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Abstract

In temperature coefficient measurements of PV modules, a low level of agreement in
results is observed between different laboratories, with deviations up to ±10% for Pmax
temperature coefficients. Such deviations are considered as an uncertainty component in
PV energy yield assessments, and are seen as financial risk by investors and purchasers. A
±10% error in the Pmax temperature coefficient can result in more than 1% error in esti-
mated energy yield (and thus financial return on investment), which is significant especially
for utility scale PV. The goal of this work is to reduce the uncertainty of the Pmax temper-
ature coefficients from ±10% down to ±5%, which will reduce financial risk and therefore
support the roll-out of utility scale PV.

This thesis will focus on identification and reduction of measurement uncertainty of the
temperature coefficients. A measurement setup for PV module temperature coefficients, in-
tegrating a solar simulator and a temperature chamber, was developed by Eternalsun Spire.
This setup will be evaluated using a Monte Carlo based uncertainty analysis. Additionally,
uncertainty drivers - relevant for current, typical industry practice - will be demonstrated,
contributing to further understanding of observed deviations between temperature coeffi-
cient measurement results from different laboratories.

The k=2 expanded measurement uncertainty for the relative temperature coefficient for
a PV module measured in the Temperature Coefficient Lab Flasher is approximated at
4.05%. Three major uncertainty components are: 1. Temperature induced spectral mis-
match (2.46%) 2. STC uncertainty of the solar simulator (1.09%); 3. Temperature correc-
tion of the monitor cell (0.41%). Additionally, it is demonstrated that: 1. silicon heterojunc-
tion PV modules can exhibit non-linear temperature behaviour and therefore coefficients
that are dependent on the range of measurement; 2. significant measurement errors can
occur when the cell temperature and backsheet temperature are not in thermal equilibrium,
which typically applies for the currently widely applied ”hot potato” method for determi-
nation of temperature coefficients; 3. the simulator spectrum can significantly affect the
temperature coefficient measurement even for solar simulators with A+ rating for spectral
match.

Based on the uncertainty analysis it is shown that the temperature coefficient measurement
setup can be used to achieve a measurement uncertainty of PV module temperature coeffi-
cients below 5%. Additionally, the demonstrated uncertainty drivers encountered in typical
industry practice can support awareness and thus mitigation of uncertainty drivers previ-
ously not aware of. For this purpose, recommendations from this work have been included
in an international IEC standard for measurement of temperature coefficients.

ii



List of Figures

1 Temperature difference from 20th-century average compared to atmospheric carbon
dioxide concentration. Data from NOAA NCEI, IAC and NOAA ESRL. Original graph:
Dr. Howard Diamond NOAA ARL, adapted by NOAA Climate.gov . . . . . . . . . . . 1

2 PV modules in the field; Illustration by: Gemeente Houten, accessed 30/10/2019, www.zonneveldenhouten.nl/
zonnevelden/voorbeelden-zonnevelden/ . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Levelized cost of electricity for various energy sources in Germany; Illustration by
Fraunhofer ISE, Levelized Cost of Electricity - Renewable Energy Technologies, March
2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Basic working principles from a solar cell. 1: Generation of an electron hole pair by
absorption of a photon. 2: Recombination of an electron-hole pair. 3: Separation of
an electron-hole pair through a ”semipermeable membrane”, created by an electric field
attracting or repelling negatively charged electrons. 4: Electrons flowing through an
external load. 5: Electrons recombining with the holes at the positive terminal. Fig-
ure: A. Smets, K. Jager, O. Isabella, R. v. Swaaij and M. Zeman, Solar energy: The
physics and Engineering of Photovoltaic conversion technologies and systems. Delft:
UIT Cambridge, England, 1st ed., 2016 [1] . . . . . . . . . . . . . . . . . . . . . . . . 6

5 One-diode equivalent circuit for a photovoltaic cell. Figure: M. Derick, C. Rani, M. Ra-
jesh, M. E. Farrag, Y. Wang and K. Busawon, “An improved optimization technique for
estimation of solar photovoltaic parameters,”Solar Energy, vol. 157, no. November,pp.
116–124, 2017 [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Two-diode equivalent circuit for a photovoltaic cell. Figure: M. Derick, C. Rani, M. Ra-
jesh, M. E. Farrag, Y. Wang and K. Busawon, “An improved optimization technique for
estimation of solar photovoltaic parameters,”Solar Energy, vol. 157, no. November,pp.
116–124, 2017 [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Typical IV curve of a PV cell or module, including the main parameters: Short-circuit
current (Isc), open circuit voltage (Voc), maximum power (Pmax), fill factor (FF), maxi-
mum power point voltage (Vmp) and maximum power point current (Imp) . . . . . . . . 9

8 IV curves of the same PV module with different series and parallel resistances. Changes
in series resistance mainly affect the slope near open circuit voltage, changes in parallel
resistance mainly affect the slope near short-circuit current. . . . . . . . . . . . . . . . . 9

9 Schematic overview: IV measurement and illumination. Figure adapted from: D. Dirn-
berger, Photovoltaic module measurement and characterization in the laboratory. Else-
vier Ltd., 2017 [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10 IV curves of the same PV module at different temperatures (left) and different levels of
irradiance (right). The temperature affects mainly module voltage whereas the irradiance
affects mainly module current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

11 Outdoor (left) and indoor (right) characterization of PV modules. The outdoor setup
shows the two-axis tracker installed at Sandia National Laboratories. Figure: Tara Ca-
macho Lopez, 2012, Two-Axis Tracking, accessed 01/16/2020, ”https://pvpmc.sandia.gov/modeling-
steps/1-weather-design-inputs/array-orientation/two-axis-tracking/”. The indoor setup
is a climate chamber integrated continuous solar simulator developed by Eternalsun Spire. 11

12 Test Matrix from IEC61853-1. This matrix of measurement results is used to create
climate specific energy ratings, which offer a more intuitive performance indicator com-
pared the the currently used Pmax at STC. Figure: IEC61853-1 Irradiance and temper-
ature performance measurements and power rating, 2011 [4] . . . . . . . . . . . . . . 12

13 Three different methods used to heat a PV module, all resulting in different temperature
profiles. Figure: M. Joshi and S. Rajeev in “Reliable module temperature measurement:
considerations for indoor performance testing, 2014” . . . . . . . . . . . . . . . . . . . 13

iii



14 Temperature Controlled Lab Flasher (TCLF) integrating a solar simulator and a temper-
ature chamber, developed by Eternalsun Spire to perform current-voltage measurements
at non-standard testing conditions. The temperature chamber can move up, allowing a
module to be placed and down to form an insulated environment for heating and cooling. 17

15 Simulator irradiance uniformity for IEC60904-9 classification (left) Note: high resolu-
tion non-uniformity measurement removed for public manuscript . . . . . . . . . . . . . 18

16 Measured Spectrum of the solar simulator next to the AM1.5G reference spectrum (re-
moved for public manuscript) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

17 Measured fraction of irradiance (indicated in red) in wavelength bins as specified per
IEC60904-9 Ed.2 (left) and proposed IEC60904-9 Ed.3 (right). Note that the spectrum
according to IEC60904-9 Ed.2 is defined from 400nm to 1100nm, whereas IEC60904-9
Ed.3 extends the first and the last bin to 300nm and 1200nm and has a different distribu-
tion of bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

18 Long term instability ±0.5% of the light pulse measured over 200ms. By addition of
extra capacitors (providing energy to the lamps), the length of the pulse can be further
extended up to 270ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

19 A 60-cell c-Si PV module placed in the (opened) temperature coefficient lab flasher. 9
T-type thermocouples are attached to the rear surface of the module in 3x3 formation.
The four circles indicate the positions of temperature sensors required per IEC60891. . . 22

20 Flowchart of the developed test procedure assuming a calibrated setup and connected
device under test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

21 Standard Al-BSF Industrial Solar Cell. Image adapted from: Krügener, J; Harder, N,
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1 Introduction

1.1 The energy problem

Global energy consumption has been increasing approximately 2 percent a year for the last 30 years as
a result of economic growth and increasing population [9]. Most of the future energy scenarios predict
this growth to continue for the next few decades [10][11]. This continuous increase in consumption
creates new challenges with respect to energy security and environmental issues.

Currently the majority of energy production relies on non-renewable fossil fuel sources, which are being
consumed in a pace order of magnitudes higher than they are growing. While there are still increases in
efficiency and cost-effectivity of extraction and conversion of these resources, it is expected the world
will run out of (affordable) fossil based resources [12] within this or next century. This can have enor-
mous impact on daily life, as energy is one of the fundamentals for economic activity in modern soci-
eties. In general, the higher the living standard in a country, the more energy is being used per capita.
As energy and economy are interdependent, it is not surprising even brief moments of energy shortage
can have large effects on local economies [13]. It is of high importance for society to adapt and ensure
high levels of energy security considering the depletion of fossil fuel sources.

The depletion of these sources is not the only problem foreseeable in the near future as there is also a
large environmental effect to consider. Many of these fossil fuels are based on hydrocarbons formed in
the crust of the earth over the last hundreds of millions of years as a result of pressure and heat. Burn-
ing these fuels breaks up these compounds, releasing stored energy. A downside of this process is the
formation of so called greenhouse gases, of which the most commonly known is carbon dioxide, CO2.
A large part of these greenhouse gases are stored in the atmosphere, increasing its thermally insulating
properties. While the CO2 concentration present in the atmosphere undergoes natural fluctuations, an
excessively high increase in CO2 concentration is observed in the last few hundred years. Since this
coincidences with the start of the industrial era, also the start of larger scale fossil fuel consumption,
this increase is likely the result of human activities. Together with the increased CO2 concentration,
increasing temperatures have also been observed as shown in Figure 1. Effects of this increased thermal
insulation by the atmosphere have become more evident over the last decades [14]. Average tempera-
tures have been slowly rising and for 2050 an average temperature increase over 2 degrees compared to
pre-industrial levels is expected. This is however only one effect of the changing climate [15]. Extreme
temperatures are likely to occur both more severe and more often, sea levels will rise, droughts will
occur more often and in larger regions and many more effects on the climate are expected.

Figure 1: Temperature difference from 20th-century average compared to atmospheric carbon dioxide concentration. Data
from NOAA NCEI, IAC and NOAA ESRL. Original graph: Dr. Howard Diamond NOAA ARL, adapted by NOAA Cli-
mate.gov
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These effects will not be limited to climate and environment, but can have major impacts on social
well-being in many areas. Rising sea levels reduce the availability of fresh water, increasing already
existing conflicts over the ownership of water. Land areas will become unsuitable to grow food putting
pressure on local food security and prices, large numbers of people will be forced to move and find a
more suitable place to live. These are a few of the foreseen consequences, however one can imagine
serious social tensions as a result, which will likely only be enlarged when the availability of energy
(as a result of fossil fuel depletion) becomes problematic. Aforementioned consequences will have the
most impact on those that are the least able to adapt [16], which is generally the less privileged part of
the worlds’ society. So an indirect consequence could be an even further increase in the already growing
wealth gap in the world.

It should be clear there is a need for affordable, reliable, renewable, sustainable, clean energy sources.
One of the energy sources that is expected to play a major part in the future energy mix is solar energy
[17].

1.2 Overcoming the energy problem: Solar Energy

The sun is by far the largest source of energy available on earth, providing sufficient energy to cover
more than 1000 times the current global energy consumption at any moment. Therefore, much effort is
put in converting this solar energy into energy usable for general purposes. One of the most commonly
used methods to perform this conversion is by the use of photovoltaic technology. This technology is
mostly encountered in the form of a photovoltaic module and exploits the photovoltaic effect: a process
where radiation is converted into electricity.

Figure 2: PV modules in the field; Illustration by: Gemeente Houten, accessed 30/10/2019, www.zonneveldenhouten.nl/
zonnevelden/voorbeelden-zonnevelden/

While photovoltaic devices have already been under development and applied in space industry for many
years, energy produced by photovoltaic devices can be offered to the market at competitive prices only
since the last few years. The amount of installed PV modules is increasing at an almost exponential level
[18], while the system price keeps decreasing as a result of advances in technology and upscaling of the
industry.
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Photovoltaic devices have a much lower carbon footprint compared to fossil fuels. As the PV device does
not require burning fossil fuels to produce energy, the full carbon footprint is related to the production
and recycling of the module. As a result, the carbon footprint of PV electricity is much lower compared
to electricity from fossil fuel sources and mainly depends on the fuels used in the supply chain itself
[19]. At the end of life of a PV module, which is typically 20 to 30 years, a large part of the materials
can already be recycled; however still a lot of effort is needed to improve the efficiency of the recycling
processes [20]. From a sustainability point of view, one could even argue to optimize the recyclability
of the module and cells rather than optimizing the energy yield.

Photovoltaics can also introduce opportunities for developing countries. In a large part of these countries,
the climate offers great potential for photovoltaics. Compared to conventional, fossil based technologies,
renewable energies and especially PV modules create significantly more jobs per unit of created energy
[21]. As photovoltaics can be implemented at both small and large scale and at almost every location,
there is a lot of flexibility in where to create these jobs. This independence on location offers more
advantages. Unlike the developed countries, a properly functioning electricity grid is often not self-
evident. Transport losses can be significant and often the grid is sensitive to failures. This independence
also solves issues where utility systems are centrally owned by less stable governments, where political
instability can introduce large fluctuations in electricity price.

Despite the many advantages of photovoltaic energy, there are also some important challenges that need
to be overcome before PV can replace fossil based energy generation. Probably the most important
is the storage of energy. PV energy generation is intermittent, it follows a daily and seasonal pattern.
There is no sun, thus no energy, during the evening and night and there is generally less sun in winter
compared to the summer. Also, periods can occur where the sky is clouded for weeks and less energy is
generated than usual or vice versa. To overcome these issues, both short and long term storage of energy
are required. The development of large scale, efficient and sustainable ways to store energy will likely
be one of the major challenges for the coming decades. Energy storage is not only a requirement for PV,
but is one of the main requirements for a future based on renewable energies.

Photovoltaics will very likely play an important role in a future based on renewable energy generation
and can be a key ingredient to overcome the energy problem. While it is financially interesting for the
western world, there are additional advantages for emerging economies. With the low carbon footprint
and competitive price, energy storage is currently the main challenge for large scale implementation of
photovoltaics.

1.3 Bankability of Solar Energy projects: Long Term Energy Yield Predictions

Section 1.2 shows photovoltaic (PV) energy can play a significant role in overcoming the energy problem
and cost competitiveness is one of the main contributors to this. As PV projects require a large upfront
investment and will then produce power for the remaining lifetime at relatively small costs, especially
for large scale PV projects many components are taken into account to evaluate bankability of a project.
One of the main parameters used to assess investments in projects relating energy production is the
levelized cost of electricity (LCOE). The LCOE represents the cost to produce one kWh of electricity
by a power production facility [1]. The LCOE can be compared with local energy sales prices to see
whether electricity can be sold at a competitive level, thus can be used to evaluate return on investment
(ROI) of a project. Such a comparison for PV systems in Germany is shown in Figure 3. It can be seen
that especially large rooftop and utility scale PV are already very competitive with the non-renewable
fuel sources, especially at locations with high insolation.
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Figure 3: Levelized cost of electricity for various energy sources in Germany; Illustration by Fraunhofer ISE, Levelized Cost
of Electricity - Renewable Energy Technologies, March 2018

A simplified equation for the LCOE is given in equation 1. In this equation It represents the investments,
Mt the operational and maintenance expenditures, Ft the fuel expenditures (these are 0 for photovoltaics)
and Et the electricity yield, all in the year t. The systems lifetime is represented by n and r represents
the discount rate (the weighted average cost of capital). The discount rate can be affected by various
components such as time value of money and risk level of investments, which depends (among others)
on the location and financing of the project [22].

LCOE =

∑n
t=1

It+Mt+Ft
(1+r)t∑n

t=1
Et

(1+r)t

(1)

Some components of the LCOE are calculated based on estimates of future values. The expected elec-
tricity yield is generally estimated by the use of long term energy yield predictions. These energy yield
predictions usually integrate various models, simulating local climate, the solar system configuration,
technical performance of the components and much more. As the inputs and thus outcomes of these
simulations generally are based on statistics and assumptions, it is important to consider the underlying
uncertainty of the calculated outcome when evaluating the LCOE.

Differences between estimated energy yield and actual measured yields of utility scale photovoltaics are
generally up to ± 10% [23]. These differences directly propagate into the LCOE, which is significant
in the very price competitive energy market. This uncertainty in energy yield estimation however also
can be seen as a risk by the investors and could affect interest rates and so have additional effects on the
LCOE [24], further reducing financial competitiveness of a PV system.

Energy yield predictions can be optimized by improving the input variables for the model such as local
irradiance data, technical specifications of the various components and by improved understanding of
system degradation and external factors. This thesis aims to improve accuracy of these energy yield
predictions by reducing the measurement uncertainty of one of the relevant input parameters for energy
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yield forecasting: the temperature coefficient of the PV module.

1.4 Thesis structure: Problem statement, objectives and outline

Multiple round-robin studies have shown large lab-to-lab variations, thus uncertainties, when measuring
temperature coefficients on the same set of PV modules [25] [8]. Reducing these uncertainties will
improve energy yield predictions of PV systems and so reduce investment risk. Reducing investment
risks leads to lower financing costs for PV system, thus supports faster roll-out of utility scale PV. A test
setup and procedure was developed by Eternalsun Spire to measure these temperature coefficients more
accurately, which is in need for validation and optimization.

This thesis aims to contribute to the reduction of measurement uncertainty of temperature coefficients
by:

1. Identification of uncertainty drivers for temperature coefficients

2. Evaluation of the developed setup

• Quantification of known uncertainty drivers present in the developed test setup

• Identification and quantification of new uncertainty drivers in the developed test setup

• Validation through uncertainty analysis and comparisons with alternative methods

3. Recommendations to further reduce measurement uncertainties of temperature coefficients in PV
industry

To realize these objectives, a literature study is performed to get familiar with known uncertainty drivers
for temperature coefficient measurements. Then the setup is evaluated, based on experimental results and
effects of known and possibly new uncertainty drivers are studied. Based on these results, an uncertainty
analysis will be performed to estimate if the developed setup can be used as a tool to reduce measurement
uncertainty. Finally some theoretical and practical cases of uncertainty will be elaborated.
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2 Performance of Photovoltaic Modules

2.1 Basic working principles of photovoltaic cells and modules

A solar cell is designed to convert solar irradiation into electrical energy. It does so by exploiting the
so-called “photovoltaic effect”. This effect can be described as the generation of an electric potential at
the junction of two materials as a result of electromagnetic radiation (such as light). Three steps can be
distinguished: generation, separation and collection.

Figure 4: Basic working principles from a solar cell. 1: Generation of an electron hole pair by absorption of a photon. 2:
Recombination of an electron-hole pair. 3: Separation of an electron-hole pair through a ”semipermeable membrane”, created
by an electric field attracting or repelling negatively charged electrons. 4: Electrons flowing through an external load. 5:
Electrons recombining with the holes at the positive terminal. Figure: A. Smets, K. Jager, O. Isabella, R. v. Swaaij and
M. Zeman, Solar energy: The physics and Engineering of Photovoltaic conversion technologies and systems. Delft: UIT
Cambridge, England, 1st ed., 2016 [1]

If a photon (an energy quantum of light) with sufficient energy is incident on a semiconductor, it can be
absorbed in the material and generate an electron-hole pair (Figure 4-1). It does so by exciting electrons
from the atoms from an initial energy level, in which they occupy the so called “valence band” to a
higher energy level, the “conduction band”. The valence band is the outermost band around an atom at
which the electrons are bound to the atom, electrons in the conduction band are free to flow through the
material. To be absorbed, the photon should have more energy than the difference between the energy
level in the conduction band and the valence band.

Generally, the electron-hole pair will fall back from conduction band and recombine (Figure 4-2) with
a hole in the valence band after generation. The energy released in this process can be either radiative
(the LED working principle), or transferred into the lattice (in the form of heat). However by using a
semipermeable membrane (which allows either holes or electrons to flow out), the electron and hole can
be separated (Figure 4-3).

After travelling through the electric field, the carriers will be collected at the terminals. The presence
of excess electrons at one terminal and excess of holes (physically a deficit of electrons) at the other
terminal will create a potential difference between the two terminals. As a result, upon connection of
the terminals current will flow, which can be used to power an external circuit (Figure 4-4). After going
through the external load, the electron will recombine with a hole at the positive terminal (Figure 4-5).
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2.2 The electrical parameters of the PV module

The electrical behaviour of a solar cell is commonly described by the one- or two-diode model. The
one-diode model is shown in Figure 5. A parallel circuit consisting of a current source, a diode and a
parallel (shunt) resistor, is placed in series with a (series) resistor. This model for a single cell can be
extended towards a PV module by placing a number of these circuits in series or parallel (or just the
same circuit, with module equivalent parameters).

Figure 5: One-diode equivalent circuit for a photovoltaic cell. Figure: M. Derick, C. Rani, M. Rajesh, M. E. Farrag, Y. Wang
and K. Busawon, “An improved optimization technique for estimation of solar photovoltaic parameters,”Solar Energy, vol.
157, no. November,pp. 116–124, 2017 [2]

The mathematical form of the one-diode model is given in Equation 2. Note that in this equation current
densities are used instead of currents, to make the used parameters independent of cell size. In this
equation, JD represents the saturation current density of the diode, Jph represents the photo generated
current density, A the cell area, T the temperature, Rs the series resistance, Rp the parallel (shunt)
resistance, n the diode ideality factor and kB the Boltzmann constant.

J = JD ∗ (e
q(V −AJRs)

nkBT − 1) +
V −AJRs

Rp
− Jph (2)

The one-diode model is commonly used to describe the electrical behaviour of a solar cell, however this
model assumes the solar cell behaves as an ideal diode. A slightly more complex model, the two-diode
model is shown in Figure 6. In the two-diode model, an additional diode is added to the circuit in parallel
to include the effect of additional recombination in the p-n junction [1].
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Figure 6: Two-diode equivalent circuit for a photovoltaic cell. Figure: M. Derick, C. Rani, M. Rajesh, M. E. Farrag, Y. Wang
and K. Busawon, “An improved optimization technique for estimation of solar photovoltaic parameters,”Solar Energy, vol.
157, no. November,pp. 116–124, 2017 [2]

The mathematical expression of the two-diode model is given in Equation 3, which is very similar to the
one-diode model, with the addition of the extra saturation current density JD2 of the diode and the diode
ideality factors n1 and n2. Often it is simply assumed one of the diodes is ideal (n1 = 1) and the other
is non-ideal (n2 > 1).

J = JD1 ∗ (e
q(V −AJRs)

n1kBT − 1) + JD2 ∗ (e
q(V −AJRs)

n2kBT − 1) +
V −AJRs

Rp
− Jph (3)

Solving this equation for the typical operating range of a PV module returns the so-called JV (or IV)
curve as shown in Figure 7. This curve is key in PV cell or module characterization as it contains most
of the relevant electrical properties such as:

• Short-circuit current (Isc): the current when the potential difference between both terminals is 0V,
the maximum current the solar cell or module can deliver.

• Open circuit voltage (Voc): the voltage when no external current is flowing, the maximum voltage
the solar cell or module can deliver.

• Maximum power (Pmax): the power output at the maximum power point (where the product of
the voltage and current reaches a maximum)

• Voltage (Vmp) and Current (Imp) at maximum power point

• The Fill Factor (FF), which is the ratio of the product of Imp and Vmp to the product of Isc and
Voc.
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Figure 7: Typical IV curve of a PV cell or module, including the main parameters: Short-circuit current (Isc), open circuit
voltage (Voc), maximum power (Pmax), fill factor (FF), maximum power point voltage (Vmp) and maximum power point
current (Imp)

The shape of this curve is affected by various cell properties such as the series resistance (Rs) and
parallel resistance (Rp). The effects of series and parallel resistance are shown in Figure 8. Series
resistance is the result of poor conduction and should be as low as possible. Some ways to do this are
improving charge carrier transport through the emitter and bulk of the solar cell, or reducing the metal-
semiconductor interface resistance. Parallel resistance is the resistance against leakage currents in the
cell or the module and should be as high as possible. Leakage currents can be caused by shunts in the
junction, enabling generated charge carriers to recombine without going through the external load.

Figure 8: IV curves of the same PV module with different series and parallel resistances. Changes in series resistance mainly
affect the slope near open circuit voltage, changes in parallel resistance mainly affect the slope near short-circuit current.
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2.3 Characterization of PV modules

In practice, these IV curves are obtained by illuminating the cell or module, applying a variable load to
the terminals and measuring the generated voltage and current using a 4-wire connection. A schematic
overview is seen in Figure 9. Besides the device under test, also a reference device is measured. A
reference device is a PV cell or module which is calibrated by an accredited institute, and allows for
a directly traceable measurement of the incident irradiance. In the developed setup, which will be
discussed in Section 3, such a reference device will be used to calibrate a monitor cell. The monitor
cell is a cell integrated in the solar simulator, which is used to control the level of irradiance. While the
monitor cell then acts as a reference as well, in the rest of this work, when a reference device (cell or
module) is mentioned, this is always describing the external device, calibrated by an accredited institute.

Figure 9: Schematic overview: IV measurement and illumination. Figure adapted from: D. Dirnberger, Photovoltaic module
measurement and characterization in the laboratory. Elsevier Ltd., 2017 [3]

The measured IV curves, thus the electrical parameters, are not only affected by cell or module proper-
ties, but also by temperature, electrical connection and incident illumination. Generally speaking, higher
irradiance moves the curve up, higher temperatures move the current up and the voltage down, as visible
in Figure 10.
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Figure 10: IV curves of the same PV module at different temperatures (left) and different levels of irradiance (right). The
temperature affects mainly module voltage whereas the irradiance affects mainly module current

For direct comparability of the measurements, these external factors must be the same, or at least the
differences should be taken into consideration in evaluation of the results. To perform trustworthy and
reproducible measurements, various equipment has been developed and internationally agreed upon
norms have been developed supporting standardization of equipment, testing conditions and operating
procedures. A PV module datasheet usually provides measurement data for at least two specified condi-
tions: standard testing conditions (STC) and nominal module operating temperature (NMOT, formerly:
NOCT: nominal operating cell temperature). STC prescribes an irradiance of 1000 W/m2 according
to the AM1.5g spectrum, with a cell temperature of 25°C. NMOT conditions prescribe an irradiance of
800 W/m2 with an air temperature of 20°C and a wind velocity <1 m/s.

2.3.1 Equipment for PV module characterization

To measure the illuminated IV curve of a PV cell or module in a way consistent with industry standards,
one needs a variable load, current and volt meter, a source of illumination (with known spectrum), a
reference device to measure the irradiance and a thermal sensor.

Figure 11: Outdoor (left) and indoor (right) characterization of PV modules. The outdoor setup shows the two-axis tracker
installed at Sandia National Laboratories. Figure: Tara Camacho Lopez, 2012, Two-Axis Tracking, accessed 01/16/2020,
”https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/array-orientation/two-axis-tracking/”. The indoor setup
is a climate chamber integrated continuous solar simulator developed by Eternalsun Spire.

The illumination can be either real sunlight (outdoor) or artificial sunlight (from solar simulators), Figure
11 shows some examples of PV measurement setups. The outdoor method requires a two-axis tracker
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to ensure the reference device and the device under test (DUT) are normal to the direct solar beam. The
alternative, is to use a solar simulator to create artificial sunlight. There are roughly two types of solar
simulators: steady state (continuous) and pulse-based (flash) solar simulators.

The main advantage of the outdoor method is that there is no need for a relatively costly solar sim-
ulator. The main disadvantage is that the user is dependent on the environmental conditions, such as
temperature, cloudiness and on the time of day, making it impractical for high volume testing for man-
ufacturers. Solar simulators do not face these limitations and the latest generation of solar simulators
can provide very accurate, reproducible results with high module testing throughput, however come at a
higher costs. Pulsed-based solar simulators are mostly used to obtain instant results of PV performance
under specified irradiance and/or temperature conditions, whereas steady state simulators are used more
for research purposes such as studying effects on power stability, degradation and other effects related
to real world behaviour of PV.

Over the last years there has been increasing interest in PV measurements at non-standard conditions,
tests aimed to predict real world behaviour more accurately. This is mainly driven by a focus on LCOE
bankability for utility scale plants, including optimization of PV system design for different local cli-
mates. An example of this is the IEC61853-1 power rating, where a matrix is formed by a set of
irradiance levels and temperatures at which the module parameters are determined. Compared to the
Pmax at STC and NOCT, which are currently the main performance indicators, this matrix offers more
detailed information of PV module performance at a wide range of conditions. Furthermore, this matrix
can be used for energy yield predictions based on reference climates and is also an interesting tool to
study outdoor module behaviour [26].

Figure 12: Test Matrix from IEC61853-1. This matrix of measurement results is used to create climate specific energy rat-
ings, which offer a more intuitive performance indicator compared the the currently used Pmax at STC. Figure: IEC61853-1
Irradiance and temperature performance measurements and power rating, 2011 [4]

To perform these type of measurements, various methods are used. Irradiance levels are changed by
adjusting lamp intensities, applying filters or performing measurements while the light is fading at the
end of a flash from a pulsed solar simulator. Temperatures are controlled using ovens, heating pads,
radiative heaters, blowers, or natural heating in front of a steady state solar simulator. compared to STC
measurements, the norms for non-standard conditions are less restrictive. Differences in used method
however, can impact the accuracy and repeatability of the measurement. As a result there is (relative
to STC measurements) more variation between measurement results performed at different laboratories
using different setups and methods.

A number of different methods is in use to vary the temperature of the module, as the standards are not
too strict about this. This results in various types of equipment with differences between temperature
uniformities, temperature sensors and calibration and different temperature gradients from cell to back-
sheet. A visual representation of some of these is presented in Figure 13 as presented by M. Joshi and S.
Rajeev in “Reliable module temperature measurement: considerations for indoor performance testing,
2014” [27] assuming a pulse based solar simulator. In case of steady state illumination, the temperature
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gradients would look different, because of frontside and internal heating.

Figure 13: Three different methods used to heat a PV module, all resulting in different temperature profiles. Figure: M. Joshi
and S. Rajeev in “Reliable module temperature measurement: considerations for indoor performance testing, 2014”

In the ”Oven” procedure, a module is heated on all sides and kept at constant temperature for a sufficient
amount of time ensuring the inside and outside to reach equilibrium. The oven has a window, which
allows a solar simulator to illuminate the modules and obtain IV curves. Assuming an ideal oven, that
can regulate module temperature fully uniformly, the temperature would be same at the front, inside and
at the back of the module. In the ”Hot Potato” procedure, a module is heated in an oven, then moved out
and placed into a solar simulator and IV measurements are performed while the module cools down to
ambient temperature. Because of thermal inertia the inside of the module will likely be hotter compared
to the outside of the module and because of natural convection, the front and back temperature will also
be different. It will thus be harder to determine the correct temperature of the cell junction. The ”Back-
side Toaster” procedure assumes a constant (adjustable) heat source at the back surface. A temperature
gradient will exist, however the module can be kept at the same temperature longer allowing the module
to thermally stabilize to steady state, improving accuracy of the results compared to the hot potato
procedure.

2.3.2 Norms on PV module characterization

The most generally implemented norms for IV measurements of PV devices are developed by the In-
ternational Electrotechnical Committee (IEC). The most relevant norms for this work are summarized
below, in particular the norm on the determination of temperature coefficients of PV modules.

• IEC60904: Photovoltaic Devices

This norm consists out of 10 sub parts and aims to standardize IV measurements of PV modules.
The norms define (amongst others) requirements regarding illumination levels, standard testing
conditions, solar spectra, calibration, traceability and testing equipment. For the illumination
level, it is important that the intensity is measured with a PV reference device or pyranometer
that is in some way traceable to international primary standards. These standards can either be SI
units, or the World Radiometric Reference. The purpose is to ensure comparability between dif-
ferent labs and provide knowledge on the trustworthiness of the measured result. As the response
of semiconductors is a function of the wavelength of the incident photons, not only the absolute
intensity is of importance but also the spectral distribution of the incident light. A reference spec-
trum, AM1.5g is defined, with an integrated irradiance of 1000 W/m2, resulting from specified
atmospheric and environmental conditions, after light has travelled 1.5 times the thickness of the
atmosphere. In practice, the incident light is often somewhat different from the AM1.5g reference
spectrum. Preferably, the reference device has a spectral response similar to the device under
test (DUT). If this is not the case corrections can be applied, however in that case detailed infor-
mation about the incident spectra and the spectral response of both the DUT and the reference
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device should be known. Additionally, this norm sets requirements to the electrical measurements
regarding measurement accuracy and defines a number of operating procedures for photovoltaic
measurements. Finally a subsection of this norm states how to determine linearity of a module.
PV module linearity is a requirement to perform procedures in which module performance is
translated to different temperatures and/or irradiance levels.

• IEC 61853: Photovoltaic (PV) Modules and Energy Rating

This norm consists out of 4 subparts and aims to define a standard for determination of PV energy
yield for reference climates. These climate specific energy ratings should offer a better, more
intuitive performance indicator compared to the maximum power output at STC. An important
tool for these energy ratings is the power matrix as discussed in section 2.3.

• IEC60981: Procedures for Temperature and Irradiance Corrections To Measured I-V Characteris-
tics

In Figure 10 it can be seen that especially the Voc and Pmax of the PV module are a function of
temperature. The relation between these module parameters and the module temperature can for
most technologies be described by a linear function through by the use of the so called temperature
coefficient. The temperature coefficient describes how much the module parameter changes, as a
result of a known change in temperature. Amongst others, the IEC60891 norm defines procedures
to determine these temperature coefficients. The most relevant temperature coefficients are the
Isc temperature coefficient ”α”, the Voc temperature coefficient ”β” and the Pmax temperature
coefficient ”γ”. Most of the c-Si based modules can be considered as linear PV devices, for such
linear devices the temperature coefficients are valid over a range of ±30% around the irradiance
at which they are measured.

The used instrumentation should comply with the IEC60904-1 and in case a solar simulator is
used, this should be at least be a BBB class simulator according to IEC60904-9. At least four
temperature sensors should be applied.

The module must be cooled or heated to the temperature of interest until the temperature is uni-
form within ±2%°C. The irradiance should be set to the desired level, after which at least the
Isc, Voc and Pmax should be measured. The module temperature should be changed in steps of
approximately 5°C, over a range of at least 30°C.

After the measurements the parameters should be plotted as a function of temperature and a linear
fit should be applied. The absolute temperature coefficient is then the slopes of these fits. In
practice, often the relative temperature coefficient is provided, which is the slope divided by the
value of the parameter at 25°C.

2.4 Physics of temperature coefficients

This section will briefly discuss the physics underlying the temperature coefficients, following the rea-
soning and equations presented in Yang Yang et al, ”Understanding the uncertainties in the measurement
of temperature coefficients of Si PV modules” [8]. Many of the derivations made in this work are based
on the one-diode model discussed in section 2.2. The most relevant temperature coefficient for industry
is the Pmax temperature coefficient, as this is coefficient can be directly applied to predict energy yield
at non-standard temperatures. The Pmax temperature coefficient can be decomposed into three different
components: the Isc, Voc and fill factor (FF) temperature dependencies through equation 4:

1

Pmax

dPmax
dT

=
1

Voc

dVoc
dT

+
1

Isc

dIsc
dT

+
1

FF

dFF

dT
(4)
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2.4.1 The Short-Circuit Current Temperature Coefficient

The Short-Circuit Current, Isc, is the current when the voltage potential between the terminals is zero, i.e.
when the cell or module is short-circuited. The temperature coefficient of the Isc, often expressed as α,
is positive with increasing temperature. For Silicon, α is usually around 0.05 %/K, thus the contribution
to Pmax temperature coefficient is relatively small. The Isc temperature coefficient is a direct result
of the temperature dependency of the silicon band gap, which is given in Equation 5, with X and Ψ
7.021e-4eV/K and 1108K respectively [28].

Eg(T ) = Eg(0)− XT 2

T + Ψ
(5)

With increased temperature, thus increased thermal (vibration) energy of the electrons, the additional
energy required to move from the valence to the conduction band reduces. As a result, photons have
a higher probability to be absorbed and generate electron-hole pairs. The temperature coefficient is
thus a function of the temperature dependence of the cell response (indicated by the external quantum
efficiency EQE) in combination with the spectrum of the incident photons (φ) through Equation 6:

Jsc(T ) =

∫ λBG

λ0

EQE(λ, T )φ(λ)dλ (6)

2.4.2 The Open-Circuit Voltage Temperature Coefficient

Open-Circuit Voltage (Voc), is the cell voltage when no external current is flowing, thus when the rate
of photogeneration equals the rate of recombination in the cell. It is a function of temperature T , satu-
ration current density J0 (also the recombination parameter) and the short-circuit cell current Jsc. With
magnitudes in the order of -0.3%/K for c-Si based technologies, the Voc temperature coefficient, often
expressed as β, is the largest contributor to the Pmax temperature coefficient. The Voc can be expressed
as a function of temperature, short circuit current and saturation current density through equation 7. In
this equation both Jsc and J0 are a function of temperature.

Voc =
kT

q
ln(

Jsc
J0

+ 1) (7)

The temperature dependency of Voc is then determined through differentiation of Equation 7 with re-
spect to temperature. Assuming the temperature dependency of Jsc is relatively small and Jsc � J0
differentiation of Equation 7 yields:

dVoc
dT

=
Voc
T
− kT

q
(

1

J0

dJ0
dT

) (8)

The temperature dependence of the Voc thus depends the Voc itself, the saturation current density J0
and its temperature dependency. J0 can be simplified to J0 = CT 3 exp (−Eg

kT ) [29] with C a constant.
Using this simplified form and the temperature dependency of the bandgap as given in Equation 5, the
Voc temperature coefficient can eventually be written as Equation 9, again with X and Ψ 7.021e-4eV/K
and 1108K respectively. The Voc coefficient is mainly determined by the difference between Voc and the
bandgap and the changes of the bandgap with temperature.
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dVoc
dT

=
Voc
T
− (

3k

q
+
Eg(0)

T
+

XT

(T + Ψ)2
) (9)

2.4.3 The Fill Factor Temperature Coefficient

The fill factor is the ratio of Pmax to the product of Voc and Isc. If assumed that the cell behaves as an
ideal diode (n=1), the fill factor is given by Equation 10 [30] with voc = q

kBT
Voc. In this approximation it

is assumed the only recombination mechanism is recombination of minority carriers in the quasi-neutral
regions in the silicon bulk [1]. In practice there are most likely also other recombination mechanisms
present, reducing the fill factor and the Voc.

FF0 =
voc − ln(voc + 0.72)

voc + 1
(10)

The temperature coefficient of the fill factor is generally in the order of -0.15%/K. A simplified equation
for the temperature dependency of the fill factor is given in Equation 11 [31], In which effects of series
and parallel (shunt) resistance are ignored.

1

FF

dFF

dT
≈ (1− 1.02FF0)(

1

Voc

dVoc
dT
− 1

T
) (11)
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3 Experimental Setup and Measurement procedures

The developed setup (Figure 14) integrates a temperature chamber with a single long pulse solar sim-
ulator. The solar simulator was developed by Eternalsun Spire, specialist in solar simulation, the tem-
perature chamber in co-operation with Weiss Technik, specialist in environmental simulation. This
combination operates according to the oven principle presented in section 2.3.1, which should theoret-
ically give the most accurate results. The goal of this setup is to improve accuracy and reproducibility
of current-voltage (IV) measurements at non-standard temperatures and so improve accuracy of temper-
ature coefficients and IEC power rating measurements. Improving this accuracy reduces uncertainty of
PV yield predictions and thus reduces financial risk, which can accelerate the large scale adaption of
photovoltaics.

Figure 14: Temperature Controlled Lab Flasher (TCLF) integrating a solar simulator and a temperature chamber, developed by
Eternalsun Spire to perform current-voltage measurements at non-standard testing conditions. The temperature chamber can
move up, allowing a module to be placed and down to form an insulated environment for heating and cooling.

3.1 Solar Simulator

The solar simulator is a Spire 5600 Single Long Pulse flasher. The light is generated by two Xenon
gas lamps, filtered to improve resemblance of the AM1.5G spectrum. The light is then guided to the
test surface by the use of mirrors and diffusers, each with optimized orientation ensuring homogeneous
irradiation at the test surface. A direct feedback loop between a silicon based monitor cell and the lamp
control electronics ensures lamp stability throughout the whole pulse. This monitor cell is calibrated at
the beginning of (a series of) tests using a calibrated reference cell or module. As a result of this control
loop, the lamp properties and the system electronics, a stable light pulse up to 270ms can be provided,
which is advantageous for measuring high efficiency, capacitive, photovoltaic technologies (such as c-
Si/a-Si Heterojunctions) [32]. Besides the lamp and the optical control, there is a system dedicated
to measuring IV curves. The module is connected through a 4-wire connection, allowing current and
voltage to be measured simultaneously and minimizing effects of cable resistance. To measure the IV
curve a variable load is applied, which is varied in such a way that more measurement data is collected
around the maximum power point of the PV module (which is for most applications the most important
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part of the curve, as well as the part of the curve with highest rate of change). From the measured IV
curve, other values such as the Pmax, Fill Factor, Rs, Rsh and efficiency are determined.

3.1.1 Irradiance and optical properties of the solar simulator

The irradiance uniformity of the setup is visualized in Figure 15. For accurate IV measurements, the
irradiance incident on a module should be as uniform as possible. Generally cells are connected in
series, thus module current will be limited by the cell generating the lowest current. If a part of the
module receives less than average irradiance, this will limit the performance of the rest of the module
as well, resulting in an incorrect measurement. Areas with relatively high irradiance are referred to as
”hot” areas, areas with relatively low irradiance are referred to as ”cold” areas. The left uniformity map
is based on a 96-point measurement used for IEC60904-9 classification. This is created by averaging
each four by four row and column pairs from the high-resolution uniformity measurement as shown on
the right. The distribution with the hot and cold pattern visible in the high-resolution uniformity map
is typical for the Spire 5600 simulator and is a result of the orientation of the two Xenon lamps, the
diffusers and the mirrors. IEC60904-9 defines spatial uniformity based on the maximum and minimum
irradiance measured in the test surface, Equation 12: The simulator can be classified in class A (the high-
est standard) according to IEC60904-9 Ed.2 (non-uniformity <2%) and A+ according to the upcoming
IEC60904-9 Ed.3 (non-uniformity <1%) as only 64 measurement points are required for the uniformity
determination (so the 96 point uniformity is sufficiently detailed).

Figure 15: Simulator irradiance uniformity for IEC60904-9 classification (left) Note: high resolution non-uniformity measure-
ment removed for public manuscript

non− uniformity [%] =
irradiancemax − irradiancemin
irradiancemax + irradiancemin

× 100% (12)

The spectrum of the solar simulator is plotted in Figure 16. If the reference device (used for calibration)
and the device under test (DUT) have a different spectral response, a spectral mismatch error will affect
the result of the measurement (this will be further elaborated in Section 5.3.3). This error is proportional
to the difference between the AM1.5G (reference) spectrum, thus the closer the resemblance of the solar
simulator spectrum and the AM1.5G reference spectrum, the lower the impact of a spectral mismatch
between the reference device and the device under test. Even though spectral filtering is used, there are
still some peaks visible which are typical for Xenon lamps. The spectrum is measured at 96 points on the
simulator (ensuring the spectrum is similar everywhere on the test area) using a Pulse Analysis Spec-
troradiometer System (PASS) [33] as provided and calibrated by the US National Renewable Energy
Laboratory (NREL).
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Figure 16: Measured Spectrum of the solar simulator next to the AM1.5G reference spectrum (removed for public manuscript)

In the IEC spectral classification, the distribution of energy between specified photon wavelengths is
compared for the simulator and the reference AM1.5 spectrum. This is visualized in Figure 17. A
classification (C/B/A,A+) is assigned based on the deviation of the energy in the specific bin. The
spectrum of the simulator is classified as A+ according to both current and proposed IEC60904-9 norm,
which means a maximum deviation in energy from the AM1.5 spectrum of ± 12.5% in the worst case.

Figure 17: Measured fraction of irradiance (indicated in red) in wavelength bins as specified per IEC60904-9 Ed.2 (left) and
proposed IEC60904-9 Ed.3 (right). Note that the spectrum according to IEC60904-9 Ed.2 is defined from 400nm to 1100nm,
whereas IEC60904-9 Ed.3 extends the first and the last bin to 300nm and 1200nm and has a different distribution of bins.

The third important property is the temporal stability of the pulse. Two components are considered: the
short term instability (STI) and the long term instability (LTI). The short term instability describes the
maximum change in intensity between the acquisition of a current-voltage-irradiance data point. How-
ever in most modern simulators, as well as in the applied setup, these are obtained simultaneously in
which case the STI is considered class A+ per IEC60904-9 Ed.3. The long term instability is defined in
Equation 13 and basically represents the maximum relative change of the light intensity during acquisi-
tion of the IV curve. A 0.05% LTI is achieved over 200ms of pulse, which is easily surpassing class A
per IEC 60904-9 Ed.2, or A+ per IEC60904-9 Ed.3.

Temporal instability (%) =
irradiancemax − irradiancemin
irradiancemax + irradiancemin

× 100% (13)
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Figure 18: Long term instability ±0.5% of the light pulse measured over 200ms. By addition of extra capacitors (providing
energy to the lamps), the length of the pulse can be further extended up to 270ms

3.1.2 Electrical system and software of the solar simulator

The measurement circuit is based on a Measurement Computing DT9834 DAQ. The module voltage is
reduced by a voltage divider, selected through a switching relay depending on the voltage range. This
voltage is digitized by the DAQ and forwarded to the software. A somewhat similar process is applied for
the current, however this is measured over a shunt. The shunt resistor is also selected through a switching
relay, depending on the range of module current. Additionally, this circuit contains a MOSFET, which is
slowly opened up or closed depending on sweep direction. By doing this, the PV module is subjected to
a variable load and the full IV curve can be measured. The circuits with aforementioned voltage dividers,
shunt resistors and switching relays are developed and calibrated in-house, using devices traceable to
international standards. Alternatively, external calibration can be done if ISO17025 accreditation is
needed. For each current and voltage range, two known currents and voltages are applied, which are
measured with calibrated equipment before the input of the system and compared to the displayed values
in the system software. Based on the deviations, gains and offsets can then be applied. The software is
being developed by Eternalsun Spire. It is used to control the simulator, collect the data from the DAQ
and process this data into full IV curves. From these (approximately 3500 point) IV curves, the PV
module parameters are extracted and stored in a database.

3.2 Temperature chamber

The temperature chamber is developed by Weiss Technik in cooperation with Eternalsun Spire. It is
placed on top of the solar simulator and can be moved up and down through electromechanical actu-
ators. When the chamber is raised the module can be placed and wiring can be connected. When the
chamber is closed, a thermally insulated space is formed in the chamber, closed off by the simulator
glass. Temperature can be controlled between 10°C and 85°C by forced convective heating/cooling.
The module is placed on 13.5mm thick spacers, or conveyors with similar height, allowing air to flow
past the front and the back of the module. The air circulation is controlled by 3 fans and air temperature
is controlled by heating coils and a heat exchanger in a feedback loop with a PT100 temperature sensor.
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Module temperature data is collected by 9 T-type thermocouples, attached on the rear surface of the
module with (3M-425) aluminium tape (Figure 19). This data is read out by a Pico technology TC08-
USB datalogger. Temperature non-uniformity measured on the rear surface of the module, defined as
(Tmax−Tmin)/2, is±1°C at an air temperature of 85°C, down to±0.2 °C for air temperatures between
25°C and 50°C.

3.3 Measurement procedure

This section describes the used procedure to determine PV module temperature coefficients, including
calibration of the lamp intensity. After the detailed step by step description, an overview (assuming a
calibrated setup) is given in Figure 20.

1. The temperature chamber is opened/moved up and the simulator is calibrated to the desired inten-
sity using a reference module (or alternatively to a World Photovoltaic Scale (WPVS) reference
cell) calibrated by an accredited laboratory. The reference module is placed on the test area at
room temperature, flashed and measured. Based on the measured Isc and the target Isc provided
by the reference laboratory, the intensity of the lamps will be increased or decreased and another
IV measurement is performed. This process is repeated until the measured Isc is within set tol-
erance of the target value. Simultaneously, a monitor cell inside the solar simulator measures the
irradiance from the lamps. The monitor cell Isc read out during the last flash of calibration is
stored and will function as a target after the reference module is removed. These monitor cells are
in a direct control loop with the lamps and will correct the lamp intensity from pulse to pulse as
well as during the pulse.

2. The calibration module is removed and the device under test (DUT) is placed. If a calibrated
WPVS cell is used instead of a calibration module, it is possible to keep the cell in the test surface
(next to the DUT) to provide a traceable irradiance measurement.

3. 9 Sensors are attached to the rear surface of the module using 3M aluminum (thermally conduc-
tive) tape, in a 3x3 formation as shown in Figure 19 and the module cables are connected to the
test leads of the solar simulator. The readings of these sensors will eventually be averaged to
determine the surface temperature of the backsheet of the module.
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Figure 19: A 60-cell c-Si PV module placed in the (opened) temperature coefficient lab flasher. 9 T-type thermocouples are
attached to the rear surface of the module in 3x3 formation. The four circles indicate the positions of temperature sensors
required per IEC60891.

4. IV measurements are started with a constant interval and a temperature recipe (with setpoints
for the air temperature) is run. Simultaneously, logging of the module temperature is started. The
temperature in the chamber is first ramped up to the maximum temperature of interest, causing the
DUT temperature to rise as well. Once the temperature setpoint is reached, the temperature is kept
at this setpoint until the cell temperature is stable as well, which is monitored by the Voc variation
(directly affected by cell temperature) between a number of successive flashes. Currently Voc
is considered stable when 3 consecutive IV measurements return Voc values within the machine
repeatability specification for Voc. Once Voc stability is observed, 3 additional IV measurements
are performed, these will be used to extract the module parameters. After these 3 additional
IV measurements, the air temperature will go to the next setpoint in the temperature recipe and
the process will be repeated until the temperature recipe is finished. These temperature recipes
generally include the temperatures from the power matrix as defined in IEC61853-1 (Section 2.3).

5. In data processing, the temperature data measured by the temperature sensors on the rear surface
of the module is averaged. This averaged module temperature is coupled to the IV measurements
based on timestamps. Generally the temperature is logged at a much higher frequency than IV
measurements are obtained, resulting in negligible delay between temperature and IV measure-
ments. The IV parameters of interest are determined from the IV curves and used to determine
temperature coefficients. The parameters from the 3 IV measurements are averaged for the re-
porting, but individual parameters, temperature sensor readings and full IV curve data are stored
as well. The temperature coefficient measurements in this work are all performed at an irradiance
level of 1000W/m2, it is also possible to measure the IV curve at multiple irradiance levels (and
multiple temperature setpoints) to fill the IEC61853-1 matrix.
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Figure 20: Flowchart of the developed test procedure assuming a calibrated setup and connected device under test
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4 Temperature Coefficients of Silicon based PV

In this section the results are presented of the performed temperature coefficient measurements on a set
of Aluminum Back Surface Field (Al-BSF), Passivated Emitter Rear Cell (PERC) and Silicon Hetero-
junction (SHJ) photovoltaic modules. Each subsection briefly explains the typical cell structure of the
considered technologies, after which the measurement results are presented. These results will be used
for the uncertainty analyses presented in the next section. A summary of the tested PV modules is shown
in table 1. Each module has its own identification (ID) based on [Technology] – [Structure (mono/poly)]
– [Datasheet Pmax] – [Module brand and type]. A suffix indicates cases where multiple PV modules
of the same brand and type are tested. If the modules are non-commercial and/or no datasheet Pmax is
known, this is indicated by empty square brackets.

Table 1: Summary of the tested PV modules and their datasheet STC parameters

4.1 Temperature coefficients of Al-BSF Modules

Aluminum Back Surface Field (Al-BSF) cell technology has been the largest cell technology for many
years, and a large part of the currently installed modules is based on this technology. While currently
being surpassed by higher efficiency technologies such as PERC, Al-BSF based modules are still very
useful for evaluation of the test procedure and setup, as there is plenty of knowledge and reference data
available at Eternalsun Spire and in literature.

4.1.1 Al-BSF Technology

The structure of an Al-BSF cell (Figure 21) is relatively simple. A pn-junction is formed between
positively doped silicon, the bulk, and a thin layer of negatively doped silicon, the emitter. Electrodes
are connected on the front and rearside of the cell, collecting and transporting charge carriers through
the module and through an external circuit. An anti reflective coating on top of the emitter reduces
reflection, resulting in improved photon absorption, thus an increase in photon generated current. A
highly doped Aluminum p+ layer is applied between the rear electrode and the p-type bulk. In this p+

layer, more (negatively charged) acceptor ions are present, creating a more negatively charged region
between the bulk and the rear electrode. As a result, negatively charged electrons are repelled from the
rear electrode, reducing recombination at the bulk-electrode interface. This effect is called field effect
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passivation.

Figure 21: Standard Al-BSF Industrial Solar Cell. Image adapted from: Krügener, J; Harder, N, Weak light performance of
PERC, PERT and standard industrial solar cells, Energy Procedia 2013 [5]

4.1.2 Al-BSF module measurements

Table 2: Datasheet parameters of the tested Al-BSF modules

Five commercial Al-BSF modules (Table 2) are tested with the main purpose to validate the performance
of the setup. All the modules are 60 cell, p-type poly modules, 3 modules are from brand A, 2 modules
are from brand B. For the two modules from brand B, additional measurement results from an external
institute (Fraunhofer ISE) are available for comparison. It has to be noted that these results are obtained
over a year ago and in the meanwhile the modules have been used as reference modules and/or to check
performance of newly built systems. The handling of these modules can have caused small damages
such as micro-cracks, thus results might not be fully representative.

Table 3 shows a comparison of the measured relative temperature coefficients with the manufacturer
specifications, Figure 22 shows the Pmax, Voc, Isc and Fill Factors parameters plotted at different tem-
peratures.

Table 3: Measured and manufacturer specified temperature coefficients of the Al-BSF modules
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Figure 22: Maximum Power Point, Open Circuit Voltage, Short Circuit Current and Fill Factor of the five Al-BSF modules
measured at various temperatures between 10 and 85 degrees

From these results, some initial observations can be made:

• Similar slopes, thus temperature coefficients, are measured for all modules

• Linear fitting seems to be applicable to all the parameters, with the coefficient of determination
R2 � 0.99

• Pmax temperature coefficients are consistent within 5% of the manufacturer specifications, Voc
temperature coefficients within 5% for the modules of brand A, a larger deviation of 15% is
observed for the modules of brand B, Isc temperature coefficients show the largest variation: up
to 25% and 75% for the brand A and brand B respectively.

• Different temperature coefficients are measured for modules of the same types and brands
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As the modules are based on the same cell technology, similarity of the temperature coefficients is
expected. It is noteworthy however that modules of the same brand and type can still show some vari-
ation. The Voc temperature coefficient reported on the datasheet of brand B seems to be too high (too
favourable) compared to the measurements. As the modules of brand A are based on the same cell tech-
nology with similar efficiencies, it could be caused by an incorrect determination of the Voc parameter
by manufacturer B. The largest (relative) deviations are observed in the Isc coefficient, which could be a
result of a different spectrum used for the test, in combination with the (temperature dependent) spectral
response of the module which is not corrected for due to lack of available data. Overall, the measured
Pmax coefficients are consistent with expectations for both modules, the modules of brand B however
show relatively large deviations for both Voc and Isc coefficients.

Additionally, results from the two modules of brand B are compared to results obtained by Fraunhofer
ISE in Table 4. At Fraunhofer ISE, a similar method is used for temperature control, in combination
with another highly accurate solar simulator. This likely explains the small differences observed in Voc
and Pmax. Larger differences, of same magnitude, are observed in the Isc temperature coefficient, which
are, again, possibly caused by differences in solar spectra of both solar simulators.

Table 4: Results measured with the developed temperature coefficient setup compared to results by Fraunhofer ISE

While the temperature dependency of the series resistance appears to be similar for all the modules,
larger deviations are observed in the temperature dependencies of the parallel (shunt) resistances, Figure
23. Even between modules of the same type (red/black and blue/gray/yellow), large differences are
observed. The parallel and series resistance are approximated by the inverse of the slope of the IV curve
at Isc and Voc respectively. These slopes are obtained through linear fits to the datapoints around Isc
and Voc. As can be seen in the Figure 23, especially the parallel resistance does not show a clear trend
with temperature for all the modules. This could be a result from the fitting method, since the parallel
resistance is determined by the slope of the IV curve at Isc is very small in absolute form. As a result,
small fluctuations in the measurement data can have large effects on the parallel resistance.
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Figure 23: Series and parallel resistance of the five Al-BSF modules measured at various temperatures between 10 and 85
degrees. No trendline is plotted for the parallel resistance to improve readability.

4.2 Temperature coefficients of PERC Modules

PERC is currently the dominating technology in the PV market. Compared to classic Al-BSF cell tech-
nology, higher efficiencies (>20% in manufacturing) are obtained as a result of improved surface and
interface passivation. Several implementations are clustered under the PERC name [34], of which the
most common variations are the PERL (Passivated Emitter Rear Locally doped) and the PERT (Passi-
vated Emitter Rear Totally diffused).

4.2.1 PERC Technology

Figure 24: Left: Standard Al-BSF Industrial Solar Cell. Middle: Industrial Passivated Emitter Rear Locally doped (PERL)
cell. Right: Industrial Passivated Emitter Rear Totally diffused (PERT) cell. Image adapted from: Krügener, J; Harder, N,
Weak light performance of PERC, PERT and standard industrial solar cells, Energy Procedia 2013 [5]

Common to both the PERL and the PERT concepts, Figure 24, is the passivated emitter. A passivating
layer, often SiO2/SiNx is deposited on top of the emitter passivating dangling bonds. As a result, the
density of trap states at the surface is decreased, reducing surface recombination. Besides the emitter,
also the rear side of the cells is passivated, improving the response to low wavelength photons. Small
openings in the rear passivation layer allow contact between the rear electrode and the bulk silicon. These
contact areas are passivated similar to the Al-BSF cell reducing interface recombination. Whereas PERL
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cells have this passivation layer only locally at the metal – semiconductor interface, PERT cells have this
passivation layer across the whole interface region of the bulk silicon, the electrodes and the passivated
areas between these contacts.

4.2.2 PERC Measurements

Table 5: Datasheet parameters of tested PERC modules

Two commercial PERC modules are tested, the datasheet values are shown in table 5 and the results are
presented in Table 6 and Figure 25

Table 6: Measured and manufacturer specified temperature coefficients of the PERC modules

Both PERC modules have a similar efficiency, and also similar behaviour with temperature. Whereas
PE-m-290-C (plotted black) has a somewhat lower Voc and Isc, the Fill Factor is significantly better
compared to PE-m-295-D. In comparison to the manufacturer datasheet, PE-m-290-C shows large devi-
ations in all the temperature coefficients, while the measurements of PE-m-295-D are almost consistent
with manufacturer specifications. Compared to the Al-BSF modules, the Isc temperature coefficient is
lower, less beneficial, but the Voc and Pmax temperature coefficients are higher, more beneficial. Figure
26 shows PE-m-290-C has a better series and parallel resistance with respect to PE-m-295-D, likely
causing the better fill factor of PE-m-290-C. Similar to Al-BSF modules a clear relation is observed
between temperatures, parallel and series resistance, however again much less linear compared to the
other IV parameters.
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Figure 25: Maximum Power Point, Open Circuit Voltage, Short Circuit Current and Fill Factor of the two PERC modules
measured at various temperatures between 10 and 85 degrees
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Figure 26: Series and parallel resistance of the two PERC modules measured at various temperatures between 10°C and 85°C

4.3 Temperature coefficients of Silicon Heterojunction Modules

The marketshare of Silicon Heterojunction (SHJ) cell technology is expected to increase from approx-
imately 3% to 15% in the next 8 years [35]. SHJ cells are build around high quality n-type crystalline
silicon wafers, with the surface passivated by thin layers of amorphous silicon. This passivation enables
very high efficiency c-Si cells [36]. Real world degradation as a result of light and elevated tempera-
tures (LETID) and potential induced degradation (PID), known to occur in many PERC modules, is not
present in SHJ modules as a result of the n-type wafers used.

4.3.1 Silicon Heterojunction Technology

Figure 27 shows the structure of an SHJ cell. An intrinsic layer of hydrogenated a-Si is added to reduce
the interface defect density between the c-Si and the doped a-Si. As the conductive properties of the a-Si
are relatively poor, a transparent conductive oxide (TCO) layer (often Indium Tin Oxide, ITO) is added
improving carrier transport towards the electrodes on the front- and rearside of the cell. A tradeoff here
is that the TCO is usually not fully transparent, increasing parasitic absorption thus reducing the cell
current.
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Figure 27: Structure of a Silicon Hetero Junction Solar cell: Illustration by Haschke J., Temperature dependence and infrared
response of silicon based solar cells: simulation and experiment, QEERI seminar, 2016

4.3.2 Silicon Heterojunction Measurements

One commercial and three non-commercial modules are tested. Only the commercial module comes
including STC parameters specified by the manufacturer, the parameters of the other modules are un-
known. The results are presented in Table 8 and Figure 28.

Table 7: Datasheet parameters of the SHJ modules

Table 8: Measured and manufacturer specified temperature coefficients of the SHJ modules
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Figure 28: Maximum Power Point, Open Circuit Voltage, Short Circuit Current and Fill Factor of the four Silicon Hetero
Junction modules measured at various temperatures between 10 and 85 degrees

The SHJ modules SHJ-m-285-E and SHJ-m-[]-G give some interesting results. The fill factors show an
almost parabolic shape when varying the temperature between 10°C and 85°C between measurements at
10 degrees and 55 degrees. The Voc and Isc do not show this non-linearity, but a small proportion of this
effect is propagated into the Pmax temperature coefficient. The Pmax temperature coefficient is therefore
a function of the temperature at which it is determined and a linear fit seems less appropriate. This effect
is previously observed on a cell level [37] and is likely a result of charge carrier transport mechanisms.
At lower temperatures, the carrier transport is limited by thermionic emission across a local potential
barrier at the interface of the amorphous and crystalline silicon. This barrier decreases non-linearly with
increasing temperatures [38], improving carrier transport and reducing the contribution of this barrier to
the fill factor. At higher temperatures the effect of this barrier becomes less significant and the fill factor
changes more linear with temperature. This effect is only very slightly visible in fill factor of the other
two SHJ modules, where it is almost negligible for the Pmax temperature coefficient.

IEC 60904-10 defines requirements for PV modules to be considered linear (temperature coefficients can
only be applied for linear modules). With respect to temperature only one requirement is defined: ”For
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the curve of open-circuit voltage and short-circuit current versus temperature, the normalized standard
deviation of the slope should be below 0.1” (IEC60904-10)

Where the standard deviation of the slope is calculated through Equation 14, after which it is normalized
by the slope of the linear regression line.

σs =

√ ∑
(∆Yi)2

(n− 2)
∑

(∆Xi)2
(14)

As the non-linearity is a result of the changing fill factor, it comes to no surprise the modules can be con-
sidered linear according to this definition, with the highest normalized standard deviation σs

slope = 0.02
for Isc. Even when also considering the σs of the Fill Factor and Pmax, the module can be considered
linear, which is a result of the linear behaviour at higher temperatures.

Figure 29: Series and parallel resistance of the four SHJ modules measured at various temperatures between 10°C and 85°C

Figure 29 shows the series and the parallel resistance plotted against temperatures. Different from all
other measured modules, SHJ-m-285-E and SHJ-m-[]-G both show a negative temperature dependency
for the series resistance, which is likely caused by the decreasing interface resistance. The temperature
dependency of the parallel resistance of the two modules of brand and type F shows large variations even
though both modules are of the same brand, type and technology and production batch.

4.4 Temperature coefficients of c-Si modules and open circuit voltage

A clear relation is observed between the cell Voc at STC and the Voc and Pmax temperature coefficients,
as can be seen in Figure 30. Better passivation not only leads to higher STC efficiency, but also to better
performance at increased temperatures.
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Figure 30: Relative Pmax and Voc temperature coefficients of the measured modules plotted against cell Voc at STC. A clear
positive relation is visible, which can be used to estimate the temperature coefficients based on the cell Voc

As the relative temperature coefficient is obtained by dividing the absolute temperature coefficient by
the STC value, a higher STC value will directly lead to a better relative temperature coefficient, even
with the same absolute temperature coefficient. Figure 31 shows the absolute temperature coefficient of
the cells plotted against the cell Voc at STC, from which can be concluded that the observed relation is
not only the result from the increase in STC performance. Note that the absolute temperature coefficient
on the vertical axis in Figure 31 is the temperature coefficient per cell, which allows for comparability
between modules that have a different numbers of cells.

Figure 31: Absolute Voc temperature coefficients against cell Voc, which shows that the relation between cell Voc and temper-
ature is also visible in the absolute temperature coefficients. Note: the absolute temperature coefficient on the vertical axis is
the temperature coefficient per cell, which enables comparability between modules that have a different numbers of cells.
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This relation is observed before [39] and an interesting application based on this relation is recently
presented by Y. Hishikawa et al. (AIST) [6]. Here the temperature coefficients are both measured as
well as calculated based on the relation between cell Voc and temperature coefficient. These results are
then used to translate IV curves of c-Si modules over a range of 40°C. Differences between measured
and calculated results are below ±1.5% for the Voc, Isc parameters as well as for the Pmax parameters.
As this procedure is currently under consideration by the IEC, some data obtained in this thesis will be
presented to provide additional reference material.

The theoretical relation between the temperature coefficient (TC) and the cell voltage, derived from
the single diode model by Hishikawa, is given in equation 15. This equation is found to be a good
approximation for a voltage range of the (cell’s) IV curve from approximately 0.5V to 0.7V. In this
equation, v1 and v2 are the cell voltages at the two considered temperatures T1, T2, with a current
level offset equal to ∆Isc. This is visualized in Figure 32, note that ∆Isc is already defined as ∆I .
Additionally, n is the diode ideality factor, Eg the bandgap and q the Boltzmann’s constant.

TCcell =
v2 − v1
T2 − T1

=
1

T1
(v1 −

nEg
q

) (15)

Figure 32: IV curves of a c-Si PV module measured at 1000 W/m2, at 25°C (T1) and 65°C (T2). Additionally, the datapoints
V1, V2, I1, I2 required to calculate the TC using equation 15 are marked. Figure adapted from: Y. Hishikawa et al. (AIST) [6]

In Figure 33, equation 15 is plotted for a voltage range of 0.5V to 0.75V. Here it is assumed that nEg

q =
1.232V, which represents a diode ideality factor of 1.1 and a c-Si bandgap of 1.12eV. In the left of Figure
33, the results of Hishikawa et al. are presented and the results obtained at Eternalsun Spire are shown
in the right. For the results from Eternalsun Spire, 3 modules (1 AL-BSF, 1 SHJ, 1 PERC) are randomly
selected. Based on IV measurements at 25°C and 65°C, TCcell is calculated and multiplied with T1
(approximately 25°C, 293.15K). This product is then plotted against the cell voltage v1 for 4 different
voltage points of the IV curve. Note that Hishikawa et al. consider many more datapoints, however 4
datapoints already allows basic comparability.
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Figure 33: The product of T1 and TCcell plotted against v1 for several modules based on experimental IV curves measured at
25°C and 65°C. The dashed black line represents the calculated result, which is based on the theoretical TC from equation 15
with nEg

q
= 1.232. Left: results obtained by Hishikawa et al.; Right the results by Eternalsun Spire for 3 randomly selected

modules based on different c-Si technologies.

Both the results from Hishikawa et al. and the results obtained at Eternalsun Spire show that, except
for the SHJ modules, the measured temperature coefficient can be approximated by the temperature
coefficient calculated from equation 15. Both the SHJ module measured by Hishikawa et al. (plotted in
purple, marked as ”HIP” in the legend) and the SHJ module measured at Eternalsun Spire show clear
inconsistency with the other modules and equation 15. This can be caused by the thermionic effect
briefly discussed in section 4.3.2, which affects the change of the IV curve with temperature. As a
result, the suggested procedure for IV curve corrections developed by Y. Hishikawa et al., is (in current
form) probably not applicable for some SHJ modules.
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5 Uncertainty in Photovoltaic Measurements

Imagine, in your living room at home, some of the laminate flooring is worn out and needs to be replaced.
Luckily you kept some spare pieces which only need to be cut to the desired length, as shown in Figure
34. With the ruler and saw you have available, each spare can be cut to 30 cm with a potential maximum
random error of ± 5 mm. The combined length of the replacement pieces could thus be anywhere
between 59 cm and 61 cm. However, even though the length of each spare has equal probability to be
anywhere between 29.5 cm and 30.5 cm, the combined length is less likely to be 59 cm or 61 cm as it is
unlikely both (independent) errors are working to full extend in the same direction. What is the length
you would aim for to be sure the spare pieces will fit in?

Figure 34: Visualisation of the laminate problem. Figure adapted from: www.galerie21.nl

This section will give insight into the effects of such uncertainties, now applied in the measurements of
PV modules. The effect of measurement uncertainties on the PV energy yield is discussed in section 5.1,
the underlying statistics and literature examples of uncertainty analyses on PV measurements in section
5.2, after which the uncertainty of the developed setup will be analysed in section 5.3. In section 5.4
a brief sensitivity analysis will be performed and finally section 5.5 will elaborate on some uncertainty
components occurring in practice, especially relevant for PV industry.

5.1 The impact of Measurement Uncertainty on Energy Yield Predictions

Investors and purchasers, thus also manufacturers of PV modules, have high interest in accurate knowl-
edge on the uncertainty of photovoltaic (PV) power measurements. Uncertainty in the nameplate capac-
ity for example, introduces uncertainty in the energy yield prediction, which propagates into financial
uncertainty. Manufacturers should therefore account for any uncertainty in the measurement when deter-
mining the Pmax of a PV module. A majority of the manufacturers provides a positive power guarantee
on the Pmax of a module (e.g. 300 W, -0% / +3%): the module produces at least 300W and up to 3%
extra at standard testing conditions (STC). As the Pmax is currently one of the main pricing parameters,
having to account for measurement uncertainty negatively affects the module sales price. An approxi-
mation based on common industry measurement uncertainty levels shows the effect on the revenue loss
in Figure 35. This figure shows manufacturer revenue loss against Pmax measurement uncertainty for
a 300W module, assuming a module price of e 0.30/W and 3W or 5W binning of the modules, typical
for current industry [40], compared to the effect without binning. These losses are significant in the
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competitive PV market, driving the industry to reduce measurement uncertainty through improvement
of PV testing methods.

Figure 35: Approximation of the effect of measurement uncertainty onto the price of a photovoltaic module, assuming a 300W
module and a module price of e 0.30/Wp

Over the last years there has been increased interest for module performance at non-standard testing
conditions, with the aim to enable better simulation of outdoor module behaviour and thus reduce the
financial uncertainty even further. Various models underlying energy yield simulations make use of
the module temperature coefficients to determine the performance at non-standard operating conditions.
Uncertainty in this coefficient contributes to the uncertainty in the energy yield estimation. The effect of
this uncertainty will be larger when operating temperatures are far from STC (e.g. hot climates), which
can be seen in Figure 36. Here a theoretical 3.6 kW system is designed using NREL’s System Advisor
Model [41] and an energy yield simulation is performed for a moderate climate (Scheveningen - The
Netherlands) and a desert climate (Badla - India), The Pmax temperature coefficient is varied by 10%,
from -0.4% to -0.44% for both climates. Differences in simulated energy yield integrated over the year
are 0.3% and 1.3% for the moderate and hot climate respectively by varying the temperature coefficient
by 10%. Such differences can have considerable impact on the LCOE as discussed in section 1.3 and
are causing financial risk.

Figure 36: Difference in simulated energy yield for a moderate and desert climate, with a Pmax temperature coefficient of
-0.44%/°C relative to a Pmax temperature coefficient of -0.4%/°C for a small photovoltaic system. Simulated using the NREL
System Advisor Model
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5.2 Quantifying uncertainty: Uncertainty analyses

Uncertainty analyses are used to identify and quantify the significant (and insignificant) contributors to
measurement uncertainty. One could distinguish two methods: bottom-up and top-down analysis [42].
In the bottom-up analysis, the measurement system and procedure are analysed, uncertainties of all the
individual components and procedures are calculated (or estimated, e.g. from practical experience or
modelling) and then combined into a final uncertainty number. The top-down analysis is through “round
robin” testing, where the uncertainty is determined from the spread of results after measuring a set of
the same PV devices at different laboratories and/or using different methods. Both methods complement
each other: in the bottom-up approach assumptions and approximations must often be made, which can
be validated using the top-down approach. The top-down approach can show differences between lab-
oratories and equipment which then can be understood by looking at the bottom-up analysis. These
analyses are generally performed according to the “Guide to the expression of Uncertainty in Measure-
ment” (GUM) [43] developed by the Joint Committee for Guides in Metrology (JCGM). The goal of
this guide is to provide basic guidelines for evaluation of uncertainty for a wide range of industries and
various fields of research.

5.2.1 Introduction into uncertainty: statistics, uncertainty propagation and the Guide to expres-
sion of Measurement Uncertainty

The statistics behind uncertainty and uncertainty propagation will be explained by use of a practical
example. Imagine rolling a single ”fair” die. There will be equal (1/6) probability on any discrete
number from 1 to 6. Now roll another die and sum the result. For the sum to be 2 or 12, both dice
need to land on 1 and 6 respectively. The probability to roll one of these numbers is then (1/6)*(1/6) =
(1/36). For the sum to be four, it is possible to roll 1 with the first die and 3 with the second, 3 with the
first die and 1 with the second and finally it is possible rolling 2 with both dice. Now, there are not one,
but 3 possible realizations, visualized in Figure 37. This can be extended to 3 or more dice (or rolls).
Figure 38 presents this concept in the form of probability diagrams, also called probability density
functions (PDF). For discrete variables this is technically called a probability mass function, in this
context no distinction is made since only continuous variables are considered in upcoming paragraphs.
Even though a die has a uniform (rectangular) probability distribution, as in the top-left of Figure 38, the
more dice (or rolls) are considered, the more the sum of the outcome will look like a Gaussian (normal)
distribution, as seen in the bottom-right of Figure 38. Note how the outermost options become more
and more unlikely when increasing the number of dice. This is the basis for the Central Limit Theorem,
which states that when sufficient samples are summed, the (normalized) summed outcome will approach
a Gaussian distribution, no matter the distribution of the individual samples.

40



Figure 37: Possible realizations of rolling two fair
dice

Figure 38: Sum of outcomes plotted against the proba-
bility of that sum for 1,2,3 and 10 dice. Note the change
in probability distribution with the increasing number of
dice.

Uncertainty in photovoltaic measurements works very much in the same way. Often measurements are
affected by errors of which the magnitude is not known exactly but can be described in statistical ways.
If multiple errors are combined, it is unlikely they all work to their full extend and in the same direction.
This is the same principle which makes the probability on the outer limits of multiple dice become lower
when increasing the number of dice. A standard T-Type thermocouple, for example, is known to have
a maximum error of ± 1°C. If a module of 25°C would be measured with only 1 sensor, this sensor
could measure anywhere between 24°C and 26°C. Assuming this error is randomly distributed with a
rectangular (uniform) distribution, there is an increased probability that the errors will average out when
more sensors are used. This is similar to the probability diagram of the four dice discussed above and
is shown through a Monte Carlo simulation. In such simulations, the outcome of a system is evaluated
for a varying range of inputs. In this theoretical example, 1, 4 or 9 sensors are placed in a room at
25°C. By doing many iterations, a large number of errors is sampled from a rectangular distribution,
these errors are then used to determine the theoretical sensor readings. These are then plotted in the
form of a histogram in Figure 39. The plotted temperatures are determined from the average of 1, 4 or 9
sensors, of which a possible result can be seen in the top row of Figure 39. Note that more sensors isn’t
necessarily better. In the top-mid graph, the 4 sensor combination is closer to the true value than the 9
sensor combination for a set of 9 sensors. However, as can be seen in the middle and bottom rows of
Figure 39, increasing the number of sensors will lead to a smaller spread of possible errors, thus a more
accurate measurement result in the majority of cases.
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Figure 39: Result of a Monte Carlo simulation on the possible outcomes of 1,4 or 9 T-Type thermocouple(s) measuring a
temperature of 25°C for 1, 250 and 10000 iterations

These histograms provide a good indication on the possible spread of the results and start to take a shape
similar to the rectangular and the Gaussian distribution when more iterations are considered. Gaussian
distributions are determined by two variables: the mean µ and the variance σ2. For a normal distribu-
tion the standard deviation (σ) represents a 68.3% confidence interval: when measuring infinite times,
68.3% of the measurements will fall within this range. A higher confidence interval can be obtained by
expanding the uncertainty: 1σ, 2σ and 3σ represent a confidence interval of approximately 68.3%, 95%
and 99.7% respectively. Often σ is normalized by the mean, creating the normalized standard devia-
tion. When estimating measurement uncertainty, the (estimated) range of possible errors is described by
such probability distributions. The normalized standard deviation of one such distribution is called the
relative standard uncertainty. For this work, the rectangular and Gaussian distribution are the most rele-
vant. Rectangular distributions are used when there is only information about the limits, the maximum
magnitude of the error and there is no reason to believe the error is biased. Gaussian distributions are
used if there is a reason to believe the error is likely to be close to some mean value, but some extremes
are observed every now and then, or when the uncertainty component is formed by a combination of
various sub-components. When sufficient sub-components are combined, the result will approximate a
Gaussian distribution according to the central limit theorem [44].

For uncertainty propagation, 2 cases can be distinguished: addition / subtraction and multiplication /
division. If the uncertainties are uncorrelated, addition in quadrature of the standard deviations can be
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used to obtain a combined standard uncertainty.

A simplified example of a case where uncertainties are added is presented in the beginning of this chapter
(Figure 34). The length of each piece of laminate could be expressed as the ”true” length (L) + the error
(e) caused by inaccuracy in the cut and the measurement. This error can be described by a probability
distribution, determined by the mean µ and standard deviation σ. Here σ represents the uncertainty. As
the laminate pieces are both cut with an accuracy of ±0.5cm and there is no further knowledge, the
error could be described by a rectangular distribution centered around 0, with a minimum and maximum
of ±0.5cm. To calculate the uncertainty of the combined length (L1 + L2) of the two pieces, the
uncertainties (σ1, σ2) of both cuts can be added in quadrature as shown in Equation 16. Note that for a
rectangular distribution centered around 0, σ is calculated by dividing the limit of the distribution by the
square root of 3 and the length of each plint is 30cm± 0.5cm

σL1+L2 =

√
(
0.5√

3
)2 + (

0.5√
3

)2 = 0.41cm −→ L1 + L2 = 60cm± 0.41cm (16)

This means, that the total uncertainty of sawing the two pieces of laminate is ± 0.41 cm. When taking
a total safety margin of 0.41cm (so 0.41/2 cm on each piece of laminate), there is (roughly) an 68.3%
(k=1) probability that the pieces fit the gap in your floor. Doubling this safety margin (k=2) to 0.82 cm
there is a 95% probability the pieces will fit! Note that in practice, more samples (more plints) should
be considered, as the central limit theorem is only valid when the sample size is sufficiently large.

If the uncertainty has to be determined for a product (such as a volume, V), the normalized standard
deviations should be added in quadrature as shown in Equation 17. Here L,W and H represent length,
width and height, σL, σW and σH represent the uncertainty in length, width and height respectively.

V = L ∗W ∗H −→ σV
|V |

=

√
(
σL
|L|

)2 + (
σW
|W |

)2 + (
σH
|H|

)2 (17)

In case the output has a higher dependency on a change in one variable compared to a change in another
variable, sensitivity coefficients can be included. For a general equation z = f(x, y):

σZ =

√
(
∂z

∂x
σx)2 + (

∂z

∂y
σy)2 (18)

5.2.2 Application of the GUM on IV measurements at STC

A number of papers is available in literature where accredited PV laboratories present bottom-up un-
certainty analyses for the measurements of PV modules at STC. Even though the GUM provides clear
guidelines on the determination and propagation of uncertainties, it is too general to obtain fully con-
sistent uncertainty analyses for specific applications such as photovoltaic measurements. While some
components are well-defined and can be quantified using standardized methods, this is not the case
for all components. Often the value must be estimated based on results from simulations, real world
experience or statistical analysis.

Table 9 shows the major uncertainty contributors for Pmax, presented by Fraunhofer ISE for the calibra-
tion of c-Si PV modules as published in “Uncertainty in PV Module Measurement—Part I: Calibration
of Crystalline and Thin-Film Modules” by D. Dirnberger and U. Kraling [7].
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Table 9: Uncertainty values reported for the calibration of c-Si photovoltaic modules at Fraunhofer ISE [7]

In equation 19, these components are then added in quadrature to obtain the k = 1 (68.3%) combined
uncertainty.

uPmax =
√
u2Irr + u2IV + u2Repro + u2STC + uFit + u2Temp = 0.802%, k = 1. (19)

Expanding this uncertainty to a k = 2 (95%) confidence interval results in uPmax(k = 2) = 2 ∗ 0.802%
= 1.6%, which is a typical uncertainty on the Pmax of Fraunhofer reference modules used in many labs
and factories as a calibration standard for their equipment.

The effective irradiance describes the uncertainty on the absolute value of the actual irradiance inci-
dent on the module. This comprises amongst others the calibration uncertainty of the World Photo-
voltaic Scale (WPVS) reference cell (this is measured simultaneously with the device under test (DUT)
at Fraunhofer, and can be considered an alternative to the reference module commonly used at Eternal-
sun Spire), light uniformity and spectral mismatch. Uncertainty on the IV curve is related to effects that
affect the shape of the IV curve, rather than just Isc or Voc. An example could be capacitive effects [45],
which under- or overestimates the measured module current (thus changes the IV curve) depending on
the direction (Isc to Voc or reverse) of the IV sweep. This effect is especially relevant for high efficiency
c-Si technologies. The reproducibility factor accounts for uncertainties and correlations not aware of
and/or not considered in the others, such as inconsistencies in the procedure or variations in test condi-
tions. This number is based on measurements on 9 modules with the same method every 3 weeks for
multiple years, the spread of the results is considered to be the uncertainty. Correction to STC uncer-
tainties are related to imperfect knowledge of correction parameters such as temperature coefficients,
which are required for correction of the measurements to STC. These corrections to STC allow for in-
dustry wide comparability of the results. The uncertainty of the Fit accounts for uncertainty between
conversion of the rough data towards the final parameter. Electrical noise for example can introduce
(small) irregularities in the module IV data. Generally, the presented IV curve and its parameters are
the result of a fit between these rough data points. Finally the Temperature component accounts for
uncertainties in the true module temperature. This can, amongst others, be caused by inaccuracies of
the temperature sensors, or deviations between the cell temperature and the temperature measured at the
outside of the module.

A more visual way to show the contribution of each uncertainty component is by the use of the sunburst
diagram in Figure 40. In this figure also the most relevant sub-components of each uncertainty factor are
shown. Note that for this figure, the uncertainty contributions from Table 9 are squared, showing their
actual contribution to the final combined uncertainty, as this is calculated by addition in quadrature.
It can be seen that a large part of the Pmax uncertainty is related to uncertainty in light intensity and
spectrum.
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Figure 40: Visual interpretation of uncertainty drivers for the calibration of c-Si photovoltaic modules at Fraunhofer ISE [7]

The sub-components will be briefly explained, a more detailed explanation is available in Appendix A.
Uncertainty in the Signal (DAQ) - Reference Cell, affecting the irradiance measurement, is mainly the
result of noise on the signal going from the calibrated WPVS reference cell to the DAQ. Additionally, the
DAQ itself can introduce noise or offsets into the signal. Generally, many samples are considered and
averaged, which reduces the effect of signal noise. In combination with accurate electrical calibration of
the DAQ, this results in a relatively low contribution to the uncertainty. The Calibration Isc - Reference
cell represents uncertainty of the Isc value of the WPVS reference cell at 1000W/m2. At Fraunhofer, a
”primary” reference cell is used, calibrated with a very low uncertainty by PTB (the National Metrology
Institute in Germany). This calibration value changes slightly throughout the years e.g. by material
degradation, which is covered by the Drift - Calibration Isc component. The change of the calibration
Isc is estimated from yearly recalibrations of the cell. The Distance & Orientation component accounts
for any differences between the distance or angle of the device used for calibration (in this case the
WPVS reference cell), to the light source and the distance or angle of the device under test (DUT) to the
light source. Naturally, when one of the devices is closer to the light source, the intensity of the incident
light will be higher. The Spectral Mismatch accounts for any uncertainty resulting from differences in
the spectral response of the WPVS reference cell and the DUT. While corrections are applied for these
differences, there will always remain uncertainty as the spectral response of the DUT and reference
cell are only known with some uncertainty and so is the spectrum of the simulator. Irradiance Non-
uniformity - Reference cell covers uncertainty by non-uniformity in the irradiance, which can cause
that the irradiance measured by the WPVS reference cell is not fully representative for the irradiance
incident on the DUT. This will cause a (systematic) offset error when correcting to the target irradiance
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(e.g. 1000W/m2 at STC).

In the IV curve uncertainty budget, there is another DAQ related component: the Signal (DAQ) - IV
Curve component. This accounts for the signal noise and DAQ offset on the current and voltage mea-
surement of the DUT, thus on the IV curve itself. Ohmic resistance accounts for any additional resis-
tance between the 4-wire measurement point and the DUT (such as bad connectors, or cable adapters).
Additional resistance could cause a small shift in the voltages in the IV curve. The Hysteresis is related
to the difference in forward/backward sweeping, which is caused by module capacitance in combination
with a dynamically applied load. Irradiance non-uniformity in the area where the DUT is illuminated
can reduce all module currents, but also affect the shape of the IV curve. An example would be when
a bypass diode is activated because of a cold spot on the test surface (a spot where the light-intensity is
lower). This is essentially the same as partial shading of a module. If not all the PV module substrings
(a substring being a string of series-connected cells protected by one bypass diode) are affected, this
will mainly affect the Pmax of the module rather than ISC or VOC . Temperature non-uniformity can
also create additional effects on the IV curve, the uncertainty caused by temperature non-uniformity is
determined by multiplying the temperature coefficients by the maximum temperature non-uniformity.

5.2.3 Application of the GUM on PV Temperature Coefficients

Most of the analyses, such as the one discussed in previous section, aim to determine the measurement
uncertainty for STC conditions. In “Uncertainty Estimation of Temperature Coefficient Measurements
of PV Modules”, by B.Mihaylov et al [46], probably the only bottom-up uncertainty analysis applied on
setups that measure PV temperature coefficients is presented. An analysis similar to the one from Fraun-
hofer ISE is performed, which is then extended to determine the measurement uncertainty of temperature
coefficients as well as measurement uncertainty values for the temperature and irradiance levels in the
IEC61853-1 Power Matrix. The overview of the model underlying the uncertainty analysis is shown in
Figure 41. IV and temperature measurements are obtained at different temperatures. The Pmax uncer-
tainties are obtained and split in systematic and random sources and the uncertainty of the temperature
coefficient is then calculated using an algorithm implementing a Generalized Gauss Markov Regression
by NPL [47]. This method is basically a weighted least squares method to obtain linear fits, which can
also take into account correlations between the uncertainties at different points.
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Figure 41: Procedure for evaluation of temperature coefficient uncertainty presented in “Uncertainty Estimation of Temperature
Coefficient Measurements of PV Modules”, by B.Mihaylov et al. Figure adapted from last-mentioned

This uncertainty analysis is then applied on 5 different measurement setups. To evaluate the validity of
the analysis, two c-Si modules are tested on each of the 5 setups. The results are presented in Figure 42.
For system A and B, the modules are tested in a temperature controlled chamber with a glass window,
with an AAA and BBB class pulse based solar simulator respectively. System C is a continuous solar
simulator that heats the PV modules by radiation. System D is an outdoor setup, where the modules
are heated by natural illumination under clear sky conditions. In system E the modules are heated
via a contact-heating mat and IV measurements are taken while the modules cool down. Temperature
measurements in system E are based on a method developed at CREST, which uses the module voltage
at a pre-defined injected current level to determine the module temperature. This is further elaborated
in aforementioned work from Mihaylov et al. The observed deviations in Pmax temperature coefficients
are in agreement with the estimated uncertainties for four out of the five setups. The deviations from
system B, the only system where the results are not within estimated uncertainty levels, are reportedly
believed to be caused by emission peaks in the wavelength region where the spectral response of the
PV modules shifts with temperature (this will be further discussed in section 5.5.3). The interaction of
emission peaks with the (temperature induced) change in spectral response of the modules is not fully
accounted for in the uncertainty estimation, resulting in an underestimation of the uncertainty of system
B.
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Figure 42: Temperature coefficients of two c-Si modules measured at 5 different measurement setups, including error bars as
determined using uncertainty analysis presented above. Figure from: B. Mihaylov et al, ”Uncertainty Estimation of Tempera-
ture Coefficient Measurements of PV modules”

5.3 Uncertainty analysis on the temperature coefficient setup

In this subsection, the uncertainty analysis on the developed measurement setup is presented. Emphasis
will be on the module power, Pmax, and its temperature coefficient, however a similar procedure holds
for the other module parameters as well. First, section 5.3.1 will discuss the used uncertainty model.
The inputs for this model are the STC uncertainties related to Pmax, which will be discussed in section
5.3.2 and the temperature related uncertainties, which will be discussed in section 5.3.3. Finally, the
results of the analysis are presented in section 5.3.4.

5.3.1 The uncertainty model

The uncertainty model is based on a Monte Carlo approach [48]. In this method, a quantity is iteratively
calculated, each time varying the input data based on assigned probability distributions. The spread of
the outcome of the results can then be used to estimate the propagation of the uncertainty. In this model,
the iteratively calculated quantity is the temperature coefficient, and the varying input data are the errors
affecting the temperature coefficient (further elaborated in section 5.3.2 and 5.3.3).

These variable inputs (errors) in the Monte Carlo simulation need to affect a set of initial power and
temperature data. This data is based on a theoretical module of which the “true” Pmax at STC and the
“true” Pmax temperature coefficient are assumed to be known. This Pmax and its temperature coefficient
are 300W and -0.4%/°C respectively. Based on these numbers, two vectors, one with Pmax values and
one with module temperature values are formed, which represent the (theoretical) “true” Pmax values at
a selection of module temperatures. The Pmax and its temperature coefficient are representative for 60
cell PERC based c-Si modules, currently widely available in industry. The temperatures considered are
based on the IEC69853-1 power matrix (section 2.3.2) supplemented with the minimum and maximum
module temperatures that can be obtained in the temperature chamber. These vectors are from here on
referred to as the baseline data: Pmax = [318 312 300 270 240 228]; Temperature = [10 15 25 50 75 85].
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The outcome of the model will be a set of temperature coefficients, obtained by least square fits of the
corresponding Pmax and temperature vectors. These vectors are formed from baseline data affected
by the estimated measurement errors (of which the latter are varied each iteration). This can then be
compared with the baseline data and corresponding temperature coefficient, to determine the combined
effects of all the uncertainty contributors.

A condensed version of of a single iteration is shown in Figure 43. This example assumes 4 uncertainty
contributors: two scale factor uncertainties and two random uncertainties. Additionally, only three Pmax
and temperature data points are considered for the baseline data. Each iteration starts with the baseline
data, plotted in Figure 43-A. Figure 43-B then shows the result of applying the first scale factor error,
sampled from the corresponding Gaussian distribution. The result of this will then be used as an input
for the second scale factor error in 43-C (which is sampled from another distribution). After this, the two
random errors are consecutively added in figure 43-D and 43-E. Finally the result from all the combined
effects is shown (next to the baseline data) in Figure 43-F. Note how each scale factor error results in
a rotation around 25°C and thus affects all the data points. Random errors will instead affect each data
point individually, thus multiple errors need to be sampled from the same distribution every iteration
when applying a random error as shown in 43-D and 43-E. This procedure will then be iterated, creating
a range of possible outcomes.
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Figure 43: Application of a Monte Carlo simulation to determine the uncertainty propagation of various independent uncer-
tainty contributors which are described by a probability density function

By comparing the range of outcomes with the baseline data, the uncertainty of the temperature coeffi-
cient can be estimated. Distinction is made between absolute and relative temperature coefficients. The
absolute coefficient is the slope of the fit of Pmax and the module temperature, the relative coefficient is
the slope divided by the STC value of Pmax. Consequently, the uncertainty of the absolute coefficient
equals the uncertainty of the slope and the uncertainty of the relative coefficient is a result of the com-
bined uncertainty of the slope and the STC uncertainty. For the uncertainty of the slope of the fit (the
absolute temperature coefficient), it is important to distinguish offset, scale factor and random errors as
these affect the temperature coefficient differently as observed seen in Figure 43-C and 43-D. This is
additionally visualized in Figure 44. For the absolute temperature coefficient, any offset error can be
neglected, as these do not affect the slope of the fit. Scale factor errors are often proportional to the
temperature deviation from STC temperature (25°C), resulting in a rotation around 25°C. These errors
thus have direct impact on the temperature coefficient. Random errors affect each point individually and
in a random direction, thus usually have little effect on the slope of the fit.
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Figure 44: Visualization of offset, scale factor and random errors. Offset errors do not affect the slope of a fit, scale factor
errors strongly affect the slope, random errors affect the slope to a limited extend. The effect of random errors will however
decrease when considering more measurement points

To summarize the model: based on observations and estimations which will be discussed in section
5.3.2 and 5.3.3, probability density functions are created to describe each relevant uncertainty compo-
nents. From these PDF’s, scale factor and random errors are pseudo randomly sampled and the effect
of these errors is then consecutively applied on the Pmax versus temperature data. When all the errors
are applied, an ordinary least squares fit is obtained and the slope and intercept of this fit are saved.
This process is iterated for a large number of times, resulting in a range of possible fits. The mean and
standard deviation of this fit are then analyzed and compared to the fit of the baseline values. The es-
timated uncertainty for the absolute temperature coefficient is then determined from the difference and
spread between the simulated results and the baseline. The relative temperature coefficient is obtained
by dividing the absolute temperature coefficient by the STC value. The uncertainty of the relative tem-
perature coefficient is obtained through addition in quadrature of the uncertainties of both the absolute
temperature coefficient and the STC value.

5.3.2 Uncertainty budget at standard testing conditions

Figure 45 shows the uncertainty budget for the Eternalsun Spire temperature coefficient setup at STC.
Note that uncertainty components that have less than 2% contribution to the STC Pmax are unmarked for
readability. The relative contribution of each component depends on various drivers such as light quality,
electrical calibration, environmental effects, module technology and operating procedures, thus Figure
45 is only valid under specific assumptions and conditions. In this case, a c-Si DUT is assumed and the
setup is calibrated with a spectrally matched reference module (a module with the same spectral response
as the DUT). As a result of this assumption, uncertainty caused by spectral mismatch is considered
negligible. In practice there will always remain some uncertainty because of module to module variation.
Uncertainty resulting from environmental effects is reduced by the temperature chamber which reduces
effects such as incorrect temperature measurements caused by surrounding heat sources. A very good
example of such an effect is shown in Figure 8 from [49], where an infrared (IR) reflection of the
operator that handled the DUT is visible on the IR image, indicating a locally higher temperature. This
would have resulted in a measurement error if an IR sensor was used for the temperature measurement.
The uncertainty build-up will be different when other assumptions are made (e.g. a different module is
tested), this will be discussed in section 5.4.
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Figure 45: Uncertainty contribution of various uncertainty drivers in the Eternalsun Spire Temperature Coefficient setup,
assuming a c-Si module under test with a spectral response matched reference module. Note: uncertainty drivers with a
contribution below 2% are unmarked to improve readability

As seen in Figure 45, the largest effects are the result of optical components: the uncertainty on the
calibration value of the reference module and the non-uniformity of the irradiance of the simulator. In
practice, a third very significant effect is the spectral mismatch, which can be partially mitigated using
spectral mismatch correction. This effect is currently not considered as it is assumed that a spectrally
matched reference module is used for calibration. One could consider this close to optimal conditions.
A summary of the largest effects and their magnitude will be given below in Table 10 - 12, a more
extensive description and more background information is provided in Appendix A. As the uncertainty
of Pmax at STC is not the main goal of this thesis, many of the components presented in this section are
based on previous estimations by Eternalsun Spire. Where possible, these estimations were evaluated
and some uncertainty components were added or changed based on this work. This resulted in a more
detailed and more extensive estimation of the STC uncertainty budget at Eternalsun Spire.

52



Table 10: Summary of uncertainties affecting the module short-circuit current. Note: the coverage factor describes the confi-
dence level as discussed in section 5.2.1

Table 11: Summary of uncertainties affecting the module open-circuit voltage. Note: the coverage factor describes the confi-
dence level as discussed in section 5.2.1
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Table 12: Summary of uncertainties affecting the module Fill Factor. Note: the coverage factor describes the confidence level
as discussed in section 5.2.1

The total combined uncertainty for the Pmax measurement at STC using the TCLF is estimated at 1.05%,
k=1, more commonly reported in the form of the expanded uncertainty: 2.1%, k=2. For the absolute
temperature coefficient (the slope), all the offset uncertainties can however be ignored as described ear-
lier in Figure 44. These offset uncertainties mainly comprise the optical uncertainties. The remaining
uncertainties that are relevant for the uncertainty of the absolute temperature coefficient are the repeata-
bility of the Pmax and Temperature measurement as shown in Table 13. These both can be considered
random errors and are directly obtained by statistical analysis on the measurement data.

Table 13: Summary of the STC uncertainties that can affect the absolute temperature coefficient

5.3.3 Temperature effects on the uncertainty budget

This section will elaborate on uncertainty components that become (more) relevant when testing at
temperatures other than STC temperature. Three components will be discussed: spectral mismatch, the
monitor cell temperature coefficient (which corrects the irradiance measurement) and scale factor errors
in the module temperature sensors.

Spectral Mismatch at elevated temperatures

The first uncertainty component significantly affected by temperature is the spectral mismatch (MM).
Equation 20 [50] shows how to calculate MM. MM is used as a correction factor for differences be-
tween the AM1.5G (STC) spectrum (Eref (λ)) and the solar simulator spectrum (Emeas(λ)), taking into
account the spectral response (SR) of both the reference device (used for calibration and/or to obtain a
directly traceable irradiance measurement) (Sref (λ)) and the DUT (Ssample(λ)). MM is unity if either
the reference/calibration device and the DUT have the same SR, or if the solar simulator has a perfect
AM1.5G spectrum (which is never the case in practice). If MM is above unity, the DUT can utilize a
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larger part of the spectrum (thus effectively receives more irradiance) compared to the reference device
and vice versa when MM is below unity. This can be corrected for by dividing the measured currents,
thus also Pmax, by MM.

MM =

∫
Eref (λ)Sref (λ)dλ

∫
Emeas(λ)Ssample(λ)dλ∫

Emeas(λ)Sref (λ)dλ
∫
Eref (λ)Ssample(λ)dλ

(20)

As discussed in section 2.4.1, the bandgap of the c-Si devices decreases with increasing temperature,
increasing the probability for low-energy (high wavelength) photons to generate electron-hole pairs.
This results in an increased SR at the near-bandgap wavelengths. Figure 46 shows the SR of a c-Si cell
measured at 10°C, 30°C and 60°C.

Figure 46: Measured spectral response of a c-Si cell at 10°C, 30°C and 60°C. Image adapted from: Y. Yang et al, ”Understand-
ing the uncertainties in the measurement of temperature coefficients of Si pv modules” 29th EUPVSEC, 2014 [8]

As a result the change in spectral mismatch with temperature, depending on the change in SR and the
spectrum of the solar simulator. To estimate the effects of this SR change in combination with the devel-
oped setup, MM is calculated for different temperatures. In Figure 47, the calculated MM is compared
with the MM at 25°C. It shows that MM decreases approximately linear with temperature considering
the SR at 25°C as a reference. As a result, module currents (and thus Pmax) would be underestimated
by approximately 0.47% at a temperature of 65°C. This is in agreement with expectations as the energy
content in the simulator spectrum is below the energy content in the AM1.5 spectrum in the wavelength
region where the change in SR occurs (as was observed previously in Figure 16). For STC measurements
MM is corrected for, either by using MM to set the proper light intensity, or by using MM to correct
the measurement results afterwards. At elevated temperatures, this correction could also be performed
[51], however in many cases temperature-dependent SR data (or the equipment to measure this) is not
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available and no procedure is given in the widely used IEC standards [50].

Figure 47: Variation of spectral mismatch with temperature, relative to spectral mismatch at 25°C

In a recently published paper by Y. Hishikawa et al. [52], the effect of temperature on spectral response
of several c-Si modules is studied. The measured SR of various cells in mentioned work are used
to determine the MM at 25°C and 65°C with the solar spectrum of the TCLF, of which the result is
presented in Figure 48. As MM is approximately linear with temperature, the change in MM can be
calculated in %/K. The average, -0.00957%/K, and standard deviation, 0.00266%/K, of the 5 considered
cells are used to form a normal distribution describing this effect. It has to be noted that this effect
could be larger for other c-Si cells and modules, however only a limited amount of data is currently
available and more research is recommended. As it is assumed that this effect is not corrected for, the
error because of MM is fully propagated into the total uncertainty budget even though it is biased to one
side.

Figure 48: Spectral mismatch at 65°relative to 25°C as a result of the temperature induced change in spectral response of c-Si
modules
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The Monitor Cell Temperature Coefficient

The second uncertainty component is the temperature correction of the monitor cell (MC), a small c-Si
cell placed in a regulation loop with the simulator lamps. This cell controls the irradiance based on
the cell Isc and a target current set during calibration. If the temperature of the monitor cell increases,
the provided current should be corrected using equation 21 and the Isc temperature coefficient of the
MC to keep the lamps at the target irradiance. Here IRC−corr is the corrected Isc, IRC−meas represents
the uncorrected Isc measured by the MC, αRC is the Isc temperature coefficient of the MC and T the
MC temperature. As can be concluded from the large deviations between Isc temperature coefficients
observed in Section 4, this coefficient is hard to determine accurately, since it is both very small as well
as a function of the simulator spectrum.

IRC−corr = IRC−meas ∗ (1− αRC ∗ (T − 25°C)) (21)

As long as the temperature is close to 25°C (STC temperature), the effect of an incorrect MC temperature
coefficient is very limited. In the temperature coefficient setup however, even though the monitor cell is
not directly in the temperature chamber but underneath the glass in the solar simulator, the monitor cell
reaches temperatures up to approximately 65 °C during a typical temperature coefficient test, as can be
seen in Figure 49. As a result, the effect of small errors in the MC temperature coefficient is amplified
by large temperature deviations from STC.

As the MC short-circuit current is directly proportional to the irradiance, an error in temperature co-
efficient directly results in an offset in the irradiance. Figure 50 shows this effect for errors in MC
temperature coefficient up to 50%. Note that the horizontal axis expresses module temperature, thus
there is still some error at a module temperature of 25°C, as the monitor cell temperature is still a few
°C higher as seen in Figure 49.

Figure 49: Monitor cell temperature and module temper-
ature during a typical temperature coefficient test with
the Eternalsun Spire temperature coefficient setup

Figure 50: Error in irradiance at different module tem-
peratures as a function of the magnitude in monitor cell
temperature coefficient error

The temperature coefficient of the monitor cell is currently determined using a goal seek method. In
this procedure a module with a well known Isc temperature coefficient is placed on the simulator and
is flashed with an interval as short as possible to heat the monitor cell. The trend between the monitor
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cell temperature and the module Isc is used to determine MC temperature coefficient. This temperature
coefficient is then entered and the procedure is repeated to ensure the module Isc remains stable. It
is estimated by Eternalsun Spire that this procedure can obtain the MC temperature coefficient with a
relative accuracy of approximately 20% (thus 20% of the Isc temperature coefficient). This estimation
is based on data provided by various customers of Eternalsun Spire, such as PV module manufacturers.
Note that this effect can go either way, e.g. the coefficient can be 20% too high or 20% too low. When
testing around STC, this is sufficiently accurate, as the monitor cell will hardly reach temperatures
above 30°C under normal operation (in typical lab environments). For temperature coefficient testing,
an error in the MC temperature coefficient in combination with large deviations from STC temperature,
can result in significant errors in the measured temperature coefficients of the device under test. An
alternative procedure to determine the MC temperature coefficient will be elaborated in section 6.

Temperature sensor scale factor errors

A third source for errors in the temperature coefficient measurement is the measurement accuracy of the
temperature sensors. These sensors can have a measurement offset from the ”true” temperature (e.g.
always measure 0.5°C above the true temperature) and measurement scale factor errors (e.g. measure
0.5°C below the true temperature at 0°C and 0.5°C above the true temperature at 100°C). While offset
errors will not affect the slope of the temperature coefficient, scale factor errors have direct impact.

The standard setup makes use of T-Type thermocouples. For T-Type thermocouples, the manufacturer
accuracy specification is ± 1°C. In a theoretical worst case scenario, the sensors would measure 1°C
below the ”true” temperature at one side of the used module temperature range (10°C to 85°C), and 1°C
above the ”true” temperature at the other side of this range. The probability on this is however very low,
as the measurement range of these specific T-type thermocouples is approximately 210°C and the± 1°C
measurement accuracy specification should also hold outside the 10°C - 85°C range.

To estimate a more realistic value of the scale factor error, the 9 T-type sensors available in the setup
are wrapped closely together in a small piece of thermally conducting aluminium tape, which should
give each sensor the same temperature. The bundled sensors are placed in the temperature chamber.
The temperature of each individual thermocouple at 25°C and 75°C air temperature is compared with
the temperature averaged from the 9 sensors. Based on extrapolation of these results, the scale factor
error is estimated to be ±0.15°C over the range from 10°C to 85°C. As the scale factor errors of the 9
sensors are spread quite uniformly, this effect is modelled as a rectangular distribution, with the edges
at ±0.15°C. The temperature scale factor error will work proportionally to full extent on both sides.
Note that this could theoretically be biased as all sensors could e.g. be from a same batch with the same
material properties and the average from the 9 sensors might be biased to some extend.

Another possible way would be to scale the accuracy limits by the fraction of the measurement range
used. The ±1°C is for these specific thermocouples is valid for the a measurement range from -75°C to
135°C. Considering the module temperature is measured from 10°C to 85°C, the fraction of the range
would be 75/210=0.35°C. The accuracy specification could then be scaled, to ±0.35 °C. Note that this
approach is not valid for the temperature offset, only for temperature scale factor as absolute errors can
still be up to ±1°C.

Increasing the number of sensors can average out effects of scale factor errors assuming the errors are
randomly distributed amongst different sensors. However, with the ±0.15°C scale factor error over
the full range combined with the other effects discussed above, increasing the number of sensors has a
negligible effect on the temperature sensor scale factor error component in the temperature coefficient
uncertainty. However, it will help to determine the true back sheet temperature more accurately. This
will be elaborated further in the sensitivity analysis in 5.4.
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5.3.4 Uncertainty of Pmax Temperature Coefficients: Simulation Results

In previous sections, 5 components affecting the Pmax temperature coefficient are identified: 1. Repeata-
bility of the Pmax measurement; 2. Repeatability of the temperature measurement; 3. The temperature
induced change in spectral mismatch; 4. Uncertainty on the monitor cell temperature coefficient; 5.
Scale factor errors in the temperature sensors. These components are summarized in Table 14 and used
as an input for the Monte Carlo simulation described in section 5.3.1.

Table 14: Summary of uncertainty components used as an input for the Monte Carlo Simulation

The simulation is iterated for 10000 runs and for each iteration the absolute temperature coefficient is
determined using other draws from the input uncertainty distributions on the baseline data. The result
is a set of 10000 Power-Temperature vectors, to which linear least square fits are applied. These fits
can be described by the slope (the absolute temperature coefficient) and the intercept with the vertical
(Pmax) axis. These values are stored, a visualisation of the first 100 values is shown in Figure 51. For
comparison, the ”true” temperature coefficient (thus without any measurement errors) is plotted as a
dashed green line. The temperature coefficients returned from the simulation are biased, overestimating
the temperature coefficient (in absolute terms). This is most likely a result of the shift in spectral re-
sponse, as this effect is the only effect which is biased instead of averaged at 0. This means that when
a temperature coefficient is measured with the TCLF, it is likely to be overestimated (in absolute terms)
compared to the ”true” temperature coefficient.
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Figure 51: Pmax versus temperature for the first 100 iterations of the Monte Carlo simulation.

Figure 52 shows the distribution of the simulated absolute temperature coefficients in histogram form.
The shape of the histogram is approaching the shape of a Gaussian distribution. The bias is much
more visible in this form, with the ”True” temperature coefficient far outside the 95% confidence inter-
val. A mean absolute temperature coefficient of -1.2236W/°C is obtained, with a standard deviation of
0.0097W/°C, or in normalized form, a (k=1) relative standard deviation of 0.79%. This would implicate
that, when not including the additional uncertainty as a result of the bias (or correcting for the MM-
related bias), the absolute temperature coefficient would have a (k=2) standard uncertainty of 1.58%.
However, since no correction is applied for this bias in practice, the uncertainty caused by this bias
should be accounted for and the 2σ deviation furthest from the ”true” absolute temperature coefficient
should be used to report the uncertainty on the measured absolute temperature coefficients. The 2σ fur-
thest from the ”true” absolute temperature coefficient is located at -1.2430W/°C, so 0.0426W/°C from
the ”true” value. The k = 2 relative standard uncertainty is now estimated at 0.0430/1.243*100% =
3.46%.

Figure 52: Pmax temperature coefficients: Histogram of the absolute temperature coefficients resulting from 10000 iterations
of the Monte Carlo simulation

For many readers, the relative temperature coefficient might be more commonly known, as it is generally
mentioned on the specification sheets. This coefficient is determined by normalizing the slope by the
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STC value of the parameter. This is done for the simulation results in Figure 53.

Figure 53: Pmax temperature coefficients: Histogram of the relative temperature coefficients resulting from 10000 iterations
of the Monte Carlo simulation

In contrast to the absolute temperature coefficient, any uncertainties in the STC measurement (e.g. sim-
ulator calibration) will affect the relative temperature coefficient. The uncertainty of the relative temper-
ature coefficient can be determined by combining the uncertainty of the absolute temperature coefficient
and the uncertainty in STC value (2.1%, k=2, section 5.3.2) through addition in quadrature. This results
in an uncertainty for the relative temperature coefficient of 4.05% for c-Si modules, measured on the
TCLF calibrated with a spectrally matched reference module (or alternatively WPVS reference cell).
The results are summarized in Table 15

Table 15: Summary of the results on the Pmax temperature coefficients measured with the temperature coefficient lab flasher

5.4 Sensitivity analysis

The results presented in section 5.3.4 are estimations where the measurement conditions can be properly
controlled. This degree of control however, can not always be achieved in practice. Also, the inputs
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are partly based on estimations and approximations which are not always possible to validate. To see
the effect of such less controlled testing conditions or changes in other input parameters, the input
parameters for the model are systematically varied. The seed of the random number generator is set to
0, so that each time the same ”random” errors are drawn from the probability distributions in the model.
This allows for comparability of the results when changing individual parameters.

First the final result for the developed setup, presented in section 5.3.4, is decomposed by systematically
turning inputs on and off. The uncertainty budget is shown in Figure 54. The main contributors for the
relative Pmax temperature coefficient are the temperature induced spectral mismatch, the STC uncer-
tainty and the monitor cell temperature coefficient. Repeatability effects are limited as these are both
small in magnitude and affect each power and temperature point individually and in random direction,
possibly cancelling out (part of) the effect on the temperature coefficient.

Figure 54: Uncertainty of the estimated relative Pmax temperature coefficient

Now the model is adapted for four additional scenarios. In the second scenario (”Large T-MM effect”),
the temperature effect on MM is changed to the largest value in Figure 48. In the standard scenario an
average out of 5 cells is used for a more general application, however for some cells/modules this esti-
mation might be over- or under-conservative. Besides MM, the other inputs remain constant. The third
scenario (”40% MC Tempco uncertainty”) is related to the uncertainty in the monitor cell temperature
coefficient. In the standard scenario, this is estimated at 20%. Their is currently no better method to
determine this uncertainty than expert judgement. These judgements are based on comparative mea-
surements and analysis of long-term measurement data provided by PV module manufacturers using
measurement setups from Eternalsun Spire. In the third scenario, this uncertainty is increased to 40% to
visualize the effects of an incorrect determination. In the fourth scenario (”3% STC uncertainty”), less
ideal STC circumstances are assumed. A reference cell or module is in practice never perfectly spec-
trally matched and sometimes no SR data of the DUT is available. Such inability to perform spectral
mismatch corrections will increase STC uncertainty significantly. Finally, the fifth scenario (”1°C Temp.
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scale factor error”) covers the effect of scale-factor errors of the T-Type thermocouples for a worst case
scenario, based on manufacturer specifications. The results are shown in Figure 55.

Figure 55: Uncertainty of the estimated relative Pmax temperature coefficient for 5 different scenarios presented in section 5.4

Comparing the ”Large T-MM effect” with the standard scenario from Figure 55, using the extreme tem-
perature induced MM instead of the average value increases the estimated uncertainty by approximately
0.4%. Larger impact on the uncertainty is observed when considering a larger, more conservative mon-
itor cell temperature coefficient uncertainty. Considering less ideal STC measurement conditions will
also significantly increase the uncertainty of the relative Pmax temperature coefficient. Finally, scale fac-
tor errors of the temperature sensors in a worst-case scenario only increases the uncertainty by 0.22%,
thus a more detailed uncertainty estimation of this component will only have limited effects.

5.5 Temperature coefficient measurement uncertainties in industry practice

This subsection will elaborate on some measurement uncertainties currently observed in industry prac-
tice. First section 5.5.1 will discuss the implications of temperature coefficient non-linearity on the
measurement accuracy of the temperature coefficient. Then 5.5.2 shows the possible effects of temper-
ature non-equilibrium on the measurement results. Finally 5.5.3 shows how differences in simulator
spectra can affect the temperature coefficient measurement.
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5.5.1 Non-linearity of Silicon Heterojunction Technologies

As shown in Section 4, performance of Silicon Heterojunction (SHJ) based PV modules can be non-
linear with temperature. IEC standards define module requirements to be considered linear. For linearity
with temperature, sufficient linearity of Voc and Isc is required. The non-linearity in performance of SHJ
modules is a fill factor effect however, which is not treated in IEC60904-10. As the Voc and Isc meet the
linearity requirements, these modules can be considered linear. Because of this, the norms methods to
determine temperature coefficients (Section 2.3.2) are valid for SHJ based modules as well. According
to IEC 60891, temperature coefficients must be determined over the temperature range of interest, with
5°C intervals over a range of at least 30 °C. The measurement results from one of the SHJ modules are
used to investigate the effect of the Pmax non-linearity with temperature on the temperature coefficient
uncertainty.

Figure 56: Pmax versus temperature for a Silicon Heterojunction module. The triangles indicate the actual measurements, the
dotted lines show the (extrapolated) linear fits for 3 ranges of interest: 10°C - 40°C (red); 55°C - 85°C (green) and 10°C - 85°C
(blue)

Figure 56 shows the Pmax versus module temperature from the selected SHJ module. Three linear
trends are drawn, based on the linear fit on Power-Temperature data ranging from 1: 10°C to 40°C (red);
2: 55°C - 85°C (green); 3: 10°C - 85°C (blue). As can be seen, the temperature coefficient will vary
significantly depending on the temperature range selected for the measurement or the linear fit. Relative
Pmax temperature coefficients for 5 different temperature ranges are calculated and shown in Table 16.
All these temperature ranges are allowed according to the IEC procedures for temperature coefficient
measurements. It is clear that much more than for other c-Si technologies (where Pmax changes approx-
imately linear with temperature), the temperature coefficient of SHJ modules can be highly dependent
on the temperature range over which it is measured, with deviations up to 50% even when measured
using the same setup. Neglecting this effect has large effects on the measurement uncertainty of the
Pmax temperature coefficient and will also increase uncertainty of the energy yield estimation.
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Table 16: Relative Pmax temperature coefficients for a commercial Silicon Heterojunction module using 5 different tempera-
ture ranges for fitting

5.5.2 Natural Cooldown (”Hot potato”) method

In section 2.3.1 the natural cooldown (”Hot potato”) method is explained, which is commonly used to
determine temperature coefficients of PV modules. Summarized, the module is heated in an oven or
climatic chamber, taken out, placed on a solar simulator and then illuminated IV measurements are done
while the module cools down to ambient temperature. As this procedure can also be performed on the
developed temperature coefficient setup by opening the temperature chamber at high temperature, an
accurate comparison can be made between the ”Hot Potato” and the ”Temperature chamber method”
method (also ”Oven” method in section 2.3.1).

First the ”Temperature chamber” method is performed. The test-equipment is calibrated and a c-Si
module is placed and heated until the module temperature is stable at 75°C. IV measurements are then
obtained at module temperatures of 75°C, 65°C, 55°C, 45°C, 35°C and 25°C, with the module in thermal
equilibrium at each temperature setpoint. After the module test with the ”Temperature chamber” method
is completed, the module is heated to a module temperature of 85°C. The chamber is then opened up,
exposing the module to ambient air and IV measurements with a 30 second flash-to-flash interval are
done while the module cools down to ambient temperature.

The measured module parameters using both methods are summarized in Figure 57 and Table 17. As
a result of the hot module exposed to the colder (approximately 25°C) ambient air, a temperature gra-
dient is present between the inside and the outside of the module and there is no thermal equilibrium.
This gradient is a function of the module temperature and the (ambient) air temperature [53]. The ”Hot
Potato” method is likely to underestimate the true cell temperature, which is in agreement with expec-
tations as the module is cooled from the outside while IV measurements are done. As the temperature
gradient increases with a higher difference between in- and outside module temperature, the slope, thus
the absolute temperature coefficients of the PV module parameters are not the same for the two methods.
The hot-potato method thus adds a one-sided, scale-effect error which significantly affects the results.

Table 17: Relative temperature coefficients of a c-Si PV module measured using the ”Hot Potato” procedure and the Tempera-
ture chamber procedure on the same solar simulator
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Figure 57: PV module parameters at various temperatures using the same solar simulator and two different temperature control
methods: the ”Temperature chamber” method with the PV module in thermal equilibrium and the ”Hot Potato” method without
thermal equilibrium

The magnitude of this effect is determined using the Voc value (proportional to the cell temperature) as
an ”internal” temperature sensor. Based on the Voc measurements and the Voc temperature coefficient
obtained using the (more accurate) ”Temperature chamber” method, the internal temperature during the
”Hot Potato” method is determined and compared with the temperatures measured by the thermal sen-
sors in Figure 58. As can be seen, especially for high module temperatures, the internal temperature
is severely underestimated when using the ”Hot Potato” method. With decreasing temperatures, the
temperature gradient, thus the junction-to-back temperature difference decreases and at ambient temper-
atures the difference is negligible.
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Figure 58: Backsheet temperature and cell temperature of a c-Si PV module while cooling down from 85 to ambient temper-
ature in horizontal orientation. The backsheet temperature is determined from the average of 9 thermocouples placed on the
backsheet, the cell temperature is calculated from the module Voc and the temperature coefficient obtained using the Tempera-
ture chamber method.

This error in determination of the true cell temperature, typical for the ”Hot potato” method, is likely
a significant contributor to observed differences in temperature coefficients reported in industry, as this
method is known to be widely applied. Even with the same simulator, calibration and module, the
relative difference from measuring the Pmax temperature coefficient with the ”Temperature chamber”
method and the ”Hot-potato” method is already 7%.

5.5.3 Effect of the simulator spectrum on the short-circuit temperature coefficient

As discussed in section 5.3.3, the spectrum of the solar simulator can have significant impact on the
temperature coefficient. The effect of simulator spectrum is the largest for the Isc temperature coefficient
which is directly dependent on the simulator spectrum, however it is also directly affecting Impp and thus
Pmax.

To study this effect, a c-Si DUT is tested using the TCLF and a continuous solar simulator with tempera-
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ture control capabilities. Even though this continuous simulator is not optimized for temperature coeffi-
cient measurements, it will be interesting for comparison as the spectrum in the wavelength region where
the temperature induced shift in SR occurs is quite different from the TCLF spectrum. As the continuous
solar simulator was still under construction, it was not absolutely calibrated and no reference irradiance
was measured yet. From the construction of similar simulators, the uncalibrated irradiance is known to
be in the range of 900W/m2 and 1100W/m2, however the exact value was not known. To compensate
for the difference in irradiance of the TCLF and the continuous solar simulator, Isc and Pmax values
measured with the continuous solar simulator are corrected by the ratio Isc−TCLF /Isc−continuous−sim
at 25°C. Voc values are uncorrected. Isc−TCLF was obtained with the TCLF calibrated to 1000W/m2,
so this correction can be seen as an irradiance correction of the continuous solar simulator measurements
to 1000W/m2. The effect of this difference in irradiance on temperature coefficient is assumed to be
negligible [54]. The maximum temperature non-uniformity on the backsheet of the DUT is± 3°C under
illumination and the DUT is oriented vertically (similar orientation as the module in Figure 11 in section
2.3.1). Uniformity, spectrum and stability are all rated A+ according to IEC60904-9 ed.3.

The results in Figure 59 show that even two high-end solar simulators with temperature control capabil-
ities are used, Pmax temperature coefficients can already show 5% relative deviations. The temperature
dependency of the Voc is almost similar, however the Voc measured with the continuous solar simulator
is consistently lower compared to the developed setup (TCLF) at the same temperature. This is the result
of a junction-to-back error, as the continuous solar simulator is heating the inside of the DUT and cold
air forced past the outside of the DUT to cool the DUT to desired temperature. As a result, the tempera-
ture measured on the back of the DUT, while using the continuous solar simulator, is below the average
cell temperature of the DUT so that a lower Voc is measured. In practice this offset can be corrected
for. Differences in Voc are about 1.2%, with a Voc temperature coefficient of approximately 0.3%/°C this
would indicate a 4°C back to junction difference in the continuous solar simulator, assuming the TCLF
obtains full equilibrium between cell and rear surface temperature. The difference in Isc temperature
coefficient is relatively high, which is likely caused by the difference in simulator spectra.

Figure 59: Comparison of an Al-BSF PV module, tested with a continuous solar simulator and with the temperature coefficient
setup both developed by Eternalsun Spire. Black: results from the continuous solar simulator, Red: results from the temperature
coefficient setup

The large difference in Isc temperature coefficient is expected to be a result of the difference in simulator
illumination spectra. Figure 46 in Section 5.3.3 shows that an increase in temperature of a c-Si cell
results in an increased response between 900nm and 1200nm. Figure 60 shows the spectra of both the
TCLF and the continuous solar simulator. Here it can be seen that especially in the region from 900nm
to 1200nm, the continuous simulator has more light compared to both the AM1.5G reference spectrum
and the TCLF spectrum.
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Figure 60: Measured spectra of the Temperature Controlled Lab Flasher (TCLF) and the Continuous solar simulator compared
to the AM1.5G reference spectrum (removed for public manuscript)

In theory Jsc, thus also Isc can be calculated from Equation 6. The EQE’s at 10°C and 60°C (obtained
from the spectral response) of the c-Si cell in Figure 46 are used as input, with the photon flux φ(λ)
as produced by the TCLF, the continuous solar simulator and the AM1.5G spectrum. The theoretical
temperature coefficient can then be calculated by dividing the difference in Isc by the difference in
temperature (50°C). Note that the absolute Isc depends on solar simulator calibration and spectrum. For
comparability, the Isc values measured by the simulators are scaled so that the Isc at 20°C is equal to Isc
at 20°for the AM1.5G spectrum. This is the same as the irradiance- and spectral mismatch correction
commonly performed at STC, however since no spectral response data at 25°C was available, data at
20°C is used.

Table 18: Theoretical Isc temperature coefficient, based on measured simulator spectra and c-Si spectral response at 10°C and
60°C presented in Figure 46. More light in the low-energy wavelengths increases the Isc temperature coefficient. Note that the
temperature coefficient measurements are based on a c-Si module measured in-house and the EQE values are obtained from
measurements in literature. While both c-Si technology, the degree of similarity of both spectra is not known

This comparison shows that the Isc coefficient is both in theory and practice highly dependent on the
spectrum used for the measurement and for the continuous solar simulator there is a high level of agree-
ment between the measured and calculated temperature coefficient. This is to be expected since the
spectrum of the continuous solar simulator in the wavelength range where the shift in spectral response
occurs is pretty constant. For the temperature coefficient setup there is quite a difference between the
theoretical and the measured temperature coefficient. This could be caused by several components: 1.
the temperature coefficient of the monitor cell integrated in the TCLF might be not fully correct (with
an estimated relative error of 20%, this could explain 0.03A difference, which is approximately equal
to the deviation between the measured and calculated temperature coefficient as discussed in section
5.3.3); 2: the used spectral response to calculate the temperature coefficient is not fully representative
for the tested module and some irradiance peak (or drop) of the TCLF is affecting the Isc calculated
result. The spectrum of the continuous solar simulator is approximately constant in the range where the
spectral shift occurs, thus the temperature coefficient measured with the continuous solar simulator is
less affected by the exact wavelength range of the spectral shift.

5.5.4 Temperature sensors and temperature non-uniformity

While the IEC60891 describes to use (at least) 4 thermal sensors when measuring temperature coeffi-
cients, this amount is not always sufficient [55]. This mainly depends on the magnitude and distribution
of the PV module temperature non-uniformity. A high number of sensors will generally give a better
representation of the true average temperature of the module (rear) surface. To estimate the effect of the
amount of temperature sensors in the TCLF, average temperatures from a 4- and 9-sensor configuration

69



are compared from data obtained during a typical temperature coefficient run. The 9-sensor configura-
tion is placed in 3x3 formation as presented in section 3. The 4-sensor configuration is using the same
sensors, however only data from the IEC60891 locations is used to determine the average temperature.

Table 19: Comparison of using 4 (IEC recommended) or 9 temperature sensors during a typical temperature coefficient run

In table 19 the averages from 4 and 9 sensors are compared for a 60 cell module in the TCLF. As a
result of the low temperature non-uniformity, there is little difference between using the 4 IEC positions
or using 9 additional temperature sensors for a standard 60-cell module in the TCLF. Effects on the
temperature coefficient are below 0.1% thus can be considered negligible for this setup. It is more
important in industry practice however, as accurate temperature control is not always available.
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6 Discussion and Conclusion

6.1 Discussion

The measurement uncertainty for relative Pmax temperature coefficients measured with the temperature
coefficient lab flasher (TCLF) is estimated to be 4.05%. This estimation was done assuming a 60 cell
c-Si device under test (DUT) and a spectrally matched reference module used for calibration, the latter
can be considered close to optimal conditions for achieving a low measurement uncertainty. The TCLF
is a useful tool to decrease measurement uncertainty for temperature coefficients, compared to existing
methods in the PV industry. This improves accuracy of PV energy yield modelling and thus reduces
financial risk.

This work is, to the writers knowledge, the second uncertainty analysis applied to a setup designed to
measure temperature coefficients. The investigated setup in this work could be the first investigated
commercially available setup which is specifically designed to measure temperature coefficients with
low measurement uncertainty. In comparison with the other analysis [42], the estimated uncertainty in
section 5.3.4 is approximately 1% to 3% higher. This is possibly caused by a different implementation
of the uncertainty component resulting from the temperature induced change in spectral response of PV
devices. Since in [42] a larger number of setups is investigated, the uncertainty component accounting
for this (temperature induced) change in spectral response is considered symmetrical around 0. This
consideration is made because a single estimation is made for all the different setups and their spectra
were not all known. As a result of this generalisation, this uncertainty component, which could be
strongly biased for specific solar simulators, is not so prominent in [42]. The estimated TCLF uncertainty
is, however, lower compared to the ±10% uncertainties observed in practice [25][8]. Additionally, this
work improves understanding on some uncertainty drivers observed in the PV industry. A large decrease
in measurement accuracy is shown compared to the ”Hot Potato” method which is widely applied in PV
industry.
Furthermore, particularly relevant for SHJ modules, non-linear behaviour with temperature is found,
which can result in significant errors in determination of the temperature coefficient when neglected.
Based on these and other results showing similar non-linearity [37],[56], a note is suggested for the
upcoming revision of the IEC60981 norm, which provides the procedure for measuring temperature
coefficients.
The effect of the simulator spectrum on the temperature coefficient is elaborated from a theoretical
background, substantiated with practical experiments. The interaction between simulator spectrum and
temperature induced change in spectral response (SR) turns out to be a large uncertainty component
setups involving solar simulators and could explain a significant part of the measurement deviations
observed in literature [8]. The magnitudes of the estimated MM results are in agreement with results
obtained in a recently published paper on temperature dependent SR [52]. The presented experiments
and results in section 5.5 can support the PV industry in understanding and mitigating measurement
errors currently occurring in practice.

The measurement results in section 4 and the experiments from section 5.5 are obtained using standard
procedures, on a solar simulator that is proven to be accurate in the field. The uncertainty value is
estimated using a Monte Carlo method, combining different uncertainty components. This model is a
relatively straightforward application of the GUM supplement 1 on Monte Carlo analyses. The relation
between the output and input values was generally known and no complex transformations are involved
in the model. The accuracy of the model will be determined by the accuracy of the model inputs: 1. The
temperature induced change in spectral mismatch (MM); 2. The temperature coefficient of the monitor
cell; 3. The scale factor error of the thermal sensors; 4. The repeatability of the IV and temperature
measurements.
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1. A major contributor the temperature coefficient measurement uncertainty is the temperature induced
change in MM. The average and standard deviation of this effect are based on literature-available mea-
surements on 5 different PV modules and cells [52]. The simulation input value MM is based on the
average of these 5 samples. With only 5 samples, the standard deviation of approximately 25% is large
and shows that emission peaks in the simulator spectrum have significant impact on the temperature
induced MM. As a result, this component is highly dependent on cell technology. It would be recom-
mended to collect more data and confirm if this effect can vary even more for different module types or
is in the currently estimated orders of magnitude.

Instead of expanding the estimated uncertainty (as done in the simulation), the combined uncertainty
could be reduced significantly when a correction for the temperature change in MM would be applied.
Labs could for example implement Peltier heating elements to adapt their existing SR measurement
setup for SR measurements at elevated temperatures. A more economical alternative is suggested in
aforementioned work [52]. Here it is found that correcting measurements for MM based on an aver-
age shift of the SR with temperature (0.45nm/K) in the high-wavelength (>900nm) region significantly
improved results compared to uncorrected measurements. More research is advisable, but a recommen-
dation is to at least mention the existence of the temperature effect on MM in the IEC standards, in
particular the standards discussing temperature coefficients and/or spectral measurements.

2. The monitor cell temperature coefficient is another significant input for the model, as any error in
here is proportional to temperature and thus has a direct effect on the temperature coefficient through
irradiance and thus currents. The magnitude of this uncertainty component is based on expert estima-
tion: measurements by Eternalsun Spire employees who determine this coefficient for each machine
individually. However, these monitor cells are normally operating below 35°C, thus below operating
temperatures in the TCLF. It is possible that the uncertainty for the temperature coefficient is underesti-
mated because of this small operating range.

An alternative procedure to determine the monitor cell temperature coefficient is developed, however
still needs to be thoroughly evaluated in practice. First, a PV module (preferably a reference module
with calibrated/well known Isc value) is placed in the temperature chamber, the chamber is set to 25°C
(STC) and the monitor cell temperature correction is turned off. When the module has reached thermal
equilibrium, the setup is calibrated to 1000W/m2. After calibration, an IV measurement is performed at
25°C. Then the chamber is opened, the module is taken out, the chamber is closed again and set to 85°C.
As a result, the monitor cell (located in the solar simulator, not directly in the temperature chamber)
will reach a temperature of approximately 65°C. Now the chamber is opened, the module is placed
and an IV measurement is done right away. Because of the hot test surface, the module will heat up
directly. However as the measurement is done seconds after the placement, the cell temperature is only
slightly increased (which can be confirmed from the Voc measurement). During this IV measurement,
the monitor cell is still approximately 65°C due to the thermal inertia of the solar simulator and the air
inside. The result is an Isc of the same module, with a monitor cell temperature of 25°C and 65°C. As
the irradiance is controlled based on the Isc of the monitor cell (which is not temperature corrected), the
irradiance and thus module Isc will be lower. From this difference the required temperature correction
and thus the monitor cell temperature coefficient can be calculated.

An second alternative is to apply optical filters on the monitor cells. Low-pass optical filters, such as
KG3 or KG5 filters, will block almost all the light in the IR part of the light incident on the monitor
cell. As the SR below∼ 900nm hardly changes with temperature [52], and the shift in SR after∼900nm
accounts for almost the full effect of the Isc temperature coefficient, the Isc will remain constant with
temperature. This would make these filtered monitor cells an interesting option for further reduction of
the measurement uncertainty of the TCLF.

3. The temperature sensor scale factor error is estimated based on the worst temperature measurement
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deviation from a single temperature sensor, compared to the average temperature of a set of 9 sensors.
As the 9 sensors are all of the same brand, type and possibly the same production batch, production
tolerances could have resulted in a temperature measurement deviation for the whole set of thermocou-
ples. This would cause the estimation currently used in the model to be inaccurate. To mitigate this
possibility, each thermocouple could be calibrated against a sensor with traceable calibration, supplied
by an accredited institute. It has to be noted that the absolute magnitude of this effect is limited (as seen
in Section 5.4).

4. Repeatability of the Pmax and Temperature measurements are unlike the other uncertainty con-
tributors based on statistical observations. These values are considered very well known as they are
determined for each individual solar simulator and are well defined.

Various inputs for both the STC uncertainty estimation and the Monte Carlo simulation are based on ex-
pert judgement. While several crosschecks give high reason to believe these assumptions are reasonable
for STC conditions, new assumptions are made to describe the temperature effects. It is recommended
(and planned by Eternalsun Spire) to validate these approximations by (for example) round robin testing
and direct comparisons with other setups, preferably designed to measure temperature coefficients with
low uncertainty.

Finally, in section 4.4, data is presented supporting an alternative method to obtain temperature coeffi-
cients of PV modules as suggested in [6]. This could potentially be a simple, economical and accurate
method to determine the performance PV modules at different temperatures than measured. As already
discussed by the authors, more research is needed to confirm the applicability. Promising results are
currently obtained for dark conditions and 1000W/m2 irradiance, but validity is yet to be confirmed for
other irradiance levels. Additionally, deviations between the developed method and measurements are
mentioned for SHJ technologies (confirmed in this work) and high efficiency back-contact PV modules,
showing that the method can be less accurate for some technologies. Besides the practical limitations
of the method, it is also important to consider that the suggested method is based on a mathematical
derivation, combined with a general estimation of the nEg product. There is no traceability to interna-
tional standards, thus without an actual measurement it is hard to ensure that the method is valid for a
specific module. This could limit the applicability of the method, since the traceability of measurement
results is needed for accreditation of a PV lab. Such accreditation of a laboratory is often needed, since
many (especially utility scale) customers require a 3rd party confirmation of the manufacturer datasheet
values, which should be provided by an accredited laboratory, before doing a purchase [57]. The method
could thus be a reasonable solution for labs that don’t have the need for traceable measurements and are
currently using less accurate techniques to determine the temperature coefficient. Therefore, it’s applica-
bility is in a somewhat different field compared to the TCLF developed by Eternal Sun, since the latter is
developed to measure and validate results and evaluate such methods as developed in [6]. Additionally
the TCLF is also designed for use with various PV technologies, whereas the method discussed above is
limited to c-Si technology only.

6.2 Conclusion

A commercial setup designed to reduce measurement uncertainties in temperature coefficients is vali-
dated through practical experiments, backed up by a Monte Carlo based uncertainty analysis. The main
uncertainty components for the developed setup are temperature-dependent spectral mismatch, the mon-
itor cell temperature coefficient and STC uncertainty. The combined expanded (k=2) uncertainty for
the developed setup is estimated to be 4.05% for the relative Pmax temperature coefficient. Addition-
ally, some uncertainty effects relevant for current industry are presented, such as non-linear performance
of SHJ modules with temperature, effects of back to junction differences and the effects of solar sim-
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ulator spectra. To reduce financial risk caused by measurement uncertainty of the Pmax temperature
coefficient, PV industry should be aware of the presented drivers when considering the equipment and
procedure that will be used. This this work can help in this consideration.
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A Uncertainty contributors: detailed descriptions and definitions

Signal (DAQ) - Reference Cell This component describes the uncertainty on the WPVS reference cell
signal, thus between the connector of the WPVS reference device and the software. This includes
the DAQ, cable and shunt resistor. Electrical calibration ensures accurate, traceable measure-
ments. This electrical calibration can be done with a low uncertainty, therefore the uncertainty of
the DAQ is often relatively low as well. In this specific application the component includes the
shunt resistor as well.

Calibration Isc - Reference cell The uncertainty of calibration of the reference device (a calibration
module or WPVS reference cell) used for calibration. This is generally a PV device, of which the
short-circuit current is measured to determine the illumination level. This PV device should be
calibrated and its calibration should be traceable to a primary standard.

Figure 61: Calibration chain of PV reference devices. Figure: IEC60904-4

Figure 61 shows the calibration chain for PV reference devices as specified in IEC60904-4.
More details on calibration methodology for primary and secondary standards can be found in
[58][59][60]. The most relevant for this work however, is that reference solar devices are trace-
able either to SI units (through trap detectors and standard lamps) or the World Radiometric Ref-
erence, formed by a set of cavity radiometers held by the World Standardization Group (WSG).
Each transfer down the calibration chain adds additional uncertainty, which should be defined and
quantified as well as possible.

Primary reference devices are used by accredited solar laboratories and are restricted regarding
size and technology. These primary references can be used to calibrate secondary reference de-
vices, which can be both cells and modules. These are also referred to as golden references.
Manufacturers or lower accredited PV laboratories will acquire such golden references, and use
them to create working (“silver”) references, used for regular system checks. When A or A+ solar
simulators are used, calibration of the secondary reference device is often a large contributor to
overall uncertainty. This is significantly smaller when a primary reference is used.

Drift - Calibration Isc Long-term drift of the reference device used for calibration and/or irradiance
measurement. Assuming correct handling (e.g. no damage on the reference device), the uncer-
tainty as a result of drift is relatively low. These uncertainties levels are generally based on yearly
re-calibrations of the same device, and it has to be noted that only a limited number of institutes
have long-term data available and it is not always ease to distinguish drift as there are much more
effects affecting calibration value.

Distance & orientation The intensity of the light incident on the device under test will be a function
of the distance to the light source. Naturally, if the DUT is closer to the light source compared
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to the reference cell, the irradiance measurement will not be representative. In the same way,
the orientation can have effects. The response of a cell to perpendicular light might be slightly
different from the response to light incident at an angle.

Spectral Mismatch The difference in spectral response between the reference device and the DUT, in
combination with the deviation of the illumination source from the AM1.5g spectrum creates the
need for a correction factor: the spectral mismatch factor. This is calculated by

MM =

∫ b
a SRDUT (λ)φmeas(λ)dλ∫ b
a SRDUT (λ)φref (λ)dλ

∫ b
a SRref (λ)φref (λ)dλ∫ b
a SRref (λ)φmeas(λ)dλ

(22)

With SRDUT and SRref the spectral response of the DUT and Reference device, and φDUT and
φref the relative spectral irradiance of the solar simulator and the reference spectrum (for STC
testing: AM1.5G) respectively.

The uncertainty in this correction factor is a result of the uncertainties in the cell and DUT spec-
tral response, and the spectrum of the solar simulator. Determination of these components are a
study on its own ’[61]. The underlying components are wavelength dependent and the combined
uncertainty is determined using a Monte Carlo approach.

Irradiance Non-uniformity - Reference Cell If the PV reference device (used for calibration and/or
asolute irradiance measurement) is placed in a bright or dark spot, a bias error on the irradiance
measurement will be introduced. Therefore the reference device is placed at a location with aver-
age irradiance. However, as the measurement of irradiance distribution and the placement of the
cell are not exact, small errors can still occur. The uniformity is measured on a small area around
the reference device, which should give the minimum and maximum bias error. This irradiance
error is assigned a rectangular distribution, which is used for the final uncertainty.

Signal (DAQ) - IV Curve This component describes the uncertainty of the DAQ and measurement cir-
cuit used for the IV measurement. This is similar as the circuit for the irradiance measurement,
however instead for the measurement of the module current and voltage.

Ohmic resistance Ohmic resistance before the four wire measurement point (such as adaptor cables)
can introduce current dependent voltage drops. This will have no effect on current or Voc, but can
introduce a voltage shift of Vmp to the left affecting the Pmax.

Hysteresis Hysteresis causes over or underestimation of the Pmax depending on sweep direction, and
is caused by dynamic effects in the cell during the IV measurement. During a forward (Isc to
Voc) sweep, the applied bias voltage is increased step by step. With an increase of bias voltage,
the charge distribution of the minority carriers in the bulk increases exponentially. Every time,
then charge carriers have to redistribute to reach a new equilibrium distribution, which could be
seen as charging of diffusion capacitance [45]. As these carriers are used for internal charging,
they cannot contribute to the external cell current, and measured current will be underestimated
until the equilibrium distribution is reached. This is particularly problematic for highly passivated
modules with high carrier lifetimes and thus diffusion lengths as this capacitance is proportional
to the diffusion length.

Irradiance non-uniformity The effect of irradiance non-uniformity on the IV curve is based on a sim-
ulation, where a model is made with a 6x10 cells 3 bypass diode module is tested with a ±2%
typical non-uniformity profile. Based on this simulation and the 0.84% non-uniformity of the
Fraunhofer setup, the uncertainty is estimated.

Temperature non-uniformity Here the maximum temperature non-uniformity of 1°C is multiplied by
the temperature coefficient of current and voltage. These are combined and form the Pmax uncer-
tainty: this assumes the temperature that is measured is 1°different from the actual temperature.
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