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Abstract. Adaptive mesh refinement (AMR) is potentially an effective way to automatically gener-

ate computational meshes for high-fidelity simulations such as Large Eddy Simulation (LES). Adjoint

methods, which are able to localize error contributions, can be used to optimize the mesh for computing

a physical quantity of interest (e.g. lift, drag) during AMR. When adjoint-based AMR techniques are

applied to LES, primal flow solutions are needed to solve the adjoint problem backward in time due to the

nonlinearity of Navier-Stokes equations. However, the resources required to store primal flow solutions

can be huge, even prohibitive, in practical problems because of the long averaging time for comput-

ing statistical quantities. In this paper, a Reduced-Order Model (ROM) based upon Proper Orthogonal

Decomposition (POD) is introduced to circumvent this issue. First, an adjoint-based error estimation

procedure is verified using a manufactured solution. Then a ROM-driven AMR strategy is studied us-

ing a LES model problem based on the 1D unsteady Burgers equation. Numerical results demonstrate

that using ROMs not only lowers storage requirements, but also has no impact on the effectiveness of

adjoint-based AMR.

1 INTRODUCTION

Large Eddy Simulation (LES), in which one resolves large-scale turbulent structures while modelling

the impact from smaller turbulent scales, has the potential to deliver reliable flow predictions for many

applications, such as those involving flow separation from a smooth surface or the analysis of acoustic

sources [1]. LES has been shown to be highly successful in situations where the computational mesh

is fine enough to resolve an appropriate range of large scales [2]. Nonetheless, defining such a com-

putational mesh for obtaining an accurate solution with tractable computing cost is a challenging task,

particularly in practical applications with complex geometries and unknown physical features.

In practice, the construction of such meshes usually involves trial and error, even for engineering experts.

It is thus natural to consider Adaptive Mesh Refinement (AMR) techniques [3] in order to automatically

construct the computational mesh. Physical features, such as wall distance, vorticity or shocks, have

been widely used to guide AMR. However, local features are not necessarily related to the physical

quantity of interest (QoI). Consequently, adjoint methods have been proposed to connect the local mesh

contribution with the error in a chosen QoI, so that the adapted mesh can provide the highest accuracy

per degree of freedom. This approach has been successfully used in both steady laminar and turbulent
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flow problems [4].

When adjoint-based AMR is employed for LES, there are complications. In unsteady simulations, the

primal flow problem is advanced forward in time while the adjoint problem needs to be solved back-

ward in time. Due to the non-linearity of Navier-Stokes equations, flow states from the primal LES are

required for solving the adjoint problem. For small problems, we can store complete primal flow solu-

tions in memory and then use this data to solve the adjoint problem. For practical problems, however,

we are normally interested in QoIs computed over long averaging times, leading to prohibitive memory

requirements. In order to handle this difficulty, some researchers choose to store the primal solution on

hard disks [5, 6, 7, 8]. However, the speed of data communication between hard disk and solver is much

slower than the access to main memory. Others choose to store flow solution snapshots at a prescribed

frequency and interpolate intermediate values in time [9, 10], which has also been employed in high-Re

number problems [11]. Another solution is to apply the checkpointing technique [12] in which optimal-

selected primal states are stored and then used to re-solve the primal problem locally. Such techniques

have been employed to solve unsteady adjoint problem in sensitivity analyses of dynamical systems [13],

cylinder flows [14], and tonal noise [15]. However, this requires significant computational effort due to

the re-computation. In order to make adjoint-based AMR affordable and efficient for LES, we consider

a reduced-order model (ROM), based on proper orthogonal decomposition (POD), to circumvent these

difficulties.

This paper is organized as follows. After a problem formulation in Section 2, on which the variational

multiscale method and numerical discretization of LES are presented, the associated adjoint equation is

derived in Section 3 and then a posteriori error estimation is formulated. Section 4 states the strategy

and procedure of mesh adaptation, and the POD-based ROM with its application on stationary mesh is

described in Section 5. After the validation of error estimation on a Burgers problem with manufactured

solutions in Section 6, we present the numerical experiments of the proposed AMR approach on an

unsteady viscous Burgers problem with a multi-frequency forcing term. Concluding remarks appear in

Section 7.

2 PROBLEM FORMULATION

We consider the one-dimensional (1D) Burgers equation over a space-time domain Ω : [0,1]× I : [0,T].

The Burgers equation is often used as a mathematical model for the applications which involve shock

wave propagation in viscous flows and turbulence [16]. The Burgers equation is expressed as

N(u) =
∂u

∂t
+u
∂u

∂x
− ν
∂2u

∂x2
= f , (1)

whereN(·) is a nonlinear operator, and u is the solution with the boundary conditions u(0, t) = u(1, t) = 0

and initial condition u(x,0)= ut0 . ν is the viscosity coefficient and f ∈R is a given forcing term. Note that

we use a 1D problem here to explore the methodology. However, approaches considered can be directly

extended to multi-dimensional flow problems.

2.1 Variational multiscale method

We employ the Finite Element Method (FEM) to solve the flow problem in weak form

R(u,ω) = (ut,ω)− (uu/2,ωx)+ (νux,ωx)− ( f ,ω) = 0 , (2)
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for ∀ω ∈V, where R(·, ·) is the residual operator in weak form. ω ∈V represents the weighting functions

and V =V(Ω) denotes both the solution space and weighting space. (·, ·) is the L2 inner product. The

inner product used in this paper is defined on the spatial domain Ω by default.

The Variational Multiscale Method (VMM) is utilized as a sub-grid model for LES. In VMM, the flow

solution is split into two components, the resolved scales ū and the unresolved scales u′. The unresolved

scale equations are driven by the strong residual, i.e. R(ū) = N(ū)− f . The simplest algebraic model

for u′ uses a volume-averaged Green’s function to write u′ = −τR(ū). For this problem, we use an

expression for τ from Z. Wang and Oberai [17], viz. τ = [ 4
h2 u2 + 3πν2( 4

h2 )2]−1/2. Substituting u = ū+ u′

into Equation (2), the expression of weak form is stated as

A(ū,ω) = (ūt,ω)− (
1

2
ūū,ωx)+ (νūx,ωx)− ( f ,ω)− (ūu′,ωx)− (

1

2
u′2,ωx)− (νu′,ωxx) = 0 . (3)

By virtue of u′ = −τR(ū), the ū is exclusively determined from Equation (3).

2.2 Discretization

When numerically solving the flow problem, we replace ū by ūh, leading to the discrete system

Ah(ūh,ωh) = 0,∀ωh ∈ Vh , (4)

where the subscript h denotes the grid size of computational mesh with N degree of freedom. ūh ∈ Vh

is abbreviated to uh in the subsequent content if there is no conflict. The semi-discrete technique is

utilized to discretize this unsteady model problem. Specifically, we use piecewise linear basis functions

for spatial discretization and the four-stage Runge-Kutta scheme to advance the flow problem in time

from t = 0 to t = T.

3 ADJOINT-BASED ERROR ESTIMATION

The adjoint method is used to provide estimates of local contributions to the error in a chosen QoI,

allowing for the construction of goal-oriented adapted mesh. In unsteady simulations, the QoI is often a

statistical function of flow solutions. In this paper, we consider the volume-integrated statistical function

J̄(u) =
∫

I
J(u)dt/T =

∫

I
(g,u)Ω dt/T, where g, J̄(u) ∈R . After the formulation of adjoint equations is given

in this section, a framework to a posterior error estimation is obtained, which will be used to guide the

mesh refinement in Section 4.

3.1 Adjoint formulation

By virtue of a Lagrange function, the adjoint equation is derived for the Burgers problem as follows

L∗u3 = −
∂3

∂t
−u
∂3

∂x
− ν
∂2
3

∂x2
= gu , (5)

where 3 is the Lagrange multiplier or adjoint variable with homogeneous boundary conditions 3x=0 =

3x=1 = 0 and initial condition 3t=T = 0. L∗u(·) is a linear adjoint operator which relies on the primal flow

solution u. gu is a Fréchét derivative of J(u), defined as

(gu, ũ)Ω ≔ lim
ǫ→0

J(u+ ǫũ)− J(u)

ǫ
, ∀u, ũ ∈ V . (6)

The adjoint residual operator is expressed as R∗
[u]

(·) =L∗u(·)−gu. We solve the adjoint problem using the

same VMM used for the primal flow problem.
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3.2 A posteriori error estimation framework

Before developing a posteriori error estimation, we consider the adjoint identity and averaging operator.

The adjoint identity, which can be easily verified by partial integration, is

(L∗u3, ũ)Ω×I = (3,Luũ)Ω×I+ (3, ũ)Ω|t=t0 , (7)

for ∀3,u, ũ ∈ V. The last term is the contribution of non-zero values at starting time t0. Lu is the Fréchét

derivative of N(u)

Luũ≔ lim
ǫ→0

N(u+ ǫũ)−N((u)

ǫ
, ∀u, ũ ∈ V . (8)

We can formulate the averaging differential operator, L̄∗
(u1,u2)

(·), by integrating the adjoint equation (5),

enabling us to estimate the error for nonlinear problems. By defining u = u1 + θ(u2 − u1),the adjoint

governing equation is integrated from u1 to u2

L̄∗(u1,u2)3 ≡

∫ 1

0

L∗u=u1+θ(u2−u1)3dθ
Equation (5)
=

∫ 1

0

gu=u1+θ(u2−u1)dθ ≡ ḡ(u1,u2) , (9)

where the subscript denotes the integration domain and ḡ(u1,u2) is averaged value of gu. Then we can have

the weak form as (L̄∗
(u,uh)
3,ω) = (ḡ(u,uh),ω),∀ω ∈ V.

Likewise, the average linearized operator in Equation (9) maintains the same property of adjoint identity

as follows

(L̄∗(u1,u2)3,u)Ω×I = (3,L̄(u1,u2)u)Ω×I+ (3,u)Ω|t=t0 , (10)

where 3, ū,u1,u2 ∈ V.

Based on the definition in Equation (6), we have

J(u1)− J(u2) = (ḡ(u1,u2),u1−u2) . (11)

Substituting u1 = u and u2 = uh into Equations (9) to (11), we introduce an expression for estimating the

error ǫ of the QoI

ǫ = J̄(u)− J̄(uh) = −
1

T
(3h,R(uh))Ω×I

︸               ︷︷               ︸

Adjoint correction

+
1

T
(R∗

[
u+uh

2
]
(3h),uh−u)Ω×I

︸                         ︷︷                         ︸

Remaining error

−
1

T
(3h,uh−u)Ω|t=t0 =

N∑

e

ǫe . (12)

The error estimation is expressed as an adjoint correction, remaining error and temporal contribution.

The temporal contribution is due to the non-zero value of the initial condition during the statistical time

period, which disappears in steady problems. In practice, R∗
[

u+uh
2

]
(3h) is replaced by R∗

[uh]
(3h), where uh is

the discrete flow solution. Here, the VMM is used to evaluate the exact solution u as uh +u′
h
. Note that

the error estimation can be constrained to each element as shown in the last part of the equation, which

is expressed in terms of elemental error estimators ǫe.
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4 MESH ADAPTATION

To facilitate mesh adaptation, an error indicator ηe is determined from the elemental error estimator

as ηe = |ǫe|. Different refinement strategies [4] can be formulated based on ηe. We employ a prescribed

percentage (10%) of mesh elements with largest errors as the criterion for mesh refinement. The resulting

procedure of adjoint-based AMR is presented in Figure 1. In each AMR loop, the error estimation and

adaptation strategy are executed to generate a new computational mesh for the next AMR level.

Figure 1: A general procedure of mesh adaptation based on adjoint

method for unsteady simulations

Figure 2: POD analyses of a Burgers

problem solved with a stationary mesh

Without additional treatment, the smoothness of computing mesh can deteriorate during AMR. Thus a

balancing stage is introduced to improve mesh smoothness. The basic principle is that the adjacent cell

will be flagged if the ratio of these two elements is out of the range [0.5,2]. This balancing stage is

executed until there are no more elements that need to be refined.

5 POD-BASED REDUCED-ORDER MODEL

In order to make the adjoint-based AMR affordable for LES, a reduced-order model is introduced to

represent the flow solution in a low-order space, which can be solved and accessed efficiently. Generally,

there are different types of ROMs in literature, including interpolated ROM and projected ROM. We

consider the former type because it is unnecessary to predict the future solution in this case. The ROM is

constructed using proper orthogonal decomposition (POD), which is achieved by singular value decom-

position (SVD) implemented using the LAPACK library package [18]. Figure 2 presents the eigenvalues

and cumulative energy of the solutions to a Burgers problem. In this case, the first mode represents a

significant part of the instantaneous solution as it accounts for 66.5% of the total energy.

6 NUMERICAL EXPERIMENTS

6.1 Verification in a manufactured solution

First of all, the error estimation procedure is verified using a manufactured solution, u(x, t) = sin2(πt)

sin(πx). This exact solution is used to compute the actual value of the QoI in different AMR levels, so

that the error estimates based on VMM and adjoint solutions can be evaluated. The discrete solutions of
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primal and adjoint problems are shown for ν = 0.01 in Figure 3(a). Figure 3(b) depicts the approxima-

tion of the QoI and corresponding error. The computed QoI converges to the exact one as the mesh is

uniformly refined, and the error estimation has a good agreement with the actual value.

(a) Instantaneous solutions
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(b) Error estimation

Figure 3: Instantaneous solutions for a manufactured Burgers problem and associated error analysis of a volume-

integrated output on uniform refined meshes. Solid lines denote the values computed from analytical solutions

while dash lines are the approximation from numerical solutions and the adjoint-based error estimation with VMM.

6.2 Validation of the proposed adaptive strategy

We now introduce a forcing term f for ν = 0.01 to produce the solution with large fluctuations and strong

flow gradients near the right boundary

f (x, t) = 1+q(x)∗

N∑

i=1

gi(t) sin(kix) , (13)

where N = 3 and the gi(t) are chosen so |gi(t)| ≤ 1

g1(t) = sin(πt),k1 = π,g2(t) = sin(2πt),k2 = 2π,g2(t) = sin(3πt),k3 = 3π. (14)

q(x) = 5/30 is a coefficient used to tune the amplitude of the forcing term at various wave numbers so

that the flow fluctuations can be controlled independently. The primal problem is advanced froward

from t = 0 to t = 20 while the adjoint problems is solved backward from t = 20 to t = 10. This temporal

interval ([0,10]) is sufficient long to allow the primal flow problem to arrive to a statistically steady state.

Instantaneous solutions are shown in Figure 4.

The mesh adaptation strategy in Section 4 is compared with traditional uniform mesh refinement for

this case. The reference value of the QoI is calculated on a fine mesh with 256 elements as there is

no analytical solution. Figure 5(a) presents the computation of QoI from different methods and their

associated errors. The QoI’s computation from proposed AMR technique is clearly more accurate than

6
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Figure 4: The distribution of (a) primal and (b) adjoint solutions from Burgers problems with a forcing term

uniform enrichment for a given number of degrees of freedom and the corresponding error also converges

faster.

6.3 ROM-driven mesh refinement

We consider the same problem used in Section 6.2 to investigate how the ROM influences the perfor-

mance of adjoint-based AMR. Two ROMs are considered, one with four POD modes and the other with

one POD mode. Naturally, a ROM will produce a precise presentation for the primal solution if the

most significant POD modes are included. Thus, we use four POD modes first since it accounts for

99.9% of total energy (shown in Figure 2). In contrast, the one-mode ROM is an extreme case, with a

less accurate reconstruction of the primal solution but still able to reproduce its dominant features. The

mesh adaptation starts with a coarse mesh of 6 cells and is terminated after ten refinement levels with the

aforementioned AMR strategy.

6.3.1 ROM with four POD modes

The computation of the QoI from ROM-driven AMR compared to full-order AMR is shown in Fig-

ure 5(a). They converge to the actual value in a quantitatively similar way, as does their approximating

error as shown in Figure 5(b). Figure 6 demonstrates that the mesh refinement patterns computed based

on the four-mode ROM agree well with those from full-order primal flow solutions.

Figure 7(a) depicts the development of cumulative energy within various AMR levels. Most notably from

the standpoint of POD analysis, four POD modes can still capture more than 99.9% of the total energy

even for the fine meshes, which are obtained during later process of AMR. Thus four-mode ROM-driven

AMR does not behave differently from the standard AMR employing the full-order uh.
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Figure 5: Comparisons of (a) the approximation of QoI and (b) associated approximating error between uniform

refinement ( ), and AMR based on full-order flow solutions ( ), four-mode ROM ( ) and one-mode

ROM ( ), respectively.
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and one-mode ROM ( ), respectively. Each color denotes one AMR level.

6.3.2 ROM with one POD mode

We now study an extreme situation with only one mode to construct a ROM. As before, Figure 5 shows

the convergence of QoI and their corresponding errors using a one-mode ROM. The QoI’s convergence

from a one-mode ROM is quite similar to those from full-order primal solutions although there are

differences at some AMR levels. But it is still much better than uniform refinement. From the mesh

refinement patterns shown in Figure 6, we can observe that the mesh refined from a one-mode ROM

is not completely the same as those based on full-order primal solutions. When comparing different

8



Xiaodong Li, Steven Hulshoff and Stefan Hickel

(a) Four-mode ROM (b) One-mode ROM

Figure 7: Comparisons of cumulative energy during different AMR levels computed with (a) four-mode ROM and

(b) one-mode ROM, respectively.

adapted meshes, we can note that the low-order ROM changes the AMR order in coarse mesh regions

(e.g. 3rd AMR level) but can reach the same computing mesh later (e.g. 4th AMR level). On the other

hand, the approximating error in later AMR stages is affected by using only one mode when the mesh

becomes fine in space (see Figure 5(b)). Finally, the cumulative energy for this one-mode ROM is shown

in Figure 7(b) and the first POD mode describes much of the primal solution over all AMR levels.

Figure 8 presents discrete adjoint solutions on two different computational meshes encountered during

AMR, a coarse mesh in Figure 8(a) and a fine mesh in Figure 8(b). The adjoint solutions are calculated

based on the full-order primal solution, a four-mode ROM and a one-mode ROM, respectively. On the

coarse mesh, the one-mode ROM is able to produce adjoint solutions with both features and magnitudes

similar to those obtained using full-order primal solutions. This implies good error estimates. As the

AMR proceeds to finer meshes, the one-mode ROM is unable to present high-frequency information and

thus produces relative smooth adjoint solutions. The high-frequency components of primal flow solu-

tions, however, become increasingly important for obtaining precise error estimates on fine meshes. This

leads to deterioration in the error estimate from the one-mode ROM. Conversely, the four-mode ROM

includes both low and high frequency information and provides good estimates on both computational

meshes.

Overall, the ROM-driven AMR can preserve the efficiency of solution-driven adjoint-based AMR in the

current case even with only a single POD mode. This may be due to a relative insensitivity of the chosen

QoI to high-frequency solution components, which tend to be smaller magnitudes in the current problem.

However, this is not necessarily constrictive for LES applications, where large scales contain the majority

of the flows’ energy, and we are often interested in the relatively smooth QoIs such as mean profiles.
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(a) Mesh at starting AMR level (b) Mesh at seventh AMR level

Figure 8: Comparisons of discrete adjoint solutions at two different AMR meshes, computed based on full-order

flow solution, four-mode ROM and one-mode ROM, respectively.

7 CONCLUSIONS

We have developed a ROM-driven adjoint-based mesh adaptation strategy for unsteady problems. The

effectiveness of the error estimation based on the adjoint solution and the VMM has been verified using

an unsteady Burgers problem with a manufactured solution. In order to overcome the storage difficulties

encountered when solving the adjoint problem in nonlinear unsteady simulations, a POD-based ROM is

introduced to represent the primal solution by means of a low-order model. The procedure is evaluated

using a Burgers problem with a multiple-frequency forcing term. First, adjoint-based AMR using the

full-order primal solution is shown to be more efficient than traditional uniform refinement. Then we

demonstrate that using the ROM for the primal solution does not significantly affect the performance of

AMR. Specifically, the adaptive results from a four-mode ROM have good agreement with ones from a

full-order solution-driven AMR where these modes capture 99.9% of total energy. The calculation from

a one-mode ROM still considerably outperforms uniform refinement as the first POD mode accounts

for 65-75% of total energy during AMR. Furthermore, a one-mode ROM is able to capture the essential

part of the solution on coarse meshes. As expected, using a ROM with sufficient modes does not affect

the adjoint-based AMR. Using a very low-order ROM, however, can still be effective as least when the

calculation of the QoI is not dependent on the smaller scales of primal solutions. These results indicate

that the proposed AMR strategy will likely be useful for more challenging problems.
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