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Abstract

Structures deployed in arctic and subarctic regions are inevitably subjected to loading tue to floating ice.

The failure of the ice at the interaction point can result in complex dynamic behavior of the structure.

The ice-induced vibration of structures can be generally categorized into: (1) intermittent crushing, (2)

frequency lock-in, and (3) continuous crushing. The aim of this thesis is to estimate the unknown pa-

rameters as well as identify the shape of ice crushing strength and stress rate curve in a numerical

model proposed by M. Maattanen under low, high and medium ice velocity. Based on measured vibra-

tion data, the least squares method and the extended Kalman filter has been used.

Using the least squares method for the case of low ice velocity, all of the five unknown model parame-

ters reach their target value when no noise is assumed to be present on the measurements. However,

the result obtained under 5% noise level is poor. The reason is the discontinuity in the ice crushing

stress rate curve used in the model at �̇� = 0𝑀𝑃𝑎/𝑠. Under high ice velocity, the least squares method

fails due to the lack of information. While for medium ice velocity, the estimated ice curshing strength

curve differs from the original one.

On the other hand, the extended Kalman filter, which can estimate both the model parameters and the

structural states, works better. For the case of low ice velocity, the estimated parameters converge

to the target value for three parameter estimation also in the presence of noise. When estimating

more model parameters, the result doesn’t converge to the target value due to nonuniqueness issues.

However, the ice crushing strength curve obtained from fitting the ice crushing strength points at each

time step is successful. Under high ice velocity, the estimated ice crushing strength curve is constant,

reaching the target constant value. Moreover, the estimated curve is close to the original one within

0.4𝑀𝑃𝑎/𝑠 < �̇� < 1.8𝑀𝑃𝑎/𝑠 under medium ice velocity.
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1
Introduction

1.1. Background
After the innovation of steam engine, an unprecedented age of industry opened the Pandora’s box of
large amount of energy consumption, with incredible growth every year. Various ways of acquiring
energy from the nature has been continuously discovered, including fossil energy, wind energy, solar
energy, etc. Even though the demand of energy decreased along with the economic recession every
seven or eight years, the demand has and will keep growing in general.

Figure 1.1: World primary energy demand (courtesy of The Economist)

Among all the form of energy, hydrocarbon and wind energy are perhaps the mostly mentioned, due
to their large reserves. Enormous onshore drilling rigs and wind farms have been erected from last
century. Moreover, human being’s imagination has once again been pushed one step forward by high
commercial profit from onshore to offshore. Offshore platforms with various functions have been fabri-
cated and deployed in the ocean.

Figure 1.2: Statoil’s Troll A Platform and Sheringham Shoal Offshore Wind Farm (courtesy of Wikipedia)

1
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Exploring new frontier of energy has been executed for a long time by large oil companies, Shell and
Exxonmobil for instance. In 1991, the Madrid Protocol, an addition to the Antarctic treaty, came into
force, prohibiting exploration and extraction of hydrocarbons on Antarctica until at least 2048. Gradu-
ally, oil companies’ interest turned to arctic and subarctic regions, for large reserves believed hidden
beneath the soil there. By using a probabilistic geology based methodology, the United States Geo-
logical Survey has assessed the area north of the Arctic Circle and concluded that about 30% of the
world’s undiscovered gas and 13% of the world’s undiscovered oil may be found there, mostly offshore
under less than 500 m of water.

Figure 1.3: Arctic and subarctic oil and gas resource(courtesy of The Economist)

Since then, the exploitation of hydrocarbon in arctic and subarctic regions was ignited, along with the
query of the public. Nevertheless, the activities in arctic and subarctic areas has never been stopped,
including offshore platforms, lighthouses, piers etc. Some examples of structures has been installed in
arctic and subarctic region are Prirazlomnaya platform and Berkut platform.

Figure 1.4: Prirazlomnaya platform and Berkut platform(courtesy of Wikipedia)

The most challenging issue for structures in arctic and subarctic regions is the impact of floating ice.
Ice can float on the surface of ocean due to its relative low density compared with salt water. Mean-
while, the ocean current can carry the floating ice into moving state. And the moving floating ice will
inevitably crush on the surface of artificial structures. Then severe vibrations, with devastating impact
on the operational reliability and safety of offshore structures, may be caused by the failing ice along
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the contact surface.

1.2. Previous research on ice induced vibration
From the first ice induced vibration (abbreviated as IIV) measurement on Cook Inlet [2] in 1960s, the
intrinsic mechanism of IIV has been studied by numerous scientists and researchers.
It has been shown that the ice forces exerted on the structure are dependent on the ice velocity, the
compliance of the structure, and the state of the ice. In the design code for arctic offshore structures,
a distinction is made between three dynamic interaction scenarios: intermittent crushing, frequency
lock-in and continuous brittle crushing.
At very low ice velocities ice behavior is ductile. Ice load is pseudo-stationary. Ice load and stresses,
as well as structural deflection build up until ice compressive strength level is reached. As ice fails the
load level drops suddenly, and the deflection of the structure springs back. Thereafter the advancing
ice edge makes contact to the structure and a new load cycle starts. This produces a saw tooth like
ice force or displacement history
At higher velocities, the response history will gradually change to frequency lock-in. Displacement his-
tory approaches a sinusoidal one. A resonant state occurs.
At still higher ice velocities conditions for the resonance are lost. Ice failure turns into totally brittle and
ice load fluctuations randomly.

Figure 1.5: ISO classification of Ice-Induced Vibrations (Courtesy of ISO 19906)

The frequency lock-in is of paramount importance. Within the frequency lock-in range, the structure
will experience the excitation near its natural frequency, which can arouse severe vibration of the struc-
ture. In this case, the working condition of staffs on the structure, as well as the health condition of
the structure will be deteriorated. In order to design structures that can avoid this frequency lock-in
phenomenon, first the phenomenon of frequency lock-in has to be understood.
In the past several decades, an enormous amount of theories has been proposed, even though none
of them has accepted worldwide comprehensive consensus.
In 1988, Sodhi introduced a concept of crushing length and characteristic failure frequency [27]. Mod-
els employing this approach assume that a moving ice sheet acting on a structure tends to break into
fragments of certain size. This phenomenon determines a characteristic failure frequency. Resonant
vibrations may arise when the characteristic frequency is close to the natural frequency of the structure.
The main problem associated with this type of models is that they deny the feedback of the motion of
the structure on the ice loading[25].
In the year of 1989, a new model was proposed by Tuomo Karna [17]. The dynamic equations of equi-
librium for the structure and the undamaged ice field are coupled by a nonlinear element describing
the crushing and clearing processes at the ice-structure interface. The ice in that model was assumed
to fail with a more or less constant nominal crushing depth. Good correspondence with field measure-
ments was achieved with this model for slender vertically-sided offshore structures.
In addition, several scientists claim that IIV should be described by self-excited models with negative
damping. Among them, Prof. Maattanen [20] presented a numerical model related to negative damp-
ing in 1978. In this model, the excitation force is coupled with the relatively velocity of the structure.
A specific relationship between ice crushing strength and relative velocity was introduced to describe
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this excitation force.

1.3. Previous research on ice force identification
Even though the intrinsic mechanism within IIV has not yet been fully understood, force exerting on the
structure is the direct actuator that result in dynamic motion. Hence, it is one step forward if one can
determine the ice force, or ice action directly.
Ice action has been measured since 1964 on the Cook Inlet, Alasks.[2]. Since then, direct measure-
ment has been widely used by means of deploying load panels on different location of the structure. For
instance, A total of 31 Medof panels in arrays were distributed on three faces of the Molikpaq platform,
in order to measure first-year sea ice interacting with the Molikpaq [10, 35].
However, the force are likely to be underestimated if the location of the panels are far from the ice
interaction point. Due to the fluctuation of sea level, finding perfect location of load panels is very
difficult [13]. Moreover, the measurement accuracy may be deteriorated due to the structural proper-
ties, internal damping and natural frequency for instance, of the load panels. The operation accuracy
and reliability of load panel has been looked into detail by Frederking et al [10],Jefferies et al[15] and
Spencer [28]
In this case, using load panel to directly measure the ice force sometime is not accurate. Except direct
measurement method, force can also be identified using indirect method – frequency domain decon-
volution [33]. The disadvantage of frequency domain deconvolution is that it utilizes the frequency
response function, which is often difficult to accurately determine, of the structure.
A new indirect method of ice force identification is proposed [32] using a joint input-state estimation al-
gorithm. By augmenting the Kalman Filter, the displacement and ice force are identified, compared with
the experimental measured displacement and force derived from the frequency domain deconvolution.

Figure 1.6: Location of the MEDOF panels on the Molikpaq showing side view (left) and plan view (right) locations (courtesy of
[31])

1.4. Previous research on system and parameter estimation
The estimation problem can be categorized into state estimation (subcategory of filtering, prediction
and smoothing problem[30]) which estimate the time varying state of the dynamic system, and system
identification which deals with the problem of estimating time-invariant unknown parameters of dynamic
systems using measurements of the outputs and(or) inputs from the system. Estimating the model pa-
rameters given a set of data is often referred to as the inverse problem.
Among the enormous estimators, the maximum likelihood method, which is quite well-known for solving
the system identification problem, was introduced by Ronald Fisher between 1912 [8] and 1922 [9].It is
based on the rather natural idea that the parameters should be chosen in such a way that the observed
measurements are as likely as possible. The interesting thing is that under certain criterion [4], the
maximum likelihood method is equivalent to least squares method, proposed by Carl Friedrich Gauss
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over one hundred years earlier, which minimizes the sum of the squares of the errors. Expectation
maximization algorithm is an iterative method for finding maximum likelihood. Some detailed introduc-
tion can be found in [6] and[24]. On the basis of recursive least squares method [5], Kalman filter, which
has received comprehensive application, was primary developed by Rudolf Emil Kalman in 1960 [16].
The Kalman filter uses system update and measurement update [1] to recursively estimate the state
and parameters. Some derivatives of Kalman filter, extended Kalman filter and unscented Kalman filter
[3, 5, 26] for instance, have been proposed to solve problems of nonlinear dynamic system. Moreover,
Applying the expectation maximization algorithm together with the Kalman filter constitutes a robust
iterative procedure to estimate model parameters in the state space model as well as an approach to
denoise the signal [22].

1.5. Research aim
Although actual dynamic model of IIV has not been discovered yet, if a proper identification approach
can be used to estimate the unknown parameters in a proposed model based on measurement, then
applying this identification technique to full scale or experimental measurement may lead to the real
dynamic model of IIV.
The purpose of this research is to investigate into the numerical model proposed by Prof. Maattanen
in the year of 1978. The curve describing the relationship between ice crushing strength and relative
velocity is the key segment of his model. Two state-of-art parameter identification technique, least
squares method and extended Kalman filter, are used to estimate the unknown parameters as well as
the shape of the curve in the dynamic model, based on measurement. The feasibility of parameter
identification algorithm and quality of the result will be assessed under different ice velocities.





2
Models of ice-induced vibration

2.1. Mathematical model
As introduced in chapter 1, many researchers address that the frequency lock-in can be described as
a self-excitation phenomenon. Many self-excitation models have been proposed by mathematicians
and engineers, for instance Lord Rayleigh [29], Van der Pol [7] and John E. Gibson [11]:

• Rayleigh differential equation: �̈� − 𝜇(1 − �̇�)�̇� + 𝑥 = 0
• Van der Pol equation: �̈� − 𝜇(1 − 𝑥 )�̇� + 𝑥 = 0

An example phase portrait of the Rayleigh equation is shown below. The state of the system will grow
at first due to the so-called negative damping in structural dynamics. After certain development time,
the state will reach a limit circle, when the damping becomes positive.

Figure 2.1: Example phase portrait of Rayleigh differential equation

Due to the fact that these equations only describe the self-excitation regardless of relating the physical
properties of ice and structure, estimating the parameter in pure mathematical equations is impractical.

2.2. Mechanical model
In order to predict ice-structure interaction, H. Matlock used a mechanical model for simulation [23]. It
simply consists of a mass-spring-dashpot system, representing a linear model of the elastic structure,

7
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which is excited by elastic brittle bars moving on a kind of conveyor belt, representing the moving ice.
At a certain deflection the bar, which is in contact with the mass, fails and the mass swings back until
the next bar has moved forward and reaches contact with the mass. Recently, G. Huang et al [14] and
H. Hendrikse et al [12] made some expansion of the Matlock model by taking the ice properties and
randomness etc. into account.

Figure 2.2: Dynamic ice-structure interaction model (courtesy of Matlock et al, 1969, 1971)

Similar to the Matlock model, T.S.J. van Dijk [34] used a stick-slip model as well as different friction
models to simulate the ice-structure interaction. Good results have been obtained for the intermittent
crushing and continuous brittle crushing range. Figure 2.3 presents the different friction model, with
Y-axis stands for the friction and X-axis represents the relative velocity.

Figure 2.3: Stick-slip model (courtesy of T.S.J. van Dijk, 2015)

Figure 2.4: Friction models (courtesy of Leine and Nijmeijer [18], 2013)

2.3. Karna’s numerical model
As briefly introduced in Chapter 1, Karna [17] proposed a numerical model by coupling the structure
and undamaged ice field with a nonlinear element describing the crushing and cleaning process. The
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numerical model can be summarized as follows:

𝑀�̈� (𝑡) + 𝐶�̇� (𝑡) + 𝐾𝑢 (𝑡) = 𝐹 (𝑡) (2.1)
𝐶 [�̇� (𝑡) − 𝑣] + 𝐾 [𝑤 (𝑡) − 𝑠 (𝑡)] = −𝐹 (𝑡) (2.2)
𝐹 (𝑡) = 𝐹 [𝑢(𝑡) − 𝑤 (𝑡)] (2.3)

𝑠 (𝑡) = 𝑣𝑡 −∑Φ(𝑡 − 𝑡 ) (2.4)

Figure 2.5: Karna’s model for IIV of a single degree of freedom system (courtesy of [17],1989 )

Equation (2.1) describes the dynamic properties of the structure. Equation (2.2) and (2.3) present the
rushed ice between the structure and the ice sheet. While the last equation is used to represent the
ice sheet undergoing damage at the ice edge.

2.4. Maattanen’s numerical Model
In 1978, Prof. Maattanen proposed a self-excited numerical model [21] to describe the synchronized
resonant type frequency lock-in of IIV which has been widely observed in full scale measurement [2].
Ice failure by crushing against a vertical offshore structure induces non-stationary loads. Even in the
case of a narrow single pile structure there are always random variations in the total ice load.
The principle idea in his model is based on the ice crushing strength dependence on loading rate. In
another word, the excitation force acting on the structure depend not only on the properties of ice, but
also on the motion of structure. The existing of a special range in the ice crushing strength and stress
rate curve ,Figure 2.6 [21], induces a so called negative damping.

Figure 2.6: Ice Crushing Strength vs. Stress Rate
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The numerical model can be summarized as follow[21].

�̇� = (𝑉 − �̇�)8𝜎𝜋𝐷 (2.5)

𝜎 = {
0 �̇� < 0𝑀𝑃𝑎/𝑠
(7.8�̇� − 18.57�̇� + 13�̇� − 2.91�̇� + 2) 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠
1 1.3𝑀𝑃𝑎/𝑠 < �̇�

(2.6)

𝐹 = 𝐴𝜎 √𝐴𝐴 (2.7)

𝐹 = 𝑚�̈� + 𝑐�̇� + 𝑘𝑢 (2.8)

The physical meaning of the above parameters are:

• 𝜎 :Reference ice strength

• 𝐷:Diameter of the cylindrical structure

• 𝑢:displacement of structure

• 𝑉 :Velocity of ice

• �̇�:Stress rate

• 𝜎 :Ice crushing strength

• 𝐴 :Reference area

• 𝐴:Projected crushing area

• 𝑚:Mass of structure

• 𝑐:Damping coefficient

• 𝑘:Stiffness of structure

Equation (2.6) uses a fourth order polynomial to describe the ice crushing strength between 0𝑀𝑃𝑎/𝑠
stress rate to 1.3𝑀𝑃𝑎/𝑠 stress rate, refer to figure 2.6. For �̇� < 0, 𝜎 is zero (structure velocity larger
than ice velocity). For �̇� > 1.3, 𝜎 is constant 1𝑀𝑃𝑎.

2.5. Application of Maattanen’s Numerical Model
In Prof. Maattanen’s research, two different structures have been used to apply the numerical model
described above – a three legged jacket platform and a caisson retained island [21]. By discretizing
the big structure into finite element model, the system is regarded as multi-degree of freedom system.
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Figure 2.7: Three legged jacket platform [21]

Figure 2.8: Caisson retained island [21]

2.6. Implementation of Numerical Model
In order to effectively estimate the parameters as well as verify the applicability of the identification
techniques, only a single degree of freedom system will be used for simplicity.
Due to the constraint that no full scale measurement is available at the moment, artificial measurement
data has been generated through applying the numerical model to a single degree of freedom system.
All the parameters used in this thesis can be found in the table below.
By simulating the response using the parameters in table 2.1, displacement and velocity signals (with
noise) can be obtained given a certain initial state using 4th order Runge-Kutta numerical method
(”ODE45” in MATLAB). The detailed elaboration of numerical method solving differential equations can
be found in Appendix A.

Table 2.1: Parameters for implementation

Parameter Unit Value
𝜎 𝑀𝑃𝑎/𝑠 2
𝐷 m 1
𝐴 𝑚 1
𝐴 𝑚 0.5
𝑚 𝐾𝑔 50000
𝑐 𝑁𝑠/𝑚 1000
𝑘 𝑘𝑁/𝑚 250
𝑉 (𝑙𝑜𝑤) 𝑚/𝑠 0.1
𝑉 (𝑚𝑒𝑑𝑖𝑢𝑚) 𝑚/𝑠 0.18
𝑉 (ℎ𝑖𝑔ℎ) 𝑚/𝑠 0.3

Under different ice velocity, different part of the ice crushing strength and stress rate curve will be
evoked. In the case of low ice velocity 0.1𝑚/𝑠, 𝜎 only stays in the range of 𝜎 < 1.3𝑀𝑃𝑎/𝑠, which is
called polynomial range. For high ice velocity of 0.3𝑚/𝑠, the ice crushing strength is constant (1𝑀𝑃𝑎),
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constant range of 𝜎 > 1.3𝑀𝑃𝑎/𝑠 defines the excitation force. While at 𝑉 = 0.18𝑚/𝑠, 𝜎 crosses
two ranges. Mixed range is used to denote this transition scenario.

Figure 2.9: Ice Crushing Strength vs. Stress Rate

2.7. Noise Level
In order to simulate the inaccuracy of measurement instrument from electrical noise, white noise has
been added to the generated response. In MATLAB, function ”RANDN” can be used to generate white
noise with zero mean value and 1 standard deviation.
One can also generate white noise with zero mean and 𝜎 variance using ”√𝜎 ∗ 𝑟𝑎𝑛𝑑𝑛”.
The term noise level is used to denote the noise intensity. The noise level is said to be 20% if script
”20% ∗ √𝜎 ∗ 𝑟𝑎𝑛𝑑𝑛” is used in MATLAB, where 𝜎 is the variance of displacement, 20% ∗ √𝜎 is the
standard deviation of noise.
Below is the noise contaminated displacement signal. 1
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Figure 2.10: Measured displacement under %(left) and %(right) noise level ( . )

2.8. Unknown Parameters
In Prof. Maattanen’s model, a fourth order polynomial of �̇� has been used to describe the ice crushing
strength within range of 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠.

1For simplicity, the unit for displacement is mm, and velocity is mm/s. This applys to the rest of the thesis.
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𝜎 = {
0 �̇� < 0𝑀𝑃𝑎/𝑠
(7.8�̇� − 18.57�̇� + 13�̇� − 2.91�̇� + 2) 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠
1 1.3𝑀𝑃𝑎/𝑠 < �̇�

(2.9)

This thesis hold the assumption that all the parameters are known except the shape (including negative
damping part) of the ice crushing strength and stress rate curve. So the objective of this thesis is to
try to identify the five unknown parameters under 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠 and the constant 1𝑀𝑃𝑎/𝑠
under 1.3𝑀𝑃𝑎/𝑠 < �̇� given the ”measured” noise contaminated state signal.
For simplicity, the unknown coefficients will be given its name in the following content as follows:

𝑎 = 7.8
𝑏 = −18.57
𝑐 = 13
𝑑 = −2.91
𝑒 = 2

2.9. Quality of measurement in polynomial range
It is obvious that if the measurement only covers small part of the polynomial range, 0𝑀𝑃𝑎/𝑠 < �̇� <
0.5𝑀𝑃/𝑠 for instance, in the ice crushing strength and stress rate curve, the estimation will undoubtedly
fail due to the lack of information of 0.5𝑀𝑃𝑎/𝑠 < �̇�. Thus the quality of the measurement first needs to
be assessed under polynomial range.
In order to achieve this, the curve can be divided into different part, where the corresponding order of
�̇� is dominating.
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Figure 2.11: Comparison of ice crushing strength and stress rate curve with different order

In figure2.11 above, the 4th order line with black color stands for the full curve expression with 4th
order of �̇�, while the 3rd order line with blue color represents the expression with 3rd order, i.e. 7.8�̇� −
18.57�̇� + 13�̇� + 2. In this case, the �̇� term dominating the range of 0.3𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠.
Similary, the bifurcation point of two lines can approximately determine the range. Then the measure-
ment allocated in each corresponding range can be counted. The result is as below for Δ𝑡 = 0.01𝑠 of
60𝑠 measurement without noise:

Table 2.2: Measurement allocation

0 < �̇� < 0.05 0.05 < �̇� < 0.15 0.15 < �̇� < 0.3 0.3 < �̇� < 1.3 Total
270 411 637 4330 5648

From the number of measurement allocated in each range, one can conclude that the measurement
under 𝑉 = 0.1𝑚/𝑠 is qualified for identifying the polynomial range.





3
Least squares method

3.1. Least squares method
Speaking of identification problem, the most basic algorithm may be least squares (abbreviated as LS)
method, invented by Carl Friedrich Gauss for calculating the orbits of celestial bodies. The LS method
can be regarded as a way to solve an overdetermined problem. Suppose vector 𝑥 with size of 𝑛 in the
below equation needs to be solved.

Ax = b (3.1)

Where A is a 𝑚 × 𝑛 matrix (𝑚 > 𝑛), while b is an 𝑚 × 1 vector. The number of equations (𝑚) is
assumed to be larger than the unknowns (𝑛). Theoretically, a perfect x that fulfills all 𝑚 equations
cannot be found. But a good solution that minimize the cost function 𝑆 below can be found by means
of LS method.

x = (A A) A b (3.2)
𝑆 = ||Ax-b|| (3.3)

For example, LS method can be used to find the best straight line go through the points in a two
dimensional coordinate.

Figure 3.1: LS method for line fitting

15
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3.2. LS method for IIV
Recall the equations from Maattanen’s numerical model:

�̇� = (𝑉 − �̇�)8𝜎𝜋𝐷 (3.4)

𝜎 = {
0 �̇� < 0𝑀𝑃𝑎/𝑠
(𝑎�̇� + 𝑏�̇� + 𝑐�̇� + 𝑑�̇� + 𝑒) 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠
1 1.3𝑀𝑃𝑎/𝑠 < �̇�

(3.5)

𝐹 = 𝐴𝜎 √𝐴𝐴 (3.6)

𝐹 = 𝑚�̈� + 𝑐�̇� + 𝑘𝑢 (3.7)

If attention is only put on the polynomial range of 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠, the above set of equations
can be simplified as:

𝑚�̈� + 𝑐�̇� + 𝑘𝑢 = 𝐴√𝐴𝐴 (𝑎�̇� + 𝑏�̇� + 𝑐�̇� + 𝑑�̇� + 𝑒)

�̇� = (𝑉 − �̇�)8𝜎𝜋𝐷

The acceleration �̈� can be measured in experiment by means of accelerometer. Moreover, the velocity
�̇� and displacement 𝑢 can be obtained by the integration of �̈�, or simply measured in lab. In this case,
�̇� can also be derived given 𝑉 , with only parameters to be identified𝑎, 𝑏, 𝑐, 𝑑 unknown.
Rewrite the equation as:

�̇�𝑎 + �̇� 𝑏 + �̇� 𝑐 + �̇� 𝑑 + 𝑒 = 𝑦 (3.8)

𝑦 = 𝑚�̈� + 𝑐�̇� + 𝑘𝑢
√𝐴 𝐴

(3.9)

Compared with equation (3.1), then 𝑦 comprise the entry of b vector; unknowns 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 comprise
the x vector with dimension 5 × 1; �̇� comprise the A matrix.
For constant range, the equation is supposed to be:

𝑒 = 𝑦 (3.10)

𝑦 = 𝑚�̈� + 𝑐�̇� + 𝑘𝑢
√𝐴 𝐴

(3.11)

However, due to the fact that in which range of the ice crushing strength and stress rate the measured
signal is, is unknown, equation (3.8) is used for low ice velocity (polynomial range), high ice velocity
(constant range) and medium ice velocity (mixture range) without loss of generality.

3.3. Formulation
From the derivation in the previous section, LS method seems to be one of the ways to estimate the
parameters.
The measurement time step Δ𝑡 should be constrained within:

𝑇
20 < Δ𝑡 <

𝑇
5 (3.12)

Where 𝑇 = 3𝑠 is the period of vibration. The result below is on the base of Δ𝑡 = 0.4𝑠
After obtaining the displacement 𝑢, velocity �̇� and acceleration �̈� at different time steps, enormous



3.4. Result 17

equation in the form of equation(3.8) can be obtained.

�̇� 𝑎 + �̇� 𝑏 + �̇� 𝑐 + �̇� 𝑑 + 𝑒 = 𝑦
�̇� 𝑎 + �̇� 𝑏 + �̇� 𝑐 + �̇� 𝑑 + 𝑒 = 𝑦
�̇� 𝑎 + �̇� 𝑏 + �̇� 𝑐 + �̇� 𝑑 + 𝑒 = 𝑦
�̇� 𝑎 + �̇� 𝑏 + �̇� 𝑐 + �̇� 𝑑 + 𝑒 = 𝑦
�̇� 𝑎 + �̇� 𝑏 + �̇� 𝑐 + �̇� 𝑑 + 𝑒 = 𝑦

…

Rewrite the above set of equations as:

⎡
⎢
⎢
⎢
⎢
⎣

�̇� �̇� �̇� �̇� 1
�̇� �̇� �̇� �̇� 1
�̇� �̇� �̇� �̇� 1
�̇� �̇� �̇� �̇� 1
�̇� �̇� �̇� �̇� 1
…

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑦
𝑦
𝑦
𝑦
𝑦
…

⎤
⎥
⎥
⎥
⎥
⎦

(3.13)

The above equation has already been written in the form of :

Ax = b

The vector contains the unknown parameters can be estimated by:

x = (A A) A b

3.4. Result
3.4.1. Result for low ice velocity
Under low ice velocity of 0.1𝑚/𝑠, only the polynomial range will be evoked. The figure below is the
ice crushing strength and stress rate curve, with the green part indicating the different points traversed
during the simulation.
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Figure 3.2: Ice crushing strength and stress rate curve for low ice velocity

For simplicity, artificially generated clean signals of �̈�,�̇� and 𝑢 without noise will first be used to beta
test the applicability of LS method. The displacement, velocity can be obtained by numerical method
(ODE45 in MATLAB) as follows, with acceleration calculated from displacement and velocity:
In order to use equation (3.2) to implement the LS method, only the �̈�,�̇� and 𝑢 data can be used to
construct A and b when the corresponding �̇� locates within the range of 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠.
Data points falling outside this range are removed from the set. The result for the LS method under



18 3. Least squares method

0 10 20 30 40 50 60
−60

−40

−20

0

20

40

60

Time

D
is

pl
ac

em
en

t

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

150

Time

V
el

oc
ity

Figure 3.3: Displacement and velocity( . , Noise: %)

Δ𝑡 = 0.4𝑠 is:
⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

7.8000
−18.5700
13.0000
−2.9100
2.0000

⎤
⎥
⎥
⎥
⎦

(3.14)

Which is exactly the same as the target value.
In this case, the LS method works well under zero noise level.
In order to simulate the noise from measurement instrument, noise with level of 5% will be added to
the data. The concept of noise level has been introduced in the previous chapter. The displacement
and velocity is shown in Figure 3.4.
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Figure 3.4: Displacement and velocity( . ,Noise: %)

Even though noise has been added, again only the �̈�,�̇� and 𝑢 data can be used to construct A and b
when the corresponding �̇� locates within the range of 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠. The result is :

⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

11.0423
−28.5861
24.4767
−7.2706
1.7161

⎤
⎥
⎥
⎥
⎦

(3.15)

It is obvious that the estimated parameters under 5% noise level is not even near the target value.
The ice crushing strength and stress rate curve as well as the response is as follows:
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Figure 3.5: Ice strength and stress rate comparison between original and LSM (Noise: %)

Due to the impact from the noise, it is obvious that there are some difference between the original curve
and the result from LS method. Nevertheless, the response of the structure can still be regenerated
based on the estimated parameters in comparison with original response.
Figure 3.6 presents the difference between the regenerated response and the original one. From the
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Figure 3.6: Displacement and velocity comparison between original and LS method (Noise: %)

above figures, there indeed exists some difference between the response on the bases of estimation
and original one, especially when the displacement(velocity) is developing.
Meanwhile, the author found that when the noise in the signal is regenerated by means of ”RANDN”
with the same noise level again, the estimated parameters will change too.

3.4.2. Result for high ice velocity
Under high ice velocity of 0.3𝑚/𝑠, the ice crushing strength is constant 1𝑀𝑃𝑎, which means the ice
action is constant. Only the constant range will be evoked. Figure 3.7 below is the ice crushing strength
and stress rate curve, with the green part be evoked.
Unfortunately, the result of the LS method is very poor due to the condition number of A in equation
(3.13) is approximately 2𝑒 −18 whatever Δ𝑡 is. The singular value of A under constant range is shown
in Appendix B. This means many rows in equation (3.13) are dependent with each other. Even though
large amount of signal can be measured at each time step, they only contains the same information.
The lack of information result in the failure of LS method in the case of high ice velocity.
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Figure 3.7: Ice crushing strength and stress rate curve for high ice velocity
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Figure 3.8: Displacement and velocity( . ,Noise: %)

3.4.3. Result for medium ice velocity
In the case of 0.18𝑚/𝑠 ice velocity, both the polynomial range and the constant range will be evoked,
as the green part shown in Figure 3.9.
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Figure 3.9: Ice crushing strength and stress rate curve for medium ice velocity

The response signal is shown in Figure 3.10
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Figure 3.10: Displacement and velocity( . ,Noise: %)

The result of the LS method for the mixture range is:

⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

13.7851
−28.5670
19.3033
−4.2333
0.9747

⎤
⎥
⎥
⎥
⎦

(3.16)

A comparison between the original curve and the estimation one can be made in Figure 3.11.
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Figure 3.11: Ice strength and stress rate comparison bewteen original and LS method (Noise: %)

It is obvious that there exist distinct difference between the original ice crushing strength and stress
rate curve and the estimated one.

3.5. Conclusion
Under the low ice velocity of 0.1𝑚/𝑠, the estimated parameters reach the target value under zero noise
level by removing the data outside of 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠. However, in the case of 5% noise
level, good result of estimation cannot be obtained. The identified shape of the ice crushing strength and
stress rate curve is also different from the original curve. The response, generated from the estimated
parameters, has obvious difference from the original response, especially when the state is developing.
The reason why LS method fails is that all the matrix and vector in LS method are based on equation
below when 0𝑀𝑃𝑎/𝑠 < �̇� < 1.3𝑀𝑃𝑎/𝑠:

�̇�𝑎 + �̇� 𝑏 + �̇� 𝑐 + �̇� 𝑑 + 𝑒 = 𝑚�̈� + 𝑐�̇� + 𝑘𝑢
√𝐴 𝐴
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Some data points originally belonging to the range of �̇� < 0𝑀𝑃𝑎/𝑠, cannot be distinguished as belong-
ing to �̇� < 0𝑀𝑃𝑎/𝑠 anymore due to the presence of noise, can enter into the set, in the meantime bring-
ing information of 𝜎 = 0𝑀𝑃𝑎 into the LS method. Unlike the removal in the case of zero noise level,
these bad data cannot be prevented contaminating the estimation. While for data with �̇� > 1.3𝑀𝑃𝑎/𝑠,
the result will not be influenced due to the continuity at �̇� = 1.3𝑀𝑃𝑎/𝑠. So it is the discontinuity at
�̇� = 0𝑀𝑃𝑎/𝑠 makes the LS method fail under 5% noise level. It has been proved that the LS method
can success by removing more data near �̇� = 0𝑀𝑃𝑎/𝑠, which again verify the reason of discontinuity.
In the case of high ice velocity of 0.3𝑚/𝑠, the result is not reliable any more due to the lack of informa-
tion.
For medium velocity of 0.18𝑚/𝑠, the stress rate crosses both the polynomial range and the constant
range. The estimated ice crushing strength and stress rate curve differs from the original one. One
can imagine that using one polynomial formula to describe both the polynomial range and the constant
range is difficult.



4
Kalman filter theory

This chapter will introduce another state of art estimation technique ——the Kalman filter. The ultimate
goal of this chapter is to introduce extended Kalman filter, an recursive filter designed for non-linear
dynamic system, combining the information from dynamic properties of system and the noisy observa-
tion.

4.1. State propogation
The state of the dynamic system cannot be precisely determined due to the noisy measurement. So at
each measurement step, one can only more or less ”guess” what the state is. Using modern scientific
approach of probability theory, this ”guessed state” can be described as a random variable with mean
value and variance. The state also changes with time in a dynamic system.

4.2. Difference equation and differential Equation
Suppose 𝑋 is a state vector.
The differential equation is as follows

�̇� = 𝑓(𝑋)
and can also be represented in the form of a difference equation:

𝑋 = 𝑓 (𝑋 )

Where 𝑓 and 𝑓 describe the dynamic properties of system.
It can be easily understood that in order to know how the state propagate in time, the differential equa-
tion has to be integrated. However, the difference equation can be directed implemented by using 𝑋
to get 𝑋 . Due to the fact that the measurement signal can only be obtained at discrete time steps,
the advantage of using difference equation is obvious.
If the system is linear, then the difference equation can be written as:

𝑋 = 𝐹 𝑋

4.3. Euler method
In order to use the discrete time measurement, the differential equation of numerical model described
in Chapter 2 has to be transformed into difference equation.
For linear systems, one can easily transform the differential equation into a difference equation with
the help of the matrix exponential.
Unfortunately, for nonlinear dynamic systems, it’s not possible to write the dynamic system in the form
of a difference equation without any approximation. In this case, several numerical method, Euler
method, Mid Point method, Runge-Kutta method for example, can be helpful in deriving the difference
equation. More information on numerical methods can be found in Appendix A. In this thesis, the sim-
plest method – Euler Method is used as a starting point.

23
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The basic idea behind Euler method is that, the state of 𝑋 can be approximated through the sum-
mation of 𝑋 and its gradient times time the step Δ𝑇, i.e.

𝑋 = 𝑋 + 𝑓(𝑋 )Δ𝑡

Where Δ𝑡 is the time step between 𝑘 + 1 and 𝑘
Then

𝑋 = 𝑓 (𝑋 )
= 𝑋 + 𝑓(𝑋 )Δ𝑡

Here, through Euler method, the difference equation for the nonlinear system is obtained.

4.4. Measurement update
In order to better illustrate how the state of a dynamic system recursively propagates with time, we first
define different state name.
𝑋 stands for the state apriori to the measurement at k, while 𝑋 stands for the state posteriori to
the measurement at k.

Figure 4.1: Apriori state and posteriori state

4.5. Linear Kalman Filter
In this section, the heritage of Rudolf E. Kalman - Linear Kalman Filter will be introduced, which con-
siders discrete time dynamics and discrete time measurements. This situation is often encountered
in practice. The Kalman filter operates by propagating the mean and covariance of the state through
time.
Suppose we have a linear discrete-time system given as follows,

𝑋 = 𝐹 𝑋
𝑦 = 𝐻 𝑋 + 𝑉

Where𝐻 is the observation matrix, 𝑦 is the measurement. Due to the fact that the measurement is not
necessary to be each entries of vector 𝑋 , but the linear combination of them, the observation matrix
𝐻 is used to represent the combination. 𝑉 ,which has the same size of 𝑦 , stands for the measurement
white noise with zero mean value and variance for each entry,i.e.

𝑉 ∼ (0, 𝑅 )

where, 𝑅 is used to describe the variance, by including the variance of each entry of 𝑉 in the corre-
sponding diagonal element in 𝑅 .
The Linear Kalman Filter algorithm can be summarized into three steps. The recursive iteration of these
three steps with 𝑘 = 1, 2, 3... comprise the whole filtering process.

1. Initiate Kalman Filter

�̂� = 𝐸(𝑋 ) (4.1)
𝑃 = 𝐸[(𝑋 − �̂� )(𝑋 − �̂� ) ] (4.2)
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2. State Update through dynamic property

�̂� = 𝐹 �̂� (4.3)
𝑃 = 𝐹 𝑃 𝐹 (4.4)

3. State Update through measurement

𝐾 = 𝑃 𝐻 (𝐻 𝑃 𝐻 + 𝑅 ) (4.5)
�̂� = �̂� + 𝐾 (𝑦 − 𝐻 �̂� ) (4.6)
𝑃 = (𝐼 − 𝐾 𝐻𝑘)𝑃 (4.7)

In the above notation, �̂� is the estimated state vector, i.e. the filtered state, while the 𝑃 matrix defines
the variance of the state vector. If the diagonal element of 𝑃 matrix decrease with time step, then the
filtered state is more close to the true state, which means more precise and reliable estimated state
vector obtained.
Both �̂� and 𝑃 needs to be assigned of an initial value.
Equation (4.3) and (4.4) describe how the mean value �̂� changes to �̂� , as well as the variance
from 𝑃 to 𝑃 .
Once the measurement is obtained, a weighted difference between measurement and priori state will
be used to correct the apriori state �̂� to posteriori state �̂� with the help of the 𝐾 matrix (Kalman
gain). Meanwhile, the variance matrix will also be updated to posteriori variance matrix. The Kalman
gain takes both the noise level and the variance of the apriori state into account. In the end, when the
variance approaches to zero, then the state vector can be considered as the final estimated vector.
The Kalman Filter can be briefly illustrated as in Figure 4.2

Figure 4.2: Kalman Filter

4.6. Extended Kalman Filter
The Linear Kalman Filter can only be applied to linear systems due to the intrinsic property. For non-
linear systems, using equation (4.3) and (4.4) to calculate the updated mean value and variance is
not applicable any more. However, this algorithm can still be expanded to the extended Kalman fil-
ter(abbreviated as EKF) to handle weak nonlinearity.
Suppose we write the dynamic system in the form of difference equation using the Euler method.

𝑋 = 𝑓 (𝑋 )
𝑦 = ℎ (𝑋 , 𝑉 )
𝑉 ∼ (0, 𝑅 )

Where 𝑓 represents the dynamic properties, 𝑦 is the measured state at time step 𝑘, ℎ is the obser-
vation matrix, 𝑉 is the measurement noise vector with 0 mean value, and 𝑅 variance.
The tricky part of nonlinear system is that the difference equation (observation matrix neither) cannot
be written in the form of 𝑋 = 𝐹 𝑋 , but can only be written as 𝑋 = 𝑓 (𝑋 ). Due to this complexity,
the variance cannot be updated using equation (4.4). In EKF, the derivative of 𝑓 with the state vector
𝑋 will be applied instead. This derivative is also called the Jacobian Matrix.
The EKF can be summarized as follows.[5]
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1. Initiate Extended Kalman Filter

�̂� = 𝐸(𝑋 ) (4.8)
𝑃 = 𝐸[(𝑋 − �̂� )(𝑋 − �̂� ) ] (4.9)

2. State Update through dynamic property

�̂� = 𝑓 (�̂� ) (4.10)

𝐹 = 𝜕𝑓
𝜕𝑋 |

̂
(4.11)

𝑃 = 𝐹 𝑃 𝐹 (4.12)

3. State Update through measurement

𝐾 = 𝑃 𝐻 (𝐻 𝑃 𝐻 +𝑀𝑅 𝑀 ) (4.13)
�̂� = �̂� + 𝐾 (𝑦 − ℎ (�̂� , 0)) (4.14)
𝑃 = (𝐼 − 𝐾 𝐻 )𝑃 (4.15)

Except the state update through dynamic property, other steps in EKF is the same to Linear Kalman
Filter.

4.7. Parameter Estimation for IIV
Sometimes an engineer or researcher only wants to estimate the unknown constant or slow time vary-
ing parameter(s) of a dynamic system, regardless of filtering the noise in the measurement. In this
case, the EKF can also play an important role, even though the system equations are nonlinear func-
tions of the unknown parameter(s).
Applying the EKF, a parameter estimation problem can be solved by regarding the unknown parame-
ter(s) as state variable in the state vector, i.e. augmenting the state vector.

𝑋 = [ 𝑋𝑎 ]

In the above augmented vector, �̂� is the original estimated state vector, while 𝑎 is the parameter that
needs to be identified. Using the newly defined state vector, the parameter estimation can be solved
by following the recursive update algorithm described in the previous section.
In the case of ice induced vibration, we assumed that the five coefficients ,i.e. 7.8, −18.57, 13, −2.91, 2,
respectively are unknown.
The full state vector for four parameters estimation then becomes

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢
𝑣
𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Where 𝑢 stands for the displacement of the structure, 𝑣 represents the velocity, and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 denote
the coefficients to be identified, with target values of 7.8, −18.57, 13, −2.91 and 2.
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The differential equation is:

�̇� =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑣
𝐹/𝑚 − 𝑘𝑢/𝑚 − 𝑐𝑣/𝑚

0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In the above differential equation, the first two rows comes from the equation of dynamic system. The
rest four rows have been established on the assumption that the four parameters are constants.
Using Euler Method, the difference equation can be written as

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢
𝑣
𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢
𝑣
𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× Δ𝑡 (4.16)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢 + 𝑣 Δ𝑡
𝑣 + (𝐹/𝑚 − 𝑘𝑢 /𝑚 − 𝑐𝑣 /𝑚)Δ𝑡

𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.17)

Where 𝐹 is calculated as:

𝐹 = 𝐴𝜎 √𝐴𝐴

�̇� = (𝑉 − 𝑣 )8𝜎𝜋𝐷

𝜎 = {0 �̇� < 0𝑀𝑃𝑎/𝑠
(𝑎�̇� + 𝑏�̇� + 𝑐�̇� + 𝑑�̇� + 𝑒) 0𝑀𝑃𝑎/𝑠 < �̇�

Equation (4.17) can be used to calculate the update of the mean value through the dynamic property,
with its jacobian matrix to calculate the variance.
Only the displacement and velocity can be measured; The observation equation thus becomes:

𝑦 = [1 0 0 0 0 0 0
0 1 0 0 0 0 0]𝑋 + 𝑉

𝑉 = [ 𝑣𝑣 ]

𝑉 ∼ (0, 𝑅)

where the diagonal matrix 𝑅 denotes the variance of noise 𝑣 and 𝑣 (with diagonal entry equalalent
to the variance).

For instance, the 𝑅 matrix is supposed to be[(20%√𝜎 ) 0
0 (20%√𝜎 )

] for 20% noise level both for

displacement and velocity, where𝜎 and 𝜎 is the variance of displacement and velocity respectively.
Here, apart from the noise level, let’s define the concept of the 𝑅 matrix level. It is said that the 𝑅 matrix

level is 20% for 𝑅 = [(20%√𝜎 ) 0
0 (20%√𝜎 )

]. During the EKF, the 𝑅 matrix level is supposed to be
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equal to the noise level. But sometime, this cannot be achieved due to the lack of information prior to
the measurement. Thus the incorrectness of 𝑅 may have influence on the result.
Similar to the LS method, the EKF will be used for all the ice velocities, in order to investigate the
applicability for identifying different part of the ice crushing strength and stress rate curve.



5
EKF for low ice velocity

In this chapter, the extended Kalman filter will be implemented for parameter estimation for low ice
velocity, which only unveils the polynomial range. Due to the complexity of five parameters estimation,
step by step, one parameter estimation will first be carried out as a starting point.

5.1. Mathematical formulation
This section is based on the assumption that all the five coefficients are unknown. Then the augmented
state vector to be:

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢
𝑣
𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Where 𝑢 stands for the displacement, 𝑣 represent the velocity, and the rest are unknown coefficients.
By means of Euler method, the difference equation can be written as:

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢
𝑣
𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢 + 𝑣 Δ𝑡
𝑣 + (𝐹/𝑚 − 𝑘𝑢 /𝑚 − 𝑐𝑣 /𝑚)Δ𝑡

𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Where 𝐹 to be:

𝐹 = 𝐴𝜎 √𝐴𝐴

�̇� = (𝑉 − 𝑣 )8𝜎𝜋𝐷

𝜎 = {0 �̇� < 0𝑀𝑃𝑎/𝑠
(𝑎�̇� + 𝑏�̇� + 𝑐�̇� + 𝑑�̇� + 𝑒) 0𝑀𝑃𝑎/𝑠 < �̇�
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The observation is:

𝑦 = [1 0 0 0 0 0 0
0 1 0 0 0 0 0]𝑋 + 𝑉

𝑉 = [ 𝑣𝑣 ]

𝑉 ∼ (0, 𝑅)

Where diagonal matrix 𝑅 denotes the variance of noise 𝑣 and 𝑣 (with diagonal entry equals to the
variance).
Recall equation (2.13) and (2.14)

𝐻 = [1 0 0 0 0 0 0
0 1 0 0 0 0 0]

Here we obtain the nonlinear difference equation which has the form of 𝑋 = 𝑓(𝑋 ) in equation (3.1).
Summon up equation (2.10) that calculate the Jacobian Matrix

𝐹 = 𝜕𝑓
𝜕𝑋 |

̂

Naturally, one can be inspired that the Jacobian Matrix is supposed to be a “piecewise matrix” due to
the piecewise property of force 𝐹.
Here, we directly write out the Jacobian Matrix. Anyone who is interested can also derive it with a bit
effort.
Jacobian Matrix:
For 0𝑀𝑃𝑎/𝑠 < �̇�

⎡
⎢
⎢
⎢
⎣

√ ( ) √ (( ) ) √ (( ) ) √ (( ) ) √ ⎤
⎥
⎥
⎥
⎦

(5.1)

Where

( )
√

× ⎛⎜

⎝

( )
× (( ) ) ( )
× (( ) ) ( )
× (( ) ) ( )

⎞
⎟

⎠

(5.2)

For ̇ /

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ) ⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.3)

Summarize equation (5.1) to (5.5), the EKF can be initiate with initial ”guessed” state (other initial state
can also be used) below. It is worth to mention that the intensity of noise (i.e. 𝑅 matrix) is a known
parameter prior to applying the EKF.
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𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢
𝑣
𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

5.2. Result for one parameter estimation
Step by step, only one parameter 𝑎 will be regarded as unknown. The target value of 𝑎 is 7.8. The
measurement is conducted between 0 to 60 seconds. In order to evaluate the impact to the functionality
of EKF, different noise level has been used.
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Figure 5.1: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.2: Parameter a Estimation ( . , . ,Noise: %, matrix: %)

In order to investigate the influence of noise intensity to the EKF, a 5% noise level will be applied.
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Figure 5.3: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.4: Parameter a Estimation ( . , . ,Noise: %, matrix: %)

Comparing the result from different noise level, one can conclude that the estimated parameter can
approach target value much more faster when the noise level is low, with approximately 30s for 20%
noise and 10s for 5% noise.
Above results are based on the assumption that the noise level is perfectly known. In another words,
the 𝑅 matrix level is exactly the same to the noise level. However, in reality, certain deviation of 𝑅
matrix level may exist from noise level due to insufficient information of measurement instruments. In
this case, it is necessary to simulate the EKF using incorrect 𝑅 matrix.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Time

V
al

ue

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Time

va
ria

nc
e

Figure 5.5: Parameter a Estimation ( . , . ,Noise: %, matrix: %)



5.3. Result for two parameters estimation 33

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10

Time

V
al

ue

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Time

va
ria

nc
e

Figure 5.6: Parameter a Estimation ( . , . ,Noise: %, matrix: %)

In figure 5.6, the value of estimated parameter changes drastically over 0 to 5s. This is the result
of choosing small 𝑅 matrix, which tells the EKF to trust the measurement and rapidly change the pa-
rameter a to adapt to the noisy measurement. However, after certain time period of collecting enough
information to calculation the best solution, the EKF successfully find the target value.

5.2.1. Conclusion for one parameter estimation
The unknown parameter can be well estimated both in 20% noise level and 5% noise level. However,
in the case of less noise, the target value can be reached more faster. Moreover, the incorrectness of
𝑅 matrix cannot have substantial influence on the result of one parameter estimation.

5.3. Result for two parameters estimation
In this section, coefficient 𝑎 and 𝑏 are regarded as unknown. The target value of 𝑎 and 𝑏 are 7.8 and
−18.57 respectively.
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Figure 5.7: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)

From figure 5.8 and figure 5.9, it is obvious that the estimated parameters still have some deviation
from the target value. This may due to the reason of relatively large measurement time step Δ𝑡. Using
Euler Method to discretize the differential equation is an approximation method. the Jacobian Matrix in
equation (5.1) cannot fully represent the original dynamic properties. Thus, decreasing the measure-
ment time step Δ𝑡 may increase the accuracy of result.
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Figure 5.8: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.9: Parameter Estimation for a( . , . ,Noise: %, matrix: %)

Below is the result of applying Δ𝑡 = 0.01𝑠.
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Figure 5.10: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.11: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.12: Parameter Estimation for b( . , . ,Noise: %, matrix: %)

Comparing figure 5.8 and figure 5.11, decreasing the measurement time step Δ𝑡 indeed can effec-
tively boost the estimation accuracy from 6.5 to 7.8 for coefficient a. Same effect to the coefficient b.
Again, the influence of noise level will be assessed. Below is the result for noise level of 5%.
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Figure 5.13: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.14: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.15: Parameter Estimation for b( . , . ,Noise: %, matrix: %)

The EKF can work quite well for two parameters (a and b) estimation in case of 5% noise level.
The influence to the quality of result due to the incorrectness of 𝑅 matrix has been evaluated as below.
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Figure 5.16: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.17: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.18: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.19: Parameter Estimation for b( . , . ,Noise: %, matrix: %)

In the above figures, the estimated parameters more or less deviated from the target value a bit,
both for the larger 𝑅 matrix and smaller 𝑅 matrix level. The result is not as good as the perfect 𝑅 matrix
in figure 5.14 and figure 5.15. Moreover, the variance with bigger 𝑅 matrix is obviously larger than that
with smaller 𝑅 matrix, which means the result may not converge in the case of bigger 𝑅 matrix. This
can also be deduced from left side plot in figure 5.16 and 5.17, that parameters still have a tendency
to increase. In the case of smaller 𝑅 matrix, the estimated value of 𝑎 is 8,instead of 7.8.
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5.3.1. Conclusion for two parameters estimation
The two unknown parameters can be well estimated in the case of 5% noise level at Δ𝑡 = 0.1𝑠 using
EKF. However, higher noise level (20%) can deteriorate the quality of result at time step Δ𝑡 = 0.1𝑠. The
reason is that the Euler Method is an first order approximation algorithm. Larger inaccuracy can be
introduced into EKF in every system update through Jacobian Matrix at larger measurement time step
Δ𝑡. Meanwhile, the conjecture that decreasing measurement time step can increase accuracy of result
has been proven in figure 5.11 and 5.12. At last, unlike the conclusion of one parameter estimation, the
inaccuracy in 𝑅 matrix can induce deviation of estimation from target value. More specifically, larger
entries of 𝑅 matrix may induce misconvergence, smaller entries of 𝑅 matrix can result in unreliable
estimation, though it converges.

5.4. Result for three parameters estimation
In this section, the coefficient of 𝑎,𝑏 and 𝑐 are unknow. Similar to the previous sections, different noise
level will be applied. Below is the result for 20% noise level.
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Figure 5.20: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.21: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.22: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.23: Parameter Estimation for c( , . ,Noise: %, matrix: %)

From the figures above, all the three coefficients can be well identified. Meanwhile, the parameters
can quickly converge to the target value. In order to verified the conclusion that target value can be
reached faster under less noise scenario, a case of 5% noise level will be implemented below.
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Figure 5.24: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.25: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.26: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.27: Parameter Estimation for c( , . ,Noise: %, matrix: %)

From the figures above, it is clear that all three unknown parameters can be well estimated at 5%
noise level. Moreover, estimation under higher noise level indeed requires more time to reach target
value.
Below shows the impact of incorrectness in 𝑅 matrix.
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Figure 5.28: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.29: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.30: Parameter Estimation for c( , . ,Noise: %, matrix: %)

After artificially increasing the 𝑅 matrix to 10%, all the three parameters are not accurate as when
𝑅 is correct. Moreover, the estimated parameters haven’t converged to a stable value when 𝑅 matrix
chosen 10%.
For smaller 𝑅 matrix level of 1%, the result has been shown below.
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Figure 5.31: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.32: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.33: Parameter Estimation for c( , . ,Noise: %, matrix: %)

Unlike the result of two parameters estimation, the result of choosing smaller 𝑅 matrix is still fairly
good for three parameters estimation. Meanwhile, the target values have been reached more earlier
than using correct 𝑅 matrix.
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5.4.1. Conclusion for three parameters estimation
In the case of three parameters estimation, all the three parameters can be well estimated. The con-
clusion that larger noise level requires more time to achieve stable estimation has been again verified.
In addition, incorrect 𝑅 matrix with larger entries may result in misconvergence of estimation.

5.5. Result for four parameters estimation
This section concerns onemore step further, i.e. four parameters need to be identified, with 𝑎 = 7.8, 𝑏 =
−18.57, 𝑐 = 13, 𝑑 = −2.91. Below is the result under 20% noise level with Δ𝑡 = 0.001𝑠.
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Figure 5.34: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.35: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.36: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.37: Parameter Estimation for c( , . ,Noise: %, matrix: %)
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Figure 5.38: Parameter Estimation for d( . , . ,Noise: %, matrix: %)

The result is very poor, which can also be deduced from the variance plot. This may due to relatively
large measurement time step in the case of four parameters estimation. Let’s decrease the time step
to Δ𝑡 = 0.0001𝑠.
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Figure 5.39: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.40: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.41: Parameter Estimation for c( , . ,Noise: %, matrix: %)
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Figure 5.42: Parameter Estimation for d( , . ,Noise: %, matrix: %)

The result is much better at Δ𝑡 = 0.0001𝑠. Decreasing measurement time step can increase accu-
racy of estimation has been verified again. However, at the end of the estimation, the parameters still
have a tendency to vary instead of converging to target values. As in the previous section, less noise
level is supposed to help the estimation reach stable values faster than large noise level. Below the
case of 5% noise level will be implemented.
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Figure 5.43: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.44: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.45: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.46: Parameter Estimation for c( , . ,Noise: %, matrix: %)
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Figure 5.47: Parameter Estimation for d( . , . ,Noise: %, matrix: %)

From the figures above, it is very clear that the result is again deteriorated under less noise. All the
four coefficients haven’t converged the corresponding target value.
However, when looking back the result under 20% noise level, even though the four parameters reach
target values, however, havn’t fully converge to the target values. So extending the measurement time
to 100𝑠 may help us understand whether it’s out of luck that we obtain good result.
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Figure 5.48: Parameter Estimation for a( . , . ,Noise: %, matrix: %)

After extending the measurement time to 100𝑠, instead of reaching a stable value, the parameters still
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Figure 5.49: Parameter Estimation for b( . , . ,Noise: %, matrix: %)

0 20 40 60 80 100
−5

0

5

10

15

20

Time

V
al

ue

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

Time

va
ria

nc
e

Figure 5.50: Parameter Estimation for c( , . ,Noise: %, matrix: %)
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Figure 5.51: Parameter Estimation for d( . , . ,Noise: %, matrix: %)

vary and become deviated from the target value that have reached.

5.5.1. Conclusion for four parameters estimation
In the case of four parameters estimation, all the parameters don’t converge to the corresponding
target value. This may due to the reason that there exist multiple combination of the four parameters to
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minimize the cost function in EKF at each time step. This nonuniqueness issue makes the estimation
vary instead of converge. This explanation can be verified in the case of five parameters estimation.

5.6. Result for five parameters estimation
For simplicity, the EKF of five parameters estimation will only be implemented for 5% noise level at
Δ𝑡 = 0.0001𝑠. Below is the result.
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Figure 5.52: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 5.53: Parameter Estimation for a( . , . ,Noise: %, matrix: %)
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Figure 5.54: Parameter Estimation for b( . , . ,Noise: %, matrix: %)
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Figure 5.55: Parameter Estimation for c( , . ,Noise: %, matrix: %)
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Figure 5.56: Parameter Estimation for d( . , . ,Noise: %, matrix: %)
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Figure 5.57: Parameter Estimation for e( , . ,Noise: %, matrix: %)

From the above figures, it is clear that all the parameters havn’t converged to the corresponding
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target values. At the end of the time, the estimation of parameters is :

𝑎 = 9.22
𝑏 = −24.79
𝑐 = 22.32
𝑑 = −7.38
𝑒 = 1.92

A comparison can be made between the original ice crushing strength and stress rate curve and the
estimated one.
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Figure 5.58: Comparison between the original ice crushing strength and stress rate curve and the estimation from EKF

Figure 5.58 only uses the estimated coefficients at the end of the EKF. However, at each time step
between 𝑡 = 0𝑠 and 𝑡 = 100𝑠, there still exist information in the combination of each coefficient, even
though each of them are varying. At each time step, the estimated parameters can be used to rebuild
the ice crushing strength on the base of �̇�, which can be obtained from the measured velocity. In this
case, a point, whose X axis is the corresponding �̇� and Y axis represents the ice crushing strength
calculated by the estimated coefficients, can be obtained at each time step.

𝜎 = 𝑎 �̇� + 𝑏 �̇� + 𝑐 �̇� + 𝑑 �̇� + 𝑒 (5.4)

Below are the points(marked with red color). After obtaining the ice crushing strength points, a curve

Figure 5.59: Ice crushing strength points and original curve
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can be used to fit the points. A six order polynomial has been used.

𝜎 = 8.39�̇� − 23.08�̇� + 27.77�̇� − 27.4�̇� + 20.15�̇� − 6.50�̇� + 1.98 (5.5)

Below is the comparison between the original curve and the one obtained from curve fitting, it is obvious
that the difference is very small.
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Figure 5.60: Comparison between the original ice crushing strength curve and the estimation from curve fitting

5.6.1. Conclusion for five parameters estimation
Instead of converging to the target value, the five parameters still varying with time during EKF. The
reason is that similar to the case of four parameters estimation, there exist multiple combination of the
five parameters to minimize the cost function in EKF.
In order to make use of the combination of the parameters at each time step, the ice crushing strength
points at each time step have been obtained. A polynomial with 6 order is used to fit the points. The
shape of the polynomial is very similar to the original ice crushing strength and stress rate curve within
the evoked �̇�.

5.7. conclusion of EKF for low ice velocity
In the case of low ice velocity, only the polynomial range in the ice crushing strength and stress rate
curve has been evoked. The five unknown model parameters don’t converge to the corresponding
target value. However, the estimated curve obtained from fiting the ice crushing strength poins is very
similar to the original one.



6
EKF for high ice velocity

Under the ice velocity of 0.3𝑚/𝑠, the ice crushing strength is constant(1𝑀𝑃𝑎). All the formulation of
EKF for high ice velocity is exactly the same to the formulation in section 5.5 of chapter 5.

6.1. Result for high ice velocity
The estimated parameters are shown below:
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Figure 6.1: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 6.2: Parameter Estimation for a( , . ,Noise: %, matrix: %)
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Figure 6.3: Parameter Estimation for b( , . ,Noise: %, matrix: %)
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Figure 6.4: Parameter Estimation for c( , . ,Noise: %, matrix: %)
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Figure 6.5: Parameter Estimation for d( , . ,Noise: %, matrix: %)
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Figure 6.6: Parameter Estimation for e( , . ,Noise: %, matrix: %)
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At the end of the time, the estimation is :

𝑎 = 10.20
𝑏 = 9.52
𝑐 = −11.67
𝑑 = 2.97
𝑒 = −11.39

The comparison between the original curve and the estimated one is as below. Moreover, under high
ice velocity, only part of the curve (1.4𝑀𝑃𝑎/𝑠 < �̇� < 1.6𝑀𝑃𝑎/𝑠) is evoked, as shown in Figure 3.7.
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Figure 6.7: Comparison between the original ice crushing strength and stress rate curve and the estimation

Again, similar to the EKF for low ice velocity, the ice crushing strength points at each time step can be
obtained as below:
It is clear that the ice crushing strength is almost equivalent to 1𝑀𝑃𝑎, which is the target value.

Figure 6.8: Ice crushing strength points

6.2. conclusion of EKF for high ice velocity
From Figure 6.8, it is obvious that the estimated ice crushing strength is very close to the target value.
Thus, the EKF is applicable of identifying the ice crushing strength at high ice velocity by obtaining the
ice crushing strength points.
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EKF for medium ice velocity

Under ice velocity of 0.18𝑚/𝑠, both the polynomial range and the constant range of the ice crushing
strength and stress rate curve are evoked. Again, all the formulation of EKF for high ice velocity is
exactly the same to the formulation in section 5.5 of chapter 5.

7.1. Result for medium ice velocity
The estimated parameters are shown below:
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Figure 7.1: Measurement VS Filtered Signal( . ,Noise: %, matrix: %)
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Figure 7.2: Parameter Estimation for a( . ,Noise: %, matrix: %)
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Figure 7.3: Parameter Estimation for b( . ,Noise: %, matrix: %)
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Figure 7.4: Parameter Estimation for c( . ,Noise: %, matrix: %)
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Figure 7.5: Parameter Estimation for d( . ,Noise: %, matrix: %)
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Figure 7.6: Parameter Estimation for e( . ,Noise: %, matrix: %)
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At the end of the time, the estimation is :

𝑎 = 16.25
𝑏 = −32.10
𝑐 = 22.06
𝑑 = −5.09
𝑒 = 0.51

Due to the fact the range of stress rate between 0𝑀𝑃𝑎/𝑠 and 1.9𝑀𝑃𝑎/𝑠 has been evoked in Figure,
then the comparison between the estimation and origin will be made within 0𝑀𝑃𝑎/𝑠 < �̇� < 1.9𝑀𝑃𝑎/𝑠.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

Stress rate(MPa/s)

Ic
e 

cr
us

hi
ng

 s
tr

en
gt

h(
M

P
a)

 

 
Original
EKF with noise

Figure 7.7: Comparison between the original ice crushing strength and stress rate curve and the estimated one

From Figure 7.7, it is obvious that the difference between the estimated curve and the original one
is very large. What’s more, all the estimated parameters still have large tendency to change based
on the Figure 7.2 to Figure 7.6. The estimated curve in Figure 7.7 only represents the result at 𝑡 =
100𝑠. However, there exist enormous combination of the parameters between 𝑡 = 0𝑠 and 𝑡 = 100𝑠.
At each time step, the combination of each parameter can be used to reconstruct the ice crushing
strength based on corresponding stress rate �̇�. In addition, the corresponding �̇� can be obtained by
measurement. In this case, at each time step a point whose x axis is �̇� and y axis is ice crushing
strength can be obtained. The information between 𝑡 = 0𝑠 and 𝑡 = 100𝑠 thus can be represented by
all the points. Below is the result.
After obtaining the ice crushing strength points(marked with red color in Figure 7.8), a polynomial can

Figure 7.8: Ice crushing strength point and original curve

be used to fit the points. In this case, a polynomial has to both fit the polynomial range(0𝑀𝑃𝑎/𝑠 < �̇� <
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1.3𝑀𝑃𝑎/𝑠) and the constant range(1.3𝑀𝑃𝑎/𝑠 < �̇�). In order to increase the accuracy, the polynomial
is chosen as six order. The result is shown in blue color in Figure 7.8, with the expression as:

𝜎 = 11.26�̇� − 24.46�̇� + 17.02�̇� − 3.3�̇� − 0.69�̇� + 0.2�̇� + 1.32 (7.1)

The comparison between the original ice crushing strength and stress rate curve and the estimated one
is: From Figure 7.9, the estimation is very close to the original curve within 0.4𝑀𝑃𝑎/𝑠 < �̇� < 1.6𝑀𝑃𝑎/𝑠.
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Figure 7.9: Comparison bewteen original ice crushing strength and stress rate and the estimation

7.2. Conclusion of EKF for medium ice velocity
Compared with Figure 7.7, the result from curve fitting of the ice crushing strength points at each time
step is much better than directly taking the result at the end of EKF. Moreover, the estimation is close
to the target curve within 0.4𝑀𝑃𝑎/𝑠 < �̇� < 1.8𝑀𝑃𝑎/𝑠.



8
Conclusion

This thesis applies LS method and EKF respectively to identify the ice crushing strength and stress rate
curve, in Maattanan’s numerical model used for describing frequency lock-in of ice structure interaction,
under low, medium and high ice velocity based onmeasurement. Under different ice velocities, different
parts of the ice crushing strength and stress rate curve have been evoked. The measurement data has
been generated by the model with addition of white noise.
For the least squares method, all the unknown parameters perfectly reach the target value under zero
noise level in the case of low ice velocity. However, the result of estimation under the existence of noise
is not good any more. The reason is the discontinuity at �̇� = 0𝑀𝑃𝑎/𝑠 in the ice crushing strength and
stress rate curve. In terms of medium ice velocity, the estimation differs a lot from the original curve.
While for the case of high ice velocity, the estimation fails due to the lack of information.
In terms of EKF, good estimation has been obtained. Due to the fact that the parameters still vary
instead of converging at the end of the analyzed time period, the ice crushing strength points at each
time step are obtained for curve fitting. Under low ice velocity, the estimated curve from fitting the ice
crushing points is very similar to the original one. For high ice velocity, the ice crushing strength points
are almost allocated at target strength of 1𝑀𝑃𝑎. While for the medium ice velocity, the estimated curve
is close to the original curve within mixed range.
Comparing the result from LS method and EKF, the EKF works better for identifying different part of
the ice crushing strength and stress rate curve under different ice velocities. Moreover, the EKF can
be expanded to multi-degree of freedom system, which is more realistic for real structures.
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Further Research

1. The extended Kalman filter can be applied to real measurement data when it’s available. Except
using the 4th order polynomial in relationship between force and velocity, trying polynomial with
less order may also help us understand the frequency lock-in if the estimation converges.

2. Instead of extended Kalman filter, unscented Kalman filter, which has huge advantage for non-
linear system, is another option for estimation.

3. The author only applies the estimation algorithm to single degree of freedom system. However,
in reality offshore platforms, light houses as well as piers can be all regarded as slender struc-
tures with multiple degree of freedom systems. Thus, extending the object of research to multiple
degree of freedom system would be a huge step forward.

4. This thesis holds the assumption that the dynamic properties of the structure are known. Un-
fortunately, achieving this is not easy in reality. Another technique, system identification, uses
statistical methods to build mathematical models of dynamical systems based on input (force) and
output (response), regardless of the details inside the system. More information can be found in
Lennart Ljung’s work [19].
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A
Numerical method for solving differential

equation
Finally, we make some remarks on why linear systems are so important. The answer is
simple: because we can solve them!.
–Richard Feynman

Linear system can be perfectly solved without any approximation. However, in order to artificially gen-
erate the displacement and velocity signals of the response, several numerical methods, as well as
the ODE45 command in MATLAB will be introduced here, due to the nonlinearity in the ice crushing
strength and stress rate curve.
Without loss of generality, consider the simples form of dynamic equation:

𝑚�̈� + 𝑐�̇� + 𝑘𝑢 = 𝐹(𝑡) (A.1)

Where, external force 𝐹(𝑡) can be anything.
Define the following variables:

𝑥 = 𝑢
𝑥 = �̇�

Then the dyanmic equation can be rewrited as:

�̇� = − 𝑐𝑚𝑥 − 𝑘
𝑚𝑥 + 𝐹(𝑡) (A.2)

which can be written into a state-space form:

[ �̇��̇� ] = [ 0 1
− − ] [ 𝑥𝑥 ] + [ 0 ] 𝐹(𝑡) (A.3)

So if some kind of function which performs integration of time is given, new displacement 𝑥 and ve-
locity 𝑥 can be obtained.

A.1. Euler Method
Euler method is the most basic explicit method for numerical integration of ordinary differential equa-
tions and is the simplest Runge–Kutta method. It is named after Leonhard Euler, who treated it in his
book ≪ Institutionum calculi integralis ≫.
The principle idea behind Euler method is that the new state can be obtained by adding the product of
state gradient at this moment and time step to the previous state.
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66 A. Numerical method for solving differential equation

Figure A.1: Euler method

A.2. 4th order Runge-Kutta
From figure A.1, it is very clear that the error, which is proportional to the square of the time step size
by the help of Taylor Series Expansion, using Euler method is enormous. In order to reduce the error
and improve the performance of integration, some other algorithm has been developed, for instance
4th order Runge-Kutta method.
Let an ordinary differential equation be specified as follows:

�̇� = 𝑓(𝑡, 𝑦) (A.4)

The state of 𝑛 + 1 is:
𝑦 = 𝑦 + Δ𝑡6 (𝑘 + 2𝑘 + 2𝑘 + 𝑘 ) (A.5)

where

𝑘 = 𝑓(𝑡 , 𝑦 )

𝑘 = 𝑓(𝑡 + Δ𝑡2 , 𝑦 + Δ𝑡2 𝑘 )

𝑘 = 𝑓(𝑡 + Δ𝑡2 , 𝑦 + Δ𝑡2 𝑘 )
𝑘 = 𝑓(𝑡 + Δ𝑡, 𝑦 + Δ𝑡𝑘 )

𝑘 is the increment based on the slope at the beginning of the interval (Euler method).
𝑘 is the increment based on the slope at the midpoint of the interval, using 𝑦 + 𝑘 .
𝑘 is again the increment based on the slope at the midpoint of the interval, but using 𝑦 + 𝑘 .
𝑘 is the increment based on the slope at the end of the interval, using 𝑦 + Δ𝑡𝑘 .
The 4th order Runge-Kutta method reduce the error by means of the slope at midpoint. A general
calculation procedure can be presented below in Figure A.2.

Figure A.2: 4th order Runge-Kutta method
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A.3. ODE45
The ODE45 command used for solving differential equation in MATLAB is based on the 4th order
Runge-Kutta method. The only difference is that ODE45 will automatic change the time step based on
comparing the error with other numerical method (Adpative time stepping).





B
Singular value decomposition

In terms of the inverse problem, least square method is not the only approach. Singular value decom-
position can be used to calculate the pseudoinverse to solve linear square problems.
Suppose vector 𝑥 with size of 𝑛 in the below equation needs to be solved.

Ax=b (B.1)

The least square solution is:

𝑆 = ||𝐴𝑥 − 𝑏|| (B.2)
𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑆) = (𝐴 𝐴) 𝐴 𝑏 (B.3)

(B.4)

The singular value decomposition solution is:

𝑥 = 𝐴 𝑏 =∑ u b
𝜎 v (B.5)

Where u ,𝜎 and v come from the sigular value decomposition of 𝐴 matrix:

A =∑u 𝜎 v (B.6)

When matrix 𝐴, which has size of𝑚×𝑛, has 𝑟𝑎𝑛𝑘(𝐴) = 𝑛, the least square solution and singular value
decomposition solution would be the same.
In equation (B.5), if singular value 𝜎 is very small, then minimal error in vector b would largely change
the estimated value 𝑥 . In another words, the sensitivity to error of the least square method can be
evaluated by means of the singular value decompostion of matrix 𝐴. Below is the five singular values
of A for low ice velocity case in chapter 3.

𝜎 = 33.7768
𝜎 = 13.5697
𝜎 = 3.3783
𝜎 = 0.5632
𝜎 = 0.0602

From the above five singular values, it is clear that the case of low ice velocity is a well-conditioned
problem. The five singular values of A for high ice velocity case are shown below.
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70 B. Singular value decomposition

𝜎 = 78.41
𝜎 = 0.87
𝜎 = 0.01
𝜎 = 0.00
𝜎 = 0.00

There are two singular values are zero in the case of high ice velocity. Hence, it’s a ill-conditioned
problem.
The five singular values of A for medium ice velocity case are shown below.

𝜎 = 39.40
𝜎 = 11.39
𝜎 = 2.90
𝜎 = 0.74
𝜎 = 0.11

Similar to the case of low ice velocity, the case of medium ice velocity is also a well-conditioned prob-
lem.
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