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Abstract

In this study, an unsupervised classification approach is used to investigate and characterize the spatial and

temporal variability of MetOp-A ASCAT backscatter (σ◦) data and the TUW SMR vegetation parameters

across mainland France between 2007 and 2017. Currently, soil moisture data is retrieved from ASCAT

backscatter measurements using the TU Wien Soil Moisture Retrieval (TUW SMR) approach. To correct

for the influence of vegetation on soil moisture, two so-called ’vegetation parameters’ are also estimated

from the backscatter measurements. These vegetation parameters are the slope (σ′) and curvature (σ′′)

of a second-order Taylor polynomial which describes the incidence angle dependence of backscatter.

While the slope was always seen as a measure for vegetation density, little research has been done into

the value of the curvature as a source of information. However, a recent study by Steele-Dunne et al. [59]
showed that both the slope and curvature contain significant information about vegetation phenology

and vegetation water dynamics across the North-American grasslands, which suggests that the TUW SMR

vegetation parameters are a potentially valuable source of information on vegetation dynamics. This study

further investigates the value of the TUW SMR vegetation parameters as a source of information about

vegetation dynamics for a number of land cover types present in mainland France.

The 3492 ASCAT grid points in France were separated into ten groups using agglomerative hierarchical

clustering based on the climatology of σ′ and subsequently analysed. The results show that clusters based

on σ′ are generally contiguous and are able to resemble distinct land cover features; areas such as Paris,

the Alps, and the Landes forest are clearly visible in cluster maps. Even though it is expected that the

clusters differ in terms of σ′ – which inherently follows from a clustering based on σ′ – the results show

that the clusters generally have distinct and unique σ◦40 and σ′′ characteristics as well. This suggests that

the clusters represent ’scattering surfaces’ that differ in terms of their seasonal scattering characteristics.

In general, it was found that grid points with a heterogeneous land cover footprint tend to have noisy

seasonal backscatter signatures, while those with a homogeneous land cover footprint tend to have clear

and recognizable seasonal behavior. Additionally, the results suggest that certain backscatter signatures

correspond to certain land cover footprints; in particular the predominantly agricultural area around Paris

produced very specific σ◦40, σ′, and σ′′ signatures that correspond to specific growth stages of wheat and

the rapid land cover change that occurs during the agricultural growth season. In general, the results are

consistent with the previous assumptions that σ′ is a measure for vegetation density and σ′′ is a measure

for the relative dominance of ground-bounce and direct scattering from vertical vegetation constituents.

Finally, clustering was performed on ten years of dynamically estimatedσ′ and a measure for robustness

was introduced to quantify the certainty of clustering for each grid point. Very robust grid points are found

in areas that have a relatively stable land cover such as the Alps or Paris, suggesting that areas with stable

land cover exhibit predictable seasonal backscatter behavior with low interannual variability. On the other

hand, poor robustness scores are mainly found in north-west France, where land cover is heterogeneous

and seasonal backscatter behavior is highly variable, perhaps due to crop rotation.

This study confirms that the TUW SMR vegetation parameters contain valuable information about

vegetation phenology in both homogeneous and mixed land cover footprints. Furthermore, it was shown

that unsupervised classification methods based on the vegetation parameters are able to identify areas

with similar scattering characteristics, and are able to show how these areas change over time.
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Introduction

1.1 Context

Soil moisture and vegetation are key variables in the water, energy and carbon cycle, as they determine

the energy and water fluxes between the soil surface and the atmosphere interface. Consequently, many

scientific disciplines rely on soil moisture and vegetation data for developing, evaluating and improving

their descriptive and predictive models; examples include climate forecasting [34, 35, 13], hydrological

modeling [38, 62, 72, 8], drought monitoring [60, 25, 40], flood forecasting [73], forest monitoring [28],
and agricultural drought detection [2]. However, data has not always been as accessible as it is today. In

recent years, developments in the field of satellite remote sensing have dramatically improved our ability

to monitor the Earth, leading to the wide availability of land surface data we have today.

At the core of this study is the Advanced Scatterometer (ASCAT), which is a C-band active microwave

remote sensing instrument carried on board the series of Meteorological Operational (MetOp) satellites.

Even though ASCAT was initially designed to measure wind speed and direction over the Earths oceans in

support to numerical weather prediction, tropical cyclone analysis, and ocean waves forecasting, research

carried out with its predecessor instrument – the Active Microwave Instrument (AMI) on board the ERS-1/2
satellites – confirmed the ability of C-band scatterometry to provide reliable soil moisture observations on

a global scale [15, 1, 9]. Furthermore, many studies have shown that C-band scatterometer data correlates

with the seasonal behavior of vegetation, indicating that C-band scatterometry may also be a potentially

valuable source of information for vegetation monitoring [21, 30, 31, 19].
Several soil moisture products are derived from the ASCAT backscatter observations using the so-

called TU Wien Soil Moisture Retrieval (TUW SMR) approach. This algorithm was first developed by the

Vienna University of Technology (TU Wien) for ESCAT on-board the ERS-1/2 satellites [70] and was later

translated to ASCAT [5, 45]. The TUW SMR algorithm uses a change detection approach to retrieve soil

moisture. An important early step in the derivation of soil moisture is the normalization of all backscatter

observations to the reference angle θr = 40◦; using the multiangle measurement capabilities of ASCAT,

the TUW SMR algorithm is able to describe the incidence angle (θ) dependence of backscatter (σ◦). The

resulting σ◦(θ) relationship – which is characterized by a second-order Taylor polynomial in the TUW

SMR algorithm – is particularly important, as it contains information about soil moisture, vegetation

characteristics and scattering mechanisms and their variations through time [24]. This relationship is

used to normalize the backscatter measurements to the reference incidence angle (θr) and to correct for

the effects of vegetation on the normalized backscatter signal.

Firstly, this step yields the normalized backscatter coefficient (σ◦40), which is used to determine soil

moisture relative to the historically wettest and driest observations. Secondly, the vegetation correction is

applied during this step; vegetation is characterized by the behavior of the slope (σ′) and curvature (σ′′)

of the σ◦ − θ relationship, which are the so-called "vegetation parameters". An increase in vegetation

cover is assumed to cause only a rotation of the σ◦ − θ curve (i.e. a change in σ′ and σ′′), while an

increase in soil moisture causes only a vertical translation and no rotation of the σ◦ − θ curve, see Fig.

1.1. With these assumptions the TUW SMR algorithm is able to correct for the influence of vegetation.
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Fig. 1.1: Conceptual σ(θ ) relationship and the influ-
ence of soil moisture and vegetation

Fig. 1.2: Climatology vs. dynamically determined vegetation parameters

Due to constraints in data density and the significant amount of noise in the individual values, several

years of data have to be combined in order to ensure robust estimates of the σ′ and σ′′ coefficients

[70, 24]. As such, all existing ASCAT soil moisture products derived using the TUW SMR approach are

based on a seasonal climatology of σ′ and σ′′ coefficients. This was particularly necessary for the ERS-1/2
scatterometer, which had only one set of three fan-beam antennas and hence, low data density. ASCAT has

two sets of three fan-beam antennas – one for each swath – allowing for three independent backscatter

measurements at three different azimuth angles and two different incidence angles for every pixel [71].
The increased data density unlocks the possibility to estimate the σ′ and σ′′ coefficients dynamically.

A recent algorithmic development by Melzer [42] allows the vegetation parameters to be estimated

dynamically, making it possible to investigate the interannual variation of the vegetation parameters, see

Fig. 1.2. Based on this new method, Steele-Dunne et al. [59] recently examined multiple years of ASCAT

backscatter data to characterize spatial and temporal variability in the vegetation parameters across the

North American Grasslands. In their study, data was aggregated across four Regions of Interest (ROIs),

each defined by uniform Köppen-Geiger climate class (KGCC) and ecoregion. The seasonal climatology

and interannual variability of the backscatter variables of each of the ROIs was then investigated. Their

results show that the seasonal climatology, spatial patterns, and interannual variability of both σ′ and σ′′

vary considerably between the ROIs, but there does not seem to be a simple relationship between σ′ and

σ′′. However, it may be preferable to define ROIs based on scattering characteristics instead of KGCC and

ecoregion, so that each ROI describes a distinct scattering surface with unique scattering characteristics.

This study builds on the insights obtained by Steele-Dunne et al. [59] and is focused on exploring the

possibility of identifying distinct scattering surfaces using unsupervised clustering, as well as investigating

seasonal and interannual variation of the vegetation parameters based on these scattering surfaces.

1.2 Current challenges and knowledge gaps

One of the main concerns surrounding ASCAT has been that C-band has a lower sensitivity to soil moisture

in the presence of vegetation compared to longer wavelengths [33] which makes it difficult to separate

the individual effects of soil moisture and vegetation. Moreover, the intricate relationship between soil

moisture and vegetation only adds to the complexity of the task at hand. Even though validation studies

have shown that the quality of the ASCAT soil moisture product is generally comparable to (or even better

than) currently available soil moisture data sets derived from passive microwave sensors [71] there are

still considerable knowledge gaps surrounding the vegetation parameters of the TUW SMR algorithm.

As discussed previously, significant efforts have been undertaken to correct for the influence of

vegetation in the retrieval of soil moisture. However, even though vegetation is corrected for in the current

implementation of the TUW SMR algorithm, the physical meaning of the vegetation parameters is not

2



1.3. Research aim Chapter 1. Introduction

fully understood and is still an area of active study. A general consensus exists on the meaning of σ′ as a

measure for "vegetation density"; previous research has linked σ′ to seasonal dynamics in wet vegetation

biomass [69]. However, no direct link between σ′ and (wet) biomass or vegetation water content exists.

Moreover, the meaning of σ′′ is less well understood, and little research has been done into its potential

value as a source of information about vegetation. In a recent study, Steele-Dunne et al. [59] showed that

σ′′ is clearly influenced by vegetation phenology, vegetation water content, as well as the distribution of

water in the vegetation components. Furthermore, their results indicate that σ′′ may contain valuable

information about the drought response of grassland vegetation. While these results are reassuring, the

potential value of the dynamically determined σ′ and σ′′ as a source of information about vegetation

dynamics must be further investigated in other land cover types.

1.3 Research aim

The aim of this research is to investigate the temporal and spatial characteristics of the backscatter

coefficient (σ◦40) and TUW SMR vegetation parameters (σ′ and σ′′), in order to gain an improved

understanding of their physical meaning and behaviour, as well as to further explore their value as a source

of information. In order to achieve this aim, the main research question has been defined as followed:

Can distinct scattering surfaces be identified and used to obtain an

improved understanding of the observed σ◦40, σ′, and σ′′ behavior?

In order to answer the main research question, the following sub-questions are defined:

1. Which data preprocessing and clustering techniques are required and suited to solve this problem?

Many techniques exist for the purpose of (unsupervised) classification. However, a ’one size fits all’

solution does not exist. Hence, the first question is dedicated to exploring data preprocessing and

classification techniques so as to gather a suitable set of tools for solving the problem at hand.

2. Can distinct and meaningful scattering surfaces be identified using unsupervised classification?

A set of clusters is generated using an unsupervised classification approach based on the climatology

of σ′. The input data must first be preprocessed to ensure meaningful results. The obtained clusters

are investigated in terms of their characteristics and their σ◦40, σ′, and σ′′ signatures in order to

investigate whether they are distinct and meaningful. The generated clusters should not be noisy

and should ideally bear a resemblance to land cover.

3. What is the influence of sub-footprint land cover heterogeneity on the σ◦40, σ′, and σ′′ signatures?

The observed σ◦40, σ′, and σ′′ signatures are compared to land cover data in order to better

understand the relationship between sub-footprint land cover heterogeneity and seasonal scattering

behavior, as well as to investigate how sub-footprint heterogeneity relates to the generated clusters.

4. Are the grid points and generated clusters "robust"?

A measure for robustness is proposed and used to determine how well each grid point belongs to

its assigned cluster. Robustness scores are compared to land cover footprint to investigate whether

a relationship exists between land cover and robustness.

3



Chapter 1. Introduction 1.4. Research significance

1.4 Research significance

Nowadays, many real-world applications such as numerical weather prediction and hydrological modelling

rely on the ASCAT soil moisture products in their day-to-day operation, and other potential applications

are increasingly being identified. For example, initial results for the application of ASCAT data products

in other areas of expertise such as crop yield monitoring, epidemic risk modelling, and societal risk

assessments are positive, but still require additional improvements [71]. As such, it is imperative that the

ASCAT soil moisture data products is as accurate and reliable as possible.

As previously discussed, the TUW SMR vegetation parameters are essential components for vegetation

correction in the derivation of soil moisture from ASCAT backscatter. Having an improved understanding

of the vegetation parameters will help improve the soil moisture derivation from backscatter observations,

ultimately leading to increased quality of soil moisture data products. This benefits all existing and

(currently unidentified) future applications that make use of these data products.

Furthermore, previous research has indicated the potential value of the TUW SMR vegetation parame-

ters as a source of information about vegetation. A better understanding of the vegetation parameters

may lead to new ASCAT derived data products describing seasonal and interannual vegetation dynamics.

Such new vegetation data products may provide significant value to a diverse set of current and future

operational applications and a wide range of scientific research fields, especially considering the large

archive of existing ASCAT data. Moreover, the promising future of the MetOp mission and next generation

MetOp-SG mission ensure the availability of backscatter data until at least 2040, which further underlines

the potential value of improving and expanding the existing suite of ASCAT data products.

1.5 Thesis outline

Any terms, acronyms, symbols and operators that may be unknown to the reader are explained in the

Nomenclature. Chapter 2 covers most of the background theory that support the performed analyses, and

will be of interest mainly to readers that are not familiar with ASCAT, the TUW SMR algorithm, and/or

(unsupervised) classification techniques. Chapter 3 describes the study area as well as the different data

and methods that are used in this study. The most important results are presented and discussed in

Chapter 4. Additionally, all results – including those less relevant – can be found in Appendix C. Finally,

the main conclusions and answers to all the research questions are presented in Chapter 5, together with

any assumptions and limitations of the performed work, recommendations for further research, and the

contributions of this study.
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Theoretical Background

This chapter provides an overview of relevant background theory for this research. A short introduction to

remote sensing is given in section 2.1. Several important concepts in microwave scatterometry are treated

in section 2.2. Section 2.3 gives a synopsis of the ASCAT instrument, and section 2.4 serves to provide the

necessary theory about the TUW SMR algorithm, which is at the core of this study.

The remainder of this chapter is focused on theory of data pre-processing techniques and unsupervised

classification. Section 2.5 explains the concept of Principal Component Analysis (PCA) and its value in this

research. Finally, section 2.6 provides an introduction to clustering as well as a description and comparison

of two popular clustering algorithms: agglomerative hierarchical clustering and k-means clustering.

2.1 Remote sensing

Remote sensing is defined as the process of obtaining information about a target object without making

actual physical contact with it. This definition is most often used to describe the acquisition of information

about the Earth’s surface and atmosphere using different remote sensors, i.e. devices that measure one or

multiple types of electromagnetic radiation reflected or emitted by a target object. The different types of

electromagnetic radiation together make up the continuous electromagnetic spectrum, and can be divided

into the following regions: (long) radio waves, microwaves, far- and near infrared waves, visible light,

ultraviolet, X-rays, and gamma-rays, see Fig. 2.1 [17].
Remote sensing platforms can be terrestrial, airborne, or spaceborne and can be classified into passive

or active systems. Passive sensors detect natural electromagnetic radiation that is emitted or reflected by

the target object. In most cases, reflected sunlight is the radiation source for passive sensors. Examples of

passive sensors include photographic cameras, radiometers and spectrometers. On the other hand, active

sensors illuminate the target by emitting radiation themselves, and subsequently measure the amount of

radiation that is reflected from the observed target. An example of an active sensor is ASCAT, which is a

radar scatterometer operating in the microwave region of the electromagnetic spectrum.

Fig. 2.1: The electromagnetic spectrum
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2.2 Microwave remote sensing

The use of microwaves for remote sensing is a relatively recent phenomenon, having been in use only

since the early 1960s. There are some disadvantages to using microwaves in remote sensing. As a result

of the long wavelengths of microwaves, active microwave instruments require relatively large antennas to

achieve acceptable spatial resolutions. Furthermore, active microwave instruments are large and heavy

and consume a significant amount of power.

However, microwaves have several characteristics that make them valuable for remote sensing ap-

plications. Microwaves are able to penetrate vegetation more deeply than optical waves, with longer

wavelengths penetrating better than shorter wavelengths. Microwaves are also relatively unaffected by

clouds and rain, and are able to penetrate the top soil layer. Moreover, microwave interactions are generally

controlled by other physical parameters compared to different types of electromagnetic radiation, meaning

that microwaves contain different information. As such, the use of microwaves provides observation

capabilities that assist methods in other spectral regions.

Even though the field of microwave remote sensing is relatively young, a significant amount of research

on microwaves and their use in remote sensing has been carried out; clearly, this research is unable

to fully capture the existing body of background knowledge. Several important concepts pertaining to

microwave scatterometry are treated in this section, and we refer to the literary works of Ulaby [65, 66, 67],
Woodhouse [75] and Rees [52] for an excellent and comprehensive overview of the fundamental principles

of microwaves and microwave remote sensing.

2.2.1 Microwave propagation

In order to understand how microwaves interact with the real world, several concepts related to microwave

propagation must be understood first. Every material reacts differently to electromagnetic radiation: in

the case of visible light, it is general knowledge that glass is transparent, wood is opaque, mirrors are

reflective, and water is refractive. The same holds true for the microwave region of the electromagnetic

spectrum: materials can be transparent, opaque, reflective, refractive, and so forth. These effects are the

result of the electromagnetic properties of a material, which are described by: the electric permittivity (ε);

the magnetic permeability (µ); and the electric conductivity (g).

The electric conductivity describes the (lack of) mobility of electrons in a material. For example,

electrons are free to move in metals, which translates to a high electric conductivity. The magnetic

permeability describes how well a material is able to maintain the establishment of a magnetic field

within itself, i.e. it quantifies the amount of magnetization in a material under an imposed magnetic

field. The magnetic permeability of a vacuum is equal to µ0 = 4π × 10−7 Ns2C−2 and µ ≈ µ0 for

nonmagnetic materials (i.e. most practical applications). While it is important to understand these

material characteristics, they do not need to be considered in detail for most remote sensing purposes.

On the other hand, the electric permittivity is a very important material characteristic for microwave

remote sensing. The electric permittivity is a measure for the capacitance of a material under influence

of an electric field – it describes how well the molecules of a medium polarize in an electric field. The

higher the electric permittivity of a medium, the better its molecules polarize and the more that medium

is able to resist the imposed electric field. Similar to the magnetic permeability, the vacuum permittivity

(ε0) is equal to 8.8542× 10−12 C2N−1m−2. The permittivity of a dielectric medium is then defined as the

product of the vacuum permittivity and the relative permittivity of a medium (εr), see Eq. 2.1.

ε= εrε0 [−] (2.1)
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Most solid materials on Earth are non-conducting; such a material is also called a dielectric. Microwaves

lose energy exponentially as they travel through a dielectric material, i.e. the incoming waves are attenuated.

The dielectric properties of a medium are described by the relative permittivity, which consists of a real

and complex part so that εr = ε′r − iε′′r . The real part of the complex electric permittivity (ε′r) is also

known as the dielectric constant, while the imaginary part (iε′′r ) describes wave attenuation.

The value of microwaves for remote sensing is in part due to the dielectric properties of water, mainly

in the form of soil moisture and vegetation moisture. Water is a good conductor due to the permanent

electric dipole of its molecules, and has a relatively high relative permittivity of approximately 80 in the

microwave region while most dry materials have a dielectric constant in the range of 3 – 8 [75]. As such,

the presence of moisture in both soil or vegetation significantly increases the strength of the return signal,

making it possible for ASCAT to observe changes in soil- and vegetation moisture.

2.2.2 Scattering

2.2.2.1 The backscatter coefficient

When an electromagnetic wave reacts with a target object, the incident wave may be redirected into differ-

ent directions compared to the incidence direction in a process called scattering, which is a fundamental

concept in many remote sensing applications. The effectiveness of a scattering object is described by

the scattering cross-section (σ), which quantifies scattering in all directions. However, for active systems

such as ASCAT the amount of incident energy (Iincident) to the target area is known, and such systems

measure the amount of energy that is scattered back (backscatter) by the target object to the sensor along

the incidence direction (Ireceived) at a range R. Hence, for active systems it is more useful to define the

backscatter using the proportion of returned energy over incident energy. This is called the radar scattering

cross-section, which is defined as:

σ =
Ireceived

Iincident
4πR2 [m2] (2.2)

Like most active instruments, ASCAT observes the backscatter generated by an extended area (or footprint)

rather than individual objects. To ensure that ASCAT observations can be compared to those of other

instruments, a backscatter measure independent of the instrument footprint is required. One such measure

is the (normalized) backscatter coefficient (σ◦), which is also known as the normalized radar cross-section

or sigma nought. The backscatter coefficient relates the radar scattering cross section defined by Eq. 2.2

to the satellite footprint A and is defined as:

σ◦ =
σ

A
[−] (2.3)

The backscatter coefficient is unitless (m2/m2) and quantifies the average reflectivity of a target normalized

to a unit area on the horizontal ground plane. As such, σ◦ is independent of footprint size, meaning that

it is a feature of the observed target and not of the measuring instrument, which ensures that σ◦ observed

by different instruments can be directly compared.

2.2.2.2 Parameters affecting radar backscatter

Backscatter characteristics depend on a combination of different parameters; both surface parameters

and instrument features determine the observed scattering behavior. Important surface parameters are

dielectric properties (mainly due to moisture content), roughness, and geometric shape. Instrument

features affecting backscatter are frequency, polarization, and incidence angle. However, since ASCAT has

a fixed pulse magnitude, frequency and polarization, their influence are not further treated here.
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Fig. 2.2: Relationship between soil moisture con-
tent and dielectric constant (Ulaby et al. [67])

Fig. 2.3: Influence of incidence angle on surface roughness
effects (Ulaby et al. [67])

Fig. 2.4: Effect of increasing surface roughness on scattering patterns

Dielectric constant

The dielectric constant depends on many variables, such as frequency, temperature, water content of soil

and vegetation, soil texture, and salinity [14]. Additionally, the different components of the dielectric

constant discussed in section 2.2.1 (i.e. ε′ and ε′′) are sensitive to different variables. However, both the

real and complex part of the dielectric constant are highly sensitive to water content.

In the microwave range, the dielectric constant of water is an order of magnitude larger compared to

the dielectric constant of dry materials. For soil this means that the dielectric constant is larger for wet

soil than for dry soil, which is shown for different soil types in Fig. 2.2 [67, 57]. Since an increase of

the dielectric constant is associated with increased direct backscatter, the contribution of the soil to total

backscatter will be larger for surfaces with higher soil moisture content.

Similarly, the dielectric constant of vegetation is strongly influenced by vegetation water content; the

dielectric constant of dry vegetation is significantly lower compared to the dielectric constant of vegetation

with high moisture content [7, 63]. Consequently, vegetation with a high moisture content is associated

with larger direct backscatter as well as higher attenuation of the incident wave.

Roughness

Surface roughness is a relative concept which depends on the emitted wavelength of the instrument and

the incidence angle. In general, a surface is considered to be rough if the dimensions of its structure are

similar in size to the incident wavelength. As shown in Fig. 2.4, a rough surface scatters an incident wave

partially in the specular direction and partially in all directions. Specular scattering becomes negligible for

increasingly surface roughness and instead, diffuse scattering dominates. Furthermore, this relationship

between surface roughness and backscatter changes with the incidence angle as shown in Fig. 2.3.
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Fig. 2.5: Different scattering mechanisms occur due to the changing geometry of the growing crop.

Fig. 2.6: Corner reflector Fig. 2.7: Triple corner reflector

Incidence angle

As discussed previously, the incidence angle strongly influences the amount of surface scattering from

rough surfaces. Generally, low incidence angles return the largest backscatter from surface scattering

regardless of the surface roughness (see Fig. 2.3). The incidence angle also strongly influences backscatter

from and attenuation by vegetation. For low incidence angles, the path through the vegetation layer

becomes longer and consequently, attenuation of the incident wave increases.

Geometrical shape

The geometry of vegetation consists of many different structural elements, all differing in size, density

and orientation. Such scattering elements include leaves, branches, fruits, flowers, and stems, all of which

cause a different type of scattering response. Furthermore, certain types of vegetation (such as agricultural

crops) have a rapidly changing geometry and consequently, rapidly changing scattering behavior, see Fig.

2.5. As discussed earlier in this section, the geometry of the ground surface matters too; rough surfaces

generally lead to more diffuse scattering.

An interesting example of the effect of geometry are corner reflectors, such as the ones shown in Fig.

2.6 and Fig. 2.7. Corner reflectors are made by joining two or three smooth, reflective surfaces at a 90◦

angle. As a result of their geometry, corner reflectors are able to generate very high backscatter over a

range of incidence angles. This type of geometry is generally seen in man-made structures as well as in

urban, residential, and industrial areas. This is why urban areas generally have high backscatter returns.
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Fig. 2.8: Geometry of the ASCAT swath (Figa-Saldaña et al. [20])

2.3 ASCAT on-board MetOp

The MetOp satellite programme is a joint undertaking by the European Space Agency (ESA) and the

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) that provides weather

data services for climate monitoring and weather forecasting. The mission consists of three satellites

– MetOp-A, MetOp-B, and MetOp-C – which were launched in October 2006, September 2012, and

November 2018 respectively. Initially, the MetOp satellites were intended to be operated sequentially.

However, because the in-orbit performance of MetOp-A and MetOp-B exceeded expectations, all three

MetOp satellites are now planned to be operated simultaneously until the de-orbiting of MetOp-A in 2022.

The MetOp satellites fly in a sun-synchronous orbit and are equally spaced in orbit around 120◦ apart.

Each satellites completes 14 orbits per day and has a daily global coverage of approximately 82% [71].
On board the MetOp satellite series is ASCAT, which is an active microwave instrument that was

initially designed for measuring ocean wind vectors for numerical weather prediction and climate research.

Even though ASCAT was initially not supposed to support operational services over land, it has proven its

usefulness in a number of other applications. Nowadays, ASCAT backscatter data also supports areas such

as the monitoring of land-ice, sea-ice, snow cover, and soil moisture. Moreover, recent research indicates

that ASCAT backscatter data may be a valuable source of information for vegetation monitoring [59].
Like its predecessor instrument, ASCAT is a fixed fan-beam scatterometer that operates at 5.255 GHz

(C-band) and VV polarization [71]. ASCAT carries two sets of three side-ways looking antennae, each

covering a 550 km wide swath to the right and left side of the satellite ground track. Compared to the

AMI on-board ERS-1/2, ASCAT has double the spatial coverage as well as an improved spatial resolution

of 25 x 25 km2. The three antennae on each side take backscatter measurements in different directions

and are oriented at 45◦ forward, 90◦, and 45◦ backward. The incidence angle ranges of the antennae

are 34–65◦ for the fore and aft antennae, and 25–55◦ for the middle antenna [59]. The ASCAT swath

geometry and antenna configuration are visualized in Fig. 2.8.
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ASCAT consecutively emits short and well-characterised microwave pulses from each of its antennae

and records the resulting echoes. If a point on the Earth’s surface falls within either swath, it will be

seen by the aft-, mid-, and forebeam antennae on that side of the satellite. Hence, three independent

backscatter measurements (i.e. a backscatter triplet of σ◦a, σ◦m and σ◦f ) are made for each location, with

each measurement taken at three different azimuth angles and two different incidence angles [20].
The ability of ASCAT to simultaneously obtain a backscatter triplet allows for the calculation of an

instantaneous backscatter slope, which is also known as the local slope. As will be discussed in section 2.4,

computation of the local slope is essential for the retrieval of soil moisture data from ASCAT backscatter

observations, as local slope values are used to estimate both σ′ and σ′′ in the TU Wien soil moisture

retrieval algorithm [24].

2.4 TU Wien Soil Moisture Retrieval (TUW SMR) algorithm

The TUW SMR algorithm is responsible for the derivation of several soil moisture products from ASCAT

backscatter observations. Initially designed for the AMI on board the ERS-1/2 satellites, the TUW SMR

method exploits the multi-incidence angle measurement capabilities of ASCAT to retrieve soil moisture

content relative to the historically driest and wettest condition. This section serves to explain the general

concept of the TUW SMR algorithm and to describe the derivation of soil moisture and the vegetation

parameters (σ′ and σ′′).

2.4.1 Concept

Most approaches aimed at retrieving vegetation and soil properties from scatterometer observations rely on

inversion methods based on physical approximations of the different scattering processes; such inversion

methods generally have significant problems related to their parameterization and their physical validity

at large scales is questionable [45]. However, the TUW SMR approach refrains from extensive physical

modelling. Instead, it is based on an entirely different concept; it has been a change detection method since

its conception, i.e. it is based on identifying differences between subsequent observations.

The main idea that underlies the TUW SMR approach is to express the surface soil moisture (Θs)

relative to the historically lowest backscatter measurement (dry reference σ◦d) and highest backscatter

measurement (wet reference σ◦w), assuming that the backscatter coefficient (σ◦) and surface soil moisture

are linearly related [42]. The surface soil moisture for some location at reference angle θr and a certain

time t is then calculated using Eq. 2.4:

Θs(t) =
σ◦(θr , t)−σ◦d(θr , t)

σ◦w(θr , t)−σ◦d(θr , t)
(2.4)

The backscatter coefficient is influenced by a combination of static and dynamic factors. Static factors

such as soil composition, surface roughness and land cover are assumed to be constant in time at the

scatterometer measurement scale [59]. In the TUW SMR approach, these static factors are accounted for

by subtracting the dry reference σ◦d from the actual backscatter measurement σ◦ as shown in Eq. 2.4.

Soil moisture and vegetation are dynamic factors influencing the backscatter coefficient. In order to

obtain a reliable soil moisture estimate, the variation of vegetation must be accounted for. Vegetation

correction is performed when the ASCAT backscatter measurements are normalized to the reference angle

θr using the relationship between backscatter coefficient and incidence angle. In the TUW SMR, the

incidence angle dependence of backscatter is described by the following second order Taylor polynomial:

σ◦(θ ) = σ◦(θr) +σ
′(θr) · (θ − θr) +

1
2
σ′′(θr) · (θ − θr)

2 (2.5)
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Eq. 2.5 can be rearranged to:

σ◦(θr) = σ
◦(θ )−σ′(θr) · (θ − θr) +

1
2
σ′′(θr) · (θ − θr)

2 (2.6)

Once the slope (σ′(θr)) and curvature (σ′′(θr)) are known, backscatter measurements can be extrapolated

from any incidence angle to the reference incidence angle using Eq. 2.6. As discussed in section 1, this

step yields the normalized backscatter (σ◦) which is used in Eq. 2.4 to obtain the surface soil moisture.

Moreover, using the knowledge that a change in vegetation state causes a rotation of the σ◦(θ) curve –

i.e. a change in σ′ and/or σ′′ – the influence of vegetation on σ◦ is corrected for, as σ′ and σ′′ mediate

the effect of vegetation on the σ◦(θ ) relationship [42].
As previously mentioned, the local slopes are used to determine σ′ and σ′′. The local slope is an

estimate of the first derivative of the σ◦(θ ) relationship and is determined using the backscatter triplets

(σ◦a, σ◦m and σ◦f ) using Eq. 2.7:

σ′
�

θm − θa/ f

2

�

=
σ◦m(θm)−σ◦a/ f (θa/ f )

θm − θa/ f
(2.7)

Until recently, a large number of local slope values were combined in order to account for the noise in

individual local slope values. However, Melzer [42] recently introduced a new method that allows for

the dynamic estimation of σ′ and σ′′. This approach uses a kernel smoother with a fixed time window

of 42 days (λ= 21 days) to compute a weighted linear fit of σ′ and σ′′. In other words, σ′ and σ′′ are

estimated using all local slope values within the prescribed time window of 42 days, where local slopes

are linearly weighted by their distance in time, with larger weights for those closer in time.

2.5 Principal component analysis

2.5.1 Concept

Principal Component Analysis (PCA) is an old, well-known and widely applied technique introduced by

Pearson [46] in 1901 and later independently developed by Hotelling [27] in 1933. The main goal of PCA

is dimensionality reduction of a data set containing many interrelated variables, while preserving as much

variation present in the original data set as possible [32]. This is done by transforming the original data

to a new set of uncorrelated variables called the Principal Components (PCs). The PCs are ordered so that

the first few PCs contain most of the variation present in the entire original data set.

Besides being a dimensionality reduction method, PCA is also a feature extraction method, which is an

important preparatory step in the application of machine learning algorithms (see section 2.6). This can

be illustrated using the following example. Assume we have a set of ten variables. PCA allows us to create

a set of ten "new" uncorrelated variables – the PCs – where each PC is a combination of each of the ten

original variables. The number of PCs to retain is chosen by the user, and since the PCs are ordered from

most important (containing a lot of the original variation) to least important (containing very little of the

original variation) the most important PCs can be retained while the least important ones can be dropped.

Hence, not only does PCA reduce dimensionality (which improves computation time), it also separates

essential information from non-essential information.
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Fig. 2.9: An example of the application of principal component analysis on five data points. The left graph visualizes the original
data X while the right graph visualizes the transformed data Z∗ (setosa.io).

2.5.2 Derivation of principal components

Assume a data set in the form of a matrix X. First, each column of X is standardized to ensure that the

importance of the features is independent of their variance. Standardization of X is done using Eq. 2.8:

Z(m, n) =
X(m, n)−µm

sm
(2.8)

where Z is the resulting standardized matrix and the mean (µm) and standard deviation (sm) of each

column m are calculated using Eq. 2.9 and Eq. 2.10, respectively:

µm =
1
N

N
∑

n=1

X(m, n) (2.9)

s2
m =

1
N − 1

N
∑

n=1

(X(m, n)−µn)
2 (2.10)

Next, the covariance matrix of Z is determined by calculating ZT Z. An eigendecomposition is then

performed on the covariance matrix ZT Z which yields PDP−1, where P is the matrix containing the

eigenvectors of Z and D is a diagonal matrix containing the eigenvalues of Z on its diagonal. Each element

on the diagonal of D is associated to a corresponding column in P, i.e. the first element of D is the eigenvalue

λ1 and its corresponding eigenvector is the first column of P. The "importance" of each eigenvector is

(roughly) described by its corresponding eigenvalue, as each eigenvalue measures the amount of variance

in the original data in the direction of its corresponding eigenvector. As such, the eigenvector that

corresponds with the largest eigenvalue is the first and most important principal component.

The eigenvalues λ1 . . .λn are then sorted from largest to smallest and the eigenvectors are sorted

accordingly, yielding the sorted matrix of eigenvectors P∗. Finally, the matrix Z∗ = ZP∗ is calculated, with

Z∗ containing the PCA projections (also called PCA scores) of the standardized version of the original matrix

X. In other words, the matrix Z∗ consists of weights, each of which belonging to a different eigenvector.

The original data can also be reconstructed by multiplying each weight in a column with its corresponding

eigenvector and adding µm. To illustrate, the difference between the matrices X and Z∗ are visualized in

Fig. 2.9.
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2.5.3 Determining the number of principal components

It is important to know how many PCs can be dropped before significant information loss occurs. Many

rules exist for determining how many PCs should be retained in order to adequately account for the

variation present in the original data (X) or in the standardized data (Z). One of the most straightforward

rules for choosing the number of PCs – which is also the method used in this research – is to determine a

desired minimum threshold for the cumulative percentage of total variation that the PCs should account

for. For example, if a threshold of 90% is chosen, then the number of PCs that should be retained is the

smallest number for which at least 90% of the total variance present in the original data is explained.

Practical threshold values for the amount of explained variance are generally in the range of 70–90%

[32]. However, the threshold may be lower or higher depending on the original data set; for example,

when the first and second PCs represent overly dominant and obvious sources of information and if the

smaller and less obvious variations are of particular interest, setting a threshold larger than 90% may be

more appropriate. However, setting the threshold too high may result in too many PCs being retained,

which complicates the interpretation of additional analyses and increases computation time. On the other

hand, setting a too low threshold (e.g. < 60%) may result in significant loss of information as too few PCs

are retained. It should be noted that many more methods and rules of thumb exist for determining how

many PCs to retain, some of which have been developed from a strong statistical point of view.

2.5.4 Benefits and drawbacks of PCA

Because PCA is a straightforward and non-parametric method for separating relevant information from

irrelevant information, it has become a staple data analysis technique across a wide range of disciplines.

Even though PCA clearly provides a number of benefits as indicated by its widespread use, every method

also has (potential) disadvantages that one should be aware of. This section serves to discuss some of the

benefits and drawbacks of PCA.

Since PCA makes no special assumptions on the input data it can be applied to nearly all numerical

datasets, which is one of the reasons for why PCA is nowadays applied in many fields. PCA can be

applied to small datasets, but becomes particularly useful when applied to large datasets (both in terms

of objects and variables) for a number of reasons; firstly, by extracting the most important information

and dropping redundant information and noise, PCA can reduce overfitting as a result of having too

many variables. The resulting dimensionality reduction has the added benefit of improving algorithm

performance, since a smaller data set directly translates to lower computation time. This is especially

valuable for computationally heavy algorithms such as agglomerative hierarchical clustering (see section

2.6), which has a time complexity of O (n3) and requires a memory of O (n2).
However, because PCA transforms a data set into a combination of independent weights, eigenvectors

and eigenvalues, the data produced by PCA can be difficult to interpret. Moreover, the meaning of the

original variables may be harder to assess based on the obtained PCs. Another drawback of PCA is directly

related to dimensionality reduction; even though PCA aims to explain as much as possible the variance

present in the original features, a reduction of dimensionality inherently comes with a loss of information.

This is particularly true when the PCs are not selected with care, which may result in the user unknowingly

omitting important information present in the original data.
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Fig. 2.10: Example of clustering, where the input data is separated into three clusters.

2.6 Clustering

Clustering (also called unsupervised classification, cluster analysis, or segmentation analysis) is a popular

data analysis technique for classifying a group of observations into several distinct groups called clusters. In

general, the act of data clustering separates a data set into several clusters in such a way that observations

belonging to the same cluster have similar characteristics, while observations in other clusters have

different (or dissimilar) characteristics, see Fig. 2.10.

Obtaining a set of clusters is rarely the end goal of a cluster analysis. Rather, the generated clusters

give insights into the structure of the data, which can aid the user in developing a better understanding of

the data. Hence, clustering should instead be seen as a knowledge-building tool for suggesting hypotheses

[76]. In the context of this research, clustering is used to define groups of grid points which may or may

not have distinct scattering characteristics. By investigating and comparing the obtained clusters, a better

understanding of the vegetation parameters may then be obtained.

Many clustering algorithms have been developed, each with their own assumptions on what exactly

constitutes a cluster and how to efficiently determine them. There does not exist one "best clustering

algorithm" that consistently outperforms the others, as different methods may be appropriate depending

on the type of problem and the type of data under investigation. Two popular clustering methods are

examined in the remainder of this section; hierarchical clustering and k-means clustering.

2.6.1 Hierarchical clustering

Hierarchical clustering methods seek to group data in a hierarchical structure based on a certain similarity

metric, yielding a sequence of nested clusters. In general, hierarchical clustering algorithms can be

classified into agglomerative methods or divisive methods, see Fig. 2.11. Agglomerative hierarchical

clustering algorithms are bottom-up algorithms that start with singleton clusters (i.e. clusters consisting of

a single element) and end with a single cluster containing all elements. During each step of the algorithm,

the two clusters that are most similar are merged into a single cluster. Conversely, divisive algorithms are

top-down approaches that work the other way around, starting with one cluster containing all elements

and splitting clusters along the way until each cluster consists of only one element.

Fig. 2.11: Top: agglomerative clustering, which starts with singleton clusters and merges clusters until one cluster remains. Bottom:
divisive clustering, which starts with one cluster and splits clusters until singleton clusters remain.
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Fig. 2.12: Example of the nested clusters obtained using hierarchical clustering (left), visualized by a corresponding dendrogram
(right). The data points (A . . . E) are clustered based on the distances between them. The height of each sub-tree represents the
similarity between each of the clusters along the hierarchy, and a set of clusters is obtained by cutting across the dendrogram.

Even though both approaches are able to determine the hierarchical structure present in a data set, it

should be noted that divisive algorithms are not commonly used due to their computational inefficiency

[48]. On the other hand, agglomerative algorithms are much more simple and efficient [22].
After the hierarchical clustering has been performed, the obtained hierarchy of clusters can be depicted

in a dendrogram, which is a tree-like graph that describes how easily certain (nested) clusters can be

merged based on how similar they are (Fig. 2.12). Moreover, a dendrogram visualises the order of cluster

merges or splits and how all nested clusters relate to each other in the hierarchy. After the dendrogram has

been determined, a specific set of clusters can be obtained by cutting across the dendrogram horizontally

at a certain height. As shown by the dashed lines in the dendrogram depicted in Fig. 2.12, different sets

of clusters are obtained when placing horizontal cuts in a dendrogram at different levels; the blue line

returns four clusters, the green line returns three clusters, and the red line returns two clusters. Hence,

hierarchical clustering can be performed without knowing how many clusters to generate.

2.6.1.1 Distances and similarities

As previously stated, clusters are defined as groups containing similar elements while the elements

of different clusters are dissimilar. In order to determine which clusters to merge (for agglomerative

algorithms) or split (for divisive algorithms), a measure for the similarity or dissimilarity between the

different data objects is needed. To quantify how similar two data points or two clusters are, similarity

metrics are used: the greater the similarity metric, the more similar are the two data points or two clusters.

Conversely, dissimilarity metrics quantify the differences between data points, with a greater dissimilarity

metric implying a larger difference between two data points or two clusters.

The concepts of similarity and dissimilarity are generally synonymous with the concept of distance, as

small distances between objects imply similarity, while large distances imply dissimilarity. In hierarchical

clustering, similarity is described by a distance metric combined with a linkage criterion. The distance

metric determines how the distance between individual objects should be calculated, while the linkage

criterion determines how the distance between different clusters should be determined, as a function of

the distances between their individual objects [76].

Distance metrics

Many functions exist for calculating the distance between observations in the case of continuous data

sets, with each distance function describing a different geometrical view of the data. Examples of distance

functions include Manhattan distance, Minkowski distance, Tchebyschev distance, Canberra distance,

and cosine similarity [22]. However, perhaps the most well-known distance function is the Euclidean

distance, which is also the distance that is usually implied when we speak of "distance" in the English

language. Since there are too many distance functions to treat each of them individually, three examples

are illustrated in this section: Euclidean distance, Manhattan distance, and Minkowski distance. The

differences between these metrics are best illustrated when considering two data points, see Fig. 2.13.
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Fig. 2.13: Euclidean distance, Manhattan distance, and Minkowski distance visualised.

The Euclidean distance is the distance of the shortest straight line that connects two points in n-dimensional

space. Assume we have two n-dimensional data points p = (p1, p2, . . . pn) and q = (q1, q2, . . . qn). The

Euclidean distance deuc(p,q) between points p and q can then be calculated using Eq. 2.11:

deuc(p,q) =

√

√

√

n
∑

i=1

(pi − qi)2 (2.11)

The Manhattan distance (also called the taxicab distance) is obtained by taking the sum of the horizontal

and vertical distances between two points on a grid. It is named after the shortest path a car would be

able to take on the island of Manhattan, where the streets are aligned in a grid layout. The Manhattan

distance dman(p,q) between points p and q is calculated using Eq. 2.12:

dman(p,q) =
n
∑

i=1

|pi − qi | (2.12)

The Minkowski distance is a generalization of the Euclidean distance (a = 2), the Manhattan distance

(a = 1), and the Chebyshev distance (a→∞). The Minkowski distance dmin(p,q) between points p and

q can be calculated using Eq. 2.13:

dmin(p,q) =
a

√

√

√

n
∑

i=1

|pi − qi |a (2.13)

It is important to select an appropriate distance metric when performing hierarchical clustering, as the

way in which pairwise distances are calculated can strongly influence the shape and size of the obtained

clusters. Two data points may have a small distance between them for one distance metric, but may be

farther apart when using a different distance metric. For example, consider the two points p at (0, 0) and

q at (1,1). The Euclidean distance between p and q is equal to deuc(p,q) =
p

2 = 1.41, the Manhattan

distance is equal to dman(p,q) = 2, and the Minkowski distance (a = 5) is equal to dmin(p,q) =
5p

2 = 1.15.

As such, significantly different clusters may be obtained for two different distance metrics.

Linkage criteria

Besides defining how to determine the distance between individual points, the linkage method for

determining the distance between sets of points must also be defined. The clustering algorithm will then

merge pairs of clusters so that the linkage criterion is minimized. While many of such linkage criteria

exist, this section limits itself to four well-known linkage criteria: single-, complete-, average-, and Ward

linkage.
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Fig. 2.14: Examples of linkage criteria for agglomerative hierarchical clustering: single, average, complete, and Ward linkage.

Single linkage

In the single linkage method (Fig 2.14a) the distance between a pair of clusters is defined by the distance

between the two closest objects of each cluster [41, 58]. Hence, single linkage is also known as the nearest

neighbor method. Single linkage suffers from so-called chaining effects; only one pair of points need to

be close in order to merge two clusters, irrespective of all other points. This can result in elongated and

spread out clusters which may not be compact enough. Consequently, two clusters with clearly different

characteristics could be merged if noise is present in the data set [56]. Another potential problem with

single linkage is that it exacerbates the "greedy" or "rich get richer" behavior of agglomerative hierarchical

clustering, meaning that larger clusters will tend to merge faster than smaller clusters. However, even

though single linkage is not robust to noise, it works well when clusters are far apart. Moreover, single

linkage is very efficient, making it the only practical linkage criterion when dealing with very big data sets.

Complete linkage

In contrast to single linkage, complete linkage (Fig 2.14b) defines the inter-cluster distance as the farthest

distance between a pair of points [56]. Complete linkage does not suffer from the chaining effects present

in the single linkage method, but instead has issues with crowding effects; because the inter-cluster distance

assumes the worst-case dissimilarity between pairs, a point can be closer to points belonging to other

clusters than to points in the same cluster. Even though complete linkage is able to find small and compact

clusters, the obtained clusters may not be far enough apart.

Average linkage

The average linkage method (Fig 2.14c), also called unweighted average linkage, defines inter-cluster

distance as the average of all pairwise distances between the points of two clusters [22]. Average linkage

tries to strike a balance between single linkage and complete linkage, so clusters are neither too compact

nor too far apart. The average linkage method exists in several similar forms: weighted average linkage,

in which the distances between a new cluster and the other clusters are weighted by the number of

observations in every cluster; and centroid linkage method, which defines the inter-cluster distances

between clusters as the distances between their centroids.

Ward linkage

Ward’s linkage method (Fig 2.14d), also known as the minimum variance method, aims to minimize the

increase of the within-cluster sum of squared errors [74, 56]. In other words, Ward’s method minimizes

the variance of the clusters being merged so that minimum information loss occurs with each merging.

Compared to single-, complete- and average linkage, Ward’s method yields the most regular cluster sizes

and is less sensitive to noise.It must be noted that Ward linkage should only be applied in conjunction with

the Euclidean distance metric, as Ward’s method computes centroids in Euclidean space. Since Ward’s

method is a variance-minimizing approach (i.e. it minimizes the sum of squared differences within all

clusters), it is somewhat comparable to the least-squares objective function of the k-means clustering

algorithm, but applied with an agglomerative hierarchical approach [76].
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Fig. 2.15: Visual example of the K-means algorithm, with randomly initialized means

2.6.2 K-means clustering

The k-means algorithm was introduced by Macqueen [39] and has grown to be one the most well known

and popular clustering algorithms due to its ease of implementation [16]. In contrast to hierarchical

clustering – which builds a nested cluster hierarchy – the k-means algorithm is a so-called partitioning

method which seeks to divide a given data set into a predefined number of k clusters based on an initial

partitioning. Even though k-means does not generate a cluster hierarchy, it is similar to hierarchical

clustering in that both are hard clustering methods, which means that each observation is assigned to only

one cluster. Moreover, k-means is also aimed at maximizing the similarity of points within one cluster

while minimizing the similarity of points belonging to different clusters. The algorithm uses an iterative

refinement method to find the best partition of k clusters by minimizing a sum-of-squared-error criterion.

The most basic form of k-means (see Fig. 2.15) is outlined by the following computation procedure:

1. Initialize k random cluster means (or centroids);

2. Assign every point to its closest centroid, i.e. the centroid with the least squared Euclidean distance;

3. Recalculate the new centroid of every cluster;

4. Repeat steps 2 and 3 until point assignments stop changing for every cluster (convergence).

Several initialization methods exist, such as the Forgy method and the Random Partition method: the

Forgy method randomly selects k points from the data set as starting points, while the Random Partition

method first assigns each point to a random cluster and then uses the cluster centroids as starting points.

K-means has several desirable properties that have contributed to its popularity. Firstly, K-means can be

easily implemented and functions well for a wide range of problems, especially when the clusters are dense

and spherical. Moreover, for an input data set of size n and a number of clusters k, the time complexity of

k-means is defined as O (nk), which is approximately linear as the value of k is often much smaller than n.

In other words, the computational complexity of k-means is approximately linearly proportional to the

size of the input data set, which makes it relatively efficient at clustering big data sets [76].
However, the k-means algorithm also has significant disadvantages. One big drawback of k-means is

caused by the initialization step: since the end result depends on randomly initialized cluster centroids, it

is not certain that the global optimum will be found by the k-means algorithm – instead, k-means often

terminates at a local optimum. To make matters worse, k-means may not converge at all if any other

distance metric than Euclidean distance is used. The random initialization may also result in different

clusters for each run. Sadly, no efficient and universal method exists for centroid initialization [22].
Another issue with k-means is that it assumes that the value k is known a priori, even though this is

not the case in practice. Choosing a proper value for k is important, as poor results could be obtained

when choosing an inappropriate choice of k. Similar to the problem of centroid initialization, no efficient

and universal method exists for determining an appropriate value of k [22].
Finally, k-means is quite sensitive to noise, as the algorithm also considers outliers in calculating the

cluster means. Points that located far from any cluster centroid are forced into one of the clusters, which

shifts its cluster mean far away from its "true" mean and distorts the shapes of all clusters.
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2.6.3 Comparing clustering algorithms

Agglomerative hierarchical clustering and k-means clustering both have their strengths and weaknesses.

The choice for which algorithm and corresponding settings to use depends on the purpose of the clustering

and on the type and size of the data set. This section serves to compare the characteristics, advantages

and disadvantages of both clustering methods.

Efficiency

The time complexity of k-means increases linearly with the amount of observations n, i.e. O (n), while the

time complexity of most agglomerative hierarchical clustering algorithms is qubic, i.e. O (n3). This makes

agglomerative hierarchical clustering impractical when dealing with big data sets, whereas k-means is

more scalable. However, as discussed in section 2.5, the application of PCA may significantly lower the size

of the data set. Hence, even though k-means will still be more efficient than hierarchical clustering when

PCA is applied, hierarchical clustering may still be a practical choice. Put simply, if hierarchical clustering

takes one second to complete and k-means clustering takes 0.01 second to complete after applying PCA,

the fact that k-means is 100 times faster than hierarchical clustering is practically irrelevant.

Consistency

Hierarchical clustering is deterministic, meaning that the same results are obtained for different runs if

the settings are the same. On the other hand, the initialization step of the k-means algorithm introduces

randomness, which may lead to k-means generating different results for different runs even if the settings

are identical. As such, results obtained by k-means may not always be reproducible. Moreover, hierarchical

clustering produces a hierarchy of nested clusters that is informative and internally consistent, while

k-means simply partitions the input data without providing any additional information of its internal

structure.

Similarity

The basic k-means algorithm specifically requires the use of Euclidean distance and may not be able to

converge if any other distance metric is used. On the other hand, many distance metrics and linkage

criteria can be used to perform hierarchical clustering, with the choice of similarity metrics often depending

on the application and goals of the clustering. While the ability to choose from different distance metrics

and linkage criteria in hierarchical clustering can be interpreted as additional complexity, it also makes

hierarchical clustering more flexible and provides many more possibilities than k-means.

Number of clusters

K-means requires prior knowledge about the number of clusters k, which is often unavailable in practice.

On the other hand, hierarchical clustering does not require the user to know k, as k can be chosen

afterwards based on knowledge obtained from the resulting hierarchy and dendrogram. However, when a

certain set of clusters and their characteristics are further investigated – as is done in this research – an

appropriate value for k must be chosen at some point. Therefore, several methods that help determine an

appropriate value of k are discussed in section 3.5.2.

2.6.4 Choice of algorithm

Even though hierarchical clustering is less computationally efficient than k-means clustering, iterative

testing showed that a combination of hierarchical clustering and PCA for dimensionality reduction resulted

in acceptable computation times that are comparable to k-means. Since this solves the main drawback of

hierarchical clustering, the aforementioned combination was chosen as the preferred clustering approach.
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Data and methods

This chapter describes the data products used in this research, as well as all methods regarding data

preprocessing and clustering. Firstly, a description of the study area is given in section 3.1. The ASCAT

data and land cover data are discussed in section 3.2 and section 3.3, respectively. The implementation

of the principal component analysis is treated in section 3.4, and the methods related to clustering are

explained in section 3.5. Finally, section 3.6 introduces the concept of cluster robustness, as well as a

method for determining cluster robustness.

3.1 Study area

The study region consists of the entirety of France, extending from 42◦N to 51◦N and 4◦W to 8◦E and

covering over 640.000 km2. Most of France has a temperate oceanic climate [36]. However, four distinct

climatic zones exist within France: oceanic climate (Köppen-Geiger climate type: Cfb), continental climate

(Dfb), Mediterranean climate (Csa, Csb), and mountain climate (Dfc, ET) [49].
The oceanic climate can mainly be found in the western parts of France (e.g. Brittany, Normandy) and

is characterized by cool summers and mild winters, resulting in a relatively narrow annual temperature

range compared to other areas at comparable latitudes. Moreover, temperate oceanic climates generally

lack a dry season, with average precipitation spread relatively evenly throughout the year. The continental

climate found in the eastern and central areas of France (e.g. Champagne, Burgundy and Alsace) is

characterized by higher precipitation, warmer summers and colder winters compared to areas with an

oceanic climate. The Mediterranean climate is found in southern France (e.g. Provence, Côte d’Azur) and

is characterized by little precipitation, mild winters, hot summers, and a distinct dry season. Finally, the

mountain climate is located in areas with relatively high altitude such as the Alps, Pyrenées, and Central

Massif, and are characterized by cold winters, cool summers and abundant precipitation.

Due to its overall temperate climate and the aforementioned climate zones, vegetation cover in France

is relatively heterogeneous. The main vegetation cover types are rainfed cropland (both summer and

winter crops), grasslands, deciduous and coniferous forests. Over 50% of the total land area of France

consists of arable and pastoral land [44]. Arable land is mainly used for the production of cereal crops, of

which wheat and corn are the most dominant crops, while barley and oats are significantly less popular.

Even though the majority of cereal production occurs in south-west France and in the Paris Basin, there

are few areas in France where cereal crops are entirely absent [51]. Deciduous and coniferous forests

cover an area of approximately 180.000 km2, or around 28% of the total surface area of France. Finally,

grasslands make up approximately one-third of the agricultural area [26]. The heterogeneous land cover

of France provides the opportunity to study the behavior of σ◦40, σ′, and σ′′ over a diverse set of land

cover classes and vegetation types.
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Fig. 3.1: Map depicting all 3492 grid points in the study
region of France. Each of the 3492 grid points represents an
area of 25 x 25 km2.

Fig. 3.2: Seasonal climatology of σ◦40, σ′ and σ′′ for
each of the grid points shown in Fig. 3.1, derived from
the 10-year time series shown in Fig. 3.3.

Fig. 3.3: The 10-year time series of dynamically estimated slope (σ′) and curvature (σ′′) for each grid point shown in Fig. 3.1.

3.2 ASCAT data

Ten years of MetOp-A ASCAT SZR Level 1b Fundamental Climate Data Record backscatter data were

obtained, to which three preprocessing steps were applied: the backscatter observations were resampled

to a fixed Earth grid [45]; an intra- and interbeam calibration was performed [53]; and azimuthal effects

were accounted for [4].
For every grid point in the study region, the 10-year time series of the backscatter coefficient (σ◦40,

normalized to the reference incidence angle θr = 40◦), slope (σ′), and curvature (σ′′) were extracted.

The slope and curvature were dynamically estimated with the new method proposed by Melzer [42] and a

kernel width of λ = 21 days. Moreover, the seasonal climatology was determined for σ◦40, σ′, and σ′′. For

σ′ and σ′′, the seasonal climatology was determined by averaging the daily values across the obtained

10 years of dynamically estimated daily σ′ and σ′′ data. However, in order to determine the seasonal

climatology of σ◦40, the data was first aggregated into 10 day intervals before averaging across the 10

years. This was necessary because only a limited number of values are available for any given day of the

year due to the revisit time of MetOp-A, which takes two days to entirely cover the Earth’s surface.
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Fig. 3.4: Land cover data set for France for the year 2016, generated using the approach proposed by Inglada et al. [29]. This land
cover data set has a resolution of 10 m and is available at http://osr-cesbio.ups-tlse.fr/

3.3 Land cover data

In order to improve our understanding of the relationship between land cover and the vegetation parame-

ters, an accurate land cover data set of France is needed. The land cover data set used in this research

was obtained from the Theia Data and Services Center (https://www.theia-land.fr/en), which is a

France-based initiative aimed at developing and distributing high-quality data products related to the

observation of continental surfaces, primarily based on satellite data. This section describes the Theia

land cover data set, and how this data set was rescaled to the ASCAT grid.

3.3.1 Theia land cover data set

This research makes use of the 2016 Theia land cover data set of metropolitan France (Fig. 3.4). This

data set was generated using a classical supervised classification procedure in which existing data bases

were used as reference data for training and validation [29]. The procedure described is able to handle

large volumes of data and can be applied over large territories to produce land cover maps automatically

in very short production times; a detailed description of the procedure is given by Inglada et al. [29].
The 2016 Theia land cover data set is mainly based on Sentinel-2 data acquired between the end of

2015 to the end of 2016. Landsat-8 data was not directly used for land cover classification, but the use

of Landsat-8 data from 2014 until the end of 2016 was necessary to transfer classifier training to 2016

Sentinel-2 data. The data set has a resolution of 10 m, with each pixel assigned one of 17 possible land

cover classes. In order to relate the σ◦40, σ′, and σ′′ of a grid point to its land cover footprint, the 10 m

resolution Theia data set was first rescaled to the 25 km resolution ASCAT grid.
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Fig. 3.5: Rescaling the Theia land cover data set to the ASCAT grid. The exact location of an example ASCAT grid point (GPI =
2283605) with coordinates (44.573316◦, 2.360628◦) is denoted by a black cross.

3.3.2 Rescaling to ASCAT grid

This section will describe the processing steps that were performed to rescale the Theia land cover data set

to the ASCAT grid. The resulting land cover data set contains the land cover composition of each ASCAT

grid point, i.e. the average fractions of each of the 17 land cover classes for each grid point.

Since each ASCAT grid point covers an area of 25 x 25 km2 and each Theia grid point covers an area

of 10 x 10 m, each ASCAT grid point will consist of 2500 x 2500 Theia grid points. Hence, for each ASCAT

grid point an array of 2500 x 2500 land cover grid points must be extracted from the Theia land cover

data set. It is assumed that each ASCAT grid point is located at the center of its corresponding 2500 x

2500 land cover array. For example, Fig. 3.5 shows an ASCAT grid point (GPI = 2283605, marked with a

black cross) with coordinates (44.573316◦, 2.360628◦) sitting at the center of a 2500 x 2500 array of grid

points, extracted from the Theia land cover data set.

After extracting the appropriate Theia grid points, the number of occurrences of every land cover

class are counted. Finally, the fraction of every land cover class is calculated relative to the total number

of grid points (i.e. 2500× 2500 = 6.25 · 106 grid points). For example, if a certain ASCAT grid point

contains 2.25 · 105 grid points labeled as class 11 (annual summer crops), then that grid point has a class

11 fraction of 2.25 · 105/6.25 · 106 = 0.036, or 3.6% (see Fig. 3.5). This procedure is repeated for all

land cover classes and all ASCAT grid points, yielding a data set describing the land cover composition of

each grid points in terms of 17 land cover classes. Using the resulting data set, the land cover classes can

be mapped individually; three land cover classes are mapped in Fig. 3.6, and all land cover maps can

be found in Appendix A.3. Finally, it must be noted that recent land cover data sets generated by Theia

distinguish between even more land cover classes, which may be interesting for future research.

(a) Class 11: Annual summer crops (b) Class 12: Annual winter crops (c) Class 32: Coniferous forest

Fig. 3.6: Rescaled Theia land cover data set. Each land cover class is mapped separately and colored by their fractions.
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3.4 Principal component analysis

3.4.1 Feature scaling

Since PCA is a variance maximizing exercise, the input data must be standardized before carrying out

the PCA to ensure that the proper PCs are found. The StandardScaler module of scikit-learn [47]
was used to perform standardization, taking as input the (3492× 365) σ′ climatology and yielding the

(3492× 365) standardized σ′ climatology.

3.4.2 Explained variance score

The explained_variance_score module of scikit-learn is used to calculate the ratio of variance that

is explained by the PCA approximation relative to the total variance present in the original data, which

is denoted by η2. The best possible score of η2 = 1 indicates that all variance in the original data is

accounted for. It is possible for η2 to be negative – this indicates that the mean of the ’correct’ values is a

better predictor than the estimated target values. Given an estimated target output ŷ and a corresponding

correct target output y , the explained variance score η2 can be calculated using Eq. 3.1:

η2(y, ŷ) = 1−
Var{y − ŷ}

Var{y}
(3.1)

where Var{y − ŷ} and Var{y} are given by Eq. 3.2 and Eq. 3.3, respectively.

Var{y − ŷ}=
∑

[yi − ŷi − E(y − ŷ)]2

n− 1
(3.2)

Var{y}=
∑

(yi − ȳ)2

n− 1
(3.3)

3.4.3 Choosing m, the number of principal components

As described in section 2.5.3, the number of PCs to retain can be determined by defining the minimum

percentage of total variance present in the input data set that should be accounted for by the retained

PCs. In this study, a threshold of η2 ≥ 0.99 is chosen so that at least 99% of the variance present in the

standardized σ′ climatology is explained by the first m PCs.

The PCA was performed using the PCA module of scikit-learn, taking as input the (3492× 365)

standardized σ′ climatology and yielding a (3492× 365) array of PCA projections, i.e. 365 weights for

each grid point, with each weight corresponding to one of the 365 PCs. The value of m is then equal to

the number of PCs for which η2 ≥ 0.99 is satisfied. Finally, the (3492× 365) array of PCA projections is

truncated to a size of (3492×m), which is the reduced data set on which the hierarchical clustering is

performed. The full PCA implementation is given in Listing 3.1.

Listing 3.1: Implementation of the described PCA.

1 from sklearn.preprocessing import StandardScaler

2 from sklearn.decomposition import PCA

3
4 data_zscore = StandardScaler().fit_transform(slo.T) # standardize the slope climatology

5 min_exp_var = 99 # desired minimum % of explained variance

6 pca_fit = PCA().fit(data_zscore) # fit PCA model

7 exp_var_ratio = np.cumsum(pca_fit.explained_variance_ratio_) * 100 # cumulative exp_var ratio [%]

8 n_PCs = np.where(exp_var_ratio >= min_exp_var)[0][0] # find n_PCs so that exp_var_ratio >= 99%

9 data_PCA = PCA(n_components=n_PCs).fit_transform(data_zscore) # perform PCA, retain n PCs
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3.5 Clustering

3.5.1 Algorithm and settings

Taking into account the advantages and disadvantages of k-means clustering and (agglomerative) hier-

archical clustering described in section 2.6.3, agglomerative hierarchical clustering with Ward’s linkage

criterion was chosen as clustering method. As discussed in section 2.6.1.1, there exist many methods to

compute the distance between elements of a set. However, Euclidean distance is the only option when

applying Ward’s method as linkage criterion. Agglomerative hierarchical clustering is available in the

AgglomerativeClustering module of scikit-learn, which also contains support for Ward’s method.

At the time of writing, visualisation of dendrograms is not implemented in scikit-learn; instead, the

linkage and dendrogram modules of scipy [68] were used to calculate the linkage and distance matrices

and plotting the dendrogram. Clustering is performed on the reduced (3492×m) data set obtained from

the PCA, see section 3.4.3.

3.5.2 Choosing k, the number of clusters

In order to form a set of k clusters, the dendrogram must be cut at a certain level after hierarchical

clustering has been performed. It is important to choose a correct value of k, as either over-estimating or

under-estimating k will affect the quality of the obtained clusters. A too high value of k results in too

many clusters, which makes it difficult to interpret the results. Conversely, a too low value of k causes

significant information loss which can lead to misleading interpretations of the results.

The best value for k can be determined by performing a number of clustering iterations using different

values of k and evaluating the performed clustering during each iteration using a performance index;

the best value of k is then the value that corresponds with the highest performance index. In general,

performance indices assess the quality of the obtained clusters based on within-cluster similarity, between-

cluster dissimilarity, or a combination of the two. In their study, Milligan and Cooper [43] compared

and ranked 30 performance indices in terms of their performance on several artificial data sets. While

the Calinski-Harabasz index (CH) [11] was found to be the best performing index, the Davies-Bouldin

index (DB) [12] and the Silhouette index (SIL) [54] are also applied in this study. Additionally, the more

recently proposed ’L-method’ by Salvador and Chan [55] for determining k was implemented in this study.

The CH, DB, and SIL indices are so-called internal validation measures, which are measures that validate

clustering based on the compactness of clusters and the separation between clusters. The compactness of a

cluster describes how closely related its objects are based either on within-cluster variance or within-cluster

distance, while the separation between clusters describes how distinct a given cluster is compared to all

other clusters, generally based on between-cluster distances.

3.5.2.1 Calinski-Harabasz index

The CH index introduced by Calinski and Harabasz [11] is implemented in the calinski_harabasz_score

module of scikit-learn. Higher CH scores indicate better clustering performance and hence, the best

value of k is found by maximizing CH. To calculate CH for a data set of N elements partitioned into K

clusters C1 . . . CK , first the within- and between-cluster dispersion must be defined. For each cluster k, the

within-cluster dispersion Wk is the sum of squared distances between the observations M i
k and the cluster

centroid Gk:

Wk =
∑

i∈Ck

‖M i
k − Gk‖2 (3.4)
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The total within-cluster dispersion W is then the sum of all within-cluster dispersions:

W =
K
∑

k=1

Wk (3.5)

The between-cluster dispersion B is the weighted sum of squared distances between Gk and the centroid

of the entire data set G, weighted by the number of elements nk in each cluster:

B =
K
∑

k=1

nk‖Gk − G‖2 (3.6)

Ultimately, the CH index is calculated using Eq. 3.7:

CH =
B/(K − 1)

W/(N − K)
=

N − K
K − 1

B
W

(3.7)

3.5.2.2 Davies-Bouldin index

The DB index introduced by Davies and Bouldin [12] attempts to maximize the within-cluster similarity

while minimizing the between-cluster similarity. Lower DB values indicate better clustering perfor-

mance. Hence, the best value of k is found by minimizing DB. The DB index is implemented in the

davies_bouldin_score module of sklearn and can be calculated as follows. First, the mean distance δk

of the points of cluster Ck to the cluster centroid Gk (i.e. the mean within-cluster similarity) is defined as:

δk =
1
nk

∑

i∈Ck

‖M i
k − Gk‖2 (3.8)

Furthermore, the distance ∆kk′ between the centroids Gk and Gk′ of clusters Ck and Ck′ (i.e. the between-

cluster similarity of clusters k and k′) is defined as:

∆kk′ = ‖Gk′ − Gk‖2 (3.9)

For each cluster k the maximum Mk of the quotients ∆−1
kk′(δk +δk′) is calculated for all indices k′ 6= k. The

DB index is then the mean of all Mk values:

DB =
1
K

K
∑

k=1

Mk =
1
K

K
∑

k=1

max
k′ 6=k

�

δk +δk′

∆kk′

�

(3.10)

3.5.2.3 Silhouette index

The SIL index introduced by Rousseeuw [54] is implemented in the silhouette_score module of sklearn.

The optimal value of k is found by maximizing SIL. First, the mean within-cluster distance ai is defined as

the mean distance of point Mi to all other points in the same cluster Ck:

ai =
1

nk − 1

∑

i′∈Ck

d(Mi , Mi′) (3.11)

Furthermore, the mean distance δ(Mi , Ck′) of Mi to the points of other clusters Ck′ is defined as:

δ(Mi , Ck′) =
1

nk′

∑

i′∈Ck′

d(Mi , Mi′) (3.12)

27



Chapter 3. Data and methods 3.5. Clustering

The smallest mean distance bi of δ(Mi , Ck′) is then defined as:

bi =min
k′ 6=k

δ(Mi , Ck′) (3.13)

The silhouette width si can then be calculated for a point Mi using:

si =
bi − ai

max(ai , bi)
(3.14)

Finally, the SIL index is calculated using Eq. 3.15:

SI L =
1
K

K
∑

k=1

sk where sk =
1
nk

∑

i∈Ck

si (3.15)

3.5.2.4 L-method

After performing a hierarchical clustering, the resulting dendrogram contains the hierarchy of merges

as well as the similarity at every merge (see section 2.6.1). From this dendrogram a ’number of clusters

vs. similarity’ evaluation graph can be constructed (Fig. 3.7). The L-method proposed by Salvador and

Chan [55] is used to find the knee of a ’k vs. similarity’ graph resulting from hierarchical clustering, where

the location of the knee indicates the best value of k. No Python implementation of the L-method exists;

instead, the L-method was implemented based on the procedure described by Salvador and Chan [55].
Consider the evaluation graph shown in Fig. 3.7. The x-axis ranges between 2 . . . b, so the graph

consists of b − 1 elements. The graph is partitioned at x = c into a left sequence Lc (2 ≤ x ≤ c) and

a right sequence Rc (c + 1 ≤ x ≤ b). If RMSE(Lc) and RMSE(Rc) are the root mean squared error of

the best-fit lines for Lc and Rc , then the total root mean squared error RMSEc is defined by Eq. 3.16,

where RMSE(Lc) and RMSE(Rc) are weighted proportional to their size. After partitioning the data at all

3≤ c ≤ b− 2 and calculating RMSEc for each c, the best value of k is found where RMSEc is minimized.

RMSEc =
c − 1
b− 1

RMSE(Lc) +
b− c
b− 1

RMSE(Rc) (3.16)

Fig. 3.7: Example of a ’k vs. similarity’ to which the L-method was applied. The data
is partitioned at x = c, yielding Lc , Rc and the knee region, which gives an indication
of the best value of k [55].
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3.6 Robustness

Currently, the seasonal climatology of σ′ and σ′′ coefficients are obtained using multiple years of local

σ′ observations. As a result, a clustering performed on the seasonal climatology of σ′ does not provide

insight into if and how the clusters change over time. However, if hierarchical clustering is performed on

each of the 10 available years of σ′ data it becomes possible to investigate the clusters on an annual basis.

For example, consider a certain grid point p for which 10 cluster labels have been determined. If p

is assigned the same cluster label for every year of σ′ data – e.g. {3, 3, 3, 3, 3, 3, 3, 3, 3, 3} – then the

behavior of σ′ in point p is relatively similar for all years and point p clearly belongs to cluster 3. In other

words, the clustering of point p is robust. Conversely, consider another grid point q for which the assigned

cluster labels are not the same for every year. For example, if q is assigned the labels {1, 1, 0, 0, 0, 2, 2, 2,

2, 2} then point q does not belong to only one cluster as a result of the larger interannual variability of σ′

in point q. In this case, the clustering of point q would be less robust than point p.

3.6.1 Annual clustering

In order to perform hierarchical clustering on each of the 10 years of σ′ observations separately, some

preprocessing steps are required. As shown in Fig. 3.3, the 10-year σ′ data set consists of 3492 grid points,

with 3653 daily values (7 years of 365 days and 3 leap-years of 366 days) for each grid point. Firstly, the

10-year data set is split by year into 10 separate data sets; each set consists of 3492 grid points, with 365

daily values per grid point (Fig. 3.8). Finally, the 10 sets are combined again into one (34920× 365) data

set, on which a PCA is performed as described in section 3.4 in order to reduce the dimensionality and

improve computation time of clustering. Finally, hierarchical clustering is performed on the reduced data

set obtained from the PCA. It should be noted that leap-years are disregarded in this analysis, as many

clustering algorithms including hierarchical clustering require all objects that are to be clustered to have

an equal number of features. Hence, all leap-years are truncated to a length of 365 days.

Fig. 3.8: 10 years of σ′ data, split into 10 separate (3492× 365) data sets.

3.6.2 Robustness score

As previously discussed, the hierarchical clustering yields one cluster label for every year for every grid

point, i.e. a set of 10 labels are obtained for every grid point. In order to quantify the clustering robustness

for every grid point, two factors are taken into account: (1) the number of unique cluster labels assigned

a grid point |N |; and (2) the number of times that the cluster label changed N̂ . The robustness score R is

then defined by R= |N |N̂ , with lower values indicating better robustness.

Using the previous example, point p was assigned the cluster labels Np = {3,3,3,3,3,3,3,3,3,3},
which gives |Np| = 1 and N̂p = 0 and results in a good robustness score of Rp = 1 · 0 = 0. On the other

hand, point q was assigned the cluster labels Nq = {1,1,0,0,0,2,2,2,2,2}, which gives |Nq| = 3 and

N̂q = 2 and results in a worse robustness score of Rp = 3 · 2= 6.
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Results and discussion

In this chapter the results of the performed analyses are discussed. First, the original data is screened for

perturbations. Second, the required number principal components is determined, a PCA is carried out, and

the principal components are investigated. Third, the optimal number of clusters is determined and the

defining characteristics of the resulting clusters are investigated. Fourth, the potential relationship between

σ◦40, σ′, and σ′′ and sub-footprint land cover heterogeneity is explored. Fifth and finally, robustness scores

of grid points and clusters are determined and analysed in relation to their land cover footprint.

4.1 Data screening
Perturbations can be observed in the original data set, especially in the seasonal climatology of σ′ and σ′′

around day 60 and 260, see Fig. 4.1a. These perturbations may be caused by missing/spurious σ◦40 data

during one or several periods, either due to calibration activities or instrument error(s). Perturbations in

the input data should be corrected to ensure that the right principal components are found, and hence,

to ensure proper clustering. To remove these perturbations, the average σ◦40, σ′and σ′′ signatures were

recalculated for each grid point using the 10 years of available σ◦40, σ′, and σ′′ data, see Fig. 4.1b.

(a) Perturbations in the original data set around day 60 and day 260

(b) Data after removing perturbations

Fig. 4.1: Input data before and after correction of perturbations around day 60 and 260

4.2 Principal component analysis

4.2.1 Determining the number of principal components

As explained in section 3.4, the number of PCs is chosen so that the percentage of explained variance is at

least 99%. In Fig. 4.2a, it can be seen that the first PC explains the largest amount of the variance present

in the data set (approximately 75%), and the percentage of explained variance decreases for subsequent

PCs. The cumulative explained variance is plotted against the number of PCs in Fig. 4.2b, which shows

that 99% of the total variance present in the input data set is explained when at least five PCs are retained.
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Moreover, it should be noted that approximately 91% of the total variance is explained by the first two

PCs and approximately 96% is explained by the first three PCs, suggesting there is a possibility that three

PCs are sufficient for some grid points. However, this is likely not true for all grid points; it may be that

other grid points require significantly more than five PCs before their data is well represented. Hence, it

should be investigated whether differences exist between areas in terms of how many PCs are required.

(a) Percentage of total variance explained by each of the
PCs. (b) Cumulative percentage of explained variance

Fig. 4.2: Variance explained by the principal components

4.2.2 Investigating the principal components

In order to explain at least 99% of the variation present in the original data, at least five PCs should be

retained; these first five PCs are plotted in Fig. 4.3a. The standardizedσ′ observations can be reconstructed

by combining a set of weights with each of their corresponding PCs (as described in section 2.5). This

process is visualized for a single grid point in Fig. 4.3b, which shows that the reconstructed signal of

this particular grid point does not significantly improve when more than three PCs are retained. This

also suggests that the number of PCs required to accurately estimate the original data differs between

grid points, since only three PCs may have been required even though five PCs were retained. Several

more examples are provided in appendix B Fig. B.1, which visualizes the differences between a number of

grid points in terms of how many PCs are required before their η2 ≥ 99%. The number of PCs that are

required to describe the original signal depends on the shape of the standardized σ′ signal. For example,

grid points with a standardized σ′ signal that is very similar to the shape of the first PC are likely to be

described mostly by the first PC, i.e. the weight corresponding with the first PC is largest. On the other

hand, for grid points where the standardized σ′ signal is very complex or noisy and is not similar to any

specific PC, significantly more PCs are required to properly estimate the original signal. By applying PCA

and using the obtained weights as input for clustering, the size of the original data set is reduced from

(3492 x 365) to (3492 x 5) – a decrease of 98.6% – while the essence of the original data set is retained.

(a) Plots of the retained principal components

(b) Reconstructing the original data of a grid point using the first five PCs.

Fig. 4.3: Principal Components
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(a) First PC (b) First two PCs (c) First three PCs

(d) First four PCs (e) First five PCs

Fig. 4.4: η2 mapped for cumulative combinations of PCs. η2 is set to zero for grid points where η2 < 0.

4.2.3 Spatial characteristics of the principal components

In order to investigate whether there is some sort of spatial rationale underlying the PCs, the explained

variance score η2 (see section 3.4.2) is calculated for all grid points and all cumulative combinations of

PCs using Eq. 3.1; these values are subsequently mapped in Fig. 4.4. Fig. 4.4a shows that especially

Paris (and other smaller, highly urbanized areas) as well as coastal grid points and (to a lesser degree)

the Alps and Pyrenees, perform significantly worse in terms of η2 than the rest of France when only

the first PC is used. For two PCs (4.4b), η2 significantly improves for the area surrounding Paris, the

south-west of France and the Alps. For Paris and other urban areas η2 improved but still performs poorly

compared to the rest of France. When using three PCs these area significantly improve, see Fig. 4.4c. The

central-north-west area of France has relatively poor η2 for three PCs compared to the rest of France, but

η2 in this area improves when using four PCs. The maps showing the effect of including the fourth (Fig.

4.4d) and fifth (Fig. 4.4e) are quite similar, with η2 improving similarly in nearly all areas. Additionally,

the performance of cumulative combinations of the first twelve PCs is provided in appendix B.2, which

shows that improvements of η2 are marginal in nearly all grid points when retaining seven or more PCs.

However, differences between areas are visible even when twelve PCs are retained, suggesting that some

areas are simply more difficult to represent than others using PCA.

Fig. 4.4 indicates that spatial information is present in the retained PCs. This can be explained by the

fact that the most important PCs are found in the directions of the largest variations. Since the PCA is

based on σ′ ("vegetation density") the first few PCs will contain information about the main seasonal cycle

of vegetation density. As shown in Fig. 4.3a, the first three PCs suggest that the lowest variation between

the grid points occur during summer (when all vegetation is dense) and the largest variation occurs

during autumn and winter (when only some vegetation is dense). This may be why areas containing

relatively little vegetation (e.g. urban areas such as Paris and Lille) perform poorly in terms of η2 when

only one or two PCs are used. If the first couple of PCs mainly capture information about vegetation, it

follows that data from areas with little vegetation (and hence, weak/noisy seasonal σ′ behavior) cannot

be summarized by the first few PCs but will require more PCs before they can properly be described.

32



4.3. Determining the number of clusters Chapter 4. Results and discussion

(a) Calinski-Harabasz index (b) Davies-Bouldin index (c) Silhouette index

Fig. 4.5: Performance metrics for determining the number of clusters

4.3 Determining the number of clusters

In this section, an appropriate number of clusters k is determined. k is chosen based on the methods

described in section 3.5.2. For the Calinski-Harabasz index, the Davies-Bouldin index and the Silhouette

index, clustering is performed for k = 2 . . . 30. For each value of k, the Calinski-Harabasz score, Davies-

Bouldin score, and the Silhouette score are determined as described in section 3.5.2.

4.3.1 Calinski-Harabasz index

The CH index is plotted for different values of k in Fig. 4.5a, where higher scores indicate clusters of

higher quality. The highest and second-highest scores are reached for 3 and 6 clusters, respectively. CH

decreases for higher values of k. The general optimum is obtained for k between 3–10 clusters.

4.3.2 Davies-Bouldin index

For the DB index, lower values indicate clusters of higher quality. The lowest, second lowest, and third

lowest scores are reached for 6, 10 and 13 clusters respectively, see Fig. 4.5b. Even though the choice for

two clusters results in a good DB index, it is assumed that two clusters would be too general for further

analysis. DB shows a general optimum for k between 6–13 clusters.

4.3.3 Silhouette index

For the SIL index, higher values indicate clusters of higher quality. Similar to the DB index, it is assumed

that two or three clusters would be too general for further analysis, even though Fig. 4.5c shows that

these values of k result in relatively good SIL scores. The best scores are found for 6, 9 and 13 clusters.

SIL shows a general optimum for k between 6–13 clusters.

4.3.4 L-method

Agglomerative hierarchical clustering is applied in this study, which initially treats each individual obser-

vation as a separate cluster. This results in an evaluation graph with a size equal to the input data set (in

this case therefore 1< k < 3492). However, the merges that occur at a very fine level (for a very large

number of clusters) are irrelevant. These relatively irrelevant data points – which are all located on the

right side of the evaluation graph – will start to dominate the solution of the L-method. Due to the large

number of points located to the right of the "actual" optimum value of k, the relatively few points left of

the "actual" optimum become statistically irrelevant, leading to the knee being significantly overestimated.

As described by Salvador and Chan [55], in order for the L-method to perform best it is recommended

that the sizes of the two best-fit lines (i.e. Lc and Rc , see section 3.5.2.4) are comparable in size. As such,

the evaluation graph was truncated after x = 100 (i.e. kmax = 100).
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Dendrograms – also known as "tree diagrams" – are used to visualize the internal structure of an

agglomerative hierarchical clustering (i.e. the performed subsequent merges from bottom to top), with

cluster merges on the x-axis and the similarity between clusters (e.g. distance) on the y-axis. The

dendrogram of the performed clustering is plotted in Fig. 4.6a. In order to apply the L-method, the cluster

merges originating from the dendrogram are recalculated to a vector containing a range of k-values,

which are plotted against their respective similarities in Fig. 4.6b; this is the evaluation graph on which

the L-method will be performed. For different numbers of clusters, RMSEc is calculated by finding the

best-fit lines for Lc and Rc as described in 3.5.2.4, see Fig. 4.6c. Finally, when plotting RMSEc against

the number of clusters a clear optimum is found for k = 10 clusters, see Fig. 4.6d, with the knee region

ranging between approximately 8–13 clusters.

(a) Dendrogram (b) Similarity plotted against number of clusters

(c) Knee with best-fit lines for Lc and Rc (d) RSM EC with optimum around 10 clusters

Fig. 4.6: Determining the best number of clusters using the L-method by Salvador and Chan [55]

4.3.5 Choice for number of clusters

Four different methods were applied to determine a good value for k. Even though the Calinski-Harabasz

score, the Davies-Bouldin score, and the Silhouette score do not agree on a specific optimal value for

k, there is a general agreement between the different metrics. The Calinski-Harabasz score, the Davies-

Bouldin score, and the Silhouette score perform well for very low values of k (e.g. 2 or 3 clusters).

However, a k-value of just two or three clusters may be insufficient for further analysis, as it would lead to

clusters that are very general. In other words, choosing k = 2 or k = 3 may lead to the resulting clusters

containing many different types of signatures, which would have limited value for further analysis.

In general, all aforementioned metrics indicate that a good value of k can be found in the range of

approximately 5–15 clusters. The method by Salvador and Chan [55] shows a clear optimum for k = 10

clusters. It should be noted that these metrics almost never return a definitive optimal k-value, and that

the best value for k may differ for each metric. Instead, these metrics are used as general indicators and

as an aid to visual inspection for choosing a good value for k. Since the general optimum for k was found

to be around 10 clusters for all scores, and because the L-method by Salvador and Chan [55] returned a

clear optimum at k = 10, it was chosen to perform the clustering for k = 10 clusters.

34



4.4. Clustering Chapter 4. Results and discussion

4.4 Clustering

An agglomerative hierarchical clustering was performed using Ward’s method, with as input five principal

component weights based on the 10-year average σ′ data for each of the 3492 grid points, generating a

total of 10 clusters. In this section, the characteristics of the resulting clusters will be investigated. The

characteristics of all generated clusters can be found in Appendix C.

4.4.1 Generated clusters

After performing the hierarchical clustering, each grid point is assigned a cluster label between 0 . . . 9.

The grid points are mapped in Fig. 4.7a, where each grid point is colored based on its respective cluster

label. Clear patterns emerge when mapping the individual grid points; instead of producing a noisy field,

the generated clusters are generally contiguous and have clearly defined shapes. Spatial consistencies

can be identified between the clusters and land cover maps (Appendix A); examples include Paris, the

agricultural area surrounding Paris, the Alps, and the Landes coniferous forest south of Bordeaux. These

consistencies indicate that the generated clusters may be related to land cover composition.

For each of the generated clusters, the PCA performance is determined by reconstructing the data for

all grid points belonging to a certain cluster and subsequently calculating the average η2 using 1–10 PCs.

The resulting PCA performance per cluster is plotted in Fig. 4.7b. On average, the PCs perform differently

for every cluster, which may be due to differences between clusters in terms of land cover footprint. This

underlines the importance of determining the correct amount of principal components to retain.

Since clustering is based on σ′, is can be expected that the clusters differ in terms of σ′. However, Fig.

4.7c indicates that the clusters also have unique σ◦40 and σ′′ signatures, which suggests that the clusters

represent "scattering surfaces" which differ in terms of their scattering characteristics.

(a) Generated clusters (b) Performance of cumulative PCs for all clusters

(c) Seasonal signatures of σ◦40, σ′, σ′′ for all clusters

Fig. 4.7: Generated clusters
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Four categories (Fig. 4.8) have been identified based on the land cover footprints and seasonal signatures

of the generated clusters: mixed clusters, agricultural clusters, urban clusters, and miscellaneous clusters.

In the following sections, the aforementioned categories and their corresponding clusters will be discussed.

(a) Mixed clusters (b) Agricultural clusters (c) Urban clusters (d) Miscellaneous clusters

Fig. 4.8: Four cluster categories: mixed, agricultural, urban, and miscellaneous.

4.4.2 Mixed clusters

Mixed clusters are defined as clusters that have a relatively heterogeneous land cover footprint as well as

noisy/unclear backscatter signatures. Clusters 0, 2 and 3 are similar in terms of their land cover footprint

and backscatter signatures, and have been identified as being mixed clusters.

4.4.2.1 Cluster 0: Grassy croplands

Grid points

Cluster 0 is spread out throughout France, with grid points located mainly in the north-west, central,

and south-west areas of France (Fig. 4.9a). Cluster 0 mainly consists of slim, elongated areas and small

isolated areas instead of one single contiguous area.

Backscatter signatures

The backscatter signatures of cluster 0 are relatively noisy and contain several temporal patterns (Fig.

4.9c). On average, σ◦40 decreases between day 50 – 100 and increases between day 100 – 150, and stays

relatively constant afterward. Maximum σ′ values are reached during summer and minimum values occur

during winter, which corresponds with the vegetation growth cycle. Several patterns can be observed in

σ′, which may be because the different vegetation types occurring in cluster 0 reach maximum biomass at

different moments. Maximum σ′′ values are observed during (late) winter and minimum values occur

during summer. While σ′′ is generally close to zero, positive values are observed around day 50 – 100,

indicating slightly larger backscatter at larger incidence angles during the winter period. The increased

backscatter at larger incidence angles may be caused by exposed trunks and branches generating larger

backscatter after seasonal leaf drop. This is corroborated by the larger σ◦40 values during this period.

Land cover

Cluster 0 has a heterogeneous land cover footprint in which none of the land cover classes are clearly

dominant (Fig. 4.9b). Several vegetation types are found in cluster 0: intensive grasslands (p̄ = 28.6%),

annual winter crops (20.2%), broad-leaved forest (16.0%), annual summer crops (12.7%), and some

coniferous forest (8.1%). Furthermore, a significant number of outliers are present in several land cover

classes. The heterogeneous land cover footprint may explain the relatively noisy backscatter signatures,

as it is likely that different land cover footprints will produce backscatter signatures with different

patterns/timings. However, despite the relatively variable land cover footprints of the grid points of cluster

0, their σ′ signatures are statistically similar (compared to the other clusters).
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(a) Cluster 0: Grid points (b) Cluster 0: Land cover footprint.

(c) Cluster 0: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.9: Characteristics of cluster 0 (grassy croplands). All grid points of cluster 0 are mapped in Fig. 4.9a, the land cover footprints
of these grid points are visualised in Fig. 4.9b, and the σ◦40, σ′, and σ′′ signatures of cluster 0 are plotted in Fig. 4.9c. For
descriptions of each of the land cover classes depicted in Fig. 4.9b see appendix A.2 [29]. The characteristics of all clusters can be
found in Appendix C.

(a) Cluster 2: Grid points (b) Cluster 2: Land cover footprint

(c) Cluster 2: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.10: Characteristics of cluster 2 (wooded grasslands and crops)
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4.4.2.2 Cluster 2: Wooded grasslands and crops

Grid points

Cluster 2 is located throughout France, ranging from the south-west to the north-east of France, with

some grid points in north-west France (Fig. 4.10a). Cluster 2 consists of a few larger, contiguous areas

as well as slim, elongated areas, small isolated areas, and some stray grid points. Fig. 4.7a shows that

cluster 2 often lies close to or between clusters 0 and 3, which may indicate that it is a transitional area

between clusters 0 and 3 and has a land cover footprint and backscatter behavior similar to these areas.

Backscatter signatures

As shown in Fig. 4.10c, the backscatter signatures of cluster 2 are indeed similar to those of clusters 0;

σ◦40 is largest during winter, decreases between day 50 – 100 and slowly increases during the remainder

of the year. σ′ is lowest during winter and reaches maximum values during summer, again corresponding

with vegetation growth cycle (i.e. maximum biomass during summer, minimum biomass during winter).

Similar to cluster 0, σ′′ is generally negative throughout the year for most grid points, but positive values

are observed for some grid points during winter and early spring (day 0 – 100).

Land cover

Cluster 2 has a relatively heterogeneous land cover footprint, which mainly consists of intensive grasslands

(p̄ = 26.3%), broad-leaved forest (19.8%), coniferous forest (13.8%), annual winter crops (11.7%) and

annual summer crops (9.0%), see Fig. 4.10b. Overall, the land cover footprint of cluster 2 is very similar

to that of cluster 0; the main occurring land cover classes are the same for clusters 0 and 2, but their

fractions differ slightly. For example, cluster 2 has lower fractions of annual summer crops (9.0 % vs

12.7%) and annual winter crops (11.7% vs 20.2%), but has slightly higher fractions of coniferous forest

(13.8% vs 8.1%), natural grasslands (7.4% vs 4.0%), and broad-leaved forest (19.8% vs 16%). This may

explain why cluster 2 is often located next to cluster 0 and why the seasonal signatures of cluster 2 are

similar to those of cluster 0, in terms of both scale and seasonal patterns. The heterogeneous land cover

footprint – consisting mainly of different vegetation types – may explain why different seasonal patterns

can be observed in σ′, while still exhibiting a general seasonal cycle.
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(a) Cluster 3: Grid points (b) Cluster 3: Land cover footprint

(c) Cluster 3: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.11: Characteristics of cluster 3 (grassy forests)

4.4.2.3 Cluster 3: Grassy forests

Grid points

Cluster 3 consists of a few large, clearly defined contiguous areas in central and north-east France, and

along the southern coast (Fig. 4.11a). Smaller, less defined areas and stray grid points near urban areas

are also visible. Cluster 3 generally borders cluster 2, indicating that they may have similar characteristics.

Backscatter signatures

Indeed, Fig. 4.11c shows that the σ◦40, σ′, and σ′′ signatures of cluster 3 are similar to those of clusters 2

(and to a lesser extent, cluster 0). In general, σ◦40 is at maximum values between day 300 – 80, decreases

between day 80 – 100, and slowly recovers between day 100 – 300. Compared to other clusters, σ′

is relatively close to zero indicating a stable vegetation cover, part of which may persist year-round.

For a number of grid points, σ′ exhibits different behavior between day 100 – 200, perhaps due to the

disproportionate presence of a vegetation class that is characterized by large changes in σ′ during this

period. Such locally divergent behavior can be further investigated by performing a within-cluster analysis.

Similar to cluster 2, σ′′ has a generally negative, gentle seasonal cycle that reaches maximum values

during winter and minimum values during summer.

Land cover

The land cover footprint of cluster 3 is relatively heterogeneous and consists mainly of broad-leaved forest

(p̄ = 25.4%), coniferous forest (15.9%), intensive grasslands (15.8%), natural grasslands (11.3%), as well

as some annual winter and summer crops (7.4% and 5.3%, respectively), see Fig. 4.11b. The land cover

footprint of cluster 3 is similar to those of clusters 0 and 2; cluster 3 contains the same main land cover

classes in slightly different fractions. Compared to cluster 2, cluster 3 has higher fractions of broad-leaved

forest (25.4% vs 19.8%), coniferous forest (15.9% vs 13.8%), and natural grasslands (11.3% vs 7.4%),

and has lower fractions of annual summer crops (5.3% vs. 9.0%), annual winter crops (7.4% vs 11.7%),

and intensive grasslands (15.8% vs 26.3%). This is consistent with the idea that clusters with similar

backscatter characteristics are generally located near each other, and have land cover footprints consisting

of the same main land cover classes (usually with slightly different fractions).

39



Chapter 4. Results and discussion 4.4. Clustering

(a) Cluster 5: Grid points (b) Cluster 5: Land cover footprint

(c) Cluster 5: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.12: Characteristics of cluster 5 (intense agriculture)

4.4.3 Agricultural clusters

Several clusters are characterized by a land cover footprint that is dominated by agriculture (i.e. annual

summer crops and annual winter crops). Interestingly, these agricultural clusters are also similar in terms

of their backscatter behavior, which is relatively interesting and distinct compared to the backscatter

characteristics of mixed clusters. Clusters 5, 6 and 8 have been identified as agricultural clusters.

4.4.3.1 Cluster 5: Intense agriculture

Grid points

Cluster 5 consists of two large contiguous areas near Paris, as well as some smaller areas in the general

vicinity (Fig. 4.12a). As discussed in section 3.1, this area is well known for its intensive agriculture, and

is clearly recognizable in land cover maps (Fig. A.1 and A.2b in appendix A).

Backscatter signatures

Due to the intensive agriculture present in this area, cluster 5 may have the most distinct and interesting

σ◦40, σ′, and σ′′ signatures out of all clusters, see Fig. 4.12c. A comprehensive investigation of effect of

the growth cycle of winter crops on the σ◦40, σ′, and σ′′ signatures can be found in appendix D.1.2.

σ◦40 is relatively constant and largest during winter (day 300 – 80). The decrease in σ◦40 during (early)

spring can be explained by the rapid development of the vertical crop structure due to elongation of the

main crop stem; the vertical plant components cause increased attenuation of the incident wave, resulting

in lower total backscatter (see appendix D.1.2). Direct backscatter rapidly increases between day 130

– 160 due to development of the vegetation canopy, which corresponds to the observed increase in σ◦40.

During the second half of the year σ◦40 slowly increases until reaching maximum values during winter.

Minimum values for σ′ occur during late fall and winter (day 300 – 50) and maximum values occur

during summer (day 150 – 200), which corresponds to the seasonal growth cycle of winter crops. σ′

decreases in late summer and early fall (day 180 – 300), which indicates a decrease in (wet) biomass;

this is explained by crop maturation (i.e. loss of water through evaporation, grain ripening and leaf/stem

senescence) and subsequent crop harvesting.
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A relatively distinct and interesting pattern can be observed in σ′′, which has two maximum (positive)

values around day 120 and 200 and two minimum (negative) values around day 160 and 250. As described

in appendix D.1.2, the oscillations between positive and negative σ′′ values seem to correspond to changes

in the physical structure and water distribution of crops, caused by processes such as rapid elongation of

the main stem, transport of water stored in the stem to the developing grains, and loss of water due to

grain ripening. These results correspond with the current understanding of σ′′ as a measure of the relative

dominance of ground-bounce scattering over direct scattering from vertical vegetation constituents.

Compared to other clusters, σ◦40, σ′, and σ′′ signatures exhibit very distinct behavior without much

noise, which may indicate that cluster 5 has a relatively homogeneous land cover footprint.

Land cover

Fig. 4.12b shows that cluster 5 has a homogeneous land cover footprint compared to other clusters,

consisting mainly of annual winter crops (61.1%), annual summer crops (13.7%), broad-leaved forest

(10.9%), and some intensive grasslands (7.4%). Furthermore, the land cover footprint of cluster 5 contains

relatively few outliers, so most grid points have a roughly similar land cover footprint. This indicates that

the unique backscatter signatures observed in this area are likely caused mainly by distinct crop growth

processes and the intensive agricultural cycle. However, even though agriculture is clearly dominant in

cluster 5, it should be noted that other land cover classes are always present. Therefore, the observed

backscatter signatures should not be seen as characteristic for agricultural vegetation only.

4.4.3.2 Cluster 6: Grassy agriculture

Grid points

Similar to cluster 5, cluster 6 is located in the central-north of France, an area known for its intensive

agriculture. Cluster 6 consists of a few larger contiguous areas, as well as some stray grid points and

some long, stretched areas, see Fig. 4.13a. Cluster 6 mainly borders clusters 5 and 8, indicating that their

characteristics are likely to be similar.

Backscatter signatures

As can be seen in Fig. 4.13c, the σ◦40, σ′, and σ′′ signatures of cluster 6 are indeed similar to those of

cluster 5, but slightly less defined; σ◦40 is largest between day 300 – 80, decreases sharply between day 80

– 120, increases between day 120 – 150, and slowly increases until reaching maximum values in winter.

Additionally, the seasonal cycle of σ′ is similar to that of cluster 5, with minimum values in winter and

maximum values in summer. Finally, σ′′ exhibits the same ’double-peak’ behavior that was observed in

cluster 5, suggesting a significant presence of agricultural land cover. However, σ′′ oscillates in a narrower

band compared to cluster 5, which could indicate that changes in dominant scattering mechanism are less

significant, possibly due to a lower fraction of agricultural land cover.

Land cover

Fig. 4.13b shows that the land cover footprint of cluster 6 is similar to that of cluster 5, consisting mainly

of annual winter crops, intensive grasslands, broad-leaved forest and annual summer crops. However,

while clusters 5 and 6 contain the same dominant land cover classes, the fractions in which these classes

occur is different. Compared to cluster 5, cluster 6 contains less annual winter crops (44.2% vs 61.1%),

less annual summer crops (10.3% vs 13.7%), more intensive grasslands (19.3% vs 7.4%) and more

broad-leaved forest (17.3% vs 10.9%). The differences in land cover footprint between cluster 5 and

cluster 6 correspond to the observed differences between them in terms of spatial distribution and σ◦40,

σ′, and σ′′ signatures.
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(a) Cluster 6: Grid points (b) Cluster 6: Land cover footprint

(c) Cluster 6: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.13: Characteristics of cluster 6 (grassy agriculture)

(a) Cluster 8: Grid points (b) Cluster 8: Land cover footprint

(c) Cluster 8: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.14: Characteristics of cluster 8 (wooded agriculture)
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4.4.3.3 Cluster 8: Wooded agriculture

Grid points

Cluster 8 is located near clusters 5 and 6 in the north and north-west of France and consists of one large

contiguous area, some small contiguous areas, and several stray grid points (Fig. 4.14a). As discussed in

section 4.4.3.2, cluster 8 mainly borders clusters 0 and 6, which suggests that their backscatter and land

cover characteristics may be similar.

Backscatter signatures

While the σ◦40, σ′, and σ′′ signatures of cluster 8 are markedly less clear compared to clusters 5 and 6,

similar behavior can still be discerned (Fig. 4.14c). σ◦40 is maximum during winter, decreases during

(early) spring, and recovers during the second half of the year. σ′ is at a minimum during winter (sparse

vegetation), and at a maximum during summer (dense vegetation). Even though the previously observed

’double-peak’ behavior of σ′′ is less defined than in cluster 5, similar oscillations in σ′′ are still visible in

cluster 8 – this suggests that scattering mechanism dominance changes throughout the year, likely due to

the presence of agriculture.

Land cover

The land cover footprint of cluster 8 is similar to those of cluster 5 and 6, but the fractions in which the

dominant land cover classes occur are different (Fig. 4.14b). Compared to cluster 6, cluster 8 generally

has less annual winter crops (37.9% vs 44.2%), less intensive grasslands (14.1% vs 19.3%), less summer

agriculture (7.0% vs 10.3%) and more broad-leaved forest (28.9% vs 17.3%). Compared to cluster 5,

cluster 8 has significantly less winter agriculture (37.9% vs 61.1%), less summer agriculture (7.0% vs

13.7%), more intensive grasslands (14.1% vs 7.4%) and more broad-leaved forest (28.9% vs 10.9%). In

this case, the similarities between the land cover footprints of clusters 5, 6 and 8 explain why these clusters

all exhibit similar σ◦40, σ′, and σ′′ patterns, while the differences in land cover footprint (i.e. different

fractions of dominant land cover classes) explain why these grid points have been split into three clusters.

4.4.4 Urban clusters

Urban clusters are defined as clusters containing relatively high fractions of urban land cover classes,

mainly class 42 (continuous urban fabric) and class 43 (discontinuous urban fabric). Due to their unique

geometry – flat surfaces joined at 90◦ angles – urban areas act as so-called corner reflectors (see appendix

D.2.1), generating a strong backscatter signal for (nearly) all incidence angles. Cluster 4 and cluster 9 are

both urban clusters.

4.4.4.1 Cluster 4: City centers

Grid points

Cluster 4 is a relatively small cluster located in the highly urbanized areas of Paris, Toulouse and Lille

(Fig. 4.15a). Cluster 4 is clearly recognizable in Fig. A.1, Fig. A.2g, Fig. A.2h and Fig. A.2i in appendix

A. However, not all urban areas visible in these land cover maps are assigned to cluster 4; this may be

because these areas do not contain enough urban area (i.e. contain significantly more vegetation) to be

clustered together with highly urbanized areas such as Paris.

43



Chapter 4. Results and discussion 4.4. Clustering

(a) Cluster 4: Grid points (b) Cluster 4: Land cover footprint

(c) Cluster 4: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.15: Characteristics of cluster 4 (city centers)

Backscatter signatures

Even though it is expected that there will be little seasonal behavior for highly urban areas, Fig. 4.15c

shows that cluster 4 has clear backscatter characteristics; out of all clusters, cluster 4 contains the largest

σ◦40, the largest (i.e. shallowest) σ′, and the most negative σ′′, all relatively constant throughout the year.

This is explained by the characteristics of urban areas and the (comparatively) sparse vegetation.

Highly urbanized areas act as retroreflectors due to their unique structural characteristics, leading

to large σ◦ values over most incidence angles. Moreover, σ◦40 is relatively constant in time because the

structural characteristics of urban areas do not change significantly throughout the year. In turn, this

means that the σ◦ − θ relationship of highly urbanized areas is relatively shallow and constant, i.e. σ′

will be close to zero throughout the year. The observed negative σ′′ can be explained by the fact that

corner reflectors generate the highest backscatter for 40◦ < θ < 50◦, with decreasing σ◦ for θ < 40◦ or

θ > 50◦ [37]; this results in a concave σ◦ − θ relationship (i.e. σ′′ < 0).

However, even though the seasonal signatures of cluster 4 are constant compared to other clusters,

slight seasonal behavior can be seen in Fig. 4.15c. This is likely because cluster 4 does not consist entirely

out of urban area, but its land cover footprint also contains vegetation in smaller fractions. Finally, it

should be noted that σ′ values closer to zero generally indicate higher vegetation densities compared to

lower σ′ values, but this is not necessarily true for urban grid points. Even though the σ′ values of cluster

4 are closest to zero compared to all other clusters, this is more due to the unique backscatter effects of

urban areas rather than due to larger vegetation density.

Land cover

The land cover footprint of cluster 4 mainly consists of discontinuous urban fabric (30.6%) and industrial

and commercial units (10.3%), but also has significant fractions of annual winter crops (25.1%), broad-

leaved forest (18.4%), annual summer crops (7.8%) and some intensive grasslands (4.9%), see Fig. 4.15b.

This is consistent with the observations made earlier in this section. Furthermore, the fact that vegetation

is indeed present in cluster 4 explains why variations in σ◦40, σ′, and σ′′ can be identified.
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(a) Cluster 9: Grid points (b) Cluster 9: Land cover footprint

(c) Cluster 9: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.16: Characteristics of cluster 9 (green suburbs)

4.4.4.2 Cluster 9: Green suburbs

Grid points

Cluster 9 consists of small areas located near urban areas such as Paris, Bordeaux, Montpelier, Lyon, and

Toulouse (Fig. 4.16a). Since these areas are not clustered together with cluster 4 but are always located

near urban areas, it is likely that the land cover footprint of cluster 9 has lower fractions of urban area

and higher fractions of vegetation classes compared to cluster 4.

Backscatter signatures

The backscatter signatures of cluster 9 are quite constant and noisy, with relatively large σ◦40, shallow σ′,

and negative σ′′ compared to the other clusters (see Fig. 4.16c). However, σ◦40, σ′, and σ′′ of cluster

9 show slightly more distinct seasonal behavior than cluster 4. These seasonal signatures suggest that

cluster 9 contains a significant amount of urban area, which is also indicated by the spatial distribution of

the grid points. However, cluster 9 likely has denser vegetation than cluster 4 as indicated by the slightly

more distinct seasonal behavior of σ◦40, σ′, and σ′′.

Land cover

The land cover footprint of cluster 9 is relatively heterogeneous, see Fig. 4.16b. However, cluster 9 indeed

contains a relatively large fraction of urban area (16.7% discontinuous urban fabric, 5.2% industrial

and commercial units). Other land cover types include annual winter crops (16.7%), broad-leaved

forest (16.3%), intensive grasslands (10.2%), coniferous forest (9.6%), annual summer crops (8.6%),

woody moorlands (5.9%) and natural grasslands (4.8%). Clearly, the grid points of cluster 9 are spread

throughout France, so it can be expected that they do not share the same land cover footprint. However,

the grid points have in common a relatively large degree of urban area. Consequently, the seasonal signals

originating from the different vegetation classes are disproportionately affected by urban areas, resulting

in large σ◦40 values, shallow σ′ values, and negative σ′′ values, with noticeable (but mixed) seasonal

behavior. This explains why the grid points of cluster 9 have been clustered together: even though their

land cover footprints may be very different in terms of vegetation, their scattering characteristics are

similar due to the strong scaling effect of urban areas.
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(a) Cluster 1: Grid points (b) Cluster 1: Land cover footprint

(c) Cluster 1: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.17: Characteristics of cluster 1 (mixed coastal and mountain vegetation)

4.4.5 Miscellaneous clusters

4.4.5.1 Cluster 1: Mixed coastal and mountain vegetation

Grid points

Cluster 1 is located along the French coast, south of Bordeaux, and near the Alps and Pyrenees (Fig.

4.17a). Some smaller, well defined contiguous areas can be identified near Bordeaux and Toulouse, while

most stray grid points are found along the coast.

Backscatter signatures

The σ◦40, σ′, and σ′′signatures of cluster 1 are shown in Fig. 4.17c. σ◦40 shows two distinctly different

patterns; larger σ◦40 values are observed for a subset of grid points, ranging between approximately -9 dB

and -7 dB. For the other grid points, σ◦40 ranges between approximately -12 dB and -8 dB. Despite the

differences in σ◦40, the main seasonal behavior of σ′ is relatively similar for all grid points, with minimum

values during winter and maximum values during summer. σ′′ is relatively noisy and close to zero.

Land cover

The land cover composition of cluster 1 is relatively heterogeneous and consists mainly of coniferous forest

(17.0%), annual winter crops (16.1%), annual summer crops (15.7%), intensive grasslands (11.7%),

natural grasslands (9.9%), and water bodies (9.7%), see Fig. 4.17b. The occurrence of several vegetation

classes explain why σ′ has a general seasonal cycle but lacks a distinct pattern, while the outliers suggest

that different land cover footprints exist in cluster 1. However, since the land cover footprint is aggregated

across the entire cluster, it is difficult to obtain insights into the several contiguous within-cluster areas

that cluster 1 contains. For example, the area south of Bordeaux (clearly visible in Fig. A.1 and Fig. A.2d)

has a homogeneous land cover footprint dominated by coniferous forest. It may be possible that such

within-cluster areas have homogeneous land cover footprints (and distinct σ◦40, σ′, and σ′′) when viewed

separately, while the land cover footprint of the entire cluster seems very heterogeneous.
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(a) Cluster 7: Grid points (b) Cluster 7: Land cover footprint

(c) Cluster 7: σ◦40, σ′, σ′′ seasonal signatures

Fig. 4.18: Characteristics of cluster 7 (sparse coastal and mountain vegetation)

4.4.5.2 Cluster 7: Sparse coastal and mountain vegetation

Grid points

Cluster 7 consists of one contiguous area that coincides with the Alps (which is clearly visible in Fig. A.2k)

as well as individual grid points dotted along the east coast of France.

Backscatter signatures

While σ′ is relatively similar for all grid points in cluster 7, distinctly different patterns are visible in σ◦40

and σ′′, see Fig. 4.18c. This is likely because cluster 7 is located in two distinctly different areas. Two

bands are visible in σ◦40; the first band has a clear pattern ranging between -9 dB and -7.5 dB; the second

band is less defined and ranges between -13.5 dB and -10 dB. σ′ is noisy but similar for all grid points,

with minimum values during winter and maximum values during summer. σ′′ also consists of two bands;

the first band is relatively constant and noisy, ranging between 0.001 – 0.004 dB/deg2. The second band

does have a clear seasonal cycle ranging between -0.003 – 0.001 dB/deg2, with maximum values around

day 100 and minimum values around day 200. This behavior of σ′′ suggests a large fraction of coniferous

forest (see appendix D.1.4). It is interesting that these areas – while different in terms of σ◦40 and σ′′ –

are similar in terms of σ′. This may be due to a similar composition of vegetation cover leading to similar

σ′. It may also be that these areas have different land cover footprints resulting in similar σ′ signals.

Land cover

The land cover footprint of cluster 7 contains a few dominant land cover classes, see Fig. 4.18b. Notable

are the high fractions of bare rock (21.3%) and water bodies (12.1%); clearly, the high fraction of bare

rock corresponds to the Alps/Pyrenees, while the high fraction of water bodies belongs to the eastern coast

of France. Cluster 7 also has high fractions of natural grasslands (25.6%) and coniferous forest (21.6%),

as well as seven other land cover types with fractions < 5%. High fractions of coniferous forest and natural

grasslands mainly occur in the Alps/Pyrenees and not near the coast, see Fig. A.2d and A.2b. The coastal

and mountainous areas differ in terms of land cover – which explains the differences in σ◦40 and σ′′ – but

are similar in terms of σ′. This suggests that grid points with similar σ′ signatures do not necessarily have

similar land cover; but similar land cover footprints do generally yield similar σ′ signatures.
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4.4.6 Summary of clustering results

Spatial distribution

Some clusters contain clearly defined shapes that are also recognizable in land cover maps (Appendix

A.3). Cluster 1 contains a contiguous area directly south of Bordeaux that is also visible in the map of

coniferous forest fractions (Fig. A.2d). Cluster 4 has grid points located in Paris, Lille and Toulouse, all of

which are highlighted in the maps visualizing urban land cover types (Fig. A.2g, Fig. A.2h, Fig. A.2i).

The two contiguous areas of cluster 5 are also relatively clear in the annual winter crops map (Fig. A.2b).

Cluster 7 contains one contiguous area that coincides with the Alps, which can be identified in the map

visualizing bare rock fractions (Fig. A.2k). Finally, similar to cluster 4, the grid points of cluster 9 are

located in/near urban areas and can be identified in Fig. A.2g, Fig. A.2h, and Fig. A.2i. Other clusters

(e.g. clusters 0, 2, 6, and 8) have a less defined shape and are not clearly recognized in land cover maps.

Some clusters are relatively localized, existing only in certain parts of France (e.g. clusters 5, 6, and

8), while others are more dispersed (e.g. clusters 0, 1, 2, 3, and 7). It was found that localized clusters

generally have more defined σ◦40, σ′, and σ′′ signatures, while dispersed clusters have noisier signatures.

On the other hand, a more localized cluster such as cluster 5 has more distinct σ◦40 and σ′′ signatures

with smaller differences between grid points throughout the year.

For clusters that contain several contiguous areas (e.g. clusters 1, 3, and 7) it may be interesting to

investigate these areas separately in terms of their land cover footprint and σ◦40, σ′, and σ′′ signatures;

the results suggest that separate contiguous areas within a cluster have distinct characteristics (i.e. land

cover composition, seasonal backscatter behavior) when investigated separately, and that these areas only

appear to have mixed/noisy characteristics when investigated together as one cluster.

Seasonal signatures

A general seasonal pattern for σ′ is identified in most clusters: typically, σ′ is at minimum values

during winter, increases during spring, reaches maximum values during summer, and decreases during

autumn. This corresponds with the seasonal growth cycle of deciduous vegetation and is in line with

the interpretation of σ′ as a measure for ’vegetation density’. This general seasonal cycle is explained

by the fact that deciduous vegetation types are present throughout France (see Fig. A.2c and Fig. A.2o).

However, the timing and range of σ′ differ between clusters. Some clusters have larger σ′ values with

lower seasonal variation, indicating that vegetation density is relatively large and part of the vegetation

persists year-round (e.g. coniferous forests). Note that this is not true for clusters 4 and 9, where σ′ is

shallow throughout the year due to the characteristics of urban areas (appendix D.2.1). Other clusters

have relatively low σ′ values, indicating lower vegetation densities; cluster 7 contains large fractions of

bare rock and water bodies and hence, sparser vegetation. In agricultural areas, σ′ is characterized by

large seasonal variations which corresponds with the growth cycle of agricultural crops (appendix D.1.2).

Two main types of σ′′ behavior are identified. The first is characterized by maximum values during

winter and minimum values during summer. While positive σ′′ values are reached around day 50 – 100

in some grid points, σ′′ is generally negative throughout the year. The second type of σ′′ behavior is

characterized by distinct "double peak" behavior with maxima around day 100 and day 200 and minima

around day 150 and 250. Here, σ′′ is generally positive or close to zero around the maxima, negative

around the minima, and negative or close to zero for the rest of the year. This behavior mainly occurs in

highly productive agricultural areas, where vegetation phenology changes significantly during the year.

Even though grid points with similar σ′ behavior generally also have similar σ◦40 and σ′′ behavior,

this is not always the case. In some cases, grid points with (relatively) similar σ′ behavior have markedly

different σ◦40 and σ′′ behavior (e.g. clusters 0, 1, and 7). This indicates that areas with similar vegetation

density do not necessarily have the same dominant scattering mechanisms.
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Land cover composition

Previously discussed results generally indicate that specific land cover footprints correspond with specific

combinations of σ◦40, σ′, and σ′′ signatures; clusters containing large fractions of (summer and/or winter)

agriculture have distinctly different scattering characteristics compared to clusters located in urban areas

or clusters with very heterogeneous land cover footprints. For clusters with relatively homogeneous

land cover footprints it may be possible to explain the observed backscatter signatures based on the

occurring land cover classes. Based on the seasonal signatures of cluster 4 and cluster 9, it was found

that grid points containing a significant fraction of urban area are characterized by large σ◦40, shallow

σ′, and very negative σ′′ – all of which relatively stable in time – and that this behavior is explained

the unique scattering characteristics of urban fabric. Furthermore, it was found that summer and winter

agriculture are characterized by large seasonal variations of σ◦40, σ′, and σ′′, which may be explained by

the productive and seasonal nature of agricultural lands.

However, since the clustering is based on σ′ each cluster contains grid points that are similar in terms

of σ′ and not necessarily in terms of land cover footprint. Some clusters have a land cover footprint

consisting of multiple land cover classes that is similar for all of its grid points (e.g. cluster 5), while

other clusters contain very mixed land cover footprints that differ significantly between its grid points

(e.g. clusters 0, 1, 2, and 3). As a result, separating the characteristic σ◦40, σ′, and σ′′ signatures of each

land cover class based on the generated clusters is very complex, if not impossible.

Clusters as scattering surfaces

The main research question posed in this study focuses on whether it is possible to find distinct and

meaningful scattering surfaces. The aforementioned results indicate that clusters obtained by means of

hierarchical clustering based on σ′ differ significantly in terms of their scattering characteristics, i.e. σ◦40,

σ′, and σ′′. Moreover, differences in scattering characteristics between clusters generally correspond to

(and seem to be partially explained by) differences in their land cover footprints. Hence, it can be said

that hierarchical clustering based on σ′ is indeed able to yield distinct and meaningful clusters, and that

each of the obtained clusters represents a scattering surface with certain scattering characteristics. As

such, this suggests that the obtained clusters can be seen as a scattering classification or segmentation,

which describes how scattering behavior is distributed in space. As will be discussed in the next section,

the fact that the vegetation parameters can now be estimated dynamically offers an additional opportunity

to investigate and describe how the aforementioned scattering surfaces change over time.

4.5 Robustness

As previously discussed, currently multiple years of measurements are required to estimate the climatology

of σ′ and σ′′ due to the amount of noise present in the observed backscatter signal. However, the recently

developed method by Melzer [42] allows for the estimation of σ′ and σ′′ on a daily basis. In this section,

10 years of dynamically estimated σ′ values are used to investigate the temporal stability (i.e. robustness)

of the clusters discussed in the previous section, which were based on the climatology of σ′.

4.5.1 Clustering the 10-year data set

After restructuring the 10-year σ′ data set from a size of (3492 x 3650) to (34920 x 365) as described

in section 3.6, the data set was standardized and a PCA was performed as described in section 3.4. The

number of PCs to retain was determined so that η̄2 ≥ 99%, resulting in 13 retained PCs. As such, the

size of the 10-year data set was reduced by a factor of 28 from (34920 x 365) to (34920 x 13), which

significantly improved the computation times of clustering. Hierarchical clustering using Ward’s method

was performed on this reduced data set, yielding 10 cluster labels per grid point – one for each year.
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(a) (b) (c)

Fig. 4.19: Three examples of grid points and their assigned labels between 2007 and 2017. Fig. 4.19a shows a very stable or robust
grid point that is assigned to the same cluster throughout the 10 year observation period. Fig. 4.19b shows a neutral grid point
that is generally assigned to one cluster for most of the observation period, but may be assigned to different clusters in some years.
Finally, Fig. 4.19c shows an unstable grid point that is assigned to many different clusters throughout the years.

Fig. 4.20: Obtained clusters (i.e. scattering surfaces) for each of the individual years of σ′ data. Some areas (e.g. Paris, the Alps)
are assigned to the same cluster over the entire observation period, indicating that the scattering behavior in these areas is relatively
stable and predictable. On the other hand, some areas are assigned to different clusters during the observation period, indicating
that the scattering behavior in these areas can change significantly over time.

Depending on the interannual variability of the observed σ′ signal a certain grid point can be very

robust or very unstable. If a grid point has σ′ observations with negligible interannual variability, it will

likely be assigned the same cluster label every year. For such stable grid points, there is a high certainty

that they belong to the cluster they have been assigned to – i.e. clustering is regarded as robust. An

example of a robust grid point is shown in Fig. 4.19a, which has a constant label between 2007 and 2017.

On the other hand, if a grid point has σ′ observations with very high interannual variability, the grid

point may be assigned to different a different cluster every year. An example of a very unstable grid point

is shown in Fig. 4.19c, which shows how its cluster label wavers between six different values between

2007 and 2017. It is impossible to classify this grid point in terms of its scattering characteristics with

a high degree of certainty, as its scattering behavior could be different every year. Between very stable

grid points and very unstable grid points are grid points that are generally assigned to one cluster, but

may be assigned to another cluster occasionally. Fig 4.19b shows an example of such a grid point, which

generally belongs to cluster 3 but is assigned to cluster 1 in 2012 and 2016.

The obtained cluster labels are mapped in Fig. 4.20, which visualizes how the clusters change over

time. Several shapes that were discussed in section 4.4 can be recognized throughout the years – such as

Paris, the agricultural area near Paris, and the Alps – suggesting that some areas have a relatively distinct

σ′ signal and are relatively consistent over time in terms of their assigned cluster labels. Hence, clustering

on an annual basis may help with identifying areas that have stable scattering characteristics.
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Another interesting area is the Landes evergreen coniferous forest south of Bordeaux. This area was

located directly in the storm trajectory of Cyclone Klaus (Fig. 4.21) which made landfall near Bordeaux

on 24 January 2009 with wind speeds over 200 km/h. The before and after photos shown in Fig. 4.22

give an idea of the destruction that occurred – in total, over 220 000 ha of forest was either flattened or

badly damaged. Clearly, land cover was significantly altered as a result of the storm. This is also seems to

be reflected by the annual cluster labels and σ′ signatures, see Fig. 4.23; grid points in the Landes area

are assigned to a different cluster in 2009 and 2010 compared to other years, which could be explained

by the destruction caused by the storm and the subsequent reforestation efforts and (partial) recovery

of the coniferous forest. As a consequence of these events, this area is difficult to classify as coniferous

forest even though this area should generally contain a significant amount of trees (see Fig. D.1.3). On

the other hand, the results correspond to the events that occurred, which suggests that clustering on an

annual basis based on σ′ (and perhaps σ◦40 and σ′′) may be useful for identifying disturbances and trends

such as storm damage, urban expansion, and conversion of forest/grassland to agriculture.

Fig. 4.21: Storm trajectory of cyclone Klaus. The storm made landfall at the Landes forest with wind speeds over 200 km/h.

(a) Before (b) After

Fig. 4.22: Photos of the Landes forest before and after cyclone Klaus. The photos show the degree to which the land cover in some
areas was altered due to the storm. Even though not the entire area was completely flattened, such radical alterations to land cover
would clearly result in different backscattering behavior and altered seasonal behavior of the vegetation parameters.

Fig. 4.23: Annual cluster labels and σ′ observations of the Landes coniferous forest. A disturbance corresponding to cyclone Klaus
is visible in early 2009, after which markedly different cluster labels and seasonal σ′ behavior are observed. From 2013 onward, the
cluster labels and seasonal σ′ cycle seem to have mostly returned to pre-Klaus values, indicating a recovery of the Landes forest.
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Fig. 4.24: Maps of number of unique labels, number of label flips, and robustness scores per grid point.

4.5.2 Calculating robustness scores

As described in section 3.6.2, the robustness score of each grid point is calculated by multiplying the

number of unique labels with the number of times the label of a grid point changed in the subsequent year.

The number of unique labels, the number of label flips and the robustness score are mapped in Fig. 4.24.

Number of unique labels

The map describing the number of unique labels clearly shows that cluster label variations are not randomly

distributed in space – instead, clumped patterns are visible and several distinct areas can be identified.

For example, the labels of Paris, the Alps, the Côte d’Azur, and parts of the Massif Central are constant

between 2007 and 2017, which indicates that their σ′ signals are relatively similar for all years in the

observation period. On the other hand, grid points located in north-west and central France are generally

assigned between three and six different labels between 2007 and 2017, indicating that the observed σ′

signals of these areas differ significantly during the observation period.

Number of label flips

Even though the map describing the number of label flips is less defined, spatial patterns are visible here

as well. Paris, the Alps, the Côte d’Azur, and parts of the Massif Central can identified easily – this is to be

expected, as a completely constant cluster label inherently means that no label changes occur, and having

many different labels inherently means that many label changes must occur. However, this map mainly

contains additional information about grid points with between two and four labels, i.e. it provides a

better distinction between grid points that could have the same number of unique labels, but are different

in how often they flip between these labels.

Robustness score

Finally, the number of unique labels and the number of label flips are combined to produce a map of

robustness scores. The worst robustness scores are obtained in grid points that alternate often between

many cluster labels; these grid points likely have very variable σ′ observations, which makes it difficult to

classify them consistently into one cluster. Interestingly, the south of France is generally robust and easy

to classify, while the least robust grid points are concentrated in central and north-west France.

One possible explanation for the poor robustness in central and north-west France is that rotational

agriculture is practiced in this region; as can be seen in Fig. A.1, the land cover footprint in the central

region of France generally contains significant amounts of annual summer crops, annual winter crops, and

intensive grasslands. However, this particular land cover data set is only fully representative for one year.

If this region indeed rotates between summer crops, winter crops, intensive grasslands and fallow fields,

the backscatter observations – and hence, σ′ as well as clusters based on σ′ – can change significantly

between years. This explains why this region is relatively hard to classify using clustering based on σ′.
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As can be seen in Fig. 4.25, the same general region of poor robustness scores is obtained when

isolating all grid points that have relatively large fractions of annual summer crops, annual winter crops

and intensive grasslands (all p ≥ 10%). The area with the poorest robustness scores has a mosaic land

cover that is clearly dominated by annual summer crops, annual winter crops, and intensive grasslands, see

Fig. 4.26. The potential link between this specific land cover footprint and poor robustness is corroborated

by Fig. 4.27, which shows that grid points generally become less robust (i.e. harder to accurately classify)

when the combined percentage of annual summer crops, annual winter crops and intensive grasslands

increases. This corresponds with the idea that poor robustness may be found in areas where land cover

changes significantly between years, such as in agricultural areas where a crop rotation system is applied.

This highlights the potential usefulness of clustering based on σ′ in combination with the introduced

robustness metric for the purpose of identifying areas with significant interannual land use change.

Fig. 4.25: Grid points where each of the fractions of annual
summer crops, annual winter crops and intensive grasslands
are at least 10%. A sample of the original 2016 Theia land
cover data set is taken from the area within the red rectangle
and visualized in Fig. 4.26.

Fig. 4.26: Mapped sample of the original 2016 Theia data
set showing the mosaic landscape of north-west France in
the original 10 m resolution. This area is dominated by
annual summer crops, annual winter crops, and intensive
grasslands, which could explain the poor robustness scores.

Fig. 4.27: From left to right: Scatter plots of (1) robustness score vs fraction of annual summer crops, (2) robustness score vs
fraction of annual winter crops, (3) robustness score vs fraction of intensive grasslands, and (4) robustness score vs the combined
fraction of annual summer crops, annual winter crops and intensive grasslands.
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Conclusions and Recommendations

In this study, the temporal and spatial characteristics of the backscatter coefficient (σ◦) and the TUW SMR

vegetation parameters (σ′ and σ′′) were investigated using an unsupervised classification approach in

order to gain an improved understanding of their physical meaning and behavior, as well as to further

explore their potential value as a source of information. This chapter serves to summarize the main

conclusions based on the obtained results, to answer the research questions defined in chapter 1, to describe

any assumptions and limitations of this study and to provide recommendations for future research. The

conclusions are structured according to the sub-questions; each of the sub-questions are answered first,

after which the following main research question will be answered:

Can distinct scattering surfaces be identified and used to obtain an

improved understanding of the observed σ◦40, σ′, and σ′′ behavior?

5.1 Conclusions

Question 1: Which data preprocessing and clustering techniques are required and suited to solve this problem?

Two clustering algorithms were compared in this research: k-means clustering and hierarchical clustering.

The output obtained by hierarchical clustering is significantly more descriptive compared to k-means:

hierarchical clustering produces a nested cluster hierarchy which provides information about how clusters

merge for different values of k, while k-means simply returns a set of k clusters. Furthermore, assuming the

input data is the same, hierarchical clustering will always return the same result while some randomness

is inherently present in k-means clustering, which may produce different results for different runs.

In terms of computation time, k-means is faster than hierarchical clustering. However, the use of

principal component analysis allows for significant size reduction of the input data set – down to about 2%

of the size of the original data set with limited loss of information – thereby improving the computation

time of hierarchical clustering to about the same order of magnitude as k-means clustering.

The term ’garbage in, garbage out’ is particularly true for machine learning algorithms; in order to

obtain meaningful results, the input data must be properly preprocessed. Any missing values in the input

data set should be removed or interpolated, as most clustering algorithms cannot deal with this. Then,

the data should be standardized before the principal component analysis is performed to ensure that

the correct principal components are found. Care should also be taken when determining how many

components to retain, as keeping too few components will result in significant loss of information and

a possibly incorrect classification, while keeping too many components will lead to longer computation

times. Luckily, many methods and guidelines exist for determining how many components to retain.

In order to solve the main research problem, a combination of PCA and agglomerative hierarchical clus-

tering was chosen as clustering approach due to its informative output, internal consistency, deterministic

nature, and acceptable computation time.
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Question 2: Can distinct and meaningful scattering surfaces be identified using unsupervised classification?

A set of 10 clusters is generated based on the climatology of σ′ using agglomerative hierarchical clustering

and Ward linkage. Instead of a noisy field, clear spatial patterns are visible when mapping the generated

clusters. Additionally, land cover features can be identified in the mapped clusters; areas such as Paris, the

Alps, the Landes forest, and the intense agricultural around Paris – which are all clearly visible in land

cover maps – are well represented by the cluster maps. Areas that are expected to differ significantly in

terms of scattering characteristics, such as Paris and the Landes forest, are generally not clustered together.

Since clustering was performed on σ′, it is unsurprising that the generated clusters differ in terms of

σ′ and that grid points within a cluster are relatively similar in terms of σ′. However, the cluster analysis

shows that σ◦40 and σ′′ also seem to separate, i.e. grid points that are similar in terms of σ′ are generally

(but not necessarily!) also similar in terms of σ◦40 and σ′′. Moreover, grid points with similar scattering

characteristics are generally near each other, forming contiguous areas that resemble land cover features.

In general, each of the clusters is contiguous, confined to a specific region of France, and has a

characteristic set of seasonal σ◦40, σ′, and σ′′ signatures. As such, the obtained clusters represent distinct

and meaningful scattering surfaces, each of which having different scattering characteristics.

Question 3: What is the influence of sub-footprint land cover heterogeneity on theσ◦40, σ′, andσ′′ signatures?

The results show that grid points that have very similar seasonal σ◦40, σ′, and σ′′ behavior are generally

located close to each other and also tend to have very similar land cover footprints. However, the inverse is

not necessarily true; slight differences in land cover footprint can lead to significantly different backscatter

characteristics. For example, due to the large reflectivity of urban areas a relatively small presence of

urban land cover within a grid point will result in significantly larger backscatter compared to a grid point

without urban land cover, even if their land cover footprints are nearly identical.

Each land cover class has specific backscatter characteristics and generates specific seasonal σ◦40,

σ′, and σ′′ patterns. The backscatter signatures observed in a 25 km2 ASCAT grid point are therefore

generated by the combined effect of all present land cover classes, and thus depend on the relative

presence of the land cover classes in each 25 km2 grid point. The cluster analysis showed that seasonal

backscatter behavior becomes less clear and patterns become harder to characterize as the land cover

footprint becomes more heterogeneous. Conversely, areas with a land cover footprint that is dominated

by one or a few land cover classes show clear backscatter patterns.

In areas that have a relatively ’pure’ land cover footprint, the σ◦40, σ′, and σ′′ observations can be

(partially) explained by the physical seasonal processes occurring in the land cover types that are present.

Overall, σ′ corresponds with the seasonal cycle of deciduous vegetation, with minimum vegetation density

during winter and maximum vegetation density during summer. On the other hand, σ′′ is generally

highest during winter and lowest during summer, which may be due to a change in dominant scattering

mechanisms following structural seasonal processes such as of leaf drop (in autumn/winter) and canopy

growth (in spring/summer). In areas with significant agriculture, σ′′ has a ’double-bounce’ pattern, which

was found to correspond with the different distinct growth stages of cereal crops.

The relationship between land cover footprint and seasonal backscatter behavior is very complex, but

the following conclusions can be made: (1) each land cover type has different characteristic seasonal

backscatter signatures, (2) a homogeneous land cover footprint results in clear backscatter signatures

and clearly identifiable behavior, (3) a heterogeneous land cover footprint results in relatively noisy and

unclear signatures that mainly show a ’general’ seasonal cycle, and (4) the results are consistent with the

interpretation of σ′ as a measure for vegetation density and the interpretation of σ′′ as a measure for the

relative dominance of ground-bounce scattering over direct scattering from vegetation constituents.
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Question 4: Are the grid points and generated clusters "robust"?

A measure for robustness was introduced in order to quantify the temporal stability of multi-year clusters

based on 10 years of σ′ for each grid point. The robustness score takes into account the number of unique

labels assigned to each grid point as well as how often the label of each grid point changed. A high score

indicates an unstable grid point which is assigned to many different clusters over the years, likely due to

large interannual variability in the σ′ observations. On the other hand, a low score indicates a stable grid

point that is always assigned to the same cluster, due to a relatively stable seasonal σ′ signal. As such, the

robustness score gives an indication of the certainty that a grid point belongs to a specific cluster.

The results show that the robustness score is not randomly distributed; instead, spatial patterns become

visible when mapping the robustness score. Areas that can be expected not to change significantly between

years in terms of land cover (e.g. Paris, the Alps) are generally robust and always assigned to the same

cluster. On the other hand, the poor robustness in west France may be caused by agriculture with a crop

rotation schedule, which would lead to large interannual variability of σ′ and hence, many different

cluster labels over the year. Clearly, it is difficult to decisively classify this area, since the backscatter

characteristics seem to be different every year. The results show that multi-year clustering combined with

a robustness score can be useful in identifying areas with stable and unstable backscatter characteristics.

Finally, an unexpected but interesting observation in the multi-year clustering is the effect of cyclone

Klaus in early 2009. The destruction and subsequent recovery of the Landes forest south of Bordeaux is

represented in the multi-year clusters, suggesting that multi-year clustering based on σ′ can potentially

be a valuable tool for identifying land cover disturbances (e.g. storm damage) or land use change (e.g.

urban expansion, conversion of forest to agriculture).

Can distinct scattering surfaces be identified and used to obtain an

improved understanding of the observed σ◦40, σ′, and σ′′ behavior?

Based on the sub-questions, the main conclusion of this research is that it is indeed possible to identify

distinct and meaningful scattering surfaces based on the climatology ofσ′, which in turn provide interesting

insights into the seasonal and interannual behavior of the backscatter coefficient (σ◦) and the TUW

SMR vegetation parameters (σ′, σ′′). These scattering surfaces provide insight into how scattering

characteristics vary across the heterogeneous land cover of France. The results presented in this study

are consistent with the current understanding of σ′ and σ′′ as measures for vegetation density and the

relative dominance of ground-bounce scattering over direct scattering from vertical vegetation constituents.

Additionally, the results show that in some areas – such as agricultural areas with crop rotation – significant

interannual variation is present in the dynamically estimated vegetation parameters. This indicates that the

vegetation correction of the TUW SMR can be improved significantly by using the dynamically estimated

vegetation parameters instead of their multi-year climatology, resulting in a better ASCAT soil moisture

data product. Moreover, estimation of the vegetation parameters on a daily basis allows for investigating

how scattering surfaces change over time, for example due to land use change or storm damage. This

highlights the potential value of the TUW SMR vegetation parameters as a new source of information,

especially considering the fact that the MetOp satellites measure backscatter globally on a daily basis and

considering that the MetOp mission has a large archive of global backscatter data as well as a promising

future with the upcoming MetOp-SG satellite series.

56



5.2. Recommendations Chapter 5. Conclusions and Recommendations

5.2 Recommendations

This study had some assumptions and limitations, which yielded a number of recommendations for future

research. The assumptions, limitations, and recommendations are discussed in this section.

Dynamically estimated vegetation parameters

As discussed by Melzer [42], several settings affect the behavior of the dynamically estimated vegetation

parameters, e.g. choice of algorithm and kernel window size. It is likely that different settings would

change the vegetation parameters, and hence, the clusters presented in this research. In this research it is

assumed that the algorithm and settings chosen to dynamically estimate the vegetation parameters are

correct, even though different settings may yield better results for some grid points.

Land cover data

In this study, a 2016 land cover data set of France developed by Theia was used. While this data set

provided interesting insights, it should be noted that this data set was generated specifically for the year

of 2016, while the σ◦40, σ′, and σ′′ data was observed between 2007 – 2017. Therefore, for the purpose

of this study the 2016 land cover data set is assumed to be representative for the 2007 – 2017 period.

However, it is recommended that future research uses a multi-year land cover data set to ensure that any

potential relation between σ◦, σ′, and σ′′ is correctly investigated.

Use of PCA

To improve computation times, PCA is used in this study for dimensionality reduction; this was particularly

useful for the 10-year data set, but not so much for the climatology. It is assumed that sufficient information

is retained when selecting the number of principal components so that at least 99% of the variance present

in the original data set is explained. However, information is inherently lost when choosing to retain a

select number of principal components. If processing power is not a limiting factor, better results may be

obtained by performing hierarchical clustering on the original σ′ data. Additionally, using the original

data is simply more straightforward; understanding the inner workings of PCA and the meaning of its

outputs requires a significant amount of time and further complicates the interpretation of the results,

while microwave scatterometry is a difficult subject in itself.

Clustering algorithms

While two clustering algorithms are compared in this study, there exist many algorithms for the purpose

of unsupervised classification. Moreover, each algorithm typically has its own list of settings that can

be varied, e.g. linkage criteria, choosing the correct number of clusters, distance metrics, and so forth.

However, this research was not aimed at testing all algorithms and combinations of settings – even though

other algorithms and/or settings may be better suited for clustering time series data. It was assumed that

hierarchical clustering was sufficiently suitable for the purpose of this research, but it is recommended that

future studies explore potentially better clustering methods. For example, search for clustering techniques

that are able to handle objects leaving and entering over time, as well as recognizing events like shrinking,

growing, splitting, merging, dissolving and forming of clusters.

Robustness

The robustness score proposed in this study was useful, as it shows that some areas are more robust than

others. However, it is also a very straightforward metric, that perhaps does not take all relevant factors

into account. It would be interesting to define robustness in a more comprehensive way and to see if the

results presented in this research hold true.
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5.3 Implications of this study

Previous research by Steele-Dunne et al. [59] identified significant contiguous variations in the seasonal

cycle of σ′ and σ′′ over the North-American grasslands, and also found that a clear link exists between

σ′′ and structural changes in grassy vegetation over the seasonal vegetation growth cycle. This study

investigated the TUW SMR vegetation parameters over Metropolitan France in order to further explore

the value of σ′ and σ′′ as a source of information, particularly in land cover types other than grasslands.

The results presented in this study clearly support the idea that there exists a relationship between

σ′′ and (vegetation) land cover composition. It was found that seasonal variations in σ′′ seem to be

driven mainly by the vegetation growth cycle and seasonal changes in vegetation structure. As such, the

results support the idea that σ′′ contains information about the relative dominance of direct scattering

over ground-bounce scattering, also in land cover types other than grasslands.

Interestingly, the devastating effects of cyclone Klaus over the Landes forest were clearly visible in

the dynamically estimated σ′. While the effects of the storm on σ′′ were not investigated here, this does

highlight the potential value of the TUW SMR vegetation parameters for vegetation monitoring and land

use change monitoring. However, the value of σ′ and σ′′ for these purposes must be further investigated.

One of the more impactful findings of this study is that the interannual variability of the dynamically

estimated vegetation parameters can vary significantly depending on the land cover composition; certain

areas such as Paris and the Alps show relatively predictable seasonal behavior of σ′ and σ′′ that can

be easily classified, while the interannual variability in σ′ and σ′′ is much larger in areas with a more

heterogeneous land cover footprint and in areas containing both grassland and cropland. This suggests

that the current implementation of the TUW SMR vegetation correction – which is based on multi-year

averages of σ′ and σ′′ – is likely over- and/or underestimating the influence of vegetation on backscatter.

This is especially true in areas where the interannual variability of σ′ and σ′′ is large, which negatively

affects the accuracy of the TU Wien soil moisture retrieval approach and results in lower quality of the

resulting soil moisture data products in these areas. By correcting for vegetation dynamically (i.e. using

the dynamically estimated vegetation parameters) instead of performing the vegetation correction using a

climatology of σ′ and σ′′, the TU Wien soil moisture retrieval approach can be improved significantly. In

turn, this will yield higher quality ASCAT-derived soil moisture products.
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Land cover

A.1 Theia France 2016 land cover classification

From Inglada et al. [29].

Fig. A.1: Theia land cover classification [29]
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Appendix A. Land cover A.2. Theia France 2016 land cover classification: nomenclature

A.2 Theia France 2016 land cover classification: nomenclature

As described by Inglada et al. [29], several data sources were combined to build a land cover nomenclature

for mainland France for 2016 consisting of different 17 land cover classes. It should be noted that the

most recent land cover map of metropolitan France published by Theia for the year 2018 further refines

the nomenclature from 17 to 23 land cover classes, mainly providing an improved distinction between

different types of agricultural crops. For example, while the 2016 land cover data set only differentiates

between annual summer crops, annual winter crops, orchards and vines, the 2018 land cover data set

distinguishes between rapeseed, straw cereals, protein crops, soy, sunflower, corn, rice, and tubers/roots,

in addition to orchards and vines. It is recommended that the 2018 land cover data set is used in future

studies, as having more land cover classes may help provide an even better understanding of the σ◦,

σ′, and σ′′ behavior of different types of agricultural land cover. However, at the time of writing the

nomenclature consisted of the following 17 land cover classes [29]:

Arable land

• Class 11 Annual summer crops: annual crops which are seeded from March to mid June and

harvested between mid August to mid September; mainly corn and sunflower.

• Class 12 Annual winter crops: annual crops which are seeded between November and February

and harvested between mid June and late July; mainly wheat, barley and rapeseed.

• Class 12 Intensive grasslands: dense grass cover of floral composition.

Perennial crops

• Class 221 Orchards: parcels planted with fruit trees or shrubs.

• Class 222 Vineyards: areas planted with vines.

Forests

• Class 31 Broad-leaved forest: areas that consist mainly of broad-leaved trees, including shrub and

bush undergrowth. Broad-leaved trees represent at least 75% of the area, the minimum tree height

is 5 m and crown cover density exceeds 30%.

• Class 32 Coniferous forest: areas that consist mainly of coniferous trees, including shrub and bush

undergrowth. Coniferous trees represent at least 75% of the area, the minimum tree height is 5 m

and crown cover density exceeds 30%.

Shrubs and herbaceous vegetation

• Class 34 Natural grasslands: low productivity grassland, often situated in areas of rough, uneven

ground and frequently includes rocky areas, briars and heathland.

• Class 36 Woody moorlands: spontaneous vegetation dominated by woody plants (heather, briar,

broom, etc.) and semi-woody plants (fern, phragmites, etc.) shorter than 5 m.

Open spaces with little or no vegetation

• Class 45 Bare rock: Cliffs, rock outcrops, areas of active erosion, rocks and reef flats situated above

the high-water mark.

• Class 46 Beaches, dunes and sand plains: beaches, dunes and expanses of sand or pebbles in coastal

or continental locations, including beds of stream channels with torrential regime.

• Class 51 Water bodies: all water bodies longer than 20 m and all water courses longer than 7.5 m.

• Class 53 Glaciers and perpetual snow: land covered by glaciers or permanent snowfields.
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A.3. Land cover fractions, mapped per class Appendix A. Land cover

A.3 Land cover fractions, mapped per class

(a) Class 11: Annual summer crops (b) Class 12: Annual winter crops

(c) Class 31: Broad-leaved forest (d) Class 32: Coniferous forest

(e) Class 34: Natural grasslands (f) Class 36: Woody moorlands
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Appendix A. Land cover A.3. Land cover fractions, mapped per class

(g) Class 41: Continuous urban fabric (h) Class 42: Discontinuous urban fabric

(i) Class 43: Industrial and commercial units (j) Class 44: Road surfaces

(k) Class 45: Bare rock (l) Class 46: Beaches, dunes and sand plains
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A.3. Land cover fractions, mapped per class Appendix A. Land cover

(m) Class 51: Water bodies (n) Class 53: Glaciers and perpetual snow

(o) Class 211: Intensive grasslands (p) Class 221: Orchards

(q) 222: Vineyards

Fig. A.2: Land cover fractions, mapped per land cover class
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Principal Component Analysis

B.1 Reconstructing original data from PCA output

Fig. B.1: Several examples of how original standardized σ′ data (dB/deg) is reconstructed from the PCA output (i.e. headings
and loadings). A plot with a red background indicates that η2 < 0.99 for that grid point and number of retained PCs, while a
green background indicates that η2 ≥ 0.99. It can be seen that the data of some grid points is properly reconstructed for relatively
few (i.e. one or two) PCs, while some grid points require over eight PCs before their data is properly reconstructed.
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B.2 PCA performance for different number of retained PCs

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. B.2: Mapped PCA performance for different numbers of PCs. η2 is the explained variance score (see section 3.4.2).
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Appendix B. Principal Component Analysis B.2. PCA performance for different number of retained PCs

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. B.3: PCA performance histograms for different numbers of PCs. η2 is the explained variance score (see section 3.4.2).
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Characteristics of generated clusters

C.1 Spatial distribution

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

(d) Cluster 3 (e) Cluster 4 (f) Cluster 5

(g) Cluster 6 (h) Cluster 7 (i) Cluster 8

(j) Cluster 9

Fig. C.1: Grid points, mapped per cluster
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C.2 Relative seasonal signatures

(a) Cluster 0

(b) Cluster 1

(c) Cluster 2

(d) Cluster 3

(e) Cluster 4
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C.2. Relative seasonal signatures Appendix C. Characteristics of generated clusters

(f) Cluster 5

(g) Cluster 6

(h) Cluster 7

(i) Cluster 8

(j) Cluster 9

Fig. C.2: Seasonal climatology of σ◦40, σ′, σ′′ per cluster, plotted relative to those of all other grid points (in grey).
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C.3 Scaled seasonal signatures

(a) Cluster 0

(b) Cluster 1

(c) Cluster 2

(d) Cluster 3

(e) Cluster 4
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C.3. Scaled seasonal signatures Appendix C. Characteristics of generated clusters

(f) Cluster 5

(g) Cluster 6

(h) Cluster 7

(i) Cluster 8

(j) Cluster 9

Fig. C.3: Seasonal climatology of σ◦40, σ′, σ′′ per cluster, plotted relative to all within-cluster grid points.
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C.4 Land cover composition

Color Class Name
11 Annual summer crops
12 Annual winter crops
31 Broad-leaved forest
32 Coniferous forest
34 Natural grasslands
36 Woody moorlands
41 Continuous urban fabric
42 Discontinuous urban fabric
43 Industrial and commercial units
44 Road surfaces
45 Bare rock
46 Beaches, dunes and sand plains
51 Water bodies
53 Glaciers and perpetual snow

211 Intensive grasslands
221 Orchards
222 Vineyards

Table C.1: Description of land cover classes.

Class Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9
11 12.67 15.66 9.02 5.3 7.84 13.74 10.29 2.47 6.99 8.58
12 20.2 16.07 11.65 7.41 25.07 61.14 44.16 3.3 37.88 16.66
31 15.95 6.76 19.81 25.37 18.4 10.86 17.32 3.21 28.87 16.34
32 8.05 17.03 13.83 15.88 0.8 1.18 2.12 21.6 3.68 9.57
34 4.03 9.92 7.42 11.25 0.1 0.21 0.15 25.63 0.54 4.84
36 1.2 2.86 2.25 5.28 0.13 0.29 0.27 3.4 0.33 5.89
41 0.02 0.02 0.03 0.05 0.46 0.02 0.02 0.01 0.02 0.33
42 4.55 4.55 5.23 7.13 30.62 4.16 4.68 1.97 5.61 16.65
43 0.55 0.63 0.68 1.09 10.29 0.53 0.58 0.25 0.92 5.22
44 0.0 0.0 0.0 0.01 0.06 0.0 0.0 0.0 0.0 0.06
45 0.95 3.6 0.45 0.26 0.0 0.0 0.02 21.28 0.02 0.07
46 0.04 0.33 0.06 0.07 0.0 0.0 0.02 0.38 0.01 0.05
51 1.67 9.72 1.64 1.72 1.28 0.46 0.92 12.08 0.92 3.52
53 0.07 0.16 0.05 0.0 0.0 0.0 0.0 1.55 0.0 0.0

211 28.56 11.74 26.25 15.81 4.9 7.36 19.28 2.82 14.09 10.24
221 0.1 0.1 0.21 0.33 0.04 0.0 0.01 0.0 0.0 0.25
222 1.38 0.86 1.41 3.05 0.01 0.04 0.16 0.06 0.1 1.73

Table C.2: Mean percentage of area per land cover class for each cluster.
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C.4. Land cover composition Appendix C. Characteristics of generated clusters

(a) Cluster 0 (b) Cluster 1

(c) Cluster 2 (d) Cluster 3

(e) Cluster 4 (f) Cluster 5

(g) Cluster 6 (h) Cluster 7

(i) Cluster 8 (j) Cluster 9

Fig. C.4: Boxplots of the land cover footprint for each cluster. The box extends from the lower (Q1) to upper quartile (Q3) values of
the data, with a line at the median. The lower and upper whiskers extend to Q1− 1.5× IQR and Q3+ 1.5× IQR, respectively, where
IQR= Q3−Q1. Data beyond the whiskers are considered outliers and are plotted as individual points.
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Relating land cover classes to

backscatter signatures

The cluster analysis performed in section 4.4.2 indicates that consistencies exist between σ◦40, σ′, and

σ′′ signatures, and between land cover footprint and the aforementioned seasonal signatures. However,

because the clusters are generated based on σ′, the clusters generally have footprints consisting of several

dominant land cover classes, or have footprints that are very mixed. Even though it is possible to (partially)

describe the backscatter characteristics of some land cover classes (e.g. urban fabric, agriculture), it is

impossible to determine the specific σ◦40, σ′, and σ′′ signatures for all classes based on the clusters only.

Clearly, Appendix A.2 shows the land cover footprint of France is relatively heterogeneous compared

to, for example, the Sahara desert, the Amazon rainforest, or the North-American grasslands; a total of 17

land cover classes are identified in France. Moreover, since the ASCAT data has a resolution of 25 km, no

grid points with a 100% "pure" land cover footprint exist in France, i.e. a land cover footprint consisting

of one land cover class. However, as can also be seen in Appendix A.2, grid points where one or two land

cover types are clearly dominant do exist. By investigating only the grid points with a relatively pure land

cover footprint and/or grid points with a certain known land cover footprint, it may be possible to relate

each land cover class to a characteristic set of σ◦40, σ′, and σ′′ signatures. This section serves to further

investigate the relationship between the land cover classes and their seasonal scattering behavior, with as

goal to characterize – as best as possible – each land cover class in terms of σ◦40, σ′, and σ′′.

In order to achieve this, grid points are first selected based on which specific land cover class or land

cover footprint is under investigation. For example, we can investigate the grid points where class 12

(annual winter crops) has a fraction larger than 60% (p12 > 0.6), or where class 11 (annual summer

crops) is larger than 40% and class 12 (annual winter crops) is smaller than 10% (p11 > 0.5 & p12 < 0.10).

After the grid points that satisfy the defined rules have been selected, their σ◦40, σ′, and σ′′ signatures are

plotted, as well as their (aggregated) land cover footprint. The histograms of the investigated land cover

classes are shown in Fig. D.1 in order to visualize the ranges in which they occur. The following classes

have fractions that are assumed to be too low for further investigation: class 41, 43, 44, 46, 53 and 221.

Fig. D.1: Histograms of all land cover classes in France that occur in relatively large fractions (pmax > 0.25)
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(a) Selected grid points (b) Land cover footprint

(c) σ◦40, σ′, σ′′ seasonal signatures

Fig. D.2: Characteristics of grid points with a high fraction of class 11 (annual summer crops)

D.1 Vegetation classes

D.1.1 Class 11: Annual summer crops

In order to find grid points with a homogeneous land cover footprint where annual summer crops are the

dominant land cover class, three rules are defined; p11 > 0.4 to find the grid points with high fractions

of annual summer crops; p12 < 0.1 to minimize the influence of annual winter crops; and p42 < 0.05 to

exclude urban areas and their strong influence on the backscatter signal. The resulting grid points are

located in the south of France and are mapped in Fig. D.2a. While annual summer crops are dominant

in this area, Fig. D.2b shows that the selected grid points also contain significant fractions of intensive

grasslands (p̄211 = 0.186), broad-leaved forest (p̄31 = 0.179), and annual winter crops (p̄12 = 0.071).

The seasonal signatures of the selected grid points are shown in Fig. D.2c. σ◦40 is relatively stable

throughout the year, reaching minimum values around the end of summer and maximum values during

winter. σ′ has two distinct peaks; one lower peak around day 100 and one higher peak between day 200 –

250. Annual summer crops mainly consist of corn and sunflower (about 15% and 5% of total agricultural

area [18]), which are sown between March and mid June (day 60 – 170) and harvested between mid

August to mid September (day 220 – 260). As such, the second peak observed in σ′ coincides with with

the main growing season of annual summer crops. The first, smaller peak may be due to the (smaller)

presence of annual winter crops, which start growing earlier in the year as they are sown during autumn

and early winter. σ′′ is close to zero and slightly noisy, but seems to contain three peaks of roughly equal

magnitude around day 50, 150, and 250. These peaks indicate significant structural changes and may be

caused by (1) rapid growth of winter crops, (2) rapid growth of summer crops, and (3) crop harvesting.
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(a) Selected grid points (b) Land cover footprint

(c) σ◦40, σ′, σ′′ seasonal signatures, also showing the development phases described in Fig. D.4a

Fig. D.3: Characteristics of grid points with a high fraction of class 12 (annual winter crops)

D.1.2 Class 12: Annual winter crops

Two rules are defined in order to find the grid points where annual winter crops dominate the land cover

footprint: p12 > 0.6 to maximize the fraction of annual winter crops, and p11 < 0.1 to minimize the

fraction of annual summer crops. The resulting grid points and their land cover footprint are shown in

Fig. D.3a and Fig. D.3b. The selected grid points also consist of broad-leaved forest (p̄31 = 0.146), annual

summer crops (p̄11 = 0.059), intensive grasslands (p̄211 = 0.053), and some urban area (p̄42 = 0.04).

Since winter wheat is the dominant winter crop in this area (about 45% of total agricultural area,

compared to 10% for barley and 5% for rapeseed [18]), the observed seasonal signatures are likely

best described by the growth cycle of wheat. In France, wheat is sown in October and harvested the

following year in July and August. As shown in Fig. D.4a, three distinct development phases are identified:

foundation (October – February), construction (March – May), and production (June – August).

The foundation period (day 300 – 60) is characterized by seedling establishment and the emergence of

leaves and tillers. Vegetation is sparse during this period, which corresponds to the low σ′ values observed

between day 300 – 60. Due to the low vegetation density the backscatter signal is dominated by bare soils,

which mainly produce surface scattering [3]. Hence, σ◦40 decreases significantly for increasing incidence

angles. Moreover, soil moisture is highest during the winter months in France, which explains the observed

maximum σ◦40 values between day 300 – 60. Due to the lack of vegetation, ground-bounce scattering

and direct scattering from the vertical canopy constituents both do not occur and are therefore equally

dominant. This corresponds with the observed σ′′ values, which are close to zero during the foundation

period. However, σ′′ increases toward the start of the construction period indicating that ground-bounce

scattering becomes dominant over direct scattering from the canopy. This may be explained by the end of

winter dormancy and the start of (mainly) vertical vegetation growth.
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(a) Wheat development phases

(b) Wheat crop height (c) Wheat stem storage

Fig. D.4: Characteristics of the annual growth cycle of winter wheat (adapted from Sylvester-Bradley et al. [61])

The construction period (day 60 – 160) is characterized by rapid stem elongation, increasing stem

reserves and the formation of grain ears. As can be seen in Fig. D.3c, the backscatter signatures between day

60 – 110 are markedly different than those between day 110 – 160. The first half of the construction period

shows sharply decreasing σ◦40, increasing σ′, and increasing σ′′. As indicated by σ◦40, total backscatter

sharply decreases during the first part of the construction period; this behavior has been attributed to

the rapid development of the wheat stem. As shown in Fig. D.4b, the crop height significantly increases

during stem elongation and hence, the crop structure changes from a predominantly horizontal structure

to a vertical structure dominated by the main stem. The vertically oriented wheat stems couple much

more effectively with VV-polarized waves, which results in lower backscatter due to strong attenuation

on both the incoming and return paths [64]. Research by Picard et al. [50] showed that attenuation of

VV-polarized waves not only increases with stem height but also with stem gravimetric moisture content,

which increases throughout the construction period (see Fig. D.4c). The increase in crop height, leaf

coverage and soluble stem storage result in increasing vegetation density, which corresponds with the

increasing σ′ values observed between day 60 – 120. During this period σ′′ increases until reaching

maximum (positive) values around day 120, meaning that σ◦40 increases for large incidence angles (i.e.

the σ◦40 − θ relationship curves upwards for large θ [59]), see Fig. D.5a. This can be explained by

the stem dominated vertical structure and the incidence angle dependence of the occurring scattering

mechanisms. For low θ , the total backscatter is dominated by direct scattering from the soil as well as

ground-bounce scattering between the soil and stems. The soil return decreases with increasing θ , as

does the ground-bounce contribution; the path through the canopy becomes longer for increasing θ ,

causing the incoming and outgoing waves to interact with more and more stems which leads to increased

attenuation [10]. On the other hand, direct backscatter from the crop canopy increases with θ [66]. The

combination of these higher order effects cause σ◦40 to decrease with increasing θ if θ < 40◦, while σ◦40

increases with increasing θ if θ > 40◦ [10]. This corresponds with the observed positive σ′′ values.
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(a) σ◦ − θ relationship at day 110 (b) σ◦ − θ relationship at day 160

Fig. D.5: σ◦ − θ relationship at day 110 and day 160

The backscatter signatures change significantly during the second half of the construction period

(day 110 – 160); σ◦40 sharply increases, σ′ increases, and σ′′ rapidly drops from maximum values to

approximately zero. The resulting σ◦−θ relationship of day 160 shows that σ◦ increases for all incidence

angles compared to day 110, but the biggest increase is found for large θ (i.e. θ > 40◦), see Fig. D.5.

Furthermore, since ground-bounce scattering is dominant for small θ and direct scattering from vertical

canopy components is dominant for large θ , it follows that the contribution of the vegetation canopy

to total backscatter increases significantly more than the contribution of ground-bounce scattering via

the wheat stems. This change in scattering behavior could be explained by canopy maturation and the

formation of grain-bearing ears during this period, see Fig. D.4a. Direct scattering from the dense canopy

becomes dominant over the attenuating effects of the vertical stems, leading to larger σ◦40. Furthermore,

vegetation density reaches a maximum as the canopy matures and grain-ears form, which corresponds with

increasing σ′. Finally, direct scattering from the vertical constituents of the canopy becomes increasingly

important relative to ground-bounce scattering, which corresponds with the observed decrease of σ′′.

Finally, the production period (day 160 – 210) is characterized by the filling, ripening, and harvesting

of grains. Between day 160 – 210, σ◦ and σ′ both decrease, while σ′′ initially increases and subsequently

decreases again. The strongest decrease in σ◦ is found for large incidence angles (θ > 50◦) while σ◦

stays relatively constant for small incidence angles (θ < 30◦). This suggests that the influence of the

canopy decreases significantly during the production period, since backscatter is mainly generated by

the ears and leaves at large incidence angles. This can be explained by the loss of (wet) biomass in the

canopy during the production period; the leaves (largely) senesce during this period, and the moisture

content of the grains drops from approximately 45% to 20% during ripening as moisture is replaced by

starch and nutrients [61]. This corresponds with the decrease in σ◦40 and σ′ observed during this period.

Furthermore, at the point of harvest almost all soluble stem resources have been transferred to the grains

or lost through transpiration, see Fig. D.4c [61]. This may explain the increase and subsequent decrease in

σ′′; perhaps the water content of the canopy decreases earlier than the water content of the stem, leading

to temporary dominance of the stem over the canopy (i.e. σ′′ increases). As the water content of the stem

continues to decrease until harvest, the dominance of the stem decreases again (i.e. σ′′ decreases).

Clearly, the different development phases of wheat are reflected in the σ◦40−θ relationship and the σ◦40,

σ′, and σ′′ signatures. Throughout the growth cycle of wheat, the observed backscatter signatures can be

logically explained by the structural changes occurring in the different vegetation components. It was

found that σ◦40, σ′, and σ′′ are not only influenced by the orientation of the different vegetation elements,

but also by the distribution of moisture in these elements. The results are consistent with the idea that σ′

is a measure of above-ground wet biomass ("vegetation density"), and that σ′′ is a measure of the relative

dominance of ground-bounce scattering and direct scattering from vertical canopy components.
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(a) Selected grid points (b) Land cover footprint

(c) σ◦40, σ′, σ′′ seasonal signatures

Fig. D.6: Characteristics of grid points with a high fraction of class 31 (broad-leaved forest)

D.1.3 Class 31: Broad-leaved forest

As can be seen in Fig. D.6a and Fig. D.7b, grid points with a relatively high fraction of deciduous

broad-leaved forest (p31 > 0.3) are spread throughout France and have mixed land cover footprints. Even

for relatively high fractions (e.g. p31 > 0.3), broad-leaved forest coincides with significant fractions of

other land cover classes such as intensive grasslands (p̄211 = 0.203), coniferous forest (p̄32 = 0.168),

and natural grasslands (p̄34 = 0.116). As a result, the seasonal signatures of the selected grid points are

relative noisy, making it difficult to investigate the backscatter effects of broad-leaved forest separately.

While σ◦40 is relatively constant throughout the year, σ′ and σ′′ exhibit discernible seasonal variations.

σ′ generally reaches minimum values during winter (day 300 – 50) and maximum values between spring

and summer (day 100 – 250). Several patterns are visible in σ′, which is likely due to the the fact that the

land cover footprint of the selected grid points contains significant fractions of several other vegetation

types which may reach maximum vegetation density at different times in spring and/or summer. On

the other hand, σ′′ exhibits a more distinct seasonal cycle, reaching maximum values during winter

and early spring (day 350 – 100) and minimum values during summer (day 150 – 250). One possible

explanation for this behavior is the growth and fall of leaves; direct scattering from tree canopies is most

dominant during summer when deciduous tree canopies reach maximum density, which corresponds with

the observed decrease of σ′′. As the trees drop their leaves, direct scattering from the canopy decreases

and ground-bounce scattering from tree trunks and branches becomes more dominant, which corresponds

with the observed increase of σ′′.
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(a) Selected grid points (b) Land cover footprint

(c) σ◦40, σ′, σ′′ seasonal signatures

Fig. D.7: Characteristics of grid points with a high fraction of class 32 (coniferous forest)

D.1.4 Class 32: Coniferous forest

As shown in Fig. D.7a, an area with high fractions of coniferous forest (p32 > 0.7) exists in the Landes

area south of Bordeaux. This area is the largest man-made woodland in Western Europe and mainly

consists of maritime pine. Additionally, this area contains some annual summer crops (p̄11 = 0.094) and

some broad-leaved forest (p̄31 = 0.045), making the land cover footprint of this area relatively pure.

Clear seasonal behavior can be identified in the backscatter signatures shown in Fig. D.7c. σ◦40 is

maximum during winter and steadily decreases throughout spring and summer. σ′ is constant between

day 300 – 120 and shows increased activity between day 120 – 300. σ′′ oscillates around zero, reaching

maximum (positive) values around day 120 and subsequently drops to minimum (negative) values around

day 200. This behavior corresponds with the annual growth cycle of the maritime pine and may be

explained specifically by the different stages of needle development. Conifers generally have a dormancy

period in fall and winter, which is when new buds develop [23]. Growth mainly occurs between in summer

months, which is reflected by σ′. Bud burst occurs in spring, after which the new shoots elongate rapidly.

The needles stay close to the shoot axis during the first summer, and during the second summer the

needles open up until oriented almost perpendicular to the shoot axis [6]. This behavior may explain why

σ′′ initially increases to positive values and subsequently drops to negative values. Spring is characterized

by rapid elongation growth of new shoots, which have a straight structure as the needles are flat against

the shoot. On the other hand, summer is characterized by the needles of one year old shoots opening

up until perpendicular to the shoot axis. Due to the different timing of these processes, ground-bounce

scattering increases in dominance during spring (i.e. σ′′ increases), while the dominance of direct/volume

scattering from the canopy increases during summer due to larger canopy density (i.e. σ′′ decreases).
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(a) Selected grid points (b) Land cover footprint

(c) σ◦40, σ′, σ′′ seasonal signatures

Fig. D.8: Characteristics of grid points with a high fraction of class 211 (intensive grasslands)

D.1.5 Class 211: Intensive grasslands

Four rules are defined to determine grid points where intensive grasslands are the dominant land cover

class: the fraction of intensive grasslands should be at least 50% and the fractions of annual summer

crops, annual winter crops and deciduous forest cannot be higher than 10% to minimize their influence.

The resulting grid points are mapped in Fig. D.8a and are mainly located in the Central Massif, an area

consisting of mountains and plateaus. Besides intensive grasslands, Fig. D.8b shows that the selected grid

points contain a significant amount of deciduous forest (p̄31 = 0.185). The seasonal signatures plotted

in Fig. D.8c show that σ◦40 is relatively low and has little seasonal variation in this area, which may be

(in part) due to relatively low and stable soil moisture levels in highlands and plateaus. On the other

hand, both σ′ and σ′′ show clear seasonality. σ′ reaches minimum values during winter (day 350 – 50)

and sustains maximum values throughout spring and summer (day 100 – 250), which corresponds to

the general seasonal growth cycle of deciduous vegetation. σ′′ reaches maximum values during winter

(day 350 – 70) and minimum values during summer (day 200 – 300). While σ′′ is mostly negative,

some grid points reach (near) positive values during winter. In areas where intensive grasslands is the

dominant land cover class, σ′′ is largest (i.e. close to zero) when σ′ is lowest, suggesting an approximately

equal dominance of ground-bounce scattering and direct scattering when vegetation is sparse. This could

indicate that surface scattering is the main scattering mechanism in highlands and/or plateaus when grass

cover is most sparse. Conversely, σ′′ is most negative when σ′ is largest, suggesting that direct scattering

from vertical vegetation constituents is dominant when vegetation is dense.
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(a) Selected grid points, colored by class 42 fraction (b) Corner-reflector effect of urban areas

(c) σ◦40, σ′, σ′′ seasonal signatures, colored by class 42 fraction

Fig. D.9: Influence of class 42 (discontinuous urban fabric) on backscatter signatures

D.2 Non-vegetation classes

While non-vegetation land cover classes themselves may not exhibit seasonal behavior in terms of σ◦40, σ′,

and σ′′, they may affect the backscatter signatures originating from vegetation located in the same grid

point. In order to better understand the relationship between land cover and σ◦40, σ◦40, and σ′′, the effect

of non-vegetation land cover classes should be investigated. This section serves to investigate and explain

the influence of discontinuous urban fabric, bare rock, and water bodies on σ◦40, σ′, and σ′′.

D.2.1 Class 42: Discontinuous urban fabric

All grid points points for which p42 > 0.05 are plotted in Fig. D.9a. The backscatter signatures of these

grid points are plotted in Fig. D.9c, where the signatures of each grid point are colored according to

their respective p42 value. As previously observed in section 4.4.2, grid points with a land cover footprint

containing relatively large fractions of urban classes generally have large σ◦40 values, shallow σ′ values,

and negative σ′′ values, which are all relatively constant throughout the year. Fig. D.9c clearly shows that

larger values of p42 indeed result in larger σ◦40, shallower σ′, and more negative σ′′. Moreover, seasonal

variations in σ◦40, σ′, and σ′′ are damped as p42 increases. This can be explained by the combined effect

of increasing urban area and decreasing vegetation. Firstly, urban areas behave as corner-reflectors due

to their unique structural characteristics (i.e. flat surfaces joined at 90◦ angles, see Fig. D.9b), leading

to large σ◦ for a wide range of incidence angles (i.e. shallow σ′). The observed negative σ′′ values are

explained by the fact that the corner-reflector effect is strongest for approximately 40◦ < θ < 50◦ and

decreases for lower and higher values of θ [37]. Secondly, vegetation cover decreases as p42 increases,

resulting in lower seasonal variations. Due to the aforementioned characteristics, urban areas have a

strong "scaling" effect on the backscatter response generated by vegetation in the same grid point. In

terms of clustering, this scaling effect means that two grid points with similar land cover footprints may

be assigned to different clusters if they have slightly different values of p42.
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(a) Selected grid points, colored by class 45 fraction (b) Class 45 vs class 32 and class 34 fractions

(c) σ◦40, σ′, σ′′ seasonal signatures, colored by class 45 fraction

Fig. D.10: Influence of class 45 (bare rock) on backscatter signatures

D.2.2 Class 45: Bare rock

The grid points and backscatter signatures for points with a bare rock fraction of p45 > 0.01 are plotted in

Fig. D.10a and Fig. D.10c, respectively, colored by their respective p45 value. In general, higher values of

p45 correspond with higher σ◦40 and steeper σ′, both with increased seasonal variation. There also seems

to be a relationship between p45 and σ′′; the moment of both maximum and minimum σ′′ seem to occur

later in the year for larger values of p45.

Bare rock characteristically causes larger backscatter than vegetation at θ = 40◦, explaining why

σ◦40 increases when p45 increases [66]. As can be seen in Fig. A.2k, bare rock exclusively occurs in the

Alps, the Pyrenees, and central Corsica, implying that p45 is related to elevation. This explains why

lower σ′ values are observed for increasing p45 values; as elevation increases, environmental factors (e.g.

temperature, precipitation, humidity) become increasingly unfavorable for vegetation, which results in

decreasing vegetation cover (i.e. lower σ′), as vegetation is eventually replaced by bare rock (i.e. higher

p45). Moreover, the composition of vegetation changes with elevation; as elevation increases, deciduous

forest is gradually replaced by coniferous forest, which in turn is replaced by natural grasslands (see Fig.

D.10b), until eventually all vegetation is replaced by bare rock and snow. Different scattering mechanisms

occur when land cover composition changes, explaining why the behavior of σ′′ changes for increasing

fractions of bare rock.
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(a) Selected grid points, colored by class 51 fraction

(b) σ◦40, σ′, σ′′ seasonal signatures, colored by class 51 fraction

Fig. D.11: Influence of class 51 (water bodies) on backscatter signatures

D.2.3 Class 51: Water bodies

The grid points and backscatter signatures for points with a fraction of water bodies p51 > 0.05 are plotted

in Fig. D.11a and Fig. D.11b, where each grid point is colored by its respective p51 value. Higher values

of p51 correspond with lower σ◦40, lower σ′, and higher σ′′. Water acts as a smooth surface and results

in low backscatter, which explains why σ◦40 decreases for increasing p51. Furthermore, larger values of

p51 inherently mean that vegetation cover fractions must decrease, which translates to lower average

vegetation density and hence, decreasing σ′. Since water acts as a smooth surface, surface scattering

becomes the dominant scattering mechanism as p51 increases and vegetation cover fractions decrease;

this corresponds with the observed increasing σ′′ values. The fact that slight seasonal behavior is present

in σ◦40, σ′, and σ′′ for all values of p51 is explained by the fact that the maximum observed value of p51

is approximately 0.65; there exist no grid points with a land cover footprint consisting entirely of water.

Instead, vegetation is always present and hence, seasonal σ◦40, σ′, and σ′′ behavior is observed even for

high values of p51.
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