =

fxfy
fz

 , u =

uv
w

 (7.12)

7.1.3 Thermo-Mechanical Equations

In the mechanical part, strains arise from mechanical stresses via Hooke’s law. However, in
the thermo-mechanical coupling, strains also originate due to thermal expansion. This can be
written as:

ε = εm − εt (7.13)

The strains that arise due to mechanical stresses are represented by εm, whereas strains that
arise due to thermal expansion are represented by εt. It should be noted that in contrast to the
mechanical strain vector, the thermal strain vector is written as,

εt =



1
1
1
0
0
0

 εt = sεt (7.14)
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since a thermal expansion will only lead to an elongation and, therefore, introduces no shear
strains. When substituting 7.13 into 7.11, the thermo-mechanical equation is defined by:

∇T ·H(εm − εt) + f = ρ
∂2u

∂t2
(7.15)

7.1.4 Elements

In order to discretize the model, elements are being used. It is important to have knowledge
about the type of elements that are used. In the FEM toolbox, three dimensional linear and
quadratic hexahedrons finite elements exist. These type of finite elements are given in Figure 7.2.
The linear hexahedron is often referred to as the 8-node brick, whereas the quadratic hexahedron
is referred to as the 20-node brick. The 8-node brick has 8 nodes and, obviously, the 20-node
brick has 20 nodes. Each node consists of three mechanical DOFs u, v and w which represent
displacements in x, y, and z direction, respectively. A thermal degree of freedom T for each
node is included as well.

x

y
z

x

y
z

T T

Figure 7.2: Type of elements used in the FEM toolbox. On the left the linear 8-node brick is
illustrated. On the right the quadratic 20-node brick is illustrated.

Between the nodes in an element, interpolation using shape functions is used to construct
continuous functions of T , u, v and w. The interpolation is written as:

T (x, y, z) = [N1(x, y, z) N2(x, y, z) . . . Nn(x, y, z)]


T1

T2
...
Tn

 = N(x, y, z)T

u(x, y, z) = [N1(x, y, z) N2(x, y, z) . . . Nn(x, y, z)]


u1

u2
...
un

 = N(x, y, z)u

v(x, y, z) = [N1(x, y, z) N2(x, y, z) . . . Nn(x, y, z)]


v1

v2
...
vn

 = N(x, y, z)v

w(x, y, z) = [N1(x, y, z) N2(x, y, z) . . . Nn(x, y, z)]


w1

w2
...
wn

 = N(x, y, z)w (7.16)

For the 8-node brick n is equal to 8 and for the 20-node brick n is equal to 20. The shape
functions are represented by N, the nodal temperature vector by T and the nodel displacement
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vectors by u, v and w in the directions x, y, and z, respectively. The shape functions can be
found in appendix B.

7.1.5 Galerkin Method

The Galerkin method is a method for converting a continuous differential equation into a discrete
problem. It provides a residual minimization by:

1. Multiplying the differential equation by weighting functions,

2. Integrating over the element and,

3. Equation it to zero.

In de Best (2015) the Galerkin method will be explained in more detail for the thermal, me-
chanical, and thermo-mechanical case. In this section, the end result of the thermo-mechanical
case will be given.

The thermo-mechanical equation (7.15) is given in the Galerkin statement,

˚

V

NT

(
∇T · σ + f− ρ∂

2u

∂t2

)
dV = 0 (7.17)

with σ = H(εm− εt). Although the derivation is not given, by writing out equation (7.17) and
using the divergence theorem, the elementary system matrices for an element are described by:

−
˚

V

BTHB dV q +

˚

V

BTHεt(T ) dV +

¨

S

NTt dS +

˚

V

NTf dV−

˚

V

ρNTN dV
∂2q

∂t2
= 0 (7.18)

Or can be written as:

Mq̈ + Kq = fb + fs + ft (7.19)

With,

M =

˚

V

ρNTN dV, K =

˚

V

BTHB dV,

fb =

˚

V

NTf dV, fs =

¨

S

NTt dS

ft =

˚

V

BTHεt(T ) dV (7.20)

where M and K are the mass- and stiffness matrices of the element, respectively, B is the
spatial derivative of the shape functions N, fb the applied body force, fs the applied surface
force vector and ft the thermal force vector. The implementation of the thermal force is briefly
described in more detail. The scalar value of the thermal strain can be expressed as:

εt(T ) = α0 + α1T (7.21)

Where α1 is the thermal expansion coefficient of the associated material and α0 is the reference
coefficient determined by:

α0 = −α1Tref (7.22)
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Here, Tref is the initial or reference temperature of the system. In equation (7.21) the temper-
ature T can be substituted by its shape functions.

T = NT (7.23)

Using equation (7.14), the thermal strain vector can be written as,

εt(T ) = α0s + α1sNT (7.24)

and substitution of this result into the thermal force vector ft leads to:

ft =

˚

V

α0B
THs dV +

˚

V

α1B
THsN dVT (7.25)

Or can be written as:

ft = L0 + L1T (7.26)

With,

L0 =

˚

V

α0B
THs dV, L1 =

˚

V

α1B
THsN dV (7.27)

7.2 Physical Model Representation

The thermo-mechanical model is rebuilt in Matlab. In Figure 7.3, the structure of the Matlab
model is illustrated.

Substrate

layer 2 

layer 1

Clamp

Positioning Module

Top burls

Bottom burls

Cooling water

Figure 7.3: Schematic illustration of the thermo-mechanical model in Matlab. The clamp with
substrate are identical as in Section 2.2, except burls located at the bottom. The positioning
module, used for mechanical calculations, is included as well.

From the figure, it can be seen that the structure of the clamp is unchanged when compared
to the already available thermo-mechanical model. The main difference is that the clamp is
positioned on top of the bottom burls and the positioning module, and are combined in one
model.
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7.2.1 Geometry and Mesh

In the Matlab model, the geometry of the physical system is simplified. In reality the substrate
and clamp are both circular, but they are modelled as square plates with different type of layers.
This simplification will have effect on substrate heating (more mass is present) and stiffness,
but it is assumed that these effects are small and certainly will not influence the concept of
experiment design.

The positioning module contains all kinds of structures inside it self to reduce mass, but
maintain stiffness. In this simplified Matlab model, the position module is modelled as one solid
block. This simplification has no effect on heating (will be seen in Section 7.2.3), but it will
have effect on the stiffness. As before, it is assumed that this will influence overlay accuracy by
a small amount, but will not influence the concept of experiment design.

In the table below, the geometrical specifications of the model are listed.

Table 7.1: Geometry of the simplified Matlab model.

part length (mm) width (mm) height (mm)

Substrate 300 300 0.775

Top burls 300 300 0.01

Layer 1 325 325 0.8

Layer 2 325 325 8.3

Bottom burls 325 325 0.01

Positioning module 400 400 70

Mesh Grid A suitable mesh size must be chosen in order to solve the substrate heating
problem within the specified requirements. There are a few consideration to take into account.
These are:

– Desired overlay accuracy

– Computation performance (CPU time, memory,...)

– Numerical stability during transient simulations

There are more considerations possible for choosing a suitable mesh size, for instance when
high non-linearity occurs, but the criteria mentioned above have the highest priority for this
problem.

In order to keep a balance between computation performance and desired overlay accuracy,
the mesh grid is chosen such that each field on the substrate consists in total of 4 elements,
two in each direction x and y. On the substrate, 11 fields fit in x direction and 9 fields fit
in y direction and this results in a mesh grid of 22x18 elements in the xy plane at substrate
level. However, this choice is inconvenient, since some of the nodes at the edge of the elements
would be located in the space between the fields. Therefore their information is lost when
calculating overlay (overlay is calculated in the space of the fields). A simple fix would be a
shift in position of all the fields, but a slightly smaller grid size of 21x17 elements in the xy
plane is chosen instead. This improves the computation performance as well. Since an implicit
time integration scheme with unconditional stability criterion is used, the numerical stability
during transient simulations is guaranteed (will be seen in Section 7.3.1).
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xy

z

Figure 7.4: Geometry of the simplified thermo-mechanical model in Matlab. Unlike the real
system, the substrate and clamp are square instead of a circle. The substrate consists of 21x17
elements, and the mesh and elements are illustrated by the black lines.

In z direction, it is chosen to use one element per layer, except layer 2 of the clamp. This layer
is divided into an upper and lower part. The final mesh grid is 21x17x1 seen from the substrate
layer and is propagated throughout the rest of the layers. The total amount of elements is 2987.
In Figure 7.4 the Matlab model with mesh is shown.

7.2.2 Burl layers

The implementation of the top and bottom burl layers is simplified compared to the existing
thermo-mechanical feedforward model. The burl layers are modelled as a shear layer and,
therefore, the burl geometry is omitted. In Figure 7.5 the implementation of the burl layer is
shown.

Since the mass of the burls is negligible, the thermal heat capacity is neglected, but thermal
conduction is included to describe heat transfer from substrate to clamp.

Substrate

Layer 1

Shear layer

z

Figure 7.5: Burl layers are modelled as a shear layer that conducts heat but has no thermal
capacity. The layers have a stiffness in z direction and in the tangential xy plane.
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From de Best (2015), it is assumed that the burls have stiffness in z direction and a tangential
stiffness in the xy plane to capture shear stresses. Furthermore, it is assumed that no Poisson
effect is present. In Table 7.2 the properties of the burls are listed.

Table 7.2: Thermal and mechanical properties of the top- and bottom burls.

property top burls bottom burls unit

ρ 0 0 kg m−3

E 12.8 80.7 MPa

G 12.8 48.6 MPa

ν 0 0 -

cp 0 0 J kg−1 K−1

κ 0.015 0.015 W m−1 K−1

α 0 0 K−1

7.2.3 Constraints

The model has two types of constraints, namely thermal and mechanical constraints.

Mechanical Constraints In order to prevent singularity (rigid body motions) while calcu-
lating mechanical deformations, the model is mechanically attached to the fixed world. The
model must be constrained carefully to prevent an over constrained situation. As mentioned
before, each node has 3 DOFs. Unfortunately, it is not possible to constrain rotational DOFs
of a node. This is a limitation of the used FEM package. According to Figure 7.6, node 1 is
constrained in x, y and z, direction (all DOFs). Node 2 is constrained in x and y direction,
and node 3 is constrained in y. The system is properly constrained in all directions, including
rotations, but is not over constrained. The clamp and substrate are free to deform.

Node 1
Node 3

Node 2

Figure 7.6: Mechanical constraints for simplified thermo-mechanical model. The system is
properly constrained in all directions, including rotations.

Thermal Constraints In the feedforward model, described in Chapter 2, cooling water is
present. In Castelijns (2014) it is stated that the heat transfer below the cooling water channels
is little and that heat transfer in the positioning module does not take place. In order to improve
computational efficiency for the simplified model, it is assumed that the positioning module and
the lower part of the clamp remain constant at initial temperature of 22 ◦C. Furthermore, the
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cooling water channels with their controllers are omitted. In Figure 7.7 the fixed thermal
constraint is illustrated.

Substrate

layer 2 

layer 1

Clamp

Ommited cooling water channels

Fixed temperature

Figure 7.7: Thermal constraints for simplified thermo-mechanical model. The lower part of
the clamp and the positioning module are assumed to operate at fixed temperature.

7.2.4 Model Parameters

In Table 7.3 the mechanical and thermal parameters of the model parts are listed. Properties
of the burls can be seen in Table 7.2.

Table 7.3: Thermo and mechanical parameters for the different types of layers.

property substrate layer 1 layer 2 pos module unit

ρ 2329 2230 3070 2530 kg m−3

E 167 64 373 90.3 GPa

ν 0.30 0.20 0.18 0.30 -

cp 705 830 700 800 J kg−1 K−1

κ 149 1.2 120 1.5 W m−1 K−1

α 2.4 · 10−6 3.25 · 10−6 2.5 · 10−6 2.0 · 10−8 K−1

7.3 Governing Equations

In this section, the underlying calculations are given in order to solve the transient thermal
problem and the mechanical problem. It is assumed that these calculations can be separated
since the transient thermal fluctuations occur at a (far) lower rate than the resonances of the
mechanical system. Another way to say, the calculations can be separated since the thermal
eigenvalues are far below the eigenvalues of the mechanical system.

7.3.1 Thermal Equations

The general equation for conservation of energy in an infinitesimal volume is given in equa-
tion (2.18). This equation is rewritten in the following thermal problem,

CpṪ + KcT = Q (7.28)
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where Cp is the thermal capacitance matrix containing the thermal masses ρc, Kc is the thermal
conductivity matrix, and Q represents the heat source. Note that, in contrast to equation (2.20),
the system is not written in state space notation. This has several advantages such as the
avoidance of preliminary inverse calculations – which could introduce numerical noise – and
the implementation of the burls is not hampered. In Section 7.2.2, it was assumed that the
burls have no mass and thus no heat capacitance. Therefore, Cp becomes singular and when
the state space notation is used, the inverse does not exist. This implies that a repartition and
division of the system matrices is necessary.

In order to solve this first order differential equation, the system is discretized with an Euler
backwards integration scheme. This integration scheme in its general form is given by:

dy

dt
= f(t, y) (7.29)

yk+1 = yk + ∆tf(tk+1, yk+1) (7.30)

This integration scheme is an implicit method, since the new response depends on the gradient
at the next time step. This implicit property is necessary to prevent very small step sizes ∆t,
since equation (7.28) is a stiff differential equation. This stiff behaviour comes from the fact
that the height of the layers of the model vary several orders (see Table 7.1). This leads to
fast and slow heating/cooling phenomena and, therefore, small and large time constants are
present. The Euler backward scheme is an unconditionally stable integration scheme of order
O(∆t). The trapezoidal rule is an implicit integration scheme as well, is of order O(∆t2) and, is
unconditionally stable as well but not so-called super-stable, see Vuik et al. (2006). The latter
leads to undesired oscillatory effects and is therefore not used.

The Euler backward scheme is applied to equation (7.28):

Cp

(
Tk+1 −Tk

∆t

)
+ KcTk+1 = Qk+1 (7.31)

And is rewritten into:

(Cp + Kc∆t) Tk+1 = CpTk + Qk+1∆t (7.32)

The system can partitioned into free and prescribed DOFs (see Figure 7.7).([
Cp,cc Cp,cf

Cp,fc Cp,ff

]
+

[
Kc,cc Kc,cf

Kc,fc Kc,ff

]
∆t

)[
Tk+1

c

Tk+1
f

]
=

[
Cp,cc Cp,cf

Cp,fc Cp,ff

] [
Tk

c

Tk
f

]
+

[
Qk+1

c

Qk+1
f

]
∆t

(7.33)

The first equation can be simplified into Tk+1
c = Tk

c , since the temperature of the constrained
DOFs are fixed during the whole simulation. In the second equation, the thermal capacitance
coupling term Cp,fc can be omitted. However, thermal conductivity between the constrained
and free DOFs must be included. This conduction coupling describes the heat flux from the
upper part of the clamp to the simplified cooling water channels. The equations can be rewritten
as: ([

0 0
0 Cp,ff

]
+

[
I∆t−1 0
Kc,fc Kc,ff

]
∆t

)[
Tk+1

c

Tk+1
f

]
=

[
I 0
0 Cp,ff

] [
Tk

c

Tk
f

]
+

[
0

Qk+1
f

]
∆t (7.34)

The second equation is of interest,

(Cp,ff + Kc,ff∆t) Tk+1
f + (Kc,fc∆t) Tk+1

c = Cp,ffTk
f + Qk+1

f ∆t (7.35)
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which is simplified as:

M1T
k+1
f = M2T

k
f + M3Q

k+1
f + M4T

k+1
c (7.36)

Where,

M1 = Cp,ff + Kc,ff∆t (7.37)

M2 = Cp,ff (7.38)

M3 = I ·∆t (7.39)

M4 = −Kc,fc∆t (7.40)

Equation (7.36) is used to solve the transient thermal problem. It can be seen that for every
time step, a system must be solved. This is a result of the choice of the implicit time integration
scheme. Since M1 is a symmetric matrix, an Approximate Minimum Degree (AMD) reordering
permutation is applied followed by a Cholesky decomposition. Reordering of M1 prevents loss
of sparsity when the Cholesky decomposition is performed. Because sparsity is maintained and
the Cholesky decomposition is an upper triangular matrix, fast forward/backward substitutions
are possible which enhances computation performance. In the following section, more details
about Cholesky decomposition and preconditioning are given.

7.3.2 Mechanical Equations

Heating of a mechanical structure introduces internal stresses due to thermal expansion. Sub-
sequently, these stresses lead to deformation of the mechanical structure. As mentioned before,
the time constants of the structural heating are (far) below the eigenvalues of the mechani-
cal system and the structural dynamics can be considered to have an instantaneous response.
Therefore, the mechanical solution can be solved separately according:

Ku = f, (7.41)

where K is the stiffness matrix, u the deformations of the system and f the force vector due to
thermal expansion. The thermal force vector f is calculated according,

f = L0 + L1T (7.42)

with T the thermal state of the system and L0 and L1 defined in equation (7.27).
When observing the stiffness matrix K, it can be seen that its size is 9 times larger than

the thermal system matrices from equation (7.36). Each node has three mechanical DOFs (x,
y, and z), while the same node only has one thermal DOF T . When the size of the system
increases, computation time could become a serious problem when no measures are taken.

Direct solvers, to solve mechanical systems of the form Ku = f, are popular for their robustness
and accuracy. Iterative solvers do exist, but are only favoured when the size of the system is
very large, e.g., billions of DOFs (Vuik and Lahaye, 2014). Their application is mostly found
in fluidic systems.

Equation (7.41) is solved via a direct solver by performing a Cholesky decomposition of
the stiffness matrix K and, subsequently, execute forward and backward substitutions. The
Cholesky decomposition can only be used on symmetric positive definite matrices. When this is
not the case, LU or LDLT decomposition can be considered, followed by the same forward/back-
ward substitutions.

In order to improve the performance of the direct solver with Cholesky decomposition, the
stiffness matrix is reordered via the Sparse Reverse Cuthill-McKee ordering algorithm. This
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algorithm tries to squeeze the bandwidth of the stiffness matrix (Rixen, 2011b). The bandwidth
of a matrix is a measure of the distance between the diagonal and the most off-diagonal entries.
When the bandwidth is small, the Cholesky decomposition will result in a more sparse matrix,
which will improve memory storage and computation time. There exist more preconditioning
algorithms, like Approximate Minimum Degree. This pre-conditioner constructs a right-down
arrow shape of the matrix, which prevents filled factorized upper and lower triangular matrices.
Although these pre-conditioners have different working principles, the final goal is the same:
make sure that the Cholesky matrix remains sparse. The Cholesky matrix C is an upper
triangular matrix and is given by:

K = CCT (7.43)

In Figure 7.8 the structure of the stiffness matrix, together with its Cholesky decomposition, is
illustrated. It can be seen that the stiffness matrix is symmetric and that the Cholesky matrix
is an upper triangular matrix. The stiffness matrix has a diagonal form, this is caused by the
stacking structure of the layers in the model.

Figure 7.8: Stiffness matrix with Cholesky decomposition without the use of a reordering
scheme. Sparsity of the Cholesky decomposition is 10.6%.

In Figure 7.9 the structure of the reordered stiffness matrix, together with its Cholesky decom-
position, is illustrated. The structure of the stiffness matrix has changed due to the precon-
ditioning. The entries in the matrix are more squeezed towards the diagonal. Although it is
difficult to see, a serious improvement is obtained in sparsity of the associated Cholesky matrix.
The Cholesky decomposition without the use of a reordering scheme has a sparsity of 10.6%,
whereas the Cholesky decomposition with the use of the Sparse Reverse Cuthill-McKee ordering
scheme has a sparsity of 3.8%.
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Figure 7.9: Stiffness matrix with Cholesky decomposition with the use of the Sparse Reverse
Cuthill-McKee ordering scheme. Sparsity of the Cholesky decomposition is 3.8%.

Overlay The measured response of the model is overlay, see Section 1.1. Overlay arises at the
moment when the EUV light alters the characteristics of the photo-resist. Bookkeeping is done
to keep track at which time instant, during the simulation, the photo-resist is being processed
and overlay occurs.

The total overlay response is determined when the transient simulation is completed. Me-
chanical deformations of the model are calculated from the temperature states at the moments
when overlay occurred. It should be noted that only a small part of these mechanical deforma-
tions are of interest, namely of the substrate only.

Suppose that during a simulation N time instances are stored when overlay occurred due
to exposure. In order to calculate the overlay, equation (7.41) must be solved N times with
N different force vectors. The force vectors are calculated via equation (7.42) where T is the
temperature state at the stored time instance. The deformations U = [u1 u2 . . . uN ] are
obtained, but only a small part of Ui is of interest. In order to select the required parts of
Ui to construct the total overlay, a selection matrix S is introduced. S is a 3 dimensional
sparse matrix which contains ones at the positions where the DOFs of the associated overlay
are located. The construction of the overlay O is given by:

O =
N∑
i=1

SiUi (7.44)

The overlay O is a vector which corresponds to substrate deformations in x and y directions.

7.4 Heat Load

During the exposure of the substrate an external heat load is applied. The heat load is modelled
as is described in Section 2.3 except one simplification. The external unspecified heat load (UHL)
is neglected and can be compensated by additional IR light. For convenience, the assumptions
are repeated.

– EUV is fully absorbed by the substrate due to the photo-resist. All photon energy is
converted into heat.
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– IR is partly reflected at the substrate surface.

– IR is party absorbed in the substrate.

– IR is partly transmitted through the substrate.

Figure 7.10 illustrates the applied heat load to the substrate. The cooling water channel is
removed, since the cooling is captured in the thermal constraints. Another difference is the
UHL load that is neglected in the simplified model. Additional IR could compensate for the
missing UHL load, but is omitted in the simplified model.

IR EUV

IR
reflect

IR
trans

IR
absorb

Figure 7.10: Representation of the simplified heat load. Some IR light is reflected or trans-
mitted to the clamp, whereas EUV light is entirely absorbed.

Fields are defined on top of the substrate, but do not necessarily coincide with the elements
that represent the substrate (see Figure 7.11). To apply a correct heat load to each element, the
overlapping surface of the slit box and its associated elements is calculated. This principle is
indicated by the pink box in the figure. Subsequently, each integrated surface is used to apply a
correct heat load per active element. All these integrated surface heat loads together represent
the dose, which is defined in equation (2.1).

- confidential -



Page 102 7.5. Input Design Parameters

Slit mid position

Elements

Field

Slit box

Integrated surface heat 
of active element

Figure 7.11: Slit scanning over elements. Heat load is applied at an overlapping surface of
the slit box and the associated element(s).

When the slit box passes associated nodes of the exposure, or in other words when the exposure
for the corresponding nodes is completed, the temperature state of the system is stored in order
to calculate overlay at the end of the simulation.

In Table 7.4, the heat load parameters are listed which are necessary to determine the heat
load from the source up to substrate level. The heat load at substrate level can be calculated
according:

PEUV = Psource · αtrans · αmask (7.45)

Here, αtrans is the transmission efficiency through the optics and αmask is the mask transmission
coefficient.

Table 7.4: Parameters of applied heat load.

parameter value

Source power 250 W

transmission efficiency 0.0046 (-)

Mask transmission 0.5 (-)

Substrate reflection 0.5 (-)

Substrate transmission 0 (-)

7.5 Input Design Parameters

The simplified model contains several parameters, which can be separated into model parameters
and model input parameters. Model parameters describe how the system behaves when it is
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isolated from the environment (e.g., homogeneous solution). For instance, material properties
or the geometry of parts.

Model input parameters are used to provide the system required information before it can
execute a simulation. One can think of model input parameters as the set-up of the environment
of the system (e.g., external forces or external temperatures).

The purpose of experiment design is the enhancement of estimating model parameters by
means of optimal conducted experiments. Experiments are defined by the environment and,
thus, by the model input parameters. In order to achieve an optimal experiment, the input
parameters must be optimized. As was stated in Section 4.5, the input parameters are stored
in the design vector ϕ.

The simplified model consists of several input parameters. These input parameters are listed
and briefly explained below.

– Dose, the dose determines the amount of energy received per field and is determined
according to equation (2.1). Dose will influence heat input and it is noticeable that a
change in dose will influence the exposure scan speed for a given source power.

– Routing, the routing is responsible for the order of the fields that are exposed. The
routing influences the temperature field during simulation.

– Scan direction, the scan direction determines the direction of the slit during exposure
of a field. Per field, the scan direction can be upwards or downwards. This effect will
influence the direction of overlay.

These input parameters are stored in ϕ, where the dose is a continuous parameter in time in
contrast to the routing and the scan direction. The latter input parameters consist of integers
only with predefined values.

In order to perform simulations, a nominal set of input parameters is defined. The substrate
is exposed to a dose of 80 J m−2 and a meandering routing with alternating scan directions per
field is used. This nominal experiment is illustrated in Figure 7.12. The colours indicate the
field order during exposure, with black indicating the start position and white indicating the
end position. The red markers indicate the scan direction per field, where an upper triangle
indicates a scan motion in positive y direction and a lower triangle indicates a scan motion in
negative y direction.
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Meander routing with dose of 80 J/m2.

Figure 7.12: Nominal experiment with meander routing. The colours indicate the field order
during exposure, with black indicating the start position and white indicating the end position.
The red markers indicate the scan direction per field and the fields are connected with the blue
line.

7.6 Model Validation

The model is validated by means of a simple hand calculation. First, a nominal simulation is
performed with the routing illustrated in Figure 7.12. The corresponding temperature response
that makes up the overlay is illustrated in Figure 7.13.

A simple hand calculation is performed in order to validate the model. First, the power at
substrate level according equation (7.45) is:

PEUV = 250 · 0.0046 · 0.5 = 0.575 W (7.46)

The scan slit has a width of 26 mm and according equation (2.1) scan speed becomes:

vscan =
0.575/0.026

80
= 0.276 m s−1 (7.47)

One field consists four nodes in y direction. Therefore, the exposure duration per node is:

texp =
fh/4

vscan
=

33 · 10−3/4

0.276
= 0.0298 s (7.48)

where fh is the height of one field. The total heat energy received by the exposed slice of the
field is:

qin = PEUV · texp = 1.7 · 10−2 J (7.49)

The outgoing heat is:

qout = κsub · hsub · texp = 149 · 0.775 · 10−3 · 0.0298 = 3.4 · 10−3 J (7.50)
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Here, κsub is the heat conductivity and hsub the height of the substrate respectively. These
values can be found in Table 7.3 and Table 7.1. By using the thermal heat capacitance, the
increase in temperature can be calculated. First, the mass of exposed substrate is calculated:

msub = ρsub ·d ·b0 ·hsub = 2329 ·4.7 ·10−3 ·26 ·10−3 ·0.775 ·10−3 = 2.21 ·10−4 kg (7.51)

Here, d and b0 are the depth and width of the scan slit respectively and ρsub is the density of
the substrate. The temperature rise calculated according:

∆T =
qin − qout

cpmsub
=

1.7 · 10−2 − 3.4 · 10−3

705 · 2.21 · 10−4
= 0.09 K (7.52)

A nominal simulation with meander routing and with a time step of ∆t = 0.01 is performed.
The temperature field used for overlay deformations is illustrated in Figure 7.13. It can be seen
that the hand calculation is of the same order as the result of the simulation.

Figure 7.13: Temperature response for overlay of meandering routing. Colours indicate mag-
nitude of temperature.
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8
Analysis of Simplified Model

This chapter is devoted to the analysis of the simplified thermo-mechanical model and the
performance of existing experiment designs. In Section 8.1, a thorough sensitivity analysis is
performed on the simplified thermo-mechanical model. Sensitivity analyses give useful insight
into the behaviour of the model, but are also necessary in order to build statistical information
about model parameters and, therefore, are required for experiment design. Next, in Section 8.2
the non-linear behaviour of the simplified model is investigated. In Section 8.3 the three stan-
dard routings that are currently used for experiments are described. Thereafter in Section 8.4, a
least squares estimation is performed in order to obtain the model parameter subset estimates.
In Section 8.5, the routings are evaluated on their performance by determining statistical in-
formation about the model parameters. Finally in Section 8.6, sensitivity information of the
experiments – or so-called fingerprints – is interpreted in order to gain a deeper understanding
where the performance difference of the experiments come from.

8.1 Sensitivity Analysis

In Chapter 3 it was shown that the direct sensitivity was the most applicable method for the
simplified model in terms of accuracy and computational power. The direct sensitivity is de-
veloped by expressing the analytical derivative of the system and solving that expression. The
sensitivity of interest is the overlay sensitivity with respect to the model parameters. Overlay
can be calculated according equation (7.41) with f the thermal force vector defined in equa-
tion (7.42). The simplified model consists of two parts, a thermal part and a mechanical part,
where the thermal part, or thermal solution, is captured in this force vector f.

Thermal Part In order to construct the direct sensitivity of overlay to model parameters, it
is necessary to derive the thermal sensitivity first. From Section 7.3.1 the thermal equation of
the model was described by:

M1T
k+1
f = M2T

k
f + M3Q

k+1
f + M4T

k+1
c

The direct sensitivity with respect to the model parameters p gives the following expression,

dM1

dpm
Tk+1

f + M1
dTk+1

f

dpm
=
dM2

dpm
Tk

f + M2
dTk

f

dpm
+
dM3

dpm
Qk+1

f + M3
dQk+1

f

dpm
+

dM4

dpm
Tk+1

c + M4
dTk+1

c

dpm
(8.1)
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where the sensitivity of dM3
dpm

= 0 and the derivative of the constraint temperature vector dTk+1
c

dpm
=

0. This will lead to the final expression of the direct sensitivity for the thermal part as,

M1
dTk+1

f

dpm
= −dM1

dpm
Tk+1

f +
dM2

dpm
Tk

f + M2
dTk

f

dpm
+ M3

dQk+1
f

dpm
+
dM4

dpm
Tk+1

c

(8.2)

with,

dM1

dpm
=
dCp,ff

dpm
+
dKc,ff

dpm
∆t

dM2

dpm
=
dCp,ff

dpm
dM4

dpm
= −

dKc,fc

dpm
∆t (8.3)

The analytical expressions of the system matrix sensitivities in equation (8.3) are not known, but
can be computed using a Finite Difference (FD) scheme. In contrast to normal FD sensitivities,
these are computationally efficient. The direct method is no longer purely analytical, but it
is so-called Semi-Analytical (SA). It should be noted that a forward finite difference scheme
is sufficient (see equation (8.4)), since the system matrices Cp and Kc are linearly dependent
on the model parameters. This also implies that the semi-analytical method leads to exact
sensitivities just as the purely analytical method, since no truncations are imposed.

dCp,ff

dpm
=

Cp,ff(pm + ∆pm)−Cp,ff(pm)

∆pm
(8.4)

Mechanical Part The mechanical solution is used to obtain the sensitivity of the overlay
with respect to the model parameters. The thermal force vector is used to combine the thermal
solution with the mechanical solution. For convenience, the thermal force vector f is repeated.

f = L0 + L1T

The direct sensitivity method for the mechanical equation of the system is expressed by:

dK

dpm
u + K

du

dpm
=

df

dpm
(8.5)

Which can be rewritten in the form:

du

dpm
= K−1

(
df

dpm
− dK

dpm
u

)
(8.6)

The thermal force vector sensitivity is given by,

df

dpm
=
dL0

dpm
+
dL1

dpm
T + L1

dT

dpm
(8.7)

and therefore the overlay sensitivity is expressed by:

du

dpm
= K−1

(
dL0

dpm
+
dL1

dpm
T + L1

dT

dpm
− dK

dpm
u

)
(8.8)
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8.1.1 Validation

The derived sensitivity equations must be validated and this can be achieved by using the finite
difference (FD) sensitivity as a reference. The finite difference method perturbs the model
parameters by a certain amount and performs a complete new simulation. Subsequently, the
FD sensitivity is calculated in the same manner as equation (8.4), but overlay O is used instead.

A nominal simulation is performed as is illustrated in Figure 7.12. In Figure 8.1 the overlay
sensitivity response with respect to model parameter p1 is illustrated for the finite difference
method and the direct method. A 1% perturbation of the model parameter is used. It can
be seen that the shape of the direct method is equivalent to the shape of the finite difference
method. It is tempting to say that the implementation of the direct sensitivity method is correct,
however, the remaining error must still be evaluated. Note, although only one model parameter
is illustrated in the figure, all the remaining model parameter sensitivities show similar results.
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Figure 8.1: Overlay sensitivity response for p1 calculated with finite difference
method and direct method. On the left, a slice of the overlay sensitivity response is
illustrated. On the right a close-up is made to show the difference.

As was mentioned, an error still remains. This error can be explained by the truncation error
that is made when using the FD method. The truncation error of the FD method is given by
O(∆p), and since a perturbation of 1% is used, a truncation error of order 10−2 is expected. It
is known that the direct sensitivity leads to the exact solution and from Figure 8.2 it can noticed
that the relative error between both methods is of order 10−2. Hence, it can be concluded that
the implementation of the direct method is reliable.
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Figure 8.2: Relative error between Finite Difference method and Direct method.

In order to clarify the difference between the finite difference method and the direct method and
their accuracy, multiple step-sizes are used as model perturbations. For one overlay response
yr the result is shown in Figure 8.3. From the figure, it can be seen that the ideal (relative)
perturbation step-size for the FD method lies between 10−4 and 10−2. In this region, the
response remains almost constant. When a step-size smaller than the ideal region is chosen, the
response becomes more noisy and will end up in an unstable response. This can be appointed
as numerical noise and is known as the condition error. The condition error is indicated by
the growing response on the left in the figure. When a step-size larger than the ideal region is
chosen, the derivative becomes unreliable due to truncation. This is indicated by the decreasing
response on the right.
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Figure 8.3: Different perturbation step-sizes for Finite Difference method and Direct method.

It is noticeable that the response of the direct method remains constant and is not influenced
by the different relative step-sizes. Although it cannot be seen, the direct method can be
influenced by condition errors, since condition errors occur due to computational limitations.
The advantage of the direct method is that it is linear in its response. Hence, accuracy remains,
even when perturbations are off proportional. Note, this advantage only holds since Cp and
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Kc are linear in the model parameters.

8.1.2 Model Parameter Subset

When the simplified model is subjected to experiment design, a well chosen subset of the model
parameters p∗ is selected to improve their statistical accuracy. A subset of model parameters is
useful to reduce the complexity of finding an optimal experiment. It will reduce the complexity
of finding least square estimates as well. However, the parameter subset cannot be chosen
arbitrary, it must consist of parameters that have a significant impact on overlay performance
but also in balance with the currently available uncertainty information. In other words, a
model parameter with moderate impact on overlay, but with a currently uncertain parameter
value, might be chosen above a parameter that has a significant impact on overlay, but with a
currently high accuracy of its value.

A sensitivity analysis is useful to investigate the impact on overlay per model parameter.
Since the model parameters do not have the same unit, it is not possible to make a fair com-
parison on the overlay impact per parameter. Fortunately, a small adjustment can be made
in order to obtain dimensionless overlay sensitivities. These kind of sensitivities are known as
logarithmic sensitivities and are calculated according:

d(log O)

d(log pm)
=

1
OdO
1
pm
dpm

=
pm
O

dO

dpm
(8.9)

The logarithmic sensitivities indicate the relative ”strength” of the influence between the model
parameters on overlay. The logarithmic sensitivities are calculated for all model parameters and
the absolute mean value per parameter sensitivity response is calculated. This mean value allows
for relative comparison on impact on overlay IO(pm) between the different model parameters.

IO(pm) = mean

(∣∣∣∣ d(log O)

d(log pm)

∣∣∣∣) (8.10)

The result of the relative impact on overlay per model parameter is graphically represented in
Figure 8.4.
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Figure 8.4: Relative impact on overlay per model parameter, obtained by calculating the
logarithmic sensitivities.

From the figure, it can be seen that the first four highest mean impact values are associated
with model parameters of the substrate. This result is not surprising, since the heat load is
directly applied to the substrate. The heat capacitance and density of the substrate show the
same impact on overlay. This can be appointed to the relationship of both model parameters in
equation (7.1). As a consequence, these model parameters are completely correlated. The same
behaviour can be seen for the heat capacitance and density of layer 1 and layer 2, but their
impact on overlay is minor. In the preliminary calibration investigation, mechanical model pa-
rameters were neglected and, as a result, not included in the model parameter subset. However,
from Figure 8.4 it becomes clear that mechanical model parameters have significant impact on
overlay. Note that the impact on overlay for, for instance, the stiffness in x direction of the top
burls is zero. The stiffness in x direction is neglected and captured in the shear stresses, as was
explained in Section 7.2.2. It can be observed that the tangential stiffness of the top burls in
yz has more impact on overlay than the tangential stiffness of the top burls in xz. This may
be surprising, since the model is symmetric, but this effect can be explained by the fact that
the fields are exposed by a scanning motion in y direction. Therefore, perturbation of Gzy will
have more influence on overlay than perturbation of Gzx.

The tangential stiffness of the top burls is a mechanical model parameter with moderate to high
impact on overlay and is currently rather uncertain. Therefore, this model parameter is useful
to investigate during experiment design.

The IR/EUV ratio is a thermal model parameter and has moderate impact on overlay, but
is currently quite uncertain. Therefore, the impact on overlay performance is seriously affected
and its statistical variance must be improved during experiment design.

At last the heat capacitance of the substrate is included. This model parameter is a thermal
parameter as well, has a very high impact on overlay performance, but its value is already
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known with high accuracy. Still this value is included in the parameter subset to investigate
experiment design with two model parameters that may look alike in their response (this will
be seen later on). A list of the model parameter subset p∗ can be seen in Table 8.1.

Table 8.1: Overview of model parameter subset p∗ subjected to experiment design.

no. model parameter subset

1 Heat capacitance cp of the substrate.

2 Tangential stiffness Gzy of the top burls.

3 The IR/EUV ratio.

8.1.3 Sensitivities of Model Parameter Subset

The overlay sensitivity of the model parameter subset can be made visible. These kind of images
will improve the understanding of the parameter sensitivity information and how each parameter
affects the overlay. For the nominal simulation, the overlay image is depicted in Figure 8.5. The
arrows indicate the magnitude and direction of deformation. The colours indicate the direction
of deformation in y direction.

Figure 8.5: Overlay response for meander routing.

When the sensitivity for cp is calculated, its direction can be plotted for all nodes. As before,
the arrows indicate the direction and magnitude at the associated node and the colours indicate
the sensitivity in y direction. In Figure 8.6 the sensitivity information, or so-called fingerprint,
for cp is illustrated.
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Figure 8.6: Fingerprint of cp for nominal experiment.

The direction of the fingerprint of cp is (almost) a reversed copy of the overlay response. This
is a logical consequence when understanding the characteristic of heat capacitance. When the
heat capacitance is increased, more energy is required to rise the temperature. Subsequently,
the overlay deformations will be reduced.

In Figure 8.7 the fingerprint of the tangential stiffness of the top burls in y direction is
illustrated. It is noticeable that the sensitivity direction is mostly in y direction. This result is
expected, since the tangential stiffness Gzy interacts at the deformations in y direction.
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Figure 8.7: Fingerprint of Gzy for nominal experiment.

In Figure 8.8 the fingerprint of IR/EUV is illustrated. The IR/EUV ratio is a linear model
parameter with the same amplification factor at each node. Therefore, the shape and directions
are identical to the overlay response illustrated in Figure 8.5.

Figure 8.8: Fingerprint of IR/EUV for nominal experiment.

Additional information about the model parameters can be obtained when comparing the fin-
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gerprints. The cp and IR/EUV ratio are both thermal parameters and vary in the (reversed)
direction of overlay. Therefore, it is hard to distinguish these parameters from each other, since
one parameter could counterbalance the other parameter. The shape of the fingerprint of Gzy is
easy to distinguish and unique. Therefore, it is expected that this parameter is less correlated
with the cp and IR/EUV.

Correlation The correlation between the model parameters p∗ can be determined according
the scaled version of the variance-covariance matrix that was given in equation (4.5). The
following correlation matrix is obtained:

C(p∗) =

1 0.47 −0.95
1 −0.56

1

 (8.11)

Here, the rows and columns indicate the model parameters cp, Gzy and IR/EUV ratio, respec-
tively. It can be seen that the correlation between heat capacitance and the IR/EUV ratio is
negative and has a high value of -0.95. The negative sign comes from the fact that an increase
of cp yields in less overlay deformation, whereas an increase of the IR/EUV ratio yields in more
overlay deformation. The high correlation value is due to the characteristic behaviour of both
thermal parameters. As was mentioned, the IR/EUV fingerprint has the exact shape of the
overlay pattern and the fingerprint of cp seems very similar as well (but in reversed direction).
When calculating the inner product of both shapes (that is the calculation of C) the shape
”vectors” are not orthogonal due to the similarity, hence the inner product results in a large
projection.

The correlation of Gzy between cp and IR/EUV ratio is less when compared between the
thermal parameters. This result was expected when looking at the fingerprints. The fingerprint
of the tangential stiffness is more unique and is more easily to distinguish and this concept is
illustrated in Figure 6.3 as well. As with cp and IR/EUV ratio, the correlation between Gzy
and IR/EUV is negative also due to the same principle.

8.2 Model Characteristics and Behaviour

In this section the behaviour of the model, when perturbing the model parameter subset, is
investigated. The parameter perturbation is chosen from 10% to 200% with respect to its
nominal value. Subsequently, simulations are performed and the mean absolute overlay response
MA(O) is stored. The nominal parameter values listed in Table 7.3 are used, together with the
experimental set-up as was mentioned in Section 8.1.1, in order to perform the simulations.

MA(O) = mean(|O|) (8.12)

In Figure 8.9 the overlay response behaviour when perturbing the model parameters is shown.
In the upper left figure the overlay response, associated with the perturbation of the heat
capacitance cp of the substrate, is illustrated. A monotonic decreasing response is visible and
from the figure it is evident that cp does not behave linear. This can be explained by observing
the relation of cp in equation (7.36). The heat capacitance is captured in the right hand side
of the equation, but more important, it is captured in the left hand side as well. This implies
an inverse of cp when obtaining the thermal solution, hence the 1/x behaviour. When the heat
capacitance is increased, more energy is required to let the temperature rise. However, the
energy remains constant and therefore the temperature decreases. This results in less overlay,
which can be seen in the figure.

In the upper right figure, the tangential burl stiffness Gzy in y direction is shown. The same
monotonic non-linear response can be seen. The tangential stiffness is captured in the stiffness
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matrix K and according to equation (7.41) an inverse of K – and thus burl stiffness – is required
to obtain the overlay deformations. The decreasing behaviour is logical as well, since increasing
stiffness results in decreasing deformations.

The lower figure shows the characteristic behaviour of the IR/EUV ratio. The overlay
response is an increasing straight line, which indicates linear behaviour. This linear behaviour
can be explained by equation (7.28) as well. The IR/EUV ratio is a thermal model parameter
linearly captured in Q and appears on the right hand side of the equation. Therefore, the
overlay response remains linear. The positive slope can be appointed to the fact that more
energy results in increasing temperatures and, hence, results in more overlay.

cp substrate (%)
10 20 40 60 80 100 120 140 160 180 200

O
v
er
la
y
(n
m
)

×10-9

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Gzy top burls (%)
10 20 40 60 80 100 120 140 160 180 200

O
v
er
la
y
(n
m
)

×10-10

3.5

4

4.5

5

5.5

6

6.5

7

IR/EUV (%)
10 20 40 60 80 100 120 140 160 180 200

O
v
er
la
y
(n
m
)

×10-10

3

3.5

4

4.5

5

5.5

Figure 8.9: Overlay response when perturbing the model parameter subset. The top left
figure illustrates the overlay response of cp substrate, the top right figure illustrates the overlay
response for the tangential stiffness of the top burls in y direction (equivalent to tangential
stiffness in x direction) and the lower figure represents the overlay response when perturbing
the IR/EUV ratio.

8.2.1 Least Square

The selected model parameters do not behave linear in the system, except for IR/EUV. There-
fore, iterative methods must be applied when solving the least square problem. It is expected
that the non-linear least square problem can be solved using the Gauss-Newton algorithm, since
the curved responses in Figure 8.9 are smooth with low order of non-linearity. Stability and
convergence problems will mostly not arise.

A nominal overlay response O(p)ref is performed which acts as reference overlay measurement.
A disturbance η is added which represents measurement noise. The measurement noise is

- confidential -



Page 118 8.2. Model Characteristics and Behaviour

assumed normally distributed with mean zero and standard deviation of 3σ = 0.5 nm.

O(p)ref,η = O(p)ref + η (8.13)

The least square estimator is found by minimizing the residual vector. The residual vector is
given by:

S(p) = ||Oref,η −O(p)||2 (8.14)

The Gauss-Newton algorithm, together with the orthogonality criterion described in Section 5.2.1,
is used for minimization of S(p) for all the model parameters in the subset.
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Figure 8.10: Least square regression for a non-linear model. Experimental data error r is
minimized with respect to expectation plane.

In Figure 8.10 the progress of the least square estimation is shown. On the x axis, the number of
iterations is plotted and on the y axis the orthogonality criterion is shown. Only four iterations
are required for the orthogonality criterion to be satisfied. Even when cp of the substrate and
IR/EUV ratio are heavily correlated, the algorithm is not hampered and converges rapidly.

Table 8.2: Model parameter subset estimates after optimization of residual vector.

parameter true estimate error (%)

cp 705 674.7 4.30

Gzy 1.281 · 107 1.284 · 107 0.26

IR/EUV ratio 0.625 0.563 10.0

In Table 8.2 the estimates are listed. None of the model parameters are found at their true
value, but the tangential stiffness comes close. The cp and IR/EUV are the worst estimates with
a relative error of 4.30% and 10.0%, respectively. IR/EUV is badly correlated with cp, which
hampers the ability of finding a good estimate. The IR/EUV estimate lies below its true value,
which implies less heat input to the system. Therefore, cp must decrease as well in order to
keep the temperature level the same. Due to this thermal relation, the parameters are heavily
correlated and hamper the least square estimation.
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8.3 Standard Experiments

In order to improve overlay accuracy, standard experiments are conducted, which are subse-
quently used for model parameter estimation. In this section, the standard experiments are
illustrated and the associated overlay results are discussed.

8.3.1 Routings

There are three different type of experiments used within ASML. The experiments are called:
meander routing, spiral routing, and jumpy routing. The meander routing was already ex-
plained in Chapter 7 as the nominal experiment, but is repeated for convenience. For all three
experiments, the dose is constant during the exposure and has an intensity of 80 J m−2 and
she scan direction is alternating between each field exposure. The meander routing involves
of a meander scanning pattern along the fields of the substrate, the spiral routing involves a
spiral exposure pattern along the fields, which starts at the left and the jumpy routing jumps
in a random order from field to field during exposure. The routing sequence per experiment is
illustrated in Figure 8.11.
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Figure 8.11: Meander, spiral, and jumpy routing. The colours indicate the field order during
exposure, with black indicating the start position and white indicating the end position. The
red triangular markers indicate the scan direction per field and the fields are connected by the
blue line.
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8.3.2 Overlay Results

In this subsection, the three standard experiments are used to perform overlay simulations.
The nominal model parameter values listed in Table 7.2 and Table 7.3 are used and the overlay
results are illustrated in the upcoming figures.

The overlay result for the meander routing was already illustrated in Section 8.1. From
Figure 8.12 the meander pattern can be seen. The scan exposure begins at the top left, with
a scan motion in positive y direction. The overlay deformation follows the scan direction, as
is indicated by the arrows and the yellow colour. The first row is exposed from left to right
and this effect can be seen by the arrows, which are tilted to the right. The second row is
exposed from right to left as is illustrated in Figure 8.12, the arrows in the second row follow
the direction of the scan motion in y direction, but they are also tilted to the left, which is the
scan motion in x direction.

The spiral routing is illustrated in Figure 8.13. The same reasoning holds as for the meander
overlay results. However, due to the chosen scanning field order and the associated scan motion
in y direction, some fields are hardly deformed. This happens, for instance, when one field
is scanned in positive y direction and right away the field above is scanned in negative y
direction. This latter field is compensated by the lagging heat from the first illuminated field.
This first field induces deformations in positive y direction in the second field as well, but
the second illumination in the second field induces negative deformations. Hence the overlay
result is approximately zero. For overlay performance this effect might be advantageous, but
for parameter estimation this may not be desired. The response is almost zero and noise might
become dominant.

The overlay result of the jumpy routing is illustrated in Figure 8.14. There are no signifi-
cant differences in the magnitude of the deformations between the overlay results. However, the
overlay shapes are different and this will influence the performance of model parameter estima-
tion. It is difficult to draw conclusions from the overlay results only about their performance.
Additional information is required, such as the fingerprints illustrated in Section 8.1.
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Figure 8.12: Overlay simulation results with meander routing.
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Spiral routing with dose of 80 J/m2.

Figure 8.13: Overlay simulation results with spiral routing.
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Figure 8.14: Overlay simulation results with jumpy routing.

8.4 Model Parameter Estimation

The three standard experiments are investigated for least squares estimation on the model
parameter subset. Two cases are examined, where each case involves two model parameters.
The IR/EUV ratio is an important model parameter, which is quite uncertain. Therefore, this
model parameter is included in both cases. The cases are listed in Table 8.3.
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Table 8.3: Model parameters included in case 1 and case 2 for experiment design.

Parameter case 1 case 2

cp x

Gzy x

IR/EUV ratio x x

For each experiment, a simulation with nominal model parameters p is performed. When the
overlay result Oref is obtained, noise is added in order to represent an experimental measure-
ment. Subsequently, the measured response is used for least squares estimation of the model
parameters and is given by:

Oref,η = Oref + η (8.15)

Here, η represents the normally distributed noise with mean zero. The standard deviation is
3σ = 0.5 nm.

The heat capacitance of the substrate and the IR/EUV ratio in case 1 and the tangential
burl stiffness and the IR/EUV ratio in case 2 are estimated from the meander, spiral and
jumpy routing by means of least squares estimation. In Chapter 8 it was observed that the
model is non-linear in the heat capacitance and tangential stiffness and linear in the IR/EUV
ratio. Due to the non-linearity of cp and Gzy, the Gauss-Newton iterative method with the
orthogonality criterion is used for the least squares problem. The least squares problem is given
by minimization of:

S(p̂) = ||Oref,η −O(p̂)||2 (8.16)

Least squares estimation is performed for case 1 and case 2 for all standard experiments. The
initial values are set to p̂ = 0.9p. The least squares algorithm converges in 3 to 4 iterations,
depending on the case and routing. The convergence rates are illustrated in the figures in
appendix A.1. The algorithm converges fast, since the sensitivities are smooth functions with
low order of non-linearity. Besides, the algorithm has no trouble finding a least squares solution
for all the experiments, even when the model parameters in case 1 are highly correlated. This
correlation can be seen in Section 8.1.3. In Table 8.4 the estimates for both cases and all
experiments are listed.

The true values are not retrieved, as is expected. Although the error is shown, this does not
indicate any statistical information about the model parameters and their uncertainty. For this,
more regression analysis is required, but for now it is shown that the least squares estimation
is not hampered by the choice of experiment or by the choice of the model parameter subset.
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Table 8.4: Case 1 and 2. Model parameter estimation for meander routing.

Case 1 Case 2

MEANDER EXPERIMENT

iter. par. true est. err. (%) iter. par. true est. err. (%)

4
cp 705 735.6 4.4

4
Gzy 1.28 · 107 1.3 · 107 1.5

IR/EUV 0.625 0.717 14.7 IR/EUV 0.625 0.629 0.7

SPIRAL EXPERIMENT

iter. par. true est. err. (%) iter. par. true est. err. (%)

3
cp 705 679.2 3.7

3
Gzy 1.28 · 107 1.24 · 107 3.0

IR/EUV 0.625 0.570 8.8 IR/EUV 0.625 0.640 2.4

JUMPY EXPERIMENT

iter. par. true est. err. (%) iter. par. true est. err. (%)

4
cp 705 671.4 4.8

3
Gzy 1.28 · 107 1.11 · 107 13.4

IR/EUV 0.625 0.456 27.1 IR/EUV 0.625 0.501 19.9

8.5 Statistical Investigation

The three standard experiments are subjected to least squares estimation. However, one esti-
mation does not provide additional statistical data about the model parameters. It is known
that the model behaves non-linear in its model parameters. Hence, profiling techniques are
applied in order to investigate the severity of non-linearity. When this is within certain bounds,
linear approximations are sufficient to obtain reliable statistical information about the model
parameters.

In the following subsections, the profiling techniques are applied to the meander, spiral, and
jumpy experiment. At last, a comparison is made between the different experiments and their
performance on the accuracy of estimation of the model parameters.

8.5.1 T-profiling Standard Experiments

The meander routing is subjected to t-profiling in order to investigate the severity of non-
linearity in the confidence response for the model parameters in the associated cases. The
results are shown and discussed only, since this technique is extensively described in Chapter 5.

- confidential -



Page 124 8.5. Statistical Investigation

674.52 705.08 735.65 766.21 796.78

0.99

0.95

0

0.95

0.99

δ(cp)
-3 -1.5 0 1.5 3

τ (cp)

-3

-1.5

0

1.5

3

t-profile plot for cp

Linear
t-profile

0.52 0.62 0.72 0.81 0.91

0.99

0.95

0

0.95

0.99

δ(IR/EUV )
-3 -1.5 0 1.5 3

τ
(I
R
/E

U
V
)

-3

-1.5

0

1.5

3

t-profile plot for IR/EUV

Linear
t-profile

Figure 8.15: T-profiling meander routing for parameter case 1. The heat capacitance of the
substrate and the IR/EUV ratio behave non-linear in their confidence response due to high
correlation.
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Figure 8.16: T-profiling meander routing for parameter case 2. The tangential burl stiffness
behaves non-linear in its confidence response, whereas the IR/EUV ratio behaves almost linear
in its confidence response due to low to moderate correlation.

In figures 8.15 and 8.16 the t-profiling is illustrated for the meander routing for model parameter
case 1 and 2. From the figures, it is immediately evident that the confidence response behaves
almost linear in the model parameters. Small deviations from the (dotted) reference line are
visible, indicating the presence of non-linear behaviour. In Figure 8.15 it can be seen that both
plots are similar. This can be explained by the fact that the model parameters of case 1 are
highly correlated.

When observing Figure 8.16, two different t-profile plots are visible. These parameters
are less correlated than the parameters in case 1. The tangential burl stiffness is a non-linear
parameter, as was observed in Chapter 8 and the non-linearity can be confirmed by the deviating
t-profile plot. The IR/EUV ratio is a linear model parameter with respect to overlay. Since the
correlation is low to moderate, this linear behaviour is transferred to the confidence t-profile
response, as can be seen in the right figure. Note, due to some correlation of the latter t-profile
response, it is not exactly linear but this is hardly visible in the figure.
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Figure 8.17: Confidence regions of 95% for meander routing for both cases. The linearly
approximated confidence regions are sufficient to represent the true confidence regions.

In Figure 8.17, the true 95% confidence region, linearly approximated 95% confidence region
and the profile trace vectors are illustrated for the meander routing. The linearly approximated
confidence regions are obtained by linearising the model around p̂, see equation (5.41). The true
confidence regions are sufficient approximated by the linearly confidence regions, as is expected
when observing the t-profiling results. For case 1, the profile trace vectors intersect at a sharp
angle and they almost coincide. This phenomenon indicates correlation between the model
parameters and results in an elongated ellipsoidal confidence region.

The profile trace vectors for parameter case 2 (right figure) indicate less correlation. As
a result, the confidence region is less elongated, which results in a smaller confidence region.
When comparing both ellipsoids, it can be observed that the confidence bound for IR/EUV is
smaller when its value is estimated together with the tangential burl stiffness.

Finally, the true nominal parameter values, indicated by the triangle, lie within both confi-
dence regions.

The same reasoning holds for the t-profiling results of the spiral and jumpy experiment. The
associated t-profiling responses and confidences regions can be found in appendix A.3.

8.5.2 Routing Performance

In the previous subsection, it was seen that the true confidence regions can be approximated
by the linearised confidence region for all 3 experiments. For both parameter cases, these
95% confidence regions are illustrated in Figure 8.18. It should be noted that the associated
parameter values are not shown, in order to compare the confidence region per experiment at
the point of the estimates.
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Figure 8.18: Comparison of 95% confidence regions for both parameter cases. For case 1,
the jumpy routing seems to result in the highest accuracy for both parameters. For case 2, the
meander routing seems the best routing to obtain highest accuracy.

The left figure represents the confidence regions for all three standard experiments for the
model parameters of case 1. The spiral routing is the worst performing experiment, since the
confidence region is the most elongated. The best performing experiment for case 1 is the jumpy
routing. The confidence region and bounds are the smallest, indicating the highest accuracy for
cp and IR/EUV. From the left figure, it is evident that all experiments are not able to reduce
correlation. This is expected when looking at the behaviour and fingerprints of the associated
model parameters, see Section 8.1.3.

The right figure represents the confidence regions for all three standard experiments for the
model parameters of case 2. The jumpy routing is the worst performing experiment, although
the spiral routing seems to have similar performance on accuracy. For the model parameters in
case 2, the meander routing is the best experiment to obtain the highest accuracy of the model
parameters.

The correlation between the model parameters for each experiment is calculated and listed
below. The rows and columns indicate the model parameters cp, Gzy and IR/EUV ratio,
respectively. The entry coloured in red indicates the correlation between the model parameters
of case 1 and the entry coloured in blue indicates the correlation between the model parameters
in case 2.

Cmeander =

1 0.47 −0.95
1 −0.56

1

 , Cspiral =

1 0.60 −0.97
1 −0.61

1


Cjumpy =

1 0.61 −0.91
1 −0.64

1

 (8.17)

It can be seen that the correlation varies slightly between the different experiments. Although
the performance of the standard experiments can be determined using the previous techniques,
it is still not clear why one particular experiment has a better performance on model parameter
accuracy compared to another. In the following section, the fingerprints are investigated in
order to investigate where the performance difference between the experiments comes from.

8.6 Experiment Fingerprints

The performance of the three standard experiments are explored and determined in the previous
section, but it is not known where their performance comes from. In order to investigate this,
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the sensitivities – or so-called fingerprints – of the model parameter subset are evaluated for
each experiment in the following subsections.

In Section 8.1.3, the shapes and the origin of correlation between model parameters is
explained and is not repeated in the following subsections, since it is analogous for the spiral
and jumpy fingerprints.

8.6.1 Meander Routing

The sensitivity information for the meander routing was already obtained in Section 8.1.3.
The fingerprints for cp, Gzy and IR/EUV ratio are illustrated in the figures 8.6, 8.7 and 8.8,
respectively.

Two essential ingredients are required to obtain a good performing experiment: little cor-
relation between model parameters and a high signal to noise ratio. The correlation matrix in
equation (8.17) reveals a correlation, for model parameter case 1, that lies between the corre-
lation value of the remaining experiments. In Figure 8.18 it can be seen that the confidence
region of the meander routing lies between the spiral and jumpy routing as well.

For model parameter case 2 the meander routing is the best performing, since the correla-
tion for the meander routing is the lowest and the meander routing has the smallest confidence
region according to Figure 8.18. From the fingerprints, it is obvious to conclude that the reduc-
tion of correlation is obtained by the horizontal scanning motion. Horizontal scanning motion
introduces more overlay deformations in the horizontal direction compared to the remaining ex-
periments. Therefore, the IR/EUV ratio sensitivity is more pointed in the horizontal direction
as well, but the tangential stiffness sensitivity remains in the vertical direction. This makes the
fingerprint more orthogonal to each other which has a reduction in correlation as a consequence.
There are no indications that the signal to noise ratio is influencing the performance compared
to the rest. Hence, the correlation is decisive for model parameter accuracy.

8.6.2 Spiral Routing

The spiral routing is performing worse in both model parameter cases, as can be seen in Fig-
ure 8.18. The fingerprints are calculated and illustrated in Figure 8.19.

Two essential ingredients are required to obtain a good performing experiment: little cor-
relation between model parameters and a high signal to noise ratio. The correlation matrix in
equation (8.17) indicates high correlation for both model parameter cases. Correlation between
parameters results in a tilted ellipsoid which is elongated. This results in an increase of the
confidence region and therefore a decrease in model parameter accuracy.

From the fingerprint of Gzy, an undesired effect can be seen. Due to the spiral routing
and the associated scan motions, some overlay responses are nullified, as is mentioned in Sec-
tion 8.3.2. Therefore, gaps appear where the sensitivity information in Gzy is hardly present.
This nullification reduces the signal to noise ratio, hence resulting in more model parameter
uncertainty.
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Figure 8.19: Fingerprints of cp, Gzy, and IR/EUV for spiral routing.

8.6.3 Jumpy Routing

The jumpy routing performs the best in model parameter case 1 and performs the worst in
model parameter case 2, as can be seen in Figure 8.18. The fingerprints are calculated and
illustrated in Figure 8.20.

Two essential ingredients are required to obtain a good performing experiment: little cor-
relation between model parameters and a high signal to noise ratio. The correlation matrix
in equation (8.17) indicates the lowest correlation for model parameter case 1, but the highest
correlation for model parameter case 2. From the fingerprints it can be observed that the signal
to noise ratio is equivalent to that of the meander routing. Therefore, it can be concluded that
the correlation determines the performance of the experiment in terms of the accuracy of the
model parameters.
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Figure 8.20: Fingerprints of cp, Gzy, and IR/EUV for jumpy routing.
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9
Optimal Experiment Design

This chapter is devoted to the optimization of an experiment design, which is subsequently
conducted on the simplified thermo-mechanical feedforward model. The input parameters to
be optimized are the dose, routing, and scan direction per field.

At first, the synthesis of the input parameters is investigated in Section 9.1 and, subse-
quently, in Section 9.2 experiment optimization for model parameter case of cp and IR/EUV,
and Gzy and IR/EUV is executed. The choice of model parameter per case can be found in
Section 8.4. When the optimal experiments are obtained, a thorough analysis is performed in
Section 9.3 to gain statistical information about the model parameter accuracy and to acquire a
deeper understanding of the performance of the optimal experiment. In Section 9.4, the optimal
experiments are compared against a brute force approach in order to investigate the efficiency
of the used optimization algorithm. Finally in Section 9.5, the conversion of model parameter
accuracy to overlay accuracy is given to see the importance of experiment design as a means to
improve overlay performance.

9.1 Input Parameters for Experiment Design

The model input parameters are parameters that are used to provide the system required
information before it can execute a simulation. One can think of model input parameters as
the set-up of the environment of the system. The input parameters are stored in ϕ, which is
referred to as the design vector. The design vector spans a space of possible experiments, which
is called the design space Φ, see Section 4.5. For the simplified model, the input parameters
are dose, routing, and scan direction per field and are explained in Section 7.5.

It can be noted that the dose is a continuous input parameter which varies between a lower
and an upper limit. These limits can be determined via equation (2.1), where the scan speed
vscan is the limiting factor. The dose is investigated separately, as will be seen in Section 9.2.2.

The routing and the associated scan direction per field are a different type of input param-
eters. These input parameters can have integer values only. The scan direction can only take
values of 1 or -1, indicating upward- or downward scan direction, respectively. The routing is a
combinatorial problem, since all fields must be addressed once during an exposure sequence, but
cannot be exposed more than once. Standard gradient-based optimization algorithms are not
applicable as it is difficult to obtain sensitivity information of the discrete integer combinatorial
problem.

Since gradient-based optimization techniques are not applicable, direct optimization algo-
rithms might be an alternative. This type of algorithm searches the surface of the objective
function by evaluating it at a certain point, make a perturbation in the input parameters (which
can be discrete), evaluate the objective function again. When the perturbation has resulted in
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a reduction of the objective value, the algorithm accepts that point and repeats the process
from that point until there are no further improvements. There exist several direct methods,
which can make clever steps, but due to the non-convexity and the immense design space it is
expected that this process is very inefficient.

A different solution approach might be a genetic algorithm. Although its working principles
are not explained in detail, it works by using populations of various designs in the design space
and introduce random genetic manipulation between these designs (Garcia, 1999). It is inspired
by the evolution theory of Darwin. This algorithm is capable of handling discrete integer values
and it might be possible to find a global optimum. However, due to the fact that it uses
populations of various designs, makes it computationally very cumbersome in terms of storage.

At last, the simulated annealing algorithm can be used for the optimization of the exper-
iment. Simulated annealing is a direct optimization method and interacts directly onto the
objective function surface. In contrast to the other direct methods, this one includes random-
ness in the acceptance of a new search direction. Hence, it is theoretical possible to find a
global optimum as is for the genetic algorithm. It is expected that convergence of the simulated
annealing algorithm is in the same order as the previous direct methods, but the advantages
is the ability to overcome the severe non-convex design space. Besides, this algorithm requires
considerably less computational effort in contrast to the genetic algorithm.

In the following subsection, the working principle of the simulated annealing algorithm is ex-
plained in more detail and a description is given on how to use this algorithm on the simplified
feedforward model.

9.1.1 Simulated Annealing

The Simulated Annealing (SA) algorithm is a heuristic method for obtaining good solutions to
combinatorial optimisation problems. Since finding the best optimal experiment is impossible or
impractical, this heuristic method can be used to speed up the process of finding a satisfactory
solution.

The SA algorithm is inspired by the physical annealing process in materials. Physical
annealing refers to the process of finding low energy states of a solid by initially melting the
substance and subsequently lowering the temperature at a slow rate. In this way, the atoms of
the solid are restructured. If the cooling is not done slowly, the resulting solid will not attain
the ground state, but will be frozen into a metastable locally optimal structure.

In comparison with the optimisation algorithm, the different states of the solid correspond
to the different feasible solutions to the combinatorial optimisation problem of the routing. The
energy of the system corresponds to the objective function to be minimised. These objective
functions are defined in Section 4.5. During the optimisation, a temperature function T (t) is
used to represent the cooling effect. At the beginning of the optimisation the temperature is
high and worse objective values can be accepted according the acceptance function exp(−δ/T ).
This allows considerable variation between experiment states and makes it possible to overcome
local minima. The acceptance of worse objective values gradually decreases during cooling, as is
evident from the acceptance function. As a result, the experiment state becomes more ”frozen”
and eventually a (sub)optimal solution is found.

In Eglese (1989) a pseudo-code of the SA algorithm is given, which is illustrated in algorithm
1. At first, an initial experiment state i is selected from the design space Φ, which represents
a feasible routing and scan direction setting. Next, an initial temperature T is chosen. This
temperature is analogous to the temperature of the physical annealing. There are no descriptions
for selecting a good initial temperature, but for a rule of thumb: chose T twice the value of δ
for which the difference in objective values is still acceptable. For example, if values of δ = 2
are still accepted as differences between objective values (see line 8 in algorithm 1), the initial
temperature is set to T = 4. In this way, there is a 60% chance that the new experiment state
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j is accepted. When the initial temperature is selected, the algorithm starts with generating a
new experiment state j, which is a neighbour of state i. A proper neighbourhood function is
necessary and will be explained in Section 9.1.1.1. The new state j is used to compare the change
in objective function with respect to state i. When the new state leads to a decrease of the
objective function, the new state j is accepted. Otherwise, a uniform random number between
0 and 1 is drawn and is subjected to the acceptance function. When the random number is
below the acceptance function, the new state is still accepted. The inner loop of algorithm 1
determines how many neighbourhood moves are to be attempted at each temperature, where
N(t) determines the amount of attempts per temperature. The outer loop is responsible for the
decrease in temperature. There exist various temperature T (t) functions (Romeijn and Smith,
1993; Szu and Hartley, 1987), but a standard function is given below:

T (t) = αtT t = 1, 2, ... (9.1)

Here, T is the initial temperature and the parameter α determines the cooling rate. According
Eglese (1989) typical values of α used in practice lie between 0.8 and 0.99.

Algorithm 1: Simulated Annealing algorithm in pseudo-code

1 Select an initial state i ∈ Φ;
2 Select an initial temperature T > 0;
3 Set temperature change counter t = 0;
4 while stopping criterion false do
5 Set repetition counter n = 0;
6 while n < N(t) do
7 Generate state j, a neighbour of i;
8 Calculate δ = φ(j)− φ(i);
9 if δ < 0 then

10 i← j;
11 else if random(0,1) < exp(−δ/T ) then
12 i← j;
13 end
14 n← n+ 1;

15 end
16 t← t+ 1;
17 T ← T (t)

18 end

9.1.1.1 Neighbourhood Functions

In order to generate a new experiment state j in the simulated annealing algorithm, a suitable
neighbourhood function is required. Obtaining a suitable neighbourhood function can become
quite a challenge and may involve deeper understanding of the system. In general, randomiza-
tions of state variables are used, for instance randomize the order of the routing sequence.

When observing the analyses in Chapter 8, it was observed that there exists an unimaginable
number of routing settings that are all performing roughly equivalently, but are located far from
the global optimum. Only a specific shape is able to enhance model parameter accuracy. It is not
smart to build a neighbourhood function that continuously randomizes the routing sequence and
scan directions, since a great amount of luck is required to obtain a good performing routing. For
the experiment optimization of the thermo-mechanical feedforward model, two neighbourhood
functions are developed which are illustrated in Figure 9.1.
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Figure 9.1: Geometrical interpretation of neighbourhood functions. The red dot indicates
first randomly selected field, the green dots represent available fields for the second selection.

The dots in the figure represent the fields. For both neighbourhood functions, one field is
selected randomly from all possible fields. This field is marked as the red dot in the figure. For
the neighbourhood function illustrated in the left, a second field is chosen randomly from the
remaining fields represented by the green dots. As is observable, this second field can be picked
all over the substrate. When the two fields are selected, their positions in the routing order
vector are exchanged. This is also known as a two swap-opt. For the scan direction, two fields
are picked in the same manner. Subsequently, a random number is drawn which decides the
scan direction upward or downward.

The neighbourhood function illustrated on the right side of the figure is slightly different.
The selection of the first field is equivalent as the previous neighbourhood function and is
indicated by the red dot. However, selection of the second field is restricted to fields nearby
the first selected field as is indicated by the green dots. This allows variations of the routing
which affects small area’s at the substrate. The scan directions are chosen identical as before,
but with the nearby selection procedure.

Both neighbourhood functions will result in different routings. The first neighbourhood
function will most likely generate a routing similar as the jumpy routing, whereas the second
neighbourhood function with the nearby search will most likely generate a more ordered routing,
like the spiral or meander routing. It was seen that this could make a significant influence per
model parameter case. It should be noted that variations of the mentioned neighbourhood func-
tions are possible. More fields could be selected, or the neighbourhood function can be changed
during the optimisation. For instance starting the optimization with the first neighbourhood
function and when convergence is almost achieved, switch to the nearby search neighbourhood
function. This allows for a improved local optimum which is hard to obtain by spatially large
permutations of the first neighbourhood function.

9.2 Experiment Optimization

In this section the experiment, used for model parameter estimation, is optimized. At first,
suitable objective functions are discussed, followed by an optimization of the dose. Thereafter,
the experiment is optimized for all experiment input parameters using the simulated annealing
algorithm.
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9.2.1 Objective Functions

A suitable objective function is important to make the experiment optimization succeed. The
objective function must be capable to describe the performance of the experiment by one single
scalar value computed from the information matrix M.

Both model parameter cases involve only two model parameters. The objective functions
used for experiment design are given in Section 4.5 and an overview of their properties are listed
in Table 4.2. The D-optimality criterion is chosen as an objective function for its acceptable
performance for two model parameters.

It was seen that correlation has a significant impact on parameter accuracy. The ACE1
objective function aims at a reduction of correlation, while constraining the smallest eigenvalue
of the information matrix and thus including the E-optimality. This objective function consist
of a constraint and due to the discrete optimization problem, it is included by means of a penalty
function given by:

φ̃ = φ+ ppen(max(0, g))2, (9.2)

where ppen is a penalization factor and influences the contribution of the constraint, φ is the
objective function without constraint and g the constraint function given by:

φ = min C2
ij with Cij = max C

∣∣
base

i 6= j

g = 1− λ

pconλbase
(9.3)

Here, λ is the eigenvalue to be constrained, λbase the base value of the eigenvalue to be con-
strained and pcon is a constraint factor which can influence the constraining bound of λ. By
using a penalization function, the objective value φ̃ grows quadratically when the experiment
design lies in the infeasible domain of the design space Φ.

9.2.2 Dose Optimization Analysis

The dose determines the amount of EUV light exposed to the substrate and can vary per field.
As mentioned before, the dose is a continuous parameter which lies between a lower and upper
bound determined by the scan speed limitations of the lithography machine. The dose can
typically be optimized using a gradient-based optimization and for that, sensitivity information
of the dose on routing performance is required. This requires expensive sensitivities of the in-
formation matrix, which is built of sensitivities as well, and as the dose can differ per field the
gradient-based optimization requires enormous computational power. The impact of variation
of the dose per field is investigated in order to attempt a reduction in computational power
without loss of experiment performance on model parameter accuracy.

An approach is to construct basis functions by hand and investigate the change in performance
of the experiment 1. The following functions are incorporated:

1. Constant functions.

2. Linear functions.

3. Sine and cosine functions.
1A singular value decomposition (SVD) analysis was performed at first by generating multiple randomized

dose inputs varying between the lower and upper bound, calculating the D-optimal objective value, scale the
dose input vector by the associate objective value and perform the SVD. This was done in order to acquire
a set of basis functions that has significant influence on experiment performance. The basis functions can be
used to reduce the DOFs of the dose input and hence, reduce the computational effort during gradient-based
optimization. Unfortunately, the SVD did not result in any useful dominant basis function. This is caused by
the high frequency content of the randomized dose input.
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4. Exponential functions.

Combinations of the functions, such as a high or low frequency for the geometric functions,
linear increasing or decreasing functions, or rapid or slow exponential functions are made as
well. In Figure 9.2 the concept of the basis functions is illustrated, where the dose is a function
of the fields on the substrate.
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Figure 9.2: Basis functions for dose input parameter. Constant functions, linear functions,
geometrical functions and exponential functions are investigated.

The basis functions are used to construct a dose input per field and subsequent simulations
are performed with the meander routing. Thereafter, the information matrix M is constructed
for the model parameter subset of case 1 and of case 2. To determine the performance of the
experiment for model parameter accuracy, the correlation between the model parameters and
the D-optimality criterion is calculated. The result is illustrated in Figure 9.3.

In the left graph, the scaled D-optimality objective value is plotted against the basis functions
of the dose. The D-optimality criterion is calculated from the information matrix and a higher
objective value indicates more model parameter accuracy, which is desired. The first few basis
functions perform roughly the same and they correspond to the linear- and the geometrical
functions. The mean dose value for these basis functions is approximately the same. The
remaining basis functions do show significant differences in performance of the experiment. It
is noticeable that the high objective values are associated to a basis function which involves a
high dose for a large number of fields. The best performing dose function is maximum dose
for all fields. It may not be a surprise that the worse performing dose function is a minimum
dose for all fields. This result can be explained from the fact that a high dose results in
higher temperature rises, hence larger overlay deformations. Subsequently, when the overlay
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deformations are larger, the signal to noise ratio increases and thus model parameter accuracy
is improved.

In the right graph, the correlation is plotted against the basis functions. It is observable
that the correlation is hardly affected by the variation of the dose inputs and, therefore, it can
be concluded that maximum dose for all fields will give the best performance for the model
parameters of case 1. Note, the shown analysis is performed with the meander routing, but the
remaining standard routings resulted in equivalent outcomes.
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Figure 9.3: Dose input analysis for model parameter case 1. The left graph illustrates the D-
optimality objective value against the basis functions. The right graph illustrates the correlation
of the model parameter against the basis functions. The best performing dose input consists of
maximum dose for all fields.

Basis functions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

O
b
je
ct
iv
e
va
lu
e

0

0.2

0.4

0.6

0.8

1

1.2
D-optimality criterion for case 2

Basis functions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
or
re
la
ti
on

0

0.2

0.4

0.6

0.8

1
Correlation for case 2

Figure 9.4: Dose input analysis for model parameter case 2. The left graph illustrates the D-
optimality objective value against the basis functions. The right graph illustrates the correlation
of the model parameter against the basis functions. The best performing dose input consists of
maximum dose for all fields.

The analysis is performed on the model parameter subset of case 2 as well. The results are
illustrated in Figure 9.4. Similar characteristics are observed for the D-optimality objective value
and for the correlation between the model parameters. The correlation is slightly more affected
by the variation of the dose input in contrast to case 1. It is noticeable that minimum dose
for all fields results in the lowest correlation, but this effect does not dominate the performance
of the experiment. It can be concluded that maximum dose for all fields will give the best
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performance for the model parameters of case 2. Note, the shown analysis is performed with
the meander routing, but the remaining standard routings resulted in equivalent outcomes. The
maximum dose is set to a fixed value of 80 J m−2 during optimization of the routing and scan
direction for both cases.

9.2.3 Experiment Optimization

The SA algorithm is used to find an optimal experiment in the context of optimal model
parameter estimation. The pseudo-code is given in algorithm 1 and the input parameters
routing and scan direction are used. In the previous subsection, it was found that maximum
dose for all fields resulted in the best experiment performance. Since there are two cases of the
model parameter subset, see Table 8.3, two experiment optimizations are executed.

Optimization for Case 1 In Chapter 8, the standard experiments were examined on their
performance. For the model parameters of case 1,i.e., the heat capacitance cp and the IR/EUV
ratio, the jumpy routing was observed to be the best performing experiment in the context of
model parameter estimation and the associated accuracy. This experiment consists of a random
permutation of the exposure sequence (routing). Therefore, the initial state of the routing and
scan directions for the experiment optimization are randomly generated. The neighbourhood
function, which allows permutations over the whole surface of the substrate, is suitable to
maintain random behaviour and therefore finding an optimal jumpy routing. For this reason it
is used in the SA algorithm.

In Chapter 8 it was seen that the correlation between cp and IR/EUV ratio is hardly influ-
enced by the choice of the routing. From Chapter 8 it is evident that the correlation is expected
due to the thermal characteristics of both parameters. It is not useful to optimize the routing
for a reduction in correlation of the model parameters. Hence, the D-optimality criterion is
chosen as objective function φ in the SA algorithm. The objective function is scaled by the
objective value for the nominal jumpy routing. In this manner, it is easy to see the performance
enhancement with respect to the best performing standard experiment during optimization. It
must be noted that the objective function is multiplied by -1, since the optimization is a mini-
mization of the objective value. The initial temperature is set to T = 0.11, which indicates that
negative fluctuations of 0.055 in the objective function have a chance of approximately 60% to
be accepted. From experience, it is known that the objective value changes in the same order
when perturbing the experiment randomly.
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Figure 9.5: Simulated annealing optimization for case 1 with D-optimality criterion as the
objective function. The blue line indicates the scaled objective value and the red line indicates
the temperature during the simulated annealing process.

The simulated annealing optimization progress is illustrated in Figure 9.5. The blue line rep-
resents the objective value, which is calculated with the D-optimality criterion. The red line
represents the temperature in the SA algorithm and is the most important aspect of the SA
algorithm. In the beginning of the optimization process, the temperature is high and worse
objective values might be accepted. In the figure, it is observable that the objective function
does not start to decrease up to 500 iterations. During these iterations, the solution of the
experiment state can overcome local minima. After 500 iterations, the temperature has gradu-
ally cooled down to a level where the algorithm is more restricted to accept improved objective
values only. Between 500 and 1500 iterations, there is still a possibility to escape local minima
and it can be seen that worse objective values are still accepted. However, the algorithm is con-
verging in general. After 1500 iterations, the temperature is decreased such that the algorithm
behaves like a direct search method. It is not possible to escape local minima and after 2500
iterations, the algorithm has converged. It is most likely that the found minimum is not the
global optimum, but a local optimum instead. Nonetheless, as was mentioned in Section 9.1 the
SA algorithm is used to speed up the process of finding a satisfactory solution. The algorithm
has converged around an objective value of approximately -3.2, which indicates a reduction 3.2
of the confidence area with respect to the jumpy routing.
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Figure 9.6: The optimal experiment for model parameters of case 1 established from the SA
optimization algorithm.

In Figure 9.6 the optimal experiment in the context of parameter estimation of cp and IR/EUV
is illustrated. This experiment is established from the SA optimization algorithm. The routing
is not ordered like the meander or spiral routing and this is expected due to the choice of the
neighbourhood function. The distance between two field exposures is across the whole surface of
the substrate in a jumpy fashion. However, the routing does not seem arbitrarily random, since
the colours indicate an evidently scanning pattern from the lower left- to the upper right corner
of the substrate. From the figure it can be observed that the scan directions are mostly directed
in positive y direction by the optimization algorithm. The optimal experiment is simulated with
nominal model parameters and the overlay response is illustrated in Figure 9.7.
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Figure 9.7: Overlay response of optimal experiment for parameters from case 1.

The overlay clearly illustrates the scanning motion from the lower left- to the upper right corner
of the substrate. The overlay response is spread from the lower left to the upper right as well.
In the beginning of the scanning sequence, overlay response is primarily directed in the positive
y direction. When the exposure continues, the overlay response is directed more to the right.
It is not possible to gain a deeper understanding of the optimal experiment from the overlay
response only. In Section 9.3, a thorough analysis is performed on the optimal experiment.

Optimization for Case 2 In Chapter 8 the standard experiments were examined on their
performance. For the model parameters of case 2, the tangential stiffness Gzy and the IR/EUV
ratio, the meander routing was observed to be the best performing experiment in the context
of model parameter estimation and the associated accuracy. This experiment consists of an
ordered permutation of exposure sequence (routing). In Section 8.6 it was concluded that
horizontal scanning motions are beneficial for the correlation of the model parameters in case
2. Therefore, the initial state of the routing and scan direction for the experiment optimization
is the meander routing, since this routing involves a horizontal scanning sequence 2. The
neighbourhood function which allows permutations nearby a selected field on the substrate is
suitable to maintain ordered behaviour, see Figure 9.1.

For this optimization it is useful to optimize the routing for a reduction in correlation of
the model parameters, but improvement of the eigenvalues is desired as well. Hence, the ACE1
optimality criterion with constraint is chosen as objective function φ in the SA algorithm.
An eigenvalue constraint of pcon = 2 is used, which implies a constraint of the eigenvalue 2
times smaller than the reference eigenvalue λbase, see equation (9.3). In this way, the least
informative eigenvalue will be enhanced as well. The penalty factor ppen is dependent on the
type of problem and the desired level of contribution, but is set to ppen = 100 in this case. The
initial temperature is set to T = 0.55, which indicates that negative fluctuations of 0.275 in the
objective function have a chance of approximately 60% to be accepted. From experience, it is
known that the objective value changes in the same order.

2An randomly generated initial state was tried as well, but without success. This is expected from by observing
the performance of the jumpy experiment seen in Section 8.5.
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Figure 9.8: Simulated annealing optimization for case 2 with ACE1-optimality criterion as
the objective function. The blue line indicates the objective value and the red line indicates the
temperature during the simulated annealing process. The left figure illustrates the first attempt
with nearby neighbourhood function, the right figure illustrates the second attempt with the
neighbourhood function that allows permutations across the whole substrate.

The simulated annealing optimization progress is illustrated in Figure 9.8. Two optimization
attempts are performed. The left figure represents the first optimization attempt with the
ACE1 optimality criterion and the nearby neighbourhood function. Initially, the temperature
is high and worse objective values may be accepted as new experiment design. This behaviour is
observable from the figure. After approximately 500 iterations the algorithm starts to converge
and stops improving around 1800 iterations. The objective function has a value higher than
1, indicating that the constraint in (9.3) is not satisfied. This becomes clear when considering
that the addition of the constraint is zero when the constraint is not active and the correlation
squared lies between 0 and 1. Just after 1800 iterations, a re-heating is executed. Re-heating is a
technique in order to try to escape from a local minimum. The temperature is increased, which
allows worse objective values to be accepted. The figure shows the increase of the temperature
and a rise of the objective function. Although this technique is often successful, it is not able
to enhance the experiment design. This is mostly caused by the choice of the neighbourhood
function.

A second attempt is made with the remaining neighbourhood function which allows per-
mutations across the whole substrate. The initial temperature is lowered to T = 0.13 in order
to compensate for large permutations in the experiment design. This is done to remain an
approximately ordered routing, since it was seen that a jumpy routing is not beneficial. The
right figure illustrates the optimization progress. It is noticeable that the optimization starts
converging immediately and only small deviations of worse objective values are accepted. This
is logical due to the lower temperature. After approximately 1500 iterations, the SA algorithm
is converged and a slightly improved objective value is found when compared with the first
attempt.

- confidential -



Chapter 9. Optimal Experiment Design Page 143

x position (m)
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

y
p
os
it
io
n
(m

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Optimal routing for case 2. Dose = 80 J/m2.

Figure 9.9: The optimal experiment for model parameters of case 2 established from the SA
optimization algorithm. The neighbourhood function that allows large spatial permutations of
the routing is used.

In Figure 9.9 the optimal experiment in the context of parameter estimation of Gzy and IR/EUV
is illustrated for the second attempt. The routing is approximately similar to the meander
routing, except for a few fields. The meander routing was the initial state of the optimization
algorithm and apparently only a few permutations are necessary. Due to the choice of the
neighbourhood function the permutations of the routing are spread over the whole substrate. It
is noticeable that the scan directions are almost completely directed in the negative y direction.
The optimal experiment is simulated with nominal model parameters and the overlay response
is illustrated in Figure 9.10.
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Figure 9.10: Overlay response of optimal experiment for parameters from case 2.

The overlay clearly illustrates the scanning motion pointed in negative y direction. The overlay
response is spread from top to bottom and in the middle, the overlay response is deflecting to
the left or right due to the scan sequence in x direction per row. It is not possible to gain deeper
understanding of the optimal found experiment from the overlay response only. In Section 9.3
a thorough analysis is performed on the optimal experiment.

9.3 Optimal Experiment Design Analysis

The optimal experiments are achieved using the SA optimization algorithm. In this section,
the optimal experiments are investigated by means of a least squares estimation procedure,
followed by t-profiling investigation to investigate non-linear behaviour and obtaining accurate
confidence regions. At last, the fingerprints are analysed in order to gain a deeper understanding
of the optimization problem and the performance of the experiments.

9.3.1 Model Parameter Estimation

Least squares estimation is performed to obtain model parameter estimates for case 1 and case
2. For each case, the optimal experiment established from the SA optimization is used. The
experiment is constructed in the same manner as the analyses described in Section 8.4. The
initial values for the parameters are set to p̂ = 0.9p. The least squares estimation process is
illustrated in Figure A.4.

The least squares estimation converges fast and the model parameter estimates are found
after 4 iterations. The ease of convergence is expected due to previous analysis of the standard
experiments. In Table 9.1 the estimates are listed and as before, the true values are not retrieved.
The error is given, but recall that the error does not give any statistical information about the
accuracy of the estimates. In the following subsection the statistical information and confidence
regions are investigated.
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Table 9.1: Case 1 and 2. Model parameter estimation for optimal experiments.

Case 1 Case 2

Optimal experiment 1 (Figure 9.6) Optimal experiment 2 (Figure 9.9)

iter. par. true est. err. (%) iter. par. true est. err. (%)

4
cp 705 719.7 2.1

4
Gzy 1.28 · 107 1.26 · 107 1.6

IR/EUV 0.625 0.652 4.4 IR/EUV 0.625 0.637 1.9

9.3.2 Statistical Investigation

Least squares estimates of the model parameters are obtained from the optimal experiments.
However, one estimation does not provide additional statistical information about the model
parameters. It is known that the model behaves non-linear in its model parameters. Hence,
profiling techniques are applied in order to investigate the rate of non-linearity. When this is
within certain bounds, linear approximations are sufficient to obtain reliable statistical infor-
mation about the model parameters.

The profiling techniques are applied to both optimal experiments in the same manner as
is described in Section 8.5 and the obtained results are comparable and can be seen in ap-
pendix A.4.
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Figure 9.11: Confidence regions of 95% for both cases with their associated optimal exper-
iment. The left figure represents the confidence region for case 1, the right figure represents
the confidence region for case 2. The linearly approximated confidence regions are sufficient to
represent the true confidence regions.

In Figure 9.11 the true 95% confidence region, linearly approximated 95% confidence region,
and the profile trace vectors are illustrated for both optimal experiments associated with case 1
and case 2. The linearly approximated confidence regions are obtained by linearising the model
around p̂. The true confidence regions are well approximated by the linear confidence regions,
as is expected from the t-profiling results and previously performed analyses on the standard
experiments. For case 1, the profile trace vectors intersect at a sharp angle and they almost
coincide. This phenomenon indicates correlation between the model parameters and results in
an elongated ellipsoidal confidence region. This was previously seen as well.

The profile trace vectors for parameter case 2 (right figure) indicate less correlation. As a
result, the confidence region is less elongated, which results in a smaller confidence region. The
confidence bounds for the IR/EUV ratio are correctly approximated by the linearised confidence
region, whereas the confidence bounds of Gzy are not exact, but sufficientl approximated by
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the linearised confidence region. This is expected when understanding the t-profiling response.
When comparing both ellipsoids, it can be observed that the confidence bound for IR/EUV is
smaller when its value is estimated together with the tangential burl stiffness.

At last, the true nominal parameter values, indicated by the triangle, lie within both confi-
dence regions.

For both parameter cases, the linearised confidence regions of the optimal experiments and of
the standard experiments are illustrated. It should be noted that the associated parameter
values are not shown, in order to compare the confidence region per experiment which are
derived at the point of the estimates listed in Table 8.4 and 9.1. The 95% confidence regions
are illustrated in Figure 9.12.
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Figure 9.12: Comparison of 95% confidence regions for both parameter cases. The left figure
represents the confidence region for case 1, the right figure represents the confidence region for
case 2. Both optimal experiments result in the highest accuracy for the model parameters.

The left figure represents the confidence regions for the optimal experiment and the three
standard experiments for the model parameters of case 1. From the figure it is evident that the
optimized experiment is successful in enhancing the model parameter accuracy. The confidence
region is reduced significantly and the confidence bounds are almost reduced by half compared to
the best performing routing of the standard experiments. The model parameters are still highly
correlated, but this was already expected due to the characteristics of the model parameters.
The correlation between the model parameters is calculated and shown below.

Cjumpy =

[
1 −0.91

1

]
→ Coptimal =

[
1 −0.89

1

]
(9.4)

The optimal experiment is able to reduce the correlation between cp and IR/EUV ratio even
more than the standard experiment with the jumpy routing, see equation (8.17).

The right figure represents the confidence regions for the optimal experiment and the three
standard experiments for the model parameters of case 2. From the figure it is evident that
the optimized experiment is successful in enhancing the model parameter, since the confidence
region is reduced. However, this is only the case for the tangential burl stiffness. The IR/EUV
ratio has similar confidence bounds for the optimal experiment as for the experiment with the
meander routing. The latter was the best performing experiment of the standard experiments.
The correlation between the model parameters is calculated and shown below.

Cmeander =

[
1 −0.56

1

]
→ Coptimal =

[
1 −0.70

1

]
(9.5)
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The optimal experiment does not reduce the correlation between the model parameters when
compared with equation (8.17). However, the optimal experiment is still able to enhance model
parameter accuracy successfully. One disadvantage of this deteriorated correlation is that the
least squares estimation may be hampered and thus requires more iterations.

9.3.3 Fingerprints of Optimal Experiments

The performance of optimal experiments is evaluated in the previous section. However, it is not
known where their performance comes from. In order to investigate this, the fingerprints of the
model parameter subset are evaluated for each optimal experiment in the following paragraphs.
Note, in Section 8.1.3, the shapes and the origin of correlation between model parameters is
already explained.

Fingerprints Case 1 The established optimal experiment from the SA algorithm for case
1 is illustrated in Figure 9.6. The associated overlay response is constructed and is illustrated
in Figure 9.7. In figures 9.13 and 9.14 the fingerprints of cp and IR/EUV ratio are illustrated,
respectively. Recall that two essential ingredients are required to obtain a good performing
experiment: little correlation between model parameters and a high signal to noise ratio.

Figure 9.13: Fingerprint, or sensitivity, of optimal experiment for model parameter cp.
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Figure 9.14: Fingerprint, or sensitivity, of optimal experiment for model parameter IR/EUV
ratio.

The shape of the fingerprint of the heat capacitance cp is in reversed direction of the overlay
response, which is familiar. The magnitude of the fingerprint is slightly higher when comparing
with Figure 8.20, where the fingerprint of cp of the best performing standard experiment (jumpy)
for this case can be seen. The difference in magnitude is limited and is difficult to see from the
colour map.

The shape of the fingerprint of the IR/EUV ratio is identical to the shape of the overlay
response, which is familiar as well. However, the magnitude of the fingerprint is significantly
higher when comparing with the fingerprint of the IR/EUV ratio of the jumpy routing in Fig-
ure 8.20. Apparently, the IR/EUV ratio becomes more sensitive to overlay, which can only
be accomplished by an increase in the temperature field. This is achieved due to the skewed
routing and the associated geometry of the fields and their scan directions and this is confirmed
in Figure 9.15. It can be concluded that the reduction in correlation and the enhancement of
sensitivity information of the IR/EUV ratio are accountable for the optimal experiment design.

The optimal routing may be improved by understanding that maximum sensitivity response
yields in enhanced model parameter accuracy when subjected to least squares estimation. From
the IR/EUV fingerprint, it is observable that the sensitivity response of the second row of fields,
viewed from the top of the substrate, is less compared to the remaining responses. This response
can be improved by adjusting the routing such that the heat is not already dissipated locally
when the surrounding fields are exposed.

It is observable as well that some fields are exposed in negative scan direction (lower left
corner). This can cause a counterbalancing effect for overlay, hence a reduction in sensitivity
information. This counterbalancing effect is probably not seen by the optimizer due to the
immense design space. However, manual adjustment of the scan direction at these particular
fields is a straightforward modification.
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Figure 9.15: Temperature field for overlay experiment with jumpy routing and optimal ex-
periment. Due to the routing of the optimal experiment (right figure), the temperature field is
slightly higher which results in an increase of the IR/EUV ratio sensitivity.

Fingerprints Case 2 The optimal experiment from the SA algorithm for case 2 is illustrated
in Figure 9.9. The associated overlay response is constructed and is illustrated in Figure 9.10.
In figures 9.16 and 9.17 the fingerprints of Gzy and IR/EUV ratio are illustrated, respectively.
Recall that two essential ingredients are required to obtain a good performing experiment: little
correlation between model parameters and a high signal to noise ratio.

Figure 9.16: Fingerprint, or sensitivity, of optimal experiment for model parameter Gzy.
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Figure 9.17: Fingerprint, or sensitivity, of optimal experiment for model parameter IR/EUV
ratio.

The shape of the fingerprint of the tangential burl stiffness Gzy is directed in y direction and
reversed compared to the scan motion, which is familiar. The magnitude of the fingerprint
responses is significantly improved when comparing with Figure 8.7, which is the fingerprint
of Gzy of the best performing standard experiment (meander) for this case. The difference
in magnitude is difficult to see from the colour map. In the meander routing, the sensitivity
gets cancelled out by the alternation of the scan direction. This pattern is clearly visible in
Figure 8.7. However, due to constant downward scan motions in the optimal experiment, the
fingerprint of Figure 9.16 contains more sensitivity information.

The shape of the fingerprint of the IR/EUV ratio is identical to the shape of the overlay
response, which is familiar as well. However, the magnitude of the fingerprint is not signifi-
cantly higher when comparing with Figure 8.8, which is the fingerprint of the IR/EUV ratio of
the meander routing. This effect is seen by the confidence bound for IR/EUV in Figure 9.12.
Apparently, the meander experiment is already a good performing experiment. The correlation
of this experiment is increased, as was seen in equation (9.5), and can be explained by the
fingerprint of IR/EUV. Due to the downward scan motions in y direction the overlay response
is more pointed in the y direction, hence the IR/EUV ratio sensitivity is more pointed in this
direction as well as is seen from the figure. Therefore, the IR/EUV ratio sensitivity becomes
less orthogonal to the sensitivity of Gzy, since the latter is purely pointed in the y direction and
thus the correlation is deteriorated. Fortunately, the increase of correlation does not affect the
overall performance of the experiment due to the enhancement of the tangential burl sensitivity.

The optimal routing may be improved by understanding that maximum sensitivity response
yields in enhanced model parameter accuracy when subjected to least squares estimation. From
the Gzy and IR/EUV fingerprint, it is observable that some fields are exposed in positive scan
direction (lower left corner). This can cause a counterbalancing effect for overlay, hence a
reduction in sensitivity information. Adjusting the scan direction at these particular fields is a
straightforward modification which may improve the optimal experiment.
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9.4 Efficiency Optimization Algorithm Investigation

In the previous sections, the optimal experiments are constructed and a thorough analysis is
performed in order to investigate their performance on model parameter estimation. It was seen
that both optimal experiments are able to reduce the confidence regions of the model parameters
compared to the standard experiments. The Simulated Annealing algorithm was used to obtain
the optimal experiments, this algorithm is a direct heuristic method which is able to overcome
local minima. However, it is not known how efficient this algorithm performs.

In this section, the efficiency of the SA algorithm is investigated by means of a brute force
approach. The High Performance Computing (HPC) cluster of the Technical University Delft
is used to generate as many as possible random experiments. This will allow a global search in
the design space Φ. Subsequently, the randomly generated experiments are compared with the
standard and optimal experiments for their performance by means of the D-optimality criterion.
This is a simple criterion that determines the area of the confidence region and is a proper choice
to investigate the efficiency of the algorithm. In Figure 9.18 the result is illustrated.

Figure 9.18: Brute force approach is generating random experiments in order to investigate
the efficiency of the SA algorithm.

The objective value is scaled by the D-optimality criterion of the optimal experiments. From the
figure, it can be seen that the optimal experiment is performing best, followed by the standard
experiments according Figure 9.12. It is noticeable that the random generated experiments per-
form about five times, or more, worse than the optimal experiment. It must be remarked that
the brute force approach only covers an infinitesimal small space in the enormous design space
Φ. However, the performed brute force approach required roughly 40 times more computa-
tional effort than the SA algorithm and not even a single experiment comes close to the optimal
experiment established from the SA algorithm. From Section 9.1 it is known that only direct
methods are applicable for this type of experiment optimization. Therefore, it can be concluded
that the SA algorithm is very efficient and successful in finding an optimal experiment design.

From the figure a new phenomenon can be seen as two bands appear wherein the random
generated experiments are located according to their D-optimality criterion. When observing
the overlay experiments from this upper and lower bound, no direct causes are visible what
could cause the appearance of the bands. The routings are randomly generated and seem similar
as the jumpy routing and the same holds for the scan directions. The associated fingerprints
indicate the differences in D-optimality criteria as alternating magnitudes and counterbalancing
overlay response effects are visible. This was seen in previous analyses as well. However, the
fingerprints do not indicate a clear characteristic which could explain the fractionated bands.
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Further research is necessary which may be useful to acquire even more knowledge about the
system, which in turn could be advantageous for experiment design optimization.

9.5 Overlay Accuracy

The optimal experiments are found for model parameters of case 1 and 2 and it was seen
that the confidence region has been reduced. In this section, the impact on overlay accuracy
is investigated by using extreme points on the confidence regions for the best standard and
optimal experiment when estimating the model parameters.

IR/EUV

cp

Optimal

Meander

Nom. value

IR/EUV

Gzy

Optimal

Meander

Nom. value

Figure 9.19: Parameter bounds for optimal experiments compared to best standard experi-
ment. The dots represents the worst joint confidence extremes.

In Figure 9.19 the optimal confidence regions around the nominal parameters p are illustrated
with the confidence region of the best performing standard experiment per associated model
parameter case. The worst joint confidence bounds are determined in order to investigate the
accuracy bounds for overlay, see the black dots in the figure. Note, the linearly approximated
confidence regions are used as they are sufficient to replace the true confidence regions, as
was seen in Section 9.3. In Table 9.2 the nominal (nom.) values, the bounds op the optimal
experiment (b. opt.) and the bounds of the best performing standard experiment are listed.

Table 9.2: Model parameter bounds for 95% confidence for case 1 and case 2.

CASE 1 CASE 2

par. nom. b. opt. b. jumpy par. nom. b. opt. b. meander

cp 705 734.6 748.8 Gzy 1.28 · 107 1.35 · 107 1.36 · 107

IR/EUV 0.625 0.712 0.762 IR/EUV 0.625 0.679 0.677

In order to determine the improvement on overlay accuracy a nominal simulation is performed
with the nominal meander routing. This exposure represents a real scan exposure for, for
instance, computer chips. From this simulation, the overlay is determined by choosing the
highest deformation from 99.7% of the deformations sorted from low to high. The obtained
overlay value is used as a reference Oref.

For case 1, one simulation is performed with the same recipe and with the model parameter
values from Table 9.2 for the optimal bound and one simulation is performed with the model
parameter values from the jumpy bound. Subsequently, the overlay values Oopt and Ojumpy are
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obtained and the difference in overlay with respect to the reference is calculated according:

∆Oopt = |Oref −Oopt|
∆Ojumpy = |Oref −Ojumpy| (9.6)

The values ∆Oopt and ∆Ojumpy represent the uncertainty bound wherein the overlay may vary
due to statistical uncertainty of the model parameters. The percentage difference is determined
according:

ξ =

(
1− ∆Oopt

∆Ojumpy

)
100% (9.7)

The same procedure is executed for model parameter case 2 and the results are listed in Table 9.3.

Table 9.3: Reduction overlay uncertainty for model parameter case 1 and case 2.

case ξ (%)

1. 54.4

2. 9.4

Due to the optimal experiment of case 1 the overlay uncertainty is reduced more than half. The
optimal experiment design is very effective. For the optimal experiment of case 2 the overlay
uncertainty is reduced by approximately one tenth. The difference in result is expected when
observing the confidence regions and the individual impact on overlay of the parameters which
are given in Figure 8.4.
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10
Conclusion and Recommendation

In the present study, experiment optimization of the thermo-mechanical feedforward model in
order to enhance model parameter accuracy for improved overlay performance is investigated.
The first part of the study involves a thorough literature analysis supported by academic exam-
ples in order to acquire the main principles of experiment design. This part includes a review of
the currently used thermo-mechanical feedforward model with an associated pre-investigation
on model parameter accuracy. Multiple method are described in order to obtain sensitivity in-
formation in an efficient manner and (non)linear regression techniques are described for model
parameter estimation with the additional statistical information. At last, the principles of
experiment design are explained and elucidated.

The second part of the study involves the application of experiment design on a simplified
thermo-mechanical feedforward model. This part includes the description of the simplified
thermo-mechanical model, followed by a comprehensive analysis. Thereafter, the standard
available experiments are investigated on their behaviour and performance with respect to model
parameter accuracy. At last, the experiment is optimized for the simplified thermo-mechanical
model in order to improve model parameter accuracy during the estimation process.

10.1 Conclusion

By looking back at the research question How to make the appearance in measurements of the
physical parameters subject to calibration more orthogonal via optimization of the experiment
that provides these measurements, the following conclusions can be drawn:

� The main purpose of the research question is to improve model parameter accuracy during
calibration by means of an optimized experiment in order to improve overlay performance.
In the research question it is assumed that enhancement of orthogonal appearance of the
model parameters in the measurements will lead to improved model parameter accuracy
during calibration. However, in Chapter 4 and Chapter 9 it was seen that the orthogo-
nal appearance (correlation) is not the only requirement for improved model parameter
accuracy. The information matrix M is a legit statistical measure for model parameter
accuracy which combines correlation and information appearance in experimental mea-
surements.

� Confidence regions of the model parameters can be constructed using the information
matrix to obtain statistical information about the model parameters. For a two dimen-
sional parameter case, it is possible to graphically illustrate confidence ellipsoids. These
are useful to gain insight into the current accuracy of the model parameters. For higher
parameter set dimension, multiple confidence ellipsoids can be constructed.
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� Profiling techniques, as described in Chapter 5, are useful to investigate the non-linear
behaviour of the confidence response of the model parameters and to determine whether
linear approximations are allowable.

� In order to optimize an experiment for maximum model parameter accuracy the infor-
mation matrix must be subjected to a suitable objective function. In Franceschini and
Macchietto (2007) the standard D-, E- and A-optimality criterion are given, which works
well for a two dimensional model parameter case. The A-optimality must be handled care-
fully, since it does not include correlation. In Franceschini and Macchietto (2008) more
advanced objective function are described which appears to be very effective in reducing
correlation and enhancing information content at the same time.

� Simulated annealing is an efficient direct optimization algorithm in order to optimize the
combinatorial problem of the experiment, as is seen in Chapter 9. New intuitive experi-
ment designs are achieved, which have improved performance, with respect to parameter
accuracy, when compared with the standard available experiments.

With the usage of the information matrix, a suitable objective function and the simulated an-
nealing algorithm it is possible to acquire an optimal experiment which can increase model
parameter accuracy and, therefore, give a reduction of worst-case overlay error of 54.4% and
9.4% for parameter case 1 and 2 respectively, when considering a 95% confidence bound. In
Table 10.1, the reduction overlay uncertainty ξ for model parameter case 1 and case 2 with
respect to best performing standard experiments (std. exp.) is listed.

Table 10.1: Reduction overlay uncertainty ξ for model parameter case 1 and case 2 with
respect to best performing standard experiments (std. exp.).

case par. obj. fnc. ξ (%) std. exp.

1. cp and IR/EUV D-optimality 54.4 Jumpy

2. Gzy and IR/EUV ACE1-optimality 9.4 Meander

10.2 Recommendation

It is shown that experiment design has potential to improve overlay performance. However, fur-
ther research is useful in order to successfully optimize an experiment for the thermo-mechanical
feedforward model of ASML and it may be useful to investigate more applications of the de-
scribed experiment design techniques. Recommendation by the author are listed below.

� When using more than two model parameters, the experiment design techniques are still
applicable. However, graphical interpretation of the confidence regions is more advanta-
geous to obtain and understand. Multiple graphs of possible model parameter sets must
be constructed, or the t-value may be adopted to obtain statistical significance of certain
model parameters. The latter allows for easy comparison when the number of model pa-
rameters is high. In Franceschini and Macchietto (2008) an helpful example is issued for
a three model parameter case.

� The neighbourhood functions of the simulated annealing algorithm described in Section 9.1
are simple and basic. The simulated annealing algorithm significantly benefits from a well
designed neighbourhood functions which is able to take model characteristics into account.
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This will speed up the converges and will improve the experiment design solutions. Cur-
rently only one permutation of a field routing or scan direction was chosen, but choosing
more than two fields is possible.

� In Section 9.4 a new phenomena appeared as fractional bands between random generated
experiments. Further research is recommended why this characteristics behaviour appears,
which in turn may be useful to acquire even more knowledge about the system. This
could be advantageous to design a sophisticated neighbourhood function that is used for
the experiment design optimization.

� Experiment design is basically a method to improve model parameter information content
from a measured responses. The same techniques could be used for sensor designs which
are hampered by, for instance, a thermal signal. By optimizing the structure of the sensor
according experiment design techniques, the true sensing accuracies of the sensor may be
improved.

� In this study, the simulated annealing algorithm is used to optimize the difficult combi-
natorial experiment to improve model parameter accuracy. However, the same simulated
annealing algorithm may be used to find an optimal exposure sequence, when producing
chips, which reduces overlay.

� The experiment optimization was performed by a direct solver due to the discrete prob-
lem. Gradient-based solvers are beneficial in terms of computer efficiency. One solution
approach to convert the discrete optimization problem into a continuous problem is by
constructing Nstep step responses in time, where each individual step response is associ-
ated to one field and indicating the time when it is exposed. Notice that the time instance
of exposure is a continuous parameter. The number Nstep equals the number of exposed
fields. The routing is constructed by summing all the step responses and in this man-
ner the time instance at which a field is exposed can be optimized. A penalty function
must be added in order to prevent overlapping step responses, since only one field at a
time can be exposed. Although this might seem like a convenient solution, the number of
possible input parameter settings is unimaginable. Hence, there is a large possibility that
the optimization problem is highly non-convex and will hamper gradient-based optimiza-
tion techniques. From previous analysis, it is shown that only a very small set of input
parameters could lead to a significant improvement on parameter estimation. Therefore,
it is very unlikely that gradient-based optimization can find a global optimum due to
the severe non-convexity, but it is also not likely that the found local optimum comes
close to the global optimum. Therefore, this method is rejected as a possible solution for
the optimization of the routing and scan directions for now, but further research may be
useful.
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Dekking, F., Kraaikamp, C., Lopuhaä, H., and Meester, L. (2005). A Modern Introduction to
Probability and Statistics. Springer.

Eglese, R. (1989). Simulated annealing: A tool for operational research. Elsevier.

Franceschini, G. and Macchietto, S. (2007). Model-based design of experiments for parameter
precision: State of the art. Elsevier.

Franceschini, G. and Macchietto, S. (2008). Novel anticorrelation criteria for model-based
experiment design: Theory and formulations. AIChE Journal.

Garcia, S. (1999). Experimental design optimization and thermophysical parameter estimation
of composite materials using genetic algorithms. Master’s thesis, Laboratoire de Thermocine-
tique de l’isitem.

Goodwin, G. (1987). Identification: experiment design. Pergamon Press, Oxford.

Meulenbroeks, R. (2014). How to derive from ansys a parametric thermo-mechanic-matrix for
use in matlab. Technical report, Department of Research Mechatronics, ASML, Veldhoven,
The Netherlands. Document id: D000274672.

159



Munack, A. and Posten, C. (1989). Design of optimal dynamical experiments for parameter
estimation. American Control Conference.

Pauw, D. D. (2005). Optimal experimental design for calibration of bioprocess models: a
validated software toolbox. Master’s thesis, Ghent University, Belgium.

Rixen, D. J. (2011a). Mechanical Analysis for Engineering. Department of Precision and
Microsystems Engineering, Delft University of Technology.

Rixen, D. J. (2011b). Numerical methods in Engineering Dynamics. Department of Precision
and Microsystems Engineering.

Rojas, C. R., Welsh, J. S., Goodwin, G. C., and Feuer, A. (2006). Robust optimal experiment
design for system identification. Elsevier.

Romeijn, H. E. and Smith, R. L. (1993). Simulated annealing for constrained global optimiza-
tion. Journal of Global Optimization.

Rook, R. (2014). Wafer heating model. Technical report, Department of Research Mechatronics,
ASML, Veldhoven, The Netherlands.

Ruckstuhl, A. (2010). Introduction to nonlinear regression.

Schwab, A. and Delhaes, G. M. (2009). Multibody Dynamics B - Lecture Notes. Laboratory for
Engineering Mechanics, Delft University of Technology.

Szu, H. and Hartley, R. (1987). Fast simulated annealing. Physics Letters A.

Tinnemans, P. (2010). Eds lsqnonlin ptin algorithm. Technical report, Department of Research
Mechatronics, ASML, Veldhoven, The Netherlands. Document id: D000140314.

van de Wal, M. (2014). Gid: Overview of nanometer thermal control challenges and thermal
expertise for asml scanners. Technical report, Department of Research Mechatronics, ASML,
Veldhoven, The Netherlands. Document id: D000276573.

van der Meulen, S. (2015). Pir: Feasibility study for overlay-based euv thermal feedforward
model calibration. Technical report, Department of Research Mechatronics, ASML, Veld-
hoven, The Netherlands. Document id: D000301068.

Vanrolleghem, P., Daele, M. V., and Dochain, D. (1995). Practical identifiability of a biokinetic
model of activated sludge respiration. Water Research.

Veeke, H. P., Ottjes, J. A., and Lodewijks, G. (2008). The Delft Systems Approach. Springer.

Vuik, C. and Lahaye, D. (2014). Scientific Computing. Delft Institute of Applied Mathematics.

Vuik, C., Vermolen, F., van Gijzen, M., and Vuik, M. (2006). Numerical Methods for Ordinary
Differential Equations. Delft Academic Press.

Watts, D. G. (2010). Essential Numerical Computer Methods, chapter 2. Academic Press.

Zullo, L. (1991). Computer aided design of experiments. an engineering approach. Master’s
thesis, University of London, UK.



Appendix

161





A
Figures In Report

A.1 Least Squares Estimation Progress Standard Experiments
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Figure A.1: Least squares estimation progress for meander routing. Left figure represents
iteration progress for case 1, the figure on the right indicates the iteration progress for case 2.

Iterations
1 2 3 4 5 6 7 8 9 10

O
rt
h
o
g
o
n
a
li
ty

cr
it
er
io
n

10-5

10-4

10-3

10-2

10-1

100

101
Least squares estimation progress

Iterations
1 2 3 4 5 6 7 8 9 10

O
rt
h
o
g
o
n
a
li
ty

cr
it
er
io
n

10-4

10-3

10-2

10-1

100

101
Least squares estimation progress

Figure A.2: Least squares estimation progress for spiral routing. Left figure represents itera-
tion progress for case 1, the figure on the right indicates the iteration progress for case 2.
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Figure A.3: Least squares estimation progress for jumpy routing. Left figure represents
iteration progress for case 1, the figure on the right indicates the iteration progress for case 2.

A.2 Least Squares Estimation Progress Optimal Experiments

Iterations
1 2 3 4 5 6 7 8 9 10

O
rt
h
o
g
o
n
a
li
ty

cr
it
er
io
n

10-6

10-5

10-4

10-3

10-2

10-1

100

101
Least squares estimation progress

Iterations
1 2 3 4 5 6 7 8 9 10

O
rt
h
o
g
o
n
a
li
ty

cr
it
er
io
n

10-8

10-6

10-4

10-2

100

102
Least squares estimation progress

Figure A.4: Least squares estimation process for optimal experiments. Left figure represents
least squares process for case 1, the figure on the right indicates the least squares process for
case 2.
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A.3 T-profiling of Standard Experiments

A.3.1 Spiral Experiment
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Figure A.5: T-profiling spiral routing for parameter case 1. The heat capacitance of the
substrate and the IR/EUV ratio behave non-linear in their confidence response due to high
correlation.
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Figure A.6: T-profiling spiral routing for parameter case 2. The tangential burl stiffness
behaves non-linear in its confidence response, whereas the IR/EUV ratio behaves almost linear
in its confidence response due to low to moderate correlation.
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Figure A.7: Confidence regions of 95% for spiral routing for both cases. The linearly approx-
imated confidence regions are sufficient to represent the true confidence regions.

A.3.2 Jumpy Experiment
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Figure A.8: T-profiling jumpy routing for parameter case 1. The heat capacitance of the
substrate and the IR/EUV ratio behave non-linear in their confidence response due to high
correlation.
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Figure A.9: T-profiling jumpy routing for parameter case 2. The tangential burl stiffness
behaves non-linear in its confidence response, whereas the IR/EUV ratio behaves almost linear
in its confidence response due to low to moderate correlation.
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Figure A.10: Confidence regions of 95% for jumpy routing for both cases. The linearly
approximated confidence regions are sufficient to represent the true confidence regions.

A.4 T-profiling of Standard Experiments

A comparison is made between the optimal and standard experiments with the associated
performance with respect to model parameter accuracy.
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Figure A.11: T-profiling optimal routing for parameter case 1. The heat capacitance of the
substrate and the IR/EUV ratio behaves non-linear in their confidence response due to high
correlation.
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Figure A.12: T-profiling optimal routing for parameter case 2. The tangential burl stiffness
behaves non-linear in its confidence response, whereas the IR/EUV ratio behaves linear in its
confidence response due to low to moderate correlation.

In the figures A.11 and A.12 the t-profiling is illustrated for both optimal experiments of model
parameter case 1 and 2. From the figures, it is immediately evident that the confidence response
behaves almost linear in the model parameters. Small deviations from the (dotted) reference
line are visible and indicating the presence of non-linear behaviour, but since this effect is so
small the non-linearity may be neglected.

When observing Figure A.12, it is evident that the confidence response behaves approxi-
mately linear in the model parameters. However, two different t-profile plots are visible. These
parameters are less correlated than the parameters in case 1. The tangential burl stiffness is
a non-linear parameter, as was observed in Chapter 8 and the non-linearity can be confirmed
by the deviating t-profile plot. The IR/EUV ratio is a linear model parameter with respect to
overlay. Since the correlation is low to moderate, this linear behaviour is transmitted to the
confidence t-profile response, as can be seen in the right figure. Note, due to some correlation
of the latter t-profile response, it is not exactly linear but it is hardly visible in the figure.
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B
Shape Functions

The shape functions of the 20-node brick are given by:

N1(x, y, z) = −1

8
(1− ξ)(1− η)(1− µ)(2 + ξ + η + µ)

N2(x, y, z) = −1

8
(1 + ξ)(1− η)(1− µ)(2− ξ + η + µ)

N3(x, y, z) = −1

8
(1 + ξ)(1 + η)(1− µ)(2− ξ − η + µ)

N4(x, y, z) = −1

8
(1− ξ)(1 + η)(1− µ)(2 + ξ − η + µ)

N5(x, y, z) = −1

8
(1− ξ)(1− η)(1 + µ)(2 + ξ + η − µ)

N6(x, y, z) = −1

8
(1 + ξ)(1− η)(1 + µ)(2− ξ + η − µ)

N7(x, y, z) = −1

8
(1 + ξ)(1 + η)(1 + µ)(2− ξ − η − µ)

N8(x, y, z) = −1

8
(1− ξ)(1 + η)(1 + µ)(2 + ξ − η − µ)

N9(x, y, z) =
1

4
(1− ξ)(1 + ξ)(1− η)(1− µ)

N10(x, y, z) =
1

4
(1 + ξ)(1− η)(1 + η)(1− µ)

N11(x, y, z) =
1

4
(1− ξ)(1 + ξ)(1 + η)(1− µ)

N12(x, y, z) =
1

4
(1− ξ)(1− η)(1 + η)(1− µ)

N13(x, y, z) =
1

4
(1− ξ)(1 + ξ)(1− η)(1 + µ)

N14(x, y, z) =
1

4
(1 + ξ)(1− η)(1 + η)(1 + µ)
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The shape functions continuous at the next page.

N15(x, y, z) =
1

4
(1− ξ)(1 + ξ)(1 + η)(1 + µ)

N16(x, y, z) =
1

4
(1− ξ)(1− η)(1 + η)(1 + µ)

N17(x, y, z) =
1

4
(1− ξ)(1− η)(1− µ)(1 + µ)

N18(x, y, z) =
1

4
(1 + ξ)(1− η)(1− µ)(1 + µ)

N19(x, y, z) =
1

4
(1 + ξ)(1 + η)(1− µ)(1 + µ)

N20(x, y, z) =
1

4
(1− ξ)(1 + η)(1− µ)(1 + µ)

The local dimensionless coordinates ξ, η and µ are used. In the case of the rectangular cuboids,
with a lenght L, a width W and a height H, the dimensionless coordinates are defined as:

ξ =
2x

L
− 1

η =
2y

W
− 1

µ =
2z

H
− 1
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C
Interpolating Profile Pair Contours

In Bates and Watts (1988), a method for interpolated profile pair contours is described. This
allows for construction of approximated non-linear confidence regions. First, the profile traces
p̃p and p̃q are transformed to τp and τq coordinates using cubic splines, see Figure C.1. This
transformation is possible by using the previous obtained profile parameter values and its as-
sociated t-values. Using the τ coordinates, the likelihood surface is transformed so that the
surface is nearly a paraboloid with elliptical contours. It is easy to interpolate points on these
near-ellipses as will be seen. When the model has low rate of non-linearity, the transformed
trace vectors in τ coordinates are nearly straight lines through the origin.

To interpolate a particular confidence contour, the τ coordinates are scaled by dividing
by
√
MF (M,N −M ;α) so that a nominal 1 − α joint confidence contour in the scaled τ

coordinates is bounded by the square −1 ≤ τp and τq ≤ 1. If the contour were an ellipse, it
could be represented in the scaled coordinates in the parametric form:

τp = cos(a+ d/2)

τq = cos(a− d/2) (C.1)

Here, the angle a goes from −π to π and the phase d is a constant. If the contour is not
elliptical, the phase d is not constant. The interpolation goes as follows: choose the following
set of points (τp,r, τq,r), with r = 1, . . . , 4, where this set of points corresponds to the bounds
of the confidence region. For instance, point r = 1 is (τp,1, τp,1) = (1.00, 0.80) and point r = 2
is (τp,2, τp,2) = (0.79, 1.00), which are derived from figures like Figure C.1. Note, the points
are taken from the scaled τ coordinates. In order to interpolate between these points, which
would give the confidence region, the arccosines sp,r = arccos(τp,r) and sq,r = arccos(τq,r) could
be calculated in order to form the averages and differences. Subsequently, the averages and
differences are used to obtain the angle and the phase. An example from Bates and Watts (1988)
is used to illustrate the principle of selecting the scaled τ coordinate points r, calculating the
arccosine, deriving the average and difference and obtaining the angle and phase. The obtained
results are listed in Table C.1.
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Table C.1: Example values from Bates and Watts (1988) to calculate the angle and phase.

Scaled Arccosine Angle Phase

τ1 τ2 1 2 avg. diff. a b

1.000 0.801 0.000 0.641 0.321 -0.641 -0.321 0.641

0.795 1.000 0.651 0.000 0.326 0.651 0.326 0.651

-1.000 -0.762 3.142 2.437 2.789 0.704 2.789 0.704

-0.769 -1.000 2.448 3.142 2.795 -0.693 -2.795 0.693

Even for an ellipse, the differences of the arccosines will vary in sign and the averages of the
arccosines will lie between 0 and π, because the arccosine transformation only yields values in the
range 0 to π. To obtain suitable values for a and d it must be noted that, since cos(−x) = cos(x),
equation (C.1) will yield in the same τp and τq if the sign of the average and the sign of the
difference is reversed. Therefore, reverse the sign of any negative difference and its corresponding
average to give a and d values, see Table C.1, suitable for interpolation with a periodic spline.
When the periodic spline interpolation is performed onto a and d, the values can be used to
transform back to τp and τq using equation (C.1) and hence the confidence contour can be
plotted.

τ
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2

0 2 4-2-4

-4

-2

0

2

4

Figure C.1: Profile traces in the τ coordinates.
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