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Abstract

Nowadays, many different tools to perform static analysisoftware (ASATS)
are available. These can be used as standalone tools, buntdgrated into code
reviews, build processes, or continuous integration. ASédn be configured by their
user and report a list of warnings for each rule that has besated by the analyzed
code. While some research has been performed regarding $\3ifle is currently
known about the correlations between use of ASATs and otlograpties of projects or
their communities, or about the extent to which developeigesviolations reported by
ASATSs. In this thesis, we attempt to answer these questiprbtaining information
about a large number of relevant open source projects host&tHub. We found that
the usage rate for ASATSs is relatively low, while ASAT usag® be associated with
several positive changes in other properties; in geneoallar and successful projects
are more likely to use ASATs. Furthermore, projects that ASATSs typically have
a more active community, and receive more contributionse amount of warnings
generated varies between projects, but projects with lecgke bases tend to have
fewer warnings. When looking at the types of warnings regghrnot all categories
are equally represented; violations of Style Conventiorsi@ost common. We also
found that warnings of different categories are solved #f¢int rates; warnings with
more impact on maintainability were solved faster, whilenitags with little impact
on correctness or maintainability were left unattendeddoger.
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Chapter 1

Introduction

Software development is rarely performed by a single persas different people have
different preferences, a project’s code base has the paltémtbecome inconsistent. As
a result, it becomes harder for new developers to understaisting code. To prevent
this, teams of developers may define a set of code conventibigh all team members
must conform to. This can be accomplished by the use of Autetn@tatic Analysis Tools
(ASATs). Static analysis tools inspect a program’s souncbybe code, unlike dynamic
analysis tools, which inspect a program’s behavior duringtime. ASATs have existed
since 1977, when Johnson releaséat, a command-line tool to detect inconsistencies and
inefficiencies in C code[27]. Most ASATs are configurable bg tuser, who can establish
a set of rules which the code must adhere to. If any code isdfthat violates a rule, the
ASAT will output a warning to notify the user. Although ASATan be used as command-
line tools, it is more convenient to integrate them into tbet teditor which is used for
programming. This way, warnings can be displayed in reaétah the location of the
violating code, much like compiler warnings in IDEs.

ASATs may be used as part cbde reviewswhere one person’s code is inspected
by another person, such as a colleague. Doing so decreasesatiual effort and time
taken[43]. The concept of code reviews has first been fommdlby Fagan in 1976[17] and
was found to be beneficial for software development orgéinizg{1,[6]. Because of the
(potentially) larger amount of collaborators, code rediesan be a valuable asset to open
source projects[41], and by extension, ASAT as well. A superformed by Beller et. al
found that ASAT usage among open source projects is “comindgmot ubiquitous?[8].

On GitHub, an open source hosting service, contributioesgenerally done through
pull requests, a form of code reviews that makes it easiea fmoject maintainer to merge
the contribution into the project. Pull requests are papudaing used by around half of
all projects with multiple developels[20]. To assist mainéers with this, GitHub allows
automated checks by third party services for every pullesguA popular service used for
this is Travis C#[46], a Continuous Integration environment for open sogrcgects that is
configurable by the user. When enabled, each pull requestanthit will trigger Travis to

Lhttps://github.com/blog/1227-commit-status-api
2http://www.travis-ci.org



1. INTRODUCTION

build the project, and report the result of the build back itH@b. This result is clearly dis-
played for each pull request, making it easier for maintainie filter out pull requests that
cause the build to fail, but also providing instantaneowsliiimck to contributors, allowing
them to solve any problems without having to wait for maiméais answer. Because Travis
works with scripts to build a project, ASATs can easily beedithto the mix. Aside from
running an ASAT directly in a script, build tools (such as M&}) often have plugins that
make it easier to integrate ASATS into the build process. (Mlaven Checkstyle Plug.
These plugins act as a wrapper around the command-line ndain@ke the ASAT behave
in a manner that is consistent with the other build tools. (Blgven can generate an HTML
report with Checkstyle warnings like it does with test cag).

In this study, we will analyze 7 different ASAT<heckstyle PMD, ESLint JSHint
JSCS RuboCop andPylint. These have been selected because they also appeared in the
study by Beller et al.[8]. With these ASATs, we end up withaladavaScript, Ruby, and
Python as programming languages for the projects undey.s&8ATSs studied by Beller
which we excluded ardSLandFindBugs because the former has been discontinued and
the latter has a very small userbase compared to the others.

1.1 Research Questions

Beller et. al have conducted a study with regards to ASAT esagpen source projects[8].
In this study, ASAT prevalence was analyzed by means of dtgtia¢ survey, and ASAT

configuration characteristics were analyzed on a large surmbprojects. In addition, a
classification was made for a generalization of rules froffedint ASATS, called the Gen-
eral Defect Classification. However, the prevalence suway performed on a relatively
small amount of only the most popular projects without logkat factors that may influence
use rate. This leads to our first research question:

RQ1: Which factors influence ASAT prevalence?

e RQ1.1: Is there any difference in ASAT prevalence between projettdifferent
languages?

RQ1.2: Which ASATs are used most?

RQ1.3: Does the use of a build tool/task runner influence the use &TA3

RQ1.4: Are projects more likely to use ASATSs if they use Continuoniegration?
RQL.5: Is there any age difference between projects that use ASAT ¢hese that
do not?

e RQ1.6: Are popular projects more likely to use ASATs?

Other than direct properties of the project itself, it woaldo make sense if characteris-
tics of the project’s community are related to ASAT usage thilesscommunity and amount
of contributions grows, ASATSs save increasing amountsmétby providing instantaneous
initial feedback on contributions. Furthermore, becahse feedback is aimed at the con-

Shttp://maven.apache.org/
4https://maven.apache.org/plugins/maven-checkstyigip
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tributor as well, the quality of contributions may also béndhe second research question
is therefore:
RQ2: How does community activity affect ASAT usage?

RQ2.1: Is there a relation between ASAT usage and the amount of gullasts?
RQ2.2: Are projects with many different contributors more liketyuse ASATS?
RQ2.3: Are contributions more likely to be accepted in projecthgASATSs?
RQ2.4: Are pull requests closed faster in projects that use ASATS?

Finally, we want to figure out what sort of warnings are repathy ASATSs for different
projects, and how project developers deal with this. Far, tie consider warning categories
as defined by the GDC.

RQ3: What is the prevalence of rule violations reported by ASATs?

e RQ3.1: How does the amount of warnings change over time?

e RQ3.2: Is there a relation between the code base size of a projechamdber of
warnings?

e RQ3.3: Which kinds of warnings appear most often?

e RQ3.4: Are warnings of different categories solved at differeries&

We attempt to answer these questions by analyzing a sufficienge amount of open
source projects on GitHub, using its API. To obtain warnjnge will clone repositories
locally and run the appropriate ASATS.

The remainder of this thesis is structured as follows. Irptda2, we explore existing
research on ASATSs, Cl, and Code Reviews. Chapter 3 detadswhave done to conduct
our study, and chaptér 4 provides technical details on hownpéemented a tool to assist
in obtaining data. In chaptéf 5 we present the results of tmuglysand threats to validity. In
chaptef 6 we give answers to the research questions, draslus@mns, and give pointers
for potential future work.






Chapter 2

Related Work

In this chapter, we explore some of the existing researclojpicg related to this study. We
start with Code Reviews, considering that is a topic closelgted to ASATSs, and seeks to
solve the same problems. We then move on to Code Analysis,Taadl present research on
both the development of ASATs and their use and benefitsll¥simae focus on Continuous
Integration in open source projects and see which aspedtaftéct development.

2.1 Code Reviews

Some of the first research regarding code reviews was doneagpgnHn 1976[17]. He
defined a formal way callecbde inspectionsmeant to be performed during group meetings.
This early form was very specific about the roles differergge have and the steps they
should take, while inspecting the code on a line by line hémsisically checking off items
from a list. In this process, only methods to find errors aexdjed, but no way of solving
problems is mentioned. This process was found to benefivamdtdevelopment teams by
Basili and Selby in 198[[6] and Ackerman in 1989[1]. Howe\Rorter et al. later found
that the costs were often understated while benefits wenestated, especially for large
software[40].

Aurum et al. published a summary of improvements and adtditio the inspection pro-
cess over the years[2], and found several other techniduéise active design revie[88],
several brief reviews are conducted instead of one largewetaving a different reviewer
with specific expertise for each review. Ttweo-person inspectighl] reduced the inspec-
tion team size from four to two, just the author and a revievaad was found to improve
productivity. WithN-fold inspectiof82], a number of small teams performs reviews inde-
pendently, based on the idea that different teams will firfigéi@int faults. This approach
was found be costly, but also provides substantial benafitsesie was no significant overlap
between faults found by different tear®hased inspectigB0] describes different phases
of the reviewing process, each with specific goals. At theadrehch phase, corrections are
applied. Although Fagan emphasized the importance of npédr code inspections, Votta
raised several points against meetings[48]; only two weeis can interact at any time, only
30-80% of the rest was listening to the conversation, aridweyr hours were being wasted,
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while most defects are identified before the meetings start.

Although improvements and variations to Fagan’s code ictspes have been developed
over the years, most of these are defined in a formal way, wihific steps to be taken and
checklists to be followed. Nowadays, code reviews are mafi@rmal and often assisted
by tools. Bacchelli and Bird define theseMsdern Code Reviewsr MCR[4], and found
them to be less about finding defects and more about “inergdsam awareness, provid-
ing knowledge transfer, and revealing alternative sohgito problems”. Through a study
of different software projects, Mcintosh et al. found thattbcode review coverage and
participation had a positive effect on software qualitgueing the amount of post-release
defectd[33]. In a study of MCR in open source projects, Badleal. also looked at the
kind of changes after a review[7]. Among other things, thegyorted that 7-35% of review
suggestions did not lead to any changes in the code, andubdixing tasks have fewer
changes, while contributions with a higher code churn hasesnoshanges. 78-90% of the
changes are triggered by review comments.

2.2 Code Analysis Tools

Since the release of Lint[27], analysis tools have becomelpfli addition to code re-
views. Rather than guaranteeing the absence of any erh@se tools can ascertain that
specific flaws, which can be defined by the user, are absentngUSBATS is a cost-
effective way of inspecting code, helps prevent faults twtld cause security vulnera-
bilities, and has proven to be effective in identifying peshh modules[50]. Furthermore,
the results produced by ASATs can be used to effectivelyraigte the quality of a soft-
ware componerit[34]. Other research found that many bugmpatiare relatively easy to
recognise[24] and that security issues can be avoided witic snalysis, and runtime over-
head can be greatly reduced[25]. The tools build a model efsilstem and use that to
analyze its data flow, but that is computationally expenbaeause of the large state space.
Therefore, abstractions are introduced[13]. An examplsuch abstractions igredicate
abstraction used in the SLAM toolkit[5]. Although checking with abstteons is faster, a
smaller set of problems can be detected than when modéelihg[1

Despite their promising features, ASATs are not widely addi@]. Some reasons for
this are the lack of suggestions for quick fixes, warningssagss that are not informative
enough, false positives, and an overload of informatich[R&ny of the issues reported are
trivial[3], and while many errors may be reported, few ofsa@ctually reflect a real defect
in the code instead of bad style[22]. In addition, false {deess are a common sight[31].
As a result, when ASATSs are introduced in large existingayst, thousands of warnings
typically pop up. To attempt to solve all of them would be adbtvork, for which there
generally is no budget. Steidl[44] introduced a model to fiodts and benefits, which
helps developers to prioritize violations to remove, whil¢he same time being transparent
to their managers.

The value of ASATs increases when they are tightly integratéo a developer’s daily
workflow. Tricorder[42] was developed to accomplish this developers at Google. The
tool aims to be scalable, easily adopted and actively usdik twode issues, and allow
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developers to write and deploy their own static analysesdtition, there is a continuous
feedback loop between developers and analyzer writersgoowe analysis.

Although most ASATSs can be configured, users generally dtasedo the default con-
figuration, and rarely change the configuration of the ASAEytuse[3].

Through the use of ASATs with code reviews, around 6—-22% ohings are removed,
but this percentage varies between warning categoriesf3@lever, the overall warning
density generally stays the same and many errors stay @ik@f]. Code smells may
also be detected by ASATSs, but developers often are not veeyn lon refactoring these
either[39].

2.3 Continuous Integration

Continuous Integration, or Cl, is a practice where eachldpeg's work is integrated into
the main system frequently. With this integration, the wafe is automatically built and
tests are run. The purpose of Cl is to spot integration problearly[18]. It also allows for

more frequent deployments. Cl is easily integrated int¢1Git when done by Travis, a Cl
service for open source projects. Beller et al.[10] fourat #nlittle over 30% of projects
on GitHub have used Travis for at least one build. Tests aematin during the build, and
these are the main reason for builds to fail. The test failate is rather low, which could
be because developers test their code locally before camgitThis contradicts another
study by Beller et al. which found that testing is not a popaletivity, at least within the

IDE[9].A study performed by Vasilescu et al. pointed outtthdhough many projects on
GitHub are configured to use Travis, less than half of therd@lo[ They also found that
pull requests are more likely to result in a successful hihiéch a direct commit.

There are many benefits to making use of Cl for open sourceqisj Research by
Vasilescu et al.[47] found that development teams are feigmnitly more effective at merg-
ing pull requests from core members, while pull requestenfexternal contributors are
more likely to be merged. In addition, more bugs are diseerHolck and Jagrgensen
found that ClI helps open source projects FreeBSD and Mdoilmoduce quality software
by allowing contributors to add to the development versitang time, and at the same time
making sure that each contribution does not break the @3]d[

2.4 Software Repository Mining

In order to perform our project analysis, we obtain data fronitiple repositories that are

publicly hosted, a process called repository mining. Thia popular method of obtaining
data, due to the sheer amount that is available publicly,hasdbeen applied successfully
before. As an example, Zaidman et al. used repository mioitapk at whether production

and test code co-evolve across versions[49]. Vandecrugk aetescribed the AntMiner+

classification technique, which effectively predicts s@ite quality by deriving a model

from mined repositories[45]. Kagdi et al. used versiondrigto find traceability patterns

consisting of source files and other software artifacts. 8yngl so, they were effective in

predicting changes in software repositories, and recaymizatterns of change.
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Through mining, rather than using static archives, mdtigrsions of software artifacts
can be studied. Kagdi et al. performed a large scale survethierpractice, exploring
different ways MSR was used in studies[28]. Nikora and Murstodied how fault counts
in software systems evolve between bulld$[36], similarde ve intend to look at changes
to ASAT warnings. Capiluppi et al. looked at the complexifyspstems in terms of number
of files and folder tree structure, and how this changes avex{12]. They found that the
number of components follows a linear trend with a superisegaripple, and that average
folder and file sizes stabilize over releases. Nagappan buét predictor models for post-
release faults in software components by using historieda data from different versions
of five Microsoft software systenis[35]. These models wetmtbto be able to effectively
predict the likelihood of post-release defects for newtiersti

Although repository mining seems like an easy way to obtaia bf diverse data for
research, it is not without downsides. Kalliamvakou et a@okked at the most common
pitfalls when mining repositories, and pointed out thatalbtlata should be assumed to be
valid[16]. During our own study, we kept their recommendas in mind.



Chapter 3

Experimental Setup

In this chapter, we describe the work that has been performsquhrt of the study, using
the tool that we developed (described in chafpter 4). Eadipsemorresponds to a research
goal:

1. Finding the prevalence of ASATS, both in general and iatieh to use of build tools
and Cl

2. Finding the effects of ASAT usage on project community emakributions

3. Gaining insight in the occurrences of different warniagegories, both numbers and
time to solve

First, we collected metadata of a fair amount of GitHub répadgs and analyzed the file
trees of each repository to determine which, if any, ASATe Baild Tools are used. After
that, we obtained information about the latest pull recaisst each repository. Finally, we
ran each ASAT on different commits a selected number of iep@Es to obtain a set of
warnings for each commit of each repository. The followiegt®ons explain each step in
more detail.

3.1 Retrieving Repositories

To get started, we need a sizeable list of repositories foowork with. As of 2016, GitHub
hosts over 35 million repositoriesso we can safely limit ourselves to this repository host-
ing. A majority of these are personal and inaciive[16], andlduld be infeasible to work
with all repositories. Because we will also be gatheringstias on pull requests, we want
active repositories, that have reached a decent level aflaofy. To get active reposito-
ries, we require the last push to have been performed onar &huary 1, 2016. For the
popularity, we require the repositories to have been “stirr a way for other GitHub
users to save a repository to their list of favorites — attl@@® times. In addition, due to
the ASATs that this study focuses on, we will only retrievpasitories with Java, Ruby,

Ihttps: /7 github. conf f eat ures


https://github.com/features

3. EXPERIMENTAL SETUP

Python, or JavaScript as their main language. Finally, theu® Search API only returns
public repositories that aren’t forks of other repositetxy default.

Upon applying these constraints, we ended up with 9443 itepies. For these reposi-
tories, we retrieved their repository id, full name, defdarnch, star count, whether or not
they use GitHub issues, the number of open issues, dateaifaredate of the last push,
and main language.

3.2 Basic Repository Properties

Now that we have a list of repositories to work with, we aralset retrieve some basic in-
formation on a per-repository basis. We look for three pridge of the repository’s project
here.

3.2.1 Build Tools

For a select number of different build tools (see tablé 3a,check if the project uses
them. These build tools have been selected because theyoateammonly used for their
respective language, and Travis’®@ks default scripts built in for them. The exception is
Python, which does not really have a standardized build tdok and Make are mostly
used in projects to run automated tests and other build,t&stsgh not in the majority of
the studied projects. With this information, we can thenittiwre is a correlation between
the use of ASATs and the use of build tools. We assume thaisttie case, because it is
easier to enforce the use of an ASAT if it is contained withbudd task; the task can cause
the build to fail if there are ASAT warnings.

Language | Build Tools
Java Gradle, Maven, and Ant
Ruby Rake

Python Tox and Make
JavaScript| Grunt, Gulp, and Make

Table 3.1: Build Tools checked per language

3.2.2 Analysis Tools

With them being the main topic of the study, we are mainlyriegéed if ASATS are used,
and if so, which ones. This information can later be used thdim which ASATs are most
popular, and the prevalence of ASATSs per programming laggud/e define three different
signs of an ASAT being used:

1. A specific configuration for the ASAT is stored in the repmy, either as separate
file or as part of build tool configuration

2nttp: /7 www travis-ci.org
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2. The ASAT is included in at least one of the tasks of the tioitd that the project uses

3. The ASAT is added as a (development) dependency in theghioflependency man-
ager’s configuration

Although #2 and #3 should be tied together most of the tintedo@s not make sense
to have an ASAT in a task without having a dependency to ithes@&SATs work with a
default configuration in the absence of a specified configurdile. Therefore we check
for all 3 of these, and decide that an ASAT is used if any of tlietrue. Although we still
cannot say that the ASAT is actively being used with cenaiwe know that at some point,
a maintainer consciously added it to the project.

3.2.3 Continuous Integration

About 30% of active, meaningful open source projects on @itidse Travis for CI[10].
Since ASATSs can easily be included in CI builds (either a$ pbthe build tool configura-
tion, or added to the Travis script directly), we want to d¢hé@ project is currently using
Travis. This way we can see if Travis is often used along wiBAA&s or build tools, and
how its use affects the amount of warnings in commits.

3.3 Analyzing Pull Requests

In addition to information about the project itself, we atscainterested in the activity of
the project’s community. For this we analyze the pull retgi#sat have been submitted and
closed on GitHub since the repository was created. We atsieve the number of closed
pull requests for each repository since its creation. Udiigynumber, we can later deter-
mine whether there is a correlation between using ASATs hadmount of pull requests
that a repository receives.

Then, for some more detailed data, we retrieve informatiooutithe last 100 closed
pull requests for each repository. The reason for this nurisbthat the GitHub API can
return up to 100 results per request, which we believe shioaild sufficient amount. The
obtained data includes the id of the user that submittedulegqmuest, the moment the pull
request was created and the moment it was closed (i.e. mergepbcted). We only obtain
data for closed pull requests because we want to analyzdlifedme, which is undefined
for open pull requests.

3.4 Analyzing Warnings

For the main part of the study, we want to obtain the ASAT repfor repositories. That
way, we can find out which types of warnings occur most frejyeand the distribution of
the total number of warnings in a repository. However, we alant to go a step further, by
obtaining this report for many different commits of the reppary. This way, we can observe
the changes in the amount of warnings, but also the rate atwhdividual warnings are
solved.

11



3. EXPERIMENTAL SETUP

Unlike the previous steps, we cannot obtain ASAT reportsubh the GitHub API. An
initial idea was to parse build logs from Travis. Howevers tldea was quickly dismissed
due to its complexity; reports in build logs can be formatiteanany different ways, de-
pending on whether the ASAT is run directly or through a btdldl plugin. Furthermore,
not all projects run ASATSs as part of the Travis build, and tiniethod would require scan-
ning large amounts of data, which would be infeasible. buteve decided to locally clone
each project we want to study, then run the ASAT ourselvess Why, we have complete
control over the output format, making it more suitable farging.

Unfortunately, we could not fully automate the process afecanalysis on all reposito-
ries. There are several reasons for this: the directoriesavbource code is stored are not
consistent between repositories, and configuration filgsaoatain settings that have been
removed in a newer version of an ASAT, or settings that onbendy have been added.
In addition, for Checkstyle and PMD, the configuration file ¢ stored anywhere in the
repository, so it should be provided manually. In some catés information could be
retrieved from the build tool configuration, however, we dimt want to limit ourselves to
just the repositories where this could be automated.

To decide if a project is suitable for analysis, we have sosggirements. First, a spe-
cific configuration file should be present in the repositonytigt we can be sure the project
developers have consciously integrated the ASAT. Beshiltssome ASATS require a cus-
tom configuration to be provided and yield an error messagenwised without any, while
others can be used without configuration. However, the dteffi@navior is not consistent
amongst different ASATs; some have default rules they va#,uothers will not use any
rules. To be safe, a configuration file needs to be presenittanak. Another requirement
is that the number of closed pull requests should at leasdBgesb that only projects which
are actively contributed to (with response from the mairdes) are left.

3.4.1 Collecting Results

We configure the ASAT in question to yield output parseablelnytool, in XML or JSON
format. Different ASATSs report warnings in different ways) we normalize the results.
This way we end up with the file where the warning occurred|itteeand column numbers,
the warning message, and the identifier of the rule that waated, unique per ASAT.

Basically, the results could be saved like this, but with ffedent ASATS, there are a
lot of different rules. This would mean that the total amoointiolations per rule would be
rather low. To deal with this, we use the General Defect @aason, defined by Beller et
al[8]. This classification defines a relatively low numbercaftegories for ASAT rules, with
mappings included for the ASATSs of this study. By mappingthies to these categories,
we can compare warnings across ASATS.

For each warning, we also keep a reference to the commit artariestamp) of the
repository that caused said warning. That way, we can lagardiout how long it took to
fix a warning.

12



Chapter 4

Tool Implementation

The retrieval of the data, and transforming this data intabies results, has mostly been
performed by a self-developed tool. This tool, along witp@ted results, can be found on
GitHub!. In this chapter, we first describe the implementation oftta itself, and then
focus on the database design.

4.1 Repository Data Retrieval

For this study, we are going to be mining software repogtodn GitHub. Since this will
be quantitative research, we want to obtain data on as maogiteries as possible. This
is most easily accomplished using the public ARllost of the steps described in chapter
are easily automated, so having a program retrieve allssacg data is the best solution.
This program needs to be able to connect to GitHub's APlestiata, and export usable
results. A command-line tool would suffice, since only basput will be required, such as
the specific task to be performed. This task can be one oévéig or analyzing reposito-
ries, retrieving pull request data, or running ASATs whikoausing Git to switch between
commits.

We have implemented this tool in over 2000 lines of PHP codke fieason to de-
velop in PHP was made mainly because of personal experieitbehg language and its
ecosystem. Interaction is done through a Command-Linefaute, for which the Symfony
Console Compone?lt/vas used. Furthermore, the Guzzle HTTP Cliemas used to interact
with GitHub’s API, which is accessed over HTTPS. For datelateraction, we used the
llluminate Database Componénthich is part of the LaravBIPHP framework.

Figure[4.1 shows the general process for most interactidnse a command is issued,
it passes a search query to tBd hubC i ent instance, a singleton which contains all the
logic for interacting with the GitHub API using Guzzle. Thibject translates the query

Ihttps://github.com/bvangraafeiland/RepositoryAnalyz
2https://developer.github.com
3http://symfony.com/doc/current/components/conseleguction. html
4http://docs.guzzlephp.org/en/latest/
Shttps://github.com/illuminate/database

Bhttps://laravel.com
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4. TOOL IMPLEMENTATION

into an HTTP request, makes that request, parses the respodgeturns it to the calling
command. The command can then store the results into thiedatabase.

Search query Procesged data

HTTP Request Data (JSON)

Figure 4.1: Flowchart for obtaining data from GitHub

4.1.1 Obtaining Repositories

The first step is to retrieve a large number of repositoriegdik with. Our goal is to obtain
as many repositories as possible, but not include inactigeisonal repositories. To cover
that, we limit ourselves to repositories with at least 2Ggazers that have been pushed
to since January 1, 2016. Besides that, we only retrievesiep@s with Java, JavaScript,
Ruby or Python as their main language, since we only studysSAr these languages.
These parameters are then specified in a search query. ThiteeigitHub AP, we obtain
the name, default branch, stargazers count, creation ldatepush date and language of
repositories that meet the requirements.

To retrieve repositories, we make use of tisear ch/ repositories API endpoint.
However, a single request returns only up to 1000 resultthiaendpoint is meant to be
used for searching for specific repositories. Because vieadsvant to obtain all reposito-
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4.1. Repository Data Retrieval

ries that meet the requirements, we limit each search tayesjear. To get all repositories,
we perform a search for each year from 2008 (creation yeanebtdest repository on
GitHub) to 2016 per language. This way, each result set epdsing smaller than 1000.
This is depicted in figure 4.2.

Language, |star count, /
push date, creation date / Year < 20167

Figure 4.2: Obtaining all desired repositories from GitHub

4.1.2 Analyzing Project Properties

Now that we have the base dataset with repository names, eaveeady to obtain more
detailed information about each repository. We analyzectiiiSATs are used (if any),
which build tool is used (if any) and whether the project nsakse of Travis. For each
repository, we first obtain the names of all files in the rogéctiory. This information is
used as part of the build tool and ASAT checks. From the rémgscontents, we also
retrieve the dependencies file and build tool configuratibthose exist. This process is
depicted in figuré 413.
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Figure 4.3: Retrieving information about the project’s eleghencies and build tasks

When the repository contents, project dependencies amdl toal configuration have
been retrieved, we can look for evidence of ASAT, build taoid Travis usage. The general
idea of this process is displayed in figlirel4.4 and describedare detail in the following
paragraphs.
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./_
/

/
Contains build (}onf\guranon file?

InCIudéSASAT”

Contains ASAT conﬂgurat\on file? -
-\

Contains Travis configuration file?
\_
Last build at the same|time as last Git push?

\d

Figure 4.4: Deciding ASAT, build tool, and Travis usage

Build Tool Usage

To build tool usage, depending on the language of the rapgsive check for the existence
of a list of files, defined by the language-specific subclasthe root directory contents, as
shown in the top rectangle of figure ¥.4. This mehnisl d. gr adl e for Gradle,pom xni

for Maven,bui | d. xnl for Ant, Rakefi | e for Rake,t ox. i ni for Tox, Makefi| e for Make,
Guntfile.js forGrunt, andyul pfile.js for Gulp. We just check for the files’ existence,
so in case other build tools should be checked, our repgsitoalysis tool can easily be
expanded to account for that.

ASAT Usage

After that, language-specific checks are performed, whrehadéso implemented by the
respective subclass. Three checks are performed:

e Looking for an ASAT in the project’'s dependencies Projects often use some sort
of dependency management, like Maven for Java or BundldRidny. To determine
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an ASAT being listed as a dependency, we search the depéesléitefor a mention
(e.g.Genfil e for Ruby).

e Looking for an ASAT in the project’s build tasks. Within the build tasks file, we
search for a plugin of the ASAT under study (eggl p-eslint ingul pfile.js for
ESLint in JavaScript projects).

e Looking for an ASAT configuration file in the repository . All ASATSs, except PMD
and Checkstyle, look for a specific configuration file in thetmirectory by default.
We check for this file's existence in the previously obtaimedt directory contents
(e.g.. pylintrc for Pylint).

These steps are illustrated in the middle rectangle of figutend the following paragraphs
explain each part in more detail.

ASAT Configuration

The way configuration files are used differs per ASAT. JSHIS(S, and RuboCop all have
a single file that they use by defaulj §hintrc, .jscsrc, .rubocop.ym respectively).
ESLint accepts different file types for configuratiaresl i ntrc.js, .eslintrc.yan,
.eslintrc.ym, .eslintrc.json for JavaScript, YAML or JSON (alternatively, a plain
.eslintrc file can be used containing either YAML or JSON, which is depted but still
valid). Pylint accepts eitherpyl i ntrc orpylintrc. All mentioned files are assumed to
be stored in the repository’s root directory, although #&edént location can be specified.
Checkstyle and PMD use XML files for their configuration, whian be stored anywhere,
and then referenced in the task of the build tool or on the canthiine. In addition to a
separate configuration file, JSHint, JSCS, and ESLint corgimmuns can also be stored in
thepackage. j son file’ under thg shi nt Confi g, jscsConfig, oreslintConfig fields.

To determine that a custom configuration is used, we checkhforexistence of the
mentioned file names in root directory of the repository.hAligh it is possible that con-
figuration is stored elsewhere, we do not check for that mr#@would require searching
through each single repository, which is time consumingtdu@itHub’s API rate limit (30
searches per minute). In addition, it seems that very fewsigqries actually store their
configuration in a directory other than the root. In case eftavaScript ASATSs, we also
read thepackage. j son file to see if configuration is specified there. As for the JagA\As,
we parse the build tool's configuration file (Gradle, Ant onia) and check if a path to a
Checkstyle/PMD configuration file is mentioned there. Unipately, this means that Java
projects need to use either Gradle, Maven or Ant, but mog¢giwseem to be using one of
these, and it can be argued that without a build tool, a prageot very likely to use any
ASATSs.

In thepackage. j son file, npm packages can store basic documentation, deperdarcother packages,
and build scripts.
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ASAT in Build Task

By themselves, ASATSs can easily be overlooked. Just haviwpfiguration in the reposi-
tory hardly guarantees that a tool will ever be used by coliators. IDEs may be configured
to pick up ASAT configurations and point out warnings, butréhis no control over which
IDE collaborators use, if any. This would also mean mean IDEfiguration for multiple
IDEs needs to be stored in the repository, which seems uadsi To make sure that code
analysis will be included in the regular workflow, it would Wése to incorporate an ASAT
in the build process instead. For most build tools (Pytharepted), plugins are readily
available to integrate an ASAT in the build process, usuadlyuiring only a couple extra
lines of configuration.

Deciding whether an ASAT is in a build task is different fochdanguage. Again, we
consider the build tools of table_3.1. For this reason, wé ¢inecked for build tools; we
then already know which build tool configuration files aresem for parsing. Evidence of
ASATSs in the build is specified in table 4.1. Based on thesemiasions, we decide which
ASATs are included in build tasks.

Build Tool | Evidence

Gradle In bui | d. gradl e, the respective plugin for PMD or Checkstyle
is included.

Maven An execut i on element has been added in the Checkstyle/PMD
plugin, with thecheck goal to be executed.

Ant A Checkstyle/PMD element is present in on of the targets ddf|n
inbuild.xn .

Rake A Rake task has been created to run RuboCop, meaning

Rakef i | e contains the tex@uboCop: : RakeTask. new (RuboCop
comes with a Rake task to use).

Tox The textpyl i nt exists int ox. i ni .

Make The name of the ASAT is mentioned akefi | e.

Grunt The name of the plugin for the ASAT is mentioned [in
Guntfile.js.

Gulp The name of the plugin for the ASAT is mentioned [in
gulpfile.js.

Table 4.1: Signs of an ASAT being included in the build forteaaild tool

ASAT as Dependency

Finally, we check whether a project lists an ASAT, or a buddltplugin of an ASAT, as
a dependency in its language’s dependency management. Weleodependency man-
agement as follows: Gradle or Maven for Java, Bundler foryREp orset up. py for
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Python, and NPM for JavaScript. In most cases, a dependénydsbe defined if there
is a build tool task, otherwise a project would have to depemddther developers hav-
ing tools already installed on their machine. Neverthelegscheck for dependencies be-
cause the ASATs could be run directly without a build tool addie man. For example,
beautify-web/|s-beautify contains auil d. sh script which runs jshint with

$PRQIECT DI R/ node_nodul es/ . bin/jshint "js' "test’ || exit 1

For Java, we consider a dependency to be the same as haviild tabk, so the check
is essentially the same as in the previous step. This is beaadding the Checkstyle/PMD
plugin to Gradle/Maven automatically causes the build toalownload the ASAT when
running the build. For Ruby, we look forraibocop mention inGenfi | e or the. genspec
file (in case the project itself is a Gem), which Bundler useddwnload dependencies.
For Python, we search theequi rement s. t xt andset up. py files to see if they include
pylint. Finally, for JavaScript, we parse tlpackage. j son file, combine the contents
of thedependenci es, devDependenci es, andopt i onal Dependenci es fields, and search
for the name of the ASATj6cs, jshint, eslint)inthere.

Travis Usage

Evidence for Travis usage comes in two parts, as shown indterb rectangle of figure

[4.4. First, we make sure the configuration fite avi s. ynl exists in the repository root.

Second, we make an HTTP request to the Travis API, obtaimfayrnation about the last

build of a project. If the last build exists and it was perfedrat the same time of the last
push, we consider the project to be actively using Travis.

4.1.3 Retrieving Pull Requests

All required data regarding the community around projeets loe obtained by looking at

the properties of pull requests. As mentioned in chdgtereSrastrict ourselves to the last
100 closed pull requests, because the GitHub API returnsithay per request, and we are
analyzing the time that pull requests stay open, which iefindd for those that are still

open.

Again, the GitHub API provides us with all the data we need. dach pull request, we
retrieve the title, number, ID of the user who submitted thkk gquest, and timestamps of
when the pull request was opened, mergad I( if the request was rejected), and closed
(identical to merged if the request was accepted). Eachregllest is also associated with
its repository internally. We also obtain the total amouinpull requests that a repository
received by fetching the list of pull requests from GitHull @etting the number of results
per page to 1. By checking the total number of pages (whichr@Bponse includes in its
headers), we know the total number of pull requests. Withlisic data, we can compute
some more properties of repositories:

e Time to close pull requests.For each of the repository’s pull requests, we calculate
the difference in seconds between theat ed_at andcl osed_at properties. The
repository’s time to close is the average of the obtainedesal
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e Pull request density. This property comes in two forms: lifetime density and recen
density. The former is calculated as the total number of igjuests divided by the
repository age in hours. The repository age is calculatehking the difference be-
tween thecr eat ed_at andpushed_at attributes of the repository. The recent density
is calculated by taking the difference in hours betweentimealates of the first and
last of the (up to) 100 pull requests retrieved for the rapogi This difference is then
divided by the amount of pull requests we obtained for thesépry.

e Unigue user count defined as the number of different user ID’s that appearen th
repository’s pull requests.

e Merged count, the number of pull requests whemer ged_at is set, i.e. the pull
request was accepted.

4.1.4 Running ASATs
Preparation

We start by figuring out which directories of the repositopntain the source code by
manual inspection and determine which version of the ASAJukhbe used, sometimes
with the help of build tool configuration. We then install trexquired ASAT version if
needed. Sometimes, other information is required, suctidis@nal command line options.
In the cases of Checkstyle and PMD, we also look up the corfiigur file location. All of
this is then saved to a configuration file for our tool.

Code Analysis

With the configuration set, we are ready to run the ASAT. Ugilg we first obtain a list
of commit hashes representing the versions of the repgsitorun the ASAT on. For
each project, we retrieve the last 500 versions, while ugieg-f i r st - parent option in
order to exclude duplicate commits caused by pull requéstsn, using the command line
interface, we run the ASAT over the directories specifiedh@nrepository’s configuration.

When running the ASAT, we make it output either JSON or XMLadatorder to make
parsing easier. Most ASATs provide a formatter for this duthe box, but for ESLint,
JSHint and JSCS we implemented our own formatter due to seeafaloing so and having
the output exactly in the way that suits our tool best. Fohesarning encountered, we
retrieve the name of the file where the warning occurred,itteednd column numbers, the
warning message, and the identifier of the rule that wasteidlawe also categorize each
warning according to the GDC, using preset mappings, amgjasil, we obtain the content
of the line of code that the warning occurred on.

The ASAT is run on each commit, until either 500 versions Haaen run, or the ASAT
configuration file is no longer present (meaning it has be@eado the repository within
the last 500 commits). The full process is displayed in filBe
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4.1.5 Exporting Data

At this point, we have most of the data we need. The analyses dn the data are per-
formed by means of an R script, which works best with inpusfdé CSV format. There-
fore, the data stored by the tool is exported to CSV files. Eisalts we export are:

e Statistics per language- Repositories are aggregated by language to count the amoun
that use asats, build tools, and Travis.

e Basic repository properties— The name, star count, language, pull request count,
age, pull request density, and use of ASATs and Travis fon eggository. This can
directly be retrieved from the data.

e Pull request properties— The information about pull requests for each repository:
total count, merged count, time to close, density, and wiger count. Also includes
whether the repository uses ASATS, so that the other priegecain be compared
between projects using ASATs and those that do not.

e Warning counts — For each repository, a separate file is exported that isteom-
mits of that repository, along with the total number of ASA@mwings in that commit.

e Statistics for analyzed repositories— For each repository that we ran ASATS on,
we export the average warning count per commit, the totakliof code (using the
command-line toot! oc®), and the normalized warning count, expressed as warnings
per 100 lines of code.

In addition, we compute solve times for each GDC categorye Why this is done is ex-
plained below.

Solve Times

After having run the ASATs on a number of different commit® @and up with a set of
warnings across all of these commits. By comparing warnbejs/een commits, we ob-
tain the dataset of solve times. The way these are computepisted in figuré_4]6 and
explained in more detail below.

First, we remember the set of warnings belonging to the fostroit. For these warn-
ings, we cannot say anything about their solve times, becasscannot tell how long the
warnings had been present prior to that first commit. Theneéd@h commit, we increase
a counter for each warning that is present in the commit amighresent in the initial set.
Furthermore, we save the counter for each warning that hagrdaer value, but is not in the
set of warnings of the current commit, and remove that wartgioounter. In other words,
we consider that warning solved, so the number of commitstthas existed can be saved
as its solve time. Eventually, after this has completed larammits, we end up with a set
of solve times. These solve times are then grouped per GD&gaat After completing
these steps for all repositories, we merge the solve timesgtegory of each repository to
obtain the final dataset to export.

8http://cloc.sourceforge.net
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4.2

Database Design

We used a MySQL database to store retrieved data from bothuGiand ASAT output.
The main reason is again personal experience, but also sieecfantegrating with PHP.
The database contains the following tables for the bastemti

reposi t ori es — Basic repository data as mentioned in the previous section
anal ysi s_t ool s — Names of the ASATs under study.

bui | d_t ool s — Names of the build tools under study.

pul | _request s — Pull request data, includingraposi t ory_i d column.

resul t s — The hash and commit date for the results produced by an ASAT o
single commit. Includes theeposi t ory_i d column.

war ni ng_cl assi fi cati ons — Names of the categories defined by the GDC.

war ni ngs — Single warnings produced by ASATSs. Includesdhassi fi cation_id,
resul ts_id, andanal ysi s_t ool _i d columns.

In addition to the base entities, the schema contains thveetables:

anal ysi s_t ool _r eposi t ory — Links repositories to ASATs. Also includes the
method of ASAT usage inthe form obnfi g_fil e_present,in_dev_dependenci es,
andi n_bui I d_t ool .

bui | d_t ool _reposi t ory — Links repositories to build tools. The reason for this
being a pivot table rather than a column in tle@osi t or i es table is that a repository
may include multiple build tools.

anal ysi s_t ool resul t — Links ASATSs to results. This being a pivot table in-
stead of having a column in thresul t s table makes it possible to store results for
more than a single ASAT per repaository.

The relations between the entities are displayed in figufie 4.
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Figure 4.5: The process of running an ASAT on each versionpobgect
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Current commit is first?

No next commit?

Figure 4.6: Algorithm for computing solve times
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Chapter 5

Results

In this chapter, we present the results obtained in the skidst, we provide basic informa-
tion about the data that we have collected, present insitASAT prevalence, and look
for correlations between ASAT usage and several other iteppgroperties. In the second
section we compare community activity between projectsuba ASATs and projects that
do not. The final section contains an in-depth analysis ohimgrcounts and the time it
takes to solve warnings of different categories as spedifiethe General Defect Classifi-
cation.

Unless mentioned otherwise, the statistical test we ud@srchapter is the two-sample
Wilcoxon test, also known as the Mann-Whitney U test, répgra two-tailedp-value with
the default threshold of.05. The reason for this is that in the first place we want to find
out whether the samples have different means. Furtherm@eannot assume normality,
as determined by means of the Shapiro-Wilk test, which gigtjgtvalues below @1 for all
of the datasets. In particular, the star counts (figure 518)paull request counts (figure 5.4)
seem to more closely resemble a Pareto distribution.

5.1 Basic Statistics

In total, we ended up with 9443 repositories that met thedagg, activity, and star re-
quirements as described in chapter 3. Of these, 6772 do adiSATs, while 2671 do. To
get an idea of the prevalence of ASATs per language, tablsHaws ASAT statistics about
repositories grouped per language. The last column shavgditentages of projects that
use ASATSs as build task relative to all projects that usedtioibls. JavaScript projects turn
out to be likely to use an ASAT as build task when using a buitd, tbut this does not hold
for other languages.

5.1.1 ASAT Prevalence

We are also interested in the popularity of each ASAT. Fifiufedisplays this as the number
of projects that has included an ASAT in some way. Here, tted tount may be larger than
the total number of repositories, because a project carcheied in the counts of more than
one ASAT.
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Language | # repositories| Uses build tool| Uses ASAT | ASAT as build task|
JavaScript 4504 1343 (30%) | 2154 (48%) 830 (62%)
Java 1823 1589 (87%) 160 (9%) 122 (8%)
Ruby 1316 1190 (90%) | 247 (19%) 126 (11%)
Python 1800 768 (43%) 117 (7%) 54 (7%)

Table 5.1: Basic repository statistics, with percentagdbetotal number
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Figure 5.1: Number of projects for each separate ASAT

From this we can see that the ASATs for JavaScript (JSHintjiE&nd JSCS) are most
popular. This could be attributed to JavaScript being thetrfrequent language along with
having the highest ASAT use.

Because we studied more than a single ASAT for Java and JépgSge can also
say something about the number of ASATs used in repositofitisose languages. 26 of
the 160 Java projects use both Checkstyle and PMD, wheré&ae8%f 2154 JavaScript
projects use more than one ASAT, of which 20 projects uséaktof them.

5.1.2 ASATSs with Travis

We now look at ASAT usage within Travis-enabled repositrie find out whether Travis
usage has any effect. These are presented in[fallle 5.2. @minjoathe statistics of all
repositories in table 5.1, the percentage of projects USBWTs is higher for all languages.
The biggest difference can be observed for JavaScript (4884%), which already had the
highest use rate. The reason for the higher use rate coulédsise ASATSs offer more
value when integrated into Travis (automatic feedback $erin code reviews), but another
explanation is that both Travis and ASATs are workflow-ermlivag tools and once project
maintainers decided to use such tools, they are likely tghate both.
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Language | # repositories using Travis # using ASATs (% of total)
Java 698 102 (15%)
JavaScript 2084 1337 (64%)
Python 966 81 (8%)

Ruby 924 204 (22%)

Table 5.2: ASAT usage for repositories using Travis

5.1.3 ASAT Usage and Repository Age

To find out whether age of a repository influences ASAT usagardi5.2 shows box plots
of age in hours for both groups. From this figure, it would séleah newer projects are more
likely to use ASATSs. Indeed, the average age is 25757 houroui ASATs and 24278 with
ASATs. With ap-value of 00022 U = 9409700), the groups have a statistically significant
difference.
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Figure 5.2: Distributions of repository age

To explain this, we look at the previous statistics on laggsaand ASAT use. Out
of 2678 projects that use ASATSs, 2154, or 80%, have JavaSasipheir main language.
For the remaining 6765 projects, this is 2350, or slightlioe35%. The average age for
JavaScript projects is 22863 hours, which is well below trerage age for all ASAT-using
projects. Therefore, it is possible that the differenceaigsed by the higher percentage of
JavaScript projects in ASAT-using projects, rather thaetiver ASATs are used.

To find out, we perform the same analysis on projects of eafukege separately. The
results can be found in talle 5.3. Here we see that repasitarith ASATs are newer on
average for JavaScript and Ruby, but older for Java and Rythbe difference is statisti-
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cally significant for all languages except Ruby. As mentéhree majority of ASAT-using
projects are in JavaScript, which negatively influencesntiean age. The group of non-
ASAT projects is dominated by the other three languages;twaie older with the excep-
tion of Java, but this is compensated by the much higher geeage for Ruby, leading
to higher age overall. Because of the differences betwewsyubges, we cannot draw any
conclusions about the relation between ASAT usage anditepoage.

Language | Mean without ASATs| Mean with ASATs| p-value
JavaScript 23399 22274 0.013
Java 19862 28522 5.45.10712
Ruby 38506 35943 0.052
Python 26784 30623 0.0067

Table 5.3: Mean ages ansvalues of repositories with and without ASATSs, per langeiag

There is another factor that could influence the repositge averages. All four lan-
guages have been around since long before GitHub was ladineié is possible that some
projects migrated from other hosting (e.g. SVN, CodePleogd@le Code, or SourceForge)
to GitHub at some point during their lifetime. In that caser data makes these projects
seem newer than they actually are. Unfortunately, we hawsayoto detect this automat-
ically, and assume that the amount of migrated projectsughty equal for all languages,
and migrated projects are equally likely to use ASATs corpan original GitHub projects.
Under this assumption, migrations do not significantly effee results as presented.

5.1.4 ASATs and Star Count

The last basic property we present here is the number ofstaqository has, and compare
this number to whether or not the project uses ASATs. Thisterésting to know because
intuitively, projects with a higher star count (hence moopyar) are likely to be depended
upon by more people. To ensure higher quality, ASATs coulthtveduced. Projects that
do use them have 1688 stars on average, with a median of 628eagprojects that do
not have 1035 stars on average with a median of 484.5. The Méritmey U test yields a
p-value of 22- 10716 (U = 7797900), so ASAT-using repositories seem to have mors.star
Figure[5.8 shows the histogram for both groups of reposi$oriVe opted for a histogram
instead of a boxplot, because the data does not seem to finaahdistribution and has
a lot of outliers, which would result in a flat box. In both casae see a distribution
leaning towards zero (the minimum here is actually 200, beedhat was the threshold
for repositories to study) with a heavy tail. The star couithwASATSs is more evenly
distributed, since the y-axis only goes to 12, compared to 30

5.2 Community Contributions

In this section we present several properties of the pull@stjdata. For all properties
except pull request count and lifetime density (i.e. amairgull requests per hour), we
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Figure 5.3: Star counts for projects without ASATSs on th¢, lefojects with ASATs on the
right

limited ourselves to repositories that have received ait1@80 pull requests, in order to
have enough data for the results to be meaningful. This $easevith 2353 repositories, of
which 1465 do not use ASATSs, and 888 do.

5.2.1 Pull Request Count

We will start off by comparing total pull request counts. Weobthesize that projects with
high amounts of pull requests are more likely to have intceduASATS at some point to
make the process of handling pull requests easier and tooenéode conventions defined
by the project maintainers. When not using ASATs, the meiiaP9 with an average
127.3. With ASATSs, these numbers rise to 56 and Z2despectively. The test yields a
p-value of 22-10716 (U = 6926600), showing that a larger number of total pull reciest
can be associated with ASAT use. Figlrd 5.4 shows the hatogyfor both groups.
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Figure 5.4: Pull request counts for projects without ASAMglee left, projects with ASATs
on the right

5.2.2 Pull Request Density

Although we showed that projects using ASATs have more mduests in total, older
repositories are of course more likely to have more pull estgj and have had more time
to include ASATs. Therefore, we normalize the pull requat by using density instead.

31



5. RESULTS

We define the pull request density as the number of pull reguaeated per hour, and
calculated both the lifetime density and the density dutirglast 100 pull requests.

The Mann-Whitney U tests for lifetime and recent densityd/ie-values of 221016
(U = 6694000) and D8-10° (U = 574490) respectively, so even when normalizing for
the age of the repository, use of ASATs can be associated awitigher rate of pull re-
guests. More statistics can be found in tdblé 5.4. Note Hwatdcent density seems to be
significantly higher; this is probably due to the fact thatrecent density we only consider
repositories with at least 100 pull requests, while lifetidensity also includes repositories
without any pull requests at all.

Timespan Median | Mean| Max

Lifetime without ASATs| 0.001 | 0.006 | 0.562
Lifetime with ASATs 0.003 | 0.010| 0.891
Recent without ASATs | 0.008 | 0.020| 0.426
Recent with ASATs 0.010 | 0.026| 1.111

Table 5.4: Pull request density averages

5.2.3 Unique Contributor Count

While the number of pull requests by itself provides somgimsnto a project’'s community
activity, it would also be interesting to see how many défarpeople contribute. More
unique contributors could mean that it is easier for new rimutiors to pick up a project’s
style guide and/or conventions, because apparently lotiffefent people have done so
before. ASATs would provide a way for a potential contributo find out whether their
contribution is suitable before actually submitting thd pequest. Fewer contributors could
indicate that the majority of pull requests are made by a taam, of which the members
are familiar with the project’s conventions already. Thisiicl be a reason for ASAT usage
to be less likely.

However, the median number of contributors is 38 when netgjsind 37 when using
ASATSs, with ap-value of 022 (U = 669980), rejecting the idea of a correlation between
unique contributors and ASAT usage. This can also be obdemviggure[5.5.

5.2.4 Amount of Merged Pull Requests

The raw number of incoming pull requests is a quantitativasaeement, and a large num-
ber of them is still not beneficial if many of those pull regisesre of low quality, and are
rejected as a result. As away to measure quality of a pullestgwe look at the amount that
is accepted and merged. Of the 100 pull requests, we coumeauimber that got merged
instead of rejected in the end for each repository. We exp8&TSs to increase the likeli-
hood of a pull request being accepted, because a contritamoobtain immediate feedback
about their pull request in a number of ways; the ASAT can begiated to the IDE, they
can run the build task if it is included there, or the Cl cheategrated into GitHub tells
them as soon as the pull request has been submitted, givengptitributor time to adjust.
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Figure 5.5: Amounts of different contributors

This seems to be supported in a survey involving projecynaters[21], which shows that
code quality and style are the top factors that influence ¢oésbn to accept a pull request.
Without this feedback, the pull request may have been egjedtie to style issues.
Contrary to this hypothesis, the median when not using ASA&TA9, versus 77 when
using, with ap-value of 0006 U = 694390), hinting at an advantage without ASATs. This
is visualized as a box plot in figure 5.6. A possible explamais that integrators of projects
that do not use ASATSs are less concerned with code stylesssifahey were, they would
probably have enabled some ASAT, and are more likely to aappll request as a result.
There are other factors, unrelated to ASATSs, influencingdéhasion to accept or reject
a pull request. One study found that the decision to mergeostlynaffected by whether
the pull request targets an actively developed part of tiogept[20]. Another study that
performed a survey among project maintainers found théowitcode style in the equation,
the top factors for the decision become project fit, techrficeand testing, with the main
reasons for rejection being technical errors and failisgs[@1]. Most contributors run tests
before submitting a pull request[19], which filters out meesthnical errors and makes sure
all tests pass. This survey also mentions that contributarg to format code according to
the guidelines, as long as a project actually has said go@glwhich may play a role here.
Another factor could be the number of contributors in the 189 pull requests. If this
is low, there are likely some “core contributors”, who haverenknowledge of the project
and how pull requests should be done, so their pull requestsiare likely to be accepted.
Since the number of contributors and the number of pull retgueoth are ratio variables,
and we want to test for linear correlation, we apply the Raacsrrelation test. We obtained
an estimated correlation coefficient-e0.37 with ap-value of 22-10-16 for the alternative
hypothesis of a negative correlation. Based on this, we agnhe number of contributors
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Figure 5.6: Numbers of merged pull requests (out of the 188 1

is negatively correlated with the number of merged pull e=qgst
In conclusion, we can say that ASATs have no demonstrabéetedin the decision to
accept or reject a pull request.

5.2.5 Pull Request Time to Close

For the final property, we look at how long it takes for pulluegts to be accepted or rejected
and the effect of ASAT usage. We presume that use of ASATsdvaeduce the time
to respond to pull requests, because the code quality ofahtgiloution would be higher.
Previous research shows that code quality is not among phfattors in response time, and
is dwarfed by reviewer availability[21]. Coming at a 5th §pee still expect code quality to
have a significant impact though; when conventions arevi@th project maintainers have
an easier time reviewing the changes. Other factors indloeealeveloper’s track record,
project size, and test coverdge[20]. Per project, we lodthataverage time to close in
seconds.

With medians 854455 (without) versus 707913 (with) secpnmisans of 1674847 ver-
sus 1392057 seconds andpavalue of 0018 U = 688300), there indeed seems to be a
correlation between use of ASATs and time to close. With A§Ahe time it takes to
review pull requests is almost 17% lower on average. Furtbez, without ASATSs the
variance is 67% higher. As seen in figlirel 5.7, there are somge tatliers within the group
of projects without ASATS, explaining the difference in ieauce.

Like with the merge rate, we also look at the effect of the ambai contributors on
the time to close. This time, we find a correlation coefficiehD.49 with a p-value of
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2.2-107%8, indicating that pull requests take less time to review fajgrts with less con-
tributors.
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Figure 5.7: Time it takes to review pull requests on average

5.3 Warnings in Committed Code

The data obtained by running ASATs over several projectsachdanguage forms the
largest part of our results. In this section, these resuttpeesented in different ways. First,
we look at several statistics on warning count aggregateprpg@ct. Then, we present the
development of total warning counts over time for severajgmts. Finally, we look into
the different warning categories, analyzing their ocauress and solve rates.

For this study we ran the different ASATs on the code of 39 sépdes. We limited the
analysis to one ASAT per repository in order to compare weyriounts between repos-
itories (with multiple ASATs for some repositories, thisngparison would not be valid).
These are listed in table 5.5, along with their languagé, used for analysis, number of
analyzed commits, and total number of warnings found. Wecsedl the repositories with
the largest amount of stars that also contain a configuréitefor their ASAT. We analyzed
up to 500 commits per repository, starting at the earliestrad which contained a configu-
ration file that was compatible with the same version of thé\A&s said configuration file
of the last commit. In total, we ended up with.863 395 warnings in the database.

5.3.1 Warning Counts over Time

In this part, we look at how the number of warnings changes tave. For a select number
of projects, we show a graph that displays the total warniognt over the number of
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Repository Language | ASAT Commits | Warnings
mongodb/morphia Java checkstyle 64 0
square/retrofit Java checkstyle 236 0
bumptech/glide Java checkstyle 498 716
scribejava/scribejava Java checkstyle 83 16
google/auto Java checkstyle 118 1926
zeromg/jeromq Java checkstyle 81 120139
facebook/buck Java pmd 500 0
capitalone/Hygieia Java pmd 88 1871
checkstyle/checkstyle Java pmd 500 28
Netflix/servo Java pmd 60 4801
OpenGrok/OpenGrok Java pmd 419 261696
sleekbyte/tailor Java pmd 162 0
jashkenas/backbone JavaScript| eslint 55 245
FreeCodeCamp/FreeCodeCampavaScript| eslint 500 20206
gulpjs/gulp JavaScript| eslint 45 45
nnnick/Chart.js JavaScript| eslint 158 11041
jashkenas/underscore JavaScript| eslint 52 1511
vuejs/vue JavaScript| eslint 206 479
bower/bower JavaScript| eslint 125 599825
remy/nodemon JavaScript| jscs 44 7
jshint/jshint JavaScript| jscs 248 21
requirejs/requirejs JavaScript| jscs 65 0
gruntjs/grunt JavaScript| jscs 60 118
hexojs/hexo JavaScript| jscs 79 520
jqueryljquery JavaScript| jshint 500 196
moment/moment JavaScript| jshint 252 0
caolan/async JavaScript| jshint 371 418
select2/select2 JavaScript| jshint 500 20
less/less.js JavaScript| jshint 500 7611
SirVer/ultisnips Python pylint 257 38356
numenta/nupic Python pylint 500 3923892
rembol0/headphones Python pylint 104 14530
pyinstaller/pyinstaller Python pylint 500 3367394
cython/cython Python pylint 500 3362930
CocoaPods/CocoaPods Ruby rubocop 109 0
ruby-grape/grape Ruby rubocop 196 14838
capistrano/capistrano Ruby rubocop 51 421
sass/sass Ruby rubocop 84 316
thoughtbot/paperclip Ruby rubocop 116 107262

Table 5.5: Repositories of which we obtained warnings farae of commits
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commits that we analyzed, and try to find an explanation fergraph’s characteristics.
This way, we hope to find different ways for warnings to be edler introduced.
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bower / bower (figure[5.84) initially hovers slightly above 8000 warnindsowever,
around commit #70 and then again around #80, a major amoumtwfings is resolved.
The first drop is due to a change in ESLint settings, changideritation sizg and the
commit of the second drop featured another overhaul of therE8onfiguration, along
with a large amount of code style fixedn addition, JSCS is dropped from the repository
altogether in favor of ESLint, and Grunt tasks for ESLint adegled, having them run in
Travis. This explains why warnings stay close to zero froat ffoint forward.

f acebook/ buck (figure[5.8b) did not contain a single warning in 500 comniltsis
is achieved by running PMD during each Travis build, using.Arhe website contains a
comprehensive section on contributing, including a stylelgf which mentions that PMD
checks are used.

nurrent a/ nupi c (figure[5.8t) starts out with a warning count at around 10@@er
time, two big drops can be observed. The first one is causedchgrage in configuration,
changing indentation size to a value that was being used Bt ofdhe codebase already.
The second one is a commit moving a lot of code to another itepyh so the violating
code is removed rather than fixed. For this project, warnimg® reduced without changing
any of the code.

zerony/ j er onyg (figurel5.8dl) hovers around 5000 warnings for some time. kewe
at some point, they seem to have had enough, and fix them aflilge commg. In this
same commit, Checkstyle is added to the build process andesul the warning count
stays at 0. This case is remarkable because all warnings reguoeed by solving them,
rather than changing ASAT configuration or removing code.

opengr ok/ opengr ok (figure[5.8¢) is one of the few projects where the warning
count actually increases over time. Ata couple of pointspdican be observed but those are
soon followed by more warnings. PMD is not run by Travis, vidgould be an explanation.

sel ect 2/ sel ect 2 (figure[5.8F) remains at zero warnings for the majory of iteeo
mits. However, we can observe a handful of instances whene 8arnings slipped through.
These were all solved within a couple commits. The commérdfie largest peak (4 warn-
ings) did not only fix the existing warnings, but also addechewules to JSHint configura-
tion and solved all violations that emerged because of ttis project also runs JSHint
through Grunt in Travis, so the low amount of warnings can thébated to that. The
contributing guide does not mention code conventions, kiewe

5.3.2 Average Warning Count

To obtain insight into the warning counts of each reposjtavg calculated the average
number of warnings per commit. Because not all projects havequally sized code base,
we also determined the lines of code of each repositorygusicommand-line tool called

Lhttps://github.com/bower/bower/commit/78e443db0&fga%ec53c2ff94ccelblab017b
2https://github.com/bower/bower/commit/53eeca97d3884075932ac6e6841ebeaeebla
Shttps://buckbuild.com/contributing/codestyle.html
4https://github.com/numenta/nupic/pull/1866
Shttps://github.com/zeroma/jeromg/commit/14d9dc18848433944fa664a907f575e72cdf
Bhttps://github.com/select2/select2/commit/081588acte16df5a5dae5b03ef1f92420191
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cl oc’. Using this value, we calculated the amount of warnings pérlihes of code, which
is more representative than total warning count. The reduktis can be found in table 5.6,
where repositories are sorted by the number of warnings @@tides of code. Using this
table, we look for projects that have uncommon amounts ofiwgs per line of code, and
try to find an explanation. Furthermore, we investigate éréhis any relation between the
total lines of code and the amount of warnings per line of code

It turns out that only 12 out of 39 repositories averaged nloa@ 1 warnings per 100
lines of code. 7 repositories never had any warnings at alis lls us that most projects
mostly seem to adhere to the rules they set for their ASAT&erdstingly, this seems to
be especially true for projects with large code bases. 8 btheotop 10 largest projects
have a negligible amount of average warnings compared tbnibe of code. Both of the
other two (Python) projects do not run Pylint in Travis, wéees the other 8 all do. This also
seems to hold the other way arourwer / bower , the top offender, did not run ESLint
in Travis during the commits that yielded most warnings, aebn it started doing so,
warnings dropped drastically. The same holdszierony/ j er ong. The rest of the top 10
projects with the most warnings per line of code does notisieltheir ASAT in Travis, with
the exception of uby/ gr ape andnet fl i x/ servo, at the 9th and 10th spots, both under 2
warnings per 100 lines.

t hought bot / paper cl i p stands out due to having a high amount of warnings per line
of code (29 per 100), despite a relatively small code base of 3093.linedine with
previous observations, we find that this project does nduditecRuboCop in Travis. The
only evidence of RuboCop usage is a configuration file, andeirs to be integrated into
Hound CP instead of Travis. However, Hound does not fail upon encaimg RuboCop
warnings. In an issue raised on the amount of warfirgsnaintainer answeredhis is not
an issue we want to tackle all at once. All new code comingthmeqoroject should comply
as best as possible with rubocop rules. Thanks for repoitinghis, combined with the
fact that RuboCop was added to the project at a relativetyrtaiment® (December 2014,
while the repository was created in April 2008), explains tiigh warning rate.

Following these findings, we investigate the relation betwproject size and warnings
per line of code. It looks like the large projects are morelifko make efforts to keep the
warning counts low. Figurie 5.9 shows a scatter plot of thesliof code versus the amount
of warnings per 100 lines. This shows us that most projecte bath low amounts of code
and warnings. As mentioned earlier, the projects with laae bases are low on warnings,
but any correlation seems unlikely. Indeed, a Pearsonlatie test yields gp-value of
0.6. To draw any conclusions, more data would be needed.

Considering the previously mentioned top 10 projects withstrwarnings per line of
code, we also hypothesize that integrating the ASAT intwiSrand failing the build upon
warnings can be associated with low warning counts. Projbett include an ASAT in their
Travis script have an average of 2 warnings per 100 lines aé ceersus 15 warnings for

"https://github.com/AlDanial/cloc
8https://houndci.com
Shttps://github.com/thoughtbot/paperclip/issues/2062
L0https://github.com/thoughtbot/paperclip/pull/1733
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Repository Average warnings/commit Lines of code| Warnings/100 LoC]
bower/bower 4798.6 10285 46.66
pyinstaller/pyinstaller 6734.79 18083 37.24
thoughtbot/paperclip 924.67 3093 29.9
numenta/nupic 7847.78 31163 25.18
cython/cython 6725.86 52787 12.74
zeromg/jeromq 1483.2 23621 6.28
SirVer/ultisnips 149.25 3469 4.3
OpenGrok/OpenGrok 624.57 27508 2.27
ruby-grape/grape 75.7 4367 1.73
Netflix/servo 80.02 6746 1.19
rembol0/headphones 139.71 12128 1.15
nnnick/Chart.js 69.88 6395 1.09
jashkenas/underscore 29.06 4336 0.67
capistrano/capistrano 8.25 1398 0.59
FreeCodeCamp/FreeCodeCamp 40.41 8087 0.5
capitalone/Hygieia 21.26 4726 0.45
jashkenas/backbone 4.45 1166 0.38
less/less.js 15.22 9272 0.16
gulpjs/gulp 1 719 0.14
google/auto 16.32 19590 0.08
gruntjs/grunt 1.97 3371 0.06
sass/sass 3.76 13104 0.03
caolan/async 1.13 7431 0.02
vuejsivue 2.33 18575 0.01
remy/nodemon 0.16 1657 0.01
bumptech/glide 1.44 31657 0
scribejava/scribejava 0.19 7871 0
hexojs/hexo 6.58 371236 0
jquery/jquery 0.39 31809 0
jshint/jshint 0.08 8069 0
select2/select2 0.04 17456 0
checkstyle/checkstyle 0.06 29808 0
mongodb/morphia 0 31095 0
moment/moment 0 39157 0
sleekbyte/tailor 0 4663 0
facebook/buck 0 156462 0
requirejs/requirejs 0 181720 0
square/retrofit 0 7316 0
CocoaPods/CocoaPods 0 8798 0

Table 5.6: Average warning counts per commit for each réqosi
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Figure 5.9: Scatter plot of lines of code and warnings perlit@s

projects that do not. This looks like a significant differerand indeed, the Mann-Whitney
U test yields gp-value of 0003 (two-tailedU = 2225,n; = 9,n, = 30).

5.3.3 Prevalence per Warning Category

To say something about which kind of warnings show up mostofive want to analyze the
total counts of different warning types. However, sincehe@8AT has its own set of rules,
we cannot directly compare rules across ASATs. Thereforuse the General Defect
Classification(GDC)[B]. Using this classification, we magpules of each ASAT to one of
the 18 more general categories. These categories havéptigsanames, and are generally
easier to understand than the rule names of ASATs themséligaege[5.10 shows the total
amount of warnings we encountered across the study for edebary.

Not all projects influence this figure equally. In tablel5.%8,¢an see that Python projects
have generated most warnings, with a total amount of overilli@m Considering the data
contains less than 12 million warnings in total, we also ¢edrthe categories for each
language separately to account for this imbalance. Figuk# 8isplays these category
counts per language.

For Ruby, most warnings are from the Metric category. Cdiectally, rules of this
category are often enabled in RuboCop[8], explaining thiseovation. A large majority
within this category belongs to the neLengt h RuboCop rule, which defines a maximum
amount of characters a line can have. Upon closer inspeatienfind that most of the
offending lines are either comments or string literals, kkely not considered a problem.
Other than that, line length could also be considered to bdesnvention, but because the
rule has a configurable number, it has been classified asdylttis could be an indication
that some rules can be in multiple GDC categories.

For Python, the Logic category is most numerous. Upon cliosgection, we find that
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Figure 5.10: GDC warning category counts overall

87% of these warnings originate from thad- conti nuati on Pylint rule. A warning is
shown when function arguments on a new line do not align. abtsally seems to be a
misclassification in the GDC, as it has no effect on the ctmess of the program, and
should probably be in the Style Conventions category. Agmdy, these issues are not
considered to be important enough to solve quickly; it issgae that they were present
before the ASAT's introduction, and solving them has lovwopty.

For JavaScript, the large majority of warnings is from Stglenventions, of which
83.5% comes from th@ndent rule, available in both ESLint and JSHint, and 16% from
space- bef ore-function-paren available in ESLint. The former requires indentation of
4 (by default) spaces per level, and the latter requires eesaiter the unct i on keyword.
Like with Python, these are not major maintainability issuend solving them is probably
of low priority.
For Java, Best Practices comes out on top. Within this categdes are slightly more
evenly distributed than for the other languages: 49% is ffoeh dDecl ar at i onsShoul dBeAt St art Of Cl ass,
18% fromQuar dLogSt at enent Javalki |, 10% fromConsecut i veAppends Shoul dReuse,
all of which are PMD rules. It turns out that all instance§icél dDecl ar at i onsShoul dBeAt St art O O ass
(which requires class fields to be declared before any claisods) are found iGpenG ok/ QpenG ok.
The instances where this happens, the class field is grouipiethe method where it is used,
but the field is not used anywhere else. This may be a violatidine Single-Responsibility
Principle, so instead of solving the warning by moving thédfieclaration, a better solu-
tion would be to split the class up into multiple classes. fAaraple is theConfi gurati on
class, which is over 950 lines long, has many different maghand a constructor of 45
lines. These are indications of a God Class.
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We also see that warnings of the Style Conventions categerg@mmon for all lan-
guages. In addition, the rules that are violated most ofteRuby and Python could be
considered to be Style Conventions as well. An explanatiritfis could be that Style
Conventions are categorized under Maintainability Defecteaning they have no effect on
the correctness of the program. Compared to other Maii#ityaDefects, Style Conven-
tions should have little impact on readability, because thestly are about indentation,
line breaks and whitespace. Possibly, project maintainerdd ideally like to see these
issues resolved, but other issues take precedence.
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Figure 5.11: GDC warning category counts per language

5.3.4 Solve Rate per Warning Category

Finally, we present the solve rates per GDC category. Wedofmteexpress this as the
number of commits instead of real time because we feel thebruwf commits is a better
representation of the actual time spent working than nurobelays passed; one project
may be only worked on in the weekend, while another is sonigdo# time job. We
only considered warnings that have been introduced afédfirst commit we analyzed, and
solved before the last one, otherwise we cannot propergriahitie how long a violation had
been present. Figute 5]12 displays the average of all soheerheasurements per category
and figuré 5,183 shows the medians. In the remainder of thimsewe will explore whether
the solve times of different categories significantly difiem one another, and try to order
the categories in a way that is supported by the data.
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Figure 5.13: Median solve times for each GDC category

We excluded solve times of one Python repositogent a/ nupi ¢, from the results.
The reason for this is a series of commits that first “solvdst af warnings by moving code
to another directory, hence changing the file path. Latés,dhange is revertéd because
of some complications, and shortly after, it is applied atfaipresumably in the correct
way. Because of this, a lot of warnings were re-introducedria commit, then removed

1lhttps://github.com/numenta/nupic/pull/2583
L2https:/igithub.com/numenta/nupic/pull/2585
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5. RESULTS

again shortly after, making the data biased.

The average solve times do seem to differ from one anotharamde seen in figure
[B.12. However, the order is quite different from figre 5:Aich could mean the averages
are affected by outliers. To find out if there is a statistjcalgnificant difference between
the category solve times, we perform a one-tailed Mann-kiglitU test (by means of the
Shapiro-Wilk test, we determined that none of the solve sifmave a normal distribution)
to each pair of categories. Talble]5.7 lists flrealues of each test. Each cell is the result
of testing its row category to be smaller than its columngatg Assuming a significance
level of 0.05, cells with values that indicate a statistically sigrifit difference are colored
white, versus grey cells for test results where phealue is higher; for each white cell, the
row category solve times are significantly smaller than thieran category solve times,
and vice versa. For a complete picture, tables 5.8 and 5\ gteocorrespondiny -values,
and tablé 5.70 shows the number of data points (solve tintea)ned for each category.
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Best Practices
Code Structure
Concurrency

Interface

Logic

Metric

Migration

Naming Conventions
Object Oriented Design
Redundancies
Regular Expressions
Resource
Simplifications

Style Conventions
Tool Specific

0.01| 0 |
B o (oo

0 0
0.02 0.04

Documentation Conventions 0| 0| 0| O 0 0| 0| O] OO0
Error Handling 0 |002| O
0 0
0 0
0

Table 5.7:p-values of one-tailed statistic tests for each pair of di@sgion categories
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Best Practices
Code Structure

0 | 21925( 2170 | 2345 | 43975 | 52935 | O

Concurrency

Documentation Conventions 6853.5 27791.5

Error Handling 35151 137115

Interface 13423 37838 48358.5

Logic 25285.5

Metric

Migration

Naming Conventions

Object Oriented Design | 259 | 22 | 0 | 396 | 405 | 485 | 1141 |

Redundancies 91831.5

Regular Expressions 165649.5) 0 |
Resource

Simplifications

Style Conventions 168677.5
Tool Specific

Table 5.8:U-values of one-tailed statistic tests for each pair of di@s¢ion categories, part 1
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Best Practices
Code Structure
Concurrency
Documentation Convention
Error Handling
Interface

Logic

Metric

Migration

Naming Conventions
Object Oriented Design
Redundancies

Regular Expressions
Resource
Simplifications

Style Conventions

Tool Specific

26109

27052 57636
53764.5

s 8710.5
44897.5
17972
31024
82500

8868

18066.5| 2497

1798.5
53761
3663.5

28449 | 4354.5

2154.5

99195.5
5950.5

Table 5.9:U-values of one-tailed statistic tests for each pair of diasgion categories, part 2
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5. RESULTS

Category Number of Solve Times
Best Practices 200
Code Structure 35
Concurrency 4
Documentation Conventions 148
Error Handling 481
Interface 189
Logic 390
Metric 650
Migration 4
Naming Conventions 337
Object Oriented Design 12
Redundancies 324
Regular Expressions 747
Resource 116
Simplifications 17
Style Conventions 718
Tool Specific 45

Table 5.10: Solve time counts for each category

To obtain a more reliable order of categories than the aesrage count the sum of
significant results (white cells) for each row and columnadifi¢[5.7. Per category, we add
the numbers of its row and column counts to obtain the totailver of categories that are
significantly different. Since we have 17 different catégereach category is paired with
16 others in the significance tests. To reliably establisbrdering, we discard categories
that significantly differ from less than half (8) of the otheategories. This leaves out
Concurrency, Migration, Simplifications and Tool Specifithe counts can be found in
table[5.11, where the discarded categories are colored gray

We can sort the remaining categories in two ways: by the ‘fleas” count ascending
or “greater than” count descending. The other count can bd as tiebreaker, e.g. Best
Practices and Metric both have significantly smaller solves$ than 1 other category, but
Best Practices has significantly larger solve times thanatdgories versus 7 of Metric, so
Best Practices comes first. In the first two columns of tal& 5wve see that these order-
ings differ slightly; the Metric and Interface categoriesv/é shifted two places down in the
“greater than” order. Otherwise, the orderings are the sameking back at table 5.7, we
see that Metric solve times are significantly longer thanuRedncies. Compared to Re-
source, thep-value was @8 (only slightly above significance leveld®), so putting Metric
above those two in the ordering seems fair, agreeing witliléss than” ordering. As for
Interface, since this category is significantly faster tRagular Expressions, which is in
turn significantly faster than Style Conventions, we coasldterface to be below the other
two, which follows the “greater than” ordering. Followingid reasoning, the third column
shows the ordering that we finally decided upon. At the topse& Naming Conventions
and Best Practices, while Object Oriented Design and Cadet8te have the lowest solve
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5.3. Warnings in Committed Code

Category Significantly smaller tharn) Significantly larger tharn Total
Best Practices 1 11 12
Code Structure 14 1 15
Documentation Conventions 13 1 14
Error Handling 4 7 11
Interface 7 3 10
Logic 7 4 11
Metric 1 7 8
Naming Conventions 0 14 14
Object Oriented Design 15 0 15
Redundancies 3 8 11
Regular Expressions 10 4 14
Resource 2 8 10
Style Conventions 8 4 12

Table 5.11: Significant difference counts per category

time. A possible explanation for this is the relation theategories have with maintainabil-
ity; the slow categories have little impact on program otiriess or maintainability, while

the fast ones do.

Order by “less than” count

Order by “greater than” coun

Final decided order

Naming Conventions
Best Practices

Metric

Resource
Redundancies

Error Handling

Logic

Interface

Style Conventions
Regular Expressions
Documentation Convention
Code Structure

Object Oriented Design

Naming Conventions
Best Practices
Resource
Redundancies

Metric

Error Handling

Logic

Style Conventions
Regular Expressions
Interface
sDocumentation Conventions
Code Structure

Object Oriented Design

Naming Conventions
Best Practices

Metric

Resource
Redundancies

Error Handling

Logic

Style Conventions
Regular Expressions
Interface
Documentation Convention
Code Structure

Object Oriented Design

Table 5.12: Category ordering for solve times, largest talkst

Next, we will look at the solve times of the two top and two battcategories, to find
out which projects they originated from, and which commitsaduced and solved the

51




5. RESULTS

warnings. This way we seek to explain why categories havk biglow solve times by
anecdotal evidence.

At the bottom, we find Object Oriented design. In total, werfdd2 solve times for this
category, 10 of which came froomeckst yl e/ checkst yl e. The warnings were introduced
with a commit that removed a suppressigrand solved just 2 commits latér Upon closer
inspection, checkstyle turns out to be a project that aimkeép warnings out at all times,
so the low solve time for the category may be attributed toféloe that most of the solve
times came from checkstyle, rather than the nature of tregosy itself.

Warnings categorized as Code Structure are a close secarsl.tihé solve times origi-
nate fromr enbo10/ headphones, where a single wildcard import caused 29 warnings (one
for each unused module imported). Soon after, a pull requastsubmitted that solved
a couple of Pylint warningS. Because Pylint generates so many warnings for a single
violation, the real amount of solve times is actually lowleart the data says. With this
instance counted as one, only 7 data points would remains Whakens the evidence of
Code Structure’s place in the ranking.

The warnings of the Naming Conventions category—and mopmitantly, their high
solve times—mostly originate fromyi nstal | er/ pyi nstal | er. We analyzed the warn-
ing counts per commit and found one commit that removed ar@@90 warnings. The
accompanying pull requéstis a major overhaul of the Pylint configuration file, explami
the drop in warning count. Many of these warnings had beeseptdor a long time, result-
ing in a long solve time, and because of the large numberjrgatise average of Naming
Conventions to be the highest. The solve times of other gi®fer this category are much
lower, however. Therefore we cannot assume Naming Comrentd be solved slowly in
general.

We also look at Best Practices, which turns out to have a tojredime for multiple
projects. cyt hon/ cyt hon andpyi nstal | er/ pyi nstal | er contributed to the high solve
times with averages of 270 and 197 commits respective\QimitG ok/ GpenG ok yielded
most solve times for this category (62), so we decided to ltathis project. It turns out
that most warnings were about class fields not coming befathads, which must have
been low priority for maintainers. However, eventuallyage amount was fixed in a single
commit’. Since such cleaup commits do not happen very often, wasrgogunsolved for
a while.

For reliable results, solve times should come from seveffdrdnt projects for each
category, otherwise individual projects will have too mirdftuence on the statistics. Table
shows the number of projects that contributed to eaglyogy, along with the share of
the project that contributes most to the category’s solmesi. The share is the percentage of
solve times that originates from a single project for a aatggor example, although Metric
has solve times of 12 different projects, half these timesecfrom a single project. Ideally,
this fraction is as close as possible;l]t(wheren is the number of projects for the category.

B3htitps://github.com/checkstyle/checkstyle/commit#F876b036a185383a1c7f28dc8cc02869e5e3
Lhttps://github.com/checkstyle/checkstyle/commitBdfcf2f222c4bac344f21¢5105f7430b61
L5https://github.com/rembo10/headphones/pull/2020
16https://github.com/pyinstaller/pyinstaller/pull/1Biles
1"https://github.com/OpenGrok/OpenGrok/commit/eb1 TE881f998009e97470a65fba8a499a0d9
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5.3. Warnings in Committed Code

Given these results, we believe more data would be needexuallg support the claim of

a significant ordering of categories; especially the shafd¢se most contributing projects
are too high. This results in solve times of several categamostly being dominated by a
single project.

Category Number of projects Biggest sharg
Best Practices 11 31%
Code Structure 3 83%
Concurrency 1 100%
Documentation Conventionfs 4 74%
Error Handling 4 93%
Interface 6 56%
Logic 9 49%
Metric 12 50%
Migration 1 100%
Naming Conventions 4 81%
Object Oriented Design 2 83%
Redundancies 19 40%
Regular Expressions 1 100%
Resource 8 41%
Simplifications 4 53%
Style Conventions 22 62%
Tool Specific 3 82%

Table 5.13: For each category, the number of projects willestimes for that category,
and the highest share of a single project

The skewed solve time data prevents us from making confidateinsents about differ-
ences between categories in general. However, we can ldbk ablve times per category
in the context of individual projects. Our hypothesis istttigere is no large difference
between solve times per category within a single projedtsblve times between projects
do differ; i.e. the project has a bigger influence on the ratehach a warning is solved
than the category which the warning belongs to. Tables 5nt45al% shows the median
solve times and sample sizes for each category for a seledberof projects, as well as
average and median for all solve times of the project in thtoborows. We do not show
all projects because the full table is very sparse; for 1¢epte we do not have any solve
times at all, and 15 projects yielded solve times for onlyt@garies or less. The remaining
13 are displayed.
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FreeCodeCamp OpenGrok| ultisnips | bower | glide | cython less.js | Chart.js
Best Practices 67.5(62) | 3(21) | 30.5(12) 336 (18)| 1(3)
Code Structure 3 3(5)
Concurrency 132 (4)
Documentation Convention 3 (109) 3(22)| 372(1)
Error Handling 20 (446) | 145 (2)
Interface 3 (106) 1(7)
Logic 107 (6) 12 (4) 29 (191) 1(141) | 1(12) | 10(10)
Metric 33.5(4) 28 (5) 6 (63) | 16 (126) 1(99) 63.5 (2)
Migration
Naming Conventions 3(59) 1(3)
Object Oriented Design 1(2)
Redundancies 3(13) 22 (46) 3(25) 1(3) | 82(23) 2(1) 53 (1)
Regular Expressions
Resource 38 (48) 8 (1) 241 (17)
Simplifications 43 (3) 4 (4)
Style Conventions 91 (1) 41 (7) 6(63) | 22(448)| 1(5) | 131(6) | 81(3) 33 (5)
Tool Specific 20 (37) 1(5)
Total Average 44.33 47.09 22.51 23.64 | 22.38| 41.58 113.69 | 22.78
Total Median 12 22 5 22 1 1 111 10

Table 5.14: Median solve times with sample sizes in braghetscategory per project, and overall average and mediae sales per

project, part 1
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5.4. Threats to Validity

pyinstaller | headphones grape | paperclip| jeromq
Best Practices 169 (44) 50 (29) 50 (6) 33 (2)
Code Structure 3(29)
Concurrency
Documentation Conventions 122 (16)
Error Handling 5() 47 (32)
Interface 170 (68) 1(3) 28 (1)
Logic 144 (21) 2.5(2)
Metric 181 (325) 1(2) 48 (11)
Migration 56 (4)
Naming Conventions 177 (272)
Object Oriented Design
Redundancies 162 (131) 3(23) 28 (3) 28 (4) 13 (1)
Regular Expressions 7 (747)
Resource 70 (2) 17 (23)
Simplifications 149 (9)
Style Conventions 321 (13) 4 (25) 8 (3) 56 (19) | 23 (24)
Tool Specific 6 (3)
Total Average 190.27 14.09 60.75 43.24 7.8
Total Median 177 3 44 55.5 7

Table 5.15: Median solve times with sample sizes in bragketsategory per project, and
overall average and median solve times per project, part 2

For bower, less.js, pyinstaller, paperclip and jeromga¥erage and median values are
quite close to each other, but only paperclip has categdme gones that are somewhat
close to each other. To a lesser extent, this also holds fos@jler, since its outliers (Error
Handling, Resource, Tool Specific) are obtained from snaatpgles. We see no strong
evidence that projects have a consistent solve time acetegaries. In many projects we
see large differences between overall average and medie@GBdeCamp, ultisnips, glide,
cython, headphones), hence no real conclusions can be th@wrthese tables either.

5.4 Threats to Validity

In this section we discuss the potential threats to validitgur research.

5.4.1 Internal Validity

We compared several properties between the groups of sdfet use ASATs and those
that do not. However, we cannot really say which was the candevhich was the effect.
For example, projects using ASATs have more stars, but thes ciot mean that using
ASATSs gets a project more stars, or that a high star counsleggroject to use ASATS.
Furthermore, all tests were performed on the same set @qisojThis reduces the strength
of the conclusions drawn from these tests.
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5.4.2 External Validity

With millions of repositories hosted on GitHub, a sampleesif under 10,000 may seem
low. However, these are all the popular and active repdasgonVe believe that compro-
mising in this regard may result in a larger dataset, but asowed out, ASAT usage is
higher among repositories with more stars, and we still éngewith less than 30% ASAT
usage overall. By decreasing the required amount of stasspércentage would go even
further down. Including less active repositories would mea end up getting abandoned
projects as well, which may not be representative for opemcgoprojects as a whole. A
viable solution may be to include more ASATSs, specificallysa for languages that we did
not cover in this study.

100 pull requests per repository may be enough for propelitie recent density, but
the merged count and unique contributors would probablyl meere data to be accurate.
However, we believe that by averaging these values, thetaffeedge cases is reduced.

Nearly twelve million warnings in the database may seemdikémpressive number.
However, the distribution of warnings over projects is hiyaskewed towards a couple of
Python projects. This mainly impacts results such as wgroounts per category, where
these projects simply have a much bigger impact. To couhigrwe looked at the results
for each language separately.

5.4.3 Construct Validity

Our tool has some shortcomings regarding the measuremesativaf times. To elaborate
on this, first recall the way we compute solve times, depiatefijure[4.6. Although this
approach seems rather straightforward, it does depend elinale definition of equality
between two warnings (when deciding which counters to memt). As it turns out, this is
a nontrivial task. For each warning found by an ASAT, we s&vdocation (filename, line
and column), the human-readable message that the ASATdevhe rule ID, and the line
of code where the warning occurred. Intuitively, one migitjuire all of these properties to
be equal for two warnings to be equal. However, an unrelatigitian in a warning’s file
above the line of the warning will cause the line number tongieg and this would wrongly
be picked up as the warning being fixed, with another warneagrg been introduced in
the same commit. Should said warning really be resolved atea point, we would end
up with two incorrect solve times which add up to the real gallihe same thing happens
when changing indentation size, but then with the column bem This would result in
invalid data.

To deal with the issue of the position of the warning, we oriigak for the filename,
rule ID, and the actual line of code. In most cases, this wdboki there are still some
scenarios where different warnings could be registeredipkodites:

1. A single line of code resulting in multiple warnings with the same rule ID. This
can happen when there are two instances of a warning withitirth, in which the
column number would be the tie breaker. However, we alsmdé&sed an edge case
for this in Pylint: when a wildcard import is used, a warnirsgréeported for each
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module that is imported as a result, but not used. In this, ¢tasavarning message is
the tie breaker as it states the name of the unused module.

2. Duplicate lines of code.Some lines of code are rather generic, for example the first
line of a catch block} catch (Exception e) {.
PMD has a ruleAvoi dCat chi ngGener i cExcepti on, that checks for catch blocks
using the basé&xception class. However, such lines can occur more than once in
a file. Furthermore, we encountered a case with duplicatblodk lines, describing
the same parameter in different methods, which caused angdior being too long.
Finally, lines containing just whitespace sometimes caws&arning, for example
when the empty line was trailing whitespace of a stringditeAs a result, the code
line ended up being an empty string, because code linesiamméd before being
saved. In cases of duplicate lines, the line number couldsbd as tie breaker.

We have taken a couple of measures to counter these issuetheHaost one, we add
the warning message to the comparison whenever the ruteuged- wi | dcar d-i nport.
Two warnings on the same line will still cause incorrect drade warnings, however. For
the second case, we add the warning line number to the casopasihenever the code line
is an empty string, or the warning rule Agoi dCat chi ngGeneri cException. However,
this will cause warnings to be incorrectly marked as solveémtheir line number changes.
So far, we did not find a robust method of dealing with this.

To illustrate the consequences of this issue, we look at sost@nces of warning solv-
ing in zer ony/ j er ong, which has defined a number of blank line rules as regularesxpr
sions. For example, there should be no blank line before singdorace, represented as
\n\n}, and no consecutive blank lines, represented ras\ n. However, it seems like
no warnings were actually fixed until the commit that solvedrgthing (see figure 5.8d).
Instead, most of these fixes were registered because codeddas, changing the line
numbers of all violations below the insertion, so they wemved rather than solved. Since
many files had warnings in them, almost every commit causer s those warnings to be
“fixed”. Therefore, we cannot consider these solve timestwiable, and by extension, the
entire Regular Expressions category’s solve times, beddgse were no other instances of
this category.

These are probably just a few of the potential issues. Becalthat, solve time data
may not be accurate. Under the assumption that this phermmmaturs equally often in
different warning categories, the order of categoriesndigg solve times should still be
valid though. To mitigate this issue further, we leave oltvesdimes larger than the total
amount of commits for a repository, because these are ghb@rtesult of different warnings
being recognised as the same, and as a result, the count@riglywincremented multiple
times per commit.
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Chapter 6

Conclusion

In this chapter, we review the research questions and antbesr based on the results that
we found in chaptdr]5. After that, we give an overview of thelgts contributions. Finally,
we provide some ideas for future work based on this study.

6.1 Answers to Research Questions

RQ1: Which factors influence ASAT prevalence?

To answer this question, we look at the results as describegdtion 5.1. Here we
found that projects that have JavaScript as main languagetha highest ASAT adoption
rate by a wide margin(RQ1.1), and JavaScript-related ASA%$lint, ESLint, JSCS) are
most prevalent(RQ1.2). Ruby comes second, with Java arttbRyagging relatively far
behind. When using a build tool, JavaScript projects havdigored an ASAT as build task
in 62% of the cases, compared to an overall use rate of 48%.Wds not observed in other
languages, which are less likely to use ASATSs as build tdsks they are to use ASATs in
general (RQ1.3).

When using Travis, projects seem more likely to use ASATs e{RQ1.4). Repos-
itories with ASATs are younger on average, but this may welldbe to the bias toward
JavaScript projects(RQ1.5). Finally, projects with hightar counts seem more likely to
use ASATs(RQ1.6).

RQ2: How does community activity affect ASAT usage?

When looking at the pull request data, we see that projedts ABATs have a higher
number of total pull requests on average, and also receieed pull requests over time(RQ2.1).
We did not find a significant relation between ASAT usage arnguecontributor count(RQ2.2),
but the contributor count did significantly affect both thrad to close a pull request and the
likelihood for a pull request to be accepted, with a positinel negative correlation respec-
tively. ASAT usage does not increase the chance for a pullestto be accepted(RQ2.3),
but it does reduce time to close, with close times reduced7By @n average and lowering
the variance of close time by 67%(RQ2.4).

RQ3: What is the prevalence of rule violations reported by ASATs?
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We attempted to answer this question by running ASATs on abeurof projects. For
several projects, we looked at the amount of warnings tloele @enerated over up to 500
versions. For most projects, this amount decreased overdimoughly stayed at the same
level. In some cases, the warning count increased. No waivénends were discovered,
but we found that the reason for a drop in warnings is oftenamgh in configuration or
moving/deleting part of the code base, rather than fixindgatimns directly(RQ3.1). In
general, projects with more lines of code had fewer warnpegdine of code than smaller
projects(RQ3.2). The most warnings overall were found ithBry projects.

When looking at warning categories, we found that the copetscategory signifi-
cantly differ between languages, but Style Conventionsgghkly represented across all lan-
guages, and many of the warnings that caused other categorieave high counts could
also be considered Style Conventions, but fitted anothegoag description slightly bet-
ter(RQ3.3). We also found a distinct ordering of categoniéh respect to the time it takes
to solve warnings on average by means of statistic testjimgs of the categories Nam-
ing Conventions and Best Practices, which do not play a Higiromaintainability, took
the longest time to solve, while Code Structure and Obje@r@ed Design were solved
the fastest, possibly because they do have an impact onaimaibility(RQ3.4). However,
data on solve times is heavily influenced by individual pctge Therefore, a bigger dataset
would be desirable, or one that is more evenly distributegt different projects.

6.2 Contributions

By performing this study, we have made the following conttibns to the research on
ASATs in general:

e Alook at characteristics associated with ASAT usageBy comparing several prop-
erties groups of projects with and without ASATSs, we havenfbsome statistically
significant differences.

e A link between ASAT and CI usage. We found that ASATs and ClI, specifically
Travis, often go together in open source projects. We alsoddhat Cl usage can
greatly reduce the amount of warnings in committed code.

e The effects of ASATs on community activity.We found that ASAT usage is associ-
ated with several favorable changes in community actitdywever, we did not find
which of these is the cause and which the effect.

e The prevalence and solve rate of warning categoriedie looked at both the warn-
ing counts and solve times per category, and establisheddaning backed by sta-
tistical tests.

6.3 Future work

We have encountered three ways for a warning to be removed:
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1. The corresponding line of code is changed to comply wighctirresponding rule

2. The configuration for the corresponding rule is changetheoconfiguration is changed
to exclude the rule altogether

3. The corresponding code is moved or deleted

Because we want to learn about solve rates, we are mosthesteel in the first way. In ad-
dition, it would also be interesting to find out how often tleeend way occurs. This could
be linked to previous research by Beller et al about chanmg@SAT configurations[8]. Ide-
ally, we should be able to detect the third case happeningaandccordingly: for moved
code, find the new location, and keep counting commits froenethand for deleted code,
mark the corresponding warning as a separate case, ratdrefdblved afterx commits”,
which happens now. However, our current tool cannot disisigbetween these cases.

As mentioned, we had some issues properly detecting gemaritings (such as empty
lines) that were not resolved, in a commit where the file ofvilaening was modified. In
such cases, the warning was incorrectly marked as solvec areiv counter was started
for the same warning. This may be approached using CloneoRdggéscriptors[14], a
technique to find code duplication, because the issue drisesn-unique lines of code.
Using CRD, one could keep track of all “cloned” regions, fihe bnes where warnings
occurred, and mark each warning with a unique identifier dasethe CRD findings.

Individual projects often dominated the solve time datestdad of merging all solve
times together, a way to normalize results per project wbeltb average the solve time of
each category per project. This way, each project only dmrtes up to a single solve time
per category, reducing the bias introduced by projectspdbrm lots of violation solving.
A downside to this is the significantly reduced size of theiltesy dataset. To counter this,
ASATs would need to be run on a much larger number of projects.
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