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Quote

“Discovery consists of seeing what everybody has seen and thinking what nobody has thought.”
– Albert Szent-Györgyi
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Abstract

The rapid advancement of automated vehicles (AVs) can potentially improve transportation. However,
ensuring the safety and reliability of Automated Driving Systems (ADS) remains a critical challenge,
particularly when facing the expansion of Operational Design Domains (ODDs) and the continuous
emergence of unknown hazardous scenarios. This thesis aims to address these challenges by devel-
oping a framework for monitoring the safety of multi-channel ADS and identifying hazardous scenarios
using Safety Performance Indicators (SPIs) and Hazardous Scenario Identification (HSI) techniques.

The proposed SPI framework, based on the principles outlined in the UL 4600 standard, encompasses
a comprehensive set of metrics for assessing the safety and performance of ADS. These metrics cover
various critical functionalities, such as ego localization, object detection, trajectory planning, and overall
ADS behaviour. By defining appropriate thresholds for each SPI, the framework enables the identifica-
tion of potential safety issues and supports the continuous monitoring and improvement of ADS.

The HSI module, developed as part of this thesis, leverages the SPI framework and the NXP Daruma
cross-channel analysis to detect hazardous scenarios. The HSI module’s performance is evaluated
using the CARLA simulator and advanced ADS software stacks (LAV and TFUSE) across diverse
driving scenarios. The results demonstrate the HSI module’s effectiveness in identifying hazardous
scenarios such as ego vehicle tailgating, inconsistent ego localization, and ego vehicle being tailgated.
However, our analysis also reveals challenges in terms of false positives and negatives, highlighting
the need for further improvements in the ADS’s perception and localization functionalities and in tuning
the SPI thresholds appropriately based on testing as well as the characteristics of the ADS.

This thesis contributes to advancing ADS safety by developing a comprehensive SPI framework and
implementing a proof of concept HSI module. We propose an architecture that integrates these com-
ponents in a closed-loop process involving vehicle fleet data collection, cloud-based analysis, and
targeted software updates. This framework enables the identification of areas for improvement and
supports generating OpenSCENARIO files for reproducing and analyzing hazardous scenarios ad hoc.
The findings from the experimental evaluation provide valuable insights into the performance and limi-
tations of the SPI safety monitoring and HSI techniques, guiding the safe deployment and continuous
improvement of ADS. This research ultimately paves the way for the widespread adoption of automated
vehicles (AVs) in driving environments.
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Definitions

Definitions

Automated Driving System (ADS) The hardware and software that are collectively ca-
pable of performing the entire dynamic driving task
continuously, regardless of whether it is limited to a
specific operational design domain (ODD).

Ego Vehicle The vehicle equipped with and controlled by the Au-
tomated Driving System (ADS), that is the primary
focus of the study or analysis.

Hazardous Scenario A situation or condition that poses a potential risk to
the safety of the ego vehicle, its occupants, or other
road users, requiring the ADS to take appropriate
action to mitigate the risk.

Object Any entity detected by the ADS in the surrounding
environment, including other vehicles, pedestrians,
cyclists, and stationary obstacles.

Operational Design Domain (ODD) The specific conditions under which a given ADS or
feature is designed to function, including but not lim-
ited to environmental, geographical, and time-of-day
restrictions.

Planned Path The intended trajectory generated by the ADS for the
ego vehicle to follow, considering the current envi-
ronment, traffic conditions, and the vehicle’s desti-
nation.

Predicted Trajectory The anticipated future path of an object detected by
the ADS, based on the object’s current state and mo-
tion.

Safety Performance Indicator (SPI) A quantitative measure used to assess the safety
performance of an ADS, providing evidence that the
system is operating within acceptable risk levels and
supporting the overall safety case.

x



1
Introduction

1.1. Safety of Driving Automation
The rapid development of automated vehicle (AV) technology has the potential to revolutionize trans-
portation and change the nature of road safety. While AVs and human drivers make different types of
mistakes, they also have different strengths and weaknesses. Human drivers can rely on experience,
intuition, and contextual understanding to navigate complex situations, but they are also prone to er-
rors caused by factors such as distraction, fatigue, and impairment [1]. In contrast, AVs can maintain
constant vigilance and react quickly to detected hazards, but they may struggle in the presence of
ambiguous or unexpected events [2] [3].

To illustrate the potential safety benefits of AVs, consider two common hazardous scenarios. In the first
scenario, a distracted driver fails to notice a pedestrian crossing the street and collides with them. An
AV equipped with advanced sensors and perception algorithms could detect pedestrians and quickly
respond by braking or steering to avoid a collision. In the second scenario, a driver under the influence
of alcohol fails to maintain their lane and crashes into an oncoming vehicle. An AV, unaffected by
alcohol or fatigue, would maintain its lane and avoid the crash altogether. These examples demonstrate
how AVs can mitigate the risks associated with human error and reduce the occurrence of common
hazardous situations. By minimizing the role of human drivers, AVs have the potential to save countless
lives and prevent injuries on the road [4].

However, the current state of AV technology still faces significant challenges despite the potential of in-
creased safety, [5]. It is essential to recognize that AVs are not infallible and still face limitations in many
situations, such as adverse weather conditions or complex urban environments. One of the primary
concerns surrounding AVs is their ability to handle the wide range of complex and unpredictable situa-
tions encountered in real-world driving conditions [4]. AVs must depend on their sensors, algorithms,
and decision-making systems to ensure safe operation [6]. This becomes particularly challenging in
situations that fall outside the AV’s operational design domain (ODD), which refers to the specific con-
ditions and scenarios under which the AV is designed to function safely [7].

As AV technology advances, it is crucial to consider the different levels of autonomy and their impli-
cations for road safety. Philip Koopman’s classification provides a practical insight into AV safety and
operational reliability [8]. His system not only categorizes levels of autonomy by capability but also
emphasizes how they ensure safety across different conditions, i.e. the system’s ability to handle var-
ious driving scenarios and the level of human intervention required. By introducing categories like
Driver Assistance, Supervised Automation, Autonomous Operation, and Vehicle Testing, Koopman’s
classification highlights the fail-operational requirements necessary for AVs. AVs must maintain safety
functions even when failures occur in the ADS, closely aligning with real-world demands. Koopman’s
framework is vital for understanding AV safety in dynamic environments and for developing expanded
ODDs that can accommodate both expected and unexpected scenarios [5] [9].

1
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Figure 1.1: A few key requirements of Automated Vehicles [10]

Figure 1.1 shows a few of the key requirements of an AV vehicle. While these may seem trivial, having
an AV that can handle all conditions is difficult due to the inherent complexities in the real world.

Currently, ODDs of existing ADS are relatively small, often restricted to certain scenarios, highways,
or cities, and are directly correlated with the safety and confidence in the performance of AVs. As
the world continues to evolve, with new actors and scenarios emerging in the traffic environment [11],
continuous improvement of AV systems is necessary also to ensure that vehicles can correctly react
to new scenarios and retain the level of safety achieved at release [12]. Software-defined vehicles
with over-the-air updates provide an implementation platform for this continuous improvement [13].
Additionally, redundancy through multiple ADS channels operating in parallel is crucial for fail-safe
operation, offering advantages over single-channel systems [14]. Most AVs currently operate on a
single nominal channel with a ”cold backup” second channel is activated only when the first one fails
[15]. Having two active channels parallely can provide additional benefits and improve overall safety
[16].

This thesis explores a method in multi-channel AVs for monitoring and assessing vehicle safety while
also contributing to the expansion of ODDs. By leveraging the advantages of redundant ADS channels
and continuous improvement, this research aims to address the current limitations of AV safety and
pave the way for safer and more reliable AVs.

1.2. Problem Statement
The expansion of ODDs for ADS presents significant challenges. As the world continuously changes,
ADS must adapt to new and unforeseen scenarios to avoid misclassifications and potential safety haz-
ards [17]. These challenges are compounded by the fact that analyzing diverse driving scenarios to
enhance vehicle safety and performance is a costly and time-consuming process. This process re-
quires extensive data review and monitoring, making it labour-intensive and expensive [18].

Ensuring the safety of AVs is crucial for their widespread adoption and public trust. Real-time safety
monitoring is essential for promptly detecting and mitigating hazardous situations. Additionally, there
is a need for methods to assess the safety of AVs and validate the claims made by manufacturers at
runtime, particularly in the context of multi-channel architectures where multiple perception, planning,
and control systems operate simultaneously [19] [16].
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The problem statement can be formulated as follows -

The widespread deployment of Automated Driving Systems (ADS) is currently hindered by
their inability to adequately handle unknown hazardous scenarios and the continuous

emergence of new situations. Additionally, there is a need for effective methods to monitor the
safety of AVs in real-time and assess the safety claims made by manufacturers, particularly in

multi-channel ADS architectures.

The thesis primarily tries to explore and answer the following questions.

1. How can we monitor the safety of an AV in real-time through a cost-effective method, particularly
in systems with redundant AD channels?
This question investigates the development of efficient and economical strategies for real-time
safety monitoring in AVs equipped with redundant channels, focusing on maximizing reliability
without significant cost increases.

2. How can redundant channels be utilized to identify and mitigate hazardous scenarios in Auto-
mated Driving Systems (ADS)?
This question explores the use of redundant channels in ADS to enhance the detection and man-
agement of hazardous scenarios, thus improving overall system safety and robustness.

Since the methods used and algorithms developed are to be run on an embedded device where com-
putation is time-sensitive and the hardware resource is limited, the design constraints are set as -

1. The algorithms developed should be computationally efficient to avoid delaying the arbitration
process in the ADS.

2. The maximum computational budget allocated for the complete module is +25 ms.

In summary, this thesis aims to address the challenges faced by ADS in expanding their ODDs, han-
dling unknown hazardous scenarios, and ensuring real-time safety monitoring. By exploring effective
methods for monitoring the safety of multi-channel AVs in real-time and attempting hazardous scenario
identification, this research seeks to contribute to the continuous improvement and safe deployment
of ADS. The design constraints ensure the proposed solutions are practical and can be integrated into
existing ADS without significant performance impacts.

1.3. Research Methodology
This research adopts a comprehensive mixed-methods approach, leveraging both qualitative and quan-
titative analyses to investigate the efficacy of the adopted strategy for assessing AV safety and identi-
fying hazardous scenarios [20]. The methodology is structured as follows:

• Literature Review and State-of-the-Art Analysis: A comprehensive review of current literature
and state-of-the-art technologies will focus on AV safety. This literature review will cover various
aspects, including SAE and Philip Koopman’s levels of automated driving, safety standards such
as ISO 26262, ISO 21448 (SOTIF), and UL 4600, and the challenges in AV safety. The concept
of operational design domains (ODDs) and the importance of expanding them for the widespread
deployment of AVs will also be explored. Additionally, the review will investigate the potential of
the NXP Daruma Design Pattern to enhance the AV safety of redundant ADS architectures [21].
Existing approaches to monitoring AV safety employed by various companies will be examined
to identify gaps in current knowledge and areas for improvement.

• Definition of Safety Measures to Address the Problem Statement: Based on the insights
gained from the literature review, specific safety measures tailored to multi-channel ADS archi-
tectures will be defined. These measures will include a comprehensive set of SPIs, such as
comfort metrics, similarity metrics, and motion prediction metrics, which will be used to assess
the safety performance of the AV system. Additionally, techniques for identifying hazardous sce-
narios, such as inconsistent ego localization, ego tailgating, and ego tailgated, will be explained.
These safety measures will be designed to address the challenges of expanding the ODD and
ensuring the safe operation of AVs in a wide range of driving conditions.

• Algorithm Design and Implementation: Algorithms for monitoring the vehicle’s safety will be
designed and implemented based on the defined SPIs and hazardous scenario identification tech-
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niques. These algorithms will leverage the NXP Daruma Design Pattern [22] for cross-channel
analysis and arbitration, enabling the AV system to detect and mitigate potential safety risks. The
algorithms will be implemented using C++ and Robot Operating System (ROS2), ensuring com-
patibility with the NXP Daruma setup and real-world ADS software stacks. The implementation
will focus on computational efficiency and real-time performance to meet the design constraints
specified in the problem statement.

• Experimental Testing and Verification: The developed algorithms will be tested and verified
through a series of experiments utilizing the CARLA simulator [23] and real-world ADS software
stacks – LAV [24] and TFuse [25]. The CARLA Leaderboard [26], a standardized set of urban
driving scenarios for testing ADS performance, will be used to evaluate the effectiveness of the
algorithms in identifying hazardous scenarios and assessing the safety performance of the AV
system. The simulated routes will cover a range of driving scenarios and weather conditions. The
algorithms’ performance will be evaluated using both manual analysis and automated processing,
allowing for a complete assessment of their accuracy, efficiency, and robustness.

• Qualitative and Quantitative Analysis: The results obtained from the experiments will be ana-
lyzed using both qualitative and quantitative methods. Qualitative analysis will involve interpret-
ing the identified hazardous scenarios and their implications for AV safety. This analysis will
provide insights into the strengths and limitations of the developed algorithms in detecting and
mitigating potential safety risks. Quantitative analysis will involve the evaluation of the algorithms’
performance by measuring the accuracy and consistency of identified hazardous scenarios. The
analysis will validate the effectiveness of the proposed methodology in enhancing AV safety and
expanding the ODD.

By following this structured methodology, the research aims to develop a comprehensive and validated
approach for monitoring AV safety and identifying hazardous scenarios in multi-channel ADS architec-
tures. The use of state-of-the-art simulation environments, real-world ADS software stacks, and stan-
dardized testing scenarios ensure the relevance and applicability of the proposed methodology to the
development of safer and more reliable AVs. The combination of qualitative and quantitative analysis
methods allows for a thorough evaluation of the developed algorithms and their potential impact on the
advancement of AV technology.

1.4. Thesis Structure
Chapter 1 introduces the research topic, providing an overview of the safety challenges that AVs face
and the need for continuous improvement in AV systems. The chapter also presents the problem state-
ment, research questions, design constraints, and the research methodology adopted in this thesis.

Chapter 2 comprehensively reviews the related work and state-of-the-art techniques in AV safety, haz-
ardous scenario identification, and safety performance indicators. The chapter also discusses existing
approaches to monitoring AV safety and identifies the gaps in current knowledge that this thesis aims
to address.

Chapter 3 describes the system architecture developed in this thesis for the continuous improvement
of ADS using safety performance indicators (SPIs) and hazardous scenario identification (HSI). The
chapter presents the overall architecture for continuous improvement, the functional architecture of the
SPI and HSI modules, and the Daruma C++ implementation.

Chapter 4 focuses on developing safety performance indicators (SPIs) for monitoring AV safety. It
presents the safety case framework used to define the SPIs, the algorithms and implementation details
for calculating them, and a summary of the developed SPIs and their perceived value for cross-channel
analysis.

Chapter 5 discusses identifying hazardous scenarios using the developed SPI framework and the
Daruma cross-channel analysis. The chapter presents the identified hazardous scenarios, their charac-
teristics, and the automated open scenario generation process used to create test cases for validating
the ADS performance.

Chapter 6 presents the experimental evaluation of the developed SPI and HSI frameworks using a
test bench setup and in a simulated environment that mimics real-world scenarios. The chapter dis-
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cusses the results obtained from both manual and automated evaluations and the profiling results for
the developed algorithms in terms of latency and CPU load.

Chapter 7 concludes the thesis by summarizing the research’s main contributions, findings, and im-
plications. The chapter also discusses the limitations of the current work and provides directions for
future research.

Chapter 8 presents the potential future work that can be carried out to extend and improve the devel-
oped SPI and HSI frameworks.



2
Related Work

2.1. Levels of Automated Driving
To understand the capabilities and limitations of AVs, it is essential to consider the different levels of
automation. These levels provide a standardized framework for describing how an AV system can
perform driving tasks without human intervention. The most widely recognized framework for defining
levels of automated driving is the SAE International’s Levels of Driving Automation. A new Vehicle
Safety level has recently been defined by Philip Koopman - a professor at Carnegie Mellon University
and a leading expert in AV safety. While both frameworks share some similarities, they differ in their
focus and the specific criteria used to define each level.

2.1.1. SAE Levels of Automation
The Society of Automotive Engineers (SAE) International has defined six levels of driving automation,
ranging from no automation (Level 0) to full automation (Level 5) [27].

Figure 2.1: SAE Levels of Automation [28]

Figure 2.1 shows the overview of the levels of safety. The levels are:

• Level 0 (No Automation): The human driver is responsible for all driving tasks.
• Level 1 (Driver Assistance): The vehicle can assist with either steering or acceleration/decelera-
tion, but the human driver is responsible for all other driving tasks.

6



2.1. Levels of Automated Driving 7

• Level 2 (Partial Automation): The vehicle can control both steering and acceleration/deceleration
under specific conditions, but the human driver must monitor the environment and be ready to
take control at any time.

• Level 3 (Conditional Automation): The vehicle can perform all driving tasks under specific condi-
tions, but the human driver must be ready to take control when requested by the system.

• Level 4 (High Automation): The vehicle can perform all driving tasks undermost conditions without
requiring human intervention, but the human driver may be able to take control.

• Level 5 (Full Automation): The vehicle can perform all driving tasks under all conditions without
human intervention.

The SAE levels provide a useful framework for understanding the progression of AV capabilities and
the roles and responsibilities of the human driver at each level.

2.1.2. Philip Koopman's Levels of Automation
Philip Koopman’s classification of autonomy levels provides a clear framework for understanding the
operational reliability and safety of AVs. Koopman’s framework emphasizes on the ODDs and the
safety requirements for each level rather than focusing solely on the division of driving tasks between
the human and the AV system [29] [8]. This classification helps assess how AVs perform under various
driving conditions and is integral to their safe deployment and public acceptance.

Koopman’s model introduces specific categories of vehicle automation (as seen in Figure 2.2), each
emphasizing different levels of automation and human interaction requirements:

Figure 2.2: Koopman’s Levels of Automation [30]

• Driver Assistance: In this mode, the vehicle provides support through active safety and conve-
nience features like anti-lock brakes and adaptive cruise control. The human driver remains in
control, with the technology designed to enhance the driver’s ability to operate the vehicle safely.

• Supervised Automation: Here, the vehicle handles tasks like speed and lane keeping, while the
human driver monitors the driving environment and intervenes when the vehicle encounters sce-
narios outside its capabilities. This mode requires effective driver monitoring systems to ensure
that the human driver remains engaged and ready to take over as needed.

• Autonomous Operation: This mode represents a significant shift as the vehicle operates com-
pletely independently of a human driver. It includes comprehensive responsibility for all driving
tasks and safety-related functions, capable of handling entire driving missions within its opera-
tional design domain (ODD).

• Vehicle Testing: Aimed at ensuring safe development and deployment, this mode involves a
trained safety driver who oversees the operation of AVs, particularly when testing new and imma-
ture technologies. This mode highlights the importance of rigorous safety standards and testing
protocols to manage the potential risks associated with automation technologies.

Koopman’s classification emphasizes a practical and user-centric approach to vehicle automation. By
redefining these roles, the classification aims to mitigate the confusion prevalent in public discussions
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and media portrayals of AV capabilities. It also addresses legal aspects such as driver liability in differ-
ent modes, providing clear guidelines on responsibilities and expectations. This framework is relevant
for consumers and manufacturers and essential for policymakers and regulators in crafting informed
and effective legislation for AV technologies [31].

2.2. Safety Standards
Safety standards are crucial in ensuring the safe development, testing, and deployment of AVs. These
standards provide guidelines and requirements for various aspects of AV safety, including functional
safety, safety of intended functionality, and the evaluation of autonomous products [32].

2.2.1. Automotive Functional Safety Standard (ISO 26262)
The International Standard for Standardisation (ISO) 26262, titled ” Road vehicles – Functional safety”,
- focuses on the functional safety of electrical and electronic systems in vehicles, including AVs [33].
This standard covers the entire lifecycle of these systems, from development to decommissioning, and
provides guidelines for risk assessment, hazard analysis, and safety measures. Automotive companies
extensively cover and track ISO 26262 compliance to ensure the functional safety of their vehicles.
However, this standard does not address the safety challenges arising from the intended functionality
of AVs, which are covered by ISO 21448 (SOTIF).

The main focus of the thesis is on Safety of the Intended Functionality (SOTIF), which is explained in
subsequent sections.

2.2.2. Safety of Intended Functionality (ISO 21448)
The International Standard for Standardisation (ISO) 21448 titled ”Road vehicles — Safety of the in-
tended functionality”, also known as Safety of the Intended Functionality (SOTIF), addresses the safety
challenges arising from the intended functionality of AVs, particularly in situations where the system op-
erates correctly but still poses risks due to functional insufficiencies [34]. For example, an AV might fail
to detect a pedestrian in low-light conditions, even though its sensors function as intended. ISO 21448
provides guidance on identifying and mitigating these risks not covered by ISO 26262 [35].
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Table 2.1: Comparison between ISO 26262 and ISO 21448 (SOTIF)

Feature ISO 26262 ISO 21448 (SOTIF)

Focus Focuses on ensuring that automo-
tive systems are free from unrea-
sonable risk due to hazards caused
by malfunctioning behaviour of E/E
systems.

Addresses the safety of intended
functionality and the correct perfor-
mance of E/E systems where perfor-
mance is not caused by system mal-
functions.

Scope Covers all lifecycle phases of safety-
related systems comprising electri-
cal, electronic, and software compo-
nents.

Complements ISO 26262 by ad-
dressing hazards resulting from
functional insufficiencies or foresee-
able misuse that are not considered
to be malfunctions.

Objective Prevention of failures and protection
against system malfunctions.

Ensuring safety under conditions
where the system behaves as in-
tended, but these behaviours still
lead to unsafe situations.

Methodology Risk assessment through Hazard
Analysis and Risk Assessment
(HARA), leading to the definition of
Safety Integrity Levels (ASILs).

Includes methodologies like sce-
nario analysis to assess situations
where intended functions might lead
to hazardous events.

Application Primarily applicable to the automo-
tive industry for vehicles and their
subsystems.

Particularly significant for advanced
driver-assistance systems (ADAS)
and AVs that rely heavily on com-
plex sensors and algorithms.

From Table 2.1, it can be seen that while both standards are crucial for the automotive industry, ISO
21448 holds particular relevance for systems like ADAS and AV technologies that rely on complex
interactions of software and hardware to interpret and respond to real-world conditions.

This thesis focuses primarily on the functional insufficiencies defined in SOTIF, as these are more rele-
vant to the challenges faced bymulti-channel AV architectures. Functional insufficiencies can arise from
limitations in the AV’s perception, decision-making, or control systems, as well as from the complexity
of the operating environment. By addressing these insufficiencies through effective safety monitoring
and hazardous scenario identification, this thesis aims to contribute to the development of safer and
more reliable AVs.

2.2.3. Standard for Safety for the Evaluation of Autonomous Products (UL 4600)
The UL 4600 standard provides a comprehensive framework for the safety evaluation of autonomous
products, including AVs [36] [37]. This standard emphasizes the importance of safety cases, which
provide a structured argument for the safety of an AV system supported by evidence. UL 4600 also
introduces the concept of Safety Performance Indicators (SPIs), which are quantitative measures used
to assess the safety performance of an AV system.

Although UL 4600 is highly relevant to the development and evaluation of SPIs in the context of AV
safety, it is important to note that this thesis was not directly influenced by the standard. The principles
and guidelines outlined in UL 4600 serve as a useful reference point for understanding the role of
SPIs in assessing AV safety, but the specific approaches and methods employed in this thesis were
developed independently.

Nevertheless, the concepts presented in UL 4600, such as the importance of considering the opera-
tional design domain (ODD) when evaluating AV safety, align well with the objectives of this thesis.
The focus on expanding the ODD of AVs through effective safety monitoring and hazardous scenario
identification is consistent with the principles outlined in the standard. By addressing the challenges
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posed by functional insufficiencies and the complexity of real-world operating environments, this thesis
aims to contribute to the safe deployment of AVs across a wider range of conditions, which is a key
goal of UL 4600.

Figure 2.3 shows the differences between ISO 26262 and ISO 21448. The simplified hazard models
in ISO 26262 (blue) and SOTIF (yellow) illustrate internal and external vehicle events, separated by a
grey box. Examples are provided in brackets [21].

Figure 2.3: Difference between ISO26262 and ISO21448 illustrated through an example [21]

In summary, while ISO 26262 focuses on functional safety, this thesis primarily addresses the safety
challenges covered by ISO 21448 (SOTIF) and the principles outlined in UL 4600. By focusing on
functional insufficiencies, developing effective SPIs, and leveraging the safety case framework, this
thesis aims to contribute to the development of safer and more reliable multi-channel AV architectures
capable of operating in expanded ODDs.

2.3. Challenges in AV Safety
AVs face unique safety challenges that go beyond the scope of traditional automotive safety stan-
dards. These challenges arise from the complex interaction between the AV’s sensors, algorithms,
and decision-making systems and the unpredictable nature of real-world driving conditions [29] [21].
One of the key challenges is sensor reliability and perception accuracy. AVs rely on a combination of
sensors, such as cameras, lidars, and radars, to perceive their environment. However, various factors
can affect these sensors, such as weather conditions, lighting, and road surface quality, which can
lead to inaccurate or incomplete perception of the surroundings [6]. This, in turn, can result in incorrect
decision-making by the AV’s algorithms.

Another challenge is the complexity of the decision-making algorithms themselves. AVs must be able to
handle a wide range of scenarios, including those that are not encountered during simulation or training.
This requires sophisticated algorithms that can adapt to novel situations and make safe decisions in
real time [12]. Ensuring the robustness and reliability of these algorithms is a significant challenge, as
they must be extensively tested and validated under various conditions.

In addition to these challenges, AVs must also contend with the potential for functional insufficiencies,
as addressed by the ISO 21448 (SOTIF) standard. Functional insufficiencies occur when an AV system
operates as intended but still poses risks due to limitations in its perception, decision-making, or control
capabilities [34]. For example, an AV might struggle to detect pedestrians in low-light conditions or fail
to anticipate the behaviour of other road users in complex traffic scenarios [17].

Other challenges in AV safety include the need for effective human-machine interaction, particularly
in the context of handovers between the AV and the human driver [38], the management of ethical
dilemmas in emergencies [1], and the establishment of legal and regulatory frameworks that can keep
pace with the rapid development of AV technologies [39].

Cybersecurity is also a critical concern for AV safety, as the increasing connectivity and complexity of
these systems make them potential targets for cyber attacks [40]. Hackers could potentially manipulate
an AV’s sensors, control systems, or communication channels, leading to dangerous situations on
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the road. Addressing cybersecurity risks requires implementing robust security measures, such as
encryption, authentication, and intrusion detection systems, as well as regular security updates and
patches [41].

This thesis focuses primarily on addressing the challenges posed by functional insufficiencies, as these
are critical to ensuring the safety and reliability of AVs in real-world operating conditions. By developing
effective methods for monitoring AV safety, identifying hazardous scenarios, and expanding the oper-
ational design domain (ODD), this research aims to contribute to the development of safer and more
capable AVs that can handle the complexities of real-world driving.

2.4. Operational Design Domain
ODD is a critical concept in the development and deployment of AVs. An ODD refers to the specific
conditions and scenarios under which an AV is designed to operate safely [27]. These conditions can
include factors such as geography, road type, weather, and traffic density.

Currently, ODDs for AVs are relatively limited, often restricted to specific scenarios, highways, or cities
[9]. This is due to the challenges associated with ensuring the safety and reliability of AVs in more
complex and unpredictable environments. The size and scope of an AV’s ODD are directly correlated
with the safety and confidence in the vehicle’s performance [5].

Figure 2.4: Classification of safe and unsafe scenarios [34]

The ODD can be visualized using a four-quadrant model as shown in Figure 2.4, categorising scenarios
based on their potential hazards and the AV’s ability to handle them [42]. The four quadrants are:

1. Known Unsafe scenarios or Known hazards: Scenarios that are known to be hazardous and can
be handled by the AV.

2. Unknown Unsafe scenarios or Unknown hazards: Scenarios that are hazardous but not known
or predictable by the AV.

3. Known Safe scenarios or Known non-hazards: Scenarios that are known to be safe and can be
handled by the AV.

4. Unknown Safe scenarios or Unknown non-hazards: Scenarios that are safe but not known or
predictable by the AV.
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Expanding an AV’s ODD primarily involves increasing the ”known non-hazards” quadrant by identifying
and addressing potential hazards through testing, validation, and continuous improvement of the AV’s
perception, decision-making, and control systems [12]. However, expanding the ODD alone is insuffi-
cient; improvements in the AV’s overall capabilities are also necessary to move hazardous scenarios
into the non-hazardous category.

Continuous improvement of AVs is essential for both expanding ODDs and ensuring that the vehicles
can adapt to the ever-changing road environment. As new scenarios and edge cases are encountered,
AV developers must update and refine their systems to maintain and improve safety performance. This
process can be facilitated by software-defined vehicles (SDVs) with over-the-air (OTA) update capa-
bilities, enabling the continuous improvement of AV functionalities without requiring physical hardware
changes.

2.4.1. Hazardous Scenarios Identification (HSI)
In this thesis, the process of identifying hazardous scenarios is called HSI (Hazardous Scenario Iden-
tification). Hazardous scenarios are situations that pose a potential risk to the safety of the AV, its
occupants, or other road users. These scenarios can arise due to various factors, such as adverse
weather conditions, complex road layouts, or unexpected behaviour of other traffic participants [43].
Identifying and characterizing hazardous scenarios is crucial for assessing the safety performance of
AVs and defining and expanding their ODDs. However, the definition of a hazardous scenario can vary
depending on the context and the specific AV system. Generally, a scenario is considered hazardous
if it challenges the AV’s perception, decision-making, or control capabilities and requires the AV to take
action to avoid or mitigate potential harm or take care of consideration before decision-making [44].

Some examples of hazardous scenarios include:

• Sudden braking of a lead vehicle
• Pedestrian unexpectedly crossing the road
• Adverse weather conditions (e.g., heavy rain, fog, or snow) reducing visibility and traction
• Complex or ambiguous road layouts (e.g., roundabouts, intersections with obstructed views)
• Aggressive or erratic behaviour of other traffic participants

By characterizing and identifying these hazardous scenarios, AV developers can focus their efforts on
improving the system’s capabilities to handle these situations safely and efficiently, ultimately expanding
the ODD and enhancing overall safety performance.

2.5. Redundant Automated Driving Systems
Redundancy in Automated Driving Systems (ADS) is crucial for ensuring fail-operational behaviour
and enhancing overall safety [34]. Our project experiments with vehicles with multiple ADS running in
parallel, leveraging the concept of redundancy to improve the robustness and reliability of ADS [45].
There are several key advantages to having multiple ADS channels in a vehicle, some of which are:

1. Enhanced safety: Redundant AD channels can enhance safety, as the ground truth is unknown.
By comparing the outputs of multiple channels, the system can identify potential errors or incon-
sistencies, increasing the overall confidence in the vehicle’s decision-making [46] .

2. Failover capability: The cost of activating a redundant ADS channel when a current one fails is
too high. Multiple parallel channels ensure seamless failover in case of a single channel failure,
minimizing the impact on the vehicle’s performance and safety [34].

3. Improved perception: While adding more sensors to a particular ADS may not always improve
perception and can even work against it, having multiple ADS channels with different sensor
configurations can provide a more comprehensive understanding of the environment [47].

4. Specialized training: Each ADS channel can be trained for specific use cases or operating
conditions, allowing the vehicle to switch between channels based on the current scenario. This
approach can help improve the vehicle’s overall performance and confidence in handling diverse
driving situations [48].
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5. Continuous validation: Some ADS channels may require validation before fully deploying. Run-
ning these channels in parallel with existing, proven ADS allows for real-world testing and valida-
tion without compromising the vehicle’s safety [49].

However, one challenge with havingmultiple ADS channels is determining which driving channel should
control the vehicle under different conditions. This is where Daruma Design Pattern comes into play.

2.5.1. Daruma Design Pattern
The Daruma Design Pattern, developed by NXP Semiconductors, is a novel approach to improve both
the safety and availability of Automated Driving Systems (ADS) [45]. The design pattern leverages the
concept of redundancy by running multiple Automated Driving (AD) channels in parallel, enabling the
system to select the optimal channel for each driving scenario. The core of the Daruma Design Pattern
is the cross-channel analysis of the outputs of the different AD channels to ensure safe and consistent
vehicle behaviour. The AD channels provide high-level channel state information to the Darumamodule,
including the world model, motion predictions, ego trajectory, and detected traffic rules [21].

2.5.2. Daruma Cross-Channel Analysis
The cross-channel analysis in Daruma evaluates the similarity and consistency of the decisions made
by each AD channel. By analyzing the agreement between channels, the Daruma Design Pattern can
determine the confidence level of the overall system and make informed decisions on which channel
should be in control of the vehicle [45].

The Daruma cross-channel analysis employs two major types of algorithms: risk analysis and prefer-
ences. The analysis produces various safety and availability metrics that are fused with the output
of classical fault monitors, ODD monitors, and other safety mechanisms. The aggregated score per
channel influences the high-level arbiter’s decision on which channel to select for driving at runtime [45].
Furthermore, Daruma is uniquely positioned in the ADS to monitor safety. By correlating the channels’
world models and motion plans, Daruma can identify low safety performance and spot functional in-
sufficiencies, such as repeated disagreements in object classifications between the main and backup
channels. The data associated with driving scenarios can be uploaded to the cloud for fleet-wide anal-
ysis, enabling the creation of Over-The-Air updates to improve the ADS performance [45].

The first MATLAB [50] implementation of the Daruma Design Pattern, called Safety Shell, has been
validated using the CARLA simulator and multiple heterogeneous AD channels with TU/e [16]. In our
work, however, the NXP C++ implementation of the Daruma Design Pattern will be used, which has a
different set of algorithms.

2.6. AV Safety Monitoring
Monitoring the safety of AVs is crucial for ensuring their reliable operation and building public trust in
the technology. There are several approaches to monitoring AV safety, each with its own focus and
methodology [5].

Real-Time Diagnostics and Monitoring: This approach focuses mainly on the functional safety as-
pects covered by the ISO 26262 standard. It involves continuously monitoring the AV’s systems and
components to detect and diagnose potential failures or malfunctions in real-time [51]. While these
extensively cover ISO 26262, they do not solve the hazards faced by ISO21448.

Data-Driven Analysis: This approach relies on collecting and analysing data from AV operations, in-
cluding incident reports, telemetry, and operational data. By analyzing this data, engineers can identify
patterns, trends, and potential safety issues, which can then be addressed through updates and im-
provements to the AV system [52]. While this may cover real-time scenarios, it is a time-consuming
and cumbersome process. All, if not most, of the analysis is done after the AV navigation is completed,
and hence, no real-time monitoring and assistance to AV vehicles is possible.

Scenario-based testing (SBT): This is a method used to validate the safety and efficiency of AVs and
ADAS. This approach involves a database of predefined scenarios for controlled simulation or real-
world testing of AVs or ADAS, offering a systematic way to assess these systems under various driving
conditions, including edge cases [53]. SBT advantages include reproducibility, systematic coverage of
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potential conditions, and safety due to controlled environment testing [54]. The main challenge or disad-
vantage of SBT is that a comprehensive scenario database must be maintained and updated as driving
conditions and technology evolve, necessitating frequent updates [55]. Despite its thoroughness, SBT
cannot fully replicate the complexity of real-world environments, making it necessary to integrate other
testing methods for a comprehensive evaluation.

Key Performance Indicators (KPIs): KPIs are quantitative metrics used to evaluate the performance
of AVs, including aspects of safety, perception accuracy, decision-making quality, and control stability
[56]. Although these indicators address safety, their coverage is not extensive enough to ensure safe
operation in all scenarios [57].

Safety Performance Indicators (SPIs): SPIs are a specific type of KPI that focuses on measuring the
safety performance of an AV system. Unlike traditional KPIs, SPIs are directly linked to safety goals
and are used to demonstrate that an AV system is operating within acceptable risk levels [37]. More
about SPIs in Section 2.6.1.

While the above approaches address the functional safety aspects covered by ISO 26262, they do not
adequately cover the safety of intended functionality (SOTIF) aspects addressed by ISO 21448. This
is where SPIs, as mandated by the UL 4600 standard, are gaining traction [58]. AVSC best practice
documents highlight the importance of monitoring AV safety [59] [60] [61] [62], and SPIs provide a
more comprehensive and systematic approach to monitoring AV safety, particularly in the context of
SOTIF. By defining and monitoring SPIs that are directly linked to safety goals and argumentation, AV
developers can demonstrate that their systems are operating safely and identify areas for improvement.

In this thesis, we focus on the use of SPIs for monitoring AV safety. They provide a promising approach
for addressing the challenges associated with SOTIF and enabling the safe deployment of AVs.

2.6.1. Safety Performance Indicators (SPIs) and Safety Case
Safety Performance Indicators (SPIs) are quantitative measures used to assess the safety performance
of an AV system. They are closely tied to the concept of a safety case, which is a structured argument,
supported by evidence, that a system is acceptably safe for a given application in a given operating
environment. In a safety case, SPIs serve as the evidence that demonstrates the achievement of safety
goals and the effective management of safety risks. Each SPI is linked to one or more safety goals and
is used to monitor the system’s performance against those goals[63] [64].

A safety case typically consists of several levels of argumentation, starting with high-level safety goals
and breaking them down into more specific sub-goals and evidence. SPIs are usually associated with
the lower levels of the safety case, providing tangible evidence that the system is operating within
acceptable risk levels [37].

Some examples of SPIs in the context of AVs include:

• Perception accuracy: The percentage of correctly detected and classified objects in the AV’s
environment.

• Decision-making quality: The percentage of decisions that comply with traffic rules and prioritize
safety.

• Control stability: The deviation from the AV’s planned trajectory to the AV’s actual (travel) tra-
jectory.

• Incident frequency: The number of safety-related incidents (e.g., near-misses, disengagements)
per mile travelled.

By defining and monitoring SPIs, AV developers can ensure that their systems meet safety objectives
and identify areas for improvement. SPIs also provide a way to communicate the safety performance
of an AV system to stakeholders, such as regulators, insurance companies, and the public [63].

The benefits of using SPIs in a safety case include:

• Improved transparency and accountability in the safety management process.
• Objective and quantifiable evidence of safety performance.
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• Continuous monitoring and improvement of safety performance.
• Facilitation of safety certification and regulatory compliance.

In this thesis, we explore the application of SPIs within the context of multi-AD channel architectures,
leveraging the Daruma framework’s cross-channel analysis capabilities to enhance the safety monitor-
ing and argumentation process.

2.7. Fleet Management and Safety Monitoring
Fleet management is a crucial aspect of deploying AVs on a large scale. It involves coordinating, op-
erating, and maintaining a fleet of AVs to ensure their safe, efficient, and reliable performance. As AV
technology advances and more companies begin to deploy fleets of AVs, the importance of effective
fleet management and safety monitoring strategies becomes increasingly evident. One of the primary
challenges in AV fleet management is ensuring the safety of the vehicles across a wide range of op-
erating conditions and scenarios. This requires continuous monitoring of the vehicles’ performance,
identification of potential safety issues, and timely interventions to mitigate risks.

Several companies (such as Waymo [65], Aurora [66]) have highlighted the potential benefits of fleet
management for AVs [67]. One key advantage is the ability to share data and insights across multiple
vehicles, accelerating the development of safer and more reliable systems through collaborative learn-
ing. By pooling data from different AVs and analyzing common issues, fleet operators can prioritize
targeted safety improvements and disseminate learnings throughout the fleet [65]. Additionally, frame-
works have been proposed for continuous fleet-wide risk assessment and management. These involve
monitoring AV performance data, identifying high-risk scenarios, and adapting control strategies based
on real-world observations [68]. Such approaches can help fleet operators proactively address safety
concerns and reduce overall risk levels.

However, a universal framework that analyses fleet-level information is still lacking, and hence, this
thesis proposes a framework that enables the continuous improvements of ADS.

2.8. State of the art AV safety frameworks
This section discusses real-life examples of Safety monitors, safety case frameworks and safety perfor-
mance indicators (SPIs) used by companies in the AV industry. The examples include Aurora, Waymo,
NVIDIA, and IVEX. It is to be noted that all the companies stated in the subsequent sections focus
on single channels AVs that do not leverage the benefits obtained from multichannel architectures as
discussed in Section 2.5.

2.8.1. Aurora Safety Case Framework
Aurora, a leading self-driving vehicle company, has developed a comprehensive safety case framework
for AVs. The framework, called the Safety Case Framework, is designed to provide a structured and
transparent approach to demonstrating the safety of Aurora’s AV system [66].

The Aurora Safety Case Framework is based on the Goal Structuring Notation (GSN) and consists
of several layers of argumentation, from high-level safety goals to specific evidence and SPIs. The
framework covers various aspects of AV safety, including perception, decision-making, control, and
overall system performance.

One of the key features of the Aurora Safety Case Framework is its emphasis on continuous monitoring
and updating. As the AV system evolves and new data becomes available, the safety case is updated
to reflect the system’s current state and ensure safety goals are met.

While the Aurora Safety Case Framework represents a significant step forward in systematically demon-
strating AV safety, it is important to note that it primarily focuses on single-channel ADS architectures.
The framework does not explicitly address the challenges and opportunities associated with multi-
channel ADS architectures. Furthermore, it is not known publicly if the health and internal capabilities
of the ADS are also monitored through its safety case. The publicly known information shows that only
the external factors (such as safety distance, vehicle diagnostics, and object classification accuracy)
are monitored.
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2.8.2. Waymo Safety Framework
Waymo, a subsidiary of Alphabet Inc., has developed a comprehensive safety framework for its AVs.
The framework, called the Waymo Safety Framework, outlines the company’s approach to ensuring
the safety of its AV throughout their development and deployment [69].

The Waymo Safety Framework consists of several key components, including:

1. Extensive testing and validation of AV in both simulated and real-world environments.
2. Continuous monitoring and analysis of AV performance data to identify potential safety issues.
3. Collaboration with stakeholders, such as regulators, industry partners, and the public, to promote

transparency and build trust in AV technology.
4. Investment in research and development to advance AV safety technologies and methodologies.

One of the unique aspects of the Waymo Safety Framework is its focus on what the company calls
”behavioural safety.” This refers to the AV system’s ability to make safe decisions and navigate complex
traffic scenarios in a manner that is consistent with human expectations and social norms [69].

While the Waymo Safety Framework represents a comprehensive approach to AV safety, it primarily
focuses on the operational aspects of AV deployment rather than the detailed technical implementation
of safety monitoring and argumentation.

2.8.3. NVIDIA Self Driving Safety Report
NVIDIA has developed a safety framework for AVs that leverages the company’s expertise in artificial
intelligence and deep learning [70].

One of the key components of NVIDIA’s approach to AV safety is the use of camera-based perception
systems. By using deep learning algorithms to process and interpret camera data, NVIDIA aims to
achieve high levels of perception accuracy and robustness. However, the reliance on camera-based
perception also presents challenges in terms of computational complexity and data management. Pro-
cessing and analyzing the vast amount of data generated by camera sensors requires significant com-
putational resources, which can be expensive and energy-intensive [71].

Another aspect of NVIDIA’s safety framework is using simulation environments to train and validate AV.
By using simulation, NVIDIA can expose its AV to a wide range of scenarios and edge cases, including
hazardous situations that would be difficult or dangerous to test in the real world. However, the process
of identifying and annotating hazardous scenarios in simulation data can be time-consuming and labour-
intensive. Engineers must manually review and label the data to ensure the AV system is trained and
validated on relevant and representative scenarios.

While NVIDIA’s safety framework represents a powerful approach to AV safety, it is primarily focused
on single-channel ADS architectures with labour-intensive post-processing.

2.8.4. IVEX Safety Framework
IVEX, a provider of AV testing and validation solutions, has developed an approach to AV safety that
focuses on scenario-based testing and validation using camera data [72].

One key component of IVEX’s approach is using open scenarios scenes. Other than being simulated by
AI, the IVEX framework uses scenes created from realistic camera feeds and includes both hazardous
and non-hazardous situations. These scenes test and validate AV perception and decision-making
systems, ensuring that they can accurately detect and respond to a wide range of driving scenarios.

However, similar to NVIDIA’s AI based approach, the process of creating and validating these open
scenario scenes can be time-consuming and labour-intensive. Engineers must manually review hours
of camera footage to identify and annotate relevant scenarios, which can be a significant bottleneck in
the AV development and testing process.
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Table 2.2: Summary of Safety Frameworks in the AV Industry

Company Focus Key Components Comments

Aurora Safety case
framework based
on GSN

Continuous monitoring and
updating

Primarily focused on
single-channel ADS
architectures

Waymo Comprehensive
safety framework

Extensive testing, continuous
monitoring, collaboration with
stakeholders

Focused on operational
aspects, not detailed
technical implementation

NVIDIA AI-based perception
using camera data

Deep learning for perception,
simulation environments for
training and validation

Computationally expensive,
time-consuming data
annotation and focus on
single ADS AVs

IVEX Scenario-based
testing using
camera data

Open scenario scenes
including hazardous and
non-hazardous situations

Time-consuming and
labour-intensive scenario
annotation, focused on
single AD systems

Table 2.2 shows a quick overview of the existing technologies implemented by companies understood
from publicly available information. It is important to note that while each of these companies (Aurora,
Waymo, NVIDIA, and IVEX) has developed its own approach to AV safety, they all face similar chal-
lenges in terms of data management, scenario coverage, and validation efficiency. These challenges
are particularly acute in the context of multi-channel ADS architectures, where the complexity and diver-
sity of driving scenarios are compounded by the need to ensure consistent and safe behaviour across
multiple perception and decision-making systems.

2.9. Software Ecosystem
A comprehensive software ecosystem is required to develop and test the Safety Performance Indicators
(SPIs) and Hazardous Scenario Identification (HSI) algorithms. Our ecosystem includes open-source
Automated Driving System (ADS) software, the use of Robot Operating System (ROS), the CARLA
simulator, and the Open SCENARIO standard.

2.9.1. CARLA Simulator
The CARLA simulator is an open-source urban driving simulator that provides a realistic environment for
developing, training, and validating ADS. It includes a flexible API for controlling vehicles, pedestrians,
and traffic lights and a suite of sensors such as cameras, LiDARs, and GPS [23].

The CARLA Leaderboard is a benchmark platform for evaluating the performance of ADS in the CARLA
simulator [26]. It provides a standardized set of scenarios and metrics to assess the perception, plan-
ning, and control capabilities of ADS. The CARLA Leaderboard has become a popular platform for
researchers and developers to compare their ADS implementations’ performance and identify areas
for improvement.

This thesis uses the CARLA simulator to create realistic driving scenarios for testing the SPI and HSI
algorithms. By leveraging the CARLA simulator, a wide range of hazardous and non-hazardous sce-
narios can be created and tested in a safe and controlled environment without the need for expensive
real-world testing.

2.9.2. OpenSCENARIO
OpenSCENARIO is an open, standardized file format describing dynamic driving scenarios for simula-
tion environments. It facilitates the specification of complex, synchronized manoeuvres among multiple
entities within a simulation, such as vehicles, pedestrians, and traffic infrastructure [73]. This thesis
utilizes OpenSCENARIO to capture and encode hazardous driving scenarios identified from runs con-
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ducted in the CARLA simulator.

OpenSCENARIO typically comprises two types of files: ‘.xodr‘ and ‘.xosc‘. The ‘.xodr‘ file describes the
road network used in the simulation, detailing the geometry, topology, and additional attributes of road
elements. The ‘.xosc‘ file specifies the dynamic content of the scenario, including vehicle behaviours,
pedestrian movements, and interactions with the traffic infrastructure.

These files are platform-independent and can be viewed on any compatible scenario player. For the
purposes of this thesis, the Esmini player [74] is used to view and validate the scenario reproductions.
It is important to note that OpenSCENARIO is an evolving standard that is continuously developed and
refined by the OpenSCENARIO community.

OpenSCENARIO files can be generated using multiple tools, including the Python scenario-generation
library and MATLAB, and by manually writing XML files according to the standard. To streamline the
process and enable the automatic generation of scenarios, this thesis primarily utilizes the Python
scenario-generation library.

While MATLAB [50] also supports creating OpenSCENARIO files, it is limited to version 1.1.0. In con-
trast, the Python scenario-generation library supports the latest version, 1.2.0. This capability to use
the most current version is a key reason for selecting the Python library over MATLAB.

2.9.3. Open source ADS Software
We used two open-source ADS software stacks integrated into CARLA to simulate a multi-channel AV:

1. LAV (Learning from All Vehicles): LAV introduces a novel neural network architecture that en-
hances ADS by leveraging data from all observed vehicles in the vicinity, not just the ego-vehicle.
This method uses a multi-agent learning framework where the neural network models the be-
haviours and trajectories of multiple vehicles simultaneously. The approach enables the system
to learn complex interactions and dependencies between different vehicles, enhancing predic-
tion accuracy and decision-making under varied traffic conditions. By integrating multi-vehicle
observational data, LAV’s neural network architecture benefits from a richer dataset, resulting in
more robust generalization capabilities across diverse driving scenarios. It is to be noted that the
multi-vehicle training in LAV was conducted offline using pre-recorded data. [24].

2. TFuse (TransFuser): TransFuser employs a hierarchical neural network that performs a multi-
modal fusion of high-dimensional sensor data to control AV in urban settings. This network
architecture innovatively combines features from different sensor modalities—such as images,
LiDAR, and radar—through fusion layers that enhance the model’s ability to interpret complex en-
vironmental data. The hierarchical design allows for efficient data processing, with lower layers
handling raw sensory inputs and higher layers focusing on decision-making based on the fused
information. This structure ensures that TransFuser can effectively deal with the challenges of
sensor integration, providing a seamless sensorimotor control that is crucial for navigating through
dynamic urban environments [25].

Both the ADS have been integrated into CARLA to simulate a multichannel AV.

2.9.4. Robot Operating System (ROS)
The Robot Operating System (ROS) is a flexible framework for writing robot software. It provides a
collection of tools, libraries, and conventions that aim to simplify the task of creating complex and
robust robot behaviour across a wide variety of robotic platforms [75].

ROS provides standardized communication methods between components (called nodes) using topics,
services, and actions. This thesis uses ROS as the underlying framework for integrating the various
components of the software ecosystem, including the open-source ADS software, the CARLA simulator,
and the Daruma C++ implementation.

One of the key features of ROS used in this thesis is the rosbag functionality, which allows for the
recording and playback of ROS message data. This is particularly useful as the simulations can be
recorded and played faster for faster analysis. ROSBag also has features that allow it to play recorded
scenarios slower, which enables better manual analysis.
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2.10. Related Work Conclusion
In conclusion, the related work and state-of-the-art analysis have revealed several key insights that
influencing the approach taken in this thesis:

1. Safety Performance Indicators (SPIs) have emerged as a promising approach for monitoring the
safety of AVs and identifying hazardous scenarios for testing and validation. By adopting SPIs as
a central component of our methodology, we aim to leverage their potential for comprehensive
and quantitative safety assessment.

2. Existing safety frameworks and approaches primarily focus on single-channel Automated Driving
System (ADS) architectures. It is also not clearly mentioned whether the safety aspects, such
as the perception and navigation systems, also monitor the internal working of the ADS. This
highlights the need for further research and exploration into the safety monitoring and scenario
generation challenges specific to multi-channel ADS architectures, which is the focus of this the-
sis.

3. The Daruma Design Pattern, with its cross-channel analysis and arbitration capabilities, provides
a unique opportunity to address the safety challenges associated with multi-channel ADS archi-
tectures.

4. Moreover, Daruma was developed considering the requirement in the ADS to derive Safety Per-
formance Indicators (SPIs). By correlating the channels’ world models and motion plans, Daruma
can identify low safety performance and spot functional insufficiencies, such as repeated disagree-
ments in object classifications between the main and backup channels. The SPIs and associated
driving scenarios can be uploaded to the cloud for fleet-wide analysis, enabling the creation of
Over-The-Air updates to improve the ADS performance [45].

5. The software ecosystem required for developing and testing the planned SPI and HSI algorithms
involves a combination of open-source ADS software, such as LAV and TFuse, the Robot Oper-
ating System (ROS), the CARLA simulator, and the OpenSCENARIO standard. By leveraging
these tools and frameworks, a realistic and flexible testbed for testing algorithms is aimed at while
also ensuring compatibility with existing AV development workflows.

6. Fleet management and safety monitoring is an important aspect of AV deployment that has not
been extensively addressed in the prior art. Most of the existing literature does not provide de-
tailed explanations of the underlying architectures and algorithms used, making it challenging to
evaluate the effectiveness and scalability of the proposed solutions. The thesis aims to propose
SPI and HSI frameworks that have the potential to be applied in a fleet management context,
enabling the continuous monitoring and improvement of AV safety across many vehicles.

In summary, this thesis aims to address the limitations of existing AV safety approaches by focusing
on multi-channel ADS architectures and leveraging the capabilities of the Daruma Design Pattern. By
integrating SPIs and HSI algorithms into a comprehensive software ecosystem, we seek to advance
the state-of-the-art AV safety monitoring and validation, ultimately contributing to developing safer and
more reliable AVs.
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System Architecture

3.1. Architecture for Continuous Improvement of ADS
We propose the architecture, as shown in Figure 3.1, for continuous improvement of ADS is designed
to enhance the performance, safety, and reliability of AVs through a closed-loop system involving fleet
data collection, cloud-based analysis, and over-the-air (OTA) updates.

At the core of this architecture are AVs, each equipped with sensors, safety monitors, and onboard
computing systems. These safety monitors continuously track and record various parameters related
to the individual vehicle’s performance, diagnostics, and environment perception in real-time as the
vehicle navigates through its operational domain.

Each AV periodically transmits key data points and events (such as sensor data, SPIs, and identified
hazardous scenarios) to a centralized, cloud-based system to enable fleet-wide learning and improve-
ment. This data is collected from an entire fleet of AVs operating in diverse environments and under
various conditions. The cloud-based system, managed by the ADS developer or a third-party provider,
securely receives, stores, and processes the vast amounts of data the fleet generates.

The aggregated fleet data can undergo extensive analysis using advanced data processing techniques,
machine learning algorithms, and statistical models. This analysis is performed either periodically or
on-demand, depending on the specific needs and objectives of the stakeholders involved. The insights
gained from this analysis serve multiple purposes and benefit various stakeholders in the ADS ecosys-
tem.

One key beneficiary of the processed fleet data is the road authorities responsible for maintaining and
upgrading transportation infrastructure. Based on the fleet data analysis, the ADS developer can gen-
erate detailed reports and recommendations, highlighting areas where infrastructure improvements are
needed to support the safe and efficient operation of AVs. By addressing these issues, road authori-
ties can create a more conducive environment for AV deployment, ultimately enhancing the safety and
reliability of these systems.

In addition to infrastructure improvements, the fleet data analysis can also trigger real-time support
for individual AVs in emergencies. If an AV encounters a critical event or an anomaly that requires
immediate attention, it can send an alert to the cloud-based system. This alert can be promptly relayed
to a fleet operator or a remote teleoperator who can assess the situation and provide guidance or take
control of the vehicle if necessary, ensuring that AVs can handle unexpected scenarios gracefully and
maintain safe operation.

Another critical aspect of the continuous improvement architecture is the ability to push software up-
dates and enhancements to the AVs over-the-air. As the ADS developer identifies areas for improve-
ment based on the fleet data analysis, they can develop software updates that address specific issues,
optimize performance, or add new functionalities to the AVs. By delivering these updates wirelessly to
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Figure 3.1: SPI Based Continuous Improvement Process For Automated Driving

the entire fleet, the ADS developer can ensure that all vehicles benefit from the latest advancements
and maintain high performance and safety.

The continuous improvement process enabled by this architecture extends beyond the ADS developer
and the road authorities. The insights derived from the fleet data analysis can also benefit academic
institutions and research organizations focused on advancing AV technologies. By collaborating with
ADS developers and accessing anonymized fleet data, researchers can validate their models, test
new algorithms, and explore innovative solutions to the challenges faced by AVs, fostering a cycle of
innovation and practical improvements.

In the context of this thesis, the architecture shown in Figure 3.1 for continuous improvement of ADS
serves as a foundation for the functional architecture of Safety Performance Indicators (SPI) and Haz-
ardous Scenario Identification (HSI) described in Section 3.2.

By leveraging the comprehensive data collection, cloud-based analysis, and OTA update capabilities
of the continuous improvement architecture, the SPI and HSI functional architecture can effectively
monitor, analyze, and enhance the safety and performance of the AV fleet. This seamless integration
between the two architectures ensures that the insights derived from the SPI and HSI processes are ef-
fectively utilized to drive the continuous improvement of the ADS, ultimately leading to the development
of safer, more reliable, and more capable AVs.

3.2. Functional Architecture of SPI and HSI
The functional architecture of SPI and HSI, as depicted in Figure 3.2, provides a detailed view of how
these critical components are integrated into a multi-channel ADS to enable continuous improvement,
enhanced safety, and proactive hazard mitigation. This thesis aims to implement and validate the
proposed functional architecture, demonstrating its effectiveness in real-world scenarios.

At the foundation of this architecture are the multiple vehicles (V1, V2, ..., Vn) within the AV fleet, each
equipped with a sophisticated multi-channel ADS. The multi-channel architecture is a key enabler for
the SPI and HSI functionality because it allows for redundancy, diversity, and cross-validation of the
ADS’s perception, decision-making, and control functions.

Within each vehicle, every ADS processes the raw sensor data from the vehicle’s onboard sensors,
such as cameras, LiDAR, radar, and ultrasonic sensors, to generate a comprehensive understanding
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Figure 3.2: Planned Functional Architecture for SPI and HSI

of the surrounding environment. This understanding is encapsulated in channel-specific information,
including the World Model, Ego Localization and Proposed Path, Detected Objects and their Predicted
Trajectories, and Sensor Data.

Multiple modules then process the channel-specific information from each ADS to calculate various
metrics, including the Collision Risk, Comfort Score, Similarity Metrics, and Sensor Data Processor.
These metrics provide insights into the ADS’s performance, safety, and potential hazards.

The calculated metrics are aggregated and synthesized to generate comprehensive risk scores and
SPI metrics for each vehicle. One key output from the SPI metrics and Risk scores (based on preset
thresholds) is the identification of hazardous scenarios encountered by the AV fleet. These hazardous
scenarios are stored in a dedicated database, along with relevant contextual information, and pattern-
matching techniques are applied to identify and consolidate similar or recurring hazardous scenarios.

The SPI metrics, risk scores, identified hazardous scenarios, and associated sensor information are
continuously transmitted to a cloud-based system for storage, analysis, and dissemination. This cen-
tralized repository allows for fleet-wide monitoring, trend analysis, and data-driven decision-making.

Stakeholders, such as vehicle manufacturers or fleet operators, can access and analyze the SPI and
HSI data ad hoc or at predefined intervals. This enables them to gain insights into the AV fleet’s
performance and safety, identify trends and patterns, and pinpoint areas for improvement.

One of the key processes in this functional architecture is the generation of OpenSCENARIO files based
on the identified hazardous scenarios. This process occurs offline, typically triggered by manufactur-
ers or other relevant stakeholders accessing the information from the cloud. The OpenSCENARIO
files encapsulate the hazardous scenarios in a standardized format, allowing for their reproduction,
simulation, and analysis in various virtual testing environments. The OpenSCENARIO generation pro-
cess is carried out within the vehicle manufacturer’s or fleet operator’s domain, leveraging the data and
insights the cloud-based system provides. The functional architecture ensures data security, confiden-
tiality, and compliance with relevant regulations and policies by containerising this process within the
stakeholder’s environment.

The generated OpenSCENARIO files serve as valuable assets for the continuous improvement of the
ADS. The vehicle manufacturer can use them to refine and validate the ADS algorithms, test the sys-
tem’s performance in challenging situations, and develop mitigation strategies for identified hazards.
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Moreover, the OpenSCENARIO files can be shared with simulation platforms, such as the CARLA
simulator, to perform virtual testing and validation of the ADS under various conditions.

In summary, as implemented in this thesis, the functional architecture of SPI and HSI provides a com-
prehensive framework for monitoring, analyzing, and improving the safety and performance of multi-
channel ADS. By leveraging the power of fleet data, cloud computing, and standardized scenario rep-
resentation (OpenSCENARIO), this architecture enables proactive safety management, data-driven
decision-making, and continuous improvement of the AV fleet.

The successful implementation and validation of this functional architecture in real-world scenarios
will contribute to developing safer, more reliable, and more trustworthy AVs, paving the way for their
widespread adoption in the future.



4
Safety Performance Indicators

This chapter explains the safety case defined in this thesis and the associated SPIs defined to validate
the arguments made to the safety case. The Daruma C++ implementation, based on the Daruma De-
sign Pattern (as discussed in Section 2.5.1), is used as the framework for implementing and validating
the SPIs in this thesis.

It is to be noted that the information available from each of the channels to the Daruma C++ implemen-
tation is as follows:

• Location, shape, and size of the Ego Vehicle, along with its velocity, orientation, and the planned
trajectory by the respective AD channel.

• Location, shape, and size of the Objects detected around the ego vehicle by the respective AD
Channel, along with their velocity, orientation, and predicted trajectory.

The algorithms have to be designed based on the information available only; hence, they can be con-
sidered a constraint on the system. More information about the setup can be found in Section 6.1.

4.1. Safety Case
As presented in Section 2.6.1, the safety case is a structured argument, supported by evidence, that
a system is acceptably safe for a given application in a given operating environment [57]. Since the
thesis aims to explore SPIs in the context of AV safety, a universal safety case that can be applied
to most manufacturers is defined as EGO Vehicle goes from Point A to Point B safely. Four main
arguments support this top-level claim, each focusing on a specific aspect of the ADS’s performance
and safety. Table 4.1 shows the arguments that are linked to the safety case.

Table 4.1: Overview of safety case arguments defined for the thesis

Safety Case Arguments

EGO vehicle goes
from Point A to
Point B safely

Channels can detect the location of the ego vehicle accurately

Channels can detect Objects around the ego vehicle accurately

Channels can correctly predict the motion of the objects detected

Channel generates a safe trajectory for the vehicle to follow

The first argument, ”Channels can detect the location of the ego vehicle accurately,” focuses on the
ADS’s ability to determine its own position and orientation within the environment. Accurate ego local-
ization is essential for safe navigation and decision-making.

24
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The second argument, ”Channels can detect Objects around the ego vehicle accurately,” addresses
the ADS’s capability to perceive and classify objects in its surroundings. Reliable object detection and
localization are crucial for identifying potential hazards and planning appropriate actions.

The third argument, ”Channels can correctly predict the motion of the objects detected,” emphasizes
the importance of predicting the future states and trajectories of detected objects. Accurate motion
prediction enables the ADS to anticipate potential conflicts and make proactive decisions.

Finally, the fourth argument, ”Channel generates a safe trajectory for the vehicle to follow,” focuses on
the ADS’s ability to plan and execute safe and comfortable trajectories. This argument encompasses
various aspects of trajectory generation, such as smooth acceleration and braking, consistency with
previous plans, and adherence to safety constraints.

These arguments collectively contribute to the overall safety case, providing a structured framework
for assessing the ADS’s performance and identifying potential areas for improvement.

4.2. Safety Performance Indicators in a multi-channel ADS
As presented in Section 2.6.1, SPIs are quantitative measures that provide evidence for the arguments
in the safety case [37]. Each SPI is designed to evaluate a specific aspect of the ADS’s performance,
with scores ranging from 0 to 1, indicating the degree to which the corresponding argument is supported.

Table 4.2 presents the SPIs associated with each argument in the safety case. These SPIs are carefully
defined to provide meaningful and measurable evidence for the arguments, enabling a comprehensive
assessment of the ADS’s safety performance.

Table 4.2: Safety Performance Indicators corresponding to each of the arguments of the safety case

Arguments Safety Performance Indicators (SPI)

Channels can detect the location of
the ego vehicle accurately

The location of the ego vehicle detected is consistent
across the channels

The orientation of the vehicle detected is consistent
across the channels

Channels can detect Objects around
the ego vehicle accurately

The number of objects detected is consistent across
channels

The location of the objects detected are consistent
across channels

The size and orientation of the objects detected are
similar across channels

Channels can correctly predict the
motion of the objects detected

The predicted trajectory of the objects identified are
similar across channels

The objects follow the predicted trajectories pro-
posed by the respective channels

Channel generates a safe trajectory
for the vehicle to follow

The planned path generated by the channels con-
tains smooth acceleration and breaking

The planned path generated at every instant is con-
sistent with the previously generated planned path
by the respective channels

The planned path is similar to the paths generated
across channels

For the argument that ”Channels can detect the location of the ego vehicle accurately,” two SPIs are
defined: consistency of ego location and consistency of ego orientation across channels. These SPIs
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evaluate the agreement between different ADS channels regarding the estimated position and orienta-
tion of the ego vehicle.

The argument ”Channels can detect Objects around the ego vehicle accurately” is supported by three
SPIs: consistency of object count, location, and size/orientation across channels. These SPIs assess
the ADS’s ability to perceive objects in its environment consistently.

The SPIs for the argument ”Channels can correctly predict the motion of the objects detected” focus
on the similarity of predicted object trajectories across channels and the conformance of actual object
motion to the predicted trajectories. These SPIs provide evidence for the ADS’s ability to anticipate the
future states of detected objects accurately.

Finally, the argument ”Channel generates a safe trajectory for the vehicle to follow” is supported by
three SPIs: smoothness of the planned path (acceleration and braking), consistency of the planned
path over time, and similarity of the planned path across channels. These SPIs evaluate the generated
trajectories’ safety, comfort, stability, and consistency.

By systematically evaluating the ADS’s performance using these SPIs, developers and safety asses-
sors can comprehensively understand the system’s strengths andweaknesses. The SPI scores provide
quantitative evidence for the arguments in the safety case, enabling data-driven decision-making and
guiding the continuous improvement of the ADS.

To facilitate the implementation and analysis of the SPIs, we formally defined the metrics associated
with each SPI, as shown in Table 4.3. This mapping allows for a clear understanding of the relationship
between the SPIs and their corresponding metrics, which will be discussed in detail in the following
sections.

Table 4.3: Correlation between Safety Performance Indicators and Metrics

Safety Performance Indicators Metrics

The location of the ego vehicle detected is
consistent across the channels

Ego Location Similarity Scores

The orientation of the vehicle detected is
consistent across the channels

Ego Orientation Similarity Scores

The number of objects detected is consistent
across channels

Object Count Similarity Scores

The location of the objects detected is
consistent across channels

Object Location Similarity Scores

The size and orientation of the objects detected
are similar across channels

Object Orientation Similarity Scores
Object Area Similarity Scores

The predicted trajectory of the objects identified
are similar across channels

Object Trajectory Similarity Scores
Ego Trajectory Similarity Scores

The objects follow the predicted trajectories
proposed by the respective channels

Objected Motion Prediction Validation Score

The planned path generated by the channels
contains smooth acceleration and breaking

History Comfort Scores
Planned Path Comfort Scores

The planned path generated at every instant is
consistent with the previously generated
planned path by the respective channels

Channel Specific Ego Planned Path Tracker
Scores
Cross Channel Ego Planned Path Tracker
Score

It is important to note that each SPI metric provides a scalar score ranging from 0 to 1, which
represents the safety performance of the system with respect to the corresponding argument
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in the safety case. A score of 0 indicates that the argument is not satisfied, suggesting a poten-
tial safety concern, while a score of 1 indicates that the argument is fully satisfied, providing
evidence that the system is operating safely in that particular aspect.

4.3. SPI Algorithms
To simplify the explanation of the metrics in the subsequent sections, the SPI metrics are categorized
into threemain categories: Similarity Metrics, Motion PredictionMetrics, and Comfort Metrics, as shown
in Table 4.4.

Table 4.4: Categorised SPI Metrics

Similarity Metrics Motion Prediction Metrics Comfort Metrics

Ego Location Similarity Scores Objected Motion Prediction
Validation Score

History Comfort Scores

Ego Orientation Similarity
Scores

Ego Trajectory On-track
Scores

Planned Path Comfort Scores

Object Count Similarity Scores Object Trajectory On-track
Scores

Object Location Similarity
Scores

Channel Specific Ego Planned
Path Tracker Scores

Object Orientation Similarity
Scores

Cross Channel Ego Planned
Path Tracker Score

Object Area Similarity Scores

In the following subsections, wewill discuss the algorithms and implementation details for each category
of SPI metrics. We will explore how these metrics are calculated, their relevance to the safety case
arguments, and their significance in evaluating the overall safety performance of the ADS. By providing
a comprehensive understanding of these metrics, we aim to demonstrate how they contribute to the
continuous improvement and validation of the ADS’s safety. It is to be noted that the algorithms were
designed with the constraints defined in Section 1.2 in mind.

4.3.1. Comfort Metrics
Comfort metrics such as acceleration and jerk are closely monitored, as excessive values can indicate
risky or aggressive driving behaviours that may compromise vehicle stability and safety. Smooth trajec-
tories minimize sudden movements, thereby reducing the potential for motion sickness in passengers
and enhancing the predictability of vehicle behaviour for other road users. Moreover, trajectories pri-
oritising comfort will likely align with safer driving practices, as they tend to avoid sharp manoeuvres
and maintain a steady velocity, enhancing the AV’s overall control and response time in dynamic traffic
conditions [76].

The following subsections explain the comfort metrics defined to validate the safety case.

History Comfort Metric

The History Comfort Metric is channel-specific and evaluates the comfort of the ego vehicle’s motion
based on its historical location data. The algorithm stores the location of the ego vehicle perceived
by each channel, along with the time interval. After collecting a specified number of data points, the
algorithm calculates the velocity, lateral and longitudinal acceleration, and jerk for each channel. These
values are then normalized between 0 and 1 using a sigmoid normalization function:

NV =
1

1 + e−s·w
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Where s is the raw value of the metric (acceleration or jerk), w is a predefined constant that determines
the steepness of the normalization curve, and NV is the normalized value. The sigmoid normalization
function maps raw score values into a 0 to 1 range, providing a smooth transition that reflects slight
variations in comfort levels. This bounded scaling ensures that extreme values are handled gracefully,
maintaining score consistency across different conditions and making it suitable for decision-making in
safety assessments of automated vehicles.

Since, at every time step, the location of the ego vehicle in each of the channels is stored, the acceler-
ation and jerk are calculated as

Vx =
dx

dt
(Longitudinal Velocity)

Vy =
dy

dt
(Lateral Velocity)

LA =
dVx

dt
(Lateral Acceleration)

LL =
dVy

dt
(Longitudinal Acceleration)

J̇ =
dLL

dt
(Jerk)

Where t is the time interval obtained from the channels, x and y represent the difference in x and y
coordinates between consecutive stored locations of the ego vehicle in their respective channels.

The overall comfort score is calculated by:

Comfort Score = 1− (NVLL +NVLA)/2 +NVJ

2

Planned Path Comfort Metric
The Planned Path Comfort Metric assesses the comfort of the ego vehicle’s planned path. The al-
gorithm takes the location of the ego vehicle and the planned path provided by the AD channel. It
then calculates the planned path’s velocity, acceleration, and jerk using the same methods as the His-
tory Comfort Metric. The raw values are normalized using the sigmoid normalization function, and the
overall comfort score is calculated using the same formula as the History Comfort Metric.

4.3.2. Similarity Metrics
Similarity metrics evaluate the consistency and agreement between the trajectory decisions and world
model outputs of different AV subsystems or channels. These metrics are particularly relevant in the
context of multi-channel ADS architectures, where multiple perception, planning, and control pipelines
operate in parallel.

Ego Location Similarity Scores
The ego location similarity (ELS) metric evaluates the proximity of ego vehicle locations across different
channels. It is calculated by comparing the translation components (i.e., positions) of the ego vehicles
in each channel and scoring their similarity. For each pair of channels, the similarity score is computed
as:

(ELS) =
1

1 +∆D

Where ∆D is the Euclidean distance between the two locations of the ego vehicle between the chan-
nels.

Additionally, a moving variance of the ELS scores was calculated using a window size of 5 to further
analyse the stability and variability of location similarity over time. This analysis helps identify hazardous
scenarios, which will be discussed in detail in subsequent chapters.
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To calculate the moving variance of the ELS scores, the following formula is used:

s2m =
1

n− 1

n∑
i=1

(ELSi − ELS)2

where:

• s2m is the moving variance of the ELS scores.
• ELSi represents the Ego Location Similarity score at the i-th position in the moving window.
• ELS is the mean of the ELS scores within the window.
• n is the number of scores in the window, which is 5 in this case.

Ego Orientation Similarity
The ego orientation similarity (EOS) metric quantifies the similarity in the orientation (rotation) of ego
vehicles across channels. This is calculated by extracting the heading of the vehicle as angle θ from
the rotation matrix of each ego vehicle’s position and using the normalized angle difference formula:

EOS = 1.0− diff

π

Where diff is the absolute difference between any two angles, adjusted to the range [0, π].

Object Location Similarity Scores
The object location similarity (OLS) quantifies how closely objects are located to each other across
different channels. Similar to the ego location similarity, this score uses the translation components
of object positions and calculates their proximity. Objects between channels are paired by proximity
within a specified threshold. If objects are paired, their similarity score is calculated as follows:

OLS =
1

1.0 + ∆D

Where ∆D is the Euclidean distance locations of the paired objects. Scores are averaged over all
pairs to yield the similarity for each channel. The similarity score is set to 1.0 if both channels have no
objects.

Object Count Similarity Scores
The object count similarity (OCS) metric measures how similar the numbers of detected objects are
across channels. It is computed by determining the absolute difference in object counts between chan-
nels and scoring them as follows:

OCS =
1

1.0 + ∆N

Where ∆N is the difference in the number of objects each channel identifies. The similarity score is
set to 1.0 if both channels have no objects.

Object Orientation Similarity
The Object Orientation Similarity (OOS) metric assesses how similarly objects are oriented relative to
one another across channels. For each pair of objects that have been paired by proximity, the similarity
in their orientation (rotation) is calculated using:

OOS = 1.0− diff

π

Where diff is the normalized angle difference between their orientations, calculated and adjusted to
the range [0, π]. If both channels have no objects, the similarity score is set to 1.0.
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Object Area Similarity
The object Area Similarity (OAS) compares the areas of paired objects across channels. Objects are
paired by proximity, and the area is computed using the Gauss area formulae, as explained in the
section. For each pair, the area similarity is computed as:

OAS =
small_area
big_area

where small_area and bigarea are the smaller and larger of the two areas, respectively. This ratio
provides a direct comparison of size irrespective of shape differences. The area of each object is
calculated using the Gauss area formula (shoelace formula) [77] applied to the object’s polygon. The
similarity score is set to 1.0 if both channels have no objects.

Gauss Area Formula for Polygons with Ordered Vertices
The Gauss Area Formula, also known as the Shoelace Formula, is a method used to calculate the area
of a simple polygon whose vertices are defined in a sequential order in the plane. This technique is
particularly useful because it provides a straightforward way to determine the area of a polygon when
the coordinates of its vertices are known. The formula is named the “Shoelace” because of how the
summations in the formula crisscross, much like the lacing of a shoe.

To compute the area of a polygon with n vertices labeled (x1, y1), (x2, y2), . . . , (xn, yn), the formula is:

A =
1

2

∣∣∣∣∣
n∑

i=1

(xiyi+1 − yixi+1)

∣∣∣∣∣
where (xn+1, yn+1) are taken to be (x1, y1), effectively closing the polygon by connecting the last vertex
back to the first. This method efficiently calculates the area by traversing the perimeter of the polygon
just once, summing the areas of the trapezoids defined by the line segments of the polygon edges and
the x-axis.

The elegance of the Gauss Area Formula lies in its efficiency and simplicity, making it a popular choice
for computer graphics and geometric calculations where vertices of polygons are routinely used [77].

4.3.3. Motion Prediction Metrics
Motion prediction metrics assess the accuracy and reliability of the ADS’s ability to predict the future
states of detected objects and the ego vehicle itself. These metrics are crucial for evaluating the sys-
tem’s situational awareness and decision-making capabilities.

Object Trajectory Similarity Scores
The object trajectory similarity scores reflect the alignment of object movements over time across chan-
nels. Similar to ego trajectory similarity, it involves comparing the trajectories of paired objects point-
by-point and computing similarity scores with decreasing weights to prioritize initial alignment. Objects
are paired by proximity with a set threshold. For each pair of objects, their trajectories are extended to
the maximum duration of the two, and the similarity for each trajectory point is computed as:

Sn =
1

1 +∆D
×Wn

Wn = 1× (k)n−1

Here, ∆D represents the Euclidean distance between corresponding waypoints in the trajectories of
the objects between the different channels. It is then multiplied by aWn, which is a weight. The weight
for each waypoint starts at 1 (k) and decreases progressively by a factor of 5% for each subsequent
waypoint. The decision to use a 5% factor was based on empirical observations and is configurable to
accommodate different thresholds as needed, further detailed in subsequent sections. This decreasing
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weight factor emphasizes the importance of closer alignment at the beginning of the trajectory, which
is often more critical for immediate decision-making in automated driving.

Finally, the Object Trajectory Similarity (OTS) score is obtained using:

OTS =

∑
Sn∑
Wn

and then averaged over the trajectory length. The similarity score is set to 1.0 if both channels have
no objects.

Ego Trajectory Similarity Scores
The ego trajectory similarity (ETS) metric assesses the alignment of trajectories of the ego vehicles
across channels over time. The similarity is quantitatively evaluated by a point-by-point comparison of
the translation components of the trajectories for each channel over a minimum overlapping duration.
The equations used for the calculation of Ego Trajectory Similarity scores are -

Sn =
1

1 +∆D
×Wn

Wn = 1× (k)n−1

Here, ∆D represents the Euclidean distance between corresponding waypoints in the trajectories be-
tween the different channels. It is then multiplied by a Wn, which is a weight. The weight for each
waypoint starts at 1 and decreases progressively by a factor of 5% for each subsequent waypoint.
This decreasing weight factor emphasizes the importance of closer alignment at the beginning of the
trajectory, which is often more critical for immediate decision-making in automated driving.

The weighted similarities for all overlapping waypoints are summed to generate a cumulative score
representing the overall trajectory alignment between channels. This final score reflects the integrated
assessment of trajectory similarity, prioritizing early points in the trajectory and gradually considering
less influence from later points.

The Ego Trajectory Similarity (ETS) is then obtained with the equation:

ETS =

∑
Sn∑
Wn

Object Motion Prediction Validation
The Object Motion Prediction Validation (OMPV) module validates the accuracy of trajectory predictions
for objects detected by each AD channel.

During each operational cycle, the AV’s channels provide real-time data about detected objects, includ-
ing their current positions and predicted trajectories. These trajectories forecast where each object is
expected to move in the near future based on its current motion patterns and dynamics. This informa-
tion is stored each time it is received.

In the subsequent cycle, when updated information is received from the respective channels regarding
the environment and objects within it, the Object Motion Prediction Validation process then involves
comparing these objects’ new, actual positions against the predicted positions stored from the previous
cycle. Specifically, the algorithm evaluates how many of the objects have moved according to their
previously predicted trajectories.

The validation score is calculated by assessing the proportion of objects whose actual locations match
their predicted locations. If the actual positions significantly deviate from the predictions or new objects
not previously detected appear in current cycle, it is recorded as a miss. OMPV is calculated using:

OMPV =
N1

N2
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Where N1 is the total number of objects that correctly followed the predicted part and N2 is the total
number of objects detected in the previous cycle.

Ego Planned Path Tracker
The Ego Planned Path Tracker is specifically designed to evaluate and ensure the consistency and
reliability of the ego vehicle’s trajectory across different channels, which is crucial for safe navigation
and efficient manoeuvring in various driving conditions. This module has two primary components:
Channel-Specific Path Similarity and Cross-Channel Path Similarity. The Path Similarity is calculated
using Fréchet as explained in the following section.

Discrete Fréchet Distance
The Discrete Fréchet Distance offers a measure to assess the similarity between two curves, which are
typically represented as sequences of points. Often illustrated by the analogy of a person walking their
dog on leashes of varying lengths, the Fréchet distance is the minimum length of a leash necessary for
both the dog and the owner to walk their respective paths from start to finish without backtracking, but
they are allowed to control their speed independently [78].

Figure 4.1: Illustration of the Fréchet problem’s intuition [79]

Figure 4.1 shows an illustration of the Fréchet Distance. A man and his dog on a trail with a red leash
between them. This explanation uses the Fréchet distance as the minimum leash length. Man and dog
can only go forward or halt, never backwards, and must both meet their end. In Figure 4.1 (a), the man
and dog are in the starting position. In Figure 4.1 (b), the dog has moved, increasing the leash length.

The paths are visualized as two sequences of points, and at each step, the distance between corre-
sponding points (the person and the dog at each step) is considered. The Fréchet distance is the
maximum of these point-to-point distances minimized over all possible points along the two paths. In
simpler terms, it captures the idea of a “best match” between two paths where the paths are similar if
they stay close to each other at every step along their lengths.

For a discrete calculation, this involves creating a matrix where each element (i, j) represents the dis-
tance between the i-th point on one curve and the j-th point on the other. The Discrete Fréchet Distance
is then computed by evaluating the least-cost path through this matrix, which connects the beginning
of both curves to their ends while minimizing the maximum distance travelled at any step. This pro-
cess translates the intuitive concept of the Fréchet distance into a practical algorithm for quantitatively
comparing the geometric similarity of curves [80].

These concepts are foundational in fields like geographic information systems (GIS), computer graph-
ics, and pattern recognition, where measuring similarities between spatial curves is crucial for various
applications, from map matching and trajectory analysis to animation and movement synthesis, and in
this thesis, Fréchet distance is used to compute the trajectory similarity scores.

Channel-Specific Path Similarity
Each time the AD channel provides data, it includes a planned trajectory for the ego vehicle. The system
checks this new trajectory against the previously received ones when new data is received to assess
consistency. The expectation is that there should be a significant overlap (around 90%) between the



4.4. Safety Scores 33

new trajectory and the previous ones, with the new trajectory extending further as it is based on more
recent data. This consistency check uses the Fréchet distance to measure how closely the trajectories
align over their overlapping segments.

The trajectory data for each channel is stored in a fixed-size buffer, maintaining a history of up to ten
(configurable) previous trajectories. The system calculates the Fréchet distance between the most
recent trajectory and each stored trajectory, applying a decreasing weight to older trajectories. This
weighted score quantitatively measures path consistency over time for each channel. The formula
used to compute the similarity score is:

Channel Specific Planned Path Similarity Scores =
1

1 + fd

where fd is the fréchet distance computed between the trajectories.

Cross-Channel Path Similarity
This component evaluates the alignment and synchronization of the most recent trajectories received
from different channels. It is essential to ensure that all sensor systems and processing paths within
the AV agree regarding the planned path, particularly as driving conditions change. The system adjusts
for any differences in the starting positions of the ego vehicle across channels by applying a translation
adjustment. It then calculates the Fréchet distance between the adjusted latest trajectories from each
channel to assess their similarity.

The Fréchet distances are averaged to compute a final score for cross-channel consistency using the
same normalization formula as in the channel-specific analysis:

Cross Channel Planned Path Similarity Scores =
1

1 + fd

where fd is the fréchet distance computed between the trajectories.

By continuouslymonitoring both intra-channel and inter-channel trajectory consistency, the Ego Planned
Path Tracker ensures that the vehicle’s path planning is robust, reliable, and harmonized across all op-
erational channels, enhancing the automated driving system’s overall safety and reliability.

4.4. Safety Scores
Safety scores were already used in the automotive industry before the development of the Safety Per-
formance Indicators (SPIs) discussed in this thesis. Although safety scores are not considered SPIs,
they are crucial in determining which AD channel should be the driving channel in a cross-channel
architecture. Furthermore, safety scores are vital for identifying hazardous scenarios.

Figure 4.2 illustrates the concept of Daruma cross-channel analysis [22] by comparing the high-level
states of three AD channels. In this example, a driving scenario (shown at the top of the figure) is pro-
cessed by three distinct AD channels, represented by the colours red, green, and blue. Each channel
independently computes its high-level states, including the perceived world model, ego vehicle trajec-
tory, and object motion predictions. By applying the Daruma design pattern, the ego vehicle trajectories
proposed by each AD channel are cross-analyzed against the world models of all other channels. This
cross-analysis aims to identify potential hazards or inconsistencies in the proposed actions of each
channel [21].

For a 3-channel AV, the cross-channel analysis results in a 3x3 matrix of possible driving scenarios,
where each cell represents the evaluation of an ego vehicle trajectory from one channel against the
world model of another channel. This matrix provides a comprehensive assessment of the safety and
compatibility of the proposed actions across all AD channels, enabling the system to identify the safest
and most appropriate course of action for the given driving scenario [21].
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Figure 4.2: Illustration of Daruma Cross Channel Analysis [21]

The Daruma C++ implementation included the cross-channel risk analysis algorithm where the algo-
rithm leverages the concepts of Post-Encroachment Time (PET) [81] and Time-to-Collision (TTC) [82]
to identify potential collisions between the ego vehicle and other objects in the environment. PET quan-
tifies the time difference between the moments when an ego vehicle and another object, such as a
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pedestrian or a vehicle, would occupy the same space, highlighting the potential for a collision if their
paths were to intersect. TTC, on the other hand, calculates the time remaining until a potential collision
could occur between the ego vehicle and another object, assuming both continue on their current paths
and speeds.

The Daruma cross-channel risk analysis algorithm generates a risk matrix that quantifies the safety
of each channel’s proposed actions by evaluating the ego vehicle’s trajectory from each AD channel
against the world models of all other channels. This risk matrix serves as a key input to the safety fusion
module proposed in this thesis, which combines the risk scores with other safety metrics to determine
the most appropriate AD channel to control the vehicle at any given time.

4.5. Thresholds For Defined SPIs
Defining appropriate thresholds for each SPI is essential when using SPIs to assess an AV’s safety.
These thresholds act as decision boundaries, determining whether the ADS operates within acceptable
safety limits or if intervention/analysis is later required to mitigate potential risks.

Setting SPI thresholds is a delicate balance between detecting true safety hazards and minimizing
false positives. If the thresholds are set too loosely, the system may generate excessive false positives,
incorrectly identifying safe situations as hazardous. This can lead to unnecessary interventions and
extra effort needed by the manufacturer when later analysing the performance of the AV. On the other
hand, if the thresholds are set too strictly, the system may fail to detect some true safety hazards.

Determining appropriate SPI thresholds involves carefully considering various factors, such as the spe-
cific ADS architecture, the operating environment, and the acceptable level of risk. It often requires
a combination of theoretical analysis, simulation studies, and empirical observations to strike the right
balance between detecting true safety hazards and minimizing false positives.

In the context of this thesis, the SPI thresholds have been specifically tuned for the multi-channel ADS
architecture and the test bench setup described in Section 6.1. These thresholds were derived through
an iterative process of manual observation and adjustment based on the performance of the AV in the
simulated environment.

It is important to note that the thresholds discussed in this section are tailored to the setup used in
our test bench. If a different ADS architecture or operating environment is used, these thresholds may
need to be re-tuned accordingly to ensure optimal performance and safety.

Table 4.5 presents the permissible thresholds for each SPI used in our setup. All the SPIs are designed
to produce a normalized scalar score between 0 and 1, where a higher score generally indicates better
performance or safety (except for those SPIs that use moving variance in their algorithm). The thresh-
olds define the minimum acceptable scores for each SPI, below which the ADS is considered to be
operating in an unsafe manner.
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Table 4.5: Reference SPI Thresholds

SPI Metric Threshold Threshold Type

Ego Location Similarity Scores (ELSS) 0.6 Lower bound (detection if below)

Moving Variance of ELSS 0.05 Upper bound (detection if above)

Planned Path Comfort Metric 0.8 Lower bound (detection if below)

Ego Trajectory Similarity Scores 0.6 Lower bound (detection if below)

Ego Orientation Similarity 0.8 Lower bound (detection if below)

Object Location Similarity Scores 0.5 Lower bound (detection if below)

Object Trajectory Similarity Scores 0.6 Lower bound (detection if below)

Object Count Similarity Scores NA NA

Object Orientation Similarity 0.6 Lower bound (detection if below)

Object Area Similarity 0.6 Lower bound (detection if below)

Object Motion Prediction Validation 0.5 Lower bound (detection if below)

Channel Planned Path Similarity 0.7 Lower bound (detection if below)

Cross-Channel Planned Path Similarity 0.5 Lower bound (detection if below)

The rationale for setting the above thresholds is as follows-

Safety Scores (SS): The primary goal of Safety Scores is to facilitate the arbitration process, i.e., to
determine which channel should be the driving channel. As such, a definitive threshold is not set for SS,
as the system will always choose the channel with the highest safety score. However, thresholds are
defined for hazardous scenario identification, which will be explained in Chapter 5. The safety scores
are not part of Table 4.5 as SS are part of the arbitration decision and not specifically an SPI tied to a
safety case.

Ego Location Similarity Scores (ELSS): The threshold for ELSS is set to 0.6to ensure that the
ego vehicle’s location is consistent across channels. A lower score indicates a significant discrepancy
in the perceived location, which could lead to low confidence in decision-making and potential safety
hazards. Consistently low ELSS scores across multiple trips may suggest a need for the manufacturer
to investigate and improve the localization algorithms or sensor calibration.

Moving Variance of ELSS: Themoving variance of ELSS is set to be less than 0.05 to ensure that the
ego vehicle’s location remains stable over time. A higher moving variance indicates that the perceived
location fluctuates significantly, which could be a sign of sensor inconsistencies or environmental fac-
tors affecting localization accuracy. This is further explained in Chapter 5. If the moving variance of
ELSS consistently exceeds the threshold, the manufacturer may need to assess the robustness of the
localization system and consider improvements to handle challenging environmental conditions.

Planned Path Comfort Scores (PPCS): The threshold for the Planned Path Comfort Metric is set
to be greater than 0.8 to ensure that the planned trajectory is comfortable for passengers and does
not involve sudden or aggressive manoeuvres. A lower score suggests that the planned path may
compromise passenger comfort and potentially lead to unsafe situations. Consistently low scores may
indicate a need for the manufacturer to fine-tune the motion planning algorithms to prioritize passenger
comfort without compromising safety.

Ego Trajectory Similarity Scores (ETSS): The threshold for ETSS is set to 0.6 to ensure that the ego
vehicle’s planned trajectory is consistent across channels. A lower score indicates that the channels
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have different plans for the ego vehicle’s future path, which could lead to conflicting decisions and
potential safety risks.

Ego Orientation Similarity Scores (EOSS): A threshold of 0.8 is set because if the channels show
conflicting headings beyond a difference of 20%, it could mean that the vehicles are facing completely
different directions, and the planned trajectory may be unsafe for the ego vehicle. Even a momentary
dip in this score is considered hazardous for the system.

Object Location Similarity Scores (OLSS): The score for OLSS is leniently set to 0.5 to account
for minor discrepancies in object localization across channels. The rationale for leniency is that the
number of objects could be substantially high, and a small discrepancy between them could cascade
and cause a huge fall in the final score. A significantly lower score indicates that the channels perceive
the location of objects differently, which could affect the accuracy of the world model and the safety of
decision-making.

Object Trajectory Similarity Scores (OTSS): The threshold for OTSS is set to 0.6 to ensure that
the predicted trajectories of objects are consistent across channels. A lower score suggests that the
channels have different expectations for the future motion of objects, which could lead to incorrect
predictions and potential collisions due to incorrectly planned trajectories.

Object Count Similarity Scores (OCSS): No threshold is set for OCSS, as this metric indicates how
differently the channels perceive the world. A score of 1 indicates that both channels detect the same
number of objects, while a score closer to 0 indicates that the channels see the world differently. The
absence or presence of objects alone does not necessarily indicate a safety-critical situation.

Object Orientation Similarity Scores (OOSS): The threshold for OOSS is set to 0.6 to ensure that
the perceived orientation of objects is consistent across channels. The leniency of this score is also for
the same reason as that of OLSS, as there may be a high number of objects, and a small difference
between them could cascade onto the final score. Hence, the acceptable limit is given a lot of leniency.

Object Area Similarity Scores (OASS): The threshold for OASS is set to 0.6 to ensure that the
perceived size of objects is consistent across channels. A lower score suggests that the channels have
a different understanding of object dimensions, which could impact the accuracy of the world model and
the safety of decision-making. Consistently low OASS scores may indicate a need for the manufacturer
to improve the object size estimation algorithms and ensure a more consistent understanding of the
surrounding environment.

Object Motion Prediction Validation Score (OMPVC): The threshold for OMPVC is set to 0.5 to
ensure that the predicted motion of objects aligns with their actual motion. A lower score indicates that
the predicted trajectories deviate significantly from the observed motion, which could lead to incorrect
expectations. If this score is consistently low, it indicates that the ADS’s motion prediction algorithm
needs to be revisited or analyzed.

Channel Planned Path Similarity Scores (ChPPS): The threshold for ChPPS is set to 0.7 to en-
sure that the planned path within each channel is consistent over time. A lower score suggests that
the channels’ planned path varies significantly between consecutive time steps, which could indicate
instability or inconsistency in the planning process.

Cross-Channel Planned Path Similarity Scores (CrPPS): The threshold for CrPPS is set to 0.5 to
ensure that the planned paths across channels are consistent with each other. A lower score indicates
that the channels have significantly different plans for the ego vehicle’s trajectory, which could indicate
a safety critical scenario or one or more channels are faulty.

The thresholds for the SPIs are set in the context of safety performance indicators to balance allowing
minor discrepancies and ensuring the overall safety of the system. By setting these thresholds, we
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aim to identify situations where the inconsistencies or deviations in the SPIs exceed acceptable levels,
potentially indicating safety-critical scenarios that require attention or intervention.

4.6. Summary and Overview
Table 4.6 summarizes the SPI metrics and their targeted channels (cross-channel or single-channel)

Table 4.6: Summary of SPI Metrics and Targeted Channels

SPI Metric Targeted Channel(s)

History Comfort Metric Single-channel

Planned Path Comfort Metric Single-channel

Channel Planned Path Similarity Single-channel

Ego Location Similarity Scores Cross-channel

Ego Trajectory Similarity Scores Cross-channel

Ego Orientation Similarity Cross-channel

Object Location Similarity Scores Cross-channel

Object Trajectory Similarity Scores Cross-channel

Object Count Similarity Scores Cross-channel

Object Orientation Similarity Cross-channel

Object Area Similarity Cross-channel

Object Motion Prediction Validation Cross-channel

Cross-Channel Planned Path Similarity Cross-channel

The implemented Safety Performance Indicators provide a comprehensive framework for assessing
the safety and performance of Automated Driving Systems. By leveraging cross-channel analysis and
incorporating SPI thresholds, the SPI framework enables the continuous monitoring and improvement
of ADS safety, paving the way for developing more robust and reliable automated vehicles.

Long-term monitoring of SPIs can provide valuable insights for manufacturers to identify areas for im-
provement in their ADS. Scores consistently over the SPI thresholds may indicate systemic issues
that require attention, such as improving localization algorithms, refining object detection and track-
ing methods, or enhancing the consistency and coordination of path planning across channels. By
addressing these issues, manufacturers can continuously improve their ADS’s safety, reliability, and
overall performance.

In conclusion, this chapter has presented a detailed description of the Safety Performance Indicators
defined in this thesis, their relevance to the defined safety case, and the algorithms and methods
employed to calculate them. The SPI framework encompasses a wide range of metrics, categorized
as comfort metrics, similarity metrics, and motion prediction metrics, which collectively provide a holistic
assessment of the ADS’s performance and safety:

• The comfort metrics, such as acceleration and jerk, evaluate the smoothness and stability of the
AV’s motion

• The similarity metrics assess the consistency and agreement between the decisions and outputs
of different AV subsystems or channels

• The motion prediction metrics, including object motion prediction validation and ego planned path
tracking, help to evaluate the ADS’s situational awareness and decision-making capabilities



5
Hazardous Scenario Identification

Hazardous scenario identification is a critical aspect of ensuring the safety and reliability of ADS. By
automatically detecting and classifying potentially dangerous situations, ADS manufacturers can eas-
ily and quickly run analyses that enable them to take appropriate actions, including releasing software
updates for the ADS. This chapter focuses on the hazardous scenarios that the proposed Safety Per-
formance Indicator (SPI) framework can identify, along with an explanation of why each scenario is
considered hazardous and which SPIs contribute to their identification.

5.1. Hazardous Scenarios
The SPI framework presented in this thesis is designed to detect and classify the following hazardous
scenarios:

• Inconsistent Ego Localization
• Ego Tailgating
• Ego Tailgated

Each of these scenarios poses unique challenges and risks to the safe operation of an ADS, and their
identification is crucial for ensuring the system’s ability to navigate complex and dynamic environments.

5.1.1. Inconsistent Ego Localization
Inconsistent Ego Localization refers to a scenario where the ego vehicle’s perceived location varies
significantly across different sensor channels. In this situation, the ADS is unable to determine its
precise location within the environment, leading to potential conflicts and uncertainties in decision-
making.

This scenario becomes particularly problematic when the sensors of different channels do not agree on
the ego vehicle’s location or exhibit inconsistent errors between them. In such cases, the ego vehicle’s
position in each channel may appear to jump or drift, making it difficult for the ADS to establish a
reliable estimate of its true location. Furthermore, since the ground truth of the ego vehicle’s position
is unknown, the AV faces the challenge of determining which channel to trust and follow. Inconsistent
Ego Localization can arise due to various factors, such as sensor malfunctions, calibration errors, or
environmental conditions that affect sensor performance (e.g. poor weather, reflective surfaces, or
occlusions).

Inconsistent Ego Localization is considered hazardous because accurate localization is essential for
an ADS to plan and execute safe manoeuvres. When the ego vehicle’s location is inconsistent across
channels, the system may struggle to make informed decisions about its trajectory, speed, and interac-
tions with other road users. This can result in erratic behaviour, sudden changes in direction or speed,
and an increased risk of collisions. For example, the ADS may incorrectly estimate its distance from
other vehicles or obstacles, leading to inappropriate or delayed reactions. It may also struggle to main-
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tain a stable and predictable trajectory, as the inconsistencies between sensors of different channels
can cause the system to readjust its path planning and control outputs constantly.

5.1.2. Ego vehicle tailgating another vehicle (Ego Tailgating)
Ego Tailgating describes a scenario in which the ego vehicle is following another vehicle at an unsafe
short distance or when one of the ADS has not detected the vehicle in front and is proposing a trajectory
that can potentially cause a collision. This situation is considered hazardous because it significantly
reduces the ego vehicle’s ability to react to sudden changes in the lead vehicle’s behaviour, increasing
the risk of rear-end collisions. Figure 5.1 shows an example (taken from a route on the CARLA simu-
lator) where the ego vehicle is tailgating another vehicle. The vehicle marked by the blue arrow is the
ego vehicle, and the vehicle marked by the red arrow is that vehicle which the ego vehicle is tailgating.

A tailgating scenario is considered hazardous when at least one of the ADS proposes a planned path
that could potentially lead to a collision with the vehicle in front. In Figure 5.1, the LAV channel’s
planned path, represented by the red line extending from the ego vehicle, overlaps with the vehicle
directly ahead. The LAV channel’s detections are enclosed in red bounding boxes, while the TFuse
channel’s detections are shown in green bounding boxes. It is important to note that the mere presence
of a vehicle in close proximity to the ego vehicle does not necessarily constitute a hazardous tailgating
scenario. The scenario becomes hazardous when the planned path generated by one or more ADS
channels indicates a risk of collision with the leading vehicle. Section 6.1.2 provides further information
on the fused world model, and the details on the CARLA routes.

Figure 5.1: Example scenario where ego vehicle is tailgating another vehicle

When the ego vehicle is tailgating, it has less time and space to respond to events such as the lead
vehicle’s sudden braking, deceleration, or lane changes. This can result in the ego vehicle having to
perform abrupt manoeuvres, which may compromise its stability and controllability and the safety of its
occupants and surrounding road users.

5.1.3. Ego vehicle being tailgated by another vehicle (Ego Tailgated)
Ego Tailgated refers to a scenario where another vehicle follows the ego vehicle at an unsafe distance.
While the ego vehicle may not have direct control over the following vehicle’s behaviour, this situation
still poses significant risks and challenges for the ADS. It’s important to note that the ego vehicle can
mitigate this risk by accelerating or changing lanes. Similarly, risk can be introduced by decelerating
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or moving into a lane occupied by another object. Hence, this scenario is crucial for analyzing the
ADS’s decision-making capabilities. Figure 5.2 shows an example (taken from a route on the CARLA
simulator) where the ego vehicle is being tailgated by a truck. The vehicle marked by the blue arrow is
the ego vehicle and the vehicle marked by the red arrow is the vehicle that the ego is being tailgated
by.

An ego tailgated scenario is considered hazardous when at least one of the ADS predicts a proposed
trajectory for the object behind the ego vehicle, where the trajectory could potentially lead to a collision
with the ego vehicle. In Figure 5.2, the LAV channel predicts that the vehicle behind the ego vehicle
(whose trajectory is represented by the red line extending from the object marked by the red arrow)
will overlap with the ego vehicle based on its predicted trajectory. The LAV channel’s detections are
enclosed in red bounding boxes, while the TFuse channel’s detections are shown in green bounding
boxes. It is important to note that the mere presence of a vehicle in close proximity to the ego vehicle
does not necessarily constitute a hazardous ego tailgated scenario. The scenario becomes hazardous
when the proposed trajectory for objects generated by one or more ADS channels indicates a risk of
collision with the ego vehicle. Section 6.1.2 provides further information on the fused world model. It
also includes details on the CARLA routes.

Figure 5.2: Example scenario where ego vehicle is tailgated by another vehicle

When the ego vehicle is being tailgated, it has limited room for manoeuvring and may face increased
pressure to maintain or increase its speed to avoid a potential rear-end collision. This can lead to the
ego vehicle making suboptimal decisions, such as accelerating unnecessarily or failing to yield to other
road users when required. Furthermore, the presence of a tailgating vehicle can limit the ego vehicle’s
ability to perform safe and smooth decelerations, as abrupt braking may result in a collision with the
following vehicle. This can be particularly problematic in situations that require the ego vehicle to slow
down quickly, such as when approaching a traffic light, a stop sign, or a slower-moving vehicle.

5.2. SPIs Contributing to HSI
SPIs are crucial in identifying the hazardous scenarios described in the previous section. By monitoring
and analyzing various SPIs, the ADS can detect potentially dangerous situations and take appropriate
actions to mitigate risks. This section discusses the key SPIs that contribute to identifying each haz-
ardous scenario listed in Section 5.1 and provides an intuitive explanation of how they work and why
they make sense.
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To understand why the SPIs contribute to the identification of hazardous scenarios, it is worthwhile to
understand the following characteristics of the ADS (LAV and TFuse) described in Section 2.9.3 and
Section 6.1.

• LAV can detect objects in all directions of the ego vehicle (front, back, left and right), while TFuse
cannot detect objects that appear behind the vehicle. Due to this, whenever an object appears
behind the vehicle, the Object Count Similarity Scores between LAV and TFuse dip.

• By default, the planned path proposed by LAV is longer (or covers a larger distance) than the
path proposed by the TFuse channel. This is also an important factor in deciding the thresholds
of trajectory similarity scores, as explained in Section 4.5.

5.2.1. Inconsistent Ego Localization
The primary SPI that contributes to identifying Inconsistent Ego Localization is the Ego Location Similar-
ity Score (ELSS). ELSS measures the consistency of the ego vehicle’s location across different sensor
channels. When the ELSS fluctuates, it indicates that the ego vehicle’s perceived location varies sig-
nificantly between channels, suggesting an inconsistency in localization.

Hence, the SPI for detecting Inconsistent Ego Localization is the Moving Variance of ELSS. The Moving
Variance of ELSS captures the stability and variability of location similarity over time. A high Moving
Variance of ELSS indicates that the ego vehicle’s perceived location fluctuates significantly across
channels over a short period, which is a strong indicator of localization inconsistency. In the current
setup, including the ADS configured, if the moving variance crosses the threshold of 0.05 , it indicates
inconsistent Ego Localization.

Intuitively, monitoring ELSS and its Moving Variance makes sense because they directly measure the
agreement between different sensor channels regarding the ego vehicle’s location. If the channels
provide consistent location information, the ELSS will be high, and the Moving Variance will be low.
However, when there are discrepancies in the perceived location, the ELSS will decrease, and the
Moving Variance will increase, signalling a potentially Inconsistent Ego Localization scenario.

5.2.2. Ego Tailgating
The SPIs that contribute to the identification of Ego Tailgating are the Safety Scores (SS) and Planned
Path Comfort Scores (PPCS). When the difference between Object Count Similarity Scores (OCSS)
and Object Location Similarity Scores (OLSS) is significant (e.g., greater than 0.5), and the SS is high
(e.g., greater than or equal to 0.8) while the PPCS is low (e.g., less than 0.9 and greater than or equal
to 0.7), it indicates that the ego vehicle is following another vehicle too closely, suggesting an Ego
Tailgating scenario.

Intuitively, a high SS suggests that there is no potential collision or a collision will occur at the end of
the planned trajectory, combined with a low PPCS further supports the presence of the Ego Tailgating
scenario, as it suggests that the ego vehicle is maintaining an unsafe distance from the lead vehicle
(and has to decelerate, causing a low PPCS), compromising both safety and comfort.

Intuitively, a SS indicates that there is no imminent risk of collision or that any potential collision is
likely to occur only at the end of the planned trajectory. Furthermore, a low PPCS complements this
scenario by suggesting that the ego vehicle actively manages its distance from the object ahead. This
management involves proposed adjustments in acceleration and deceleration to maintain a safe follow-
ing distance, as reflected by the low PPCS.

5.2.3. Ego Tailgated
The Object Count Similarity Scores (OCSS), Object Location Similarity Scores (OLSS), Safety Scores
(SS), and Planned Path Comfort Scores (PPCS) contribute to the identification of the Ego Tailgating
scenario. When the difference between OCSS and OSS is significant (e.g., greater than 0.5), and the
SS is low (e.g., less than 0.8) while the PPCS is high (e.g., greater than or equal to 0.8), it indicates that
the ego vehicle is being followed by another vehicle too closely, suggesting the ego vehicle is being
tailgated.

Intuitively, a large difference between OCSS and OLSS implies that the number and location of objects
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detected by different channels are inconsistent, which may occur since in the setup we used, which will
be described in Section 6.1, LAV cannot detect objects behind the vehicle, and hence will be reflected
with a low OCSS. A low SS indicates that the future state of another object (from the trajectory) will
collide with the ego vehicle. The high PPCS indicates that the vehicle continues to go at its current
velocity and does not indicate any acceleration or breaking in its trajectory.

Figure 5.3 summarizes the key SPIs that contribute to identifying each hazardous scenario. By con-
tinuously monitoring and analyzing these SPIs, the framework enables the ADS to identify hazardous
scenarios that the AV might have overcome in its journey.

Figure 5.3: Flowchart of SPIs that contribute to the identification of the respective hazardous scenarios

5.3. OpenScenario export of hazardous scenarios
Figure 5.4 illustrates the process flow for generating .xodr and .xosc files in accordance with the Open-
Scenario format. This process facilitates the efficient export and analysis of hazardous scenarios iden-
tified by the Daruma C++ implementation.

As Daruma is intended to operate on an embedded processor, the generation of OpenScenario files is
performed during post-processing to optimize computational resources. Creating these files for each
detected scenario can take up to 12 seconds, which may introduce significant latency if executed in
real time.

To facilitate the offline OpenScenario generation, the Daruma C++ implementation is designed to out-
put a lightweight text file containing the identified scenario and encoded information about the world
observed by the ADS. This approach minimizes the computational overhead during runtime while still
capturing the essential data required for scenario analysis.
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Figure 5.4: Flowchart depicting the generation of OpenScenario files from Daruma

The generated text file can be periodically transmitted to a server for centralized storage and processing.
Whenmanual analysis is required, a dedicated Python tool we developed (as explained in Section 2.9.2)
is employed to decode the text file produced by Daruma. This tool extracts the encoded data and
generates the corresponding OpenScenario files (.xodr and .xosc) based on the identified hazardous
scenarios. By decoupling the scenario identification process from the file generation, this architecture
ensures that the embedded processor running Daruma can operate efficiently without being burdened
by the computationally intensive task of creating OpenScenario files in real time.

The generated OpenScenario files can be easily viewed and analyzed by stakeholders using any com-
patible OpenScenario reader. This enables a streamlined workflow for examining hazardous scenarios,
facilitating the continuous improvement of the ADS and enhancing overall system safety.

In summary, the OpenScenario export functionality we developed on top of the existing Daruma testbed
is designed to optimize performance, minimize latency, and provide a convenient means for stakehold-
ers to access and analyze hazardous scenarios identified by the system. By leveraging a lightweight
text file format and a dedicated Python tool for file generation, our architecture ensures the efficient
transfer and processing of critical safety data while maintaining the real-time performance of the em-
bedded Daruma implementation.
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Experimental Evaluation

6.1. The Experimental Setup
6.1.1. Evaluation testbed
Figure 6.1 illustrates the architecture of the Daruma multi-channel ADS experimental setup [35]. The
setup utilizes the CARLA simulator and the CARLA Leaderboard framework for scenario-based test-
ing and evaluation. The system consists of two main AD channels: the LAV channel and the TFuse
channel.

In this setup, the CARLA AD simulator generates the ego vehicle’s sensor data, actuators, vehicle
dynamics, and other road users’ information, which is then fed into the CARLA Python RPC API. Acting
as a scenario manager, the CARLA leaderboard framework communicates with the CARLA Python
RPC API to control the simulation and manage the testing scenarios.

The CARLA simulator sensor data is sent to the LAV and TFuse containers via a lock-step synchroniza-
tion and secondary vehicle channel control command using a barrier. The LAV and TFuse channels
process the sensor data independently, generating their respective control commands. These com-
mands are then sent to the LAV-Daruma and Transfuser-Daruma bridges, respectively.

Figure 6.1: Simplified architecture of the Daruma setup

The C++ Daruma with a ROS 2 wrapper performs cross-channel analysis and arbitration to determine
the safest control command. The selected command is then returned to the CARLA simulator via the
respective ROS2 topic.

The Daruma safety checker alsomonitors the system’s performance and safety using the specific ROS2
topics. This is where the algorithms of SPIs are designed (as described in Chapter 4) and implemented.
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The entire setup is executed natively on the host machine, allowing for efficient testing and evaluation
of the ADS’s performance in various scenarios provided by the CARLA leaderboard framework.

The CARLA Leaderboard framework was utilized to evaluate the effectiveness of the developed SPIs
and HSI algorithms. This framework provides a standardized set of routes and scenarios for testing
ADS. The CARLA Leaderboard offers a variety of towns and routes that cover diverse driving conditions,
including urban areas, highways, and residential districts, as well as different weather and lighting
conditions.

Six representative routes from the CARLA Leaderboard were selected for the experimental setup, each
in a different simulated town, as shown in Table 6.1. The total duration of all the individual routes adds
up to 8 hours, and the total distance travelled by the ego vehicle is approximately 8.24 Km. The routes
are explained in subsequent subsections.

These routes were chosen to comprehensively assess the SPI and HSI algorithms’ performance across
various driving scenarios. The driving scenarios of each selected route were recorded in the format of
ROSbags while a two-channel AV navigated through the CARLA simulator to facilitate the evaluation
process. Rosbags are a convenient tool for storing and replaying sensor data, allowing for offline
analysis of the vehicle’s performance in a reproducible manner.

Table 6.1: Summary of routes selected for the experimental evaluation

Town Weather Time of Day Total Duration (hr) Distance of the Route (meters)

1 Hard rain Noon 0.60 732

2 Hard rain Sunset 1.23 973

3 Mid rain Twilight 1.91 1748

4 Soft rain Night 1.51 1862

5 Mid rain Morning 1.11 1071

6 Wet Dawn 1.59 1859

6.1.2. Evaluation Methodology
The SPI and HSI algorithms were evaluated through a combination of manual analysis and automated
processing of the recorded ROSbags. For each route, the following steps were performed:

1. Manual Analysis: The recorded videos of each route were visually inspected to identify poten-
tially hazardous scenarios and assess the overall safety performance of the AV. This manual
analysis served as a ground truth for evaluating the effectiveness of the SPI and HSI algorithms.
During the manual analysis, all the hazardous scenarios encountered and the instances where
the safety of the vehicle was compromised were noted.

Figure 6.2 shows the screens used for the manual evaluation. The screen on the left shows the
route generated by the CARLA leaderboard. The vehicle pointed by the blue arrow is the Ego
Vehicle. The screen on the right displays the combined/fused world model from both the ADS-
LAV and TFuse systems. It shows objects detected by each system’s channels. The Ego Vehicle
is indicated by the blue arrow. Objects detected by the LAV AD channel are enclosed in red
bounding boxes, while those detected by the TFuse AD channel appear within green bounding
boxes. Additionally, the planned path proposed by the TFuse channel is depicted as a green line
extending forward from the Ego Vehicle, and the LAV channel’s proposed path is marked by a
red line.

2. Automated Hazardous Scenarios Logging Process: The corresponding Rosbag for each of
the routes mentioned in Table 6.1 were played, and the results from Daruma were obtained in the
text file format. Note that the Daruma cross-channel analysis is executed every 0.1s with the world
information, which is the frequency of the ADS. Hence, basic filtering algorithms are executed
based on the results from Daruma to remove repeated detections. The filtering algorithms are
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Figure 6.2: Screenshot of the manual HSI identification process on the Daruma multi-channel AD test bed

time-based, where if the same scenario is detected for a prolonged period, it is counted as one
entity. This is applicable to hazardous scenario identification as well as the SPI threshold violation

3. Comparison and Evaluation: The results obtained from the automated processing were com-
pared against themanual analysis to determine the accuracy and effectiveness of the SPI and HSI
algorithms. For each route, the number of correctly identified hazardous scenarios missed detec-
tions (false negatives), and incorrect detections (false positives) were assessed. This evaluation
helped understand the algorithms’ strengths and limitations in identifying hazardous scenarios
and assessing the vehicle’s safety performance. Furthermore, when an SPI falls below its thresh-
old, the ground truth and the ADS information are also analysed to check if any insights can be
derived.

The evaluation results for each route were analyzed individually to gain insights into the algorithms’
performance under different driving conditions and scenarios. This route-wise analysis identified the
strengths and limitations of the SPI and HSI algorithms and their applicability to real-world ADS.

6.2. Evaluation results and discussion
This section presents and discusses the evaluation results for each of the six selected routes. For each
route, an overview of the driving scenario, the manual analysis findings, and the performance of the SPI
and HSI algorithms in identifying hazardous scenarios and assessing the vehicle’s safety performance
are provided.

In the experimental evaluation of the HSI module, we use the metrics of Precision and Recall to quanti-
tatively assess its performance. These metrics are particularly valuable in scenarios where it is critical
to distinguish between accurately detected hazards and false identifications [83].

• Precision quantifies the accuracy of the positive identifications made by the HSI module. It mea-
sures the proportion of true positive identifications among all the instances that the module classi-
fied as hazardous, and it is defined as the ratio of true positives (i.e., hazards correctly identified
as hazardous) to the total number of items identified as hazardous (both correctly and incorrectly).
A high Precision indicates that when the HSI module identifies a scenario as hazardous, it is highly
likely to be an actual hazardous scenario. Precision is calculated using:
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Precision =
TP

TP + FP

Where TP is the number of True Positives, and FP is the number of False Positives [84]. How-
ever, Precision alone does not tell us whether themodule is identifying all the hazardous scenarios
present.

• Recall measures the completeness of the HSI module in identifying all actual hazardous scenar-
ios. It measures the proportion of true positive identifications among all the actual hazardous
scenarios present in the data. It is calculated as the ratio of true positives to the total actual haz-
ards present in the scenarios, which includes those not identified by the module. A high Recall
indicates that the HSI module is capable of identifying a large portion of the hazardous scenarios,
minimizing the number of false negatives (i.e., hazardous scenarios that are missed by the mod-
ule). This is crucial for ensuring that no hazardous scenarios are overlooked . Recall is calculated
using:

Recall =
TP

TP + FN

Where TP is the number of True Positives, and FN is the number of False Negatives [84].

Together, Precision and Recall provide a comprehensive view of the HSI module’s performance, indi-
cating how trustworthy its identifications are (Precision) and how effective it is at detecting all relevant
hazards (Recall).

6.2.1. Experimental Evaluation of the Route in Town 1
Scenario Overview
Route 1 (as seen in Figure 6.4b) is situated in CARLA Town 1 (as seen in Figures 6.3, and 6.4a), a
small town with numerous T-junctions and a variety of buildings. The route takes place during noon
and features heavy rainfall [85]. The ego vehicle navigates through the town for approximately 0.60
hours.

Figure 6.3: Map of the CARLA town 1 [85]
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(a) Layout of the town. (b) The route followed by the ego vehicle.

Figure 6.4: The CARLA town 1 map (a) and the path followed by ego vehicle (b)

Results
Table 6.2 shows the number of hazardous scenarios classified by manually observing the ground truth
(CARLA simulator) and the automated HSI modules. Table 6.3 shows the results of the SPI module
when the set threshold (discussed in Section 4.5) was crossed.

Table 6.2: Results of HSI for CARLA town 1

Results/Hazardous
Scenario

Ego Vehicle
Tailgated

Inconsistent Ego
Localization

Ego Vehicle
Tailgating

Manually observed
number of scenarios
considered hazardous
on CARLA Simulator

6 NA 4

Manually observed
number of scenarios
considered hazardous
in the combined world
model of ADS

10 2 4

Number of scenarios
correctly identified by
the HSI module
(automated)

10 1 3

Number of false
negatives by the HSI
module (automated)

0 1 1

Number of false
positives by the HSI
module (automated)

0 0 2

Precision of the HSI
module

100.00 % 100.00 % 60.00 %

Recall of the HSI
module

100.00 % 50.00 % 75.00 %
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The HSI module successfully detected 100% of the ”Ego Tailgated” scenarios manually observed in
the combined world model of the Autonomous Driving System (ADS). This indicates high accuracy
in identifying situations where the ego vehicle was being tailgated. The difference in the number of
scenarios manually identified on the CARLA simulator versus those manually identified in the fused/-
combined world model of the ADS is due to errors in the ADS’s perception system. Specifically, the
ADS incorrectly misclassified stationary objects on the sidewalks, such as dustbins, as moving objects
with predicted trajectories that seemingly followed the ego vehicle. This misclassification by the ADS
represents an inconsistency within its perception system. Figure 6.5 shows an example where a pot
to the right of the Ego vehicle is misclassified as a dynamic object with a predicted trajectory. Despite
these misclassifications by the ADS, the HSI module accurately identified the scenario as presented
by the ADS. This accuracy is due to the HSI module’s design, which does not possess knowledge of
the ground truth but relies solely on the data and interpretations provided by the ADS. Thus, even if
the ADS delivers flawed or inaccurate data, the HSI module evaluates and responds based on that
information alone.

However, in the case of the ”Inconsistent Localization” hazardous scenario, the ADS identified two
scenarios. Out of these, only one was correctly identified, leading to a precision of 100% and recall of
50% for this type of scenario. The missed scenario (resulting in a false negative) involved a situation
where the Ego Localization Stability Score (ELSS) showed fluctuations. Although the ELSS came close
to the threshold necessary to trigger a detection, it did not cross this threshold. Consequently, the HSI
module did not detect this hazardous scenario, marking it as a false negative.

Figure 6.5: Example scenario of ADS misclassification

For the scenario of Ego tailgating, 4 scenarios were manually observed on CARLA Simulator, and the
same scenarios were detected by the ADS in the combined world model. 3 of these scenarios were
correctly identified. The one false negative scenario occurred because, while there was a vehicle in
front of the ego vehicle, the distance to the ego vehicle was large, and hence, the safety scores did not
go below the threshold as the TTC values were high. In addition to the false negative, there were two
false positives obtained in the automated process:

• During a Turn: One false positive was detected when an oncoming vehicle’s predicted path
aligned with the ego vehicle’s planned path while the ego vehicle was turning. This alignment
caused a drop in the safety score because the system predicted a potential collision.
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• At a Red Traffic Light: When the light turned red, and another vehicle was behind the ego vehicle,
the PPCS decreased as the ego vehicle decelerated. Concurrently, the safety scores dropped
due to the algorithm predicting a collision trajectory with the vehicle behind, which was incorrectly
perceived as a potential hazard.

This leads to a precision of 60% and recall of 75% for ”Ego Tailgating” detection.

Table 6.3: Results of SPI monitoring for CARLA town 1

SPI # Threshold Violations Cause

Ego Location Similarity Scores 6 Violations occurred due to
inconsistent localization, either
prolonged or short-term.

Ego Orientation Similarity Scores 0

Object Count Similarity Scores 4 Violations occurred when TFuse
or LAV misidentified stationary
objects on the sidewalk as
obstacles, though these were
irrelevant to the driving scenarios.

Object Location Similarity Scores 2 Violations occurred when both the
ADS detected a high number of
objects near the ego vehicle.

Object Orientation Similarity
Scores

0

Object Area Similarity Scores 0

Objected Motion Prediction
Validation Score

8 Violations occurred when many
objects exited the ADS perception
field.

Ego Trajectory Similarity Scores 4 Violations occurred during
stoplight periods.

Object Trajectory Similarity
Scores

4 Violations occurred when
numerous detected objects led to
small errors that compounded,
causing trajectory scores to drop
below the threshold.

Channel Specific Ego Planned
Path Tracker Scores

3 Violations occurred at red lights
for LAV and during turns for
TFuse.

Cross Channel Ego Planned Path
Tracker Score

4 Violations occurred during red
lights and turns.

Planned Path Comfort Scores 6 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

History Comfort Scores 8 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.



6.2. Evaluation results and discussion 52

Table 6.3 summarizes the number of threshold violations for each SPI defined and the corresponding
causes during the route. These results provide valuable insights into the ADS’s performance in detect-
ing hazardous scenarios and the causes of SPI threshold violations. The high accuracy in detecting
hazardous scenarios demonstrates the ADS’s effectiveness in these situations.

6.2.2. Experimental Evaluation of the Route in Town 2
Scenario Overview
Route 2 (as seen in Figure 6.7b) takes place in Town 2 (as seen in Figures 6.6, and 6.7a), a small town
with numerous T-junctions and the route is set during sunset and features heavy rainfall [86]. The ego
vehicle spends around 1.23 hours traversing this route.

Figure 6.6: Map of the CARLA Town 2 [86]

(a) Layout of the town. (b) The route followed by the ego vehicle.

Figure 6.7: The CARLA town 2 map (a) and the path followed by ego vehicle (b)
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Results
Table 6.4 shows the number of hazardous scenarios classified by manual observation of CARLA sim-
ulation and the automated HSI modules. Table 6.5 shows the results of the SPI module when the set
threshold (discussed in Section 4.5) was crossed.

Table 6.4: Results of HSI for CARLA town 2

Results/Hazardous
Scenario

Ego Vehicle
Tailgated

Inconsistent Ego
Localization

Ego Vehicle
Tailgating

Manually observed
number of scenarios
considered hazardous
on CARLA Simulator

14 NA 5

Manually observed
number of scenarios
considered hazardous
in the combined world
model of ADS

17 3 5

Number of scenarios
correctly identified by
the HSI module
(automated)

17 2 3

Number of false
negatives by the HSI
module (automated)

0 1 2

Number of false
positives by the HSI
module (automated)

2 0 2

Precision of the HSI
module

89.47 % 100.00 % 60.00 %

Recall of the HSI
module

100.00 % 66.67 % 60.00 %

The HSI module achieved a detection recall of 100% for ”Ego Vehicle Tailgated” scenarios, indicating
perfect alignment with the observations from the CARLA Simulator. This scenario highlights the ADS’s
robust perception capabilities in specific contexts. The difference in the number of scenarios identified
on the CARLA simulator versus those identified by the ADS is due to the errors in the ADS’s perception
system.

The two false negative scenarios for ”Ego Vehicle Tailgating” occurred because, while there was a
vehicle in front of the ego vehicle, the distance to the ego vehicle was large, and hence, the safety
scores did not go below the threshold as the TTC values were high. There were 2 false positives
detected, one of which was due to a pedestrian crossing the street. While momentarily this could be
classified as Ego tailgating, since the pedestrian is ahead of the EGO vehicle, it strictly does not fall
in its definition and hence is categorized as false positive. The other scenario occurred at a red traffic
light. As soon as the traffic light turned red, and there was another vehicle behind the ego vehicle, the
PPCS score dropped due to the de-acceleration of the planned path, and the safety scores fell due to
the trajectory of the vehicle being that was predicted to collide with the ego vehicle. This leads to a
precision of 60% and recall of 60% for ”Ego Vehicle Tailgating” detection.

For the ”Inconsistent Ego Localization” scenario, the HSI module achieved a precision of 100% and
recall of 66.67%, correctly identifying two out of three scenarios observed by the ADS.
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Table 6.5: Results of SPI monitoring for CARLA town 2

SPI # Threshold Violations Cause

Ego Location Similarity Scores 9 Violations occurred due to
inconsistent localization, either
prolonged or short-term.

Ego Orientation Similarity Scores 0

Object Count Similarity Scores 16 Violations occurred when TFuse
or LAV misidentified stationary
objects on the sidewalk as
obstacles, though these were
irrelevant to the driving scenarios.

Object Location Similarity Scores 5 Violations occurred when both the
ADS detected a high number of
objects near the ego vehicle.

Object Orientation Similarity
Scores

0

Object Area Similarity Scores 0

Objected Motion Prediction
Validation Score

6 Violations occurred when many
objects exited the ADS perception
field.

Ego Trajectory Similarity Scores 7 Violations occurred during
stoplight periods.

Object Trajectory Similarity
Scores

9 Violations occurred when
numerous detected objects led to
small errors that compounded,
causing trajectory scores to drop
below the threshold.

Channel Specific Ego Planned
Path Tracker Scores

7 Violations occurred at red lights
for LAV and during turns for
TFuse.

Cross Channel Ego Planned Path
Tracker Score

11 Violations occurred during red
lights and turns.

Planned Path Comfort Scores 7 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

History Comfort Scores 12 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

Table 6.5 summarizes the number of threshold violations for each SPI defined and the corresponding
causes during the route.

The ”Ego Trajectory Similarity Scores” and ”Object Trajectory Similarity Scores” had seven and nine
violations during stop lights and when there were too many objects, respectively, causing small errors
to cascade and lower the scores below the threshold.



6.2. Evaluation results and discussion 55

6.2.3. Experimental Evaluation of the Route in Town 3
Scenario Overview
Route 3 (as seen in Figure 6.9b) is located in Town 3 (as seen in Figures 6.8 and 6.9a), a larger town
with features of a downtown urban area. The town includes interesting road network features such as
a roundabout, underpasses, and overpasses. The route occurs during twilight and features moderate
rainfall [87]. The ego vehicle navigates through this town for approximately 1.91 hours.

Figure 6.8: Map of the CARLA Town 3 [87]

(a) Layout of the town. (b) The route followed by the ego vehicle.

Figure 6.9: The CARLA town 3 map (a) and the path followed by ego vehicle (b) used for the evaluation

Results
Table 6.6 shows the number of hazardous scenarios classified by manually observing the ground truth
(CARLA simulator) and the automated HSI modules. The HSI module demonstrated mixed perfor-
mance in detecting hazardous scenarios in Town 3. For the ”Ego Vehicle Tailgated” scenario, the mod-
ule achieved a precision of 100% and recall of 84.61% concerning the combined ADS world model.
Two tailgated events were missed due to threshold settings, and one tailgated event observed in the
CARLA simulator was not detected by the ADS.
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Figure 6.10: Senario where an object (bicycle) was missed by both the ADS.

In the ”Ego Vehicle Tailgating” scenario, the HSI module achieved a precision of 80% and recall of
66.67%, correctly identifying four out of six scenarios observed by the ADS. There were two false
negatives due to threshold settings and one false positive where an object crossing wasmisclassified as
tailgating. Additionally, there was one instance of ghost tailgating, where the ADS incorrectly detected
an object not present in the CARLA simulator. For the ”Inconsistent Ego Localization” scenario, the HSI
module demonstrated a precision and recall of 100%, correctly identifying both scenarios observed by
the ADS.

Table 6.7 summarizes the threshold violations for each SPI defined and the corresponding causes
during the route.

(a) (b)

Figure 6.11: Example scenarios where trajectory similarity threshold (a) and object count scores threshold (b) were exceeded

Figure 6.11a illustrates a scenario where each ADS suggests an alternate trajectory for the ego vehicle,
which may pose a hazard (captured when there was a cross-channel ego planned path score threshold
violation). Meanwhile, Figure 6.11b (captured when there was an object count score threshold violation)
depicts a case where only LAV detects three vehicles to the left and ahead of the ego vehicle, while
TFuse fails to identify them. This discrepancy provides manufacturers with valuable insights, prompting
them to examine additional data, such as sensor specifics, to determine why the ADS did not detect
these vehicles.

These results highlight the challenges the HSI module faces in accurately detecting hazardous scenar-
ios in complex urban environments like Town 3. The presence of ghost objects and misclassifications
underscores the need for further improvements in the ADS’s perception and classification capabilities.
The SPI threshold violations provide valuable insights into the ADS’s performance and the impact of
specific driving conditions on the system’s safety and reliability.
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Table 6.6: Results of HSI for CARLA town 3

Results/Hazardous
Scenario

Ego Vehicle
Tailgated

Inconsistent Ego
Localization

Ego Vehicle
Tailgating

Manually observed
number of scenarios
considered hazardous
on CARLA Simulator

12 NA 4

Manually observed
number of scenarios
considered hazardous
in the combined world
model of ADS

13 2 6

Number of scenarios
correctly identified by
the HSI module
(automated)

11 2 4

Number of false
negatives by the HSI
module (automated)

2 0 2

Number of false
positives by the HSI
module (automated)

0 0 1

Precision of the HSI
module

100.00 % 100.00 % 80.00 %

Recall of the HSI
module

84.61 % 100.00 % 66.67 %
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Table 6.7: Results of SPI monitoring for CARLA town 3

SPI # Threshold Violations Cause

Ego Location Similarity Scores 4 Violations occurred due to
inconsistent localization, either
prolonged or short-term.

Ego Orientation Similarity Scores 0

Object Count Similarity Scores 15 Violations occurred when TFuse
or LAV misidentified stationary
objects on the sidewalk as
obstacles, though these were
irrelevant to the driving scenarios.

Object Location Similarity Scores 6 Violations occurred when both the
ADS detected a high number of
objects near the ego vehicle.

Object Orientation Similarity
Scores

0

Object Area Similarity Scores 0

Objected Motion Prediction
Validation Score

11 Violations occurred when many
objects exited the ADS perception
field.

Ego Trajectory Similarity Scores 3 Violations occurred during
stoplight periods.

Object Trajectory Similarity
Scores

17 Violations occurred when
numerous detected objects led to
small errors that compounded,
causing trajectory scores to drop
below the threshold.

Channel Specific Ego Planned
Path Tracker Scores

4 Violations occurred at red lights
for LAV and during turns for
TFuse.

Cross Channel Ego Planned Path
Tracker Score

11 Violations occurred during red
lights and turns.

Planned Path Comfort Scores 8 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

History Comfort Scores 14 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

6.2.4. Experimental Evaluation of the Route in Town 4
Scenario Overview
Route 4 (as seen in Fig 6.13b) is situated in Town 4 as seen in Fig 6.12 and 6.13a), a small town with
a backdrop of snow-capped mountains and conifers. A multi-lane road circumnavigates the town in a
”figure of 8” style. The route takes place during nighttime and features light rainfall. The ego vehicle
spends around 1.51 hours navigating the road network, which consists of a small network of short
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streets and junctions, with a ”figure of 8” style ring road circumnavigating the buildings and a nearby
mountain. The cross of the figure 8 presents an underpass/overpass and circular slip roads, testing
the ego vehicle’s ability to operate in low-light conditions while maintaining safe speeds and distances.

Figure 6.12: Map of the CARLA Town 4 [88]

(a) Layout of the town. (b) The route followed by the ego vehicle.

Figure 6.13: The CARLA town 4 map (a) and the path followed by ego vehicle (b) used for the evaluation

Results
Table 6.8 shows the number of hazardous scenarios classified by manually observing the ground truth
(CARLA simulator) and the automated HSI modules.

The HSI module’s performance in Town 4 was influenced by the presence of red lights and the ADS’s
perception limitations in low-light conditions. For the ”Ego Vehicle Tailgated” scenario, the module
achieved a precision and recall of 92.30%, correctly identifying 12 out of 13 scenarios observed by the
ADS. There was one false negative due to a red light and one false positive where the CARLA simulator
didn’t see the car, but the ADS detected a ghost object.

In the ”Ego Vehicle Tailgating” scenario, the HSI module achieved a precision of 57.14% and recall of
80%, correctly identifying four out of five scenarios observed by the ADS. There was one false negative
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Figure 6.14: Scenario where object count score exceeded the threshold as LAV identified objects on the sidewalk.

due to a red light and three false positives, primarily caused by the ego vehicle’s behaviour at red lights.

For the ”Inconsistent Ego Localization” scenario, the HSI module demonstrated a precision of 100%
and recall of 88.89%, correctly identifying 8 out of 9 scenarios observed by the ADS. There was one
false negative due to a threshold setting.

The TFuse channel exhibited significant ego localization issues in the nighttime conditions of Town
4, indicating its sensitivity to low-light environments. This highlights the need for robust localization
techniques that consistently perform across different lighting conditions.

Table 6.9 summarizes the threshold violations for each SPI defined and the corresponding causes
during the route. Figure 6.14 shows a sample scenario where the object count score crossed the
threshold mainly because TFuse identified objects on the side, but LAV did not. This pattern was
observed throughout the journey

The ”Channel Specific Ego Planned Path Tracker Scores” and ”Cross Channel Ego Planned Path
Tracker Score” encountered fourteen and twenty-two violations. Upon reviewing the exported Open-
SCENARIO files, the object locations initially appeared identical. However, closer examination of the
ADS world model revealed conflicting paths proposed by the ADS, as depicted in Figures 6.15a and
6.15b. This pattern of conflicting trajectory decisions was consistently observed along this route, par-
ticularly under low visibility conditions, where TFuse’s object detection performance diminished.
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(a)

(b)

Figure 6.15: Two scenarios where SPI algorithms identified significantly different ADS-guided paths for the vehicle

In this route, all the SPI parameters were almost stable after a certain period, with only fluctuations in
safety scores and object count scores. On closer examination manually, it was found that the ADS had
collided with an object in front of it (as seen in Figure 6.16), and then it detected it as a vehicle with no
trajectory being generated. The Object Count scores fluctuated due to the vehicles passing it. It is due
to this reason that the number of detections for HSI and SPI is low in this town.
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Figure 6.16: Scenario where the vehicle collided in Town 4

This presents a clear example of how monitoring SPI thresholds effectively identified issues with the
ADS world model detection, prompting a detailed analysis and highlighting opportunities for enhancing
the ADS system.
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Table 6.8: Results of HSI for CARLA town 4

Results/Hazardous
Scenario

Ego Vehicle
Tailgated

Inconsistent Ego
Localization

Ego Vehicle
Tailgating

Manually observed
number of scenarios
considered hazardous
on CARLA Simulator

9 NA 5

Manually observed
number of scenarios
considered hazardous
in the combined world
model of ADS

13 9 5

Number of scenarios
correctly identified by
the HSI module
(automated)

12 8 4

Number of false
negatives by the HSI
module (automated)

1 1 1

Number of false
positives by the HSI
module (automated)

1 0 3

Precision of the HSI
module

92.30 % 100.00 % 57.14 %

Recall of the HSI
module

92.30 % 88.89 % 80.00 %
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Table 6.9: Results of SPI monitoring for CARLA town 4

SPI # Threshold Violations Cause

Ego Location Similarity Scores 20 Violations occurred due to
inconsistent localization, either
prolonged or short-term.

Ego Orientation Similarity Scores 0

Object Count Similarity Scores 4 Violations occurred when TFuse
or LAV misidentified stationary
objects on the sidewalk as
obstacles, though these were
irrelevant to the driving scenarios.

Object Location Similarity Scores 12 Violations occurred when both the
ADS detected a high number of
objects near the ego vehicle.

Object Orientation Similarity
Scores

4

Object Area Similarity Scores 0

Objected Motion Prediction
Validation Score

8 Violations occurred when many
objects exited the ADS perception
field.

Ego Trajectory Similarity Scores 4 Violations occurred during
stoplight periods.

Object Trajectory Similarity
Scores

18 Violations occurred when
numerous detected objects led to
small errors that compounded,
causing trajectory scores to drop
below the threshold.

Channel Specific Ego Planned
Path Tracker Scores

14 Violations occurred at red lights
for LAV and during turns for
TFuse.

Cross Channel Ego Planned Path
Tracker Score

22 Violations occurred during red
lights and turns.

Planned Path Comfort Scores 30 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

History Comfort Scores 21 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

6.2.5. Experimental Evaluation of the Route in Town 5
Scenario Overview
Route 5 (as seen in Figure 6.18b) takes place in Town 5 (as seen in Figures 6.17 and 6.18a), an urban
environment featuring a raised highway and large multi-lane roads and junctions. The route is set
during morning hours and features moderate rainfall. The ego vehicle navigates through this town for
approximately 1.11 hours, demonstrating its adaptability to different road types and traffic conditions
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while traversing the road network, which consists of numerous dual-lane urban roads intersecting at
numerous large junctions.

Figure 6.17: Map of the CARLA Town 5 [89]

(a) Layout of the town. (b) The route followed by the ego vehicle.

Figure 6.18: The CARLA town 5 map (a) and the path followed by ego vehicle (b) used for the evaluation

Results
Table 6.10 shows the number of hazardous scenarios classified by manually observing the ground truth
(CARLA simulator) and the automated HSI modules.

The HSI module’s performance in Town 5 was relatively stable, with high accuracies in detecting haz-
ardous scenarios. For the ”Ego Vehicle Tailgated” scenario, the module achieved a precision of 83.34%
and recall of 90.90%, correctly identifying 10 out of 11 scenarios observed by the ADS. There was one
false negative and two false positives, one of which occurred when the ADS detected an object behind
the ego vehicle at a red light and incorrectly classified it as a tailgating event.

In the ”Ego Vehicle Tailgating” scenario, the HSI module demonstrated a precision of 75% and recall
of 100%, correctly identifying all 3 scenarios observed by the ADS. There was one false positive due
to an ego tailgating event at a red light.

For the ”Inconsistent Ego Localization” scenario, the HSI module achieved a precision of 100% and
recall of 66.67%, correctly identifying 2 out of 3 scenarios observed by the ADS.
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Table 6.11 summarizes the number of threshold violations for each SPI defined and the corresponding
causes during the route.

These results suggest that the ADS performs relatively well in urban environments with good lighting like
Town 5, with high accuracies in detecting hazardous scenarios. However, the SPI threshold violations
indicate that the ADS still faces challenges in handling complex traffic situations, such as red lights and
turns, which can impact the system’s overall safety and comfort scores.

Table 6.10: Results of HSI for CARLA town 5

Results/Hazardous
Scenario

Ego Vehicle
Tailgated

Inconsistent Ego
Localization

Ego Vehicle
Tailgating

Manually observed
number of scenarios
considered hazardous
on CARLA Simulator

8 NA 3

Manually observed
number of scenarios
considered hazardous
in the combined world
model of ADS

11 3 3

Number of scenarios
correctly identified by
the HSI module
(automated)

10 2 3

Number of false
negatives by the HSI
module (automated)

1 1 0

Number of false
positives by the HSI
module (automated)

2 0 1

Precision of the HSI
module

83.34 % 100.00 % 75.00 %

Recall of the HSI
module

90.90 % 66.67 % 100.00 %
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Table 6.11: Results of SPIs monitoring for CARLA town 5

SPI # Threshold Violations Cause

Ego Location Similarity Scores 7 Violations occurred due to
inconsistent localization, either
prolonged or short-term.

Ego Orientation Similarity Scores 0

Object Count Similarity Scores 12 Violations occurred when TFuse
or LAV misidentified stationary
objects on the sidewalk as
obstacles, though these were
irrelevant to the driving scenarios.

Object Location Similarity Scores 8 Violations occurred when both the
ADS detected a high number of
objects near the ego vehicle.

Object Orientation Similarity
Scores

0

Object Area Similarity Scores 0

Objected Motion Prediction
Validation Score

15 Violations occurred when many
objects exited the ADS perception
field.

Ego Trajectory Similarity Scores 17 Violations occurred during
stoplight periods.

Object Trajectory Similarity
Scores

22 Violations occurred when
numerous detected objects led to
small errors that compounded,
causing trajectory scores to drop
below the threshold.

Channel Specific Ego Planned
Path Tracker Scores

14 Violations occurred at red lights
for LAV and during turns for
TFuse.

Cross Channel Ego Planned Path
Tracker Score

9 Violations occurred during red
lights and turns.

Planned Path Comfort Scores 14 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

History Comfort Scores 9 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

6.2.6. Experimental Evaluation of the Route in Town 6
Scenario Overview
Route 6 (as seen in Figure 6.20b) is located in Town 6 (as seen in Figures 6.19 and 6.20a), a low-
density town exhibiting a multitude of large, 4-6 lane roads and special junctions like the Michigan Left.
The route takes place during dawn and features wet road conditions. The ego vehicle spends around
1.59 hours navigating through this town, showcasing its robustness in handling diverse terrain and wet
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weather conditions while traversing the road network, which exhibits 4 large parallel roads with 4 to 6
lanes, interconnected by several slip roads and junctions [90].

Figure 6.19: Map of the CARLA Town 6 [90]

(a) Layout of the town. (b) The route followed by the ego vehicle.

Figure 6.20: The CARLA town 6 map (a) and the path followed by ego vehicle (b) used for the evaluation

Results
Table 6.12 shows the number of hazardous scenarios classified by manually observing the ground truth
(CARLA simulator) and the automated HSI modules.

The HSI module’s performance in Town 6 was characterized by high accuracies in detecting ”Ego
Vehicle Tailgated” and ”Inconsistent Ego Localization” scenarios, achieving 100% recall in both cases.
For the ”Ego Vehicle Tailgated” scenario, the module achieved a precision of 90%, correctly identifying
all nine scenarios observed by the ADS, with one false positive. In the ”Ego Vehicle Tailgating” scenario,
the HSI module achieved a precision and recall of 50%, correctly identifying one out of two scenarios
observed by the ADS.

The HSI module’s performance in Town 6 was also notable for a prolonged period of stable SPI scores,
with no significant fluctuations observed across most metrics. However, the Cross Channel Planned
Path Scores exhibited repeated deviations over a short period of time, indicating potential issues with
the ADS’s path planning and execution. Upon closer examination, it was observed that the ADS veered
off the road and repeatedly attempted to generate a path (as seen in Figure 6.21) to navigate around
the deviation but was unsuccessful in doing so. This behaviour suggests that the SPI framework can
effectively identify situations where the ADS becomes stuck or trapped in a particular location, providing
valuable insights for system improvements and failure mode analysis.
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Figure 6.21: Scenario where ego vehicle veered off the road and was stuck for a short period

Table 6.13 summarizes the number of threshold violations for each SPI defined and the corresponding
causes during the route. The ”Ego Location Similarity Scores” violated the threshold eighteen times
due to inconsistent localization. The ”Object Count Similarity Scores” and ”Object Location Similarity
Scores” experienced twelve and eight violations, respectively, primarily when either of the channels
detected irrelevant objects on the sidewalk or when there were too many objects in the scene.

In this particular route, an interesting situation arose where the ego orientation score exceeded the pre-
defined threshold. Figure 6.22a illustrates the scenario captured by the CARLA simulator alongside the
ADS’s perception, while Figure 6.22b presents the OpenScenario export observed when the threshold
was breached. This incident highlights a discrepancy in the detection capabilities between the two ADS
channels: LAV accurately identified the object’s orientation, whereas TFuse did not.

In Figure 6.22b, the ego vehicles identified by each channel are marked in red and blue for LAV and
TFuse, respectively, showing an overlap. The object detected by LAV is depicted in white, and the
object perceived by TFuse is in yellow. It is important to note that Daruma did not have access to lane
information, prompting the export to include a generic depiction of the road.

(a) Snapshot of the CARLA simulator and ADS world model (b) OpenScenario files viewed on Esmini

Figure 6.22: The map of the sixth town (a) and the path followed by ego vehicle (b) used for the evaluation

These results highlight the importance of monitoring SPI scores and their fluctuations over time, as they
can provide valuable insights into the ADS’s performance and potential failure modes. The stable SPI
scores observed in Town 6, combined with the deviations in the Cross Channel Planned Path Scores,
demonstrate the effectiveness of the SPI framework in identifying situations where the ADS may be-
come stuck or exhibit suboptimal behavior. This information can be used to guide further development
and refinement of the ADS’s path planning and decision-making capabilities.



6.2. Evaluation results and discussion 70

Table 6.12: Results of HSI for CARLA town 6

Results/Hazardous
Scenario

Ego Vehicle
Tailgated

Inconsistent Ego
Localization

Ego Vehicle
Tailgating

Manually observed
number of scenarios
considered hazardous
on CARLA Simulator

8 NA 2

Manually observed
number of scenarios
considered hazardous
in the combined world
model of ADS

9 2 2

Number of scenarios
correctly identified by
the HSI module
(automated)

9 2 1

Number of false
negatives by the HSI
module (automated)

0 0 1

Number of false
positives by the HSI
module (automated)

1 0 1

Precision of the HSI
module

90.00 % 100.00 % 50.00 %

Recall of the HSI
module

100.00 % 100.00 % 50.00 %
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Table 6.13: Results of SPI monitoring for CARLA town 6

SPI # Threshold Violations Cause

Ego Location Similarity Scores 18 Violations occurred due to
inconsistent localization, either
prolonged or short-term.

Ego Orientation Similarity Scores 1

Object Count Similarity Scores 9 Violations occurred when TFuse
or LAV misidentified stationary
objects on the sidewalk as
obstacles, though these were
irrelevant to the driving scenarios.

Object Location Similarity Scores 8 Violations occurred when both the
ADS detected a high number of
objects near the ego vehicle.

Object Orientation Similarity
Scores

0

Object Area Similarity Scores 0

Objected Motion Prediction
Validation Score

8 Violations occurred when many
objects exited the ADS perception
field.

Ego Trajectory Similarity Scores 6 Violations occurred during
stoplight periods.

Object Trajectory Similarity
Scores

17 Violations occurred when
numerous detected objects led to
small errors that compounded,
causing trajectory scores to drop
below the threshold.

Channel Specific Ego Planned
Path Tracker Scores

9 Violations occurred at red lights
for LAV and during turns for
TFuse.

Cross Channel Ego Planned Path
Tracker Score

11 Violations occurred during red
lights and turns.

Planned Path Comfort Scores 14 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

History Comfort Scores 8 Violations were inherently linked
to the ADS’s handling of
scenarios involving tailgating, red
lights, and turns.

6.3. Profiling Results
A profiling analysis was conducted on the NXP S32G274A vehicle network processor to evaluate the
computational efficiency and real-time performance of the developed SPI and HSI algorithms. The
S32G274A processor combines ASIL D safety, hardware security, high-performance real-time and
application processing, and network acceleration, making it a suitable platform for automotive applica-
tions.
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TheS32G processor features a quad ArmCortex-A53 core cluster with optional lockstep for applications
and services, a triple Arm Cortex-M7 lockstep core for real-time applications, and various hardware
accelerators such as the Low Latency Communication Engine (LLCE) for automotive networks, the
Packet Forwarding Engine (PFE) for Ethernet networks, and the Hardware Security Engine (HSE) for
secure boot and security services. The processor operates at a speed of 1.1 GHz [91].

The routes in each town were subject to profiling analysis. To ensure accurate and reliable profiling
results, several steps were taken to minimize interruptions and optimize the performance of the NXP
Daruma application during the profiling process:

• CPU Affinity: The CPU affinity of the NXP Daruma application was set to 0 using the taskset
linux command. This command allows you to specify which CPU core(s) a process should run
on. By setting the affinity to 0, the application was constrained to run on a specific processor,
preventing interruptions from other processes. All other processes’ CPU affinity was set to 1,
ensuring they would not interfere with the profiling of the NXP Daruma application.

• Process Priority: The NXP Daruma application was assigned the highest priority using the nice
linux command. The nice command allows you to adjust the scheduling priority of a process.
Giving the application the highest priority minimised the risk of interruptions or pauses during the
profiling process. This ensured that the application received the maximum available CPU time
and resources.

• CPU Governor Mode: The device was set to performance governor mode using the cpupower
frequency-set linux command. The CPU governor is responsible for managing the CPU’s fre-
quency and power consumption. By setting the governor to performance mode, the CPU was
configured to operate at its maximum frequency, providing consistent and optimal performance
throughout the profiling process. This eliminated any potential fluctuations in CPU performance
that could impact the profiling results.

These optimizations were crucial for obtaining accurate and reliable profiling results. By isolating the
NXP Daruma application on a dedicated CPU core, granting it the highest priority, and ensuring con-
sistent CPU performance, the impact of external factors and interruptions on the profiling process was
minimized. This allowed for a more precise measurement of the application’s execution times and
resource utilization.

6.3.1. Profiling Results for the Route in Town 1
Figure 6.23 shows the time taken by the SPI and HSI module for the route in Town 1. The graph
illustrates that the execution time remains well below the threshold of 25ms for most instances, with
only a few sporadic spikes approaching or slightly exceeding the limit. This indicates that the developed
algorithms can operate efficiently and meet the real-time requirements in this scenario. The statistical
summary is present in Tables 6.14, 6.15, 6.16, 6.17 and Figures 6.24, 6.25, and 6.26 present the
execution times for the Similarity, Comfort, and Motion Prediction modules, respectively.
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Figure 6.23: Time Taken by the SPI and HSI module in Town 1

Figure 6.24: Time Taken by the Similarity module in Town 1
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Figure 6.25: Time Taken by the comfort module in Town 1

Figure 6.26: Time Taken by the motion prediction module in Town 1

6.3.2. Profiling Results for the Route in Town 2
Figure 6.27 shows the time taken by the SPI and HSI module for the route in Town 2. Similar to Town
1, the execution time remains well below the 25ms threshold for most instances, demonstrating the
algorithms’ efficiency in this scenario. The statistical summary is present in Tables 6.14, 6.15, 6.16,
6.17, and Figures 6.28, 6.29, and 6.30 present the execution times for the Similarity, Comfort, and
Motion Prediction modules, respectively.
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Figure 6.27: Time Taken by the SPI and HSI module in Town 2

Figure 6.28: Time Taken by the Similarity module in Town 2
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Figure 6.29: Time Taken by the comfort module in Town 2

Figure 6.30: Time Taken by the motion prediction module in Town 2

6.3.3. Profiling Results for the Route in Town 3
Figure 6.31 shows the time taken by the SPI and HSI module for the route in Town 3. The statistical
summary is present in Tables 6.14, 6.15, 6.16, 6.17 and Figures 6.32, 6.33, and 6.34 present the
execution times for the Similarity, Comfort, and Motion Prediction modules, respectively.
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Figure 6.31: SPI Time Analysis for Town 3

Figure 6.32: Similarity Time Analysis for Town 3
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Figure 6.33: Comfort Time Analysis for Town 3

Figure 6.34: Motion Prediction Time Analysis for Town 3

6.3.4. Profiling Results for the Route in Town 4
Figure 6.35 shows the time taken by the SPI and HSI module for the route in Town 4. The statistical
summary is present in Tables 6.14, 6.15, 6.16, 6.17, and Figures 6.36 , 6.37, 6.38 present the execution
times for the Similarity, Comfort, and Motion Prediction modules, respectively, for the route in Town 4.
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Figure 6.35: SPI Time Analysis for Town 4

Figure 6.36: Similarity Time Analysis for Town 4
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Figure 6.37: Comfort Time Analysis for Town 4

Figure 6.38: Motion Prediction Time Analysis for Town 4

6.3.5. Profiling Results for the Route in Town 5
Figure 6.39 shows the time taken by the SPI and HSI module for the route in Town 5. The statistical
summary is present in Tables 6.14, 6.15, 6.16, 6.17, and Figures 6.40, 6.41, and 6.42 present the
execution times for the Similarity, Comfort, and Motion Prediction modules, respectively.
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Figure 6.39: SPI Time Analysis for Town 5

Figure 6.40: Similarity Time Analysis for Town 5
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Figure 6.41: Comfort Time Analysis for Town 5

Figure 6.42: Motion Prediction Time Analysis for Town 5

6.3.6. Profiling Results for the Route in Town 6
Figure 6.43 shows the time taken by the SPI and HSI module for the route in Town 6. The statistical
summary is present in Tables 6.14, 6.15, 6.16, 6.17, and Figures 6.44, 6.45, and 6.46 present the
execution times for the Similarity, Comfort, and Motion Prediction modules, respectively.
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Figure 6.43: SPI Time Analysis for Town 6

Figure 6.44: Similarity Time Analysis for Town 6
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Figure 6.45: Comfort Time Analysis for Town 6

Figure 6.46: Motion Prediction Time Analysis for Town 6

6.3.7. Statistical Summary
The statistical summaries for the SPI and HSI module execution times, as well as the execution times
of the Similarity, Comfort, and Motion Prediction modules, are presented in Tables 6.14, 6.15, 6.16, and
6.17, respectively.

For the SPI Time statistics, the threshold is 25 ms, and for the remaining statistics (comfort time, similar-
ity time and motion prediction time statistics), the threshold is the Maximum Time (ms) in that particular
route. This, when compared to the Low Values (<50% of threshold), helps understand if the time taken
is in the 50 percentile or if the maximum time is just an outlier.
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Table 6.14: SPI Time Statistics

Statistic Town1 Town2 Town3 Town4 Town5 Town6

Average Time (ms) 15.52 15.69 14.26 14.78 15.17 14.66 %

Maximum Time (ms) 26.43 23.71 22.47 23.15 26.29 26.35%

Minimum Time (ms) 7.38 7.98 7.15 7.20 7.08 7.07%

Standard Deviation (ms) 1.52 1.44 0.75 1.10 1.06 1.05 %

Breaches of 25 ms 0.03% 0.00% 0.00% 0.00% 0.01% 0.01%

Within 90% of threshold 0.08% 0.02% 0.00% 0.03% 0.03% 0.02%

Low Values (<50% of threshold) 0.10% 0.04% 0.04% 0.03% 0.06% 0.04%

Table 6.15: Comfort Time Statistics

Statistic Town1 Town2 Town3 Town4 Town5 Town6

Average Time (ms) 3.27 3.25 3.21 3.24 3.25 3.22

Maximum Time (ms) 15.39 7.21 11.34 7.26 15.11 13.22

Minimum Time (ms) 2.88 2.88 2.88 2.88 2.87 2.86

Standard Deviation (ms) 0.65 0.61 0.62 0.62 0.65 0.63

Within 90% of threshold 0.03% 0.05% 0.01% 0.06% 0.01% 0.01%

Low Values (<50% of threshold) 99.97% 89.46% 99.91% 89.17% 99.97% 99.94%

Table 6.16: Similarity Time Statistics

Statistic Town1 Town2 Town3 Town4 Town5 Town6

Average Time (ms) 1.77 1.91 0.57 1.12 1.38 0.88

Maximum Time (ms) 6.56 7.99 3.44 5.19 4.97 6.29

Minimum Time (ms) 0.47 0.47 0.47 0.47 0.47 0.47

Standard Deviation (ms) 1.26 1.20 0.18 0.81 0.69 0.71

Within 90% of threshold 0.13% 0.10% 0.01% 0.04% 0.01% 0.01%

Low Values (<50% of threshold) 85.11% 93.25% 99.78% 91.97% 92.51% 97.89%
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Table 6.17: Motion Prediction Time Statistics

Statistic Town1 Town2 Town3 Town4 Town5 Town6

Average Time (ms) 10.48 10.54 10.48 10.42 10.54 10.56

Maximum Time (ms) 14.04 14.24 14.49 15.33 17.20 22.82

Minimum Time (ms) 3.70 3.69 3.69 3.67 3.69 3.69

Standard Deviation (ms) 0.36 0.34 0.34 0.32 0.37 0.40

Within 90% of threshold 0.66% 0.59% 0.57% 0.05% 0.01% 0.01%

Low Values (<50% of threshold) 0.08% 0.04% 0.03% 0.03% 0.06% 97.84%

6.4. Analysis and Discussion
This experimental evaluation of the SPI and HSI modules utilized with the CARLA simulator and ADS
software stacks (LAV and TFuse) has yielded significant insights into the strengths and developmental
needs for the continuous improvement of AV safety. The assessment spanned a variety of urban
and highway environments under different weather conditions, providing a platform for analyzing the
effectiveness of the proposed techniques for assessing AV safety.

6.4.1. Summary of Results
The results summarized in Table 6.18 underscore the effectiveness and areas for improvement in the
SPI and HSI modules across different driving conditions and scenarios. It includes the total number
of scenarios observed for each hazardous situation, the number of correctly identified scenarios, false
positives, false negatives, and the overall success rate for all the routes taken through the different
towns.

Table 6.18: Summary of Hazardous Scenarios, Precision and Success Rates for All CARLA Towns

Results/Hazardous
Scenario

Ego Vehicle
Tailgated

Inconsistent Ego
Localization

Ego Vehicle
Tailgating

Manually observed
number of scenarios
considered hazardous
in the combined world
model of ADS

73 21 25

Number of scenarios
correctly identified by
the HSI module
(automated)

69 17 18

Number of false
negatives by the HSI
module (automated)

4 4 7

Number of false
positives by the HSI
module (automated)

6 0 10

Overall Precision of
the HSI module

92.00 % 100.00 % 64.28 %

Overall Recall of the
HSI module

94.52 % 80.95 % 72.00 %
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Table 6.19: Summary of SPI Threshold Violations Across All CARLA Towns

SPI # Threshold Violations

Ego Location Similarity Scores 64

Ego Orientation Similarity Scores 1

Object Count Similarity Scores 60

Object Location Similarity Scores 41

Object Orientation Similarity Scores 4

Object Area Similarity Scores 0

Objected Motion Prediction Validation Score 56

Ego Trajectory Similarity Scores 43

Object Trajectory Similarity Scores 91

Channel Specific Ego Planned Path Tracker Scores 51

Cross Channel Ego Planned Path Tracker Score 68

Planned Path Comfort Scores 79

History Comfort Scores 92

Overall, the SPI and HSI modules achieved an average recall of 82.39 % in identifying hazardous
scenarios across all towns, correctly identifying 104 out of 119 total observed scenarios. During the
evaluation, 16 false positives and 15 false negatives were observed, resulting in an average precision
of 85.43 %.

6.4.2. Analysis of False Positives and Negatives
The occurrence of false positives and negatives in the ”Ego Vehicle Tailgating” scenarios underscores
some inherent challenges in complex driving environments. False positives were frequently triggered
by misinterpreting other vehicles’ movements, especially during turns or at traffic lights, suggesting that
the current models may overly generalize from insufficient data or misinterpret the intent of surrounding
traffic. Conversely, false negatives often resulted from situations where the proximity thresholds set
for triggering alerts were not breached despite potentially risky scenarios. This indicates a need for
refining the threshold settings or employing more SPIs that can aid the detection of the existing known
hazardous scenarios and, if possible, more.

6.4.3. SPI Threshold Violations
The SPI threshold violations provide a window into operational discrepancies within the ADS. Notably,
deviations in planned paths between different ADS channels during manoeuvres, such as red lights and
turns, were observed. These findings suggest inconsistencies in the ADS’s decision-making processes
and emphasize the importance of enhanced cross-channel analysis for safe and robust arbitration
mechanisms. Ensuring consistent performance across different subsystems is crucial for the reliability
and safety of AV operations.

6.4.4. More Hazardous Scenario Identification
From analysing the HSI and SPI modules and observing the ADS, more hazardous scenarios could
be identified by the system by properly tuning and defining SPIs. For example, the scenario of an
Object crossing in front of the ego vehicle can be identified by looking at the moving variance of the
cross channel Planned path similarity scores and Channel Planned Path Similarity scores along with
the safety scores. This is because when an object is crossing, the safety scores go down due to a
potential collision, and from the inherent behaviours of LAV and TFuse, both the channels give out
diverging trajectories to follow (causing a dip in cross-channel planned path scores) and they within
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themselves change their own trajectory as the object crosses the ego vehicle. By perhaps running
more statistics on this score or training an ML model to understand the behaviour of these scores
along with others, this object-crossing scenario can be identified.

Another scenario that is already being identified by the current system is the conflicting paths generated.
Since the ground truth is unknown whenever there is a significant dip in cross-channel planned path
similarity scores and ego trajectory similarity scores, it indicates that the ADS does not agree with each
other, possibly both of them seeing the world differently and hence need post-analysis.

By defining more SPIs and/or performing more such analyses, more complex hazardous scenarios that
are of interest can be identified, thus contributing to the continuous improvement of AV vehicle safety.

6.4.5. Insights into the ADS Performance
Running the SPI monitoring module on all the routes provided valuable insights into the performance
of the Automated Driving Systems (ADS):

1. In CARLA Town 4, it was observed that the Object Count Scores, Similarity Scores, Channel
Specific Ego Planned Path Tracker Scores, and Cross Channel Ego Planned Path Tracker Scores
crossed their respective thresholds multiple times. Analyzing the scenarios revealed that the
perception of LAV is limited in low-light conditions, often detecting numerous ghost objects, as
illustrated in Figure 6.14. Furthermore, the ADS were unable to suggest consistent planned paths
for the ego vehicle in these conditions.

2. In the same CARLA Town 4, it was observed that the SPIs under the Motion Prediction Metrics
(see table 4.4) continued to take a lot of compute time even after a collision, as shown in Figure
6.38. Upon analysis, it was found that both the ADS (LAV and TFuse) continued to suggest
planned paths and attempted to drive even after the collision.

3. During turns, the planned paths generated by TFuse and LAV often differed slightly, leading to
threshold violations of the respective SPIs. This discrepancy highlights the challenges in achiev-
ing consistent path planning across multiple ADS.

4. The LAV channel demonstrated the capability to detect stop signs, whereas the TFuse channel
did not possess this functionality. As a result, when the vehicle stopped at a red light, the TFuse
channel would continue to plan a path for the ego vehicle, causing violations of the relevant SPI
thresholds.

5. The Object Area Similarity Scores consistently remained within the set thresholds throughout all
test scenarios, demonstrating a high level of agreement between LAV and TFuse in estimating
object areas. This consistency suggests that both ADS channels employ reliable algorithms for
object size estimation, which is crucial for accurate perception and decision-making in various
driving scenarios.

These insights, derived from the SPI monitoring module, underscore its effectiveness in understanding
AV vehicle behaviour. By identifying potential issues related to perception, trajectory planning, and over-
all safety, the module can prompt ADS manufacturers to investigate and provide updates to enhance
AV vehicles’ world perception, trajectory planning, and safety. The analysis highlights the value of the
SPI monitoring approach in facilitating continuous improvement and ensuring the reliable operation of
autonomous vehicles in diverse driving scenarios.

6.4.6. Profiling and Real-Time Performance
The profiling results on the NXP S32G274 processor show the real-time capability of the developed
SPI and HSI algorithms. These algorithms consistently operated within set time constrains of 25ms,
affirming their feasibility for deployment in real-world AV systems. However, occasional spikes in exe-
cution times, particularly in motion prediction modules, highlight areas where computational efficiency
could be further optimized.

A notable pattern observed in the similarity analysis execution time is the presence of regular peaks,
as shown in Figures 6.24, 6.28, 6.32, 6.36, 6.40, and 6.44. These peaks occur when the number of
objects detected by the ADS are high (about 5 and above). The increased execution time is attributed
to the trajectory comparison, area calculation, pairing, and matching operations performed for each
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detected object. The peaks are more prominent in highways and traffic signals scenarios, where long
trajectories are predicted for each object. Interestingly, the individual peaks, followed by a dip in the
subsequent values, are indicative of the presence of ghost objects. These ghost objects are typically
static objects on the sides of the road that are momentarily misclassified by the TFuse channel as
vehicles with trajectories. However, these ghost objects quickly disappear, leading to the observed dip
in execution time.

The analysis of SPI threshold violations offers valuable insights into the ADS’s performance, identifying
specific aspects that require further optimization, such as passenger comfort, object trajectory predic-
tion, and cross-channel consistency. These findings can guide targeted improvements in the ADS
algorithms and decision-making processes.

In conclusion, the experimental evaluation of the SPI and HSI modules using the CARLA simulator and
advance ADS software stacks demonstrates the effectiveness of the proposed techniques in assessing
AV safety and identifying hazardous scenarios.
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Conclusions

This thesis has explored the development and application of SPIs (Safety Performance Indicators) and
HSI (Hazardous Scenario Identification) techniques for the continuous improvement of driving automa-
tion. The research aimed to address the challenges faced by ADS in expanding their ODDs (Oper-
ational Design Domains), handling today’s and future unknown hazardous scenarios, and ensuring
real-time safety monitoring, particularly in the context of multi-channel architectures.

The proposed SPI framework provides a comprehensive set of metrics for assessing the safety and
performance of redundant ADS. The SPIs cover various critical aspects, such as ego localization, ob-
ject detection, trajectory planning, and overall system behaviour. By defining appropriate thresholds for
each SPI, the framework enables the identification of potential safety issues and supports the continu-
ous monitoring and improvement of ADS. The SPI monitoring module has proven to be an effective tool
for gaining valuable insights into ADS performance, highlighting issues related to perception, trajectory
planning, and overall safety. These insights can prompt ADS manufacturers to investigate and provide
updates to enhance the world perception, trajectory planning, and safety of AV vehicles.

The HSI module, developed as part of this thesis along with the Python OpenSCENARIO file generation
tool, demonstrates the effectiveness of leveraging SPIs and the Daruma cross-channel analysis for
detecting hazardous scenarios. The experimental evaluation, conducted using the CARLA simulator
and advanced ADS software stacks (LAV and TFuse), highlights the module’s ability to accurately
identify hazardous scenarios.

However, the evaluation also reveals the challenges the HSI module faces, including false positives and
false negatives. False positives were frequently triggered bymisinterpreting other vehicles’ movements,
especially during turns or at traffic lights, suggesting that the current models may overly generalize from
insufficient data or misinterpret the intent of surrounding traffic. False negatives often resulted from
situations where the proximity thresholds set for triggering alerts were not breached despite potentially
risky scenarios. These findings highlight the need for further improvements in the ADS’s perception and
localization capabilities and the importance of refining threshold settings or associated HSI algorithms.

The SPI threshold violations observed during the experiments provide valuable insights into the ADS’s
performance and the causes of these violations. Divergences in the planned paths between channels
were observed during red lights and turns, indicating potential issues with the coordination and con-
sistency of the ADS’s decision-making processes. These inconsistencies emphasize the importance
of cross-channel analysis and the need for robust arbitration mechanisms to ensure safe and reliable
ADS operation.

The experimental evaluation also revealed the potential for identifying additional hazardous scenarios
by leveraging the SPI framework and cross-channel analysis. For example, the scenario of an object
crossing in front of the ego vehicle can be identified by analyzing the moving variance of the cross-
channel planned path similarity scores and channel planned path similarity scores, along with the safety
scores. Similarly, conflicting paths generated by different ADS channels can be detected by monitoring
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significant dips in cross-channel planned path similarity scores and ego trajectory similarity scores.
These findings suggest that by defining more SPIs and performing in-depth analysis, more complex
and critical hazardous scenarios can be identified, contributing to the continuous improvement of AV
safety.

The proposed architecture for the continuous improvement of ADS, incorporating SPIs and HSI tech-
niques and the OpenScenario export tool in Python, offers a structured approach to enhance the safety
and performance of AVs. By enabling the collection and analysis of real-world driving data, the architec-
ture facilitates the identification of areas for improvement and supports the creation of targeted software
updates. The generation of OpenSCENARIO files based on identified hazardous scenarios allows for
the reproduction and analysis of these scenarios in simulation environments, enabling the development
of more robust and reliable ADS.

The profiling results demonstrate that the developed SPI and HSI algorithms can operate efficiently
and meet the time requirements when executed on the NXP S32G274 automotive processor. The ex-
ecution times remain within the specified limits, with only rare breaches or instances approaching the
threshold. The sub-category analysis reveals that the motion prediction time dominates the execution
time, while the comfort and similarity time sub-categories exhibit lower execution times and more vari-
ability. These findings validate the suitability of the algorithms for real-time automotive applications and
provide valuable insights for further optimization and resource allocation.

In conclusion, this thesis has made contributions to the development of safer and more reliable AV by
proposing a comprehensive SPI framework, implementing an effective HSI module, and designing an
architecture for the continuous improvement of ADS. The experimental evaluation, conducted using
a diverse set of routes from the CARLA simulator, provides valuable insights into the performance of
the SPI and HSI modules, highlighting their strengths and areas for improvement. The results under-
score the potential of the proposed techniques in enhancing the safety and reliability of ADS, while
also revealing the challenges and limitations that need to be addressed through further research and
development efforts. The insights derived from the SPI monitoring module highlight its effectiveness
in understanding AV vehicle behaviour and identifying potential issues related to perception, trajectory
planning, and overall safety. These findings can aid ADS manufacturers in their efforts to continuously
improve and ensure the reliable operation of autonomous vehicles in diverse driving scenarios.

By continuously refining SPI thresholds, expanding the range of monitored scenarios, and leveraging
advanced data analysis techniques, ADS can achieve higher safety and performance standards, effec-
tively addressing current and emerging challenges in AV operations. The insights and methodologies
presented in this thesis pave the way for the development of more robust, reliable, and adaptable AVs,
bringing us closer to the widespread deployment of safe and trustworthy self-driving cars.

Limitations of the Thesis
The following are the limitations of the thesis:

• One of the main limitations of this work is that the HSI heavily depends on the perception and
localization capabilities of the ADS. If all the ADS present do not, for example, detect an object
near a vehicle, then the system cannot identify the hazardous scenario. If the ADS present are
also very similar, while SPIs can still effectively monitor the safety of the AVs, the HSI may not be
able to identify a wide range of hazardous scenarios.

• In terms of the method, the thesis relies on simulation environments for the verification. While
the CARLA simulator provides a realistic and diverse range of driving scenarios, it does not fully
capture the complexity and unpredictability of real-world driving conditions. The performance of
the SPI framework and HSI module in real-world settings may differ from the results obtained in
the simulation environment.

• Although the experimental evaluation covered several routes with varying weather conditions
and road layouts, the number of driving scenarios tested is still limited compared to the vast array
of possible situations an ADS may encounter in the real world. The effectiveness of the SPI
framework and HSI module in identifying hazardous scenarios across a broader range of driving
conditions remains to be validated.
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• The SPI framework and HSI module are designed to complement existing safety mechanisms
in ADS, such as functional safety (ISO 26262) and safety of the intended functionality (SOTIF).
However, the seamless integration of these techniques with other safety measures may require
further research efforts.

• The algorithms developed for this thesis rely on the 2D location and shape information of objects
and the ego vehicle provided by the open-source ADS (LAV and TFuse) to Daruma. While this
2D data has been sufficient for developing the SPIs and HSI techniques presented, it is important
to acknowledge that production ADS will have access to three-dimensional (3D) information. The
availability of 3D data would enable the development of more sophisticated and comprehensive
SPIs, allowing for a more accurate assessment of potential hazards and a more precise charac-
terization of the driving scenario. With 3D information, SPIs could consider factors such as object
height, the vertical distance from the ego vehicle, road surface slope, and complex environmental
geometry, leading to a more comprehensive assessment of the ADS’s safety performance and,
in return, possibly more hazardous scenarios being identified.
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Future Work

The future directions based on the conclusion and limitations of the thesis are listed below:

• Incorporating 3D data into the SPI framework and HSI techniques could significantly enhance
the safety assessment of AV. Future research should explore the integration of 3D information
along with other information about the perceived world by the ADS (such as lanes, static obsta-
cles and traffic signs) to develop more sophisticated and comprehensive SPIs. By leveraging all
the information the ADS detects, researchers can create SPIs that consider factors like object
height, vertical distance, road surface slope, and complex environment, leading to better safety
monitoring and potential hazards.

• As more data is collected from ADS deployments, machine learning models can be trained on
the SPIs to enhance the accuracy and efficiency of hazardous scenario identification. By learn-
ing patterns and relationships within the SPI data, these models can help detect potential safety
compromises and predict the likelihood of hazardous situations. This data-driven approach can
complement the rule-based methods used in the HSI module, enabling more adaptive safety mon-
itoring. Additionally, machine learning techniques can be employed to optimize SPI thresholds
and improve the overall performance of the safety assurance framework.

• Creation of a sophisticated pattern matching algorithm. In this thesis, the output of the HSI module
was run through a basic filter that removed repetitive identifications in a very short period of time.
Future research can look into more advanced pattern-matching algorithms such that different
hazardous scenarios are identified during one journey, enabling quicker manufacturer analysis.

• Incorporating vehicle dynamics information from the ADS can provide valuable insights into the
stability and controllability of the AV. The safety framework can detect potential loss of control
situations by defining SPIs that monitor parameters such as lateral acceleration, yaw rate, and
slip angles. These SPIs can help identify instances where the vehicle’s behaviour deviates from
expected patterns or exceeds predetermined thresholds, indicating a possible compromise in the
ADS’s ability to maintain stable control.
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