
 
 

Delft University of Technology

ISA-DTMR
Selective Protection in Configurable Heterogeneous Multicores
Erichsen, Augusto G.; Sartor, Anderson L.; Souza, Jeckson D.; Pereira, Monica M.; Wong, Stephan; Beck,
Antonio C.S.
DOI
10.1007/978-3-319-78890-6_19
Publication date
2018
Document Version
Final published version
Published in
Applied Reconfigurable Computing

Citation (APA)
Erichsen, A. G., Sartor, A. L., Souza, J. D., Pereira, M. M., Wong, S., & Beck, A. C. S. (2018). ISA-DTMR:
Selective Protection in Configurable Heterogeneous Multicores. In N. Voros, M. Huebner, G. Keramidas, D.
Goehringer, C. Antonpoulos, & P. C. Diniz (Eds.), Applied Reconfigurable Computing: Architectures, Tools,
and Applications - 14th International Symposium, ARC 2018, Proceedings (pp. 231-242). (Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 10824 ). Springer. https://doi.org/10.1007/978-3-319-78890-6_19
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-319-78890-6_19
https://doi.org/10.1007/978-3-319-78890-6_19


ISA-DTMR: Selective Protection
in Configurable Heterogeneous Multicores

Augusto G. Erichsen1(B) , Anderson L. Sartor1 , Jeckson D. Souza1 ,
Monica M. Pereira2 , Stephan Wong3, and Antonio C. S. Beck1

1 Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Brazil

{agerichsen,alsartor,jeckson.souza,caco}@inf.ufrgs.br
2 Department of Computer Science and Applied Mathematics,

Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
monicapereira@dimap.ufrn.br

3 Computer Engineering Laboratory, Faculty of EEMCS,
Delft University of Technology, Delft, The Netherlands

j.s.s.m.wong@tudelft.nl

Abstract. The well-known Triple Modular Redundancy (TMR), when
applied to processors to mitigate the occurrence of faults, implies that all
applications have the same level of criticality (since they are all equally
protected) and are executed in a homogeneous environment, which nat-
urally would waste precious resources in terms of area and energy. How-
ever, many current systems are composed of heterogeneous cores that
implement the same ISA (e.g., ARM’s big.LITTLE or DynamIQ), exe-
cuting some applications that may be more critical than others and
that would require different levels of protection. With that in mind,
we propose ISA-DTMR, a non-intrusive approach that, taking advan-
tage of heterogeneous systems, can protect applications at different lev-
els in a totally transparent fashion. By using heterogeneous multicore
configurations composed of configurable processors that implement the
same Instruction Set Architecture (ISA), we will show that it is pos-
sible to adapt the level of protection for each application according to
its reliability requirements. When compared to homogeneous processors,
ISA-DTMR reduces area by up to 54.9%, and energy consumption by
30.35%, with negligible overhead on performance, for a configuration
that balances performance and energy consumption. ISA-DTMR is able
to provide the same level of protection for critical applications and even
improve the reliability for non-critical applications.

Keywords: Fault tolerance · Heterogeneous architecture · TMR
DMR

1 Introduction

The evolution of integrated circuit manufacturing technology has also increased
its susceptibility to failure, which can be caused by many factors such as vari-
ability, aging, and radiation effects [4]. Many fault tolerance techniques have
c© Springer International Publishing AG, part of Springer Nature 2018
N. Voros et al. (Eds.): ARC 2018, LNCS 10824, pp. 231–242, 2018.
https://doi.org/10.1007/978-3-319-78890-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78890-6_19&domain=pdf
http://orcid.org/0000-0001-5049-8159
http://orcid.org/0000-0003-1759-2762
http://orcid.org/0000-0003-4242-893X
http://orcid.org/0000-0002-6580-1250
http://orcid.org/0000-0002-4492-1747


232 A. G. Erichsen et al.

been developed to enable correct execution or detection of errors, and all of
them present some sort of overhead when compared to the unprotected version:
area, performance, or energy consumption. TMR is one of the most popular,
and works by replicating the circuit that needs protection, checking correctness
using a majority voter so the faults can be masked. While it presents a high fault
tolerance to Single Event Effects (SEE), it results in a huge area and power dis-
sipation overhead. Most importantly, in the case of an environment composed
of General Purpose Processor (GPPs) executing multiple processes, it usually
assumes that all processors are the same and that all the applications are critical
(thus they all should be protected). On the other hand, the advantage of TMR is
that it is completely non-intrusive: it can be implemented without any changes in
the underlying microarchitecture, so potentially any Commercial Off-The-Shelf
(COTS) GPP can be used.

ARM big.LITTLE and, more recently, DynamIQ [1] brought to mainstream
market systems that are composed of different microarchitectures but implement
the same ISA so that the same binary can transparently execute on different
microarchitectures. To save energy, applications that do not need full perfor-
mance can migrate from one (big) core to another (LITTLE), which indirectly
enables the fabrication of integrated circuits with decreased transistor count and
die size. Borrowing from this same idea, one could consider that instead of per-
formance, an application would not need to be fully protected: in a very common
scenario where many applications are executing, each of them may have its own
requirements when it comes to reliability (some being more critical than others).
Therefore, if a non-critical application (i.e., can present errors or will not lead
to a system failure even if it is not executed until completion) is executed in
a completely protected circuit (e.g., TMR), resources (performance, area, and
energy) would be wasted in the same way as applications that would not need
full performance executing in a homogeneous multicore environment.

Considering the discussion above, this work proposes ISA-DTMR, which is
a new design capable of providing protection only to critical applications, tak-
ing advantage of current systems with a homogeneous ISA and heterogeneous
microarchitectures, lowering the overheads presented by the original TMR. It
keeps the software transparency, since no changes in the source code are neces-
sary; and to the hardware, since no changes in the processor are needed. ISA-
DTMR uses a similar idea (but for a different end) as the Design Diversity
Redundancy (DDR) methodology [3], in which different designs for the same
application are available and work together, increasing fault tolerance.

The general architecture of ISA-DTMR is implemented using configurable
processors, following the same concept as the ARM big.LITTLE or DynamIQ: it
comprises different processors of the same (ISA) that require different amounts
of resources to be implemented and have different trade-offs considering per-
formance, energy and fault tolerance. To better illustrate the approach, Fig. 1
depicts a scenario in which four applications are executed in a heterogeneous
quad-core processor. In this example, App #1 is protected with TMR, App #2



ISA-DTMR: Selective Protection in Configurable Heterogeneous Multicores 233

and App #4 with Dual Modular Redundancy (DMR), and App #3 is executed
without any fault tolerance technique.

Core 2 4-issue App #4App #3

Core 1 8-issue App #1 App #4

Core 3 2-issue App #1 App #2
Core 4 2-issue App #1 App #2

Fig. 1. Applications running in heterogeneous cores

We developed the proposed technique in the VEX ISA, using different designs
of the ρ-VEX configurable VLIW processor [27]. The ρ-VEX can be easily config-
ured to have a different number of issue slots (e.g., 2, 4, or 8). Each configuration
brings changes to the optimization axes. The 8-issue usually has the best perfor-
mance for the benchmarks, but greater area occupation and power consumption.
The 2-issue, on the other hand, has lower performance in exchange of its reduced
power consumption and area occupation. Finally, the 4-issue has better balance
between both. We take advantage of these features to build heterogeneous mul-
ticore processors, which can have different optimization axes.

The design was synthesized for both ASIC and FPGA. We have compared
nine different processor configurations (three homogeneous and six heteroge-
neous), with two benchmark sets. By applying the proposed approach to a het-
erogeneous quad-core in the most energy-oriented configuration, it is possible to
reduce the area and power dissipation by 54.9% and 57.7%, respectively, when
compared to its homogeneous counterpart comprised of 8-issue processors. Con-
sidering a particular set of applications, we show that energy is reduced by up to
35.06% with 12.08% of performance overhead. By using a configuration that
weighs performance and energy, it is possible to reduce the energy consump-
tion by 30.35% while maintaining almost the same performance. Moreover, all
ISA-DTMR designs maintain the same level of protection to critical applications
as the conventional TMR when applied to homogeneous processors. Therefore,
ISA-DTMR can be used to execute applications with different priorities in terms
of protection and, at the same time, save area and energy consumption.

This article is organized as follows. We discuss the state-of-art in Sect. 2. In
Sect. 3, the proposed approach is presented and its implementation details are
discussed. In Sect. 4, the results are presented in terms of area, power dissipation,
energy consumption, performance, and error/failure rates. Section 5 concludes
this paper and presents future directions.

2 Related Work

Several works have been proposed for the detection and correction of transient
faults in multicore processors. These works aim to improve the fault tolerance



234 A. G. Erichsen et al.

of the target system, typically based on redundancy, which may be implemented
in software, hardware, or both. Next, some of these techniques will be discussed.

Software-based techniques that use the compiler to replicate instructions are
common both for VLIW processors [5,12,16,24] and for superscalar processors
[13]. Unlike compiler instruction replication techniques, ISA-DTMR introduces
no extra instructions to the application code, keeping its original size and mem-
ory footprint; and does not impose any changes to the original binary (so no
extra tools or recompilation are necessary).

Nonetheless, software solutions can also be applied at thread-/process-level.
In [14], the authors exploit the parallel capacities of SMT processors to duplicate
threads and detect faults via DMR, while in [11] this technique was improved and
tested in a dual core, SMT enabled processor, using a higher workload (multiple
applications). The authors of [23] take advantage of spare or idle cores in multi-
core systems to triplicate application processes and apply TMR to detect and
correct faults. On the other hand, [6] propose a generic approach for many-
core systems, in which a dedicated hardened core controller is responsible for
replicating and synchronizing threads for fault detection and recovery by either
Duplication With Comparison (DWC) or TMR techniques. Although most of
these software-based techniques rely on replicating threads similarly as ISA-
DTMR, they do not consider a heterogeneous environment with different levels
of criticality for the applications (including the possibility of no protection at all
for some of them).

Among the many hardware-based solutions, the authors of [8,9] propose a
framework that creates sets of single-ISA cores with different strategies for fault
tolerance (fully TMR cores, pipeline, register file and cache TMR). The sets
are generated to maximize reliability for different applications, while keeping
a power budget, considering future restrictions brought by dark silicon. Then,
during runtime, depending on the running application’s requirement, a core that
gives the necessary protection level is selected, while all the others are kept dark.
The authors in [18] trade-off the axes of fault tolerance, energy consumption, and
performance by using techniques to duplicate and re-execute faulty instructions,
reduce energy consumption by using power gating and control the Instruction-
level Parallelism (ILP) of the application so more duplication or energy savings
can be achieved. The following works look into these techniques in different
granularities [19–21]. In contrast to all those hardware-based solutions, ISA-
DTMR requires no modifications inside the processor (i.e., it is not intrusive), so
it can be totally based on COTS GPPs. Comparators and voters can be included
in many non-intrusive ways, such as in a separate ASIC, in a MPSoC or even by
software. Therefore, ISA-DTMR can use existing cores of heterogeneous GPPs
to increase reliability, considering individual application criticality to minimize
resource usage. Moreover, if the cores are not used for redundancy, they can be
used for regular application execution or turned off. This contrasts to typical
DMR/TMR solutions, in which all the redundant hardware is permanently used
for reliability; or, in the specific case of [9], to the impossibility of using the extra
transistors added for fault tolerance to accelerate execution.



ISA-DTMR: Selective Protection in Configurable Heterogeneous Multicores 235

Still related to hardware, to reduce the probability of Common Mode Failures
(CMF) occurrence, one solution is to provide TMR using different technologies
or architectures. This technique is called Diversity TMR (DTMR), or TMR
based on DDR [10]. The authors in [25] propose DTMR to investigate protection
against CMF in an 8× 8 matrix implemented in FPGA. [2] uses DTMR to
improve fault tolerance in FPGAs. [26] presents a reliability analysis using design
diversity as metric using RISC, VLIW and CGRA architectures to generate the
results. Differently from other works in DTMR, ISA-DTMR exploits the binary
compatibility between cores in heterogeneous single-ISA multicores. Having the
same ISA between cores eases the software development process, since no special
compilers or toolchains are necessary to deploy the system.

Therefore, by considering that applications may have different levels of crit-
icality, ISA-DTMR uses the same idea of design diversity as DTMR, but taking
advantage of configurable processors to build heterogeneous multicore environ-
ments that implement a single ISA. So, in cases some applications do not demand
high reliability, it is possible to use the extra cores for parallel execution of other
applications or even turn them off to save energy. In this work we reassemble a
big.LITTLE-based environment by using different designs of the ρ-VEX family,
considering a great number of scenarios. We show how such environment can be
employed for fault tolerance and, at same time, balance energy and performance,
when criticality is not necessary for all applications.

3 ISA-DTMR Implementation

As already discussed, ISA-DTMR considers the fact that different applications
have different needs when it comes to reliability: some are critical and need
to be protected against soft errors, while non-critical ones may tolerate erro-
neous results. ISA-DTMR exploits this difference of criticality by protecting
some applications with TMR, others with DMR, and by executing non-critical
applications without any fault tolerance mechanism, all concurrently, thus reduc-
ing energy and area. Application criticality can be decided at design time, or
through dynamic strategies, such as shown in [6].

In this work, the configurable ρ-VEX softcore VLIW processor [27] is used
as case study, which is implemented in VHDL and we have full access to its
low level description. The ρ-VEX core has a five-stage pipeline, and it can be
easily configured to have a different number of issue slots (e.g., 2, 4, or 8). Each
pipelane (issue-slot) may contain different functional units from the following set:
ALU (always present), multiplier, memory, and branch units. The ISA-DTMR
implementation of the ρ-VEX is done by combining processors with different
issue widths, as can be seen in Fig. 2.

When using TMR with a common diverse processor strategy, the correct
execution verification is always dependent of the slowest processor (i.e., faster
processors would have to wait for the slowest one). However, in the case of
the ISA-DTMR, the fastest processors can execute different applications while
waiting for the slowest processor to finish, using this spare time to perform actual



236 A. G. Erichsen et al.

PN: Pipelane N

Instruction 
memory

Data 
memory

Instruction 
memory

Data 
memory

Instruction 
memory

Data 
memory

Instruction 
memory

Data 
memory

Instruction 
memory

Data 
memory

Instruction 
memory

Data 
memory

4-issue
P
1

P
2

P
3

P
4

4-issue
P
1

P
2

P
3

P
4

8-issue
P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

8-issue
P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

Instruction 
memory

Data 
memory

Instruction 
memory

Data 
memory

Checker 
Module

Result 
App #1
Result 
App #2
Result 
App #3

Result 
App #1
Result 
App #2
Result 
App #3

Result 
App #1
Result 
App #2

Result 
App #1
Result 
App #2

Result 
App #1
Result 
App #3

Result 
App #1
Result 
App #3

Result 
App #4
Result 
App #4

2-issue
P
1

P
2

2-issue
P
1

P
2

2-issue
P
1

P
2

2-issue
P
1

P
2

Fig. 2. Example of an ISA-DTMR implementation. A quad-core with one 8-issue core,
one 4-issue and two 2-issue

computation [7]. If a processor executing an application with DMR protection
fails, the voter module will flag the execution as faulty and trigger its re-execution
so the fault can be corrected.

To keep the transparency as high as possible, the applications are only
checked at the end of the execution by a specific hardware (Checker Module
in Fig. 2). The Checker Module is responsible for verifying the correctness of the
result, based on the reliability requirement of the given application. In case of a
protected application, it compares the resulting memories to check the execution
correctness. The Checker module implements a Finite-State Machine (FSM),
which reads the application result from the memory in a burst, and the results
are compared to detect errors. If there is a mismatch in a memory position, an
error bit will flag the faulty result.

4 Results

In this section, we evaluate the proposed approach and analyze the results for
fault tolerance, area, performance, power, and energy consumption.

4.1 Methodology

A total of nine designs were evaluated in this work: three homogeneous quad-core
processors with issue-widths of 8 (baseline), 4, and 2 (i.e., 8-8-8-8, 4-4-4-4, 2-2-
2-2); and six heterogeneous with the following configurations: 8-8-8-4, 8-8-4-4,
8-4-4-4, 8-4-4-2, 8-4-2-2, 8-2-2-2.

In order to analyze the reliability of the circuit, we have used a variation of
the Mean Work to Failure metric, proposed in [15], as defined below.

MWTF =
amount of work completed

number of errors encountered
=

core occupation

(failure rate) × (execution time)



ISA-DTMR: Selective Protection in Configurable Heterogeneous Multicores 237

Where the core occupation is the ratio between the number of program
instructions and the total number of instructions (program instructions plus
NOPs). With that, it is possible to capture the trade-off between performance
and fault tolerance and allows one to evaluate the reliability of different issue-
widths removing the influence of the NOPs (free slots that the compiler was not
able fill to exploit the instruction-level parallelism from the program) and the
difference in execution time when the issue-width is reduced or increased.

To obtain the failure rate, a fault injection campaign was conducted and
faults were injected at the gate-level signals of the design, using the Simbah-FI
framework [17]. In this work, we consider that the memory and register file of the
processors are protected with Error-Correcting Code (ECC). Our fault injection
method simulates the occurrence of Single Event Transient (SET) faults, like
the ones caused by radiation effects. The faults are injected at any internal and
low-level signal of the target module. The injection instant follows a uniform
probability function in the range between zero and t equal to the expected
execution time from the application without faults, and to increase the likelihood
of the SET to be captured by a flip-flop, the signal is forced for the duration of
one clock cycle.

The fault injection campaign resulted in more than 500 thousand faults,
injected at gate-level signals. For instance, the 8-issue homogeneous quad-core
has 147,140 gate-level signals. To obtain accurate area and power measurements
for ASICs, the designs were synthesized with the Cadence Encounter with a
65 nm CMOS cell library from STMicroelectronics. For the dynamic power con-
sumption, the switching activity is considered to be of 30%, which is the tra-
ditionally assumed value for system level analysis of microprocessors [7]. When
there is no switching activity in a given pipelane, only the static power dis-
sipation is considered. For FPGAs, the design was synthesized to a Virtex-6
XC6VLX240T with the Xilinx ISE tool.

The applications used to evaluate our technique were selected from the ρ-
VEX and the Powerstone benchmark suites [22] and they were divided into two
scenarios that were tested in the nine different multicore designs:

• Scenario 1: FIR (TMR), POCSAG (DMR), LUDCMP (DMR), and CRC
(unprotected execution).

• Scenario 2: Matrix multiplication (TMR), DFT (DMR), x264 (DMR), and
Qurt (unprotected execution).

Even though the level of criticality of the selected applications may not reflect
the same requirements they would have in a real system, they serve as exam-
ples for how ISA-DTMR behaves and to show the trade-offs when comparing
it to conventional fault tolerance techniques. The applications were statically
scheduled to the cores, aiming to minimize the total execution time as much
as possible, for both the homogeneous and heterogeneous (ISA-DTMR) designs.
In the heterogeneous designs, heavier applications are scheduled to the most
powerful cores, following the same strategy as the schedulers used in ARM’s
big.LITTLE environments.



238 A. G. Erichsen et al.

4.2 Fault Injection Campaign and MWTF Evaluation

As the FIR (scenario 1 ) and Matrix Multiplication (scenario 2 ) benchmarks
are protected with TMR, they can mask all single faults in the design. By using
ISA-DTMR, the replicates of these applications may be executed on cores with
different configurations, exploiting heterogeneity with its advantages. The DMR
applications (POCSAG and LUDCMP for scenario 1, and DFT and x264 for
scenario 2 ) will result in re-execution when an error is detected, while the unpro-
tected applications (CRC and Qurt) are considered non-critical and will remain
with an incorrect result in case of a failure. Figure 3 presents the relative MWTF
when compared to the 8-issue homogeneous quad-core processor (8-8-8-8), for
the DMR-protected and unprotected applications. The applications with TMR
have all their faults masked, thus it is not possible to evaluate their MWTF as
the failure rate will be zero.

The amount of work that each application can perform until a failure occurs
depends on the application’s behavior and on which core configuration it is run-
ning on. For instance, when running the POCSAG application, the reduction in
performance outweighs the reduction in the sensitive area, resulting in less work
until a failure, compared to the 8-issue. On the other hand, for the x264 applica-
tion (scenario 2 ), the 2-issue is able to improve the MWTF when compared to all
other configurations. In this case, performance proportionally decreases less than
the sensitive area, which means that even though the application takes longer
to execute on the 2-issue processor, the processor is less exposed to radiation
sources as its area is smaller.

This discussion highlights an important observation. By correctly choosing
the core’s issue-width in a heterogeneous processor, it is possible to improve the
amount of work that an application can perform until a failure is detected in the
system, even for those applications that are not critical.

0.00

0.50

1.00

1.50

2.00

8-8-8-8 8-8-8-4 8-8-4-4 8-4-4-4 8-4-4-2 8-4-2-2 8-2-2-2 4-4-4-4 2-2-2-2

Homogeneous ISA-DTMR Homogeneous

R
el

at
iv

e 
M

W
TF Unprotected CRC DMR POCSAG DMR LUDCMP

(a) Scenario 1

0.00

0.50

1.00

1.50

2.00

8-8-8-8 8-8-8-4 8-8-4-4 8-4-4-4 8-4-4-2 8-4-2-2 8-2-2-2 4-4-4-4 2-2-2-2

Homogeneous ISA-DTMR Homogeneous

R
el

at
iv

e 
M

W
TF Unprotected Qurt DMR DFT DMR x264

(b) Scenario 2

Fig. 3. MWTF rate results for each scenario normalized to the 8-8-8-8 processor



ISA-DTMR: Selective Protection in Configurable Heterogeneous Multicores 239

4.3 Area Occupation and Power Dissipation

Table 1 presents the area (for both FPGA and ASIC) and power comparison (for
ASICs) for the homogeneous designs and the proposed ISA-DTMR designs. The
Checker Module occupies 1,581 cells and dissipates 0.89 mW of power for ASICs,
and 426 LUTs (look-up tables) and 165 FF (flip-flop registers) for FPGAs. As
expected, the ISA-DTMR implementation occupies less area compared to the
homogeneous baseline implementation. In our designs, a 2-issue core occupies
40% less area compared to a 4-issue, and a 4-issue occupies 57% less area com-
pared to an 8-issue. The proposed approach occupies considerably less area than
the homogeneous 8-issue quad-core baseline design: the area reduction varies
from 13.6% to 58.3% for FPGAs and from 14.2% to 54.9% for ASICs as the
processor configuration is changed from 8-8-8-4 to 8-2-2-2. The power dissipa-
tion is also reduced from 14% (8-4-4-4) to 57.7% (8-2-2-2) when compared to
the baseline. This will impact on energy consumption, as discussed next.

4.4 Energy Consumption and Performance

Figure 4 shows the results for energy consumption, area, and performance nor-
malized to the homogeneous 8-issue processor. In scenario 1, by using ISA-
DTMR with the 8-4-4-4 configuration, it is possible to reduce the energy con-
sumption and area in 27.75% and 42.78%, respectively, while maintaining negli-
gible performance overhead (less than 1%) when compared to the homogeneous
8-issue. In the 8-2-2-2 configuration, it is possible to reduce the energy and area
by 29.86% and 55.21%, while having a performance overhead of 43.7%.

4.5 Combining Reliability, Energy Consumption, and Performance

As one could observe in the previous subsections, with ISA-DTMR, it is possible
to trade-off the axes of performance, energy consumption, power dissipation,

Table 1. Power dissipation and area occupation

Design ASIC FPGA

Power (mW) Cells LUT FF

Heterogeneous 2-2-2-2 34.4 70,493 31,262 10,773

4-4-4-4 65.5 113,777 64,150 12,353

8-8-8-8 149.6 262,705 140,362 15,853

ISA-DTMR 8-8-8-4 128.6 225,473 121,309 14,978

8-8-4-4 107.5 188,241 102,256 14,103

8-4-4-4 86.5 151,009 83,203 13,228

8-4-4-2 78.8 140,188 74,981 12,833

8-4-2-2 71.0 129,367 66,759 12,438

8-2-2-2 63.2 118,546 58,537 12,043



240 A. G. Erichsen et al.

0.00

0.50

1.00

1.50

8-8-8-8 8-8-8-4 8-8-4-4 8-4-4-4 8-4-4-2 8-4-2-2 8-2-2-2 4-4-4-4 2-2-2-2

Homogeneous ISA-DTMR Homogeneous

Energy Area Exec Cycles

(a) Scenario 1

0.00

0.50

1.00

1.50

8-8-8-8 8-8-8-4 8-8-4-4 8-4-4-4 8-4-4-2 8-4-2-2 8-2-2-2 4-4-4-4 2-2-2-2

Homogeneous ISA-DTMR Homogeneous

Energy Area Exec Cycles

(b) Scenario 2

Fig. 4. Energy, area, and performance for each scenario normalized to the 8-8-8-8
processor

and area, providing expressive energy and area reductions at a low performance
cost, and even improving the MWTF with the aforementioned savings in some
cases. In this subsection, we summarize the benefits of applying the ISA-DTMR
technique to improve fault tolerance in multicore systems.

Protecting applications with TMR, ISA-DTMR provides a fault tolerance
mechanism to mask all single faults in the processor for critical applications
and it still is able to reduce the area and energy consumption by executing the
replicas on heterogeneous cores. Protecting applications with DMR, by using
the proposed approach, it is also possible to improve the MWTF of the DMR-
protected applications for almost all processor configurations, with the exception
of the POCSAG application in the 8-4-2-2 and 8-2-2-2 processors, as discussed
in Sect. 4.2. In the most significant case the MWTF is improved by more than
50% (x264 in the 8-2-2-2). This means that such applications will be able to
perform more work until an error is detected and the re-execution of the appli-
cation is performed, resulting in less re-executions. Therefore, the total energy
consumption will be reduced as well as the performance overhead for all the re-
executions. Executing Unprotected applications, even though these applications
are not critical for the system, when the proposed technique is used, such applica-
tions are able to perform more work until a failure (up to 35%), when compared
to the homogeneous 8-issue quad-core processor, which also means that these
applications will fail less times. Thus, improving reliability just by choosing a
core configuration that best fits the application behavior, instead of running all
applications on homogeneous cores. In addition, the energy consumption can be
reduced when choosing a smaller core without highly affecting performance for
some applications, such as in the big.LITTLE approach.



ISA-DTMR: Selective Protection in Configurable Heterogeneous Multicores 241

5 Conclusion and Future Work

In this work, the ISA-DTMR is proposed, exploiting the fact that a number
of different microarchitectures that implement the same ISA are available. The
results showed that this technique can improve the fault tolerance consuming
fewer resources, compared to the baseline, on both scenarios, with the exception
of the 8-4-2-2 and 8-2-2-2 designs. The 8-4-4-2 exhibit the most balanced con-
figuration, improving fault tolerance with more than 28% of reduction in energy
consumption and half area occupation, compared to the baseline.

This work also shows that it is possible to improve the applications relia-
bility by correctly choosing the core’s issue-width. As future work, this tech-
nique will be applied to other processor architectures and more scenarios with
different applications will be assessed. In addition, a dynamic scheduler and
dynamic application criticality assessment mechanism will be implemented,
and a software-based checker will be assessed and compared to the hardware
approach.

Acknowledgement. This work was supported in part by CNPq, FAPERGS, and
CAPES.

References

1. Arm Limited: Arm DynamIQ technology framework to design and build Cortex-A
CPU systems (2017). https://developer.arm.com/technologies/dynamiq

2. Ashraf, R.A., Mouri, O., Jadaa, R., Demara, R.F.: Design-for-diversity for
improved fault-tolerance of TMR systems on FPGAs. In: 2011 International Con-
ference on Reconfigurable Computing and FPGAs, pp. 99–104, November 2011

3. Avizienis, A., Kelly, J.P.J.: Fault tolerance by design diversity: concepts and exper-
iments. Computer 17(8), 67–80 (1984)

4. Beck, A.C.S., Lisbôa, C.A.L., Carro, L.: Adaptable Embedded Systems. Springer
Science & Business Media, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-
1746-0

5. Bolchini, C.: A software methodology for detecting hardware faults in VLIW data
paths. IEEE Trans. Reliab. 52(4), 458–468 (2003)

6. Bolchini, C., Carminati, M., Miele, A.: Self-adaptive fault tolerance in multi-
/many-core systems. J. Electron. Test. 29(2), 159–175 (2013)

7. Geuskens, B., Rose, K.: Modeling Microprocessor Performance. Springer Science
& Business Media, Heidelberg (2012). https://doi.org/10.1007/978-1-4615-5561-2

8. Kriebel, F., Rehman, S., Sun, D., Shafique, M., Henkel, J.: ASER: adaptive soft
error resilience for reliability-heterogeneous processors in the dark silicon era. In:
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2014

9. Kriebel, F., Shafique, M., Rehman, S., Henkel, J., Garg, S.: Variability and relia-
bility awareness in the age of dark silicon. IEEE Des. Test 33(2), 59–67 (2016)

10. Littlewood, B.: The impact of diversity upon common mode failures. Reliab. Eng.
Syst. Saf. 51(1), 101–113 (1996)

11. Mukherjee, S.S., Kontz, M., Reinhardt, S.K.: Detailed design and evaluation of
redundant multi-threading alternatives. In: Proceedings 29th Annual International
Symposium on Computer Architecture, pp. 99–110 (2002)

https://developer.arm.com/technologies/dynamiq
https://doi.org/10.1007/978-1-4614-1746-0
https://doi.org/10.1007/978-1-4614-1746-0
https://doi.org/10.1007/978-1-4615-5561-2


242 A. G. Erichsen et al.

12. Pillai, A., Zhang, W., Kagaris, D.: Detecting VLIW hard errors cost-effectively
through a software-based approach. In: 21st International Conference on Advanced
Information Networking and Applications Workshops, AINAW 2007, vol. 1, pp.
811–815, May 2007

13. Ray, J., Hoe, J.C., Falsafi, B.: Dual use of superscalar datapath for transient-
fault detection and recovery. In: MICRO-34 Proceedings of the 34th ACM/IEEE
International Symposium on Microarchitecture, pp. 214–224, December 2001

14. Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous mul-
tithreading. In: Proceedings of 27th International Symposium on Computer Archi-
tecture (IEEE Cat. No. RS00201), pp. 25–36, June 2000

15. Reis, G.A., Chang, J., Vachharajani, N., Mukherjee, S.S., Rangan, R., August, D.I.:
Design and evaluation of hybrid fault-detection systems. In: 32nd International
Symposium on Computer Architecture (ISCA 2005), pp. 148–159, June 2005

16. Sabena, D., Reorda, M.S., Sterpone, L.: On the development of software-based
self-test methods for VLIW processors. In: IEEE Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 25–30, October 2012

17. Sartor, A.L., Becker, P.H.E., Beck, A.C.S.: Simbah-FI: simulation-based hybrid
fault injector. In: 2017 VII Brazilian Symposium on Computing Systems Engi-
neering (SBESC), pp. 94–101, November 2017

18. Sartor, A.L., Becker, P.H.E., Hoozemans, J., Wong, S., Beck, A.C.S.: Dynamic
trade-off among fault tolerance, energy consumption, and performance on a
multiple-issue VLIW processor. IEEE Trans. Multi-scale Comput. Syst. 55(99),
1 (2017)

19. Sartor, A.L., Lorenzon, A.F., Carro, L., Kastensmidt, F., Wong, S., Beck, A.C.S.:
A novel phase-based low overhead fault tolerance approach for VLIW processors.
In: Computer Society Annual Symposium on VLSI, pp. 485–490, July 2015

20. Sartor, A.L., Wong, S., Beck, A.C.S.: Adaptive ILP control to increase fault toler-
ance for VLIW processors. In: Conference on Application-Specific Systems, Archi-
tectures and Processors (ASAP), pp. 9–16, July 2016

21. Sartor, A.L., Lorenzon, A.F., Carro, L., Kastensmidt, F., Wong, S., Beck, A.C.S.:
Exploiting idle hardware to provide low overhead fault tolerance for VLIW pro-
cessors. J. Emerg. Technol. Comput. Syst. 13(2), 13:1–13:21 (2017)

22. Scott, J., et al.: Designing the low-power m* core architecture. In: IEEE Power
Driven Microarchitecture Workshop. Citeseer (1998)

23. Shye, A., Moseley, T., Reddi, V.J., Blomstedt, J., Connors, D.A.: Using process-
level redundancy to exploit multiple cores for transient fault tolerance. In:
IEEE/IFIP Conference on Dependable Systems and Networks, pp. 297–306, June
2007

24. Sterpone, L., Sabena, D., Campagna, S., Reorda, M.S.: Fault injection analysis of
transient faults in clustered VLIW processors. In: IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems, pp. 207–212, April 2011

25. Tambara, L.A., Kastensmidt, F.L., Azambuja, J.R., Chielle, E., Almeida, F.,
Nazar, G., Rech, P., Frost, C., Lubaszewski, M.S.: Evaluating the effectiveness
of a diversity TMR scheme under neutrons. In: European Conference on Radiation
and its Effects on Components and Systems (RADECS), pp. 1–5, September 2013

26. Wang, Z., Yang, L., Chattopadhyay, A.: Architectural reliability estimation using
design diversity. In: Symposium on Quality Electronic Design, pp. 112–117, March
2015

27. Wong, S., van As, T., Brown, G.: ρ-VEX: A reconfigurable and extensible softcore
VLIW processor. In: Conference on Field-Programmable Technology, pp. 369–372,
December 2008


	ISA-DTMR: Selective Protection in Configurable Heterogeneous Multicores
	1 Introduction
	2 Related Work
	3 ISA-DTMR Implementation
	4 Results
	4.1 Methodology
	4.2 Fault Injection Campaign and MWTF Evaluation
	4.3 Area Occupation and Power Dissipation
	4.4 Energy Consumption and Performance
	4.5 Combining Reliability, Energy Consumption, and Performance

	5 Conclusion and Future Work
	References




