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Abstract

Nowadays, many different tools to perform static analysis on software (ASATs)
are available. These can be used as standalone tools, but also integrated into code
reviews, build processes, or continuous integration. ASATs can be configured by their
user and report a list of warnings for each rule that has been violated by the analyzed
code. While some research has been performed regarding ASATs, little is currently
known about the correlations between use of ASATs and other properties of projects or
their communities, or about the extent to which developers solve violations reported by
ASATs. In this thesis, we attempt to answer these questions by obtaining information
about a large number of relevant open source projects hostedon GitHub. We found that
the usage rate for ASATs is relatively low, while ASAT usage can be associated with
several positive changes in other properties; in general, popular and successful projects
are more likely to use ASATs. Furthermore, projects that useASATs typically have
a more active community, and receive more contributions. The amount of warnings
generated varies between projects, but projects with largecode bases tend to have
fewer warnings. When looking at the types of warnings reported, not all categories
are equally represented; violations of Style Conventions are most common. We also
found that warnings of different categories are solved at different rates; warnings with
more impact on maintainability were solved faster, while warnings with little impact
on correctness or maintainability were left unattended forlonger.
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Chapter 1

Introduction

Software development is rarely performed by a single person. As different people have
different preferences, a project’s code base has the potential to become inconsistent. As
a result, it becomes harder for new developers to understandexisting code. To prevent
this, teams of developers may define a set of code conventionswhich all team members
must conform to. This can be accomplished by the use of Automated Static Analysis Tools
(ASATs). Static analysis tools inspect a program’s source or byte code, unlike dynamic
analysis tools, which inspect a program’s behavior during runtime. ASATs have existed
since 1977, when Johnson releasedLint, a command-line tool to detect inconsistencies and
inefficiencies in C code[27]. Most ASATs are configurable by the user, who can establish
a set of rules which the code must adhere to. If any code is found that violates a rule, the
ASAT will output a warning to notify the user. Although ASATscan be used as command-
line tools, it is more convenient to integrate them into the text editor which is used for
programming. This way, warnings can be displayed in real time at the location of the
violating code, much like compiler warnings in IDEs.

ASATs may be used as part ofcode reviews, where one person’s code is inspected
by another person, such as a colleague. Doing so decreases the manual effort and time
taken[43]. The concept of code reviews has first been formalized by Fagan in 1976[17] and
was found to be beneficial for software development organizations[1, 6]. Because of the
(potentially) larger amount of collaborators, code reviews can be a valuable asset to open
source projects[41], and by extension, ASAT as well. A survey performed by Beller et. al
found that ASAT usage among open source projects is “common,but not ubiquitous”[8].

On GitHub, an open source hosting service, contributions are generally done through
pull requests, a form of code reviews that makes it easier fora project maintainer to merge
the contribution into the project. Pull requests are popular, being used by around half of
all projects with multiple developers[20]. To assist maintainers with this, GitHub allows
automated checks by third party services for every pull request1. A popular service used for
this is Travis CI2[46], a Continuous Integration environment for open sourceprojects that is
configurable by the user. When enabled, each pull request andcommit will trigger Travis to

1https://github.com/blog/1227-commit-status-api
2http://www.travis-ci.org
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1. INTRODUCTION

build the project, and report the result of the build back to GitHub. This result is clearly dis-
played for each pull request, making it easier for maintainers to filter out pull requests that
cause the build to fail, but also providing instantaneous feedback to contributors, allowing
them to solve any problems without having to wait for maintainer’s answer. Because Travis
works with scripts to build a project, ASATs can easily be added into the mix. Aside from
running an ASAT directly in a script, build tools (such as Maven3) often have plugins that
make it easier to integrate ASATs into the build process (e.g. Maven Checkstyle Plugin4).
These plugins act as a wrapper around the command-line tool and make the ASAT behave
in a manner that is consistent with the other build tools (e.g. Maven can generate an HTML
report with Checkstyle warnings like it does with test coverage).

In this study, we will analyze 7 different ASATs:Checkstyle, PMD, ESLint, JSHint,
JSCS, RuboCop, andPylint. These have been selected because they also appeared in the
study by Beller et al.[8]. With these ASATs, we end up with Java, JavaScript, Ruby, and
Python as programming languages for the projects under study. ASATs studied by Beller
which we excluded areJSLandFindBugs, because the former has been discontinued and
the latter has a very small userbase compared to the others.

1.1 Research Questions

Beller et. al have conducted a study with regards to ASAT usage in open source projects[8].
In this study, ASAT prevalence was analyzed by means of a qualitative survey, and ASAT
configuration characteristics were analyzed on a large number of projects. In addition, a
classification was made for a generalization of rules from different ASATs, called the Gen-
eral Defect Classification. However, the prevalence surveywas performed on a relatively
small amount of only the most popular projects without looking at factors that may influence
use rate. This leads to our first research question:
RQ1: Which factors influence ASAT prevalence?

• RQ1.1: Is there any difference in ASAT prevalence between projectsof different
languages?

• RQ1.2: Which ASATs are used most?
• RQ1.3: Does the use of a build tool/task runner influence the use of ASATs?
• RQ1.4: Are projects more likely to use ASATs if they use Continuous Integration?
• RQ1.5: Is there any age difference between projects that use ASATs and those that

do not?
• RQ1.6: Are popular projects more likely to use ASATs?

Other than direct properties of the project itself, it wouldalso make sense if characteris-
tics of the project’s community are related to ASAT usage. Asthe community and amount
of contributions grows, ASATs save increasing amounts of time by providing instantaneous
initial feedback on contributions. Furthermore, because this feedback is aimed at the con-

3http://maven.apache.org/
4https://maven.apache.org/plugins/maven-checkstyle-plugin
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tributor as well, the quality of contributions may also benefit. The second research question
is therefore:
RQ2: How does community activity affect ASAT usage?

• RQ2.1: Is there a relation between ASAT usage and the amount of pull requests?
• RQ2.2: Are projects with many different contributors more likely to use ASATs?
• RQ2.3: Are contributions more likely to be accepted in projects using ASATs?
• RQ2.4: Are pull requests closed faster in projects that use ASATs?

Finally, we want to figure out what sort of warnings are reported by ASATs for different
projects, and how project developers deal with this. For this, we consider warning categories
as defined by the GDC.
RQ3: What is the prevalence of rule violations reported by ASATs?

• RQ3.1: How does the amount of warnings change over time?
• RQ3.2: Is there a relation between the code base size of a project andnumber of

warnings?
• RQ3.3: Which kinds of warnings appear most often?
• RQ3.4: Are warnings of different categories solved at different rates?

We attempt to answer these questions by analyzing a sufficiently large amount of open
source projects on GitHub, using its API. To obtain warnings, we will clone repositories
locally and run the appropriate ASATs.

The remainder of this thesis is structured as follows. In chapter 2, we explore existing
research on ASATs, CI, and Code Reviews. Chapter 3 details what we have done to conduct
our study, and chapter 4 provides technical details on how weimplemented a tool to assist
in obtaining data. In chapter 5 we present the results of our study and threats to validity. In
chapter 6 we give answers to the research questions, draw conclusions, and give pointers
for potential future work.
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Chapter 2

Related Work

In this chapter, we explore some of the existing research on topics related to this study. We
start with Code Reviews, considering that is a topic closelyrelated to ASATs, and seeks to
solve the same problems. We then move on to Code Analysis Tools, and present research on
both the development of ASATs and their use and benefits. Finally, we focus on Continuous
Integration in open source projects and see which aspects ofit affect development.

2.1 Code Reviews

Some of the first research regarding code reviews was done by Fagan in 1976[17]. He
defined a formal way calledcode inspections, meant to be performed during group meetings.
This early form was very specific about the roles different people have and the steps they
should take, while inspecting the code on a line by line basis, basically checking off items
from a list. In this process, only methods to find errors are specified, but no way of solving
problems is mentioned. This process was found to benefit software development teams by
Basili and Selby in 1987[6] and Ackerman in 1989[1]. However, Porter et al. later found
that the costs were often understated while benefits were overstated, especially for large
software[40].

Aurum et al. published a summary of improvements and additions to the inspection pro-
cess over the years[2], and found several other techniques.In theactive design review[38],
several brief reviews are conducted instead of one large review, having a different reviewer
with specific expertise for each review. Thetwo-person inspection[11] reduced the inspec-
tion team size from four to two, just the author and a reviewer, and was found to improve
productivity. WithN-fold inspection[32], a number of small teams performs reviews inde-
pendently, based on the idea that different teams will find different faults. This approach
was found be costly, but also provides substantial benefits as there was no significant overlap
between faults found by different team.Phased inspection[30] describes different phases
of the reviewing process, each with specific goals. At the endof each phase, corrections are
applied. Although Fagan emphasized the importance of meeting for code inspections, Votta
raised several points against meetings[48]; only two reviewers can interact at any time, only
30–80% of the rest was listening to the conversation, and reviewer hours were being wasted,

5



2. RELATED WORK

while most defects are identified before the meetings start.
Although improvements and variations to Fagan’s code inspections have been developed

over the years, most of these are defined in a formal way, with specific steps to be taken and
checklists to be followed. Nowadays, code reviews are more informal and often assisted
by tools. Bacchelli and Bird define these asModern Code Reviews, or MCR[4], and found
them to be less about finding defects and more about “increasing team awareness, provid-
ing knowledge transfer, and revealing alternative solutions to problems”. Through a study
of different software projects, McIntosh et al. found that both code review coverage and
participation had a positive effect on software quality, reducing the amount of post-release
defects[33]. In a study of MCR in open source projects, Beller et al. also looked at the
kind of changes after a review[7]. Among other things, they reported that 7-35% of review
suggestions did not lead to any changes in the code, and that bug-fixing tasks have fewer
changes, while contributions with a higher code churn have more changes. 78-90% of the
changes are triggered by review comments.

2.2 Code Analysis Tools

Since the release of Lint[27], analysis tools have become a helpful addition to code re-
views. Rather than guaranteeing the absence of any errors, these tools can ascertain that
specific flaws, which can be defined by the user, are absent. Using ASATs is a cost-
effective way of inspecting code, helps prevent faults thatcould cause security vulnera-
bilities, and has proven to be effective in identifying problem modules[50]. Furthermore,
the results produced by ASATs can be used to effectively determine the quality of a soft-
ware component[34]. Other research found that many bug patterns are relatively easy to
recognise[24] and that security issues can be avoided with static analysis, and runtime over-
head can be greatly reduced[25]. The tools build a model of the system and use that to
analyze its data flow, but that is computationally expensivebecause of the large state space.
Therefore, abstractions are introduced[13]. An example ofsuch abstractions ispredicate
abstraction, used in the SLAM toolkit[5]. Although checking with abstractions is faster, a
smaller set of problems can be detected than when modeling[15].

Despite their promising features, ASATs are not widely adopted[8]. Some reasons for
this are the lack of suggestions for quick fixes, warnings messages that are not informative
enough, false positives, and an overload of information[26]. Many of the issues reported are
trivial[3], and while many errors may be reported, few of those actually reflect a real defect
in the code instead of bad style[22]. In addition, false positives are a common sight[31].
As a result, when ASATs are introduced in large existing systems, thousands of warnings
typically pop up. To attempt to solve all of them would be a lotof work, for which there
generally is no budget. Steidl[44] introduced a model to findcosts and benefits, which
helps developers to prioritize violations to remove, whileat the same time being transparent
to their managers.

The value of ASATs increases when they are tightly integrated into a developer’s daily
workflow. Tricorder[42] was developed to accomplish this for developers at Google. The
tool aims to be scalable, easily adopted and actively used tofix code issues, and allow
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developers to write and deploy their own static analyses. Inaddition, there is a continuous
feedback loop between developers and analyzer writers to improve analysis.

Although most ASATs can be configured, users generally stay close to the default con-
figuration, and rarely change the configuration of the ASATs they use[8].

Through the use of ASATs with code reviews, around 6–22% of warnings are removed,
but this percentage varies between warning categories[37]. However, the overall warning
density generally stays the same and many errors stay unsolved[29]. Code smells may
also be detected by ASATs, but developers often are not very keen on refactoring these
either[39].

2.3 Continuous Integration

Continuous Integration, or CI, is a practice where each developer’s work is integrated into
the main system frequently. With this integration, the software is automatically built and
tests are run. The purpose of CI is to spot integration problems early[18]. It also allows for
more frequent deployments. CI is easily integrated into GitHub when done by Travis, a CI
service for open source projects. Beller et al.[10] found that a little over 30% of projects
on GitHub have used Travis for at least one build. Tests are often run during the build, and
these are the main reason for builds to fail. The test failurerate is rather low, which could
be because developers test their code locally before committing. This contradicts another
study by Beller et al. which found that testing is not a popular activity, at least within the
IDE[9].A study performed by Vasilescu et al. pointed out that although many projects on
GitHub are configured to use Travis, less than half of them do[46]. They also found that
pull requests are more likely to result in a successful buildthan a direct commit.

There are many benefits to making use of CI for open source projects. Research by
Vasilescu et al.[47] found that development teams are significantly more effective at merg-
ing pull requests from core members, while pull requests from external contributors are
more likely to be merged. In addition, more bugs are discovered. Holck and Jørgensen
found that CI helps open source projects FreeBSD and Mozillato produce quality software
by allowing contributors to add to the development version at any time, and at the same time
making sure that each contribution does not break the build[23].

2.4 Software Repository Mining

In order to perform our project analysis, we obtain data frommultiple repositories that are
publicly hosted, a process called repository mining. This is a popular method of obtaining
data, due to the sheer amount that is available publicly, andhas been applied successfully
before. As an example, Zaidman et al. used repository miningto look at whether production
and test code co-evolve across versions[49]. Vandecruys etal. described the AntMiner+
classification technique, which effectively predicts software quality by deriving a model
from mined repositories[45]. Kagdi et al. used version history to find traceability patterns
consisting of source files and other software artifacts. By doing so, they were effective in
predicting changes in software repositories, and recognizing patterns of change.

7



2. RELATED WORK

Through mining, rather than using static archives, multiple versions of software artifacts
can be studied. Kagdi et al. performed a large scale survey onthis practice, exploring
different ways MSR was used in studies[28]. Nikora and Munson studied how fault counts
in software systems evolve between builds[36], similar to how we intend to look at changes
to ASAT warnings. Capiluppi et al. looked at the complexity of systems in terms of number
of files and folder tree structure, and how this changes over time[12]. They found that the
number of components follows a linear trend with a superimposed ripple, and that average
folder and file sizes stabilize over releases. Nagappan et al. built predictor models for post-
release faults in software components by using historical defect data from different versions
of five Microsoft software systems[35]. These models were found to be able to effectively
predict the likelihood of post-release defects for new entities.

Although repository mining seems like an easy way to obtain lots of diverse data for
research, it is not without downsides. Kalliamvakou et al. looked at the most common
pitfalls when mining repositories, and pointed out that notall data should be assumed to be
valid[16]. During our own study, we kept their recommendations in mind.

8



Chapter 3

Experimental Setup

In this chapter, we describe the work that has been performedas part of the study, using
the tool that we developed (described in chapter 4). Each section corresponds to a research
goal:

1. Finding the prevalence of ASATs, both in general and in relation to use of build tools
and CI

2. Finding the effects of ASAT usage on project community andcontributions

3. Gaining insight in the occurrences of different warning categories, both numbers and
time to solve

First, we collected metadata of a fair amount of GitHub repositories and analyzed the file
trees of each repository to determine which, if any, ASATs and Build Tools are used. After
that, we obtained information about the latest pull requests for each repository. Finally, we
ran each ASAT on different commits a selected number of repositories to obtain a set of
warnings for each commit of each repository. The following sections explain each step in
more detail.

3.1 Retrieving Repositories

To get started, we need a sizeable list of repositories from to work with. As of 2016, GitHub
hosts over 35 million repositories1, so we can safely limit ourselves to this repository host-
ing. A majority of these are personal and inactive[16], and it would be infeasible to work
with all repositories. Because we will also be gathering statistics on pull requests, we want
active repositories, that have reached a decent level of popularity. To get active reposito-
ries, we require the last push to have been performed on or after January 1, 2016. For the
popularity, we require the repositories to have been “starred” – a way for other GitHub
users to save a repository to their list of favorites – at least 200 times. In addition, due to
the ASATs that this study focuses on, we will only retrieve repositories with Java, Ruby,

1https://github.com/features
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3. EXPERIMENTAL SETUP

Python, or JavaScript as their main language. Finally, the GitHub Search API only returns
public repositories that aren’t forks of other repositories by default.

Upon applying these constraints, we ended up with 9443 repositories. For these reposi-
tories, we retrieved their repository id, full name, default branch, star count, whether or not
they use GitHub issues, the number of open issues, date of creation, date of the last push,
and main language.

3.2 Basic Repository Properties

Now that we have a list of repositories to work with, we are ready to retrieve some basic in-
formation on a per-repository basis. We look for three properties of the repository’s project
here.

3.2.1 Build Tools

For a select number of different build tools (see table 3.1),we check if the project uses
them. These build tools have been selected because they are most commonly used for their
respective language, and Travis CI2 has default scripts built in for them. The exception is
Python, which does not really have a standardized build tool. Tox and Make are mostly
used in projects to run automated tests and other build tasks, though not in the majority of
the studied projects. With this information, we can then seeif there is a correlation between
the use of ASATs and the use of build tools. We assume that thisis the case, because it is
easier to enforce the use of an ASAT if it is contained within abuild task; the task can cause
the build to fail if there are ASAT warnings.

Language Build Tools
Java Gradle, Maven, and Ant
Ruby Rake
Python Tox and Make
JavaScript Grunt, Gulp, and Make

Table 3.1: Build Tools checked per language

3.2.2 Analysis Tools

With them being the main topic of the study, we are mainly interested if ASATs are used,
and if so, which ones. This information can later be used to find out which ASATs are most
popular, and the prevalence of ASATs per programming language. We define three different
signs of an ASAT being used:

1. A specific configuration for the ASAT is stored in the repository, either as separate
file or as part of build tool configuration

2http://www.travis-ci.org
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3.3. Analyzing Pull Requests

2. The ASAT is included in at least one of the tasks of the buildtool that the project uses

3. The ASAT is added as a (development) dependency in the project’s dependency man-
ager’s configuration

Although #2 and #3 should be tied together most of the times (it does not make sense
to have an ASAT in a task without having a dependency to it), some ASATs work with a
default configuration in the absence of a specified configuration file. Therefore we check
for all 3 of these, and decide that an ASAT is used if any of themis true. Although we still
cannot say that the ASAT is actively being used with certainty, we know that at some point,
a maintainer consciously added it to the project.

3.2.3 Continuous Integration

About 30% of active, meaningful open source projects on GitHub use Travis for CI[10].
Since ASATs can easily be included in CI builds (either as part of the build tool configura-
tion, or added to the Travis script directly), we want to check if a project is currently using
Travis. This way we can see if Travis is often used along with ASATs or build tools, and
how its use affects the amount of warnings in commits.

3.3 Analyzing Pull Requests

In addition to information about the project itself, we are also interested in the activity of
the project’s community. For this we analyze the pull requests that have been submitted and
closed on GitHub since the repository was created. We also retrieve the number of closed
pull requests for each repository since its creation. Usingthis number, we can later deter-
mine whether there is a correlation between using ASATs and the amount of pull requests
that a repository receives.

Then, for some more detailed data, we retrieve information about the last 100 closed
pull requests for each repository. The reason for this number is that the GitHub API can
return up to 100 results per request, which we believe shouldbe a sufficient amount. The
obtained data includes the id of the user that submitted the pull request, the moment the pull
request was created and the moment it was closed (i.e. mergedor rejected). We only obtain
data for closed pull requests because we want to analyze their lifetime, which is undefined
for open pull requests.

3.4 Analyzing Warnings

For the main part of the study, we want to obtain the ASAT reports for repositories. That
way, we can find out which types of warnings occur most frequently, and the distribution of
the total number of warnings in a repository. However, we also want to go a step further, by
obtaining this report for many different commits of the repository. This way, we can observe
the changes in the amount of warnings, but also the rate at which individual warnings are
solved.
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Unlike the previous steps, we cannot obtain ASAT reports through the GitHub API. An
initial idea was to parse build logs from Travis. However, this idea was quickly dismissed
due to its complexity; reports in build logs can be formattedin many different ways, de-
pending on whether the ASAT is run directly or through a buildtool plugin. Furthermore,
not all projects run ASATs as part of the Travis build, and this method would require scan-
ning large amounts of data, which would be infeasible. Instead, we decided to locally clone
each project we want to study, then run the ASAT ourselves. This way, we have complete
control over the output format, making it more suitable for parsing.

Unfortunately, we could not fully automate the process of code analysis on all reposito-
ries. There are several reasons for this: the directories where source code is stored are not
consistent between repositories, and configuration files may contain settings that have been
removed in a newer version of an ASAT, or settings that only recently have been added.
In addition, for Checkstyle and PMD, the configuration file can be stored anywhere in the
repository, so it should be provided manually. In some cases, this information could be
retrieved from the build tool configuration, however, we didnot want to limit ourselves to
just the repositories where this could be automated.

To decide if a project is suitable for analysis, we have some requirements. First, a spe-
cific configuration file should be present in the repository, so that we can be sure the project
developers have consciously integrated the ASAT. Besides that, some ASATs require a cus-
tom configuration to be provided and yield an error message when used without any, while
others can be used without configuration. However, the default behavior is not consistent
amongst different ASATs; some have default rules they will use, others will not use any
rules. To be safe, a configuration file needs to be present at all times. Another requirement
is that the number of closed pull requests should at least be 100, so that only projects which
are actively contributed to (with response from the maintainers) are left.

3.4.1 Collecting Results

We configure the ASAT in question to yield output parseable byour tool, in XML or JSON
format. Different ASATs report warnings in different ways,so we normalize the results.
This way we end up with the file where the warning occurred, theline and column numbers,
the warning message, and the identifier of the rule that was violated, unique per ASAT.

Basically, the results could be saved like this, but with 7 different ASATs, there are a
lot of different rules. This would mean that the total amountof violations per rule would be
rather low. To deal with this, we use the General Defect Classification, defined by Beller et
al[8]. This classification defines a relatively low number ofcategories for ASAT rules, with
mappings included for the ASATs of this study. By mapping therules to these categories,
we can compare warnings across ASATs.

For each warning, we also keep a reference to the commit (and its timestamp) of the
repository that caused said warning. That way, we can later figure out how long it took to
fix a warning.
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Chapter 4

Tool Implementation

The retrieval of the data, and transforming this data into usable results, has mostly been
performed by a self-developed tool. This tool, along with exported results, can be found on
GitHub1. In this chapter, we first describe the implementation of thetool itself, and then
focus on the database design.

4.1 Repository Data Retrieval

For this study, we are going to be mining software repositories on GitHub. Since this will
be quantitative research, we want to obtain data on as many repositories as possible. This
is most easily accomplished using the public API2. Most of the steps described in chapter
3 are easily automated, so having a program retrieve all necessary data is the best solution.
This program needs to be able to connect to GitHub’s API, store data, and export usable
results. A command-line tool would suffice, since only basicinput will be required, such as
the specific task to be performed. This task can be one of retrieving or analyzing reposito-
ries, retrieving pull request data, or running ASATs while also using Git to switch between
commits.

We have implemented this tool in over 2000 lines of PHP code. The reason to de-
velop in PHP was made mainly because of personal experience with the language and its
ecosystem. Interaction is done through a Command-Line Interface, for which the Symfony
Console Component3 was used. Furthermore, the Guzzle HTTP Client4 was used to interact
with GitHub’s API, which is accessed over HTTPS. For database interaction, we used the
Illuminate Database Component5, which is part of the Laravel6 PHP framework.

Figure 4.1 shows the general process for most interactions.Once a command is issued,
it passes a search query to theGithubClient instance, a singleton which contains all the
logic for interacting with the GitHub API using Guzzle. Thisobject translates the query

1https://github.com/bvangraafeiland/RepositoryAnalyzer
2https://developer.github.com
3http://symfony.com/doc/current/components/console/introduction.html
4http://docs.guzzlephp.org/en/latest/
5https://github.com/illuminate/database
6https://laravel.com
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4. TOOL IMPLEMENTATION

into an HTTP request, makes that request, parses the response and returns it to the calling
command. The command can then store the results into the local database.

Figure 4.1: Flowchart for obtaining data from GitHub

4.1.1 Obtaining Repositories

The first step is to retrieve a large number of repositories towork with. Our goal is to obtain
as many repositories as possible, but not include inactive or personal repositories. To cover
that, we limit ourselves to repositories with at least 200 stargazers that have been pushed
to since January 1, 2016. Besides that, we only retrieve repositories with Java, JavaScript,
Ruby or Python as their main language, since we only study ASATs for these languages.
These parameters are then specified in a search query. Through the GitHub API, we obtain
the name, default branch, stargazers count, creation date,last push date and language of
repositories that meet the requirements.

To retrieve repositories, we make use of the/search/repositories API endpoint.
However, a single request returns only up to 1000 results, asthis endpoint is meant to be
used for searching for specific repositories. Because we instead want to obtain all reposito-
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ries that meet the requirements, we limit each search to a single year. To get all repositories,
we perform a search for each year from 2008 (creation year of the oldest repository on
GitHub) to 2016 per language. This way, each result set ends up being smaller than 1000.
This is depicted in figure 4.2.

Figure 4.2: Obtaining all desired repositories from GitHub

4.1.2 Analyzing Project Properties

Now that we have the base dataset with repository names, we are ready to obtain more
detailed information about each repository. We analyze which ASATs are used (if any),
which build tool is used (if any) and whether the project makes use of Travis. For each
repository, we first obtain the names of all files in the root directory. This information is
used as part of the build tool and ASAT checks. From the repository contents, we also
retrieve the dependencies file and build tool configuration,if those exist. This process is
depicted in figure 4.3.
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Figure 4.3: Retrieving information about the project’s dependencies and build tasks

When the repository contents, project dependencies and build tool configuration have
been retrieved, we can look for evidence of ASAT, build tool,and Travis usage. The general
idea of this process is displayed in figure 4.4 and described in more detail in the following
paragraphs.
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Figure 4.4: Deciding ASAT, build tool, and Travis usage

Build Tool Usage

To build tool usage, depending on the language of the repository, we check for the existence
of a list of files, defined by the language-specific subclass, in the root directory contents, as
shown in the top rectangle of figure 4.4. This meansbuild.gradle for Gradle,pom.xml
for Maven,build.xml for Ant, Rakefile for Rake,tox.ini for Tox,Makefile for Make,
Gruntfile.js for Grunt, andgulpfile.js for Gulp. We just check for the files’ existence,
so in case other build tools should be checked, our repository analysis tool can easily be
expanded to account for that.

ASAT Usage

After that, language-specific checks are performed, which are also implemented by the
respective subclass. Three checks are performed:

• Looking for an ASAT in the project’s dependencies. Projects often use some sort
of dependency management, like Maven for Java or Bundler forRuby. To determine
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an ASAT being listed as a dependency, we search the dependencies file for a mention
(e.g.Gemfile for Ruby).

• Looking for an ASAT in the project’s build tasks . Within the build tasks file, we
search for a plugin of the ASAT under study (e.g.gulp-eslint in gulpfile.js for
ESLint in JavaScript projects).

• Looking for an ASAT configuration file in the repository . All ASATs, except PMD
and Checkstyle, look for a specific configuration file in the root directory by default.
We check for this file’s existence in the previously obtainedroot directory contents
(e.g..pylintrc for Pylint).

These steps are illustrated in the middle rectangle of figure4.4 and the following paragraphs
explain each part in more detail.

ASAT Configuration

The way configuration files are used differs per ASAT. JSHint,JSCS, and RuboCop all have
a single file that they use by default (.jshintrc, .jscsrc, .rubocop.yml respectively).
ESLint accepts different file types for configuration:.eslintrc.js, .eslintrc.yaml,
.eslintrc.yml, .eslintrc.json for JavaScript, YAML or JSON (alternatively, a plain
.eslintrc file can be used containing either YAML or JSON, which is deprecated but still
valid). Pylint accepts either.pylintrc or pylintrc. All mentioned files are assumed to
be stored in the repository’s root directory, although a different location can be specified.
Checkstyle and PMD use XML files for their configuration, which can be stored anywhere,
and then referenced in the task of the build tool or on the command line. In addition to a
separate configuration file, JSHint, JSCS, and ESLint configurations can also be stored in
thepackage.json file7 under thejshintConfig, jscsConfig, or eslintConfig fields.

To determine that a custom configuration is used, we check forthe existence of the
mentioned file names in root directory of the repository. Although it is possible that con-
figuration is stored elsewhere, we do not check for that because it would require searching
through each single repository, which is time consuming dueto GitHub’s API rate limit (30
searches per minute). In addition, it seems that very few repositories actually store their
configuration in a directory other than the root. In case of the JavaScript ASATs, we also
read thepackage.json file to see if configuration is specified there. As for the Java ASATs,
we parse the build tool’s configuration file (Gradle, Ant or Maven) and check if a path to a
Checkstyle/PMD configuration file is mentioned there. Unfortunately, this means that Java
projects need to use either Gradle, Maven or Ant, but most projects seem to be using one of
these, and it can be argued that without a build tool, a project is not very likely to use any
ASATs.

7In thepackage.json file, npm packages can store basic documentation, dependencies on other packages,
and build scripts.

18



4.1. Repository Data Retrieval

ASAT in Build Task

By themselves, ASATs can easily be overlooked. Just having aconfiguration in the reposi-
tory hardly guarantees that a tool will ever be used by collaborators. IDEs may be configured
to pick up ASAT configurations and point out warnings, but there is no control over which
IDE collaborators use, if any. This would also mean mean IDE configuration for multiple
IDEs needs to be stored in the repository, which seems undesirable. To make sure that code
analysis will be included in the regular workflow, it would bewise to incorporate an ASAT
in the build process instead. For most build tools (Python excepted), plugins are readily
available to integrate an ASAT in the build process, usuallyrequiring only a couple extra
lines of configuration.

Deciding whether an ASAT is in a build task is different for each language. Again, we
consider the build tools of table 3.1. For this reason, we first checked for build tools; we
then already know which build tool configuration files are present for parsing. Evidence of
ASATs in the build is specified in table 4.1. Based on these observations, we decide which
ASATs are included in build tasks.

Build Tool Evidence

Gradle In build.gradle, the respective plugin for PMD or Checkstyle
is included.

Maven An execution element has been added in the Checkstyle/PMD
plugin, with thecheck goal to be executed.

Ant A Checkstyle/PMD element is present in on of the targets defined
in build.xml.

Rake A Rake task has been created to run RuboCop, meaning
Rakefile contains the textRuboCop::RakeTask.new (RuboCop
comes with a Rake task to use).

Tox The textpylint exists intox.ini.

Make The name of the ASAT is mentioned inMakefile.

Grunt The name of the plugin for the ASAT is mentioned in
Gruntfile.js.

Gulp The name of the plugin for the ASAT is mentioned in
gulpfile.js.

Table 4.1: Signs of an ASAT being included in the build for each build tool

ASAT as Dependency

Finally, we check whether a project lists an ASAT, or a build tool plugin of an ASAT, as
a dependency in its language’s dependency management. We consider dependency man-
agement as follows: Gradle or Maven for Java, Bundler for Ruby, Pip or setup.py for
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Python, and NPM for JavaScript. In most cases, a dependency should be defined if there
is a build tool task, otherwise a project would have to dependon other developers hav-
ing tools already installed on their machine. Nevertheless, we check for dependencies be-
cause the ASATs could be run directly without a build tool as middle man. For example,
beautify-web/js-beautify contains abuild.sh script which runs jshint with

$PROJECT_DIR/node_modules/.bin/jshint ’js’ ’test’ || exit 1

For Java, we consider a dependency to be the same as having a build task, so the check
is essentially the same as in the previous step. This is because adding the Checkstyle/PMD
plugin to Gradle/Maven automatically causes the build toolto download the ASAT when
running the build. For Ruby, we look for arubocop mention inGemfile or the.gemspec
file (in case the project itself is a Gem), which Bundler uses to download dependencies.
For Python, we search therequirements.txt andsetup.py files to see if they include
pylint. Finally, for JavaScript, we parse thepackage.json file, combine the contents
of thedependencies, devDependencies, andoptionalDependencies fields, and search
for the name of the ASAT (jscs, jshint, eslint) in there.

Travis Usage

Evidence for Travis usage comes in two parts, as shown in the bottom rectangle of figure
4.4. First, we make sure the configuration file.travis.yml exists in the repository root.
Second, we make an HTTP request to the Travis API, obtaining information about the last
build of a project. If the last build exists and it was performed at the same time of the last
push, we consider the project to be actively using Travis.

4.1.3 Retrieving Pull Requests

All required data regarding the community around projects can be obtained by looking at
the properties of pull requests. As mentioned in chapter 3, we restrict ourselves to the last
100 closed pull requests, because the GitHub API returns that many per request, and we are
analyzing the time that pull requests stay open, which is undefined for those that are still
open.

Again, the GitHub API provides us with all the data we need. For each pull request, we
retrieve the title, number, ID of the user who submitted the pull request, and timestamps of
when the pull request was opened, merged (null if the request was rejected), and closed
(identical to merged if the request was accepted). Each pullrequest is also associated with
its repository internally. We also obtain the total amount of pull requests that a repository
received by fetching the list of pull requests from GitHub and setting the number of results
per page to 1. By checking the total number of pages (which theresponse includes in its
headers), we know the total number of pull requests. With this basic data, we can compute
some more properties of repositories:

• Time to close pull requests.For each of the repository’s pull requests, we calculate
the difference in seconds between thecreated at andclosed at properties. The
repository’s time to close is the average of the obtained values.
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• Pull request density.This property comes in two forms: lifetime density and recent
density. The former is calculated as the total number of pullrequests divided by the
repository age in hours. The repository age is calculated bytaking the difference be-
tween thecreated at andpushed at attributes of the repository. The recent density
is calculated by taking the difference in hours between creation dates of the first and
last of the (up to) 100 pull requests retrieved for the repository. This difference is then
divided by the amount of pull requests we obtained for the repository.

• Unique user count, defined as the number of different user ID’s that appear in the
repository’s pull requests.

• Merged count, the number of pull requests wheremerged at is set, i.e. the pull
request was accepted.

4.1.4 Running ASATs

Preparation

We start by figuring out which directories of the repository contain the source code by
manual inspection and determine which version of the ASAT should be used, sometimes
with the help of build tool configuration. We then install therequired ASAT version if
needed. Sometimes, other information is required, such as additional command line options.
In the cases of Checkstyle and PMD, we also look up the configuration file location. All of
this is then saved to a configuration file for our tool.

Code Analysis

With the configuration set, we are ready to run the ASAT. UsingGit, we first obtain a list
of commit hashes representing the versions of the repository to run the ASAT on. For
each project, we retrieve the last 500 versions, while usingthe--first-parent option in
order to exclude duplicate commits caused by pull requests.Then, using the command line
interface, we run the ASAT over the directories specified in the repository’s configuration.

When running the ASAT, we make it output either JSON or XML data in order to make
parsing easier. Most ASATs provide a formatter for this out of the box, but for ESLint,
JSHint and JSCS we implemented our own formatter due to the ease of doing so and having
the output exactly in the way that suits our tool best. For each warning encountered, we
retrieve the name of the file where the warning occurred, the line and column numbers, the
warning message, and the identifier of the rule that was violated. We also categorize each
warning according to the GDC, using preset mappings, and usingsed, we obtain the content
of the line of code that the warning occurred on.

The ASAT is run on each commit, until either 500 versions havebeen run, or the ASAT
configuration file is no longer present (meaning it has been added to the repository within
the last 500 commits). The full process is displayed in figure4.5.
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4.1.5 Exporting Data

At this point, we have most of the data we need. The analyses done on the data are per-
formed by means of an R script, which works best with input files of CSV format. There-
fore, the data stored by the tool is exported to CSV files. The results we export are:

• Statistics per language– Repositories are aggregated by language to count the amount
that use asats, build tools, and Travis.

• Basic repository properties– The name, star count, language, pull request count,
age, pull request density, and use of ASATs and Travis for each repository. This can
directly be retrieved from the data.

• Pull request properties – The information about pull requests for each repository:
total count, merged count, time to close, density, and unique user count. Also includes
whether the repository uses ASATs, so that the other properties can be compared
between projects using ASATs and those that do not.

• Warning counts – For each repository, a separate file is exported that lists the com-
mits of that repository, along with the total number of ASAT warnings in that commit.

• Statistics for analyzed repositories– For each repository that we ran ASATs on,
we export the average warning count per commit, the total lines of code (using the
command-line toolcloc8), and the normalized warning count, expressed as warnings
per 100 lines of code.

In addition, we compute solve times for each GDC category. The way this is done is ex-
plained below.

Solve Times

After having run the ASATs on a number of different commits, we end up with a set of
warnings across all of these commits. By comparing warningsbetween commits, we ob-
tain the dataset of solve times. The way these are computed isdepicted in figure 4.6 and
explained in more detail below.

First, we remember the set of warnings belonging to the first commit. For these warn-
ings, we cannot say anything about their solve times, because we cannot tell how long the
warnings had been present prior to that first commit. Then, for each commit, we increase
a counter for each warning that is present in the commit and not present in the initial set.
Furthermore, we save the counter for each warning that has a counter value, but is not in the
set of warnings of the current commit, and remove that warning’s counter. In other words,
we consider that warning solved, so the number of commits that it has existed can be saved
as its solve time. Eventually, after this has completed for all commits, we end up with a set
of solve times. These solve times are then grouped per GDC category. After completing
these steps for all repositories, we merge the solve times per category of each repository to
obtain the final dataset to export.

8http://cloc.sourceforge.net
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4.2 Database Design

We used a MySQL database to store retrieved data from both GitHub and ASAT output.
The main reason is again personal experience, but also the ease of integrating with PHP.
The database contains the following tables for the base entities:

• repositories – Basic repository data as mentioned in the previous section.

• analysis tools – Names of the ASATs under study.

• build tools – Names of the build tools under study.

• pull requests – Pull request data, including arepository id column.

• results – The hash and commit date for the results produced by an ASAT of a
single commit. Includes therepository id column.

• warning classifications – Names of the categories defined by the GDC.

• warnings– Single warnings produced by ASATs. Includes theclassification id,
results id, andanalysis tool id columns.

In addition to the base entities, the schema contains three pivot tables:

• analysis tool repository – Links repositories to ASATs. Also includes the
method of ASAT usage in the form ofconfig file present, in dev dependencies,
andin build tool.

• build tool repository – Links repositories to build tools. The reason for this
being a pivot table rather than a column in therepositories table is that a repository
may include multiple build tools.

• analysis tool result – Links ASATs to results. This being a pivot table in-
stead of having a column in theresults table makes it possible to store results for
more than a single ASAT per repository.

The relations between the entities are displayed in figure 4.7.
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Figure 4.5: The process of running an ASAT on each version of aproject
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Figure 4.6: Algorithm for computing solve times
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Figure 4.7: Entity-relationship diagram of the database
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Chapter 5

Results

In this chapter, we present the results obtained in the study. First, we provide basic informa-
tion about the data that we have collected, present insight into ASAT prevalence, and look
for correlations between ASAT usage and several other repository properties. In the second
section we compare community activity between projects that use ASATs and projects that
do not. The final section contains an in-depth analysis of warning counts and the time it
takes to solve warnings of different categories as specifiedby the General Defect Classifi-
cation.

Unless mentioned otherwise, the statistical test we use in this chapter is the two-sample
Wilcoxon test, also known as the Mann-Whitney U test, reporting a two-tailedp-value with
the default threshold of 0.05. The reason for this is that in the first place we want to find
out whether the samples have different means. Furthermore,we cannot assume normality,
as determined by means of the Shapiro-Wilk test, which yielded p-values below 0.01 for all
of the datasets. In particular, the star counts (figure 5.3) and pull request counts (figure 5.4)
seem to more closely resemble a Pareto distribution.

5.1 Basic Statistics

In total, we ended up with 9443 repositories that met the language, activity, and star re-
quirements as described in chapter 3. Of these, 6772 do not use ASATs, while 2671 do. To
get an idea of the prevalence of ASATs per language, table 5.1shows ASAT statistics about
repositories grouped per language. The last column shows the percentages of projects that
use ASATs as build task relative to all projects that use build tools. JavaScript projects turn
out to be likely to use an ASAT as build task when using a build tool, but this does not hold
for other languages.

5.1.1 ASAT Prevalence

We are also interested in the popularity of each ASAT. Figure5.1 displays this as the number
of projects that has included an ASAT in some way. Here, the total count may be larger than
the total number of repositories, because a project can be included in the counts of more than
one ASAT.
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Language # repositories Uses build tool Uses ASAT ASAT as build task
JavaScript 4504 1343 (30%) 2154 (48%) 830 (62%)
Java 1823 1589 (87%) 160 (9%) 122 (8%)
Ruby 1316 1190 (90%) 247 (19%) 126 (11%)
Python 1800 768 (43%) 117 (7%) 54 (7%)

Table 5.1: Basic repository statistics, with percentages of the total number
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Figure 5.1: Number of projects for each separate ASAT

From this we can see that the ASATs for JavaScript (JSHint, ESLint and JSCS) are most
popular. This could be attributed to JavaScript being the most frequent language along with
having the highest ASAT use.

Because we studied more than a single ASAT for Java and JavaScript, we can also
say something about the number of ASATs used in repositoriesof those languages. 26 of
the 160 Java projects use both Checkstyle and PMD, whereas 353 out of 2154 JavaScript
projects use more than one ASAT, of which 20 projects use all three of them.

5.1.2 ASATs with Travis

We now look at ASAT usage within Travis-enabled repositories, to find out whether Travis
usage has any effect. These are presented in table 5.2. Compared to the statistics of all
repositories in table 5.1, the percentage of projects usingASATs is higher for all languages.
The biggest difference can be observed for JavaScript (48% to 64%), which already had the
highest use rate. The reason for the higher use rate could be because ASATs offer more
value when integrated into Travis (automatic feedback for use in code reviews), but another
explanation is that both Travis and ASATs are workflow-enhancing tools and once project
maintainers decided to use such tools, they are likely to integrate both.
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Language # repositories using Travis # using ASATs (% of total)
Java 698 102 (15%)
JavaScript 2084 1337 (64%)
Python 966 81 (8%)
Ruby 924 204 (22%)

Table 5.2: ASAT usage for repositories using Travis

5.1.3 ASAT Usage and Repository Age

To find out whether age of a repository influences ASAT usage, figure 5.2 shows box plots
of age in hours for both groups. From this figure, it would seemthat newer projects are more
likely to use ASATs. Indeed, the average age is 25757 hours without ASATs and 24278 with
ASATs. With ap-value of 0.0022 (U = 9409700), the groups have a statistically significant
difference.

FALSE TRUE

0
10

00
0

30
00

0
50

00
0

70
00

0

Using ASATs

R
ep

os
ito

ry
 a

ge
 (

ho
ur

s)

Figure 5.2: Distributions of repository age

To explain this, we look at the previous statistics on languages and ASAT use. Out
of 2678 projects that use ASATs, 2154, or 80%, have JavaScript as their main language.
For the remaining 6765 projects, this is 2350, or slightly below 35%. The average age for
JavaScript projects is 22863 hours, which is well below the average age for all ASAT-using
projects. Therefore, it is possible that the difference is caused by the higher percentage of
JavaScript projects in ASAT-using projects, rather than whether ASATs are used.

To find out, we perform the same analysis on projects of each language separately. The
results can be found in table 5.3. Here we see that repositories with ASATs are newer on
average for JavaScript and Ruby, but older for Java and Python. The difference is statisti-
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cally significant for all languages except Ruby. As mentioned, a majority of ASAT-using
projects are in JavaScript, which negatively influences themean age. The group of non-
ASAT projects is dominated by the other three languages, which are older with the excep-
tion of Java, but this is compensated by the much higher average age for Ruby, leading
to higher age overall. Because of the differences between languages, we cannot draw any
conclusions about the relation between ASAT usage and repository age.

Language Mean without ASATs Mean with ASATs p-value
JavaScript 23399 22274 0.013
Java 19862 28522 5.45·10−12

Ruby 38506 35943 0.052
Python 26784 30623 0.0067

Table 5.3: Mean ages andp-values of repositories with and without ASATs, per language

There is another factor that could influence the repository age averages. All four lan-
guages have been around since long before GitHub was launched, so it is possible that some
projects migrated from other hosting (e.g. SVN, CodePlex, Google Code, or SourceForge)
to GitHub at some point during their lifetime. In that case, our data makes these projects
seem newer than they actually are. Unfortunately, we have noway to detect this automat-
ically, and assume that the amount of migrated projects is roughly equal for all languages,
and migrated projects are equally likely to use ASATs compared to original GitHub projects.
Under this assumption, migrations do not significantly affect the results as presented.

5.1.4 ASATs and Star Count

The last basic property we present here is the number of starsa repository has, and compare
this number to whether or not the project uses ASATs. This is interesting to know because
intuitively, projects with a higher star count (hence more popular) are likely to be depended
upon by more people. To ensure higher quality, ASATs could beintroduced. Projects that
do use them have 1688 stars on average, with a median of 636, whereas projects that do
not have 1035 stars on average with a median of 484.5. The Mann-Whitney U test yields a
p-value of 2.2·10−16 (U = 7797900), so ASAT-using repositories seem to have more stars.
Figure 5.3 shows the histogram for both groups of repositories. We opted for a histogram
instead of a boxplot, because the data does not seem to fit a normal distribution and has
a lot of outliers, which would result in a flat box. In both cases, we see a distribution
leaning towards zero (the minimum here is actually 200, because that was the threshold
for repositories to study) with a heavy tail. The star count with ASATs is more evenly
distributed, since the y-axis only goes to 12, compared to 30.

5.2 Community Contributions

In this section we present several properties of the pull request data. For all properties
except pull request count and lifetime density (i.e. amountof pull requests per hour), we
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Figure 5.3: Star counts for projects without ASATs on the left, projects with ASATs on the
right

limited ourselves to repositories that have received at least 100 pull requests, in order to
have enough data for the results to be meaningful. This leaves us with 2353 repositories, of
which 1465 do not use ASATs, and 888 do.

5.2.1 Pull Request Count

We will start off by comparing total pull request counts. We hypothesize that projects with
high amounts of pull requests are more likely to have introduced ASATs at some point to
make the process of handling pull requests easier and to enforce code conventions defined
by the project maintainers. When not using ASATs, the medianis 29 with an average
127.3. With ASATs, these numbers rise to 56 and 221.7 respectively. The test yields a
p-value of 2.2 ·10−16 (U = 6926600), showing that a larger number of total pull requests
can be associated with ASAT use. Figure 5.4 shows the histograms for both groups.
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Figure 5.4: Pull request counts for projects without ASATs on the left, projects with ASATs
on the right

5.2.2 Pull Request Density

Although we showed that projects using ASATs have more pull requests in total, older
repositories are of course more likely to have more pull requests, and have had more time
to include ASATs. Therefore, we normalize the pull request rate by using density instead.
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We define the pull request density as the number of pull requests created per hour, and
calculated both the lifetime density and the density duringthe last 100 pull requests.

The Mann-Whitney U tests for lifetime and recent density yield p-values of 2.2·10−16

(U = 6694000) and 1.98·10−6 (U = 574490) respectively, so even when normalizing for
the age of the repository, use of ASATs can be associated witha higher rate of pull re-
quests. More statistics can be found in table 5.4. Note that the recent density seems to be
significantly higher; this is probably due to the fact that for recent density we only consider
repositories with at least 100 pull requests, while lifetime density also includes repositories
without any pull requests at all.

Timespan Median Mean Max
Lifetime without ASATs 0.001 0.006 0.562
Lifetime with ASATs 0.003 0.010 0.891
Recent without ASATs 0.008 0.020 0.426
Recent with ASATs 0.010 0.026 1.111

Table 5.4: Pull request density averages

5.2.3 Unique Contributor Count

While the number of pull requests by itself provides some insight into a project’s community
activity, it would also be interesting to see how many different people contribute. More
unique contributors could mean that it is easier for new contributors to pick up a project’s
style guide and/or conventions, because apparently lots ofdifferent people have done so
before. ASATs would provide a way for a potential contributor to find out whether their
contribution is suitable before actually submitting the pull request. Fewer contributors could
indicate that the majority of pull requests are made by a coreteam, of which the members
are familiar with the project’s conventions already. This could be a reason for ASAT usage
to be less likely.

However, the median number of contributors is 38 when not using, and 37 when using
ASATs, with ap-value of 0.22 (U = 669980), rejecting the idea of a correlation between
unique contributors and ASAT usage. This can also be observed in figure 5.5.

5.2.4 Amount of Merged Pull Requests

The raw number of incoming pull requests is a quantitative measurement, and a large num-
ber of them is still not beneficial if many of those pull requests are of low quality, and are
rejected as a result. As a way to measure quality of a pull request, we look at the amount that
is accepted and merged. Of the 100 pull requests, we counted the number that got merged
instead of rejected in the end for each repository. We expectASATs to increase the likeli-
hood of a pull request being accepted, because a contributorcan obtain immediate feedback
about their pull request in a number of ways; the ASAT can be integrated to the IDE, they
can run the build task if it is included there, or the CI check integrated into GitHub tells
them as soon as the pull request has been submitted, giving the contributor time to adjust.
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Figure 5.5: Amounts of different contributors

This seems to be supported in a survey involving project integrators[21], which shows that
code quality and style are the top factors that influence the decision to accept a pull request.
Without this feedback, the pull request may have been rejected due to style issues.

Contrary to this hypothesis, the median when not using ASATsis 79, versus 77 when
using, with ap-value of 0.006 (U = 694390), hinting at an advantage without ASATs. This
is visualized as a box plot in figure 5.6. A possible explanation is that integrators of projects
that do not use ASATs are less concerned with code style issues – if they were, they would
probably have enabled some ASAT, and are more likely to accept a pull request as a result.

There are other factors, unrelated to ASATs, influencing thedecision to accept or reject
a pull request. One study found that the decision to merge is mostly affected by whether
the pull request targets an actively developed part of the project[20]. Another study that
performed a survey among project maintainers found that without code style in the equation,
the top factors for the decision become project fit, technical fit, and testing, with the main
reasons for rejection being technical errors and failing tests[21]. Most contributors run tests
before submitting a pull request[19], which filters out mosttechnical errors and makes sure
all tests pass. This survey also mentions that contributorswant to format code according to
the guidelines, as long as a project actually has said guidelines, which may play a role here.

Another factor could be the number of contributors in the last 100 pull requests. If this
is low, there are likely some “core contributors”, who have more knowledge of the project
and how pull requests should be done, so their pull requests are more likely to be accepted.
Since the number of contributors and the number of pull requests both are ratio variables,
and we want to test for linear correlation, we apply the Pearson correlation test. We obtained
an estimated correlation coefficient of−0.37 with ap-value of 2.2·10−16 for the alternative
hypothesis of a negative correlation. Based on this, we can say the number of contributors
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Figure 5.6: Numbers of merged pull requests (out of the last 100)

is negatively correlated with the number of merged pull requests.

In conclusion, we can say that ASATs have no demonstrable effect on the decision to
accept or reject a pull request.

5.2.5 Pull Request Time to Close

For the final property, we look at how long it takes for pull requests to be accepted or rejected
and the effect of ASAT usage. We presume that use of ASATs would reduce the time
to respond to pull requests, because the code quality of the contribution would be higher.
Previous research shows that code quality is not among the top factors in response time, and
is dwarfed by reviewer availability[21]. Coming at a 5th spot, we still expect code quality to
have a significant impact though; when conventions are followed, project maintainers have
an easier time reviewing the changes. Other factors includethe developer’s track record,
project size, and test coverage[20]. Per project, we look atthe average time to close in
seconds.

With medians 854455 (without) versus 707913 (with) seconds, means of 1674847 ver-
sus 1392057 seconds and ap-value of 0.018 (U = 688300), there indeed seems to be a
correlation between use of ASATs and time to close. With ASATs, the time it takes to
review pull requests is almost 17% lower on average. Furthermore, without ASATs the
variance is 67% higher. As seen in figure 5.7, there are some large outliers within the group
of projects without ASATs, explaining the difference in variance.

Like with the merge rate, we also look at the effect of the amount of contributors on
the time to close. This time, we find a correlation coefficientof 0.49 with a p-value of
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2.2·10−16, indicating that pull requests take less time to review for projects with less con-
tributors.

FALSE TRUE

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

Using ASATs

A
ve

ra
ge

 ti
m

e 
to

 c
lo

se
 p

ul
l r

eq
ue

st
s 

(s
ec

on
ds

)

Figure 5.7: Time it takes to review pull requests on average

5.3 Warnings in Committed Code

The data obtained by running ASATs over several projects of each language forms the
largest part of our results. In this section, these results are presented in different ways. First,
we look at several statistics on warning count aggregates per project. Then, we present the
development of total warning counts over time for several projects. Finally, we look into
the different warning categories, analyzing their occurrences and solve rates.

For this study we ran the different ASATs on the code of 39 repositories. We limited the
analysis to one ASAT per repository in order to compare warning counts between repos-
itories (with multiple ASATs for some repositories, this comparison would not be valid).
These are listed in table 5.5, along with their language, tool used for analysis, number of
analyzed commits, and total number of warnings found. We selected the repositories with
the largest amount of stars that also contain a configurationfile for their ASAT. We analyzed
up to 500 commits per repository, starting at the earliest commit which contained a configu-
ration file that was compatible with the same version of the ASAT as said configuration file
of the last commit. In total, we ended up with 11.863.395 warnings in the database.

5.3.1 Warning Counts over Time

In this part, we look at how the number of warnings changes over time. For a select number
of projects, we show a graph that displays the total warning count over the number of
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Repository Language ASAT Commits Warnings
mongodb/morphia Java checkstyle 64 0
square/retrofit Java checkstyle 236 0
bumptech/glide Java checkstyle 498 716
scribejava/scribejava Java checkstyle 83 16
google/auto Java checkstyle 118 1926
zeromq/jeromq Java checkstyle 81 120139
facebook/buck Java pmd 500 0
capitalone/Hygieia Java pmd 88 1871
checkstyle/checkstyle Java pmd 500 28
Netflix/servo Java pmd 60 4801
OpenGrok/OpenGrok Java pmd 419 261696
sleekbyte/tailor Java pmd 162 0
jashkenas/backbone JavaScript eslint 55 245
FreeCodeCamp/FreeCodeCampJavaScript eslint 500 20206
gulpjs/gulp JavaScript eslint 45 45
nnnick/Chart.js JavaScript eslint 158 11041
jashkenas/underscore JavaScript eslint 52 1511
vuejs/vue JavaScript eslint 206 479
bower/bower JavaScript eslint 125 599825
remy/nodemon JavaScript jscs 44 7
jshint/jshint JavaScript jscs 248 21
requirejs/requirejs JavaScript jscs 65 0
gruntjs/grunt JavaScript jscs 60 118
hexojs/hexo JavaScript jscs 79 520
jquery/jquery JavaScript jshint 500 196
moment/moment JavaScript jshint 252 0
caolan/async JavaScript jshint 371 418
select2/select2 JavaScript jshint 500 20
less/less.js JavaScript jshint 500 7611
SirVer/ultisnips Python pylint 257 38356
numenta/nupic Python pylint 500 3923892
rembo10/headphones Python pylint 104 14530
pyinstaller/pyinstaller Python pylint 500 3367394
cython/cython Python pylint 500 3362930
CocoaPods/CocoaPods Ruby rubocop 109 0
ruby-grape/grape Ruby rubocop 196 14838
capistrano/capistrano Ruby rubocop 51 421
sass/sass Ruby rubocop 84 316
thoughtbot/paperclip Ruby rubocop 116 107262

Table 5.5: Repositories of which we obtained warnings for a range of commits
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commits that we analyzed, and try to find an explanation for the graph’s characteristics.
This way, we hope to find different ways for warnings to be solved or introduced.
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Figure 5.8: Warning count graphs for several noteworthy projects
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bower/bower (figure 5.8a) initially hovers slightly above 8000 warnings. However,
around commit #70 and then again around #80, a major amount ofwarnings is resolved.
The first drop is due to a change in ESLint settings, changing indentation size1, and the
commit of the second drop featured another overhaul of the ESLint configuration, along
with a large amount of code style fixes2. In addition, JSCS is dropped from the repository
altogether in favor of ESLint, and Grunt tasks for ESLint areadded, having them run in
Travis. This explains why warnings stay close to zero from that point forward.

facebook/buck (figure 5.8b) did not contain a single warning in 500 commits.This
is achieved by running PMD during each Travis build, using Ant. The website contains a
comprehensive section on contributing, including a style guide3 which mentions that PMD
checks are used.

numenta/nupic (figure 5.8c) starts out with a warning count at around 10000.Over
time, two big drops can be observed. The first one is caused by achange in configuration,
changing indentation size to a value that was being used in most of the codebase already.
The second one is a commit moving a lot of code to another repository4, so the violating
code is removed rather than fixed. For this project, warningswere reduced without changing
any of the code.

zeromq/jeromq (figure 5.8d) hovers around 5000 warnings for some time. However,
at some point, they seem to have had enough, and fix them all in asingle commit5. In this
same commit, Checkstyle is added to the build process and as aresult the warning count
stays at 0. This case is remarkable because all warnings werereduced by solving them,
rather than changing ASAT configuration or removing code.

opengrok/opengrok (figure 5.8e) is one of the few projects where the warning
count actually increases over time. At a couple of points, drops can be observed but those are
soon followed by more warnings. PMD is not run by Travis, which could be an explanation.

select2/select2 (figure 5.8f) remains at zero warnings for the majory of its com-
mits. However, we can observe a handful of instances where some warnings slipped through.
These were all solved within a couple commits. The commit after the largest peak (4 warn-
ings) did not only fix the existing warnings, but also added some rules to JSHint configura-
tion and solved all violations that emerged because of that6. This project also runs JSHint
through Grunt in Travis, so the low amount of warnings can be attributed to that. The
contributing guide does not mention code conventions, however.

5.3.2 Average Warning Count

To obtain insight into the warning counts of each repository, we calculated the average
number of warnings per commit. Because not all projects havean equally sized code base,
we also determined the lines of code of each repository, using a command-line tool called

1https://github.com/bower/bower/commit/78e443db0afb1889a9ec53c2ff94cce1b1ab017b
2https://github.com/bower/bower/commit/53eeca97d38945751075932ac6e6841ebeaeeb0a
3https://buckbuild.com/contributing/codestyle.html
4https://github.com/numenta/nupic/pull/1866
5https://github.com/zeromq/jeromq/commit/14d9dc1aaae0518433944fa664a907f575e72cdf
6https://github.com/select2/select2/commit/081580bcd82dce16df5a5dae5b03ef1f92420191
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cloc7. Using this value, we calculated the amount of warnings per 100 lines of code, which
is more representative than total warning count. The resultof this can be found in table 5.6,
where repositories are sorted by the number of warnings per 100 lines of code. Using this
table, we look for projects that have uncommon amounts of warnings per line of code, and
try to find an explanation. Furthermore, we investigate if there is any relation between the
total lines of code and the amount of warnings per line of code.

It turns out that only 12 out of 39 repositories averaged morethan 1 warnings per 100
lines of code. 7 repositories never had any warnings at all. This tells us that most projects
mostly seem to adhere to the rules they set for their ASATs. Interestingly, this seems to
be especially true for projects with large code bases. 8 out of the top 10 largest projects
have a negligible amount of average warnings compared to thelines of code. Both of the
other two (Python) projects do not run Pylint in Travis, whereas the other 8 all do. This also
seems to hold the other way around;bower/bower, the top offender, did not run ESLint
in Travis during the commits that yielded most warnings, andwhen it started doing so,
warnings dropped drastically. The same holds forzeromq/jeromq. The rest of the top 10
projects with the most warnings per line of code does not include their ASAT in Travis, with
the exception ofruby/grape andnetflix/servo, at the 9th and 10th spots, both under 2
warnings per 100 lines.

thoughtbot/paperclip stands out due to having a high amount of warnings per line
of code (29.9 per 100), despite a relatively small code base of 3093 lines. In line with
previous observations, we find that this project does not include RuboCop in Travis. The
only evidence of RuboCop usage is a configuration file, and it seems to be integrated into
Hound CI8 instead of Travis. However, Hound does not fail upon encountering RuboCop
warnings. In an issue raised on the amount of warnings9, a maintainer answered “This is not
an issue we want to tackle all at once. All new code coming intothe project should comply
as best as possible with rubocop rules. Thanks for reporting.”. This, combined with the
fact that RuboCop was added to the project at a relatively late moment10 (December 2014,
while the repository was created in April 2008), explains the high warning rate.

Following these findings, we investigate the relation between project size and warnings
per line of code. It looks like the large projects are more likely to make efforts to keep the
warning counts low. Figure 5.9 shows a scatter plot of the lines of code versus the amount
of warnings per 100 lines. This shows us that most projects have both low amounts of code
and warnings. As mentioned earlier, the projects with largecode bases are low on warnings,
but any correlation seems unlikely. Indeed, a Pearson correlation test yields ap-value of
0.6. To draw any conclusions, more data would be needed.

Considering the previously mentioned top 10 projects with most warnings per line of
code, we also hypothesize that integrating the ASAT into Travis and failing the build upon
warnings can be associated with low warning counts. Projects that include an ASAT in their
Travis script have an average of 2 warnings per 100 lines of code, versus 12.5 warnings for

7https://github.com/AlDanial/cloc
8https://houndci.com
9https://github.com/thoughtbot/paperclip/issues/2062

10https://github.com/thoughtbot/paperclip/pull/1733
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Repository Average warnings/commit Lines of code Warnings/100 LoC
bower/bower 4798.6 10285 46.66
pyinstaller/pyinstaller 6734.79 18083 37.24
thoughtbot/paperclip 924.67 3093 29.9
numenta/nupic 7847.78 31163 25.18
cython/cython 6725.86 52787 12.74
zeromq/jeromq 1483.2 23621 6.28
SirVer/ultisnips 149.25 3469 4.3
OpenGrok/OpenGrok 624.57 27508 2.27
ruby-grape/grape 75.7 4367 1.73
Netflix/servo 80.02 6746 1.19
rembo10/headphones 139.71 12128 1.15
nnnick/Chart.js 69.88 6395 1.09
jashkenas/underscore 29.06 4336 0.67
capistrano/capistrano 8.25 1398 0.59
FreeCodeCamp/FreeCodeCamp 40.41 8087 0.5
capitalone/Hygieia 21.26 4726 0.45
jashkenas/backbone 4.45 1166 0.38
less/less.js 15.22 9272 0.16
gulpjs/gulp 1 719 0.14
google/auto 16.32 19590 0.08
gruntjs/grunt 1.97 3371 0.06
sass/sass 3.76 13104 0.03
caolan/async 1.13 7431 0.02
vuejs/vue 2.33 18575 0.01
remy/nodemon 0.16 1657 0.01
bumptech/glide 1.44 31657 0
scribejava/scribejava 0.19 7871 0
hexojs/hexo 6.58 371236 0
jquery/jquery 0.39 31809 0
jshint/jshint 0.08 8069 0
select2/select2 0.04 17456 0
checkstyle/checkstyle 0.06 29808 0
mongodb/morphia 0 31095 0
moment/moment 0 39157 0
sleekbyte/tailor 0 4663 0
facebook/buck 0 156462 0
requirejs/requirejs 0 181720 0
square/retrofit 0 7316 0
CocoaPods/CocoaPods 0 8798 0

Table 5.6: Average warning counts per commit for each repository
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Figure 5.9: Scatter plot of lines of code and warnings per 100lines

projects that do not. This looks like a significant difference and indeed, the Mann-Whitney
U test yields ap-value of 0.003 (two-tailed,U = 222.5,n1 = 9,n2 = 30).

5.3.3 Prevalence per Warning Category

To say something about which kind of warnings show up most often, we want to analyze the
total counts of different warning types. However, since each ASAT has its own set of rules,
we cannot directly compare rules across ASATs. Therefore, we use the General Defect
Classification(GDC)[8]. Using this classification, we mapped rules of each ASAT to one of
the 18 more general categories. These categories have descriptive names, and are generally
easier to understand than the rule names of ASATs themselves. Figure 5.10 shows the total
amount of warnings we encountered across the study for each category.

Not all projects influence this figure equally. In table 5.5, we can see that Python projects
have generated most warnings, with a total amount of over 10 million. Considering the data
contains less than 12 million warnings in total, we also counted the categories for each
language separately to account for this imbalance. Figure 5.11 displays these category
counts per language.

For Ruby, most warnings are from the Metric category. Coincidentally, rules of this
category are often enabled in RuboCop[8], explaining this observation. A large majority
within this category belongs to theLineLength RuboCop rule, which defines a maximum
amount of characters a line can have. Upon closer inspection, we find that most of the
offending lines are either comments or string literals, andlikely not considered a problem.
Other than that, line length could also be considered to be a style convention, but because the
rule has a configurable number, it has been classified as Metric; this could be an indication
that some rules can be in multiple GDC categories.

For Python, the Logic category is most numerous. Upon closerinspection, we find that
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Figure 5.10: GDC warning category counts overall

87% of these warnings originate from thebad-continuation Pylint rule. A warning is
shown when function arguments on a new line do not align. Thisactually seems to be a
misclassification in the GDC, as it has no effect on the correctness of the program, and
should probably be in the Style Conventions category. Apparently, these issues are not
considered to be important enough to solve quickly; it is possible that they were present
before the ASAT’s introduction, and solving them has low priority.

For JavaScript, the large majority of warnings is from StyleConventions, of which
83.5% comes from theindent rule, available in both ESLint and JSHint, and 16% from
space-before-function-paren available in ESLint. The former requires indentation of
4 (by default) spaces per level, and the latter requires a space after thefunction keyword.
Like with Python, these are not major maintainability issues, and solving them is probably
of low priority.

For Java, Best Practices comes out on top. Within this category, rules are slightly more
evenly distributed than for the other languages: 49% is fromFieldDeclarationsShouldBeAtStartOfClass,
18% fromGuardLogStatementJavaUtil, 10% fromConsecutiveAppendsShouldReuse,
all of which are PMD rules. It turns out that all instances ofFieldDeclarationsShouldBeAtStartOfClass
(which requires class fields to be declared before any class methods) are found inOpenGrok/OpenGrok.
The instances where this happens, the class field is grouped with the method where it is used,
but the field is not used anywhere else. This may be a violationof the Single-Responsibility
Principle, so instead of solving the warning by moving the field declaration, a better solu-
tion would be to split the class up into multiple classes. An example is theConfiguration
class, which is over 950 lines long, has many different methods, and a constructor of 45
lines. These are indications of a God Class.
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We also see that warnings of the Style Conventions category are common for all lan-
guages. In addition, the rules that are violated most often in Ruby and Python could be
considered to be Style Conventions as well. An explanation for this could be that Style
Conventions are categorized under Maintainability Defects, meaning they have no effect on
the correctness of the program. Compared to other Maintainability Defects, Style Conven-
tions should have little impact on readability, because they mostly are about indentation,
line breaks and whitespace. Possibly, project maintainerswould ideally like to see these
issues resolved, but other issues take precedence.

B
es

t P
ra

ct
ic

es

C
od

e 
S

tr
uc

tu
re

C
on

cu
rr

en
cy

D
oc

um
en

ta
tio

n 
C

on
ve

nt
io

ns

E
rr

or
 H

an
dl

in
g

In
te

rf
ac

e

Lo
gi

c

M
et

ric

M
ig

ra
tio

n

N
am

in
g 

C
on

ve
nt

io
ns

O
bj

ec
t O

rie
nt

ed
 D

es
ig

n

R
ed

un
da

nc
ie

s

R
eg

ul
ar

 E
xp

re
ss

io
ns

R
es

ou
rc

e

S
im

pl
ifi

ca
tio

ns

S
ty

le
 C

on
ve

nt
io

ns

To
ol

 S
pe

ci
fic

N
um

be
r 

of
 w

ar
ni

ng
s 

(x
10

0,
00

0)

0.0

0.5

1.0

1.5

(a) Java

B
es

t P
ra

ct
ic

es

C
od

e 
S

tr
uc

tu
re

C
on

cu
rr

en
cy

D
oc

um
en

ta
tio

n 
C

on
ve

nt
io

ns

E
rr

or
 H

an
dl

in
g

In
te

rf
ac

e

Lo
gi

c

M
et

ric

M
ig

ra
tio

n

N
am

in
g 

C
on

ve
nt

io
ns

O
bj

ec
t O

rie
nt

ed
 D

es
ig

n

R
ed

un
da

nc
ie

s

R
eg

ul
ar

 E
xp

re
ss

io
ns

R
es

ou
rc

e

S
im

pl
ifi

ca
tio

ns

S
ty

le
 C

on
ve

nt
io

ns

To
ol

 S
pe

ci
fic

N
um

be
r 

of
 w

ar
ni

ng
s 

(x
10

0,
00

0)

0

1

2

3

4

5

(b) JavaScript

B
es

t P
ra

ct
ic

es

C
od

e 
S

tr
uc

tu
re

C
on

cu
rr

en
cy

D
oc

um
en

ta
tio

n 
C

on
ve

nt
io

ns

E
rr

or
 H

an
dl

in
g

In
te

rf
ac

e

Lo
gi

c

M
et

ric

M
ig

ra
tio

n

N
am

in
g 

C
on

ve
nt

io
ns

O
bj

ec
t O

rie
nt

ed
 D

es
ig

n

R
ed

un
da

nc
ie

s

R
eg

ul
ar

 E
xp

re
ss

io
ns

R
es

ou
rc

e

S
im

pl
ifi

ca
tio

ns

S
ty

le
 C

on
ve

nt
io

ns

To
ol

 S
pe

ci
fic

N
um

be
r 

of
 w

ar
ni

ng
s 

(x
10

0,
00

0)

0

5

10

15

20

25

(c) Python

B
es

t P
ra

ct
ic

es

C
od

e 
S

tr
uc

tu
re

C
on

cu
rr

en
cy

D
oc

um
en

ta
tio

n 
C

on
ve

nt
io

ns

E
rr

or
 H

an
dl

in
g

In
te

rf
ac

e

Lo
gi

c

M
et

ric

M
ig

ra
tio

n

N
am

in
g 

C
on

ve
nt

io
ns

O
bj

ec
t O

rie
nt

ed
 D

es
ig

n

R
ed

un
da

nc
ie

s

R
eg

ul
ar

 E
xp

re
ss

io
ns

R
es

ou
rc

e

S
im

pl
ifi

ca
tio

ns

S
ty

le
 C

on
ve

nt
io

ns

To
ol

 S
pe

ci
fic

N
um

be
r 

of
 w

ar
ni

ng
s 

(x
10

0,
00

0)

0.0

0.1

0.2

0.3

0.4

(d) Ruby

Figure 5.11: GDC warning category counts per language

5.3.4 Solve Rate per Warning Category

Finally, we present the solve rates per GDC category. We opted to express this as the
number of commits instead of real time because we feel the number of commits is a better
representation of the actual time spent working than numberof days passed; one project
may be only worked on in the weekend, while another is someone’s full time job. We
only considered warnings that have been introduced after the first commit we analyzed, and
solved before the last one, otherwise we cannot properly determine how long a violation had
been present. Figure 5.12 displays the average of all solve time measurements per category
and figure 5.13 shows the medians. In the remainder of this section, we will explore whether
the solve times of different categories significantly differ from one another, and try to order
the categories in a way that is supported by the data.
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5. RESULTS

again shortly after, making the data biased.
The average solve times do seem to differ from one another, ascan be seen in figure

5.12. However, the order is quite different from figure 5.13,which could mean the averages
are affected by outliers. To find out if there is a statistically significant difference between
the category solve times, we perform a one-tailed Mann-Whitney U test (by means of the
Shapiro-Wilk test, we determined that none of the solve times have a normal distribution)
to each pair of categories. Table 5.7 lists thep-values of each test. Each cell is the result
of testing its row category to be smaller than its column category. Assuming a significance
level of 0.05, cells with values that indicate a statistically significant difference are colored
white, versus grey cells for test results where thep-value is higher; for each white cell, the
row category solve times are significantly smaller than the column category solve times,
and vice versa. For a complete picture, tables 5.8 and 5.9 show the correspondingU -values,
and table 5.10 shows the number of data points (solve times) obtained for each category.
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BP CS C DC EH I L M M NC OOD R RE R S SC TS
Best Practices 1 0.48 1 1 1 1 0.9 0.46 0 1 1 1 1 0.89 1 1
Code Structure 0 0 0.07 0 0 0 0 0 0 1 0 0 0 0 0 0.04
Concurrency 0.52 1 0.99 0.74 0.93 0.91 0.6 0.56 0.35 1 0.87 0.57 0.7 0.83 0.88 0.93
Documentation Conventions 0 0.93 0.01 0 0 0 0 0.01 0 1 0 0 0 0 0 0.07
Error Handling 0 1 0.26 1 1 1 0 0.02 0 1 0.78 1 0.1 0.25 1 0.94
Interface 0 1 0.07 1 0 0.78 0 0.11 0 1 0.01 0 0 0.11 0.44 0.86
Logic 0 1 0.09 1 0 0.22 0 0.05 0 1 0 0.99 0 0.04 0.74 0.53
Metric 0.1 1 0.4 1 1 1 1 0.31 0 1 1 1 0.92 0.73 1 1
Migration 0.55 1 0.56 0.99 0.98 0.89 0.95 0.69 0.13 1 0.86 1 0.93 0.75 1 0.87
Naming Conventions 1 1 0.65 1 1 1 1 1 0.87 1 1 1 1 1 1 1
Object Oriented Design 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
Redundancies 0 1 0.13 1 0.22 0.99 1 0 0.14 0 1 1 0.1 0.4 1 0.98
Regular Expressions 0 1 0.43 1 0 1 0.01 0 0 0 1 0 0 0 0 0.15
Resource 0 1 0.31 1 0.9 1 1 0.08 0.07 0 1 0.9 1 0.37 1 0.96
Simplifications 0.11 1 0.2 1 0.75 0.89 0.96 0.27 0.28 0 1 0.6 1 0.63 0.98 0.91
Style Conventions 0 1 0.12 1 0 0.56 0.26 0 0 0 1 0 1 0 0.02 0.5
Tool Specific 0 0.96 0.08 0.93 0.06 0.14 0.47 0 0.14 0 0.94 0.02 0.85 0.04 0.09 0.5

Table 5.7:p-values of one-tailed statistic tests for each pair of classification categories
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BP CS C DC EH I L M M
Best Practices 5908.5 395 22746.5 61049 24377 52714.5 68951.5 386.5
Code Structure 1091.5 0 2192.5 2170 2345 4397.5 5293.5 0
Concurrency 405 140 483.5 1139 541 1076.5 1394.5 8
Documentation Conventions 6853.5 2987.5 108.5 17813 11391 22538 27791.5 79
Error Handling 35151 14665 785 53375 53071 109278 137115 372
Interface 13423 4270 215 16581 37838 38309 48358.5 244
Logic 25285.5 9252.5 483.5 35182 78312 35401 94291 416
Metric 61048.5 17456.5 1205.5 68408.5 175535 74491.5 159209 1113.5
Migration 413.5 140 8 513 1552 512 1144 1486.5
Naming Conventions 41291 10475.5 751.5 41165.5 117199.5 45721 100406 136550 893.5
Object Oriented Design 259 22 0 396 405 485 1141 1321 0
Redundancies 25549 8722 437 32614.5 75443.5 34184 72595.5 91831.5 442
Regular Expressions 36913 25798.5 1450 89457.5 86750 83547 134282 165649.5 0
Resource 9148.5 3485 197 12952.5 30024 13056 27173.5 34595.5 129.5
Simplifications 1396.5 511.5 24 1860 4477.5 1896 4133 5044.5 27
Style Conventions 40854.5 19026 951.5 68777 128355 68308.5 136764.5 168677.5 218.5
Tool Specific 2977.5 964 51.5 3802.5 9300 3823 8721.5 10509.5 60

Table 5.8:U -values of one-tailed statistic tests for each pair of classification categories, part 1
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NC OOD R RE R S SC TS
Best Practices 26109 2141 39251 112487 14051.5 2003.5 102745.5 6022.5
Code Structure 1319.5 398 2618 346.5 575 83.5 6104 611
Concurrency 596.5 48 859 1538 267 44 1920.5 128.5
Documentation Conventions 8710.5 1380 15337.5 21098.5 4215.5 656 37487 2857.5
Error Handling 44897.5 5367 80400.5 272557 25772 3699.5 217003 12345
Interface 17972 1783 27052 57636 8868 1317 67393.5 4682
Logic 31024 3539 53764.5 157048 18066.5 2497 143255.5 8828.5
Metric 82500 6479 118768.5 319900.5 40804.5 6005.5 298022.5 18740.5
Migration 454.5 48 854 2988 334.5 41 2653.5 120
Naming Conventions 3843 74997 199229 27411 3930.5 188205 11501.5
Object Oriented Design 201 574 45 169 16 1433 192
Redundancies 34191 3314 141076.5 17274.5 2650 133436.5 8629.5
Regular Expressions 52510 8919 100951.5 14644.5 4453 231454.5 15768.5
Resource 11681 1223 20309.5 72007.5 937 54839 3065.5
Simplifications 1798.5 188 2858 8246 1035 7851.5 466
Style Conventions 53761 7183 99195.5 304891.5 28449 4354.5 16152.5
Tool Specific 3663.5 348 5950.5 17846.5 2154.5 299 16157.5

Table 5.9:U -values of one-tailed statistic tests for each pair of classification categories, part 2
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Category Number of Solve Times
Best Practices 200
Code Structure 35
Concurrency 4
Documentation Conventions 148
Error Handling 481
Interface 189
Logic 390
Metric 650
Migration 4
Naming Conventions 337
Object Oriented Design 12
Redundancies 324
Regular Expressions 747
Resource 116
Simplifications 17
Style Conventions 718
Tool Specific 45

Table 5.10: Solve time counts for each category

To obtain a more reliable order of categories than the averages, we count the sum of
significant results (white cells) for each row and column of table 5.7. Per category, we add
the numbers of its row and column counts to obtain the total number of categories that are
significantly different. Since we have 17 different categories, each category is paired with
16 others in the significance tests. To reliably establish anordering, we discard categories
that significantly differ from less than half (8) of the othercategories. This leaves out
Concurrency, Migration, Simplifications and Tool Specific.The counts can be found in
table 5.11, where the discarded categories are colored gray.

We can sort the remaining categories in two ways: by the “lessthan” count ascending
or “greater than” count descending. The other count can be used as tiebreaker, e.g. Best
Practices and Metric both have significantly smaller solve times than 1 other category, but
Best Practices has significantly larger solve times than 11 categories versus 7 of Metric, so
Best Practices comes first. In the first two columns of table 5.12, we see that these order-
ings differ slightly; the Metric and Interface categories have shifted two places down in the
“greater than” order. Otherwise, the orderings are the same. Looking back at table 5.7, we
see that Metric solve times are significantly longer than Redundancies. Compared to Re-
source, thep-value was 0.08 (only slightly above significance level 0.05), so putting Metric
above those two in the ordering seems fair, agreeing with the“less than” ordering. As for
Interface, since this category is significantly faster thanRegular Expressions, which is in
turn significantly faster than Style Conventions, we consider Interface to be below the other
two, which follows the “greater than” ordering. Following this reasoning, the third column
shows the ordering that we finally decided upon. At the top, wesee Naming Conventions
and Best Practices, while Object Oriented Design and Code Structure have the lowest solve
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Category Significantly smaller than Significantly larger than Total
Best Practices 1 11 12
Code Structure 14 1 15
Documentation Conventions 13 1 14
Error Handling 4 7 11
Interface 7 3 10
Logic 7 4 11
Metric 1 7 8
Naming Conventions 0 14 14
Object Oriented Design 15 0 15
Redundancies 3 8 11
Regular Expressions 10 4 14
Resource 2 8 10
Style Conventions 8 4 12

Concurrency 0 3 3
Migration 0 6 6
Simplifications 1 6 7
Tool Specific 5 1 6

Table 5.11: Significant difference counts per category

time. A possible explanation for this is the relation these categories have with maintainabil-
ity; the slow categories have little impact on program correctness or maintainability, while
the fast ones do.

Order by “less than” count Order by “greater than” count Final decided order
Naming Conventions Naming Conventions Naming Conventions
Best Practices Best Practices Best Practices
Metric Resource Metric
Resource Redundancies Resource
Redundancies Metric Redundancies
Error Handling Error Handling Error Handling
Logic Logic Logic
Interface Style Conventions Style Conventions
Style Conventions Regular Expressions Regular Expressions
Regular Expressions Interface Interface
Documentation ConventionsDocumentation Conventions Documentation Conventions
Code Structure Code Structure Code Structure
Object Oriented Design Object Oriented Design Object Oriented Design

Table 5.12: Category ordering for solve times, largest to smallest

Next, we will look at the solve times of the two top and two bottom categories, to find
out which projects they originated from, and which commits introduced and solved the
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5. RESULTS

warnings. This way we seek to explain why categories have high or low solve times by
anecdotal evidence.

At the bottom, we find Object Oriented design. In total, we found 12 solve times for this
category, 10 of which came fromcheckstyle/checkstyle. The warnings were introduced
with a commit that removed a suppression13, and solved just 2 commits later14. Upon closer
inspection, checkstyle turns out to be a project that aims tokeep warnings out at all times,
so the low solve time for the category may be attributed to thefact that most of the solve
times came from checkstyle, rather than the nature of the category itself.

Warnings categorized as Code Structure are a close second. Most the solve times origi-
nate fromrembo10/headphones, where a single wildcard import caused 29 warnings (one
for each unused module imported). Soon after, a pull requestwas submitted that solved
a couple of Pylint warnings15. Because Pylint generates so many warnings for a single
violation, the real amount of solve times is actually lower than the data says. With this
instance counted as one, only 7 data points would remain. This weakens the evidence of
Code Structure’s place in the ranking.

The warnings of the Naming Conventions category—and more importantly, their high
solve times—mostly originate frompyinstaller/pyinstaller. We analyzed the warn-
ing counts per commit and found one commit that removed around 5000 warnings. The
accompanying pull request16 is a major overhaul of the Pylint configuration file, explaining
the drop in warning count. Many of these warnings had been present for a long time, result-
ing in a long solve time, and because of the large number, causing the average of Naming
Conventions to be the highest. The solve times of other projects for this category are much
lower, however. Therefore we cannot assume Naming Conventions to be solved slowly in
general.

We also look at Best Practices, which turns out to have a high solve time for multiple
projects. cython/cython andpyinstaller/pyinstaller contributed to the high solve
times with averages of 270 and 197 commits respectively, butOpenGrok/OpenGrok yielded
most solve times for this category (62), so we decided to lookat this project. It turns out
that most warnings were about class fields not coming before methods, which must have
been low priority for maintainers. However, eventually, a large amount was fixed in a single
commit17. Since such cleaup commits do not happen very often, warnings go unsolved for
a while.

For reliable results, solve times should come from several different projects for each
category, otherwise individual projects will have too muchinfluence on the statistics. Table
5.13 shows the number of projects that contributed to each category, along with the share of
the project that contributes most to the category’s solve times. The share is the percentage of
solve times that originates from a single project for a category; for example, although Metric
has solve times of 12 different projects, half these times come from a single project. Ideally,
this fraction is as close as possible to1

n wheren is the number of projects for the category.

13https://github.com/checkstyle/checkstyle/commit/f79ab476b036a185383a1c7f28dc8cc02869e5e3
14https://github.com/checkstyle/checkstyle/commit/7450f13dfcf2f222c4bac344f21c5105f7430b61
15https://github.com/rembo10/headphones/pull/2020
16https://github.com/pyinstaller/pyinstaller/pull/1907/files
17https://github.com/OpenGrok/OpenGrok/commit/eb1776903fd1f998009e97470a65fba8a499a0d9
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5.3. Warnings in Committed Code

Given these results, we believe more data would be needed to actually support the claim of
a significant ordering of categories; especially the sharesof the most contributing projects
are too high. This results in solve times of several categories mostly being dominated by a
single project.

Category Number of projects Biggest share
Best Practices 11 31%
Code Structure 3 83%
Concurrency 1 100%
Documentation Conventions 4 74%
Error Handling 4 93%
Interface 6 56%
Logic 9 49%
Metric 12 50%
Migration 1 100%
Naming Conventions 4 81%
Object Oriented Design 2 83%
Redundancies 19 40%
Regular Expressions 1 100%
Resource 8 41%
Simplifications 4 53%
Style Conventions 22 62%
Tool Specific 3 82%

Table 5.13: For each category, the number of projects with solve times for that category,
and the highest share of a single project

The skewed solve time data prevents us from making confident statements about differ-
ences between categories in general. However, we can look atthe solve times per category
in the context of individual projects. Our hypothesis is that there is no large difference
between solve times per category within a single project, but solve times between projects
do differ; i.e. the project has a bigger influence on the rate at which a warning is solved
than the category which the warning belongs to. Tables 5.14 and 5.15 shows the median
solve times and sample sizes for each category for a select number of projects, as well as
average and median for all solve times of the project in the bottom rows. We do not show
all projects because the full table is very sparse; for 10 projects we do not have any solve
times at all, and 15 projects yielded solve times for only 3 categories or less. The remaining
13 are displayed.
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FreeCodeCamp OpenGrok ultisnips bower glide cython less.js Chart.js
Best Practices 67.5 (62) 3 (21) 30.5 (12) 336 (18) 1 (3)
Code Structure 3 (1) 3 (5)
Concurrency 132 (4)
Documentation Conventions 3 (109) 3 (22) 372 (1)
Error Handling 20 (446) 14.5 (2)
Interface 3 (106) 1 (7)
Logic 107 (6) 12 (4) 29 (191) 1 (141) 1 (12) 10 (10)
Metric 33.5 (4) 28 (5) 6 (63) 16 (126) 1 (99) 63.5 (2)
Migration
Naming Conventions 3 (59) 1 (3)
Object Oriented Design 1 (2)
Redundancies 3 (13) 22 (46) 3 (25) 1 (3) 82 (23) 2 (1) 53 (1)
Regular Expressions
Resource 38 (48) 8 (1) 241 (17)
Simplifications 43 (3) 4 (4)
Style Conventions 91 (1) 41 (7) 6 (63) 22 (448) 1 (5) 131 (6) 81 (3) 33 (5)
Tool Specific 20 (37) 1 (5)
Total Average 44.33 47.09 22.51 23.64 22.38 41.58 113.69 22.78
Total Median 12 22 5 22 1 1 111 10

Table 5.14: Median solve times with sample sizes in bracketsper category per project, and overall average and median solve times per
project, part 1
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5.4. Threats to Validity

pyinstaller headphones grape paperclip jeromq
Best Practices 169 (44) 50 (29) 50 (6) 33 (2)
Code Structure 3 (29)
Concurrency
Documentation Conventions 122 (16)
Error Handling 5 (1) 47 (32)
Interface 170 (68) 1 (3) 28 (1)
Logic 144 (21) 2.5 (2)
Metric 181 (325) 1 (1) 48 (11)
Migration 56 (4)
Naming Conventions 177 (272)
Object Oriented Design
Redundancies 162 (131) 3 (23) 28 (3) 28 (4) 13 (1)
Regular Expressions 7 (747)
Resource 70 (2) 17 (23)
Simplifications 149 (9)
Style Conventions 321 (13) 4 (25) 8 (3) 56 (19) 23 (24)
Tool Specific 6 (3)
Total Average 190.27 14.09 60.75 43.24 7.8
Total Median 177 3 44 55.5 7

Table 5.15: Median solve times with sample sizes in bracketsper category per project, and
overall average and median solve times per project, part 2

For bower, less.js, pyinstaller, paperclip and jeromq, theaverage and median values are
quite close to each other, but only paperclip has category solve times that are somewhat
close to each other. To a lesser extent, this also holds for pyinstaller, since its outliers (Error
Handling, Resource, Tool Specific) are obtained from small samples. We see no strong
evidence that projects have a consistent solve time across categories. In many projects we
see large differences between overall average and median (FreeCodeCamp, ultisnips, glide,
cython, headphones), hence no real conclusions can be drawnfrom these tables either.

5.4 Threats to Validity

In this section we discuss the potential threats to validityof our research.

5.4.1 Internal Validity

We compared several properties between the groups of projects that use ASATs and those
that do not. However, we cannot really say which was the causeand which was the effect.
For example, projects using ASATs have more stars, but that does not mean that using
ASATs gets a project more stars, or that a high star count leads a project to use ASATs.
Furthermore, all tests were performed on the same set of projects. This reduces the strength
of the conclusions drawn from these tests.
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5.4.2 External Validity

With millions of repositories hosted on GitHub, a sample size of under 10,000 may seem
low. However, these are all the popular and active repositories. We believe that compro-
mising in this regard may result in a larger dataset, but as wefound out, ASAT usage is
higher among repositories with more stars, and we still ended up with less than 30% ASAT
usage overall. By decreasing the required amount of stars, this percentage would go even
further down. Including less active repositories would mean we end up getting abandoned
projects as well, which may not be representative for open source projects as a whole. A
viable solution may be to include more ASATs, specifically those for languages that we did
not cover in this study.

100 pull requests per repository may be enough for properties like recent density, but
the merged count and unique contributors would probably need more data to be accurate.
However, we believe that by averaging these values, the effect of edge cases is reduced.

Nearly twelve million warnings in the database may seem likean impressive number.
However, the distribution of warnings over projects is heavily skewed towards a couple of
Python projects. This mainly impacts results such as warning counts per category, where
these projects simply have a much bigger impact. To counter this, we looked at the results
for each language separately.

5.4.3 Construct Validity

Our tool has some shortcomings regarding the measurement ofsolve times. To elaborate
on this, first recall the way we compute solve times, depictedin figure 4.6. Although this
approach seems rather straightforward, it does depend on a reliable definition of equality
between two warnings (when deciding which counters to increment). As it turns out, this is
a nontrivial task. For each warning found by an ASAT, we save its location (filename, line
and column), the human-readable message that the ASAT provides, the rule ID, and the line
of code where the warning occurred. Intuitively, one might require all of these properties to
be equal for two warnings to be equal. However, an unrelated addition in a warning’s file
above the line of the warning will cause the line number to change, and this would wrongly
be picked up as the warning being fixed, with another warning having been introduced in
the same commit. Should said warning really be resolved at a later point, we would end
up with two incorrect solve times which add up to the real value. The same thing happens
when changing indentation size, but then with the column number. This would result in
invalid data.

To deal with the issue of the position of the warning, we only check for the filename,
rule ID, and the actual line of code. In most cases, this works, but there are still some
scenarios where different warnings could be registered as duplicates:

1. A single line of code resulting in multiple warnings with thesame rule ID. This
can happen when there are two instances of a warning within the line, in which the
column number would be the tie breaker. However, we also discovered an edge case
for this in Pylint: when a wildcard import is used, a warning is reported for each
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5.4. Threats to Validity

module that is imported as a result, but not used. In this case, the warning message is
the tie breaker as it states the name of the unused module.

2. Duplicate lines of code.Some lines of code are rather generic, for example the first
line of a catch block:} catch (Exception e) {.
PMD has a rule,AvoidCatchingGenericException, that checks for catch blocks
using the baseException class. However, such lines can occur more than once in
a file. Furthermore, we encountered a case with duplicate docblock lines, describing
the same parameter in different methods, which caused a warning for being too long.
Finally, lines containing just whitespace sometimes caused a warning, for example
when the empty line was trailing whitespace of a string literal. As a result, the code
line ended up being an empty string, because code lines are trimmed before being
saved. In cases of duplicate lines, the line number could be used as tie breaker.

We have taken a couple of measures to counter these issues. For the first one, we add
the warning message to the comparison whenever the rule isunused-wildcard-import.
Two warnings on the same line will still cause incorrect duplicate warnings, however. For
the second case, we add the warning line number to the comparison whenever the code line
is an empty string, or the warning rule isAvoidCatchingGenericException. However,
this will cause warnings to be incorrectly marked as solved when their line number changes.
So far, we did not find a robust method of dealing with this.

To illustrate the consequences of this issue, we look at someinstances of warning solv-
ing in zeromq/jeromq, which has defined a number of blank line rules as regular expres-
sions. For example, there should be no blank line before a closing brace, represented as
\n\n}, and no consecutive blank lines, represented as\n\n\n. However, it seems like
no warnings were actually fixed until the commit that solved everything (see figure 5.8d).
Instead, most of these fixes were registered because code wasadded, changing the line
numbers of all violations below the insertion, so they were moved rather than solved. Since
many files had warnings in them, almost every commit caused some of those warnings to be
“fixed”. Therefore, we cannot consider these solve times to be viable, and by extension, the
entire Regular Expressions category’s solve times, because there were no other instances of
this category.

These are probably just a few of the potential issues. Because of that, solve time data
may not be accurate. Under the assumption that this phenomenon occurs equally often in
different warning categories, the order of categories regarding solve times should still be
valid though. To mitigate this issue further, we leave out solve times larger than the total
amount of commits for a repository, because these are clearly the result of different warnings
being recognised as the same, and as a result, the counter is wrongly incremented multiple
times per commit.
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Chapter 6

Conclusion

In this chapter, we review the research questions and answerthem based on the results that
we found in chapter 5. After that, we give an overview of the study’s contributions. Finally,
we provide some ideas for future work based on this study.

6.1 Answers to Research Questions

RQ1: Which factors influence ASAT prevalence?

To answer this question, we look at the results as described in section 5.1. Here we
found that projects that have JavaScript as main language have the highest ASAT adoption
rate by a wide margin(RQ1.1), and JavaScript-related ASATs(JSHint, ESLint, JSCS) are
most prevalent(RQ1.2). Ruby comes second, with Java and Python lagging relatively far
behind. When using a build tool, JavaScript projects have configured an ASAT as build task
in 62% of the cases, compared to an overall use rate of 48%. This was not observed in other
languages, which are less likely to use ASATs as build tasks than they are to use ASATs in
general (RQ1.3).

When using Travis, projects seem more likely to use ASATs as well(RQ1.4). Repos-
itories with ASATs are younger on average, but this may well be due to the bias toward
JavaScript projects(RQ1.5). Finally, projects with higher star counts seem more likely to
use ASATs(RQ1.6).

RQ2: How does community activity affect ASAT usage?

When looking at the pull request data, we see that projects with ASATs have a higher
number of total pull requests on average, and also received more pull requests over time(RQ2.1).
We did not find a significant relation between ASAT usage and unique contributor count(RQ2.2),
but the contributor count did significantly affect both the time to close a pull request and the
likelihood for a pull request to be accepted, with a positiveand negative correlation respec-
tively. ASAT usage does not increase the chance for a pull request to be accepted(RQ2.3),
but it does reduce time to close, with close times reduced by 17% on average and lowering
the variance of close time by 67%(RQ2.4).

RQ3: What is the prevalence of rule violations reported by ASATs?
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We attempted to answer this question by running ASATs on a number of projects. For
several projects, we looked at the amount of warnings their code generated over up to 500
versions. For most projects, this amount decreased over time or roughly stayed at the same
level. In some cases, the warning count increased. No universal trends were discovered,
but we found that the reason for a drop in warnings is often a change in configuration or
moving/deleting part of the code base, rather than fixing violations directly(RQ3.1). In
general, projects with more lines of code had fewer warningsper line of code than smaller
projects(RQ3.2). The most warnings overall were found in Python projects.

When looking at warning categories, we found that the countsper category signifi-
cantly differ between languages, but Style Conventions is highly represented across all lan-
guages, and many of the warnings that caused other categories to have high counts could
also be considered Style Conventions, but fitted another category description slightly bet-
ter(RQ3.3). We also found a distinct ordering of categorieswith respect to the time it takes
to solve warnings on average by means of statistic tests; warnings of the categories Nam-
ing Conventions and Best Practices, which do not play a big role in maintainability, took
the longest time to solve, while Code Structure and Object Oriented Design were solved
the fastest, possibly because they do have an impact on maintainability(RQ3.4). However,
data on solve times is heavily influenced by individual projects. Therefore, a bigger dataset
would be desirable, or one that is more evenly distributed over different projects.

6.2 Contributions

By performing this study, we have made the following contributions to the research on
ASATs in general:

• A look at characteristics associated with ASAT usage.By comparing several prop-
erties groups of projects with and without ASATs, we have found some statistically
significant differences.

• A link between ASAT and CI usage. We found that ASATs and CI, specifically
Travis, often go together in open source projects. We also found that CI usage can
greatly reduce the amount of warnings in committed code.

• The effects of ASATs on community activity.We found that ASAT usage is associ-
ated with several favorable changes in community activity.However, we did not find
which of these is the cause and which the effect.

• The prevalence and solve rate of warning categories.We looked at both the warn-
ing counts and solve times per category, and established an ordering backed by sta-
tistical tests.

6.3 Future work

We have encountered three ways for a warning to be removed:
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1. The corresponding line of code is changed to comply with the corresponding rule

2. The configuration for the corresponding rule is changed, or the configuration is changed
to exclude the rule altogether

3. The corresponding code is moved or deleted

Because we want to learn about solve rates, we are mostly interested in the first way. In ad-
dition, it would also be interesting to find out how often the second way occurs. This could
be linked to previous research by Beller et al about changes in ASAT configurations[8]. Ide-
ally, we should be able to detect the third case happening andact accordingly: for moved
code, find the new location, and keep counting commits from there, and for deleted code,
mark the corresponding warning as a separate case, rather than “solved afterx commits”,
which happens now. However, our current tool cannot distinguish between these cases.

As mentioned, we had some issues properly detecting genericwarnings (such as empty
lines) that were not resolved, in a commit where the file of thewarning was modified. In
such cases, the warning was incorrectly marked as solved anda new counter was started
for the same warning. This may be approached using Clone Region Descriptors[14], a
technique to find code duplication, because the issue arisesin non-unique lines of code.
Using CRD, one could keep track of all “cloned” regions, find the ones where warnings
occurred, and mark each warning with a unique identifier based on the CRD findings.

Individual projects often dominated the solve time data. Instead of merging all solve
times together, a way to normalize results per project wouldbe to average the solve time of
each category per project. This way, each project only contributes up to a single solve time
per category, reducing the bias introduced by projects thatperform lots of violation solving.
A downside to this is the significantly reduced size of the resulting dataset. To counter this,
ASATs would need to be run on a much larger number of projects.
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