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Abstract. Firn density plays a crucial role in assessing the
surface mass balance of the Antarctic ice sheet. However, our
understanding of the spatial and temporal variations in firn
density is limited due to (i) spatial and temporal limitations
of in situ measurements, (ii) potential modelling uncertain-
ties, and (iii) lack of firn density products driven by satellite
remote-sensing data. To address this gap, this paper explores
the potential of satellite microwave radiometer (Special Sen-
sor Microwave Imager/Sounder (SSMIS)) and scatterometer
(Advanced Scatterometer (ASCAT)) observations for assess-
ing spatial and temporal dynamics of dry-firn density over
the Antarctic ice sheet. Our analysis demonstrates a clear re-
lation between density anomalies at a depth of 40 cm and
fluctuations in satellite observations. However, a linear rela-
tionship with individual satellite observations is insufficient
to explain the spatial and temporal variation in snow density.
Hence, we investigate the potential of a non-linear random
forest (RF) machine learning approach trained on radiome-
ter and scatterometer data to derive the spatial and temporal
variations in dry-firn density. In the estimation process, 10
years of SSMIS observations (brightness temperature) and
ASCAT observations (backscatter intensity) is used as input
features to a random forest (RF) regressor. The regressor is
first trained on time series of modelled density and satellite
observations at randomly sampled pixels and then applied to
estimate densities in dry-firn areas across Antarctica. The RF
results reveal a strong agreement between the spatial patterns
estimated by the RF regressor and the modelled densities.
The estimated densities exhibit an error of±10 kg m−3 in the
interior of the ice sheet and ±35 kg m−3 towards the ocean.
However, the temporal patterns show some discrepancies, as

the RF regressor tends to overestimate summer densities, ex-
cept for high-elevation regions in East Antarctica and specific
areas in West Antarctica. These errors may be attributed to
underestimations of short-term or seasonal variations in the
modelled density and the limitations of RF in extrapolating
values outside the training data. Overall, our study presents a
potential method for estimating unknown Antarctic firn den-
sities using known densities and satellite parameters.

1 Introduction

The accelerated loss of mass from the Antarctic ice sheet,
a trend anticipated to persist in the coming decades and cen-
turies, underscores Antarctica’s pivotal role as a major source
of uncertainty in projecting future sea level rise (Pattyn and
Morlighem, 2020). Recognising the critical contribution to
sea level rise uncertainty highlights the urgency of compre-
hending Antarctica’s surface mass balance (SMB). A typi-
cal method to estimate the SMB of the Antarctic ice sheet is
to convert satellite altimetry height measurements into SMB
(Zwally et al., 2005; Kuipers Munneke et al., 2015; Schröder
et al., 2019) with the help of firn (an intermediate state be-
tween snow and glacial ice; van den Broeke, 2008; Amory
et al., 2024) density. In Antarctica, firn density is highly vari-
able in space and time due to the varying surface climate con-
ditions (Craven and Allison, 1998; Li and Zwally, 2004; van
den Broeke, 2008; Fujita et al., 2016). Therefore, it is neces-
sary to continuously monitor firn density in Antarctica.

A variety of methods have been developed to assess firn
density. In situ measurements from firn cores, snow pits, and
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local near-infrared pictures are valuable for accurately un-
derstanding firn densities; however, these measurements are
sparse in both space and time due to cost efficiency consid-
erations, making them insufficient for comprehensive mon-
itoring requirements (Macelloni et al., 2007; Picard et al.,
2012; Champollion et al., 2013). In the absence of in situ
data, firn densification models (FDMs), such as the semi-
empirical IMAU-FDM (Ligtenberg et al., 2011; Veldhuijsen
et al., 2023), are commonly utilised to estimate firn density
and subsequent elevation changes (Schröder et al., 2019).
Nonetheless, FDMs suffer from significant uncertainties
(Verjans et al., 2020). For instance, the relationship between
wind velocity and density, as derived by Sugiyama et al.
(2012) and van den Broeke et al. (1999), exhibits notable dis-
crepancies, introducing uncertainties when parametrising the
effects of wind. Therefore, to obtain spatially and temporally
continuous assessments of changes in firn densities, satel-
lite remote sensing serves as an important complementary
method (Picard et al., 2007; Brucker et al., 2014; Meredith
et al., 2019). While numerous studies have investigated these
assessments, they have identified intricate relationships be-
tween remote-sensing observations and firn density, making
it challenging to generalise remote-sensing models. Conse-
quently, a satellite-based firn density product remains elu-
sive.

Among satellite remote-sensing techniques, radiometers
are a primary tool used for studying firn properties, offer-
ing various frequencies and polarisations that facilitate as-
sessments of different firn properties at different depths (Pi-
card et al., 2007, 2012; Champollion et al., 2013; Brucker
et al., 2014; Amory et al., 2024). Radiometers measure the
thermal radiation emitted by the ground surface and subsur-
face within the range of microwave penetration (Picard et al.,
2007) and typically have a spatial resolution of∼ 25 km. The
observed parameter is referred to as the brightness tempera-
ture (TB), which has typically been used to derive Antarc-
tic surface melting extent by detecting the sharp increase in
emissivity and hence TB (Picard et al., 2007; Tedesco, 2009;
Nicolas et al., 2017; de Roda Husman et al., 2022). However,
studies show that TB can also be used to assess firn densities.
For example, Champollion et al. (2013) used the temporal
variation in the polarisation ratio of TB at 19 and 37 GHz
to evaluate the density changes in firn induced by hoar
crystal formation and disappearance at Dome C (75.06° S,
123.21° E; indicated in Fig. 2a). Alternatively, Tran et al.
(2008) classified seven firn facies over Antarctica using a
combination of TB, a specific ratio defined by TB at 23.8 and
36.5 GHz, and information from Ku- and S-band altimeters
acquired in 2004. They attributed the different facies to vary-
ing surface roughness or firn grain size driven by differences
in climate parameters, such as wind patterns, firn accumu-
lation, and temperature, which are known to influence firn
density (Lehning et al., 2002; Champollion et al., 2013).

Alternatively, active microwave observations, specifically
radar scatterometer and synthetic aperture radar (SAR), with

spatial resolutions of ∼ 25 km and up to ∼ 5 m, respectively,
have been used to assess firn properties. The backscatter in-
tensity (σ 0) is a common parameter measured by both scat-
terometer and SAR. Numerous studies have been performed
to link the spatial or temporal variation in σ 0 to variations
in certain firn properties. Fraser et al. (2016) analysed the
drivers of spatial variation in C-band scatterometer σ 0 ac-
quired between 2007 and 2012 in dry-firn zones of Antarc-
tica. Their study concluded that (i) the seasonal variation in
σ 0 is primarily driven by precipitation and firn temperature
cycles and that (ii) σ 0 exhibits a high correlation with long-
term precipitation, which also affects long-term densities. On
the other hand, Rizzoli et al. (2017) exploited interferometric
acquisitions of X-band SAR σ 0 from TanDEM-X, using the
combination of σ 0 and a volume correlation factor to classify
Greenland into four firn facies with an unsupervised machine
learning method. The firn facies classified by this study can
be attributed to different melt extents.

The aforementioned studies indicate the capability of var-
ious passive and active satellite observations, either individ-
ually or in combination, to evaluate spatial and temporal pat-
terns of firn density. However, the precise mechanisms un-
derlying the impact of firn density on satellite observations
cannot always be fully understood (Champollion et al., 2013;
Fraser et al., 2016; Rizzoli et al., 2017). In addition, previ-
ous studies using satellite observations to assess firn proper-
ties are restricted either to a specific location where in situ
measurements are available (Champollion et al., 2013) or to
a specific time period (Tran et al., 2008). Generalisation of
these aforementioned approaches to other areas or time peri-
ods therefore requires further assessment. Hence, it is crucial
to identify suitable combinations of satellite observations and
data fusion methods that enable the assessment of firn den-
sity across extensive regions and multiple seasons.

Consequently, the objective of this study is to propose
and assess a methodology to derive firn density and its spa-
tial and temporal variations over the Antarctic ice sheet
based on daily satellite observations. To achieve this, we
conduct a 3-fold experiment involving the comparison of
time series data from the Special Sensor Microwave Im-
ager/Sounder (SSMIS) and Advanced Scatterometer (AS-
CAT) satellites with the output of a semi-empirical firn den-
sification model (IMAU-FDM). In the first experiment, we
juxtapose the satellite time series with the output of IMAU-
FDM to evaluate the potential of individual satellite parame-
ters in linearly explaining density variations. The second ex-
periment involves cluster analysis on the combined SSMIS
and ASCAT satellite data to identify spatial and temporal pat-
terns of satellite observations and compare them with IMAU-
FDM density patterns. Then, we assess the potential of a
non-linear random forest (RF) machine learning approach
(Breiman, 1996, 2001) trained on SSMIS and ASCAT data
to derive spatial and temporal variations in dry-firn density.
More specifically, assuming firn densities in certain regions
are known, this experiment aims to estimate firn densities of
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the unknown regions in space and time using a combination
of satellite observations. Due to the currently limited avail-
ability of in situ density measurements, however, our study
uses part of the modelled IMAU-FDM densities as “known”
densities to train the RF regressor. Finally, we evaluate our
RF predictions with external reference data, i.e. available in
situ firn density measurements (Surface Mass Balance and
Snow on Sea Ice Working Group (SUMup)), and ERA5 cli-
mate parameters.

2 Data

In this study, we evaluate the potential of satellite microwave
radiometer (SSMIS) and scatterometer (ASCAT) observa-
tions in assessing the spatial and temporal dynamics of dry-
firn density across the Antarctic ice sheet. We focus on the
grounded Antarctic ice sheet only, where wet firn and melt-
ing that potentially affect the satellite microwave observa-
tions are less pronounced (Lenaerts et al., 2016; Kingslake
et al., 2017; Spergel et al., 2021; Li et al., 2021; de Roda Hus-
man et al., 2022). To account for this, we mask out all satel-
lite observations over the ice shelves using the grounding line
defined by Depoorter et al. (2013).

2.1 Radiometer data

Time series of brightness temperature (TB) from the Spe-
cial Sensor Microwave Imager/Sounder (SSMIS) are used
in this study, as they are widely used to assess variations in
firn properties (Tedesco and Kim, 2006; Tran et al., 2008;
Brucker et al., 2010). The available measurement channels
include vertically and horizontally polarised 19, 37, and
91.655 GHz and vertically polarised 22 GHz (Kunkee et al.,
2008). However, for the purposes of this study, our focus is
solely on the 19 and 37 GHz channels, since the atmospheric
influence is negligible at these frequencies (Picard et al.,
2009; Brucker et al., 2011; Champollion et al., 2013). The-
oretically, the penetration depths are 1–7 m (at 19 GHz) and
0.1–2 m (at 37 GHz) in dry-snow zones of Antarctica (Sur-
dyk, 2002; Brucker et al., 2010). With the presence of liq-
uid water, the imaginary part of snow permittivity increases;
therefore TB increases (Tedesco, 2007). However, the actual
penetration depths can still vary per region (Picard et al.,
2009). These characteristics ensure the possibility for SSMIS
at 19 and 37 GHz to monitor the changes in firn properties at
a variety of depths. The daily polar-gridded TB data are ac-
quired from the National Snow and Ice Data Center (NSIDC)
with a spatial resolution of 25 km for both the 19 and 37 GHz
channels (Meier et al., 2021). All data are acquired by the
F17 sensor, as it provides continuous daily data acquisition in
the period between 1 January 2011 and 31 December 2020.

2.2 Scatterometer data

Backscatter intensity (σ 0) from synthetic aperture radar
(SAR) was also previously used to assess density variations
due to the melting–refreezing process of certain firn types
(Rizzoli et al., 2017) and to examine variations in firn facies
(Fahnestock et al., 1993). In this study, we employ time se-
ries of backscatter intensity from the Advanced Scatterome-
ter (ASCAT) satellite sensor as an alternative to SAR σ 0, pri-
marily due to its high temporal resolution (daily) and its cov-
erage over the whole of Antarctica. ASCAT is an operational
C-band (5.255 GHz) fan-beam scatterometer (Figa-Saldaña
et al., 2002; Fraser et al., 2016) that has been in operation
on MetOp satellites since 2006. It operates in V polarisation
and covers multiple incidence angles. For dry firn, the pene-
tration depth of C-band ASCAT is approximately 20 m (Rig-
not, 2002). Following Larue et al. (2021), we also performed
a simulation using the Snow Microwave Radiative Transfer
(SMRT) model (Picard et al., 2018), where firn properties at
different depths of the firn layer are altered, and the impacts
on both backscattering and brightness temperature are pre-
sented (Appendix A). However, the top 1 m is most exposed
to atmospheric drivers, which also affect the variability in C-
band microwaves (Fraser et al., 2016). The ASCAT products
used in this study are obtained from the Brigham Young Uni-
versity (BYU) Microwave Earth Remote Sensing (MERS)
laboratory (2010) (Long et al., 1993; Early and Long, 2001;
Lindsley and Long, 2010). The data are processed using the
scatterometer image reconstruction (SIR) algorithm, which
enhances the spatial resolution of images from 25 to 4.45 km.
The backscattering product adopted in our study is referred
to as the A product in Long and Drinkwater (2000):

σ 0(θ)= A+B(θ − 40°), (1)

where A (in dB) is the originally measured σ 0 normalised
to 40° and B (in dB per degree) is a parameter describing
the dependence of the original σ 0 on θ . The processing of
Long and Drinkwater (2000) accounts for the incidence angle
dependence of the originally measured σ 0, as the measure-
ments are made over multiple incidence angles (between 20
and 55°). In this study, we only use the isotropic normalised
A parameter (hereafter σ 0

A), as it has been shown to better
correlate with various climate parameters and with the long-
term firn density (Fraser et al., 2016). In addition, the pres-
ence of liquid water can reduce the volume scattering and
increase the microwave absorption (Stiles and Ulaby, 1980);
this should be taken care of and will be elaborated upon in
Sect. 3. To ensure consistent analysis between TB and σ 0

A,
the BYU σ 0

A products are interpolated to the same polar grids
as the SSMIS TB products using bi-linear interpolation. The
data acquisition time is the same as that of the radiometer
data.
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2.3 Densities from a firn densification model

To understand the spatiotemporal variation in satellite data,
we compare the SSMIS and ASCAT satellite data to the
output of a semi-empirical firn densification model. There-
fore, we use output from the latest version of the IMAU
firn densification model (IMAU-FDM v1.2A; Veldhuijsen
et al., 2023). IMAU-FDM simulates the transient evolution
of the Antarctic firn column and is forced at the upper
boundary by outputs of the Regional Atmospheric Climate
Model (RACMO2.3p2) at a 27 km horizontal resolution (van
Wessem et al., 2018) and with a temporal resolution of 10 d.
The model employs up to 300 layers in thicknesses of 3 to
15 cm, which represent the firn properties in a Lagrangian
way. The output is resampled to a regular grid with layers of
4 cm. The density of the freshly fallen snow is a function of
instantaneous wind speed and temperature in IMAU-FDM.
Over time, the simulated firn layers become denser due to
dry-snow densification and meltwater refreezing.

To estimate at which depth the firn density has an impact
on satellite microwaves, we perform a correlation estimation
between satellite observation time series and IMAU-FDM
density at different depths, as elaborated in Sect. 3.1. The
unrealistically large values in IMAU-FDM densities (more
than 917 kg m−3) are treated as invalid. To facilitate com-
parison with the satellite products, the firn density data from
IMAU-FDM are re-projected using bi-linear interpolation to
the same polar grids as the satellite data, where valid data are
restricted to pixels within the Antarctic coastline provided by
Depoorter et al. (2013).

2.4 Reference in situ density measurements

Furthermore, we employ in situ density measurements ob-
tained from the SUMup dataset (Koenig and Montgomery,
2018; Montgomery et al., 2018) as a reference for spatial
evaluation of the satellite data and the RF regressor. SUMup
provides information on the start point, end point, and mid-
point of measurements. We use the mid-point here to define
the depth of the reference data. For each date of measurement
at each location, if multiple measurements are available, only
the density measurements at the shallowest mid-point depths
are used. Such depths are also restricted to < 1 m. The mea-
surements within the depth restriction were taken between
22 January 1984 and 23 January 2017 and consist of 67
valid points. The SUMup dataset does not contain time se-
ries but only single measurements on specific irregular dates
throughout the time period between 1984 and 2017. There-
fore, we use the SUMup dataset only for spatial evaluation of
the potential uncertainties from both the IMAU-FDM densi-
ties and the densities estimated by the RF regressor.

2.5 ERA5 climate parameters

As mentioned in Sect. 1, IMAU-FDM can introduce dis-
crepancies due to simplified parametrisation (Verjans et al.,
2020), which can be propagated in the estimation process
with the RF regressor. Therefore, to interpret the difference
between the measured (SUMup or Leduc-Leballeur et al.
(2017) data), modelled (IMAU-FDM), and estimated (RF)
densities, it is important to understand the effects of climate
conditions. Therefore, we use ERA5 wind speed estimated at
midday (Muñoz-Sabater, 2019; Muñoz-Sabater et al., 2021)
as an approximation of the daily wind conditions. By incor-
porating this information, we aim to better understand the
discrepancies between the observed and IMAU-FDM densi-
ties and the source of discrepancies between the IMAU-FDM
densities and the densities estimated from satellite observa-
tions with the RF regressor. The ERA5 wind speed data have
a horizontal resolution of 9 km. Similarly to the IMAU-FDM
data, we interpolate these climate variables to the same po-
lar grids as the SSMIS data using bi-linear interpolation to
ensure consistency in the analysis.

3 Methods

We assess the potential of SSMIS and ASCAT satellite ob-
servations to assess dry-firn density in a 3-fold experiment.
Firstly, we compare the satellite time series with the output of
IMAU-FDM to evaluate the potential of individual satellite
parameters to linearly explain density variations (Sect. 3.1).
Secondly, we perform a cluster analysis on the combined SS-
MIS and ASCAT observations to identify spatiotemporal pat-
terns in satellite observations. These patterns are then com-
pared with the density patterns obtained from IMAU-FDM,
and dry-snow zones are determined (Sect. 3.2). Finally, we
quantify the potential of a non-linear random forest (RF) ma-
chine learning approach trained on SSMIS and ASCAT ob-
servations to derive the spatial and temporal variations in dry-
firn density (Sect. 3.3). For clarity, the content of Sect. 3.2
and Sect. 3.3 is summarised and visualised as a flowchart in
Fig. 1.

3.1 Calculation of correlation between satellite
parameters and firn density

To gain a general understanding of the spatial patterns of the
satellite parameters and densities from IMAU-FDM, we cal-
culate and visualise the map of TB and σ 0

A and the IMAU-
FDM firn density at a selected depth averaged between 1 Jan-
uary 2011 and 31 December 2020 (shown in Appendix B).
Then, to observe the temporal correlation between the satel-
lite parameters and the IMAU-FDM densities, for each pixel,
the correlation coefficient between different satellite param-
eters and the firn density over time is calculated and visu-
alised. To ensure consistent temporal resolution for the anal-
ysis, the satellite parameters are downsampled from daily

The Cryosphere, 19, 37–61, 2025 https://doi.org/10.5194/tc-19-37-2025



W. Li et al.: Machine learning of Antarctic firn density using remote-sensing data 41

Figure 1. Overview flowchart of the data and method used in this study. The clustering process uses TBanom and σ 0
Aanom

as input to derive
dry-snow zones over the Antarctic ice sheet. Then, pixels clustered as dry snow are included to estimate firn density with the RF regressor.
Parameters used as features of the RF regressor are further elaborated upon in Sect. 3.3. Among the derived parameters, Antarctica dry zones,
Dataset I and Dataset II, are selected proportionally based on the number of pixels per cluster.

resolution to 10 d resolution to match the temporal resolution
of the IMAU-FDM densities. Since the scattering properties
of microwaves are affected by firn properties along the pen-
etration depth (Ulaby et al., 1996; Bingham and Drinkwater,
2000; Arndt and Haas, 2019; Cartwright et al., 2022), this
analysis utilises densities from a range of depths, including
12 and 40 cm and 1, 2, 5, and 10 m. The density of each depth
is defined not as the specific density at a single depth but as
the average density from the surface to this depth. The reason
for this comparison is that, although the theoretical penetra-
tion depth can be larger than 20 m for the C-band in Antarc-
tic dry firn (Rott et al., 1993), the surface conditions, such as
temperature, wind, and precipitation, have more impact on
the shallow depth of the firn layer and on the satellite pa-
rameters (Tran et al., 2008; Picard et al., 2012; Champollion
et al., 2013; Fraser et al., 2016). By calculating the correla-
tion coefficients between IMAU-FDM densities and satellite
parameters, we need to understand at which depth the den-
sities cannot be affected by the surface conditions. We also
need to estimate a depth threshold from which 37 GHz can-
not penetrate the firn layers and hence cannot provide infor-
mation on spatial and temporal variation in firn in this ex-
periment, as the penetration ability reduces with an increas-

ing frequency (Rott et al., 1993; Surdyk, 2002). Finally, the
density at the depth where there is the best overall correla-
tion between satellite observations and density time series is
adopted for the RF experiment.

3.2 Characterisation of firn types using time series of
microwave observations

In our study, the clustering of satellite observations is pri-
marily carried out as a preparatory step aimed at ensuring
that all the representative regions, i.e. the regions with dis-
tinctive satellite data patterns, are correctly accounted for in
the RF model training procedure in Sect. 3.3. Moreover, we
aim to rule out pixels where melt events can be observed, as
the melt-induced liquid water and ice-lens formation com-
plicate the satellite measurements (Stiles and Ulaby, 1980;
Brucker et al., 2010; Trusel et al., 2012), rendering den-
sity estimations invalid in such cases. This step facilitates
a comprehensive understanding of the spatiotemporal varia-
tions in firn properties based on the available satellite obser-
vations. We expect that clustering the time series of satellite
observations will effectively differentiate pixels experiencing
melting from those unaffected. By identifying and excluding
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melt-affected pixels, we can ensure the validity of density es-
timations using the RF regressor described in Sect. 3.3. Ad-
ditionally, to enhance the ability of the RF regressor to cap-
ture the characteristics of various dry snow types, we choose
training samples based on the identified dry snow types. This
approach enables the representation of diverse snow types in
the training dataset, improving the accuracy of the RF regres-
sor in estimating density across different snow types.

To cluster and distinguish the different snow types, we pro-
pose to use the anomalies in TB and σ 0

A described as follows.
Since TB is strongly dependent on seasonal variations in firn
temperature, the average seasonal signal is removed in the
clustering process to obtain time series anomalies that reflect
the variations in temporary events, such as melt–refreeze
(Nicolas et al., 2017), and density or grain size variations
(Picard et al., 2012; Champollion et al., 2013). We also de-
rive the σ 0

A anomalies due to the impact from temperature
seasonal cycles (Fraser et al., 2016). The time series anoma-
lies are calculated by taking the 10-year average of TB or σ 0

A

for each day in a year, defined as T B and σ 0
A, and subtracting

this averaged time series from the absolute observations for
each year, leading to TBanom = TB−T B and σ 0

Aanom
= σ 0

A−σ
0
A.

The time series anomalies of TBanom and σ 0
Aanom

are then nor-
malised and stacked for clustering.

The adopted clustering solution is a simple hierarchical al-
gorithm (Ward, 1963) which uses the normalised and stacked
TBanom and σ 0

Aanom
time series as input. For pre-processing, we

remove outliers in the TBanom and σ 0
Aanom

time series per pixel
by defining an interval of 3 standard deviations above and be-
low average. Then, the temporal gaps are filled with a linear
interpolation. The application of the clustering algorithm is
illustrated with an example (Fig. 2). The clustering process
starts from all clusters, each containing one pixel, and the
clusters are then hierarchically grouped together based on the
similarity of features, which refers to the Euclidean distance
between the normalised and stacked TBanom and σ 0

Aanom
time

series of different pixels in our study (however, only σ 0
Aanom

from 14 January 2016 is used in Fig. 2 for illustration). The
grouping process is typically represented by a dendrogram,
as in Fig. 2b. Finally, the number of clusters is determined
empirically; different numbers of clusters result in differ-
ent outcomes, as in Fig. 2c–e. For our study where the nor-
malised and stacked TBanom and σ 0

Aanom
time series between

2011 and 2020 are used, we select seven clusters as the op-
timal number of clusters. To provide a brief overview of the
clustering result, we visualise the time series of the mean,
20th percentile, and 80th percentile of different satellite pa-
rameters together with an IMAU-FDM density for each clus-
ter in Appendix C. This allows a comparison of the changes
in satellite parameters with density variations across the clus-
ters and an assessment of the reliability of our study to dis-
tinguish melt zones from dry ones.

3.3 Deriving firn densities using satellite parameters
and random forest regressor

Given the complex and often non-linear relationships be-
tween satellite observations and firn density (Fraser et al.,
2016), a non-linear regression model based on machine
learning is explored to relate the satellite time series to firn
density. The method relies on a certain amount of known
density measurements as the training dataset and on the con-
tinuous satellite parameters as the trained features. We opt
for a random forest regressor as machine learning model
(RF regressor hereafter) due to the simplicity and usability
(Vafakhah et al., 2022; Viallon-Galinier et al., 2023).

Ideally, in situ measurements should be used as the train-
ing dataset. However, in situ measurements are often single
measurements that lack temporally continuous observations.
As our goal is to relate the satellite time series to assess spa-
tiotemporal variations in firn density, we adopt an alterna-
tive approach that uses the output of IMAU-FDM as training
data instead of relying on in situ data. Although this approach
has the disadvantage of training the RF regressor on a noisy
IMAU-FDM dataset, which may exhibit spatial and tempo-
ral differences compared to actual in situ densities (e.g. bi-
ases between the model and in situ observations), we lever-
age the strengths of RF regression for pattern recognition in
noisy datasets. The use of multiple decision trees and random
feature selection can reduce the variance of the model and
reduce overfitting, resulting in better generalisation perfor-
mance on noisy data (Hastie et al., 2008). Therefore, we ex-
pect that the RF regressor generalises on the density estima-
tions of IMAU-FDM, which is known to capture the spatial
variation in in situ density measurements well and the tem-
poral variations reasonably well (Veldhuijsen et al., 2023).

The training, testing, and implementation of the RF regres-
sor involve three main steps:

– Training and hyperparameter tuning: a subset of IMAU-
FDM densities (Subset I) is used as the training dataset
in a 5-fold cross-validation procedure. Multiple mod-
els are evaluated, representing different combinations
of hyperparameters defined for the RF regressor (see
Table 1). The goal is to identify the configuration that
achieves the best cross-validation score, indicating the
optimal set of hyperparameters for the RF regressor.

– Testing and model evaluation: a different subset of tem-
porally and spatially coregistered SSMIS and ASCAT
measurements for the given pixels (Subset II) is used
as input to the RF regressor, which has been trained on
Subset I. The purpose of this step is to evaluate the per-
formance of the model and assess the accuracy of the RF
density estimations. Additionally, it helps to determine
the importance of satellite parameters in the predictions
of the regressor.
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Figure 2. An example of the principle of hierarchical clustering. (a) Map of σ 0
Aanom

acquired on 14 January 2016 following the melt event
detected by Nicolas et al. (2017); (b) dendrogram obtained from panel (a), with low-hierarchy nodes simplified and n referring to the number
of clusters; and (c)–(e) clustering results using different numbers of clusters. Several locations mentioned in this study are labelled in panel
(a). The coastline is from Depoorter et al. (2013).

– Antarctica-wide implementation: the satellite time se-
ries covering the entire study area are fed into the RF
regressor, which has been trained on Subset I. This step
aims to estimate densities across the entire Antarctic
dry-firn region. The output densities are then evaluated
by comparing them to both the IMAU-FDM densities
and the SUMup densities.

Both Subset I and Subset II consist of pixels randomly
selected from the non-melting pixels clustered in Sect. 3.2.
Subset I contains 10 % of the non-melting pixels, and Subset
II contains 100 pixels in total. The pixels from both subsets
should not overlap. The time series of each feature in each
pixel cover the period between 1 January 2011 and 31 De-
cember 2020 with a 10 d resolution. To ensure consistent
temporal resolution between the input features and the target
IMAU-FDM densities, the daily satellite parameters are also
downsampled to the 10 d temporal resolution of the IMAU-
FDM firn density by selecting the corresponding acquisition
date, resulting in 366 samples in total for each feature in each
pixel. Finally, Subset I consists of 1748 pixels multiplied by
366 samples (639 768 samples in total), Subset II consists of
100 pixels multiplied by 366 samples (36 600 samples in to-
tal), and the Antarctica-wide dataset consists of 17 478 pixels
multiplied by 366 samples (6 396 948 samples in total).

The RF regressor is implemented with the target variable,
which is the IMAU-FDM density at the depth selected from

the correlation analysis, and the input feature X initially de-
fined as follows:

X= (TB(19V ), TB(19H), TB(37V ), TB(37H), σ 0
A). (2)

Within X, we include TB and σ 0
A to account for variations

in temperature, precipitation, and other potential climate
parameters that show a potentially strong seasonality (e.g.
Fraser et al., 2016).

In the testing and evaluation step, we assess the perfor-
mance of the optimal RF regressor. This is achieved by com-
paring the RF and IMAU-FDM densities of Subset II using
a scatterplot and standard evaluation metrics, i.e. the root-
mean-square error (RMSE) and the correlation coefficient
between the RF densities and the IMAU-FDM densities. The
importance of satellite parameters in the RF regressor is com-
puted by calculating the Gini importance and the permutation
importance. Gini importance in RF regression is a measure of
feature importance based on the Gini gain, i.e. impurity re-
duction (Strobl et al., 2007). For each feature used to split
the data, the decrease in the Gini node impurity is recorded
at each split, and the Gini importance is calculated as the av-
erage of all decreases in the Gini impurity in the forest where
this feature forms the split (Archer and Kimes, 2008).

In the Antarctic-wide implementation, the optimal RF re-
gressor is implemented to predict the spatial and temporal
variations in firn density. These predictions are then com-
pared with IMAU-FDM and the SUMup densities. The spa-
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Table 1. Hyperparameter range and optimal values used to specify the random forest (RF) model.

Hyperparameter Range Optimal value

Number of trees 50, 100, 200 100
Maximum depth of the tree 12, 15, 18 12
The minimum number of samples at a leaf node 1, 3, 5, 7 5
The minimum number of samples to split an internal node 2, 3, 4, 5 4
The number of features to consider when searching for the best split 1, 3, 5 1

tial agreement is assessed by comparing the temporal aver-
ages of the RF predictions, IMAU-FDM, and SUMup by us-
ing the mean difference and the RMSEs. The temporal agree-
ment is assessed by the RMSE and by the correlation coeffi-
cient between the per-pixel time series of RF predictions and
IMAU-FDM density. We also compare the spatial patterns of
the RF-predicted densities with the ERA5 wind velocity, as
it is a potential driver for spatial variation in firn density, es-
pecially for the uncertainties in IMAU-FDM. Finally, we il-
lustrate this temporal agreement by showing time series over
four pixels that show representative differences between RF
and IMAU-FDM densities (locations visualised in Fig. 4).

In addition, since satellite parameters may exhibit a certain
level of correlation with densities in the long term (Fraser
et al., 2016), we also conduct a linear regression (LR) pro-
cess, which fits a linear function between X and the target
density. The RMSE and correlation coefficient between the
LR-obtained density and the IMAU-FDM density are also
used to assess the advantages and drawbacks of RF.

4 Results

4.1 Correlation between satellite parameters and firn
density

The temporal correlation between satellite parameters and
the average density from the upper xm depth (x refers to 12
or 40 cm and 1, 2, 5, or 10 m) is calculated per pixel, and the
spatial average of the correlation coefficient is summarised in
Table 2. The results show that, on average, the maximum ab-
solute correlation coefficient can be obtained at 40 cm depth.
The correlation between density and TB at 19 GHz frequency
drastically decreases at 5 m, and the correlation between den-
sity and TB at 37 GHz frequency largely decreases at 2 m,
similar to the penetration ability from Surdyk (2002). The
correlation between densities and σ 0

A is constantly negative,
and the absolute correlation coefficient is constantly low;
however, it also demonstrates a slight decrease as the depth
increases from 2 to 10 m, showing a certain degree of sensi-
tivity. Despite the low correlation, however, our study still in-
cludes σ 0

A due to the long-term correlation derived by Fraser
et al. (2016).

The lack of spatial and temporal consistency between
satellite and density is illustrated in Fig. 3, which shows the

Figure 3. Map of temporal correlation calculated per pixel between
40 cm IMAU-FDM density and (a) brightness temperature (TB)
from 19 GHz vertical polarisation, (b) TB from 19 GHz horizontal
polarisation, (c) TB from 37 GHz vertical polarisation, (d) TB from
37 GHz horizontal polarisation, and (e) backscatter intensity (σ 0

A
).

The coastline is from Depoorter et al. (2013).

pixel-wise temporal correlation of each satellite parameter
with the 40 cm density in IMAU-FDM. All TB channels gen-
erally show a positive correlation with ρ40 cm in East Antarc-
tica but a negative correlation in parts of West Antarctica and
many coastal regions. The negative correlation in coastal re-
gions can be attributed to melt, as shown in the masked-out
regions in Fig. 4 of Picard et al. (2012). The correlation be-
tween ρ40 cm and σ 0 is generally low, except for the region
next to the Ross Ice Shelf (location shown in Fig. 2a, where
the correlation coefficient can be up to 0.75).

Overall, this correlation analysis indicates that the rela-
tionship between satellite parameters and firn density is com-
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Table 2. Average temporal correlation coefficient between satellite parameters and IMAU-FDM density from different depths.

Depth TB(19V ) TB(19H) TB(37V ) TB(37H) σ 0
A

12 cm 0.19 0.18 0.20 0.20 −0.05
40 cm 0.24 0.23 0.20 0.19 −0.06
1 m 0.23 0.20 0.12 0.12 −0.06
2 m 0.18 0.12 0.03 0.02 −0.06
5 m 0.08 0.02 −0.07 −0.08 −0.04
10 m 0.05 0.01 −0.07 −0.07 −0.03

Figure 4. Clustering results from the combination of normalised
TB and σ 0

A
after removing the seasonal trend. Triangles show the

locations where temporal assessment per pixel is performed. The
coastline is from Depoorter et al. (2013).

plex and that simple linear relationships may not adequately
describe the IMAU-FDM density based on different satellite
parameters. Therefore, non-linear approaches such as the RF
regressor should be employed to assess the potential of relat-
ing the IMAU-FDM firn density to various satellite parame-
ters (Vafakhah et al., 2022; Anilkumar et al., 2023).

4.2 Firn-type clusters

Figure 4 shows the map of clusters derived from time series
of the combined satellite parameters, where each cluster rep-
resents a natural grouping of pixels with similar satellite time
series behaviour. The map shows that four large clusters (re-
ferred to as firns 1–4) cover the dry-firn interior of Antarctica,
with firns 1–3 in East Antarctica and Firn 4 in West Antarc-
tica. Firn 5 is a cluster in West Antarctica close to the Ross
Sea which corresponds to the region that showed a strong
melt event in January 2016 (Nicolas et al., 2017), while Firn
6 and Firn 7 show small regions near the coastline in East
Antarctica and West Antarctica, respectively, that also show
clear melting signals (details shown in Appendix C).

4.3 Assessment of RF densities at sample pixels

Figure 5a presents the results of the RF regressor for esti-
mating firn densities based on satellite parameters. It demon-

strates that the non-linear multivariate approach of the RF
regressor captures the spatial variations in IMAU-FDM den-
sity, exhibiting a linear relationship between IMAU-FDM
and RF densities with a slope of 0.86. The RMSE is
19.23 kg m−3, and the correlation coefficient between the es-
timated and training densities is 0.67. Moreover, the RF re-
gressor performs most ideally between approximately 325
and 375 kg m−3, whereas it fails to capture the large densi-
ties, as no RF estimate exceeds 410 kg m−3, which can par-
tially be due to a well-known extrapolation problem intrinsic
to the RF regression (Hengl et al., 2018). The RF densities
also exhibit an overestimation when the IMAU-FDM density
is lower than 325 kg m−3. The pixels with large overall un-
derestimation (in dark red) and overestimation (in dark blue)
of RF is also visible in Fig. 5c. In general, the large underesti-
mation of RF occurs in the coastal regions of East Antarctica,
where the winter wind velocity largely exceeds the summer
wind velocity (by approximately 3 m s−1). The large overes-
timation of RF occurs along the Transantarctic Mountains,
where the topography is more complex, introducing strong
surface scattering instead of volume scattering. The feature
importance provided by the Gini impurity index (Fig. 5b)
shows the ranked importance of satellite parameters in the
predictive performance of the model, indicating that the ver-
tical polarisation of TB is dominant in predicting ρ40 cm. The
higher importance of 19 GHz is also clearly visible in the
temporal correlation coefficients in Fig. 3. We attribute the
high importance of σ 0 to the fact that it can be influenced
by other parameters that have an impact on dry-snow scat-
tering properties, such as wind and precipitation; the mecha-
nism may not necessarily be linear but rather complex (Fraser
et al., 2016).

4.4 Spatial assessment of RF densities

In Fig. 6, the temporally averaged RF density estimates
and their differences relative to IMAU-FDM densities at the
40 cm depth and SUMup in situ densities are presented. The
comparison in Fig. 6c shows that temporally averaged RF
density estimations are in general larger than temporally av-
eraged IMAU-FDM density in interior regions of Antarctica
except for megadune regions, whereas they are lower towards
coastal regions. The RMSE between the IMAU-FDM and
RF averages (referred to as FDM-RF) is 17.30 kg m−3, and
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Figure 5. (a) Density comparison between RF densities and IMAU-FDM densities at sample pixels referred to as Subset II, with the colour
of each point showing the density distribution of points; the colour bar is in logarithmic scale. (b) RF feature importance of different input
satellite parameters and (c) the temporally averaged difference between IMAU-FDM and RF densities at the pixels, visualised on top of the
map of the difference between the summer (vsmr) and winter wind velocity (vwnt) from ERA5. The coastline is from Depoorter et al. (2013).

the mean FDM-RF difference is −0.40 kg m−3. An overesti-
mation of RF is most pronounced in West Antarctica close
to Vinson Massif (location shown in Fig. 2a), which pos-
sibly corresponds to the overestimation in Fig. 5a. Mean-
while, the comparison with the SUMup densities shows that
RF and IMAU-FDM densities have comparable error pat-
terns. The RMSE of FDM-SUMup is 59.17 kg m−3, and the
mean of FDM-SUMup bias is 23.92 kg m−3; the RMSE of
RF-SUMup is 62.22 kg m−3, and the mean of RF-SUMup
is 26.46 kg m−3. This shows a general overestimation and a
large bias of both the IMAU-FDM and RF models when val-
idated with the SUMup measurements. In Fig. 6d, it can be
observed that neither IMAU-FDM nor RF manages to fol-
low the large SUMup dynamics. This difference between
models and in situ measurements can be attributed to the
temporal discrepancies between the measurements and the
IMAU-FDM and satellite observations and to the IMAU-
FDM model errors or uncertainties that can also be learned
by the RF regressor.

Aided by Fig. 7, we then analyse the temporal distribu-
tion of the offsets between the IMAU-FDM densities and
the RF densities in more depth. Figure 7a generally shows
a low RMSE between IMAU-FDM and RF densities in
high-elevation regions of East Antarctica and part of West
Antarctica. The errors increase towards the coastal regions.
The low correlation coefficients in Fig. 7b indicate a low

temporal agreement between IMAU-FDM and RF densities.
Furthermore, the correlation coefficients are generally posi-
tive: high correlation coefficients (≥ 0.5) can mainly be ob-
served in high-elevation regions of East Antarctica (except
for megadune regions; Fahnestock et al., 2000) and a part
of West Antarctic Peninsula. The regions with high corre-
lation coefficients also mainly correspond to regions with
high correlation coefficients (≥ 0.5) in Fig. 3a, with parts of
West Antarctica as an exception, which generally matches
the observation in Fig. 5 where TB(19V ) has the highest
importance. The temporal mismatch and low correlation be-
tween IMAU-FDM and RF may be in part due to the mod-
elling errors of IMAU-FDM. The density changes that are
not modelled by the IMAU-FDM but affect the satellite ob-
servations are expected to degrade the quality of the RF re-
gressor. The satellite data might be affected by other climate
parameters that are not included in the IMAU-FDM model.
The comparison with LR density shows that RF largely out-
performs LR in terms of RMSE, especially in the interior
of the ice sheet. While the average correlation coefficient
is comparable between RF and LR, RF outperforms LR in
high-elevation regions of East Antarctica and performs worse
in the megadune regions. By assessing the temporal agree-
ment (mainly correlation coefficients) with ERA5 wind ve-
locity (Fig. 7d and e), we can learn that a high tempo-
ral correspondence is spatially correlated with a small wind
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Figure 6. Maps of (a) temporally averaged IMAU-FDM 40 cm densities, (b) temporally averaged RF densities, and (c) the difference
between averaged IMAU-FDM densities and RF densities (FDM−RF). Differences between the modelled or estimated densities and the
SUMup densities are shown in scattered points in panels (a) and (b) as FDM-SUMup or RF-SUMup. Panels (a) and (b) share the same colour
bar, in which blue–red shows the difference between the IMAU-FDM or RF densities and the SUMup densities (ρ40 cm−SUMup) and green–
light blue shows the IMAU-FDM or RF densities (ρ40 cm). The coastline is from Depoorter et al. (2013). Panel (d) shows the relationship
between IMAU-FDM or RF densities and SUMup densities. The sizes of the scattered points indicate the time difference between the
SUMup measurements and the year 2020, and the colour shows the difference in depth between IMAU-FDM or RF measurements (both
fixed at 40 cm) and SUMup measurements (dρ − dSUMup).

velocity difference (>−2.5 m s−1) between Antarctic sum-
mer (October–March) and winter (April–September). How-
ever, despite the small wind velocity difference and a rel-
atively high temporal correspondence, the RMSE between
IMAU-FDM and RF is high in regions close to Vinson Mas-
sif and along the Transantarctic Mountains (locations shown
in Fig. 2a), indicating uncertainties potentially introduced
by topography, and this has an impact on coarse-resolution
satellite data. Finally, a potential usability of the RF regres-
sion at other depths persists; therefore a comparison between
the performance of RF at different depths is provided in Ap-
pendix D.

4.5 Temporal assessment of RF densities at random
pixels

In Fig. 8, individual pixels are inspected to understand the
temporal differences between IMAU-FDM and RF densities.

Pixel A shows a low RMSE and a low correlation. Pixel
B shows a relatively low RMSE but a negative correlation.
Pixel C shows a reasonable correlation coefficient but a large
bias. Pixel D shows the overall most ideal RF performance.
From the time series, it is apparent that the RF density es-
timations generally exhibit a stronger and more consistent
seasonal cycle compared to the IMAU-FDM densities, which
display a less consistent seasonal pattern with stronger inter-
annual variations. This discrepancy explains the relatively
low correlation coefficients, as only the pixels with similar
seasonal cycles to the satellite observations (e.g. panels C
and D) exhibit a higher correlation between the two datasets.

5 Discussion

In this study, we developed a novel approach to estimate
Antarctic firn densities using satellite radiometer and scat-
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Figure 7. Map of (a) the root-mean-square error (RMSE) between IMAU-FDM 40 cm densities and RF densities, (b) the correlation coeffi-
cient between IMAU-FDM 40 cm densities and RF densities, (c) the root-mean-square error (RMSE) between IMAU-FDM 40 cm densities
and LR densities, (d) the correlation coefficient between IMAU-FDM 40 cm densities and LR densities, and (e) the difference between the
summer (vsmr) and winter (vwnt) wind velocity from ERA5. (f) Scatterplot of the density difference between IMAU-FDM and RF versus
the difference between summer and winter wind velocities, coloured by the density distribution of points. The coastline of the maps is from
Depoorter et al. (2013).

terometer observations using an RF regressor and IMAU-
FDM density outputs as reference data. Our study is based
on the complexity of the relationship between satellite ob-
servations and firn density. Despite a theoretical impact of
surface climate conditions, such as temperature, wind, and
precipitation on both satellite parameters and firn density at
a shallow depth (Fraser et al., 2016), the lack of a consis-
tent linear relationship was evident in the examination of the
individual satellite observations, as the highest mean tempo-
ral correlation between satellite observations and the 40 cm
IMAU-FDM firn density is 0.24.

Our study first adopted an unsupervised machine learn-
ing method (hierarchical clustering) to distinguish dry-snow
zones from zones that experienced melt as a preparation step
to the density estimation using the random forest (RF) re-
gressor. In contrast to Tran et al. (2008), our study could dis-
tinguish melt occurrences, possibly based on the abrupt rise
in TB during melt (Johnson et al., 2020) and the σ 0

A rise due
to ice-layer formation following melt events (Trusel et al.,
2012). However, in some coastal regions in East Antarctica,
our clustering method may be less sensitive to melt compared
to Brucker et al. (2010) and Picard et al. (2012), resulting in
more dry-snow pixels. Among dry-snow zones, Firn 1 con-
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Figure 8. Comparison between time series of IMAU-FDM densities (in blue) and RF densities (in orange) at four representative sample
points and Dome C. Panels (a)–(d) correspond to A–D labelled in Fig. 4. The RMSE and correlation coefficient (corr_coef) between the
IMAU-FDM densities and the RF densities are shown above each figure.

sists of the most interior regions and is hence characterised
by the smallest variations in satellite parameters and is over-
all the most stable, whilst Firn 4 is located in West Antarc-
tica and is hence the least stable, with the largest variations
in satellite parameters. The main difference between Firn 2
and Firn 3 is characterised by a larger σ 0

Aanom
variation in Firn

2; the spatial separation between the two clusters resembles
Fig. 4 in Stokes et al. (2022), in which the region overlapping
with Firn 2 tends to lose mass, while the region overlapping
with Firn 3 tends to slightly gain mass. Therefore, we infer
that this result might indicate that Firn 2 has less stable con-
ditions than Firn 3.

To address the non-linear and complex nature of the re-
lationship between satellite parameters and firn density, we
employed an RF regressor model. This model allowed us to
incorporate multiple input parameters and handle non-linear
relationships effectively. The implementation of the RF re-
gressor successfully reproduced the spatial pattern of the
IMAU-FDM density, achieving a low root-mean-square error
(RMSE) of 14.92 kg m−3, which outperforms the RMSE of
a simple linear regression model (17.87 kg m−3). This high-
lights the potential of using satellite parameters to create a
map of long-term mean densities, matching the conclusion
of Fraser et al. (2016), who managed to reconstruct one of
the satellite observations (σ 0

A) using climate and firn param-
eters in the long term.

However, it is important to note some limitations and dis-
crepancies in the RF density map. We observed a slight over-

estimation of densities in the interior of the Antarctic ice
sheet, coupled with an underestimation towards the coastal
regions, when compared to the IMAU-FDM densities. This
discrepancy may arise from the inability of the RF regres-
sor to extrapolate beyond the training data, leading to the
restricted density range in the RF density map (maximum
density of≤ 450 kg m−3). Furthermore, when comparing the
RF and IMAU-FDM densities with the in situ SUMup mea-
surements, we found comparable errors. Similar errors were
reported by Keenan et al. (2021), who attributed them to lo-
cal meteorological phenomena not captured by climate mod-
els and possible measurement uncertainties. These factors,
which are not explicitly accounted for in the IMAU-FDM
model or the RF regressor trained on that dataset, may con-
tribute to the discrepancies observed. Finally, our combina-
tion of satellite parameters cannot be used to assess densities
at depths deeper than approximately 80 cm. This limitation
is first because of the theoretical penetration depth as shown
in Appendix A: a depth exceeding 80 cm is physically not
meaningful for the 37 GHz microwave. Another reason for
this limitation is that our study is based on the assumption
that the surface climate conditions can affect both shallow-
depth firn densities and satellite parameters simultaneously
(Fraser et al., 2016). Firn densities at larger depth are not
largely affected by surface conditions; hence our combina-
tion of satellite parameters is not applicable, even if 19 GHz
and C-band microwaves have a theoretical penetration depth
larger than 5 m (as shown in Appendix D). Finally, C-band
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microwaves are more sensitive to surface roughness than to
densities at larger depths (as shown in Appendix A).

While the RF regressor successfully captures the spatial
variability in the long-term mean density, it falls short in ac-
curately predicting the temporal variation in IMAU-FDM,
particularly in coastal regions and megadune areas. Apart
from the aforementioned potential underestimation of melt
pixels of our clustering method in coastal regions, the tem-
poral discrepancies between the RF regressor and IMAU-
FDM can be attributed to the differences in seasonal patterns
and the presence of complex climate conditions near the ice
shelves. Coastal regions, characterised by large negative dif-
ferences in wind velocity between summer and winter, ex-
hibit larger temporal discrepancies. These findings suggest
that IMAU-FDM may not capture the seasonal cycle of fresh
snow density in these regions with high wind speeds during
winter. The simplicity of how the density of freshly fallen
snow is calculated within IMAU-FDM, assuming linear de-
pendencies with wind speed and surface temperature (Veld-
huijsen et al., 2023), fails to account for the intricate pro-
cesses involving crystal size, shape, and riming, which are in-
fluenced by temperature and wind speed conditions (Judson
and Doesken, 2000). The dependence of fresh snow density
on wind speed may differ under various temperature condi-
tions, which contributes to the discrepancies observed.

In summary, the RF regressor trained using IMAU-FDM
and satellite parameters demonstrates promising results in
capturing the spatial pattern of firn density. However, it may
not fully capture the temporal fluctuations of IMAU-FDM,
primarily due to the dominant influence of surface tempera-
ture (represented by TB) in the RF estimation. The effects of
precipitation (e.g. represented by changes in σ 0

A; Fraser et al.,
2016) and wind velocity (e.g. documented by Champollion
et al., 2013) are therefore potentially compromised in the RF
model. Additionally, the discrepancy between the meteoro-
logical forcing in the IMAU-FDM model and the actual me-
teorological phenomena can also play a role. The meteoro-
logical phenomena can affect the satellite parameters, which
in turn influence the RF results, but may not be reflected in
the IMAU-FDM output. Our approach of training the RF re-
gressor on IMAU-FDM, which may exhibit spatial and tem-
poral differences compared to actual in situ densities, can
therefore be considered a major shortcoming. This limitation
should be taken into consideration when interpreting the RF
density estimations. Future research could benefit from in-
corporating more in situ measurements for training the RF
regressor, which would improve the accuracy of the tempo-
ral density estimates. Furthermore, care should also be taken
when using the coarse-resolution IMAU-FDM and satellite
data to represent the local firn densities. The firn property
variation may be small in pixels with relatively flat topogra-
phy, such as Dome C (Picard et al., 2014). However, towards
the coastal or mountainous regions, the ability of such coarse
resolution to represent firn densities could be compromised,
as a mismatch between the local meteorological phenomena,

the satellite parameters, and the modelled densities can be
introduced. Indirect correlations between different layers of
firn should also be considered when applying data fusion of
multiple microwave frequencies. Additionally, exploring al-
ternative machine learning algorithms, neural networks, or
ensemble approaches may further enhance the performance
of density estimation and capture the complex relationships
between satellite observations and firn density, as assessed by
Santi et al. (2012b) and Anilkumar et al. (2023). Finally, our
study only demonstrated a simple approach in understanding
the long-term correlation between firn density and satellite
parameters, based on climate conditions that potentially af-
fect them (Fraser et al., 2016). However, due to the different
penetration abilities of different microwave frequencies (Sur-
dyk, 2002) at different locations (Picard et al., 2009), future
research can benefit from a more quantitative assessment re-
garding the extent to which the penetration depths and other
climate parameters affect the results. Better parametrisation
of satellite observations, which can indicate the variation in
firn depth (Santi et al., 2012a; Michel et al., 2014) and the
formation and disappearance of surface and depth hoar crys-
tal (Champollion et al., 2013), can also be adopted.

Despite the limitations and discrepancies observed, the RF
density map generated in this study can serve as an impor-
tant intermediate step in translating satellite data into density
estimations. It provides valuable insights into the discrep-
ancy between firn models and satellite observations, shed-
ding light on the complexities of the relationship between
satellite parameters and firn density. The RF regressor cap-
tures the long-term mean density pattern, offering a useful
tool for investigating spatial variations in firn density across
Antarctica. However, it is essential to exercise caution when
interpreting the temporal variations, particularly in coastal
regions with complex climate conditions. Our study is also
mainly limited to firn densities at shallow depths where the
climate phenomena have a large impact; it cannot indicate
the actual scattering of firn grains, as a more complicated
mechanism persists (Picard et al., 2022).

Further improvements can be made to enhance the accu-
racy of the RF regressor in capturing the temporal varia-
tions in firn density. This could involve refining the training
data and incorporating additional meteorological parameters
that influence the satellite observations, as also suggested by
Kar and Aksoy (2024). By better accounting for the effects
of precipitation and wind velocity on the satellite parame-
ters, the RF regressor could potentially capture a more accu-
rate representation of the temporal dynamics of firn density.
Furthermore, advancements in the parametrisation of fresh
snow density within firn models, considering the complex
processes driven by temperature and wind speed conditions,
could help bridge the gap between model predictions and
satellite observations. Finally, as the performance of the ma-
chine learning method varies based on different meteorolog-
ical phenomena and topography, it can also be recommended
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for further studies to apply different parametrisations for dif-
ferent regions or to test other machine learning methods.

6 Conclusions

In conclusion, this study demonstrates the potential of using
multiple satellite observations to estimate Antarctic firn den-
sities, with the IMAU-FDM densities serving as a reference.
Our findings highlight several key points. Firstly, while satel-
lite observations exhibit a certain level of spatial correlations
with firn densities, a consistent linear relationship cannot be
established. The correlations between ρ40 cm and satellite pa-
rameters, particularly TB, indicate the potential influence of
firn density on variations in satellite observations.

Secondly, the impact of firn melt and refreeze on satellite
observations is significant. Temporal anomalies in satellite
parameters can be adopted to differentiate between wet- and
dry-firn regions. Clustering of satellite observation time se-
ries helps to identify melt extents and assess the temporal
correlation with densities at the cluster level. Notably, the
scattering impact of refrozen melt layers is reflected in pro-
longed elevated σ 0

A anomalies. However, in dry-snow clus-
ters, the correlation between densities and satellite observa-
tions is not evident.

Based on these complexities, a non-linear model, such as
the random forest (RF) regressor, is necessary to capture the
relationship between firn densities and satellite observations.
Our implementation of the RF regressor successfully repro-
duces the spatial pattern of firn densities, exhibiting good
agreement with IMAU-FDM and even outperforming it in
certain locations when compared with SUMup density mea-
surements. However, the temporal simulation of densities by
the RF regressor is compromised. Individual pixel analyses
reveal that the RF densities tend to overlook the inter-annual
variations in firn densities when the variations in satellite ob-
servations are not in phase with IMAU-FDM densities. In
coastal regions, where satellite signals with strong variabil-
ity dominate, the RF densities are not directly comparable to
IMAU-FDM densities. These temporal discrepancies can be
attributed to the simplifications in the IMAU-FDM model,
particularly in capturing wind and temperature dependencies
that strongly influence satellite observations. Furthermore,
limitations of the RF regressor, including the inability to ex-
trapolate from the training dataset and its strong dependence
on brightness temperatures, result in a limited range of den-
sity estimation and primarily reflect surface temperatures.

Appendix A: Sensitivity of microwaves to changes in
firn properties at different depths

For setting up the experiment, it is important to understand
up to which depth different microwave frequencies can indi-
cate firn properties. This appendix presents a simple sensi-
tivity analysis using SMRT, where densities and grain sizes

at different depths of the firn are varied, and the impact of
changes in firn properties on σ 0

A and on TB is presented.
The initial state is a firn layer with a 20 m thickness, com-
posed of small internal layers of 40 cm. The density and grain
size are changed by 50 kg m−3 and 0.5 mm, respectively. The
changes are applied to one layer at a time. The sensitivity can
also vary per location; therefore we adopt the field measure-
ments in East Antarctica from Larue et al. (2021) to define
the initial density, temperature, and grain size. The locations
and parameters are summarised in Table A1. For the imple-
mentation of SMRT, we use a sticky hard spheres microstruc-
ture model represented by the grain radius and a stickiness
parameter (Picard et al., 2018). The grain radius is derived
from SSA with

r =
3× 2.3
SSAρice

, (A1)

where ρice = 917 kg m−3 (Larue et al., 2021). The stickiness
is defined as 0.2 for all locations (Picard et al., 2018, 2022).
For solving the radiative transfer equation, SMRT uses the
discrete ordinate and eigenvalue (DORT) method, and the
empirical electromagnetic theory we adopt is the improved
Born approximation (IBA) (Mätzler, 1998). The simulated
results are shown in Fig. A1, where the changes in σ 0

A and
TB with respect to the original state are presented. In gen-
eral, the sensitivity of both σ 0

A and TB decreases with an in-
creasing depth. Respectively, 19 and 37 GHz are sensitive up
to 6–10 m and 0.8–1 m. However, the variation in σ 0

A is be-
low 1 dB (the radiometric uncertainty; Schmidt et al., 2018),
indicating that the C-band may not be sufficiently sensitive
to volume scattering. Therefore, we consider the effect of
surface scattering, which can be modelled by SMRT using
the Integral Equation Method (IEM) (Fung et al., 1992). Ap-
plying the IEM requires the snow surface to be defined by
the surface roughness expressed as root-mean-square (rms)
heights and correlation length (Larue et al., 2021). In this ex-
periment, we fix the correlation length to 0.1 cm and vary
the surface roughness between 0 and 1 cm. The sensitivity
of σ 0

A to surface roughness is shown in Fig. A2, where the
change in σ 0

A indicates the difference between an increased
surface roughness and a smooth surface. For all tested loca-
tions, σ 0

A shows a reduction that exceeds 1 dB when surface
roughness increases by 0.7 cm, indicating a sufficient sensi-
tivity to surface roughness. Typically, the changes in surface
roughness are related to both wind patterns and surface firn
density. Therefore, for the setting of our study, an optimal
range to assess firn densities should be chosen between the
surface and a depth of 80 cm.
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Table A1. Firn properties adopted from Larue et al. (2021), including geographical coordinates, annual temperature, vertically averaged
density, and vertically averaged specific surface area (SSA) at different locations.

Name Latitude (°) Longitude (°) Temperature (°C) SSA (m−2 kg−1) Density (kg m−3)

charcotA −69.38 139.02 −37.9 12.0 433
ago5E

−77.24 123.48 −54.4 7.4 361
paleoE

−79.85 126.20 −50.5 7.7 392

Figure A1. Change in σ 0
A

and TB as a function of the depth of the layer whose density and grain size are changed.
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Figure A2. Change in C-band σ 0
A

when the surface roughness (expressed as root-mean-square heights; rms) is changed. The dashed line
indicates when the sensitivity exceeds 1 dB.

Appendix B: Temporally averaged satellite parameters
and IMAU-FDM density

Figure B1 displays the averaged maps of satellite parameters
and ρ40 cm. This figure aims to demonstrate an overview of
the spatial patterns of the data applied in this study. The fig-
ure shows that, although all satellite parameters reflect some
of the spatial patterns of firn density, none of the parameters
shows a spatially consistent relation with ρ40 cm. For exam-
ple, in high-elevation regions of East Antarctica, firn densi-
ties show similar spatial patterns to TB and reversed spatial
patterns of σ 0

A. However, these patterns are not consistently
observed in West Antarctica, along the Transantarctic Moun-
tains (location shown in Fig. 2a), and in Firn 5 (Fig. 4), where
a significant melt event in 2016 affected the satellite obser-
vations (Nicolas et al., 2017).

Figure B1. Temporally averaged map of (a) brightness temperature
(TB) from 19 GHz vertical polarisation, (b) TB from 19 GHz hori-
zontal polarisation, (c) TB from 37 GHz vertical polarisation, (d) TB
from 37 GHz horizontal polarisation, (e) backscatter intensity (σ 0

A
),

and (f) 40 cm IMAU-FDM density (ρ40 cm). Panels (a)–(d) are ac-
quired or derived parameters from SSMIS, and panel (e) is derived
from ASCAT. The coastline is from Depoorter et al. (2013).
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Appendix C: Time series of clustering results

This appendix presents the time series of different clusters
following Sect. 3.2. Figure C1 presents the time series of
the mean and 20th–80th percentiles of each parameter for
each cluster, with panels (a)–(g) corresponding to clusters 1–
7, respectively. Firns 1–4 exhibit small and short-term vari-
ations in TBanom and σ 0

Aanom
; the extent of variations differs

between different clusters. Firn 1 has the smallest variations
in TBanom and σ 0

Aanom
, which are within ±5 K and ±0.25 dB,

respectively. Firn 2 and Firn 3 have a TBanom between −5 and
10 K; however, Firn 2 has a σ 0

Aanom
within ±1 dB, while Firn

3 has a σ 0
Aanom

within ±0.5 dB. Firn 4 is characterised by a
TBanom variation within ±10 K and a σ 0

Aanom
variation within

±0.5 dB.
On the contrary, firns 5–7 all show large and abrupt vari-

ations in TBanom and σ 0
Aanom

, mainly as a result of melt events
(e.g. Nicolas et al., 2017) that drastically change absorp-
tion, emission, and scattering of microwave radiation and
thus the TBanom and σ 0

Aanom
. The effects of these melt events

are also evident in the time series of the IMAU-FDM den-
sities, as the abrupt changes in firn density are associated
with the occurrence of melt events (Amory et al., 2024).
For example, this can clearly be seen in the time series of
Firn 5, where the melt event of 2016 shows a prolonged
effect on the σ 0

Aanom
time series due to the formation of

a sub-surface refrozen high-density layer in IMAU-FDM.
The high-density layer is detected by the scatterometer with
stronger snow-penetrating capability. In IMAU-FDM, this
high-density layer also appears in ρ40 cm, where it increases
by approximately 100 kg m−3. The comparison of all clusters
highlights the dominant influence of melt events on TBanom

and σ 0
Aanom

in the wet-firn pixels, whereas the dry-firn pixels
exhibit a more pronounced seasonal variation in satellite pa-
rameters. It is important to note that the wet-firn clusters are
not used in the following RF steps due to the complex impact
of the melt–refreeze cycle on satellite observations.
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Figure C1. Time series of the mean (curves) and 20th–80th percentiles (shaded areas) of the clustering results in Fig. 4, with panels (a)–
(g) corresponding to snow facies 1–7. The visualised satellite observations are as follows: time series anomalies of brightness temperature
(TB) from 19 and 37 GHz, both horizontal and vertical polarisation (TBanom(19V ), TBanom(19H), TBanom(37V ), and TBanom(37H), respec-
tively), time series anomalies of backscatter intensity (σ 0

Aanom
), and IMAU-FDM density at 40 cm (ρ40 cm) depth. The colours of the curves

correspond to the legends in panel (g).
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Appendix D: RF performance with varying depth

In this section, we demonstrate the impact of the depth on
the performance of RF. The result shows that, as the depth
increases, the mean correlation coefficient decreases. More-
over, the reduction in correlation coefficients first occurs in
the megadune regions; this observation corresponds with e.g.
Picard et al. (2009), who modelled and demonstrated that
the penetration depth of 19 GHz is compromised in these
regions. When we apply the RF regressor at 5 m density,
the RMSE is the highest and the correlation is the lowest,
showing most compromised performance. Since our study
is based on the impact of surface climate conditions on
firn depth, similar performances can be obtained at differ-
ent depth due to similar impacts from surface climate condi-
tions. We present in Table D1 the correlation coefficients be-
tween IMAU-FDM near-surface density (at 4 cm depth) and
density at different depths, and we show that this correla-
tion decreases with increasing depths. Therefore, the expla-
nations for different performances in Fig. D1 can be as fol-
lows: (i) the temporal variation in deeper firn layers is not as
sensitive as the upper firn layers and the satellite parameters
to climate conditions on the surface, (ii) the penetration abil-
ity of 37 GHz and 19 GHz largely decreases with firn depths,
and (iii) there are biases in IMAU-FDM. This experiment
depicts the limitation of our approach, as our combination of
satellite parameters is mostly sensitive to surface temperature
and potentially to wind patterns and precipitation on the sur-
face; therefore, it is not indicative of properties of deeper firn
layers, although they should be within the radar penetration
depths (Rott et al., 1993; Surdyk, 2002). Further studies are
therefore encouraged to incorporate better parametrisation of
satellite data.

Table D1. Average temporal correlation coefficient between IMAU-
FDM near-surface density (4 cm) and IMAU-FDM density at
deeper depths.

Depth 12 cm 40 cm 1 m 5 m

4 cm 1.00 0.73 0.36 0.10
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Figure D1. Maps of root mean square error (RMSE; upper panel) and correlation coefficients (lower panel) at different depths. The coastline
is from Depoorter et al. (2013).
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