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The propagating electric field in a longitudinally invariant,
charge-free and dielectric waveguide structure has transverse
components (E,, E,) that are independent of the longitudinal
component (E,); but the longitudinal component is dependent of
the transverse components. Energy conservation is ensured

through change of its magnetic field.
This thesis, Eqs.(2.7-8).

Tensile strength of a material depends on the size and number of
Griffith cracks on its surface. Without a coating layer and a
buffer jacket, under the same environment conditions, the
thinner an optical glass fiber is, the higher its tensile strength
will be.

The discovery of quasi-crystals*, which have a fivefold rotation
axis and thus contradict the traditional crystal theory **, shows
that this theory has its preconditions.

*D. Shechtman, I. Blech, D. Gratias and J.W. Cahn:
Phys. Rev. Lett., 53, 1951-1953 (1984).

**C. Kittel: Introduction to Solid State Physics, Sixth
edition, John Wiley & Sons, Inc., 8 (1986).

Optical integrated circuits based upon InGaAsP/InP nowédays
rely too much on the use of expensive techniques (MBE or
MOVPE); with cheaper technology the development of such

circuits would occur much faster.

Mistakes often occur in complicated formulas as appearing in
scientific journals. Authors and referees should spend more time

re-deriving in order to correct them all.
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10.

11.

Correct use of words like the and a in English is so difficult for
the majority of the world population that one has to doubt
whether it is wise to introduce these two articles in a world

language.

About one third of our whole life is used for sleep, which is an
unbelievable waste of time. Investigations to decrease this

would be important for the future development of mankind.

The names of Chinese dishes in fhe Netherlands are for a

Chinese as unintelligible as for the Dutch.

The western standards of democracy and human rights can not
be applied everywhere. Their acceptance depends at least on

the local culture.

The recent decision of the French government to resume
limited nuclear tests is being seriously criticized while
previously the USA and the former USSR already did the
same more than one thousand times. This implies that, if you
want to do questionable things without being criticized, you

should do it early.

The average length of the Dutch people keeps increasing,
which is bad for the environment since tall people tend to use
more O, and thus make more CO, which is the cause of the

greenhouse effect.
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The figure on the cover shows schematically
the designed tapered waveguide structure. The
whole structure is covered with InP or silicon

" nitride (not shown in the figure for convenience
of view, see also Section 4.1)
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Chapter 1

Introduction

1.1 Optical integrated circuits

An Optical Integrated Circuit (OIC) is based primarily on the fact that light waves can
propagate through and be contained inside very thin layers (films) of transparent
materials. Such a circuit is designed to fulfill certain functions and can, for example,
consist of a laser diode as source, functional components such as switches/modulators,
interconnection waveguides and photodiodes as detectors. Through integration, a more
compact, stable, and functional optical system can be expected. If all components are
integrated on a single substrate, it is called a monolithic OIC, otherwise, we speak of a
hybrid OIC. Realization of a monolithic OIC is now possible in III-V semiconductor
materials, for instance, the quaternary semiconductor InGaAsP epitaxially grown on an
InP-substrate, which allows for the generation and detection of light at wavelengths
between 1.3 and 1.55 um, where glass fiber properties are optimal for long-distance
communication [1]. On a hybrid OIC, as an example, the source, the waveguide and the
detector can be made of compound semiconductors, dielectric materials and silicon,
respectively.

Although the monolithic type OIC is the better solution as seen from several points of
view, its implementation is still difficult at present. The separate parts of the hybrid type
are relatively easy to fabricate, but there exist problems with assembling the components.

Waveguide devices for constructing an OIC can further be classified into two categories:
passive devices, which exhibit fixed characteristics for optical waves, and active devices,
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in which guided waves are controlled via electrooptic, acoustooptic, magnetooptic,
thermooptic, or nonlinear optic effects.

Because the propagation velocity of an optical signal is much larger than that of an
electric signal, it is often simply concluded that signal processing can operate much faster
in OICs than that in their electric counterparts. Actually, however, the propagation
velocity of an optical pulse in dielectric waveguides is only a few times larger than that of
an electric pulse in an electric IC {2]. Therefore, the use of OICs is not only owing to its
fast signal processing. Instead, its use mainly comes from utilizing the specific wave
properties of optical signals, e.g. the much larger bandwidth. This fact is very important to
understand the operation of OICs clearly.

Despite the fact that fundamental work has been performed even previously, the year
1969 is generally taken as the birth year of integrated optics, because then the term was
firstly proposed by S.E. Miller of Bell Laboratories [3]. Since the very beginning,
integrated optics has been motivated by its important role in broad band optical
communication systems, where OICs can serve as high speed multiswitches, high speed
modulators, wavelength (de)multiplexers, and time (de)multiplexers. Nowadays, 40
millions of kilometers of optical fibers are installed worldwide in the long and medium
distance networks and the optical fiber is gradually penetrating the local networks [4].
The Japanese telecommunications company NTT envisages that by the year 2015 all
houses will be connected by optical fiber [5]. In addition, OICs have other wide
applications. For example, in signal processing they can serve as radio frequency
spectrum analyzers, correlators, and convolvers or in sensor technology, as temperature
sensors, position sensors, and optical disk signal pickup.

1.2 Fiber-chip coupling

Although many sophisticated electrooptical components for advanced optical
communication systems have been demonstrated in recent years, comparatively little
attention has been paid to the implementation of effective fiber-chip coupling techniques.
The efficient, low cost and reliable coupling of guided waves from an optoelectronic chip
to single mode fibers is an essential requirement for the application of these devices in
future communication systems. To achieve this, a mode size transformation from the 1-3
um diameter of the (usually elliptical) gnided mode field in the chip to the 8-10 pum range



Fiber-chip coupling 3

for the (circular) guided mode field in the fiber is needed.
1.2.1 Coupling methods

There exist many kinds of coupling methods. We restrict our discussions to coupling
between a single-mode fiber and an InGaAsP/InP chip. The following methods are
generally used:

Butt-coupling: Butt-coupling is the most simple coupling method. The endfaces of the
waveguide and the fiber are directly put into contact. However, an abruptly terminated
(flat-end) single-mode fiber has a mode width of about 8-10 um, whereas a normal
integrated waveguide has a mode width of about 1-3 um. This serious mismatch will lead
to a low coupling efficiency, which is the biggest disadvantage of butt-coupling.

Fiber taper and microlens: A tapered fiber end combined with a microlens formed on its
endface can reduce the mode size. Therefore, the coupling efficiency is increased.

The beamwaist of a Gaussian beam is that position where the beam has its smallest cross-
section. For the abruptly terminated fiber, the beamwaist occurs exactly on the endfaces,
but for the fiber with a microlens at the tip, there is a distance between the beamwaist and
the endface. The coupling between a waveguide and such a fiber needs a separation for
their beamwaists to occur in the same cross-section. This kind of coupling is called end-
fire coupling. To compare with a simple butt-coupling configuration using a flat-end
fiber, higher coupling efficiency can be expected since there is a better mode match, but a
much more stringent alignment both in transverse and in longitudinal directions is needed.
Transverse or lateral displacements in the order of 1 pm may cause around 1 dB
additional loss.

The fabrication is normally carried out in two steps. First, a fiber taper is made by pulling
it in an arc discharge [6], by etching in hydrofluoric acid [7] or by dipping the fiber end
into negative photoresist while the fiber core carries the light beam from a HeNe laser [8].
Then the tip of the taper is rounded by melting, usually in an electric spark gap [9].
Surface tension, acting over the small dimensions involved, generates surfaces which are
approximately spherical. However, it can also be fabricated in one step by laser
micromachining [10].
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Tapered waveguide: Tapered waveguides on an InGaAsP/InP chip, serving as mode size
transformers, have attracted increasing interest in recent years. Both laterally and
vertically tapered waveguides have been demonstrated [11-18] and suggested [19-21].
Since the field of a waveguide mode on the chip can be transformed to match that of the
fiber and the propagation loss through the tapered structure can be lower than 0.5 dB, the
total coupling efficiency can be more than 80%. On the other hand, the alignment
requirements are tolerant and can be technologically realized.

The fabrication of laterally tapered waveguide structures on InP/InGaAsP can be realized
through a conventional lithography process. The production of vertically tapered
structures, however, is relatively difficult. Selective wet chemical etching has been used
to fabricate such structures. One approach involves the controlled dipping of the sample
into an etchant, which is a fairly delicate process [22]. Another approach proceeds by
consecutively removing individual layers of a diluted multiple-quantum-well (MQW)
structure [11,17]. In addition, a combination of metal organic vapor phase epitaxy
(MOVPE) and ion milling has been used [12]. Furthermore, a combination of MOVPE
and wet chemical etching has been presented [23]. Beside this, the use of photo-resist
techniques, oxide shadow and direct shadow etching are reported [24]. Also, a
combination of MOVPE and a mask technique has been developed [25]. All these
reported methods, however, are expensive.

There are several methods to realize a accurate alignment which is important for the
coupling efficiency. A mechanical manipulator is a basic device to accomplish this which,
however, has a relatively big size. A V-groove on the motherboard is another choice. One
suggestion involves milling a groove in a glass substrate by a microdrill with a fine
diamond paste as the polishing agent [26]. Another suggestion is to fabricate the V-
groove on a silicon substrate by wet chemical etching [27]. The horizontal position of the
V-groove with respect to the waveguide is defined by photolithography. The vertical
position of the fiber core with respect to the waveguide is adjusted by the width of the V-
groove. The precise alignment of the vertical position is obtained by etching the V-groove
slightly wider than necessary, and covering it with an elastic layer of photoresist.

Taking into account both coupling efficiency and alignment tolerance, a tapered
waveguide structure is the most promising candidate, but fabrication costs should be
further decreased. Furthermore, for practical uses, the Si motherboard with V-grooves is
recommended for the alignment, which has a simple configuration and a small size.
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1.2.2 Coupling efficiency

Based upon the orthogonality of modes, the coupling efficiency between fields,
propagating along the z- direction, of a single mode fiber and a waveguide can be derived
as [28]:

T ]:(E/ x Hy)-kdx dy
— . (1.1

°fT(EK><H;j,)~kdxdy

0000

M=z
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where E, H denote vectorial electric and magnetic fields, respectively, and k denotes the
unit vector in z- direction, while the subscripts f, g denote quantities in the fiber and the
waveguide, respectively. In fact, Eq.(1.1) is difficult to evaluate. Usually, a good
approximation only containing electric fields, i.e.
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is widely used, which is known as the overlap integral {28]. To improve the coupling
efficiency, the cross-section of the waveguide mode should match the fiber mode field as
good as possible. Our comparison of coupling methods presented in literature with our
own results will be based upon these expressions.

1.3 Simulation

As discussed in Section 1.1, the field of integrated optics concerns a wide range of
phenomena involving light being guided along and controlled by thin dielectric films or
strips. The wavelengths of interest lie mostly between 0.5 and 2 um. Since the lateral
waveguide sizes are usually in the order of the wavelength, a ray-optical treatment can not
be fully adequate. Therefore, a rigorous electromagnetic theory is required, which usually
corresponds to complicated mathematics.
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The availability of advanced and accurate simulation techniques, which can provide a fast
and reliable prediction of the field distributions or propagating behavior for designers, is
crucial to any further progress. Among many simulation techniques for integrated optics,
the beam propagation method (BPM) is a powerful tool to simulate wave propagation in
waveguide structures. In principle, propagating fields in a waveguide structure can be
calculated at any cross-section by the BPM, thus enabling scientists to evaluate and
design new waveguide structures with the help of computers. From the very beginning
when the initial BPM scheme was developed, the BPM has been widely accepted as a
powerful tool. Numerous structures have been designed, simulated and subsequently
fabricated, e.g. couplers, splitters and converters.

The BPM scheme was firstly developed by Fleck er al in 1976 [29]. In the original BPM,
scalar wave equations are solved as an initial value problem, propagating step by step
along the longitudinal direction by use of the fast Fourier transform (FFT) [29-32]. Its
theoretical background is summarized in Appendix A. In addition, scalar versions of the
BPM based upon the finite difference scheme (FD-BPM) have also been presented by
other investigators [33-40]. Furthermore, the iterative Lanczos reduction method [41-42]
has been developed to solve the scalar beam propagation problems based upon dominant
eigenvalues and eigenvectors of the discretized lateral Laplace operator in the Helmholtz
equation. However, scalar versions of the BPM in which the vectorial nature of
electromagnetic waves is ignored are not fully adequate for polarization sensitive guided-
wave devices. On the other hand, a semi-vectorial FD-BPM [43] based upon a series
expansion of the Helmholtz propagation operator has been developed. Recently, fully
vectorial versions of the BPM have also been presented [44-50]. There, the field in some
straight waveguide structures with constant cross sections could be simulated numerically,
under the assumption that the transverse field components are independent of the
longitudinal coordinate.

1.4 Scope of this research

The final purpose of this research is the optimization of the fiber-chip coupling, where the
fiber is a single mode fiber (SMF) and the chip is a III-V semiconductor InP/InGaAsP
chip. This includes extensive calculations at possible structures, complicated processes to
produce them and extensive measurements to assess the optimal coupling.
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Although fiber microlenses generate certain effects that improve the coupling efficiency,
they also lead to stringent alignment requirements. Tapered waveguides on chips serving
as mode size transformers, however, can be directly butt-coupled to a flat-end fiber. In
such configurations, a high coupling efficiency of more than 80% may be realized.
Therefore, they are promising choices for an efficient fiber-chip coupling between a
single mode fiber and an InGaAsP/InP chip, although they are still difficult and expensive
to realize.

To design and fabricate tapered waveguide structures, wave propagation in the structures
must be accurately simulated. Therefore, we first have to develop a fully vectorial FD-
BPM for three-dimensional waveguide structures. The theoretical derivation is presented
in Chapter 2. Then in Chapter 3, we discuss the program, show benchmark test results,
and investigate influences of parameters on simulation results with our BPM by
simulating the wave propagation through various waveguide structures. Subsequently we
use it to design 3D tapered waveguide structures on InGaAsP/InP chips for obtaining high
coupling efficiency with a flat-end single mode fiber in Chapter 4. Then, we develop a
practical fabrication process to realize the designed structures using a combination of
atomic beam etching, photolithography and plasma enhanced chemical vapor deposition
(PECVD) in Chapter 5.
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Chapter 2

The fully vectorial beam
propagation method

In this chapter, we present a fully vectorial BPM for three-dimensional waveguide
structures including longitudinally varying structures. The vectorial formulation is
presented in Section 2.1. Subsequently, the finite difference scheme is shown in Section
2.2. In Section 2.3, we solve the discretized differential equations by using the relaxation
method and analyze the stability and dissipation, simultaneously, discussing possibilities
to speed up the numerical simulation.

2.1 Vectorial formulation

The scalar FFT-BPM has been discussed as a simple introduction in Appendix A. If
possible, expressions in this section will be linked to their counterpart there.

Starting point is the vectorial wave equation for the time-harmonic electric field in an
inhomogeneous dielectric medium which is source free and isotropic:

VxVxE(x,y,2) =ksn*(x,y,2)E(x,y,2), (X))

where kg is the wave number in vacuum and n(x,y,z) is the local refractive index. Here,
we introduced a Cartesian coordinate system X,y,z with its z-axis along the propagation

13
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direction. Therefore:
VZE(x,y,z)+k n?(x,y,2)E(x,y,2) = V(V-E(x,y,2)). 2.2
In components, we obtain from this:

2
V2Ex(x,y,z)+kgn2(x’y,z)Ex(x,y’z) = _éi(Ex(x’y’Z)MLy—’”
X

ox
ol 2 ol 2 (2.33)
+E (X’y’z)__ni_(.w_)_.}.Ez(X,y’Z)__?_t}_gM S
’ dy dz
2
VzEy(X,y,Z)+k3n2(X,y,z)Ey(x,y,z)=__?_(Ex(x,y’z)m_(_f{_’_y—’z)
dy dax
dinn’ 2 (2.3b)
+Ey<x,y,z)—‘ﬁ—(ﬁl’i’+az(x,y,z)_ﬂn_(£_y'_z)}
dy 0z
2
VzEz(x’y’Z>+k3n2(x,y,z)Ez(x,y,z)=-SQ‘(EX(x,y,zﬁ—‘%’ﬂ—)
z X
dlnn? JInn? (2.3¢)
E, (x,y,) BB YD) g (o g RN (6Y:2)
ay dz

where E(x,y,2), Ey(X,y.z) and E,(x,y,z) are the three Cartesian components of the electric
field strength. In the scalar FFT-BPM, there exists only one component and V(V-E) has
been discarded, as shown in Eq.(A.2). Furthermore, we write

E, (x,y,2)=F, (x,y,2)exp(ifz), (2.4a)
E, (x,y,2)=F, (x,y,z)exp(ifz), (2.4b)
E,(x,y,2)=F,(x,y,z)exp(iiz), 24c)

where B is the reference propagation constant, while F,, Fy and F, are the three
components of the complex wave amplitude. Eqs.(2.4) are analogous to (A.3). B must be
chosen such that a slowly varying envelope approximation of the field is allowed,
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implying that
0’F (x,y, oF (x,y,
p(xzy z) 25 0 (X,Y,2) , 2.5)
oz oz

which is similar to (A.5) and here F,, stands for each of the three components. Then, the

following set of equations is obtained:

2 2
i 9 (%,y,2) =—i{a I:"(x’y’z)+a F"(x’y’z)+(k3n2(x,y,z)

0z 2B ax? dy?

dlnn*(x,y,z)
ox

dln nz(x,y,z)):l

—|32)Fx(x,y,Z)+-a—(Fx(x,y,z) (263.)
ox

dlnn®(x,y,z)

+F (x,y,2z

+F,(x,y,2) 3,

2 2
iaFy(X,Y,Z) _ _1—[8 Fy(x,y,z)+a Fy(x’y’z)+(kgn2(X,y.Z)

oz 2B A%’ ay?
2

dlnn’(x,y,z) (2.6b)
0x

dlnn*(x,y,z)
dz ’

_g? 9
B )Fy(X.y,Z)+ay(Fx(x,y,Z)

dlnn*(x,y,z)

+F_ (x,vy,

+F (x,y,2)

+(kin*(x,y,2)

; JF, (x, y,zj __ 1 9°F,(x,y,z) N 9*F_(X,y,2)
oz 2B ox* 2y’

2
—B’)Fz(x,y,z)+-§;[Fx(x,y,z)g—ln—’—l-a%y’—z) (2.60)

dlnn’(x,y,z)
dz )

dlnn’(x,y,z)

+F (x,y,2

+F (x,y,2)

Eqs.(2.6) are equivalent to (A.6) or (A.7) and can be rewritten as:



16 The fully vectorial beam propagation method

8Fx(x,y,z)

P HF, (x,y,2)+H,F (x,y,2)+H,F, (x,y,2), 2.7a)
oF (x,y,2) _
— H,F, (x,y,2)+HF (x,y,2)+H,F,(x,y,2), (2.7b)
aF )
__z_(a’EZY_Z_) SF (Y, 2)+HF, (x,y,2)+ HF, (%,,2), 2.7¢)

where the operators Hyy, -, Hy; are defined by

d(20dn
H,F, = 2B[8q(n BrFﬂ (2.82)

F, F, ;4 d(20n
H,F, = B[ +8y +(kin® ~B*)F, + 3 napr) (2.8b)

with p, q, r = X, y, z and q # r. For a z-invariant waveguide, Hy,F, and Hy,F, vanish,

whereas for a straight slab waveguide, HyFy, HF,, H,Fy, HyF, and HyF, are zero.
Contrary to the original scalar FFT-BPM, we’ll apply a FD scheme to solve Eqs.(2.7).

2.2 Numerical scheme
2.2.1 Formulation

The waveguide structure is discretized by a grid division with mesh sizes Ax, Ay and Az,
sampling the function values at the intersection points. Let H, J and L are total numbers of
nodes in Xx-, y- and z- directions, respectively, then x = (h-1)Ax, y = (j-1)Ay and z = (I-
I)Az, where h=2,3,4, -, H-1,j=2,3,4,--,J-1; 1 =1, 2, 3, -, L. A new matrix
equation

M-X=b, 2.9)

can be obtained from Eqs.(2.7) and (2.8) for one propagation step by use of the standard
Crank-Nicholson finite difference scheme (see Appendix B), where M denotes a square
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matrix of known coefficients, X is the solution column vector (Fy, Fy and F,) and bis a
column vector containing known elements only. Eq.(2.9) can be solved following the
simultaneous relaxation algorithm [1].

Compared with the known scalar methods, the vectorial method has numerical
complications originating mainly from the coupling among field components. Based upon
the standard Crank-Nicholson finite difference scheme, the matrix M in Eq.(2.9) for a
three-dimensional waveguide structure will have the dimensions [(H-2)-(J-2)] by [(H-
2)-(J-2)] in a scalar method, while it has the size of [2:(H-2)-(J-2)] by [2:(H-2)-(J-2)] in
the vectorial method for a structure with a constant cross section. Since the simulation
speed of the relaxation method is inversely proportional to A3 (if H = J), a speed
difference of a factor of 8 between a scalar method and the vectorial method for that
simple case can be expected. On similar grounds, for a tapered three-dimensional
waveguide structure the speeds differ by a factor of 27. It should be pointed out that there
exist techniques to speed up the scalar BPM, such as the split-step procedure [2], leading
to an even bigger speed difference between a scalar method and the vectorial method.
Therefore, special steps for speeding up the vectorial BPM are required to arrive at a
useful method. The most important step is carried out by introducing the Modified Crank-
Nicholson scheme [3].

An explicit finite difference scheme means that field components in step /+/ can be
calculated explicitly from the known quantities in the previous step I, while an implicit
scheme means that implicit equations containing field components in step /+/ have to be
solved. An explicit scheme is unstable, in the sense that it yields exponentially growing
results after many propagation steps, while an implicit scheme is stable but leads to a
dissipation in the calculated wave propagation resulting from the numerical method [1]. A
standard Crank-Nicholson scheme, which is stable and is the least dissipative, uses the
average of the unknowns from the explicit and implicit schemes. However, we apply a
modified Crank-Nicholson scheme to Eqs.(2.7), using only the explicit scheme to the
coupling items, while ensuring the stability by introducing a finite difference scheme
parameter o (o > 0.5). Thus we arrive at

Pt (h, )=F,(h, j)

e =0 FD[H,F."' (h, j)]+(1-0) FD[H, F. (h, /)]

XX©T X

(2.10a)
+FD[HXYF;(h" ])]+FD[szFlz(h'! J)]:
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Fl+1h’-_ ! h,.
y (e D-F ])=cxFD[Hny’y“(h,j)]+(1—oc)FD[Hny’y(h,j)]

Az (2.10b)
+FD[H,F.(h, j)]+FD[H,F.(h, )],
B (h, j)-F,(h j)
Az

= o FD[H,F*' (h, )|+ (1= @) FD[H,,F, (h, j)]
(2.10c)

+FD[HZXFf:3(h, j)]+FD[HZyF‘;5(h, j )],
where h=2,3,4, -, H-1;j=2,3,4, -, J-1;l= 1, 2, 3, ---, L. FD[PP] means that PP has
to be represented by an expression obtained through the finite difference operation, which

will be shown in the following. Eq.(2.10c) contains the superscript [ +1§, which indicates

the FD operation for half the step since the z- derivative exists for those quantities. As a
result, each of the above three equations can be rewritten as M-X = b where the
coefficient matrices are sparse having a tridiagonal form with fringes. Thus, the vectorial
BPM is converted to three mutually related scalar BPM schemes, resulting in a higher
simulation speed.

We next show the results of the finite difference operation on Eq.(2.10a) at discretized
nodes h,j,I+1 and h,j,l. Based upon Eqgs.(2.7a) and (2.8), we first have

+(k§n2 —BZ)Fx

. 2 2
FD[HxxFi“(h,j)]zFDI: i {a F, OF

— +
2B [9x*  9y?
5 3 1+1 21D
+-2 _2__an ,
ox\nax »
with
m~2 I+1 [+] N 1+1 . +lcy i
FDL%:;T _E(htL)) 2FXA:2h,j)+Fx (h 1,])’ (2.12a)
dn, j
F N2 1 141 . I+1 : 41 :
FD 3:,:2‘ SLARCR AR ZFXA;:l’])+FX b J-1), (2.12b)
L I
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FD[(kin® =B*)F, |," = (ki n* (h, j, L+ D)= B )F/ (h, j), (2.120)

{41 . .
FD[ ) (2 aanﬂ _ 2[n(h+1,j,1+D)-n(h, j,1+1)] (F* (e 1, )
h

ox\nadx [n(h+1, 7,1+ D) +n(h, j,1+1)]AX? @.124)
. 2[n(h-1,j,1+1)-n(h, j, 1+ 1)) N
Fl+1 h, Fl 1 h- 1 Fl+l h .
TR ’)] [n(h-1, 5,1+ y+n(k j, 1+ 1)]A 2 LB (-1 A (h )]
For the expression
. i azFx 9°F,
FD[HXXF’X(h,J)]=FD[%{ oy +(kon® - B*)F,
2.13)

i
d (2dn
O |zong
+8x(n8x ")th_’

the same procedures as those mentioned above can be used, and therefore are omitted
here. On the other hand, we have

!
| d (20dn
H,,F! (h, j)|= FD| ==~ ZZ=F
[ wFy ( J)] D[Zﬁax(nay y)j]h’j 2.14)

=R [F,(h+1, j)+Fi(h, j)]-R,[F, (k-1 ) +F.(h, )],

with
Rl=z[n(h+],]+],l)+n(h,J+1,l)—I.l(h+I,J—'Lf)—n(h»l"l:l)], (2.15a)
4BAXAy[n(h+1, j,1)+n(h, j,1)]
R, = ,[n(h_],]+1,l)+n(h,]+1,l)—-n(h—l,]"1,5)—n(h,1‘1»l)]. (2.15b) -

4B AxAy[n(h~1, j, 1) +n(h, j,1)]

In addition, we obtain
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13

i 0 {20dn
FD[H_F.(h, j) =FD[L——(———FZH
[ ] 2Bdx{nadz » (2.16)

= S)[FL(h+1, )+ Fi(h, )]~ S,[Fy(h-1, j)+Fi(h, )],
with

n(h+1,j, 1+ D +n(h, j,l+D=n(h+1,j,1)—n(h, j,1)]

s, =L
b 2B Ax Az[n(h+1, j,D)+n(h, j,1)]

, (2.17a)

Ci[n(h=1,j, 1+ D+n(h, j,l+D=nh, j,[)=n(h=1,j,1)]

S, . .
28 Ax Az[n(h—1, j,D)+n(h, j,D)]

(2.17b)

The above calculation is related to Eq.(2.10a), but Egs.(2.10b-c) can be treated similarly.
As a result, by substituting Eqs.(2.11-17) into Eqs.(2.10), we obtain

Al(h, S (R+1,7)+ A5 (b, HES (B= 1, )+ Ay(h, HES (B, j+1)
+AL (b, NFY (b, j— D+ AL (h, HE (B, j) =
Bi(h, j)FL(h+1,j)+By(h, j)F,(h=1,j)+B,(h, F(h,j+1)
+B.(h, )L (h, j~1)+Bi(h, IFi(h, j)+Bs(h, IF (h+1, )
+BY(h, j)F, (h—1,j)+By(h, IF, (h, j)+By(h, )HF,(h+1, J)
+Blo(h, HFL(h—1,j)+B},(h, ))Fs(h, j),

(2.182)

Cl(h, YFS (h+ 1, j)+Cy(h, HFS (h=1, )+ Cy(h, Y, (h j+1)
+Cy(h, YFI(h, j— 1)+ Cs(h, HE (B, j) =
D} (h, j)F,(h+1,j)+Dy(h, j)F, (h=1,j)+Di(h, F,(h, j+1)
+D}y(h, j)FL(h, j= 1)+ D5 (h, j)F, (h, j)+Di(h, HFy(h, j+1)
+D}(h, j)F, (h, j= 1)+ Dy(h, j)F,(h, j)+ Dy (h, jIF, (h, j+1)
+Diy(, )F,(h, j—1),+Dj,(h, )F,(h, J),

(2.18b)
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G\ (h, NF (h+ 1, j)+ Gy (h, j)F (h=1, j)+ Gy (h, YF, (B, j+1)

+G(h, j)F (h, j— 1)+ G (h, j)F (b, j) =
Hi(h, j))F,(h+1, j)+Hy(h, )Y, (h—1, j)+H5(h, HDF,(h, j+1)  (2.18¢)
+H, (h, ))F, (R, j=1)+Hs(h, ))F, (h, j)+Hg (b, )YE (h, )
+H, (h, )IF, (h, j)+Hg (h, )BT (h, j)+Hy (h, j)F, (h, ),

Where Al: ) A57 B[! " B 115 Cl: Yy CS; Dly h Dll; Gl) Ty GS? and Hl) “tty H9 are au
complicated expressions, which have been arranged in Appendix C.

2.2.2 Stability analysis

The stability of a finite difference scheme is critical. Despite its lack of rigor, the von
Neumann method for stability analysis [1] generally gives valid answers and is much
easier to apply than more exact methods [4].

The von Neumann method acts locally: we suppose that the coefficients of a difference
equation vary slowly such that they can be considered constant over the whole space. In
that case, the independent solutions of the difference equation are all of the form

F'(h, j)=(le™me™ (2.19)

- where ky and ky are real spatial wave vector components while { is a complex number
called the amplification factor.

It can be shown that there exists a critical value o, (¢, > 0.5), such that if o < o, the -
scheme is unstable (I | > 1), leading to an unrealistic increase of the field power
propagating through subsequent cross-sections. If o > o, however, there is a numerically
induced power dissipation (I{ | < 1). The optimal choice is o = o, (I | = 1) which
corresponds to a stable propagation without numerical loss . Actually, for a longitudinally
varying waveguide structure, the exact value of « is difficult to calculate and could
slightly change along the propagation direction. We usually look for the best value
obtained from numerical simulation. To ensure the stability, a slightly bigger value should
be used, leading to an inevitable but small spurious power dissipation, which will be
discussed in Section 3.3.1 where we consider waveguide structures and simulation results.
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2.2.3 Influence of finite difference operation

Most of the InP/InGaAsP waveguide structures have stepped index changes, which means
that the index distribution is discontinuous on some interfaces. Finite difference operation
in the neighborhood of waveguide corners should be considered carefully, especially
when the step sizes of the discretization are small and the index differences large. We
studied the possible consequence of the finite difference operation on different but
equivalent expressions which are functions of the local refractive index, especially the
non-physical noise produced in the neighborhood of waveguide corners where the index
is discontinuous.

In the vectorial formulation of Section 2.1, the first- and second-order derivatives of the
refractive index with respect to x an y are non-vanishing. For example, the following
expressions occur in Eqgs.(2.3)

d

__(Fz PAPELLLAGIN)

3 ) (g, r=x,Y). 2.20)
r

dq

The finite difference operation in the node k,j,! will lead to the introduction of the index
values at the following five nodes, i.e. (h+1j,0), (h-1,i,1), (hj+11), (hj-1,1) and (h,j,1). We
know that the refractive index distribution is discontinuous at waveguide interfaces and
especially in corners. Therefore, the finite difference operation on the following
equivalent expressions

2 9n(hj.l) _ oln’(hjl) _ 1 on(h, j,1) @.21)
n(h,j,I) 9x a dx T n%(h,j, D) ax )

give different results.

We have investigated the influence of the three types of expressions in Eq.(2.21) on
propagating fields. The HEq-mode field was launched into the rib waveguide [5]. Figure
2.1 shows the E, components after propagation over 2 pm. If the latter two expressions
are used for the finite difference operation, both lead to the introduction of nonphysical
noise in the neighborhood of the corners and this noise becomes bigger as the propagation
proceeds. However, the first expression generates that problem on a much lower scale. On
account of this analysis we suggest that, prior to the finite difference operation, the
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expressions containing the derivatives of the refractive index should be converted to their
most simple form, i.e. no square, no logarithm.

@) (b) ©

Figure 2.1 Amplitude distribution of E, for a HEg-mode coupled into the rib
waveguide. Ax = Ay = Az = 0.05 pm; o = 0.65, ng = 3.39. The propagation distance is
2 um.

2.3 Solving the linear algebraic equations
2.3.1 Boundary condition

A boundary as discussed here is the boundary of a computational window, not a boundary
of the waveguide structure. There are many kinds of boundary conditions, among which
the Dirichlet and the Neumann boundary conditions are widely used [1]. If the field
strengths at the boundary are not small enough, a noticeable reflection of fields by the
boundary will occur, which is non-physical and causes spurious interference.

To prevent boundary reflection, the most common way is the insertion of artificial
absorption regions adjacent to the pertinent boundaries such that field strengths will be
negligible at the boundary [6]. The thickness of these regions, their maximum absorption
coefficient, and the spatial dependence of the absorption must all be carefully chosen for
the method to work properly. In addition, extra absorption regions result in computational
penalties concerning runtime and storage space.

A new transparent boundary condition [7-8] has been developed, which allows the
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radiation to escape through the boundaries without noticeable reflection, such that a
radiative flux back into the computational window is prevented.

Since the treatment of the four boundaries of a computational window is essentially
similar [7-8], we only focus on the right-hand boundary (see Figure 2.2). By use of the
simultaneous relaxation algorithm, we obtain the field components of the propagation step
I+1 in all nodes excluding those on the four boundaries from the field components of the
propagation step [ . The following implementation is used:

Fi'(h,J) _F(hJ-1)
F4(h, J-1) F(h, J-2)

= exp(ik,Ay), 2.22)

where k, is a complex propagation constant and k=2, 3, 4, -, H-1;1=1,2, 3, - It can
be proven [7] that if the real part of k, is positive, radiative energy can only flow out
through the right-hand boundary. If the real part of k, is negative, we use instead of (2.22):

Fyl(h, J)y=F}' (b, J-1), (2.23)
thus neglecting a back flow of energy into the computational window. For field

components in the y- and z- directions, a similar implementation is used. Such a treatment
will ensure that radiated energy can only flow out of the considered boundary.
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Figure 2.2 Schematic view of a discretized rib waveguide
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2.3.2 Relaxation method

In (2.18), each equation has the following form with h =2, 3,4, -, H-l1 andj=2, 3, 4, -,
J-1:

a(h, YUh+ 1, j)+b(h, jYU(R-1, j)+c(h, YU, j+1) 2.24)

+d(h, HUA, j-D+e(h, jHUA, jy=1(h, J), )
where a(#, j), b(h, ), c(h, j), d(h, j), e(h, j) and f(h, j) are known coefficients. An iterative
solution procedure is set up by solving (2.24) for U(h, j), which is first calculated from the
initially estimated values U™ (7, ;) via:

(f(h J)=a(h, YU (h+ 1, j)=b(h, HU™ (k-1 j)
(h 0 (2.25)

"C(h,j)Uil]itial(h,j+1)—d(h,j)Ummal(h,j'])).

Uh, j)=

A new value U™ (%, j) can be obtained as the weighted average of the calculated and
initial values

U™ (h, j)=oU(k, j)+(1-0)U" (5, §), (2.26)

where @ is called the relaxation parameter. Thus

Unew (h, ]) = Uinitial (h, J)_ wg(hr.]) , (227)
e(h, j)

where in the first step the residual & (%, j) is defined as

&(h, j)=a(h,j)Ummnl(h+1, j)+b(h,j)Uinilizll(h_1,j)
+c(h, HUM (B, j+ D +d(h, U™ (-1, j) (2.28)
+e(h, YU (h, j+ 1)—£(h, j).

For each propagation step, the above procedure from Eq.(2.25) to Eq.(2.27) is repeated
with U™l 7y replaced by U™ (h, j) until a criterion for terminating the iteration is
reached. The stopping criterion is related to the residual and will be discussed below. This
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way, the correct field components in all nodes of one propagation step can be obtained.

The choice of ® is very important. Only 0 < ® < 2 leads to a converging process [1]. The
optimal value of ® depends on the individual situation and a proper choice will lead to a
faster convergence. Besides, the necessary number of iterations for a H X J grid division
depends on the initial guess, the number of grid nodes, step sizes and the reference
propagation constants. On the other hand, for a converging process, the residual becomes
smaller and smaller as the iteration carries on. To obtain accurate results, a high precision
for both the real and imaginary parts of the quantities used in the iteration must be
ensured during this process. Therefore, double precision should be used in the iteration
subroutine of the computer program.

For convenience, the above discussion is based upon one equation, i.e. concerning a
single set of A, j, I values. If we discuss all equations simultaneously, a matrix equation as
in (2.9) has to be used. Then U(#, j) becomes the solution vector.

An iterative method will produce a sequence { U'(h,j)} of vectors converging to a vector
U(h,j) satisfying the matrix equation. To be effective, the process must decide when to
stop. A good stopping criterion should

(1) identify if the error € = U'(h,j) -U(h,j) is small enough to stop,
(2) stop if the error is no longer decreasing or is decreasing too slowly,
(3) limit the maximum amount of time spent iterating.

There are many kinds of stopping criteria. The most widely used one is to terminate the
iteration when the error defined as Y, 2,5’;,, il reduced by a factor of 107 with respect to
b

its initial value, where P is a prescribed integer. This criterion is simple and easy to
program. However, it has the disadvantage of strongly depending on the initial error.
Therefore, the choice of P must be treated carefully. For our BPM, we used this type of
criterion. Afterwards, however, we always verified the absolute accuracy.

2.3.3 Acceleration of the iterations

We have accelerated the iterations by use of the following [9]:
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Decreased initial error: An initial estimate of the solution vector for each propagation

step is necessary for the iteration in the relaxation method, which in literature is usually

chosen as the zero vector. An error defined as ZZ'?’;,, fl will be introduced by this initial
ko

guess. A bigger initial error will correspond to a bigger number of iteration steps to obtain
the same absolute accuracy, leading to a lower speed. Therefore, an appropriate initial
guess is important to speed up the simulation. Based upon the local continuity of the
optical field, we expect that the calculated field in the previous propagation step is a
suitable initial estimate for the field in the next step.

As an example, we simulated a rib waveguide structure as described in [5] with a 61 x 61
grid division (Ax = Ay = Az = 50 nm) at a wavelength of 1500 nm. We chose p = 14.205
um-1. The reason is that there exists an optimal reference propagation constant for each
structure, which corresponds to the negligible spurious numerical loss, as discussed in
Section 3.3.1. The value of the scheme parameter ¢ is chosen as 0.7 because it ensures the
stability of the numerical scheme (also see Section 3.3.1). The HE(y guided mode field is
launched as the input at z = 0 um. To reach a given accuracy, the zero initial guess of the
propagating field requires 90 iterations for one propagation step, while using the
calculated field of the previous step as an initial guess only 58 iterations were required.
Thus, a 55% speed increase is obtained.

Reduced iteration parameter: Usually, the iteration parameter P is chosen as P 2 5. A
bigger P will lead to a higher accuracy, but the simulation speed will decrease
simultaneously. Therefore, P should be chosen as small as possible within the accuracy
limits required for the results.

Since the field in the previous propagation step has been used as the initial estimate for
the field in the following propagation step and the propagation step size is usually small
(£ 0.1 um), the initial error is quite small. Our results show that P = 3 is enough for an
accurate simulation, which means that the relative error between the calculated results
(field amplitudes) with P = 3 and P = 5 is less than 10-4. Still using the same waveguide
structure mentioned above, 99 iterations are needed for P = 5, while only 58 iterations are
needed for P = 3, leading to a 70% speed increase.

Transparent boundary condition: By choosing the transparent boundary condition, since
the field remains undisturbed in the neighborhood of the boundaries, a smaller widow size
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can be used. Because the simulation speed is inversely proportional to J3 for a J X J grid
division, the speed has been effectively increased. As an example, a 61 x 61 grid division
of the rib waveguide structure corresponds to a simulation time of 3.3 seconds for a single
propagation step on a workstation (SUN Sparc 10/40), while 6.6 seconds for a 81 x 81
grid division. Since a small computational window can be used and thus a high simulation
speed can be obtained, this transparent boundary condition is preferred in our
computations.

2.4 Summary

A fully vectorial finite difference beam propagation method for three-dimensional
waveguide structures, including z-variant structures has been developed. We solve the
discretized differential equations by using the relaxation method. The stability, numerical
dissipation and boundary condition are discussed. Several ways to speed up the simulation
have been given, including: applying a modified Crank-Nicholson scheme, introducing a
decreased initial error, using a reduced iteration parameter and applying a transparent
boundary condition.
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Chapter 3

Programming and simulation

In Section 3.1, we describe the programming and discuss some related procedures we
have used. Results of a benchmark test including three types of computers are presented
in Section 3.2. The influence of the finite difference scheme parameter o, the reference
propagation constant B, the step sizes and the boundary condition on the simulation
results are shown in Section 3.3. To this aim, the wave propagation through the following
structures has been simulated: a straight rib waveguide, a longitudinally varying tapered
waveguide, a polarization splitter, and a polarization converter.

3.1 Programming

Programming the fully vectorial FD-BPM includes the design of the software algorithms,
choice of the numerical scheme, writing of the source code, test of the validity of the
results, acceleration of the program and overall optimization. The source code has been
written in FORTRAN language, and comprises various subroutines. Most computing is
carried out on the SUN 10/40 workstation. A benchmark test also includes other two types
of workstations: the HP 735 and the Cray C98/4256, as discussed in Section 3.2. We used
SUN FORTRAN 1.4 as the programming language, which is an enhanced FORTRAN 77
development system and conforms to ISO 1539-1980, corresponding to the ANSI X3.9-
1978 FORTRAN standard. It provides an IEEE standard 754-1985 floating-point
package. The debugging tool dbx was used to debug our program.

3
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Vectorial FD-BPM

INPUT waveguide configuration, numerical parameters
and output requirements

IF first step

THEN ELSE

INPUT the original field INPUT the field of the last step

CALL DEX o establish a 3D array containing index distribution
for two neighboring cross-sections

to put the coefficient matrix elements into six
CALL XCOEFF different 2D arrays for E,

CALL SOR to solve the matrix equation for E,

CALL YCOEFF to put the coefficient matrix elements into six
different 2D arrays for E,

CALL SOR to solve the matrix equation for E,

to put the coefficient matrix elements into six
CALL ZCOEFF different 2D arrays for E,

CALL SOR to solve the matrix equation for E,

Display the elapsed time and the number of remaining
propagation steps

IF at the prescribed distances
THEN ELSE

CALL OUTPUT  to output the CONTINUE
results

repeat until all propagation steps have been calculated

END

Figure 3.1 Flow chart of our computational setup



Programming 33

3.1.1 Program structure

The main program has been divided into three interactive sections, for the parameter
values input, the simulation and the output, respectively. The parameter input section
guides the user to provide various waveguide parameters, iteration parameters, input
fields, and requirements for the output. In the simulation section, for each propagation
step, the elements of the three coefficient matrices occurring in Eqs.(2.18) are calculated,
and subsequently iterations are carried out to obtain the field distributions. This process is
executed repeatedly. In the output section, various results such as field strengths, field
amplitudes, field intensities, and power attenuation are stored according to the choice of
user. The formatted output data can be directly used by Gnuplot software on a Unix
workstation and by Mathematica software on a PC or Macintosh for plotting. The flow
chart is shown in Figure 3.1.

3.1.2 Arrays

Coefficient matrix arrays: Each coefficient matrix occurring in Eqs.(2.18) is
dimensioned as [(H-2)-(J-2)] by [(H-2)-(J-2)], but is sparse having a tridiagonal form with
fringes. For a grid division H = J = 102, there will be 10® elements in a single matrix.
Since one IEEE double precision value occupies 8 bytes and a double complex one 16
bytes, 10® elements occupy more than 800 Mb. It would prove disastrous trying to store
all of them, since most computer systems can not handle that. To solve this problem, we
have introduced six arrays dimensioned as (H-2) by (J-2) to store only the six groups of
the non-zero elements, as indicated in Eqs.(18). Then, the necessary memory space is
reduced to less than 1 Mb for one matrix.

Refractive index array: For a tapered waveguide structure, the cross-sectional
distribution of refractive indices changes as the propagation continues. The storage of
index values on all discretization nodes will take a huge memory and disk space. We have
adopted two methods to overcome this problem. The first one is to introduce a function
subroutine R(4,j,1), which has a unique value for one set of 4,j,/ values. Such a treatment
requires a small memory size. However, in subroutines XCOEFF, YCOEFF and
ZCOEFF, frequent calls of the function subroutine R(h,j,[) take a considerable CPU time.
The second method is to use a three-dimensional array with dimensions (H,J,2), where H
and J are the numbers of nodes in x- and y- directions, respectively. This means that only
the index values of two neighboring cross-sections are stored for each propagation step,
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thus requiring both low memory size and CPU time.
3.1.3 Numerical considerations

We have applied the standard Crank-Nicholson FD scheme to Eqs.(2.7) in the beginning
of the investigation. As shown in Section 2.2.1, we then experienced unacceptably low
simulation speeds. To enable any investigation, we only could allow a very small number
of grid nodes (H, J < 31) at that time. This painful experience pushed us to introduce a
modified Crank-Nicholson scheme and other acceleration procedures. In Sections 2.2.1
and 2.3.3, these effective measures have been presented and analyzed.

After using the modified Crank-Nicholson scheme, Eqgs.(2.7) are converted to five-points
differential equation problems. A relaxation algorithm through iterations has been used to
obtain the propagating fields step by step. The choice of the parameter  is critical for the
convergence of the iterations (see Section 2.3.2). According to the literature [1], only the
values 1 < @ < 2 can lead to a fast convergence, if Dirichlet and the Neumann boundary
conditions are used. We have used the recently developed transparent boundary
conditions (see Section 2.3.1). Our results show, however, that the fastest convergence is
obtained if ® is about 0.9, which we have used as the preset parameter value in the
simulations.

3.1.4 Double precision

According to the IEEE standards [3], a single precision value occupies 32 bits. Bits 0:22
store the 23-bit mantissa, bits 23:30 store the 8-bit exponent, and bit 31 stores the sign
(positive or negative). The 23-bit mantissa combined with the implicit leading bit
provides 24 bits of precision in normal numbers, which is always more accurate than 6
decimal digits but always less precise than 9 decimal digits [3]. Similarly, an IEEE double
precision value is always more precise than 18 decimal digits and less accurate than 21
decimal digits.

The stopping criterion for an iteration process has been discussed in Section 2.3.2. For

example, we can decide that the iteration process should not stop until an absolute value

10°'° of the error, defined as ZZ|§(}z, j)| based upon Eq.(2.28), is reached. Therefore,
]

all variables in the expression for £(h,j) must have an absolute precision higher than 10°1°,
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otherwise the iteration stopping criterion can never be reached. In this case, a single
precision will not be enough which can only ensure a precision up to 6 decimal digits.
Consequently, in the iteration subroutine, a higher precision is extremely important to
determine when the iteration stops and thus influences the accuracy of the calculated
results. We have used double precision for all constants and variables (real or complex) in
the pertinent subroutine.

3.1.5 Debugging

For a big program whose source code contains more than one thousand lines, finding all
errors is complicated. After removing all syntactical errors during compilation, an
executable file is produced. However, a compilable program doesn’t mean that results
will be correct. For example, there might be programming mistakes or typing errors in
formulas, which can not be recognized by the compiler. To find such bugs, we perform
simulations on simple and well-known structures. The results can be compared with those
obtained by other methods. The debuggers dbx and dbxtool on the SUN workstation have
proven to be useful for finding these bugs. With dbx, the programmer can display and
modify variables, set breakpoints, trace variables and invoke procedures in the program
being debugged without having to recompile. dbxtool allows a more effective use of dbx
by replacing the original, terminal-oriented interface with a window- and mouse-based
interface.

To use dbx or dbxtool, one must load and compile the program with the -g flag, i.e. use
the command

f77 -o test.exe -g test.f,
thus compiling test.f and producing an executable file fest.exe. Then, by typing dbx
test.exe, the debugging is invoked. After the (dbx) prompt appears, run must be typed to
start the execution. The detailed description of the debugging can be found from the
literature [3].

3.1.6 Optimization

Nowadays almost all compilers offer various optimization choices, which can greatly
improve the calculation speed (see Section 3.2). However, every machine has its limited
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abilities. The manual optimization of a source code is always recommendable. In
literature, [4] proved to be a useful reference book.

For example, nested DO loops ( 2 3) should be avoided if possible, since they usually take
more CPU time. Special optimization efforts are needed for codes inside the innermost
loop. In fact, the subroutine SOR in our program contains essentially three nested loops.
This subroutine takes 95% of the total CPU time needed. Therefore, optimization efforts
are mainly directed to improve this subroutine. In addition, we experienced that different
computers have different requirements for an optimal structure of the source code file (see
Section 3.2.3).

3.2 Benchmark test

A benchmark test including three computers (SUN 10/40, HP 735 and Cray C98/4256)
has been carried out. We simulated the field propagation through a rib waveguide
structure [1] using a 61 x 61 grid division over the propagation distance of 1 pm, with the
steps Ax = Ay = Az = 0.05 um. Exactly the same FORTRAN source files have been
compiled at all three computers and then executed, with and without the optimization
choices which will be discussed later.

3.2.1 SUN 10/40

For the SUN 10/40 workstation, the basic compiling command has been used without
optimization choices, using the command:

f77 -0 sunl.exe test.f.

Then, the execution of sunl.exe took 227.3 seconds. However, using the following
optimization choice,

77 -fast -O3 -0 sun2.exe test.f,

where -fast automatically selects the combination of compilation options that optimizes
for speed of execution without excessive compilation time and -O3 sets the optimization
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to the level 3%, the execution of sun2.exe required 74.9 seconds, a speed increase of
203%. According to the reference book [3], this should work closely to the maximum
performance for most realistic applications.

3.2.2HP 735

We also made computations on a HP 735 workstation. Without extra optimization
choices, i.e. using the command

f77 -0 hpl.exe test.f,
the execution of hpl.exe took 60.1 seconds. We further used the optimization choice, i.e.:
f77 +04 -0 hp2.exe test.f,
where +04 means that the optimization option is set to the highest level 4. This includes
store/copy optimization, unused definition elimination, loop invariant code motion,
common sub-expression elimination and register allocation etc. Then, the execution of
hp2.exe required 29.7 seconds, meaning a speed increase of 102%.
3.2.3 Cray (C98/4256
The Cray C98/4256 is a super computer, which contains four parallel processors. We only
used one of them to test our program. Without extra optimization choices, i.e. using the
command

cf77 -0 crayl.exe test.f,

the execution of crayl.exe took 58.6 seconds. On the other hand, we used an optimization
choice by calling:

£77 -Zv -o cray2.exe test.f,

where -Zv means that the compiler uses the highest vectorization option (level 3). Then

* The highest level actually is 4, but that proved to be worse than the level 3 when combining with the -fast flag in
our program.
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the execution time of cray2.exe required 17.8 seconds, a speed increase of 229%.

For a super computer, the above times are unacceptably long. An inspection on the source
code file was carried out by specialized personnel*. They suggested that a minor change
in one time-consuming subroutine should be introduced, as indicated in Appendix D. The
purpose is to vectorize DO loops in the routine. Without an appropriate source code
change, the innerest DO loop can not be fully vectorized, which has a critical influence on
the speed.

Then, without extra optimization choices, i.e. calling:

cf77 -o cray3.exe new.f,

the execution of the vectorized program cray3.exe took 3.8 seconds only, while with the
optimization choice, i.e.:

f77 -Zv -o cray4.exe new.f,

the execution of cray4.exe required 2.2 seconds, showing a huge increase of the
computational speed as compared to the results before the source code change.

However, the above source code change has no influence on the calculation speed of the
SUN 10/40, and even has a negative influence on that of the HP 735, which means that
the CPU time increases. Therefore, the structure of a source code file has later been
optimized according to the used computers,

We thus arrive at the following conclusions:

(1) without source code change and without extra optimizations, the calculation time
ratios are

SUN 10/40 : HP 735 : Cray C98/4256 =227.3 : 60.1 : 58.6

(2) without source code change but with extra optimizations, the ratios become

* The kind assitance of Willem Vermin and Bert van Corler of SARA, Amsterdam is gratefully acknowledged.
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SUN 10/40 : HP 735 : Cray C98/4256 =74.9 :29.7 : 17.8

(3) with the source code change but without extra optimizations, the calculation time
ratios are

SUN 10/40 : HP 735 : Cray C98/4256 =226.2:60.1 : 3.8
(4) with the source code change and with extra optimizations, calculation times are
SUN 10/40 : HP 735 : Cray C98/4256 =74.1:29.7:2.2

Theoretically, using one of its processors only, the Cray C98/4256 could be about 40
times faster than the SUN 10/40, under the assumption that the source code can be fully
vectorized. Based upon the above source code change, with the source code optimization,
we have reached a factor of 35. If all four parallel processors are used simultaneously, the
calculation speed on the Cray may be further improved another 4 times, thanks to the
possibility of multitasking operation [2].

3.3 Simulation of waveguide structures

For a BPM with the slowly varying envelope approximation, the choice of the reference
propagation constant is important. There exists an optimal reference propagation constant
corresponding to the lowest spurious numerical loss for each structure. This value is
approximately equal to that of the guided mode of the local structure, as discussed in
Section 3.3.1. In practice, we first calculate the propagation constants of the guided modes
by use of the FEM analysis. Based upon the calculated values, the optimal reference
propagation constants are searched. In addition, since the modified Crank-Nicholson FD
scheme has been used, the introduced scheme parameter o (o0 > 0.5) is found to be
critical. There exists a critical value of o for each structure. If o0 < o, the numerical
scheme is unstable, leading to an exponentially increasing field as the propagation
proceeds. If o > o, the scheme is stable, but there exists a spurious numerical loss. The
value of o will be chosen bigger than o but as small as possible to decrease the spurious
numerical loss, as discussed in Section 2.2.2.



40 Programming and simulation

3.3.1 Rib waveguide

We first simulated the fields propagating through the same straight rib waveguide
structure that has been simulated by several other researchers [5-6]. Such structures are
widely used in OICs.

The structure is shown in Figure 3.2. The height and the width of the rib are 1.1 pm and
2.0 pm, respectively, the thickness of the side slab is 0.2 {um; the refractive indices of the

cover, core and substrate are 1.00, 3.44 and 3.34, respectively. Here, the vacuum
wavelength Ag is 1.5 pm.
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Figure 3.2 Rib waveguide structure.

Simulation results

As an example, we show the simulation results for which the parameters are chosen as
follows: the computational window of 3.0 x 3.0 pum is uniformly discretized with a 61 X
61 grid division; Ax = Ay = 0.05 pm and the propagation step Az is also 0.05 pm. The
reference propagation constant is taken as § = kong (kg = 21/Ag, ng = 3.39.) and the scheme
parameter o, = 0.7 has been used. Both horizontally and vertically polarized Gaussian
beams with a 0.3 pm radius (beam width) of the 1/e amplitude are coupled into the rib
waveguide in the plane of z = 0 um. Figures 3.3 and 3.4 show the evolution of isointensity
contour patterns in the rib waveguide for horizontally and vertically polarized inputs,
respectively.

To allow a comparison with results of other researchers who used a semi-vectorial method
[5] or a scalar method [6], we show the dominant component of the electric field strength.
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In both cases, the beams first expand by diffraction until they reach the dielectric-air
interface. Subsequent reflections cause radiation modes propagating into the substrate.
After propagation over 100 pm, the fields become stable, showing the field distribution of
the guided HEgy- and EHgp-modes, respectively. There are evident differences between
field profiles of Figures 3.3 and 3.4, where the polarization directions are different.
Therefore, a scalar description will be not fully adequate for such a kind of structure.
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Figure 3.3 Evolution of iso-intensity contours of E, for a horizontally polarized
Gaussian beam coupled into the rib waveguide. Ax = Ay = Az = 0.05 pm;
o =0.7, np=3.39.
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Figure 3.4 Evolution of iso-intensity contours of E, for a verticaily polarized
Gaussian beam coupled into the rib waveguide. Ax = Ay = Az = 0.05 um;
o =0.7,n=13.39.

Schulz et al {5] have simulated the same structure up to z = 15 um with a semi-vectorial
FD-BPM based upon a series expansion of the Helmholtz propagation operator. They
took into account one polarization direction and expressed fields in one component, thus
neglecting the couplings between the three electric field components. Both so-called
Quasi-TE and Quasi-TM cases have been simulated, respectively. Their results are in
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perfect agreement with ours, but their method can not be applied when an arbitrarily
polarized field is launched. Ratowsky et al [6] have also simulated this structure up to z =
7 um with the iterative Lanczos reduction method. They launched a Gaussian beam of the
0.3 pm 1/e intensity radius (0.4242 pm 1/e amplitude radius) at 1.55 pm wavelength into
the waveguide, using a scalar method. Our simulation shows that their results are only
approximately identical to our results with a horizontally polarized Gaussian beam input.

Launching the guided mode field calculated using the finite element method* (FEM) and
the Gaussian beam with a 0.3 um beam width, respectively, we next consider the power
attenuation which is defined as -10xlog;o(P/Py), where Py is the power at z = 0 and P is
the power after propagation over a given distance.

Power attenuation (dB)

0 1 1 1 i 1
0 20 40 60 80 100

Propagation distance (lum)

Figure 3.5 Relationship between the power attenuation and the propagation distance
for a horizontally polarized Gaussian beam coupled into the rib
waveguide. Ax = Ay = Az =0.05 um; o0 = 0.7, ngo = 3.39.

Figure 3.5 shows that the power attenuation is considerable for the horizontally polarized
Gaussian beam input because this input is different from the HEyy-mode field and thus
significant power will radiate into the substrate. The power attenuation finally stabilize
when the propagated field becomes identical to the guided HEgy-mode field. The total
power attenuation after propagation over 100 um is about 4.65 dB. For the guided HEo-

* Kindly provided by the Institute of Quantum Electronics, ETH Ziirich, Switzerland.
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mode field input, the power attenuation due to the numerical scheme appears to be
extremely small. Then, the total power attenuation is less than 0.05 dB after propagation
over 100 um. The simulation time for this rib waveguide structure with the propagation
distance up to 100 um took about 1.8 hours on the SUN Sparc 10/40 workstation.

Influence of the reference propagation constant

Since the slowly varying envelope approximation has been used, the influence of the
reference propagation constants on the simulation results is inevitable. Figure 3.6 shows
the relationship between the reference refractive index and the total power attenuation for
the structure with a horizontally polarized Gaussian beam as the input after the stable
guided HEyp-mode is formed. There is a small range of optimal reference index values
(between 3.38 and 3.39) corresponding to the small power loss. The FEM analysis shows
that the HEgp-mode has a propagation constant of B = kong with ng = 3.391. Thus, the
optimal values are approximately the same as that for this mode. If the optimal reference
index is unknown, it can be chosen the value of the guided mode calculated by the FEM
analysis.

5.15

495 t

475 t+

Power attenuation (dB)

4.55 - - - . :
333 335 337 339 341 343 345

Reference refractive index

Figure 3.6 Relationship between the power attenuation and the reference refractive
index for a horizontally polarized Gaussian beam coupled into the rib
waveguide. Ax = Ay = Az = 0.05 pum; o = 0.7. The propagation distance is
100 wm. The calculated effective index of the HEg-mode is 3.391.
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Influence of the scheme parameter

We have used the modified Crank-Nicholson finite difference scheme (see Section 2.2.1).
The von Neuman analysis shows that, for a three-dimensional waveguide structure, there
exists a critical scheme parameter 0.5 < o, < 1 which depends on the structure parameters
and on the reference propagation constant. If o < o, the numerical simulation will be
unstable, leading to an unrealistic power increase of the propagating field. If o > o, the
numerical simulation will be stable, however, an extra numerical dissipation occurs. The
optimal choice is o0 = q.

Huang et al {7] have described a detailed analysis for the slab waveguide structure, where
o = 0.5 can be used. Our results show that, for the rib waveguide structure, if o < 0.6, the
numerical simulation will be unstable. But if ot > 0.6, stability is ensured.

The influence of o on the power attenuation depends on the choice of the reference
propagation constant [3. If a non-optimal reference propagation constant has been chosen,
the influence of o on the spurious power attenuation will be stronger. A bigger value of o
will lead to a bigger power attenuation. Therefore, the optimal reference refractive index
should be used to minimize this influence of o. In addition, under the condition of
ensured stability, a smaller o value is recommended in order to obtain the smallest power
dissipation introduced by the numerical procedure.

Influence of step sizes

Bigger transverse step sizes Ax and Ay can lead to a bigger power attenuation, since then
the structure can not be discretized precisely. Figure 3.7 shows the relationship between
the power attenuation and the step sizes of Ax and Ay for the rib structure with a
horizontally polarized Gaussian beam as the input. If Ax = Ay £0.1 pm, the relative total
spurious power attenuation is less than 2 x 107 and thus can be neglected.

On the other hand, a bigger propagation step size Az can also lead to a bigger power
attenuation (see Figure 3.8), where the spurious power loss can be also neglected if Ay <
0.1 um. However, small step sizes of Ax, Ay and Az correspond to more grid points,
leading to a lower simulation speed. As a compromise, Ax, Ay and Az between 0.05 and
0.1 pwm are satisfactory choices for the particular structure under consideration by
accounting for both the speed and the accuracy. For a structure with small waveguide
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dimensions, this choice is no longer correct. A fine grid division has to be used to ensure
precision, thus a lower simulation speed must be expected.
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Figure 3.7 Relationship between the power attenuation and the transverse step size
for a horizontally polarized Gaussian beam coupled into the rib

waveguide. Az = 0.05 um; o = 0.7, ng=3.39. The propagation distance is
100 pm.
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Figure 3.8 Relationship between the power attenuation and the propagation step size
for a horizontally polarized Gaussian beam coupled into the rib
waveguide. Ax = Ay = 0.1 um; o = 0.7, ny = 3.39. The propagation
distance is 100 pm.
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Extraction of propagation constants

Propagation constants can be extracted from the overlap between the input field and the
propagated field [8]. The theoretical background is as follows:

An electric field can be expressed as the superposition of orthogonal modes [8]

E(x,y,z)= Z(AM M(x,y)exp(il?)nz)), 3.1

where in the case of degeneration the summation includes all modes with the same f3, and
where j is used to distinguish different modes within a degenerate set having the same
propagation constant. Then

P(2) = [[[E'(x.y,0)-E(x,y,2) kixdy

Letz=z¢+ IAz( =0, I, 2, -, N-1). Then, the discrete Fourier transform of Eq.(3.2) is

3.2)

F(m) =% [P(Dw(l)exp(-2mi,)], 3.3)
=0

where m = 0, 1, 2, -, N-1 and w(l) = 1-cos(2nl/(N-1)), which is the Hanning window
function that had to be introduced since N is finite [8]. For a thorough discussion of the

use of windows in numerical Fourier analysis, the reader is referred to [9]. Notice that P())
and F(m) stand for P(zy+/Az) and F(mAt), respectively, where At = 1/(NAz). Eq.(4.3) can

be rewritten as

F(m)=nZ[A

‘LB, -] (3.4)

n,j

where B = 2nm/(NAz) and L(j3,-B) is

N-1

L(B,-B) = 3. [w(yexp(i(B, - Biaz)] (3.5)

1=0
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Therefore, calculated spectra of F(m) will display a series of resonance peaks with
maxima at 8 = B, But in practice, only a finite set of values of P(z) is available. The
sampled values of B do not exactly coincide with that of the guided modes. As a result, an
inaccuracy will occur. The maximal uncertainty in B, is TANAz) since = 2nm/NAz).
However, through a line fitting method [8], the uncertainty can be effectively decreased,
as indicated as follows. If a local maximum of F(m) exists at m = m', we can obtain [8]

2n
=B, —6——, 3.6
B,=B. (N—DAz (3.6)
where -0.5<d <0.5and
2.._
3r+\/;r 8 (r<0),
5= 3.7
3r—+/9r’ -8
— (r>0),

with

L Bm' =D +F(m'+1)
T F(m'-1)-F(m'+])’

As an example, we extract the propagation constant of the HEy guided mode for the rib
waveguide structure, through which only the zero order modes HEqg and EHgo can
propagate. We launch a horizontally polarized Gaussian beam with a 1/e amplitude radius
(beam width) of 0.4 pm at 1.5 um wavelength and propagate over 1 mm.

Figure 3.9 shows the relationship F(P), the peak corresponds to the HEqp mode. The
calculated value of the propagation constant from our BPM is 14.193 um-1, which is in
excellent agreement with the calculated value 14.205 um-! by the FEM based program.

If a symmetrical input field is launched into a multimodal structure, only even modes will
be excited. Therefore, an asymmetrical input field is necessary if all modes need to be
extracted.
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Figure 3.9 Relationship F(P) for a horizontally polarized Gaussian beam coupled into
the rib waveguide. Ax = Ay = Az=0.05 pm; o0 = 0.7, ng = 3.39.

3.3.2 Tapered buried waveguide

3.44 L

-

- v Gad
e e

Figure 3.10 Schematic view of a tapered structure.

Our second structure for test computations is a tapered ridge waveguide structure (see
Figure 3.10). The refractive indices of the core and the background are 3.44 and 3.34,
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respectively. The waveguide sizes taper both laterally and vertically along the propagation
direction from 2.0 X 1.8 um to 0.3 X 0.1 um over a length of 53.125 um. The transverse
computational window of 4.0 x 4.0 pm is uniformly discretized with 81 x 81 grid points,
thus Ax = Ay = 0.05 pum; the propagation step Az is also chosen as 0.05 pm. The zero-
order eigenmode field HEq calculated from the FEM based program, is launched as the
input in the plane z = 0, having a vacuum wavelength of 1.55 um.

The three propagating electric field components Ey, Ey and E, are shown in Figures 3.11,
3.12 and 3.13, respectively, where the reference propagation constant f§ = kong (ng = 3.35)
and the scheme parameter value o, = 0.7 have been used. Nine iso-amplitude contours are
drawn. where (a), (b) and (c) correspond to the propagating distances z = 0, 37.5 and
53.125 um, corresponding to waveguide cross-sections of 2.0 x 1.8, 0.8 X 0.6 and 0.3 X
0.1 um. The dominant component is E, depicted in Figure 3.12, while the other two
components are relatively small. We found that the field profile of Ey first contracts as the
waveguide size decreases until it reaches a minimum in the case of Figure 3.12(b). Then
the field gradually expands if the waveguide size decreases further to zero. The reason is
that the zero-order mode size of a waveguide structure is closely linked to its waveguide
size. Both a large and a small waveguide size correspond to large mode sizes, as discussed
in [10). This provides the principle of spot-size transformers with tapered waveguide
structures. The simulation time for this structure took about 2.9 hours on the SUN Sparc
10/40 workstation.

(@.z=0pum (b).z=37.5 pm (). z=53.125 pm

Figure 3.11 Evolution of iso-amplitude contours of Ey for a HEg-mode coupled into
the tapered buried ridge waveguide. Ax = Ay = Az =0.05 pm; o. = 0.7, ng

=3.35. The inner rectangles indicate the local waveguide cross-sections.
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(@).z=0um (b).z=37.5 um (c). z=53.125 ym

Figure 3.12 Evolution of iso-amplitude contours of Ey for a HEgo-mode coupled into
the tapered buried ridge waveguide. Ax = Ay = Az =0.05 pm; ot = 0.7, ng

= 3.35. The inner rectangles indicate the local waveguide cross-sections.
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Figure 3.13 Evolution of iso-amplitude contours of E; for a HEgy-mode coupled into
the tapered buried ridge waveguide. Ax = Ay = Az=0.05pm; o0 = 0.7, ng

= 3.35. The inner rectangles indicate the local waveguide cross-sections.

Since a small computational window is used, fields will extend to its boundaries.
However, the fields remain undisturbed in the neighborhood of the boundaries, which
indicates that the transparent boundary condition works appropriately.

For a longitudinally tapered structure, the propagation constant of a guided mode varies
along the z-direction. An FEM analysis has shown that the effective refractive index of
the HEj guided mode changes gradually from 3.412 at the input to 3.34 at the output.
Figure 3.14 gives the relationship between the power attenuation and the propagation
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distance for a HEy, guided mode field as the starting field. Our results show that the
smallest power attenuation is obtained by using a variable reference refractive index ng
which is equal to that of the guided mode for the corresponding local structure. If ng =
3.35, the power attenuation is relatively big in the beginning but increases only slowly
later on since this value of ny means a considerable deviation from the effective index of
the guided mode in the beginning. If ny = 3.43, the power attenuation is small in the
beginning but increases rapidly since ng gradually deviates considerably from the
effective index of the guided mode as the propagation continues. There are rapid increases

of the power attenuation in Figure 3.14 after propagation for 45 pm. This occurs because
we have chosen a small computational window of 4 x 4 um. A certain amount of power

has radiated through the boundary.
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Figure 3.14 Relationship between the power attenuation and the propagation distance
for a HEgp-mode field coupled into the buried ridge waveguide. Ax = Ay
= Az = 0.05 mm; o. =0.7.

3.3.3 Polarization splitter

Integrated optical polarization splitters are important components for many applications,
e.g. in coherent optical detection schemes, which use the concept of polarization diversity.
Various concepts for polarization splitters have been presented in the literature [11-14].
Van der Tol et al [13] presented a new mode evolution polarization splitter in
InGaAsP/InP based upon the waveguide birefringence which can be realized in a single
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etching step and which does not require metallization or other overlays. As a practical
example, we next simulate this device and compare our results with the realized
performance.

Structure of the splitter

s 4 2 um HEOO
2 nomode —
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Figure 3.15 Schematic top view of the polarization splitter.

The polarization splitter consists of three sections: an input section, a splitting section, and
an output section (see Figure 3.15). The input section with two asymmetrical monomode
branches is used to inject the first order modes into the splitting section, thus functioning
as a mode converter. The splitting section is constructed by combining a monomode
waveguide and a bimodal waveguide to form an asymmetrical splitter. The monomode
waveguide has a higher propagation constant for its HEgp-mode than that for the HE ;-
mode of the bimodal waveguide, while at the same time it has a lower propagation
constant for its EHpy-mode than that for the EHg;-mode of the bimodal waveguide. An
injected mode will propagate preferentially as the mode in the Y-splitter which most
closely matches its propagation constant [13]. Therefore, an HE(;-mode input will mainly
lead to a HEy-mode propagating in the monomode waveguide, while an EHy;-mode input
will mainly lead to an EHp;-mode traveling through the bimodal waveguide. The output
section is used to couple the EHy;-mode from the bimodal waveguide of the splitting
section to the EHgo-mode of the monomode output waveguide, again having two
asymmetrical monomode branches connected to the bimodal waveguide.



54 Programming and simulation

Simulation results

The first order modes calculated through the FEM analysis are the incident fields for the
splitting section at z = 0 mm. Ax = 0.05 um, Ay = 0.2 um, Az = 0.1 pm. The finite
difference scheme parameter is chosen as 0.67, while the reference propagation constants
are chosen as 13.78 and 13.74 um-! for the HEy;-mode and the EHg-mode input,
respectively. The wavelength equals 1.5 um [14]. Figure 3.16 shows the field evolution of
the dominant E,-component, with the HEq;-mode as the input, while Figure 3.17 shows
the field evolution of the dominant E,-component, starting from the EHg;-mode. The
polarization splitting effects can clearly be observed. The cross-talk values in dB, defined
as the power ratio of the dominant (wanted) component in one branch and the non-
dominant (unwanted) one in the other branch, are -13.8 and -11.1 dB for the HE(;-mode
and the EHg;-mode inputs, respectively. The simulation time for such a splitter over a
propagation distance of 3.5 mm took about 35 hours on the SUN Sparc 10/40 workstation.

Due to technical difficulties, the quoted experimental results [13] of the cross-talk values
showed errors of + 3 dB, which makes that both calculated results are in perfect
agreement with the realized best performance of -12.0 and -13.1 dB [13], respectively.

The cross-talk depends on the branching angle and on the propagation constant difference
of the modes. Actually, FEM analysis shows that the propagation constant difference
between the HEq-mode of the monomode waveguide and the HEg;-mode of the bimodal
waveguide is only 1.47 X 104 um-!, and between the EHp;-mode of the bimodal
waveguide and the EHgo-mode of the monomode waveguide is only 5.84 X 10-4 um-L.
Such small differences correspond to a rather small branching angle in the order of 0.1°.

We have simulated another splitting section with the same parameter values as in Figure
3.15 except that the branching angle is increased to 0.3°. Then, the resulting cross-talk for
the HEq;-mode input is increased -7.0 dB, demonstrating that a big angle can lead to the
increase of cross-talk values. By application of a double masking technique, very small
branching angles can be realized [13].

Figure 3.18 shows the relationship between the power attenuation of the propagating
fields and the propagation distance in the splitting section. We notice that the EHp,-mode
input experiences a lower power attenuation, however, its calculated cross-talk value is
bigger than that of the HEg;-mode input. For the EHy;-mode input, the 3.5 mm section
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length can be decreased to about 2.5 mm without much change in performance (see
Figure 3.17). However, 3.5 mm length is necessary for the HEq;-mode input (see Figure
3.16).

@l
i

z=3mm z=3.5mm

Figure 3.16 Evolution of the dominant component Ey in the splitting section with the
HE(;-mode as input at z = 0 mm. The waveguide cross-sections are also
indicated.
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Figure 3.17 Evolution of the dominant component Ey in the splitting section with the

EH ¢;-mode as input at z = 0 mm. The waveguide cross-sections are also

indicated.
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Figure 3.18 Relationship between the power attenuation of the propagating fields and
the propagation distance in the splitting section with the injection of the
first order modes at z = 0 mm.

Only the dominant field components have been shown in Figures 3.16 and 3.17. Our
results show that the other components are relatively small. Therefore, scalar BPM results
could also be used as an approximation for both cases of an HEy;-mode or an EHp;-mode
input. However, the vectorial BPM is required if an arbitrarily polarized field is injected
into the structure.

3.3.4 Polarization converter

Polarization converters act as the “retardation plates” of integrated optics. They are
essential for a polarization diversity heterodyne receiver if it is integrated monolithically.
They also can be used in a number of other applications, e.g. in polarization switching or
scrambling. On InP, polarization converters using the electrooptic effect have been
reported [15]. Alternatively, passive polarization converters made with periodic structures
have also been mentioned in literature [16-17]. These components require less processing,
since only waveguide sections have to be made. However, they usually are several mm
long and have losses of a few dB. Recently, a new passive polarization converter on InP
has been proposed [18]. It consists of a sequence of asymmetrical non-rectangular ridge
waveguide segments with one angled sidewall. Adjacent segments have angled walls at
opposite sides; at their junctions a coupling between the HE g mode and the EHgp mode
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occurs. Choosing the correct segment length and waveguide parameters, a complete
polarization conversion from the HEy, mode to the EHgo mode will occur after a given
number of segments. The total length of such a device is about 1 mm and its total access
loss is less than 0.5 dB.

Principle of the polarization converter

The proposed polarization converter is shown in Figure 3.19, it contains ridges having a
straight and an angled side. The straight sidewalls are made by reactive ion etching (RIE).
The angled sidewalls are produced through two selective wet chemical etching steps [19]:
first on InP, then on InGaAsP. Figure 3.20 shows the waveguide’s cross-sectional
geometry in two adjacent sections. A lateral offset A between two adjacent ridges will be
introduced, which can decrease the loss in the propagating field effectively.

~

Figure 3.19 Periodic polarization converter with waveguide segments containing
angled sides.

The angled sides cause a local tilt in the fields, which leads to bigger non-dominant field
components. Figure 3.21 shows the non-dominant E,-components of the HE o-mode for
the rectangular and non-rectangular structures calculated by use of the FEM-based
program. The non-dominant E -component of the HEy-mode for the rectangular-structure
is very small but symmetrical (Figure 3.21a), while in an angled side it is locally bigger
and asymmetrical (Figure 3.21b).
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Figure 3.20 Waveguide cross-section of the polarization converter on InP.
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Figure 3.21 Non-dominant E,-components of the HEy, mode for (a) a rectangular
structure and (b) a non-rectangular structure, both calculated by the FEM -
based program. The facet angle 0 is 45°.

We then can expect that at their junctions one propagating zero-order mode in the
preceding section will excite two mutually perpendicular zero-order modes in the next
section, as shown in the following:

| 2HE00 Part A
HE,, < 2
EH,, PartA ZHEOO <
0
HE,, )
2HE00 Part B EH00<

1
EH
00 < ZEHoo

Part B
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where the number on the up left corners denotes the input field (if it is 0) and exited
modes (1,2---). Part A and B denote excited modes from EHgyo- and HEg-modes,
respectively. If the segments have a length that matches half the beatlength of the two
mutually perpendicular zero-order modes, the two Parts A and B of 2HEqe-modes will be
out of phase, and the two Parts A and B of 2EHqo-modes will be in phase. This
phenomenon occurs at each later junctions. Consequently, a gradual polarization
conversion will occur. After propagation through a certain number of segments, an
incoming HE gs-mode will be converted completely to the EHgg-mode.

Simulation results

The considered wavelength is 1.5 um. The facet angle is 45°. The cross-section of the
polarization converter is discretized into grids with Ax = Ay = 0.05 um. The propagation
step size is also taken as 0.05 um. The segment length of 90 pm is obtained by calculating
AR, where AP is the difference in the propagation constants of the HEgo- to EHgo-modes,
calculated by the FEM-based program. The reference propagation constant is chosen as
13.72 pm-! and the finite difference scheme parameter is chosen as 0.65 [20].

An HE,, modal field with a dominant E, component is launched as the starting field. The
field evolution of the E4- and E,-components is shown in Figure 3.22, where an offset of
0.2 um has been used. The polarization conversion can be observed clearly from the
evolution of field components. As the propagation continues, the E,-component gradually
decreases, while the E,-component increases. After about 12 segments, a complete
polarization conversion from HEq, to EHy has been realized. If the field propagates
further, the E,-component will gradually increase while E, decreases, repeating the
process periodically after about 24 segments. The relative power of the HE go- and EHgo-
modes as functions of the propagation distance (measured in numbers of segments) is
shown in Figure 3.23. The power attenuation after realizing a complete polarization
conversion is about 0.5 dB.

The simulation time for such a converter to realize a complete polarization conversion
took about 14 hours on the SUN Sparc 10/40 workstation.
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Figure 3.22 Evolution of the field propagating through a converter consisting of

twelve segments.

Il
it
il

b
/

o



62 Programming and simulation

1 T T T 7]

e
LA Ny,
ot e TN
5 .
= s
o P
o —— HE-mode
> 05F
s 1 N EH,,-mode
[}
m e
el
A /
0 e :
0 4 8 12

Number of segments

Figure 3.23 Relative powers of the HEy- and EHg-modes for the converter for a
segment length of 90 pm and a lateral offset of 0.2 pm.

Lateral offset

The total access loss for a complete polarization conversion has been decreased by
introducing a lateral offset between the two adjacent segments.
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Figure 3.24 Relative powers of the HEy- and EHpo-modes for the converter for a
segment length of 90 pm but without a lateral offset.
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Without this lateral shift, the total access loss for a complete conversion is obtained from
Figure 3.24, being about 1.5 dB. With a 0.2 um shift, however, this loss reduces to 0.5 dB
(see Figure 3.23). Therefore, an appropriate lateral shift is important. We have simulated
the polarization conversion for the structure with various offset values ranging from -0.5
to 1 um. Our results show that the optimal lateral shift is about 0.2 pm.

Segment length

Another critical parameter is the segment length L. Since it is calculated from /A,
where AP is the difference in the propagation constants of the HEq- and EHgy-modes in
the angled structure, the value of L will depend on the calculation precision of the 3 of the
guided modes. We experienced differences in AP if calculated by three different methods:
one a FEM-based program, one a program based upon the “film mode matching”
technique [21] and the third our vectorial FD-BPM to obtain AB by use of an extraction
technique [8]. This technique can be used for a straight waveguide structure with a
constant cross-section. The calculated AP is in the order of 0.035 um-!. Due to the inverse
dependence of L on AP (L = nw/AB), a minor difference in AP values obtained from
different methods will lead to a significant difference in L. The difference in L is in the
order of 2 um.
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Figure 3.25 Relative powers of the HE y- and the EH op-modes for a segment length L
= 87.5 um, a deviation of 2.5 um from the correct length, and with a

lateral offset of 0.2 pm.
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Our vectorial FD-BPM calculated the segment length as 90 pm. We then have
investigated the influence of a segment length variation on the polarization conversion.
The results show that the polarization conversion situation will deteriorate quickly if the
length deviates from 90 pm. Figure 3.25 shows the situation with a segment length of
87.5 um, a deviation of 2.5 pm. In that case a complete polarization conversion can never
be realized. However, we found that if the deviation is less than 0.5 pm, the non-
converted power is less than 1% after twelve segments. A precision of better than 0.1 um
can technologically be realized, if an electron beam pattern generation (EBPG) instrument
and a double mask technique are used.

Method of overlap integrals

We now use another method, based upon overlap integrals [21], to analyze the fields in
the above mentioned structure and we compare its results with that of our vectorial FD-
BPM. The amplitude coupling coefficient between two complex guided modes is defined
as:

IM,V
Cov= N (3.8)
with
I, = T T(E;H;—E;H;)dxdy, 39)

—00 —o0

where u and v denote two modes; Ey, Ey and H,, Hy are the transverse components of their
electric and magnetic fields, respectively. First, the guided mode fields are calculated by
the FEM-based program. Then, the coupling efficiencies between modes of two adjacent
segments are obtained from the overlap integrals. We again introduce a lateral offset of
0.2 um. The calculated field coupling coefficients at one junction are 0.15 between the
HE- and EHge-modes of the adjacent segments, while 0.98 between the two HEq-modes
or two EHy-modes of the neighboring segments. Subsequently, assuming that each
segment has a correct length, the gradual change of power percentages of two zero-order
modes as a function of the number of the segments can be calculated, using those field
coupling efficiencies. The results are shown in Figure 3.26.
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Figure 3.26 Relative powers of the HEqp- and the EHgp-modes for the converter
calculated by the method of overlap integrals, with a lateral offset of 0.2

pm.

From Figure 3.26, a complete polarization conversion occurs for 10 segments instead of
12 segments from the FD-BPM analysis, mainly due to the fact that the method of overlap
integrals ignores the influence of radiation, thus omitting extra phase shifts introduced by
this radiation, The vectorial FD-BPM, which takes this radiation into account, therefore
should lead to more exact results.

The polarization converter has been technologically realized [19], where a 90%
conversion was obtained. The necessary number of segments for a maximal polarization
conversion is between 10-13. The variation is due to technical difficulties. The total loss
less than 1 dB has been obtained. These results have further proved the validity of our
vectorial FD-BPM.

3.4 Summary

The considerations and procedures such as choices of the arrays, numerical treatment,
double precision, debugging and manual source code optimization, have been discussed.
A benchmark test including three computers was carried out. Our SUN workstation has
the lowest speed. A 35 times speed increase has been obtained on the Cray C98/4256
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using one of the four processors only. Optimization choices of compilers have been used,
which speed up the simulation considerably.

Both exact guided mode fields calculated by the finite element method (FEM) and
Gaussian beam fields have been launched as the input. The power attenuation coefficients
and the field profiles have been calculated. The choices of the reference propagation
constant, the finite difference scheme parameter and the step sizes are made on the basis
of numerical analysis. An optimal reference propagation constant exists for each
waveguide structure. For a tapered structure, this optimal value should be variable as the
propagation continues. There also exists a critical value o of the finite difference scheme
parameter. If o < o, the scheme is unstable. The validity and accuracy of the FD-BPM
have been demonstrated by simulation of several particular waveguide structures,
including a rib waveguide, a tapered ridge waveguide, a polarization splitter and a
polarization converter. The simulation time for a single propagation step (0.05 um) of a
rib waveguide structure with a 61 x 61 grid division (Ax = Ay = 0.05 um) was 3.3 seconds
on a SUN Sparc 10/40 workstation.
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Chapter 4

Design of tapered waveguide
structures

In Chapter 1, it has been pointed out that the modal field of a single-mode fiber can be
approximated by a Gaussian distribution, which has a beam diameter (1/e-width of the
amplitude profile) of about 8-11 um, while the zero-order modal field in an InGaAsP
waveguide on an InP substrate is usually asymmetrical and has a mode size of about 1-3
um. In order to improve the fiber-chip coupling efficiency, various methods have been
proposed. A properly designed three-dimensional tapered waveguide structure could be an
ideal tool for matching these fields. In this chapter, we use our fully vectorial FD-BPM to
design tapered waveguide structures on InGaAsP/InP, which can serve as mode size
transformers for an effective fiber-chip coupling.

4.1 Basic considerations

An ideal mode size transforming tapered waveguide should modify the field profile of an
incident modal field adiabatically. This implies that the local mode at the output of the
waveguide contains all the incoming power. An actual situation usually suffers from a
certain power loss due to the gradual change of the waveguide cross section over a finite
length; as the propagation proceeds, this causes power to radiate out of the structure.

The fiber-chip coupling efficiency depends on two kinds of power loss (reflection loss can
be effectively decreased using e.g. anti-reflection coating): one is the propagation loss in

69



70 Design of tapered waveguide structures

the tapered waveguide structure; the other is the overlap loss due to a difference in modal
fields between fiber and waveguide fields. Therefore, to obtain the highest possible
coupling efficiency, 3D tapered structures are necessary, which means that waveguide
structures are tapered both vertically and horizontally along the propagation direction
such that the mode field of the chip waveguide is transformed to match the circularly
symmetrical field of the single mode fiber. In addition, the propagation loss in the
designed tapered structures should be low.

Another point in designing is that the structures should be technologically realizable. We
have taken into account the following aspects:

Easy coupling of the fiber to the chip: Coupling configurations should have a
workable alignment tolerance. Based upon this, we do not use tapered fibers,
which entail stringent alignment requirements in all directions. Instead, we use
flat-end single mode fibers, such that a simple butt coupling can be used. This
requires that a field propagating through the chip should have a relatively large
mode size in the coupling area.

Possibility to fabricate: Tapered structures should be fabricated with
technologically realizable process steps at acceptable costs.

Small size: The total length of a tapered structure should be less than 1.5 mm,
since in our laboratory a normal chip has a size of about 10 X 10 mm and other

structures must also be placed on the chip.

4.2 Suggested structure

The starting point is an InGaAsP waveguide with a bandgap of 1.3 um (Q;3) on an InP
substrate (Ing7; Gag20Asgs2Po3g). The waveguide width and thickness are 2 and 0.6 um,
respectively. Considering the technological possibilities, horizontal and vertical tapering
occurs in separate sections. The waveguide is tapered to a smaller thickness in the vertical
direction, but horizontally the width increases.

Such a structure is sketched in Figure 4.1 and consists of five sections. The straight
Section A connects to a waveguide on the chip and Section E couples to a single mode
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fiber. Sections B and D include laterally and vertically tapered profiles, respectively. The
straight Section C is a transitional area between two tapers; it can be very short (even
negative) and is designed for technological convenience, since the two profiles of the
adjacent sections are made by different processes making a perfect direct connection
difficult. Finally, the whole structure is covered with a thick high index layer, which
should match the index of the substrate in order to obtain a symmetrical field distribution
as required for an efficient fiber-chip coupling.

Figure 4.1 Schematic view of a 3D tapered waveguide

This cover layer is not drawn in Figure 4.1. We will see later that its index value and
thickness have critical effects on the profile of the output field, thus dramatically
influencing the coupling efficiency from the waveguide to a single mode fiber.

4.3 Simulation results
4.3.1 Laterally tapered section

Since Section A connects to the single mode chip waveguide, only the zero order guided
mode will enter'it. We start the simulation of the field propagation from the junction
between Sections A and B by launching the HEy-mode of Section A into the laterally
tapered Section B, thus assuming Section A to be long enough such that possible
transitional fields are radiated away. The effect of the lateral taper is to transform the chip
mode field laterally such that the field at the end of this section has a lateral size matching
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that of the fiber. Based upon these considerations, the section is linearly tapered from 2 to
12 um. The cover layer is chosen to have a thickness of 5 Um and a refractive index the
same as that of the substrate (InP) in order to obtain a vertically symmetrical mode
profile. The waveguide (Q,3) has a thickness of 0.6 um. We first simulate the field
propagation through the section with a length of 50 um at 1.55 pm wavelength.

4 4 4
@ 12 2 :
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z=0pum z=20um z=30pum
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z=40pum z=50pm z =100 pm

Figure 4.2 Evolution of iso-amplitude contours of Ey for the HE g-mode coupled into
the laterally tapered section. Ax = Az = 0.05 pm; Ay = 0.2 um; o = 0.65,
no is variable. Section B has a length of 50 um. After this, the field enters
Section C.

The computational window has a size of 4.6 X 16 um. We have chosen Ax = Az = 0.05
um; Ay = 0.2 um. The scheme parameter is chosen as o = 0.65. The reference
propagation constant is variable as the propagation proceeds, changing from 13.341 pum-1
in the beginning to 13.401 pum-! at the end. The reason to choose these values is because
they correspond to the local effective refractive indices, yield a negligible spurious
numerical loss and ensure the stability of the numerical scheme, as discussed in Sections
3.3.1 and 3.3.2 and verified by numerous calculations for different parameter values. The
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field evolution of the dominant component E, is shown in Figure 4.2. We can see that the
field changes as the waveguide widens. Higher order modes are seen to grow gradually
from z = 30 pm onward. After z = 50 um, the propagating field enters Section C, where
the waveguide has a constant width of 12 pum. Higher order modes of this section can also
be seen clearly in the field distribution at z = 100 um. Since the presence of higher order
modes lead to a low coupling efficiency with a single mode fiber, this should be avoided.
Our results indicate that the length of Section B as 50 um is too short to avoid those
higher order modes.
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Figure 4.3 Evolution of iso-amplitude contours of E, for the HEy,-mode coupled
into the laterally tapered waveguide. Ax = Az = 0.05 pm; Ay = 0.2 um; o
= (.65, nyp is variable. Section B has a length of 200 pm. After this, the
field enters Section C.

Next, we simulate another laterally tapered section with the same parameters as in Figure
4.2 except that its length is now 200 um. The results are shown in Figure 4.3. As the
propagation proceeds, the field gradually changes without much evidence of higher order
modes. After z = 200 pm, the field propagates further through Section C in which the
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waveguide width is constant at 12 um. As a result, it can be seen that the field distribution
(z = 250 pm) changes only slightly, which means that a stable field has almost been
obtained after z = 200 um. The propagation loss is calculated to be less than 0.1 dB after
propagation over 500 pm, as shown in Figure 4.4. In addition, our computations show that
the longer Section B is, the weaker the excited higher order mode fields will be. To ensure

that excited higher order modes are negligible, the length of Section B should be longer
than 200 pm for such a kind of structure (wg =2 um, w; = 12 lum).

0.200

3

=t 0.150 F

.8

|

5 0.100 F SectionB !

= <——-—>:

% 0.050 | Section C

a :4— >
0.000 < 1 .

0 200 400 600

Propagation distance (um)

Figure 4.4 Relationship between the power attenuation and the propagation distance
for the HE yg-mode coupled into the laterally tapered waveguide. Ax =
0.05 pm; Ay = 0.2 um; Az = 0.025 um; o = 0.65, ng is variable. n; =
3.169. Section B has a length of 200 pm. After this, the field enters
Section C.

If the refractive index of the cover layer is 3.15 instead of 3.169, our calculations show
that the field distribution hardly changes. Therefore, the laterally tapered section has a
reasonable tolerance for index changes of the cover layer. In addition, the field
distribution in a laterally tapered section is usually symmetrical in the horizontal
direction. This kind of structure can be realized by conventional lithographic processes.

4.3.2 Vertically tapered section

The vertically tapered section (Section D) for the fiber-chip coupling is difficult to
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fabricate and has stringent requirements for the waveguide thickness and index value of
the cover layer. To increase the mode size in the vertical direction considerably, the
waveguide has to be tapered to a rather small thickness.

Figure 4.5 shows field contours of the dominant component E, of the HEyy mode for
structures with the same parameters but different waveguide thicknesses, calculated by
the FEM-based program. The cover layer has a thickness of 5 pm and an index of 3.169 at
1.55 um wavelength (same as the substrate). The waveguide width is chosen as 12 um, in
order to obtain a lateral mode size of about 10 pm width matching that of the fiber for a
high coupling efficiency. The mode size in the vertical direction hardly changes if the
waveguide thickness d > 0.2 um. However, if the waveguide thickness decreases even
further, the mode size increases very rapidly. Therefore, the waveguide can be tapered
fast in the beginning, but should be tapered more slowly later on in order to obtain a
gradual change of the propagating field, ensuring a low radiation loss.
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Figure 4.5 Influence of the waveguide thickness on the field distribution of the
dominant component Ey of the HEyp-mode, calculated by the FEM-based

program.
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The cover index also becomes more important if the waveguide thickness is very small.
Figure 4.6 shows the influence of the cover index on the field distribution of HE oo modes
for a waveguide thickness of 0.075 um. With a slight change of index value, the field
distribution changes dramatically. The cover index must match that of the substrate in
order to obtain a vertically symmetrical field distribution, which is important for an
effective fiber-chip coupling.

1 15

10

Figure 4.6 Influence of the refractive index value of the cover on the field
distribution of the dominant component E, of the HE-mode, calculated
by the FEM-based program. The waveguide thickness is 0.075 pm.

We next simulate the field propagation in a vertically tapered section with a 5 yum thick
cover layer of the same material as the substrate (InP). The waveguide is linearly tapered
from dg = 0.6 m to d; = 0.05 um over a length of 200 pm. The waveguide width is 12
um. We launch the HEq-mode into the section from the thick end at the junction between
C and D. The reference propagation constant is variable as the propagation proceeds,
changing from 13.401 pm-! in the beginning to 12.858 um-! in the end. The structure in
the vertical direction is non-uniformly discretized since the waveguide thickness is very
small at one end of the section, thus Ax is in the range of 0.025-0.2 um. Az = 0.025 pm;
Ay = 0.2 um; o = 0.65. The field evolution of the dominant component Ey is shown in
Figure 4.7.

From Figure 4.7 it can be seen that the field gradually changes as the waveguide thickness
becomes smaller. However, it changes slowly in the beginning. Only when the waveguide
is tapered to a smaller thickness, the field expands more pronouncedly, which is
consistent with the results of our FEM analysis as presented in Figure 4.5. After z = 200
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um, the propagating field enters Section E and the waveguide thickness of d; = 0.05 um
remains constant. The field distribution, however, still changes towards that of the guided
mode as the propagation proceeds (e.g. z = 750 pm), which indicates that where the taper
terminates the field is not yet stable.
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Figure 4.7 Evolution of iso-amplitude contours of E, for the HEy-mode coupled
into the veftically tapered waveguide. Ax is non-uniform. Az = 0.025 ym;
Ay = 0.2 um; o = 0.65, ng is variable. n, = 3.169. Section D has a length
of 200 um. After this, the field enters Section E.

Figure 4.8 shows the relationship between the power attenuation and the propagation
distance. The taper starts at z = 0 and terminates at z = 200 pm. A rapid power attenuation
occurs between z = 200 um and 400 um, where the field already propagates in Section E,
which means that there the field is still not yet stable and radiation keeps escaping out of
the computational window. The total propagation loss is 0.55 dB after propagation over

750 um.
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Figure 4.8 Relationship between the power attenuation and the propagation distance
for the HEg-mode coupled into the vertically tapered waveguide. Ax is
non-uniform. Az = 0.025 um; Ay = 0.2 pm; o = 0.65, ng is variable. n, =
3.169. Section D has a length of 200 pwm. After this, the field enters
Section E.

From the results shown above, we arrive at the following conclusions. First, if the vertical
taper is linearly tapered, an adiabatic taper (no radiation loss) will correspond to a rather
large length, even if the total waveguide thickness change is only about 0.5 pm. This is
very different from a laterally tapered section. Since the section length has a certain limit
in order to restrict the total device size, a small propagation loss is inevitable. Second, the
propagating field is not immediately stable after the vertically tapered section terminates
as can be seen from the propagation loss, but is still varying over a certain distance in the
next section. Within this distance, the wavefront of the total field will not be flat, leading
to a low coupling efficiency with a fiber. Therefore, a minimal length for Section E, as in
Figure 4.1, is necessary.

In fact, if the waveguide thickness is small, the fundamental mode is guided by a high
index region, that is thin compared to the mode size. A small thickness variation will have
a dramatic influence on the mode shape and mode width and thus will imply a
considerable radiation loss [1]. Therefore, an adiabatic taper requires that the waveguide
should be tapered rather slowly if the mode is close to cut-off. A semi-quantitative but,
due to its simplicity, attractive criterion has been published by J.D. Love et al [2]. They
point out that the local taper length-scale of an adiabatic taper has to be larger than the
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coupling length between the fundamental local mode and the dominant mode for radiation
loss. In that case negligible radiation loss will occur. Our results indicate that a linear
taper length of 200 pwm is too short in the given example.

Figure 4.9 shows the relationship between the power attenuation and the propagation
distance relating to the vertically tapered Section D with different lengths. They all start at
z = 0 um but terminate at z = 100, 200 and 300 um, respectively. Subsequently, the
waveguide thickness remains constant at 0.05 um in Section E. The longer Section D is,
the lower its power attenuation will be. For a section length of 300 pm, the total power
loss is decreased from 0.55 to 0.41 over a total propagation distance of 750 um (after z =
300 um, the field enters Section E).
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Figure 4.9 Relationship between the power attenuation and the propagation distance
of the vertically tapered section D for different section lengths, for the
HE oy-mode coupled into the waveguide. Ax is non-uniform. Az = 0.025
pm; Ay = 0.2 um; o = 0.65, ng is variable. n, = 3.169. Section D has
lengths of 100, 200 and 300 pm, respectively, and starts from z = 0 m.
After Section D, fields enter Section E.

However, the tapered section can not be too long, because it makes the total device size
unacceptably long. Next, we change the tapered profile from a single linear section to
three consecutive sections, while keeping the total section length unchanged at 300 pm.
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The idea is to taper the structure fast in the beginning and slowly later on. The tapered
profile is shown in Figure 4.10. The simulation results are shown in Figure 4.11.
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Figure 4.10 A tapered profile containing three linear parts.
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Figure 4.11 Relationship between the power attenuation and the propagation distance
for the HEg-mode coupled into the vertically tapered waveguide as
shown in Figure 4.9. Ax is non-uniform. Az = 0.025 pm; Ay = 0.2 um; o
=0.65, ny is variable, n, = 3.169.

From Figure 4.10, we see that the waveguide is first tapered from 0.6 to 0.3 \m over a
length of 50 um, then from 0.3 to 0.2 um also over 50 pm, and finally from 0.2 to 0.05
pm over 200 pm. In that case, its power attenuation decreases appreciably as compared to
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the single linear taper (see Figure 4.11). The total power loss decreases from 0.41 to 0.33.
In fact, the attenuation can be decreased further by optimizing the tapered profile.
However, such nonlinear profiles are usually difficult to realize by the available
technologies, e.g. atomic beam etching.

Finally, we changed the index value of the cover layer from 3.169 to 3.16 and tapered the
waveguide from 0.6 to 0.075 um, while keeping all other parameters the same as in
Figure 4.7. This way, the cover corresponds to a material choice different from InP, e.g.
silicon nitride, which can be deposited by PECVD (see Section 5.3). The results are
shown in Figure 4.12.
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Figure 4.12 Evolution of iso-amplitude contours of E, for the HE o;-mode coupled into
the vertically tapered waveguide. Ax is non-uniform. Az = 0.025 pum; Ay
=0.2 um; o = 0.65, ny is variable. n, = 3.16. The taper length is 200 um.
After this, the field enters Section E.

In Figure 4.12, the field propagation is quite similar to that in Figure 4.7 up to z = 150
um. Then, the field distribution in the vertical direction gradually becomes asymmetrical
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with decreasing waveguide thickness. Since a single mode fiber has a circularly
symmetrical modal field, a low coupling efficiency between the modal fields of the fiber
and the tapered structure is expected (see Section 4.4). Therefore, the cover index should
match that of the substrate in order to obtain a very high fiber-chip coupling efficiency.
This is the reason why we have to control precisely the refractive index of a deposited
silicon nitride layer (see Section 5.3).

4.4 Fiber-chip coupling

In the following, we derive an expression for calculating the fiber-chip coupling
efficiency.
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Figure 4.13 Schematic view of iso-amplitude contours with 1/e amplitudes of (a) the
waveguide and (b) the fiber modal fields.

Usually, a zero-order waveguide modal field with a flat planar wavefront is symmetrical
in the lateral direction, while vertically asymmetrical (see Figure 4.13a). The field profile
can be expressed by a combination of two Gaussian profiles [3]:

2 2
G =G, exp[—%——i—z} @.1)

J

where Gy is the amplitude, b and c; are half widths at 1/e amplitudes in the lateral and
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vertical directions, respectively. For x > 0 we use the subscript j = 1; for x < 0, we will
write j = 2. Similarly, a horizontally or vertically polarized fiber modal field with a flat
wave front can be expressed by a single Gaussian profile, thus:

2 2
(=4) +y J 42)

F=F, exp[— >
a

where a is its half width at 1/e amplitude and A is an introduced vertical offset between
the fiber and the waveguide.

The coupling efficiency can be derived as (see Appendix E):

2b(f, +£,)

T @b 10y) (43)

with
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where erf denotes the error function. Practically, a tapered waveguide usually has an
asymmetrical modal field in the vertical direction. Therefore, a vertical offset is
necessary. As an example, if a=5 pm, b=5 pm, ¢; = 1 um and ¢, =4 um, the calculated
coupling efficiency is shown in Figure 4.14. The maximal coupling efficiency is 78% (i.e.

1.1 dB loss), requiring a vertical offset of 1.5 pm.

From Eq.(4.3), we can now predict coupling efficiencies between a fiber and designed
tapers. If there is no cover layer grown on the structure as indicated in Figure 4.1, thus ¢;
=0, the maximal coupling efficiency can amount to 74%, obtained for a vertical offset of
2.5 um and with a = b = ¢,, provided that no propagation loss occurs. Similarly, if a cover
with the proper refractive index and thickness is supplied, the maximal efficiency can
reach 100% with a = b = ¢| = ¢, and no propagation loss. Thus, a properly designed cover
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plays an important role in optimizing the coupling efficiency.
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Figure 4.14 Relationship between coupling efficiency and vertical offset for a
particular coupling configuration.

Suppose that the fiber has a 1/e amplitude radius of 5 um. Since the lateral mode size of
the Q;3; waveguide can be controlled by changing the waveguide width through
lithography, we choose b = 5 um. For a vertical waveguide taper from 0.6 to 0.05 um
with a cover layer of 5 pm (n; = 3.169) and a length of 300 m, ¢, = 1.8 um, ¢, = 1.8 pm,
the coupling efficiency is calculated to be about 64% (1.94 dB loss). Since the
propagation loss is 0.41 dB (see Figure 4.9), the total loss will be about 2.35 «B. This
value is still high for our tapered waveguide structure and can further be decreased. The
reason is that the vertical mode size is not big enough even if the waveguide height has
been tapered down to 0.05 pm.

Next, we taper the waveguide to 0.025 um over a length of 300 um. After a similar
calculation, we get c¢; = 2.7 um, ¢, = 3.6 um. However, our results show that the lateral
mode size also expands considerably. Based upon simulation results, we found that the
width of the taper in the lateral direction should be changed to 7 um instead of 12 pm in
order to obtain a lateral mode size of 10 pum to match that of the fiber. Then the coupling
efficiency will be about 90% (0.45 dB loss) using a 0.4 um offset. The propagation loss is
about 0.5 dB, making the total loss about 1 dB.
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We have seen that the waveguide should be tapered down to 0.025 pm to obtain a high
coupling efficiency. This might be realized by the atomic beam etching technique, which
will be discussed in Section 5.2.

4.5 Summary

Three-dimensionally tapered waveguide structures composed of five sections have been
designed and discussed. For technological convenience, the laterally and vertically
tapered sections are separated by a straight transition section. The cover layer should have
a mode index matching that of the substrate in order to obtain a symmetrical mode field
distribution in the vertical direction. In addition, the cover should have a considerable
thickness, otherwise the mode size will still be small in the vertical direction. We have
discussed a design with a cover thickness of about 5 pm. Also, the length of the laterally
tapered Section B (see Figure 4.1) should be longer than 250 pm in order to avoid that
noticeable higher order modes are excited. Then, the vertically tapered Section D, if
linearly tapered, should be longer than 400 um to cause a propagation loss of less than 0.4
dB. The straight waveguide Section E should be longer than 200 pm to stabilize the
propagating field in order to obtain a higher coupling efficiency. Finally, Section C should
be less than 100 um, and has no noticeable influence on the total power loss. This way,
our design has a total length of 1.1 mm. If the thickness of Section E is less than 25 nm,
the total access loss including both coupling and propagation loss can be less than 1 dB.

Based upon the above discussions, we propose the following structure (see Table 4.1):
The waveguide material is Ing 7y Gag 29 Asgs2Po3s and the substrate is InP. The cover has an
index of 3.165+0.005 and a thickness of 5 um, which can be InP or silicon nitride.
Sections A, B and D have lengths of 100, 250 and 400 wm, respectively. The length of
Section C is less than 100 pm, its actual length depending on the technological
possibilities. The above lengths are allowed to be up to 50 pum larger. Sections A and E
have widths of 2 and 7 um, respectively, with a tolerance of 0.1 um. Sections B and D
include linearly tapered profiles. Section C has a waveguide thickness of 600 nm with a
tolerance of £25 nm, while Section E has a waveguide thickness of 25 nm which should
be precisely controlled within a tolerance of 5 nm.
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Table 4.1. Designed tapered waveguide structure.

Section | Length Waveguide thickness Waveguide width | Cover material
(um) (nm) _(um)
A 100 600 2
B 250 600 2->7 InP
C 100 600 7 or
D 400 600 -> 25 7 silicon nitride
E 250 25 7
15 15
a b
e { 10 &= {1
1s 15
1 1 1 O 1 1 1 0
-5 0 5 50 5
S 5 15 15
1 10 10
15 5
1 1 L 0 1 1 L 0
-5 0 5 -5 0 5

Figure 4.15 Evolution of iso-amplitude contours of E, for the HE o;-mode coupled into
the designed 3D tapered waveguide structure corresponding to (a) input,
(b) behind the lateral taper, (c) at the end of the vertical taper and (d)
output coupling to the fiber.
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The propagating field from Sections A to E is shown in Figure 4.15, where a small input
field has been transformed to a field matching that of the fiber. The total coupling loss is
about 1 dB, while even if the fiber were directly butt-coupled to a waveguide of 12 um
width, in which case the lateral field sizes are properly matched, the loss would be still 7.2
dB. For a tapered fiber, its minimal coupling loss to the waveguide (with optimal lateral
waveguide size) is usually larger than 3 dB [4], also requiring a stringent alignment
tolerance. Therefore, the tapered waveguide structure leads to a high coupling efficiency
and a simple coupling configuration.
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Chapter 5

Fabrication of tapered waveguide
structures

In our experiments, the fabrication of a three-dimensional tapered waveguide structure on
InGaAsP/InP consists of the following steps:

(1) realization of the vertically tapered profile,
(2) definition of the lateral pattern,

(3) cover layer growth over the structure.

Step (1) was realized by atomic beam etching combined with a shadow mask technique as
will be described in Section 5.1. Step (2) can be performed through a conventional
lithography process as summarized in Section 5.2. Step (3) could be carried out using the
MOVPE technique, but two reasons have limited such a process. First, it poses critical
requirements to the surface quality, which should be free of defects. This requirement is
usually guaranteed by a wet chemical etching step before the MOVPE-process but leads
to technological difficulties ensuring the tolerance of the vertically tapered profiles
realized in Step (1). Secondly, MOVPE is a very expensive technique; extensive
experiments are hard to afford. Therefore, we decided to develop a new cost-saving
process to fabricate the high refractive index cover layer of silicon nitride by use of
plasma-enhanced chemical vapor deposition (PECVD) instead of the expensive MOVPE
technology, to be presented in Section 5.3. This development has indicated promising
results and a practically acceptable process is shown to be possible.

89
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5.1 Vertically tapered waveguides
5.1.1 Principle

The principle to realize a vertically tapered profile is schematically shown in Figure 5.1a.
The chip is mounted on a holder which can be rotated at a certain speed around a vertical
axis. A Si spacer is used to control the distance between a tapered Si shadow mask and
the chip. If an atomic beam has a constant angle of incidence 8, a tapered profile will be
obtained on the chip after atomic beam etching.

I Shadow mask . ) position (Lm)
Waveguide ~0.1
y= :
: -0.3
x=0 \
—_— Substrate _0.4
X depth (wm)
(@) (b)

Figure 5.1 Direct shadow etching.

With a straightforward mathematical derivation, the taper length L and the etching depth
d(x) can be expressed as:

L =2Ttg(0), G
d(x)=$“ﬁarccos(~2——)5), 5.2)
T L

where T is the thickness of the spacer and 6 denotes the incident angle of the atomic beam
while dp,y is the maximal etching depth. Thus, the taper length depends on the thickness
of the spacer, while the taper profile depends on the maximal etching depth i.e. the
etching time. For example, if the spacer has a thickness of 100 um, the maximal etching




Vertically tapered waveguide 91

depth is 0.5 um and the angle of incidence of the atomic beam is 45°, the taper length will
be twice the spacer thickness and a taper profile will be obtained as shown in Figure 5.1b.

5.1.2 Fabrication of Si taper masks
We have used two methods to fabricate Si taper masks.

Wet chemical etching: The procedure for this is symbolized in Figure 5.2. The (100) Si
substrate is firstly covered with a Si3Ny layer by PECVD, then covered with another
photoresist layer. The photoresist layer is opened following a certain pattern through
exposure and development. Subsequently, the uncovered SizN4 area is removed by
reactive ion etching or wet chemical etching (40% HF). After removing the residual
photoresist layer, the back side of the substrate is covered with another thick layer of
Si3N, (2 um) which prevents etching from the backside. Then, the substrate is etched in a
30 wt% KOH solution at 85°C. The etching speed in the <100> direction is about 2.5
um/min. Finally, the Si3N, layer is removed from the taper masks by wet chemical
etching (40% HF).

wmmmm PR ezzzzn Si;N,

tapers

LN £ 17

Si

T T A AA AN LA LI TE A

Figure 5.2 Si taper masks made by the wet chemical etching.

Si taper masks made by the above mentioned procedure have a constant taper angle of
54.7°, due to the slow etching speed in the <111> direction. Usually, the angle of
incidence of the atomic beam is about 45°. The angle of 54.7° on the Si tapered masks
may cause a slight change in the etched profile (see Section 5.1.3).
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Mechanical polishing: We also have used a mechanical polishing to produce tapered Si-
masks. The Si substrate is firstly mounted between two glass plates with tilted end-faces.
After polishing, a Si taper is formed. The taper angle can be changed freely by adjusting
the relative position of the glass plates. The masks produced had usually an angle of less
than 40°, Taper masks made with this method have shown good quality. This method is
preferred above the previous one because of its simplicity and versatility.

5.1.3 Atomic beam etching

The InGaAsP waveguide layer (Q3) with a thickness of 0.6 um is firstly grown on the
InP substrate, then covered with a 0.3 um thick InP protection layer, by MOVPE*. We
used an argon (Ar) atomic beam to etch the sample. Before this etching, the InP protection
layer has been removed by a selective wet chemical etching (1HCI : 4H3PO,). Figure 5.3
shows a vertically tapered profile measured with a surface stylus profiler (o-step), where
a spacer with a thickness of 100 um has been used. It must be reminded that different
scales occur along the axes in this figure. The maximal etching depth is 0.3 pm, while the
taper length is about 500 um.

E.fnn ;3
300
E
£ 200
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0 200 400 600
Taper length (um)

Figure 5.3 Vertically tapered profile measured with o-step profiler. The spacer has a
thickness of 100 um and the etching time was 60 min.

* Kindly carried out by IMEC, University of Gent, Belgium,
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From Figure 5.3, it is seen that an almost linearly tapered profile has been obtained, which
is different from the theoretically predicted profile as indicated in Figure 5.1b, where the
bottom left end of the taper has an unwanted fast increase of the depth. In addition, the
taper length in Figure 5.3 is much longer than 200 pum as was predicted according to
Eq.(5.1). This occurs because, practically, the sample holder in Figure 5.1a has also a
lateral periodic movement, causing the incident angle of the atomic beam to change
periodically in the range of 45 + 15°. Also, our Si taper mask has a taper angle slightly
bigger than 90-0 ,,x Where O, is the maximal incident angle of the (not necessarily
parallel) atomic beam. As a result, part of the atomic beam can not reach the sharp tip of
the Si taper mask, due to blocking by its upper edge as shown in Figure 5.4.

Figure 5.4 Influence of the small Si taper mask angle.

Consequently, the length of the tapered profile on the chip will be increased. This
phenomenon will lead to a local depth change, which can be observed from Figure 5.3 in
the neighborhood of a taper length of 300 pum. If the angle of the Si taper mask is smaller
than 90-0,,y, this problem vanishes.

Figure 5.5 shows another vertically tapered profile made by use of a spacer thickness of
200 um and the same atomic beam etching time. The length of the vertically tapered
profile increases to about 800 ptm, while its maximal depth stays unchanged. Thus, the
required length can be obtained using a spacer with a controlled thickness. The etching
speed was found to be about 5 nm/min. The maximal depth can be changed to meet the
requirements by controlling the etching time.
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Figure 5.5 Vertically tapered profile measured with ou-step profiler. The spacer has a
thickness of 200 pm and the etching time is 60 min.

In Section 4.5, we designed a structure with a vertically tapered profile from 0.6 to 0.025
um over a length of 400 um. This can be realized using a spacer of about 75 pm
thickness. If a bigger length does not influence the total device size, it has a positive effect
on decreasing the propagation loss and thus is gladly accepted. This leads to a
considerable technological convenience since the section length is allowed to be longer
than the designed value. However, the thickness tolerance is only about 5 nm. We found
that the etching speed is variable within the range of 5 + 0.05 nm/min due to vacuum and
beam current fluctuation of the available atomic beam etching equipment. This requires
that the ambiance and equipment should be stabilized before etching starts. In addition,
the surface roughness must be very small. We have inspected the surface also with a
stylus profiler. The results are shown in Figures 5.6 and 5.7, indicating that the roughness
increases slightly after atomic beam etching, over 2 and 3 to 4 nanometers, respectively.
These results have been verified by alternative measurement using phase-shifting
interference microscopy [1].

The experimental results show that a linearly vertically tapered profile can be realized by
atomic beam etching combined with a silicon shadow mask. Its length can be controlled
by the spacer thickness and its depth can be changed via the etching time. We also have
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Figure 5.6 Surface roughness before the atomic beam etching measured with o-step
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Figure 5.7 Surface roughness after the atomic beam etching for 60 min measured with
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inspected photoluminescence responses of surfaces before and after atomic beam etching.
This is an extremely sensitive technique to detect surface lattice defects but can give
qualitative answer only. As a result, there exist evident response differences, showing that
the atomic beam has an influence on the lattice structure of surfaces. Since the defects can
affect the further cover growth by MOVPE, they should be removed before such a
growth, using wet chemical etching. However, we also grew a silicon nitride cover layer
(see Section 5.3) by PECVD. In that case, the cover growth appears not to be affected by
possible surface lattice defects.

5.2 Lateral definition

The lateral definition of three-dimensional tapered waveguide structures can be realized
by a combination of photolithography and reactive ion etching. The basic
photolithography process is summarized in the following:

Substrate cleaning: The surface of a substrate is in general polluted and oxidized.
Therefore, cleaning is necessary. We use two cleaning steps to remove dust and other
forms of contamination. One is ultrasonic cleaning in acetone, the other is O, plasma
etching for 15 minutes (400 W) followed by wet chemical etching with 10% H3 PO, for 1
minute to remove oxides, e.g. In,O3.

Spin coating: Spin coating is the most widely used technique for applying photoresist to
wafers. The resist is dispensed onto the surfaces of the wafers, which are then accelerated
to provide a thin uniform film across wafer surfaces. We use Hoechst, type AZ-5214
positive photoresist.

Softbaking: Softbaking is used to remove the solvents present in the spin-coated resist
film and is usually performed immediately after the coating process. We softbake our
substrates at 100°C during 3 minutes.

Exposure: The goal of the exposure is to transmit a desired pattern on a mask as a latent
image in the resist film. We use a Canon FPA-143 fine pattern projection aligner for

exposure.

Development: In the development step the latent image is chemically transformed into a
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fixed one by removing solvable parts of the photoresist. Corresponding to AZ-5214, we
use a PLSI solution (1PLSI : 1H,0) as the developer. The developing time is 1 minute at
room temperature. After developing, the wafers are rinsed and dried.

Postbaking : Postbaking is accomplished in the same manner as softbaking to remove any
residual moisture from the developing operation and to improve the sticking of the resist
to the wafer. We postbake our substrates at 120°C for 5 minutes.

Starting with a wafer on which a tapered profile has been produced by atomic beam
etching, through the above lithography processes, the required horizontal pattern has been
protected with a photoresist layer (Figure 5.8). The precise alignment of the pattern
relative to the edge of the vertically tapered profile before the projection exposure is hard
to realize, since the edge is not sharp. This is the reason why we have inserted Section C
in our design (see Figure 4.1), the length of which depends on the technological
possibilities. Subsequently, the uncovered area is etched to remove the InP top layer. Both
wet chemical etching and reactive ion etching (RIE) can be used. However, wet chemical
etching usually leads to a considerable undercut, which spoils the precise definition of a
horizontal pattern. Consequently RIE is preferred, by which vertical walls have to be
obtained.

lateral taper

Figure 5.8 Top view of 3D tapers

5.3 Cover layer growth

A thick cover layer with a refractive index matching that of the substrate is necessary to
obtain a vertically symmetrical field distribution. A thick InP cover layer can be deposited
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on an InGaAsP/InP wafer by MOVPE growth, provided that surface defects have been
removed. Since the waveguide thickness of Section E in Figure 4.1 has a tolerance of
about 5 nm only, the removal of defects will further increase the technological difficuities.
In addition, MOVPE is an expensive technology. Since our 3D tapered waveguide
structures were still in an experimental stage, numerous tests were required. Based upon
these considerations, we developed a new process, i.e. using PECVD, in which an
amorphous silicon nitride layer replaces the InP cover. The refractive index of silicon
nitride depends on its composition and can be controlled within the range of 2.0 to 3.5.

5.3.1 Refractive index

The refractive index of the cover layer is a critical parameter for a tapered waveguide
structure (see Section 4.3.2). We use a photospectrometer to determine the index values of
fabricated silicon nitride layers. A silicon nitride layer is first deposited on an InP
substrate by PECVD. Then, its reflection curve as a function of the wavelength is
measured*. Typical reflection curves are shown in Figure 5.9.

0r After PECVD
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Figure 5.9 Reflection curve for a silicon nitride layer deposited on an InP substrate
showing dispersion, together with reference curves.

* Kindly performed by Mr. A. Kunze.
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A series of peaks are due to interference of contributions reflected at both film interfaces
[2]. Both the index value and the thickness of the silicon nitride layer can be calculated
from this dispersion curve. Usually, if the wavelength increases, the reflection decreases.
In Figure 5.9, there exists a spurious dispersion since the reflected beam is not completely
collected by the detector. However, it can be corrected later by use of a reference
substrate, e.g. InP, which has a known refractive index and dispersion.

Our experiments show that the index of a silicon nitride layer can be changed by varying
the gas flow ratio (N, : SiHy). If the plasma power is 400 W, the deposition temperature
250 °C and the gas flow ratio is 250 : 195, the deposited layer has a refractive index of
3.12. If the gas flow ratio is 200 : 195, the index will be 3.16. The layer has a high growth
rate of about 280 nm/min. If the plasma power is 100 W, both the index value and the
deposition growth rate change. The index value becomes about 3.21 and the deposition
rate 150 nm/min for a gas flow ratio of 250 : 195. The fabricated amorphous layer
material can be indicated as Si,Nj.,:H, where x exceeds 0.9.

SixNix:H

InP

Figure 5.10 Morphology of the cover from SEM.
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By optimizing the gas flow ratio, we have obtained an index value that has a deviation of
less than 0.005 from that of the substrate, which is already acceptable for a practical
waveguide taper.

Figure 5.10 shows a 1.8 pm thick silicon nitride layer on an InP substrate, obtained by
scanning electron microscopy. With a plasma power of 400 W, depositing such a layer by
PECVD takes less than 6 minutes.

5.3.2 Attenuation measurement

Ideally, the silicon nitride layer should not show absorption. Unfortunately, this is
experimentally not realized. Therefore, an extra power loss in tapered structures is
introduced by this cover layer. Suppose that the cover material has a bulk attenuation of
20 dB/cm. For a slab waveguide with a Q3 layer of a certain thickness on an InP
substrate, the extra power loss due to the cover can be calculated [3]. The results are
shown in Figure 5.11, where the cover layer has a thickness of 900 nm and its index value
is variable. Practically, we first deposit a silicon nitride layer on the wafer. Subsequently,
the thickness and index of the cover are determined according to its dispersion curve.
Then, the extra power loss due to the cover is measured. The bulk attenuation of the cover
is finally calculated from the measured results.
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Figure 5.11 Extra power attenuation due to a cover layer of 900 nm thickness for a
bulk attenuation in the cover of 20 dB/cm.
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Starting with the wafer as described in Section 5.1.3, we first remove the InP top layer by
use of a selective wet chemical etchant (1HCI : 4H3PO,). The etchant has an etching
speed of about 400 nm/min for InP, while no etching occurs in InGaAsP (Q 3). Next, the
wafer is masked by an aluminum plate which has a 9 X 6 mm open window. The silicon
nitride layer is only deposited through this window. This arrangement is of convenience
in the later attenuation measurements, allowing to compare attenuation values with that of
an uncovered area on the same wafer. An input beam with a wavelength of 1.55 um is
coupled into the single transverse mode slab waveguide of the wafer by focusing on one
endface. Since the beam expands in the lateral direction as the propagation proceeds, an
extra cylinder lens is added in front of the focusing lens such that a laterally parallel beam
is realized. The output beam is recorded on a television camera (Bosch) and its power is
measured by a photo detector.

Table 5.1 Transmitted power (WW) for waveguides with a silicon nitride layer.

Position TE case TM case
1 4.6 6.8
2 4.6 7.0
3 44 5.6
4 4.6 5.6
5 4.6 6.5
6 43 52

We have deposited a silicon nitride layer with an index of 3.10 at 1.55 um and a thickness
of 0.9 um on a wafer with a Q3 layer of 0.6 wm thickness, utilizing a plasma power of
400 W*. Subsequently, the transmitted powers (WW) are measured. Table 5.1 shows the
transmitted powers through the areas with the silicon nitride cover layer. Table 5.2 shows
the transmitted powers through the areas that during the deposition of the cover have been
masked by the aluminum plate. There are some variations in our transmission results for
each area. This is because the cleaved endfaces of our chips suffered from minor damage
during processing. The highest transmitted power values have been used in the subsequent
calculations.

* Kindly performed by Ing. T. Scholtes and Dr.ir. L. Shi.
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The extra power attenuation due to a silicon nitride layer over a given length can be

calculated from -10 X logm%, where P, and P, are the transmitted powers through the
u

covered and uncovered areas, respectively. The transmitted powers for the TE and TM
cases are about 4.6 and 7.0 pW through the deposited area (see Table 5.1), while 17.8 and
30.9 (see Table 5.2) through the uncovered area. Taking into account the window length
of 9 mm, the calculated extra power attenuation is 6.53 and 7.17 dB/cm for the TE and
TM cases, respectively. When the cover has a thickness of 900 nm and a refractive index
of 3.10, a bulk attenuation of 20 dB/cm corresponds to an extra power attenuation of 1.17
and 1.54 dB/cm for the TE and TM cases, respectively (see Figure 5.11). From this, the
equivalent real bulk attenuation value of the silicon nitride is calculated to be about 105 +
10 dB/cm.

Table 5.2 Transmitted power (LW) for waveguides without a silicon nitride layer.

Position TE case TM case
7 17.0 309
8 133 215
9 135 234
10 17.8 299
11 164 23.2
12 14.6 232

The following two mechanisms might contribute to the high attenuation in the cover
layer. First, the waveguide surface can be damaged by the plasma during the PECVD
process. Secondly, the cover material could have a bandgap close to the wavelength of
1.55 um we used, thus leading to a big absorption.

To investigate the first possibility, it is remarked that then the waveguide transmission
after removing the PECVD-cover layer must be smaller than that in the area where no
cover has been deposited. We removed the silicon nitride layer by wet chemical etching
(30% KOH) at 80°C. The transmission results are shown in Table 5.3, where the
transmitted powers in the covered area (positions 1-6) are similar to those in the protected
area (positions 7-12). This means that the possible waveguide surface damage by the
PECVD can be neglected.
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Table 5.3 Transmitted power (UW) for waveguides without the silicon nitride layer.

Position TE case TM case
1 134 18.2
2 134 177
cover 3 16.8 13.7
removed 4 15.1 122
5 15.5 20.1
6 179 16.1
7 7.5 84
8 11.0 18.1
never 9 11.7 15.6
covered 10 14.7 224
11 12.7 14.8
12 13.2 13.2
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Figure 5.12 Transmission curve for the bandgap measurement

To investigate the second reason, we have deposited a silicon nitride layer on a Balzers
glass substrate and measured the transmission properties. Figure 5.12 shows the measured
results. The peaks are due to interference introduced by the film layer. The transmission
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decreases rapidly if the wavelength is below 700 nm, corresponding to the bandgap of the
cover layer. This is far below the wavelength of 1.55 um we used. Therefore, the high
bulk attenuation of the obtained cover is not caused by the bandgap absorption. Thus,
neither of the two mechanisms can be responsible for the measured high bulk attenuation
and we conclude that the attenuation can be further decreased by optimization of the
deposition process.

There are several parameters such as plasma power, gas concentration, operation
temperature and pressure, which influence the material properties of the deposited layer,
thus influencing the attenuation. Therefore, it can be expected that the attenuation of the
cover layer can further be decreased by optimizing those process parameters.

The plasma power is believed to be an important parameter in this respect and has been
investigated extensively. We have deposited silicon nitride layers by using a plasma
power between 400 and 50 W. The high powers produce a relatively rough surface of the
silicon nitride. The deposition speed decreases as the plasma power becomes smaller. The
power of S0 W was found to be too low such that the deposition is not realizable. We
have chosen 100 W for the next fabrication runs because this leads to layers with smooth
surfaces.

As a next experiment, we removed the InP top layer from a central area on the chip by use
of a combination of lithography and wet chemical etching. This area was chosen to be
smaller than the window in the aluminum plate. Therefore, after PECVD deposition of
silicon nitride through this plate, three kinds of layer structures were obtained on the same
chip: InP/Q 3/InP, SiN/InP/Q 3/InP and SiN/Q 3/InP. The deposited silicon nitride layer
had a thickness of 0.6 um and an index of 3.21 at 1.55 pum, measured on the
photospectrometer. Tables 5.4-6 show the measured transmission results for the three
kinds of layer structures, respectively.

Comparing Tables 5.4 and 5.6, we detect an extra power loss of about 4.7 and 5.8 dB/cm.
Table 5.6 corresponds to the area with the top InP layer but protected during the
deposition. Since the removal of the InP top layer leads to a certain transmission decrease,
the above power loss will be less if we replace the values in Table 5.6 with those for the
area without the InP top layer. With a calculation similar to the one for Figure 5.11 where
the silicon nitride layer had a bulk attenuation of 20 dB/cm, the extra power loss
introduced by the cover without the InP top layer is found as 2.06 and 2.43 dB/cm for the
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Table 5.4 Transmitted power (WW) through the SiN/Q, 5/InP area.

Position TE case TM case
1 149 15.1
2 14.2 14.6
3 14.6 154
4 14.7 14.2
5 14.5 139
6 14.1 14.6
7 14.8 14.5
8 13.9 14.2

Table 5.5 Transmitted power (WW) through the SiN/InP/Q; 5/InP area.

Position TE case TM case
9 28.3 40.3
10 29.1 40.0
11 29.6 39.8
12 28.2 39.9

Table 5.6 Transmitted power (LWW) through the InP/Q, +/InP area.

TE case

Position TM case
13 © 391 50.2
14 35.0 45.8
15 38.9 49.3
16 355 46.4
17 36.6 432
18 37.1 475
19 35.1 49.2
20 36.2 48.0
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TE and TM cases, respectively. From this, the actual bulk attenuation of the silicon nitride
layer is calculated to be slightly less than 45 dB/cm. Similarly, the extra 1 dB/cm
transmission attenuation calculated from Table 5.5 as compared with the values from
Table 5.6 is also due to the introduced power loss by the silicon nitride layer.

The above results show that the bulk attenuation of the cover has effectively been
decreased through the PECVD optimization. A further decrease to less than 20 dB/cm is
believed to be possible by further process optimization, e.g. by annealing.

Now, we predict the extra power loss introduced by the cover with a bulk attenuation of
45 dB/cm to our designed 3D tapered waveguide structure as described in Table 4.1.
Based upon a calculation similar to that in Figure 5.11, the power attenuation in Sections
A through C (450 um in total) is about 0.2 dB, while 0.4 dB in Section D (400 pm) and
0.5 dB in Section E (250 jtm). The overall loss introduced by the cover is about 1.1 dB.
By adding the calculated radiation loss (0.5 dB) in the designed structure and the fiber-
chip field overlap loss (0.45) dB, the total loss is about 2 dB.

In literature, tapered waveguide structures for fiber-chip coupling have been demonstrated
[4-6]. All of them are based upon the expensive MOVPE technique in order to obtain an
InP cover. Miiller et al [4] presented a tapered waveguide structure with a transmission
loss of 4.9 dB using ion milling combined with a tapered Al,O; mask layer deposited on a
Q.05 layer. Wegner et al [5] reported realization of 2.6 dB transmission loss (fiber-chip-
lens-detector) by use of a combination of a rib n"-InP waveguide on an n*-InP substrate
and a tapered Q; 3 waveguide. Brenner et al [6] demonstrated a tapered waveguide
structure by use of a diffusion limited bromine etch [7] and low pressure MOVPE InP
cover growth. They reported a very low total loss (including overlap loss and loss in the
taper) in the range of 0.8 - 1.6 dB. However, they used a Qy o5 waveguide which is not as
strongly guiding as the Q3 waveguide we used. This gives them relatively less
difficulties to expand a propagating field adiabatically.

PECVD is a cost-saving technique, but the deposited cover layer still has a large bulk
attenuation (45 dB/cm). Efforts have to be devoted to decrease this bulk attenuation in the
future by optimizing PECVD parameters, e.g. deposition temperature, gas concentration
and annealing. Furthermore, the tapered profile must further be optimized by use of our
fully vectorial beam propagation method to decrease the radiation loss and the fiber-chip
overlap loss. Other types of tapered waveguide structures such as laterally and vertically
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tapered profiles designed and realized in a single section could be considered. Extensive
efforts are still needed to obtain practical 3D tapered waveguide structures with a high
coupling efficiency to a single mode fiber (with a total loss smaller than 1 dB).

5.4 Summary

Fabrication of three-dimensionally tapered waveguide structures has been investigated.
Vertically tapered profiles were obtained by atomic beam etching combined with a
shadow mask. The length of the vertically tapered profile can be controlled by the spacer
thickness, while its maximum depth changes with the etching time at a speed of about 5
nm/min. The lateral pattern can be realized by a photolithography process. A silicon
nitride layer has been fabricated by PECVD, substituting an InP cover by MOVPE. Its
index can be accurately controlled within a deviation of only 0.005 from that of InP. The
bulk attenuation of the cover has been decreased from more than 110 dB to about 45
dB/cm.
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Appendix A

The scalar FFT- BPM

Since light is an electromagnetic wave phenomenon, its propagation properties follow
from Maxwell’s equations. Here, we restrict our discussions to an inhomogeneous
dielectric medium which is linear, lossless, charge-free and isotropic. The Helmholtz
equation for the vectorial electrical field E(x,y,z) in a Cartesian coordinate system has the
following form:

VE(x,y,z)+kin*(x,y,z)E(x,y,z) = V(V-E), (A1)

where kg is wave number in vacuum and n(x,y,z) is the local refractive index. For a scalar
treatment, the term V(V-E) is discarded and the vectorial field E(x,y,z) is replaced by its

magnitude, i.e. E(x,y,z). Thus

V2E(x,y,z)+kin’(x,y,2)E(x,y,2)=0. (A2)
Assuming
E(x,y,z)=@(x,y,z)exp(ifz), (A3)

where @(x,y,z) is the complex wave amplitude and B is a properly chosen reference
propagation constant, we get:
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’Q(x,y,z) . °9(x,y,z)  9°9(X,y,2) ... 00(X,y,z)
PP ay: T e J”ZB(Pazy *

(A4)
[kgnz (X, y, Z)_ [32 ](P(X, Yy, Z) =0.
With the slowly varying envelope approximation, implying that
2
TOx.3.2)|  lpp 90 (%:y.2)| (A5)
oz 0z
we then obtain
09(x,y,z) i [d*0(x,y,z) , 9°Q(x,y,2)
A ey et e
0z 2B ox dy (A.6)
[kgnl(x’ Y,Z)-ﬁz](P(X’ y’Z)}‘
For a two-dimensional structure (%p- = 0), this simplifies further into:
y
99p(x,z) i [d*@(x,z)
Tziﬁ —aT-+[k§n2(x,y,z)—|32](p(x,z) . (A7)

In the original BPM, an input field @(x,z¢) is propagated over a small distance Az to
obtain the field at zo+Az by writing @(x,20+Az) = Y(X,2o+Az)exp(iI"), where T is a phase
correction given by

2_2 2
= %Az. (A.8)

Thus, Y(x,z¢) = ©(x,20) and y satisfies

oW(x,2) _ i o’w(x,2)

dz 28 9x’ A

If ¥,(z), with m = 0, I, -, N-1, denotes the discrete Fourier transform of y(x,z) with
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respect to X and if X; =xo + jAx for j= 0, 1, -+, N-1, we arrive at

N-1 . .
‘I’m(zo)=i—§[w(xlpzo)exp(— 'Z;m])]. (A.10)
pa

Combining (A.9) and (A.10), we further obtain*

2.2

¥ (z,+Az)= lf'm(zo)exp(—-‘;]\;—Amszz), (A.11)

where. the reference propagation constant 3 has been used to describe the local field
propagation. Then, an inverse FFT is performed on ‘¥ ,(zo+Az) to obtain y(x;,zy+Az)

V(X;,z,+Az) = NZJ[‘Pm(ZO+Az)exp(%):I. (A.12)
m=0

Subsequently, @(x,z¢+Az) can be calculated with @(x,z0+Az) = Y(x,Zp+Az)exp(i’) by use
of the phase correction.

The basic propagation algorithm is summarized as follows: to start this procedure, the
field @ (x,29) must be provided, which can be the field of a guided mode or any other
incident field, then (1) performing an FFT on y(x;,29) = ¢(X;,zo) including all grid nodes
in the cross section z = zy to obtain ¥,,(zq) from Eq.(A.10), (2) computing ¥, (zy+Az)
from Eq.(A.11), (3) performing an inverse FFT on W,,(z9+Az) to obtain y(x;,zp+Az) for
the next cross section from Eq.(A.12), and (4) calculating ¢ (x,20+Az) =
Y(x,2o+Az)exp(iT") by use of the phase correction I'. This algorithm is applied repeatedly
to obtain the field at any finite propagation distance.

* See R. Scarmozzino and R.M. Osgood, J. Opt. Soc. Am. A, 8, 724-731 (1991)






Appendix B

The Crank-Nicholson scheme

We consider a partial differential equation of the form:

du(x,y,z) __ d’u(x,y,z) du(x,y,z)
3z T axt T gy

B.1)
where v; and v, are known constants. We consider its solution by the finite difference
method, representing u(x,y,z) by its values at the discrete set of points (x4,y;,2,), with

X, = X, +hAX,
Y; =Yo+jAy, (B.2)

z,=z,+IAz,

where b, j, [ =0, 1, --. If (B.1) is rewritten as

1+1 1 141 1+1 1+1 I+1 41 I+1
ut —-u wH oo =20 +ul u, ., —2u +u,
h, h, 1, h, h-1, hj+1 h, h,j-1
i g =V1|: htlj i Li i|+v2|: i+ J L) (B.3)

Az Ax? Ay?

it is called an implicit scheme, which is unconditionally stable. However, there is always a
numerical dissipation, leading to a spurious decrease of the field amplitudes if this scheme
is used for the propagation of light.
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On the other hand, Eq. (B.1) can be also written as

1+l _ L Ayl ! I oyl !
Ui “Yhj Wy, =20+ Wy v, | Dhitt 2uy, Uy, (B.4)
Az : Ax? 2 Ay? ’

This is called an explicit scheme, which is unstable, leading to exponentially increasing
answers.

However, if we form the average of the implicit and explicit schemes, i.e.

I+1 ! 1+1 1+1 I+ I+1 I+1 1+1
w, -, 1 Uy — 20,5+ W, g =20,
e v, +v,

Az Ax? Ay?
! I I ! i I
v |:uh+1,j_2uh,j+uh-1,j ty. uh_4i+,—2uhlj+uh’j‘,
1 2 2 2 ’
Ax Ay

it is called a Crank-Nicholson scheme, which is stable and widely used. Numerical
dissipation can still occur, depending on the considered differential equation and the
choice of parameters.

(B.5)




Appendix C

The Coefficients for Eqs. (2.18)

In Section 2.2.1, a set of complicated equations (2.18) has been derived by a combination
of (2.11)-(2.17) for the calculation of propagating fields in dielectric waveguide
structures. Those equations can be written in matrix form. Their coefficients are functions
of the refractive index, step sizes, the scheme parameter, the reference propagation
constant, and the known field components at the previous step. The expressions relating to
those coefficients are collected in the following:

. oAz 2{n(h+1,j,l+D—n(h, j,l+1
ACh, )= 2 | 2n it L oL Dot oL D)
2BAx n(h+1,j,l+ D+n(h, j,l+1)
} oAz 2(n(h~1,j,1+1)-n(h,j,l+1
Ay(h, =202y, 2Anto L Le Do nh g, 1+ D)
2BAx n(h—-1,j,1+1)+n(h, j,l+1)
oAz
A h) j e
0Az
A h; j =T
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Asth )= [kgnz(h j+D-P2+ (“("” i+ D-n(h, j,1+1)

n(h+1,j,l+ D+ua(h,j,l+1)

AL g D-nh, i+ D)2 2 |
n(h-1, j L+ D+n(h, j,l+1) ) A Ay |

B, (h j)z_(l—oc)Az 1+2(n(h+1,j,l)-—n(h,j,l))
! 2BAx? n(h+1,j,0)+n(h, j,1)

nn= - R S
B3(h,j)=_%§}£,

B == 05,

S M e

n(h-1,j,0)-n(h, j,0) ) 2 2 .
+ - |- - |+i,
n(h-1,j,0)+n(h, j,1)) Ax® Ay

Bz(n(h+1,j+ LD +n(h,j+ 1D -n(h+1 j= LD =n(h j-1D)
4BAxAY(n(h+1, j,1)+n(h, j,1))

By(h, )=~

Az(n(h, j— 1,0 +n(h=1,j—LI)=n(h,j+1,D)=n(h=1,j+1D)
4BAxAy(n(h—1, j,1)+n(h, j,1))

)

B7(h:j)=—

By (h, j) =Bg(h, j)+B;(h, j),
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n(h+1,j,l+D+n(h,j,l+)-n(h+1 j,1)~n(h, j,1)
2BAx(n(k+1, j,D)+n(h, j,1))

By (h, j)=~

2

_n(h,j,Dy+n(h=1,j,D)—n(h, j,I+)—n(h-1,j,I+1)
2BAx(n(h=1,j,0)+n(h, j,1))

Blo(h: n=

By (h, ) =By(h, j)+B,y (R, j),

0AzZ
C h; j =_—_—7
(B J) 2BAX?
0Az
C h: j = —,
2(h )= 550
oAz [ 2(n(h,j+ 11+ D=n(h, j,l+1D))]
Cy(h, )= 282 | 14 20 k) Jol+D) |
2BAY2 | n(h,j+ 1,0+ 1)+n(h, j,l+1) |
o adz [, 2(n(h,j-11+D-n(h,j,l+1D)]
Cythjy=202 1, 2nth ] J.l+D)
2BAy” | n(h,j— LI+ 1D)+n(h, j,l+1) |
oAzl ., L, » 2 (n(h,j+1LI1+D-n(h,j,l+1)
C.(h,j)=—|K2n2(h,j,I+])-P*+——
s(h.J) 2[3{"“( S D= S e Lls D an(h I D)
AL+ D-nhjl+D)_ 2 _ 2 |,
n(h,j-Li+D+n(h,j,l+1)) Ax* Ay* |
. (1-a)Az
D jy=—"—"5,
(== e
. 1-0)Az
Dz(h,1)=_(_)_
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The coefficients for Egs.(2.18)

__U=oazl  2(n(h,j+10)-n(h, j.D)]
Pa e == U T+ LDtk .0)

L -waz[ 2(ahi=1D=n(kj,D)]
D,(h,j)= 2BAY _1+ n(h, j-1,1)+n(h,j,1)

—a)az 2 (n(h,j+1,)-n(h,j,1
Dy (h, j)= - LmOA2 ooy 5y e (n( j+L,h-n(h,j,1)

26 | Ay \n(h, j+ 1,0+ n(h, j,1)

+n(h,j-1,l)—n(h,1,l))_i_ 2 ]H’

0k, j-LD+n(h, j,1)) A Ay®
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D (h, j)=~ 4BAxAy(n(h, j+1,1)+n(h, j, 1))
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Az

G,(h, j)y=——7,
2( ]) 2BAX2

OAz

Gy(h j)=r—5>

oAz

G,(h j)=——,

2(n(h, j, i+ -n(h,j,D))
oAz’ n(h, j,l1+1)

Gs(h,j)= O;—%Z[kénzch,j,m)—ﬁz +

_ 22 |y
A AY? ’
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120 The coefficients for Egs.(2.18)

n(h+1,j,l+1)~n(h-1,j,1+1)

Heh == 2BAxn(h, j,1+1) ’
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Appendix D

The source code change

The program of the fully vectorial finite difference beam propagation method has been
compiled and executed on the super computer Cray C98/4256. In the beginning, an
unexpected low speed was obtained. The investigation on the source code revealed that
the innermost DO loop in a CPU time-consuming subroutine had not been vectorized,
which is critical for the calculation speed of this computer, i.e.

DON =1, MAX
ANORM = 0.0
DO J =2, IMAX-1
DOL =2, IMAY-1
IF (MOD(J+L,2).EQ. MOD(N,2)) THEN
RESID = A(J,L)*UX(J+1,L) + BJ,Ly*UX(J-1,L) + CJ,L)*UX({J,L+1)
\ +D{J,L)*UX{J,L-1) + EQJ,L)*UX{J,L)-F(J.L)
ANORM = ANORM + SQRT(RESID*CONJG(RESID))
UX(J,L) = UX(J,L) - OMEGA*RESID/E(J,L)
ENDIF
END DO
END DO
IF ((N.GT.1).AND.(ANORM.LE.EEE*ANORMEF)) GOTO 16
END DO
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The specialized personnel from SARA* suggested the following change:

DON = 1, MAX
ANORM = 0.0
DO J =2, IMAX-1
IF (MOD(J,2).EQ.MOD(N,2)) THEN
LB=2
ELSE
LB=3
ENDIF
DOL=LB, IMAY-1,2
RESID = A(J,L)*UX(J+1,L) + B(J,L)*UX(-1,L) + CJ,Ly*UX(J,L+1)
\ +D({,Ly*UX(,L-1) + E(J,L)*UX(J,L)-E(J,L)
ANORM = ANORM + SQRT(RESID*CONIG(RESID))
UX(@J,L) = UX(J,L) - OMEGA*RESID/E(J,L)
END DO
END DO
JF ((N.GT.1).AND.(ANORM.LE.EEE*ANORME)) GOTO 16
END DO

As a result, the vectorization can be fully realized, leading to a considerable increase of
the calculation speed on the Cray.

* Stichting Academisch Rekencentrum Amsterdam




Appendix E

The fiber-chip coupling efficiency

In Section 4.4, an approximate expression for calculating the fiber-chip coupling
efficiency has been given in Eq.(4.3), i.e.

2b(f, +£,)

- , E.1
N (a’> +b*)(c, +¢,) ®&D
with
f =2l exp(—~—A—2- | —erf| -G8 (E.22)

A c,A

ac '
f, = —=2—exp| - 1+erf| — , (E.2b)
2T e ra p( a2+c§]L ( a:}a2+c§]

The derivation is as follows. First, the coupling efficiency 1} can be expressed as

2

oa oo

fj(FG*)dxdy'

= , (E.3)

j ]:(FF*)dxdy II(GG*)dxdy

—o0—00

i

where F and G are the scalar electric fields of the fiber and the waveguide, respectively:
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AV 4y
F=F, exp(—(i—A-%—i), (E.4)
a
X2 y2
G=G -~ == | E.5
oexl{ C? b2 (E-5)

with A as the vertical offset between the fiber and the waveguide. If x > 0, we use j = 1; if
x <0, we write j = 2 (see Figure 4.12). Then, we can obtain:

I ]: (FF')dxdy =F; :f jf [exp(—z(:‘;zA)z—%;dedy

—o0—00

-4 ] oo 22 ) [ -2052 s}

- 22
= F(Z) a’\/_“zn [exp(— ?)] dy (E.6)
na’
g
2

Similarly, we have

< % <% 2 2
I J' (GG*)dxdy =G} J- J- [exp(—%—%]]dxdy
A e i

% 2\ % 2
=G(2,J {exp(—ziz)J exp[—ziz—ﬂdx}dy
- b €

—oc0

_gedm, em) T __ZLZJ E®7)
_Go[ 2\/§+2ﬁ )LLexp( o2 dy
=nb(c,+cz)G§‘

4
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Furthermore, we can get
li (PG )axdy = FOGOii [exp(-%ﬁ—%—g——gﬂdx dy
= I el el o
% [ [ (x= A)2 —’;‘%de (E.8)

abm

2+/a® +b?

=F,G, (f, +1,),

where f; and f; are the expressions as shown in (E.2a) and (E.2b). Inserting (E.6-8) into

(E.3), (E.1) is obtained.



Analysis, design and fabrication of tapered integrated optical structures

Implementation of the fully vectorial 3-D beam propagation method

Daoping Li

Summary

This thesis reports the development of a fully vectorial finite difference beam propagation
method for the analysis of structures with varying cross-sections and a mathematical
analysis of tapered integrated optical structures as required for fiber-chip coupling,
together with its implementation in a computer program. Using this method, the design of
an efficient fiber-chip coupling structure has been performed, combined with an analysis
of its efficiency. Finally, the technology to produce such structures is discussed.

Tapered InGaAsP waveguide structures on an InP substrate, serving as mode size
transformers, are promising configurations for an efficient fiber-chip coupling. To design
satisfactory structures, a fully vectorial FD-BPM has been developed. The vectorial
formulations are based upon the Maxwell equations and use the slowly varying envelope
approximation. Waveguide structures are discretized by introducing grids. The above
formulations are expressed in discrete form on the grid nodes by use of a finite difference
scheme. The relaxation method is applied to solve the discrete expressions numerically.
The wave propagation is calculated step by step along the longitudinal direction. A
computer program is developed using the FORTRAN 77 language. The various aspects of
the programming such as program structure, arrays, numerical considerations, double
precision, debugging and optimization are discussed. A benchmark test on the SUN
10/40, the HP 735 and the Cray C98/4256 computers is carried out, showing the speed
ratios: 1 : 2.6 : 35 after optimization. Acceleration procedures have been introduced, such
as a modified Crank-Nicholson scheme, a decreased initial error, a reduced iteration
parameter and transparent boundary conditions. Waveguide structures like a rib
waveguide, a ridge waveguide, a polarization splitter and a polarization converter are
simulated and evaluated, verifying the validity and accuracy of our vectorial FD-BPM.
The optimal reference propagation constant, which corresponds to the least spurious
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numerical loss, is found to be close to the propagation constant of the guided mode. There
also exists a critical value o, of the Crank-Nicholson scheme parameter o for each
waveguide structure. If o < o;, the scheme is unstable, leading to an exponentially
increasing field in the propagation direction; if o > o , the scheme is stable but leads to a
spurious numerical loss. Under the condition o > o , the bigger the value of o is, the
larger its influence will be. If a non-optimal reference propagation constant § has been
chosen, the influence of the scheme parameter on the results is stronger than when using
an optimal B. Therefore, the reference propagation constant should be chosen carefully
and o, is chosen as small as possible (but o 2 o). Although big mesh sizes correspond to
high simulation speeds, the mesh sizes should be chosen small enough to discretize the
waveguide structure precisely, which is here for the presented structures about 0.01-0.05
pm in the vertical direction, 0.05-0.2 pm in the lateral direction and 0.01-0.2 in the
longitudinal direction. The simulation speed of our vectorial FD-BPM depends on the
mesh sizes and computational window size, typically in the order of 100 pm/hour along
the propagation direction.

Designed 3D tapered waveguide structures include five sections. The first waveguide
section is a straight Q3 waveguide of 0.6 um thickness and 2 pm width on an InP
substrate, the second section is laterally tapered with an end width chosen such that its
lateral mode size matches that of the fiber (10 pum) and with a length such that excited
higher order modes are negligible at the end. Then again a straight transition section
occurs, followed by a vertically tapered section. The insertion of the transition section
between them is for technological convenience, since two tapered sections are realized by
different process steps. The waveguide should be tapered to a small thickness of about 25
nm to obtain a large vertical mode size and the section length has to exceed 300 um to
lower the radiation loss below 0.5 dB. Since a small change of the waveguide thickness
close to cut-off leads to a considerable mode size change, the thickness should have a
small tolerance of about 5 nm to realize a high fiber-chip coupling efficiency. In addition,
there is another straight waveguide section following the vertically tapered section,
designed to obtain a flat wave front as required for an effective fiber-chip coupling.
Finally, the whole structure is covered with a thick layer (5 pm) of high index material,
matching that of the substrate in order to obtain a vertically symmetrical field distribution
matching that of the fiber. Thus, the calculated total fiber-chip coupling loss can be below
1dB.

The lateral pattern definition of the designed structures can be realized by a conventional



Summary 129

lithography process. The vertically tapered section was realized by atomic beam etching
combined with a shadow mask. There is a spacer between the mask and the chip. Linearly
tapered profiles have been obtained, their lengths depend on the spacer thickness. Their
depths are dependent on the etching time, the etching speed being about 5 nm/min. Thus,
the required section length and the depth can be controlled by regulating the spacer
thickness and the etching time. The surface roughness after atomic beam etching is in the
order of 3-4 nanometers.

A new process to grow a high index silicon nitride layer by PECVD instead of an InP
layer by MOVPE has been developed. The index can be controlled with-a deviation of
within £0.005 from that of InP by regulating the gas flow ratio. The deposition speed
ranges from 150 - 280 nm/min, depending on the plasma power. A silicon nitride layer of
5 um thick can be deposited within one hour. In addition, the bulk attenuation of the cover
layer has been effectively decreased to 45 dB/cm which corresponds to an extra power
loss of 1 dB to the designed structure due to the cover absorption. Through further
optimization, this new cost-saving process can be expected to reach a practically accepted
level and have numerous applications in integrated optics.



Analyse, ontwerp en productie van schuin verlopende
geintegreerd-optische structuren

Implementatie van de volledig vectoriéle driedimensionale bundelpropagatie methode

Daoping Li

Samenvatting

Dit proefschrift behandelt de eindige verschillen bundelpropagatie methode (FD-BPM)
voor de analyse, in volledig vectoriéle vorm, van structuren met een variérende doorsnede
te zamen met de mathematische analyse van velden in schuin verlopende geintegreerd-
optische structuren zoals benodigd voor koppeling van een glasfiber aan een geintegreerd-
optische schakeling. Tevens behandelt dit werk de implementatie van deze berekeningen
in een computer programma. Met behulp van dit programma is een efficiénte koppeling
ontworpen, gecombineerd met een bepaling van het koppelrendement. Tenslotte wordt de
technologie, benodigd voor dit soort structuren besproken.

Schuin verlopende InGaAsP golfgeleider structuren op een InP substraat, gebruikt als
modale veld omzetter, zijn veelbelovend voor een efficiénte koppeling. Voor het ontwerp
van bevredigende structuren is een volledig vectoriéle FD-BPM ontwikkeld. De vectori€le
formuleringen zijn gebaseerd op de vergelijkingen van Maxwell en maken gebruik van de
benadering dat de omhullende van de golffunctie langzaam verandert. De golfgeleider
structuren zijn ruimtelijk onderverdeeld door de introductie van een rooster, waardoor een
discretisatie van de differentiaalvergelijkingen mogelijk wordt. De betreffende
formuleringen zijn uitgedrukt in veldgrootheden in de roosterpunten met behulp van een
eindige-verschillen schema. Voor de numerieke oplossing van de discrete vergelijkingen
wordt de relaxatie-methode toegepast. De golfvoortplanting in de longitudinale richting
wordt stap voor stap berekend. Het computer programma is geschreven in de
programmertaal FORTRAN 77. Verscheidene aspecten van het programmeren, zoals
structuur, arrays, numerieke methoden, dubbele precisie, foutzoeken en optimalisatie
worden besproken. Een ‘benchmark’ test is uitgevoerd voor de computers SUN 10/40, HP
735 en Cray C98/4256. Na optimilisatie bleek het resultaat voor de
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snelheidsverhoudingen 1 : 2.6 : 35. Versnellingsmethoden zijn geintroduceerd, zoals een
gemodificeerd Crank-Nicholson schema, een verbeterde startwaarde, een gereduceerde
iteratie-parameter en transparante randvoorwaarden. Als controle op de betrouwbaarheid
van onze FD-BPM zijn golfgeleider structuren, zoals een dijk golfgeleider, een begraven
golfgeleider, een polarisatie-omzetter en een polarisatie-splitser gesimuleerd en
geévalueerd. Voor de optimale referentie-voortplantingsconstante, die hoort bij de laagste
numerieke restfout, is vastgesteld dat deze zeer dicht bij de voortplantingsconstante van
de geleide modus ligt. Er bestaat een kritische parameter 0,c voor de parameter o in het
Crank-Nicholson schema voor iedere golfgeleider structuur. Indien o < 0., is het schema
instabiel hetgeen leidt tot een exponentieel toenemend veld tijdens voortplanting; voor o
> 0l is het schema stabiel maar leidt tot (numeriek) verlies van voortgeplant vermogen.
Onder de voorwaarde o > 0 geldt dat hoe groter o, is, des te groter de invloed ervan zal
zijn. Indien een niet-optimale referentie voortplantingsconstante B gekozen is, dan zal de
invloed van o sterker zijn dan in het geval van een optimale . Hieruit kunnen we
concluderen dat B zeer nauwkeurig bepaald moet worden en vervolgens o zo klein
mogelijk, doch o2 ¢.. Ofschoon een grote maaswijdte in het rekenrooster een grote
simulatie-snelheid zal opleveren, moet er voor gezorgd worden dat de mazen klein genoeg
zijn om het veld nauwkeurig te kunnen discretiseren. Dit komt in de hier gepresenteerde
structuren neer op 0.01-0.05 um in de verticale richting, 0.05-0.2 um in de laterale
richting en 0.01-0.2 um in de longitudinale richting. De simulatiesnelheid in longitudinale
richting van onze vectoriéle FD-BPM hangt af van het rooster en het rekenvenster en is
typisch in de orde van 100 pm/uur.

De ontworpen schuin verlopende structuren voor koppeling bestaan uit vijf secties. De
eerste sectie is een rechte Q3 golfgeleider met een dikte van 0.6 pm en een breedte van 2
um op een InP substraat. De tweede sectie verloopt schuin in de laterale richting, waarbij
de eindbreedte zo gekozen is dat de veldbreedte gelijk wordt aan die van een fiber (10
um) en met een lengte zodat geen hogere orde modi geéxciteerd worden. De derde sectie
is weer een rechte golfgeleider, gevolgd door de vierde die in de vertikale richting schuin
verloopt. Het toevoegen van de derde sectie heeft technologische redenen; de twee schuin
verlopende secties worden in twee verschillende processtappen vervaardigd. De
golfgeleider moet in sectie vier tot een dikte van 25 nm teruggebracht worden om een
voldoende groot verticaal veldprofiel te krijgen en de lengte moet groter zijn dan 300 um
om de afstraalverliezen beneden de 0.5 dB te houden. Omdat een kleine verandering in de
dikte, dicht bij de afsnijdings-omstandigheden, tot een grote verandering in de modus-
afmeting leidt moet de dikte met een nauwkeurigheid van £5 nm geproduceerd worden.
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De vijfde sectie is een rechte golfgeleider, zodanig ontworpen dat een viak golffront
verkregen wordt. Tenslotte wordt de totale structuur bedekt met een dikke laag (5 pm)
materiaal met hoge brekingsindex, bij voorkeur met een index gelijk aan die van het
substraat om een symmetrisch veld te verkrijgen. Het verlies in de totale koppeling voor
die configuratie is bepaald op minder dan 1 dB.

De laterale structuur kan met behulp van conventionele fotolithografische technieken
vervaardigd worden. De vertikale helling is gerealiseerd door atoombundel-etsen
gecombineerd met een schaduw-masker. Er is een afstandstuk tussen dit masker en het
geintegreerde circuit. Lineaire profielen zijn vervaardigd, waarbij de lengte bepaald wordt
door de dikte van dit afstandstuk. De helling hangt af van de etstijd (de etssnelheid is
ongeveer 5 nm/min). Concluderend kunnen we stellen dat de benodigde sectielengte en
helling ingesteld kunnen worden door keuze van de dikte van het afstandstuk en de etstijd.
De verkregen opperviakteruwheid na atoombundel-etsen is circa 3-4 nm.

Voor het verkrijgen van een dikke afdekiaag met een hoge brekingsindex is een nieuwe
techniek ontwikkeld waar bij een laag van siliciumnitride met behulp van PECVD
gegroeid wordt, in plaats van InP door MOVPE. De brekingsindex kan ingesteld worden
met een maximale afwijking van £0.005 ten opzichte van die van InP door het regelen
van de gastoevoeren. De depositiesnelheid ligt in de buurt van 150-280 nm/min,
afhankelijk van het plasmavermogen. Een laag siliciumnitride met een dikte van 5 um kan
binnen een uur gedeponeerd worden. Door verbetering van de procesgang is de absorptie
van de deklaag verlaagd tot 45 dB/cm, hetgeen overeen komt met een extra verlies in de
ontworpen structuur van 1 dB ten gevolge van deklaag-absorptie. Door verdere
optimalisatie kan van deze techniek, die sterk kosten besparend is, verwacht worden dat
een in de praktijk acceptabel niveau bereikt wordt waarvoor vele toepassingen zullen
bestaan binnen de geintegreerde optica.
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