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Summary
This thesis focuses on the creation of a control design and verification framework to tackle the pre-
cise pointing problem of flexible spacecraft. Nowadays, many ongoing and proposed missions require
extremely accurate pointing, which is usually achieved with the use of rigid vehicles. Otherwise, distur-
bances from the environment, the structural dynamics of the spacecraft, and the internal microvibration
sources (such as reaction wheels) would severely impact image quality and line-of-sight stability. Addi-
tionally, these effects and their interactions are imprecisely known because the gravity environment on
Earth does not allow for rigorous testing. The resulting uncertainty in the flexible structural parameters
and vibrational dynamics of the spacecraft leads to major challenges in control.
Since payload mass restrictions can often only be met with low-stiffness structures, the control problem
of flexible spacecraft has been a major theme in attitude determination and control systems research
for several decades. The proposed work aims to tackle this challenge by achieving a dual goal of stabi-
lizing the flexible system and increasing pointing performance. This is done by building a high-fidelity,
nonlinear simulation environment of an Earth-observing Low Earth Orbit spacecraft in Simulink and
modelling the vibration environment by taking into account both flexible appendages and reaction
wheels. A sensor suite, state estimator, and reference angle generator are also implemented to better
represent a realistic control system. Then, the main control loop is designed in a concurrent process
with a proportional-integrative-derivative controller, an H∞-based robust controller, and a model pre-
dictive controller that all have to pass a fixed ground-point tracking error requirement of 2 arcsecs.
Afterwards, pointing indicators standardized by the European Space Agency are used to evaluate the
performance of closed-loop control, and it is found that to increase the accuracy and stability of point-
ing, an active-passive vibration isolation platform needs to be designed. By the implementation of a
nonlinear model of a hexapod Stewart-Gough platform and the design of a secondary robust controller
for payload pointing, the performance of the cascade control loop is evaluated in three pointing sce-
narios: single-point tracking, dual-point tracking, and fast multi-point tracking. It is concluded that
the inclusion of an isolator platform is an absolute necessity due to the increased cutoff frequency for
reference tracking, its ability to actively dampen at least the first flexible mode of structural dynamics,
and to alleviate the heavy control effort of the outer loop.
Finally, the designed control algorithm is validated by the combined use of frequency-domain and time-
domain linear models, as well as the nonlinear simulation environment. This fills the gap in research
that was identified during the literature study, where it was determined that the main blocker in in-
creasing pointing performance is a lack of synergy between modelling, control, and validation efforts.
The validation campaign involved an analysis of parameter uncertainty, as well as a multi-frequency
worst-case construction method which concluded that all controllers are robust enough to both para-
metric and dynamic uncertainty.
In conclusion, the main research question of improving pointing precision in flexible spacecraft can be
answered in three parts. First, even if the structural dynamics and onboard microvibration sources are
weak, single-loop control design has to take the flexible modes into account because system performance
is greatly limited by the bandwidth and saturation limits of actuators. A cascade control loop with
a vibration-isolated payload solves this issue by expanding the frequency range of the controller and
offloading control requirements from the main loop to the isolator, leading to more relaxed control in
the outer loop and higher pointing performance in the inner loop. Second, purely frequency-domain
validation processes are not sufficient to prove robustness, as time-domain performance is vastly more
important considering the standard precise pointing indices. Nonlinear high-fidelity modelling tech-
niques offer significant improvements in the validation of control design by the reliable evaluation of
system behaviour in identified worst cases. Third, there are plenty of articles focusing separately on
high-fidelity modelling, advanced control, or verification&validation techniques, but individually these
fields contain significant blind spots. Only their synergistic combination can provide a robust framework
for the control engineering of flexible space structures.
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MC Monte Carlo (Method)
MIMO Multi-Input Multi-Output (System)
MPC Model Predictive Control
MPE Mean Pointing Error
NASA National Aeronautics and Space Administration
NED North-East-Down
Nom Nominal
Par Parameter Set
PID Proportional-Integral-Derivative (Controller)
Ref Reference
RMS Root-Mean-Square
RPE Relative Pointing Error
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SC Spacecraft
SDT Satellite Dynamics Toolbox
SISO Single-Input Single-Output (System)
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SZTAKI Institute for Computer Science and Control
TLE Two-Line (Orbital) Element
V&V Verification and Validation
WC Worst Case
WGS84 World Geodetic System 1984
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1
Introduction

Nowadays, there are many ongoing and proposed missions involving spacecraft where extremely accu-
rate pointing is required, either for cosmic vision or Earth observation purposes. These applications
usually require rigid vehicles, otherwise a number of disturbing effects would severely impact image
quality and line-of-sight stability, such as flexible appendages and internal microvibration sources [1].
Flexible appendages tend to be prevalent in complex missions, as payload mass restrictions can often
only be met with low-stiffness structures. Their vibration characteristics are imprecisely known because
the gravity environment on Earth does not allow for rigorous testing. This uncertainty of frequency
and damping of the flexible modes and potential coupling between axes leads to major challenges in
attitude determination and control system (ADCS) design [2].
Additionally, manufacturing imperfections in reaction wheels generate residual harmonic microvibra-
tions which can be amplified on interaction with the structure of the spacecraft, perturbing the onboard
instrumentation’s line-of-sight stability or even leading to structural failure. As a result, accurately
predicting spacecraft microvibrations due to onboard internal disturbance sources is a formidable multi-
disciplinary engineering challenge [3].
The proposed work aims to tackle the control problem of stabilizing the flexible system while also aiming
to increase pointing performance. Based on the frequency ranges of disturbances and available control
methods (fig. 1.1), this is best achieved in a cascade control loop with an active-passive vibration
isolation system that is then validated against potential uncertainties in the spacecraft model.

Figure 1.1: Typical frequency ranges for spacecraft dynamics and control systems. [1]

1



1.1. Literature review 2

1.1. Literature review
In the literature review, the first task was to find relevant books on the topic to serve as a basis for
further research. Eventually, the selection was restricted to these three, which have been prominently
cited in relevant research and cover a significant portion of the topics in the thesis:

• ”Fundamentals of Spacecraft Attitude Determination and Control” by F. Landis Markley and
John L. Crassidis (2014) [4]

• ”Vibration control of active structures” by Andre Preumont (1997) [5]
• ”Multivariable feedback control: analysis and design” by Sigurd Skogestad and Ian Postlethwaite

(2005) [6]

In terms of research papers on flexible spacecraft, it was noted that research output significantly changed
after 2004, with several prominent researchers either retiring or starting to publish. In terms of pre-2004
research, Leonard Meirovitch published the earliest impactful articles on vibrations and flexible dynam-
ics, while Stefano di Gennaro and Bong Wie expanded the scope of research and inspired hundreds of
future articles. A summary of 50 years of research can be found in Singhose’s 2009 review [7].
This historical context is instrumental to following the trail of research through the years following 2004,
as research output steadily increased. In China, teams led by researchers such as Qinglei Hu, Gruangfu
Ma, and Bing Xiao have published several papers on the sliding mode attitude tracking control of
flexible satellites under various conditions (such as actuator saturation, disturbances, uncertainty, etc.),
or focusing on the attitude stabilization control of such satellites with high accuracy [8]. In Europe,
there has been a focus on integrated control/structure spacecraft design, and structured H∞ control
design [9]. Globally, there have also been efforts made on the predictive control of flexible spacecraft
[10], with wide surveys being carried out on the entire aerospace industry, seeking opportunities for the
application of model predictive control [11].
The next important step is assessing the state of the art of sensor characteristics. To this end, JAXA’s
Advanced Land Observing Satellite (ALOS) proved to be an important source of hardware data [12],
as it has been one of the first high-precision flexible spacecraft in orbit. In our day, the most precise
form of attitude determination seems to come from star sensors, so special attention has been given to
assessing their performance and analyzing their theoretical limits and characteristics [13].
Then, the topic of vibration isolation and suppression was surveyed. After reading the thorough litera-
ture study of Liu et al [14], three approaches have been identified: passive, active, and hybrid isolation.
A number of publications use struts (the most prevalent is a hexapod setup, although bipods also exist),
while others use smart materials. Promising articles by Valentin Preda and his team at ESA combine
robust microvibration mitigation with pointing performance analysis [15], which is greatly relevant to
the project. For designing the cascade control structure, literature on precise payload pointing control
has also been assessed. Several approaches have been identified, involving Stewart platforms [16], high
precision tracking via iterative control [17], and model predictive control [18].
Finally, it has been noted that literature on the verification of controllers for flexible spacecraft is rather
lacking, with very few published articles in the field. This is the gap that this project is trying to fill,
by building on the body of research accumulated over the years on the topics that have previously
been discussed. Important publications include the work of Wang et al in a joint project between the
University of Exeter and ESA ESTEC on verification [19] and robustness analysis [20]. Also valuable
to the project is the work of Gasbarri et al of Thales Alenia and Sapienza Universita di Roma [2].

1.2. Research objective
The main research question that was identified based on the gaps in the literature is: How can the
pointing precision of flexible spacecraft be improved, compared to the current state of the art? It was
determined at the start of the thesis that the best approach to achieve higher pointing precision in
flexible spacecraft is by the analysis and validation of concurrent control approaches in a nonlinear
simulation environment. First, an overview of the state of the art implementations was gained by re-
viewing available literature on the topic. Then, a reliable simulation environment is built in Simulink
by analyzing available literature on the dynamics of flexible spacecraft in orbit. The modelling of the
vibration environment is carried out by taking into account both flexible appendages and mechanical
spinning devices such as reaction wheels. Finally, sensor dynamics are implemented in the model after
a thorough analysis of available sensing methods for attitude determination.
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Next, the coupling of the satellite and payload dynamics is modelled by reviewing previous work that
has been done on the behaviour of vibration isolation systems. Indicators for the evaluation of pointing
precision are identified to monitor the performance of control systems and the effect of disturbances.
To increase pointing precision, attitude errors are minimized in a cascade control structure by designing
an attitude control loop to stabilize the spacecraft in the correct orientation, and a payload pointing
control loop to point the camera at the desired ground target.
Finally, the designed control algorithm is evaluated by carrying out a verification and validation cam-
paign using the developed high-fidelity nonlinear simulation environment. Then, comparisons are made
between various approaches by writing a report on implementation aspects. The validation of the work
allows for making the scientific value of the results clear.

1.3. Outline
This thesis is structured as follows. Chapter 1 is the introduction, written to give a brief overview of
the current practices in the precise pointing control of flexible spacecraft. It also identifies the gaps in
the body of knowledge and proposes research objectives to investigate them.
Chapter 2 details the mathematical modelling of the flexible spacecraft in Low Earth Orbit. It describes
the mass and inertia properties of the reference spacecraft based on Sentinel-2 and then presents the or-
bital parameters of the vehicle. Then, it defines four frames of reference to be used throughout the thesis:
Earth-Centered Inertial, Earth-Centered Earth-Fixed, Local Vertical Local Horizontal, and Body-fixed.
Using these frames, the equations of motions are derived from the properties of relative dynamics. They
mainly rely on a combination of rotation matrices and quaternions, but the conversions to and from
Euler angles are also described. Afterwards, the initial conditions of simulation are calculated from
Kepler’s equation and the orbit propagator is validated with measurement data. Then, the structural
dynamics are described in terms of a flexible beam element that stands for the solar panel. There are
also four environmental disturbances: gravity gradient torque, aerodynamic torque, magnetic torque,
and non-spherical gravity. Finally, the model of the spacecraft is linearized and validated against the
Satellite Dynamics Toolbox of Alazard et al [21].
Chapter 3 deals with the design of the attitude determination and control system of the spacecraft. It
describes the modelling aspects of the microvibration environment of a reaction wheel assembly, as well
as the noise characteristics of a sensor suite containing GPS, star trackers, gyros, and accelerometers.
Then, a simulator-based state estimator algorithm is proposed whose output is used in the quaternion-
based reference angle generator which is responsible for targeting the pointing system. For the main
control loop of the spacecraft, a concurrent control design effort is carried out which resulted in a linear
PID controller, a robust H∞-based controller, and a predictive MPC. This process is described in detail
to aid readers who might be unfamiliar with the controller tuning process, which can be time-intensive
and highly iterative.
Chapter 4 deals with the evaluation of control performance in the outer loop, using standardized point-
ing performance indicators such as APE, MPE, and RPE. The ground track error is also calculated
algorithmically from the line-of-sight vector and the WGS84 reference ellipsoid. Using these error in-
dices, the effect of trajectory generation is evaluated in the tracking of a single ground target, as well
as in a dual-tracking scenario. To improve control performance, a robust H∞-based cascade control
loop is proposed, involving a hexapod Stewart-Gough platform that serves a dual purpose as an active-
passive vibration isolator and a pointing platform. With this platform, the viability of a multi-tracking
algorithm is explored at the end of the chapter.
Chapter 5 ties the project together in a verification and validation campaign. There are two major
components to this effort. First, the parameter uncertainty analysis process whose preliminary results
were presented in 2022 at the 10th Vienna International Conference on Mathematical Modelling [22].
Second, a multi-frequency worst-case uncertainty construction method presented by Patartics et al [23],
which combines frequency-domain and time-domain performance indicators to augment Monte Carlo
methods, which were found to have significant shortcomings in literature. Chapter 6 concludes the
project by explaining the most significant lessons learned and answering the initial research question. It
also presents a critical review of the work done with some recommendations on potential future goals,
and a short description of the ongoing research effort.



2
Mathematical Modelling

To describe and analyze the dynamics of the nonlinear system, a realistic mathematical model was built
in Simulink. The scientific basis of this model was the research done throughout the literature study,
which answered the following questions:

• How are spacecraft modelled in a simulation environment?

– What are the differential equations governing the translational and rotational motion of a
body in space?

– What are the major disturbing effects in Low Earth Orbit and how are they modelled?
• What are the main sources of vibration on a flexible spacecraft and how are they affecting its

dynamics?

– What are the different approaches to modelling flexible appendages?

The resulting system achieves high fidelity in modelling the dynamics of an Earth-observing spacecraft
while still retaining a high simulation speed due to the efforts made to increase efficiency. A simulation
time of 6000 s was determined to model roughly a single orbit, with a fixed time step of 1 ms. To
numerically solve the differential equations, the Bogacki-Shampine method is used (ode3), which was
found sufficiently accurate compared to higher order solvers in Simulink.

2.1. Modelling the spacecraft
Throughout the thesis, Sentinel-2B, a European Earth observation satellite is used as a reference space-
craft for both orbit modelling and system characteristics. This features a spacecraft bus with a similar
size and mass to the original, a rotating solar panel, and a variable-mass (currently half-full) propellant
tank. The nominal values for these parameters are presented in table 2.1.

Part Size (m) Mass (kg) Center of mass (m)
Bus [3.4; 1.8; 2.35] 975 [0; 0; 0]

Panel [0.01; 3.1; 2.3] 40 [0;−2.45; 0]
Tank [0.5; 0.5; 0.5] 125/2 [−1.4; 0; 0]
Sum - 1140 [−0.0812;−0.0910; 0]

Table 2.1: Reference spacecraft parameters.

From this table, the mass moment of inertia of the reference spacecraft can be calculated, which results
in a rough approximation of the real value for Sentinel-2B. First, inertia matrices are defined for each
part, approximating them as cuboids of mass mi and dimensions lx,y,z.

Ji =
mi

12

l2y + l2z 0 0
0 l2x + l2z 0
0 0 l2x + l2y

 (2.1)
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Part Ji,diag
(
kgm2

)
rTi (m)

Bus [711.95, 1387.95, 1202.50] [−0.0812,−0.0910, 0]
Panel [49.6667, 17.6337, 32.0337] [−0.0812, 2.3590, 0]
Tank [2.6042, 2.6042, 2.6042] [1.3188,−0.0910, 0]

Table 2.2: Reference spacecraft partial inertias.

Then, a generalization of the parallel axis theorem (also known as Huygens–Steiner theorem) is used
for the summation of these three parts into the center of gravity (COG), which results in the complete
inertia tensor of the spacecraft. Considering the vector ri to be the displacement vector from the
assembly COG to the element center of mass, the inertia matrix for the reference spacecraft works out
to be:

J =
∑
i

Ji +mi

(
rTi riI3 − rirTi

)
=

995.41 7.9582 0
7.9582 1523.6 0

0 0 1583.7

 kgm2 (2.2)

The reference spacecraft (as well as Sentinel-2B) occupies a Sun-synchronous orbit, which is highly
inclined and circular at 790 km altitude. For accurate orbit modelling, the orbital parameters are
frequently updated from the spacecraft’s two-line orbital elements (TLE). To give a (truncated) example
for 1st October 2022:

1 42063U 17013A 22274.80190422 .00000096 00000-0 53102-4 0 9990
2 42063 98.5628 348.0182 0000835 85.9840 274.1436 14.30822891∼

The first line contains the epoch of the anomaly t0 in terms of the year (2022) and decimal day with
the fractional portion (273.61309745), while the second line has the classical orbital elements necessary
for further modelling (shown in table 2.3),

Orbital Parameter Symbol Value Unit
Inclination i 98.5628 deg

Right ascension of the ascending node Ω 348.0182 deg
Eccentricity e 0.0000835 -

Argument of perigee ω 85.9840 deg
Mean anomaly at epoch M0 274.1436 deg

Mean motion n 14.30822891 day−1

Table 2.3: Orbital parameters of Sentinel-2B.

Using the standard gravitational parameter of Earth (µ = 3.986 · 1014m3 s−2), the semi-major axis (a)
of the orbit can be inferred from the mean motion of the spacecraft:

TP = 2π

√
a3

µ
=

24 · 3600
n

= 6038.485 s −→ a = 7.1671 · 106m (2.3)

In order to set up an overpass above Delft, the mean anomaly is propagated to 2022-10-01 19:14:44,
with ∆T as the time passed between the epoch and the defined start time of the simulation:

M =M0 + 2π
∆T

TP
= 29.3637◦ (2.4)

2.2. Reference frames
The translational and rotational motion of a body in space is described by the use of reference frames.
Generally, they are defined by their origin and the orientation of their coordinate axes. A huge variety
of such coordinate systems exist, however, only a small subset are relevant to simulating spacecraft
motion.
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Inertial frame
As Newton’s equations of motion are only valid in inertial reference frames, such systems are important
when analyzing the dynamics of a body in orbit. They are reference frames that move at constant
velocity and without rotation, relative to frames in which the universe appears spherically symmetric.

Figure 2.1: Position in ECI frame. (source: Wikimedia Commons)

The Earth-Centered Inertial (ECI, or ”I”) frame is a Cartesian coordinate system, whose origin is
defined in the Earth’s center of mass. The z-axis is aligned with the mean North Pole, which means it is
normal to the mean equatorial plane of the planet. The x-axis is aligned with the mean vernal equinox
at some epoch, here J2000.0 (12:00 Terrestrial Time on 1 January 2000). The y-axis completes the
right-handed orthogonal system, meaning the x-y plane is coincident with the equatorial plane. This is
the only inertial frame in the model, with the three other frames having their definitions tied to it [4].

Earth-fixed frame
For navigation and observation purposes, it is important to know the position of a spacecraft relative
to Earth’s surface. While the ECI frame allows for making these calculations, it is simpler to define a
reference frame that takes into account the rotation of the Earth.

Figure 2.2: Definition of ECEF frame. [4]
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The Earth-Centered Earth-Fixed (ECEF, or ”F”) frame shares an origin with ECI, as well as optionally
the z-axis by disregarding precession, nutation, and other complex motions of Earth compared to the
fixed stars. It is non-inertial, as the x-y axes are rotating with the planet, with x pointing towards
the prime meridian (0 longitude, 0 latitude). Figure 2.2 compares the ECI frame base vectors (i1, i2, i3)
with those of the ECEF frame (ε1, ε2, ε3) [4].
The rotation matrix RFI can be formulated as a simple rotation around the z-axis, with the angle
θGMST as the product of Earth’s rotation rate (ωI⊕) and the time passed (∆T ) since the ECI epoch.
One should note that the J2000.0 model starts at the Greenwich angle (280.46◦). However, this simple
model doesn’t take into account precession and nutation, so the more complex model IAU-2000/2006
is used for deriving this rotation matrix in the thesis (in Matlab: dcmeci2ecef).

RFI =

 cos θGMST sin θGMST 0
− sin θGMST cos θGMST 0

0 0 1

 (2.5)

θGMST = ∆T · ωI⊕ + 280.46◦ (2.6)
For modelling the planet and converting between ECEF and LLA (geodetic latitude, longitude, altitude),
the thesis uses the WGS84 reference ellipsoid. Here, the geoid of Earth is approximated with a reference
ellipsoid of semimajor axis Req = 6378.1370 km (equatorial radius) and semiminor axis Rpol = 6356.7523
km (polar radius). The rotation of the planet is defined to be ωI⊕ = 72.92115 · 10−6 rad/s.

Figure 2.3: Geocentric and geodetic latitude. [4]

Using this model, ECEF position vectors can also be specified by their geocentric latitude λ′, longitude
ϕ, and magnitude r. This is done via a simple conversion from the Cartesian system to spherical
coordinates. However, these coordinates are not the ones that are widely used in navigation. Instead of
using the geocentric latitude, the geodetic latitude λ is defined, perpendicular to the reference ellipsoid
(fig. 2.3). Another difference is that altitude h is used instead of magnitude r. A closed-form solution
to converting between the geodetic coordinates (λ, ϕ, h) and ECEF (rFBF ) position is given in Markley,
while the thesis uses Matlab’s ecef2lla and lla2ecef commands in case a conversion is needed.

Local frame
For Earth-pointing spacecraft, it is convenient to define a local frame, one that is referenced to the
spacecraft’s position in orbit.
A commonly used frame is Local Vertical Local Horizontal (LVLH, or ”L”), which is a local frame with
an origin that is fixed to the center of mass of the spacecraft. The z-axis points in the direction of the
nadir (towards the center of mass of the Earth), the y-axis to the negated normal vector of the orbital
plane, and the x-axis completes the right-handed orthogonal system. This is convenient for declaring
the rotation matrix RLI in simulations, as the nadir vector is the same as the negated unit ECI position
vector, while the normal vector of the orbital plane is the same as the unit cross product of the ECI
position (rIBI) and velocity (vIBI) vectors. The transformed rotation matrix RLF can also be defined
with ECEF vectors and the WGS84 Earth rotation rate ωF⊕, using orthogonal basis vectors ôi [4].

o1 = o2 × o3
o2 = −rFBF ×

(
vFBF + ωF⊕ × rFBF

)
o3 = −rFBF

RLF = [ô1 ô2 ô3]

(2.7)
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Figure 2.4: Local Vertical Local Horizontal frame definition. [4]

This is a geocentric system, meaning that the nadir vector is not normal to the surface of the reference
ellipsoid. It is also important to mention that the x-axis is not coincident with the velocity vector,
instead it is tangential to the trajectory of the spacecraft. The angle between the velocity vector and
the local horizontal plane is called the flight path angle, denoted by γ in figure 2.4.
Another approach is the North-East-Down (NED) system. It is a similarly non-inertial frame of refer-
ence, that shares an origin with LVLH in the center of mass of the spacecraft. One of the differences is
that the z-axis (”down”) points to the negative normal of the surface ellipsoid, making the NED system
geodetic (instead of geocentric, like LVLH). The x-axis points north parallel to the geoid surface in the
polar direction, while the y-axis points east parallel to the geoid surface along a latitude curve. Because
of these complexities, it is usually computationally inefficient compared to LVLH and suffers from bad
numerical conditioning close to the poles. Despite NED’s wide use in Matlab and Simulink toolboxes,
this thesis exclusively uses LVLH as the local frame. [24]

Spacecraft body frame
The final reference system is the spacecraft body frame (”B”). Its origin is fixed to the COG of the
body, and its orientation is fixed to the shape of the body. By using the orientation of the spacecraft,
two final rotation matrices will be defined between the ECEF and Body frames (RBF ), as well as the
LVLH and Body frames (RBL) in the next section.

Figure 2.5: Model of the reference spacecraft with Body axes.

As shown in fig. 2.5, the x-axis is the surface normal of the ”forward-facing” side of the spacecraft bus,
and the z-axis points straight down in line with the optical axis. The y-axis completes the right-handed
system, pointing opposite to the solar panel.
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2.3. Equations of motion
In order to derive the equations of motion of the rigid body, four state vectors are selected to be in-
tegrated in the numerical solver. Two of them are used in the description of orbital dynamics: the
ECEF-frame position vector (rFBF ) and the ECEF-frame velocity vector (vFBF ) of the spacecraft. Addi-
tionally, two more states are used for rotational motion: the ECEF-to-Body rotation quaternion (qBF )
and the angular velocity of the spacecraft to the inertial frame, expressed in the Body frame (ωBBI).

Gravity modelling
Another important choice to make in the simulation is the fidelity of the gravity model. Since Earth
is not a uniform sphere, but rather a geoid with a non-uniform mass distribution, the gravity field
will reflect this nonuniformity. The most common approach to modelling the field uses a spherical
harmonic expansion (fig. 2.6), usually in the form of zonal harmonics. Zonal harmonics provide a simple
explanation of the nonuniform field, because they are symmetrical about the polar axis, meaning there
is no longitude-dependence. The strongest of these effects arises from the J2 zonal coefficient, with all
others being orders of magnitude weaker [4].
Over the years, a number of models have been developed based on measurements of the gravity field of
Earth, such as WGS 84, EGM 96, EGM 2008, and EIGEN-GL04C. These models are readily available
to a desired degree of accuracy, providing quick and reliable data for the gravity force vector for any
point in Earth orbit.

Figure 2.6: Zonal (a), tesseral (b), and sectoral (c) spherical harmonics. [4]

In this thesis, a zonal harmonic expansion to the fourth degree was used to account for the non-spherical
property of the field (Spherical Harmonic Gravity Model in Simulink). This choice was the result
of a trade-off between simulation speed and the accuracy of calculations over the simulated timespan.

Rigid body dynamics
The orbital dynamics of the satellite are described with two sets of differential equations, one for the
ECEF position vector, and another for the ECEF velocity vector. These equations of motion are the
result of Newton’s laws of motion expressed in the rotating, non-accelerating frame ECEF frame. This
rotation means there are also centrifugal and Coriolis components in the dynamics, while the Euler
component can be safely neglected due to the slow rate of change in the angular velocity of the frame.

ṙFBF = vFBF (2.8)

v̇FBF = RFB
fB
m

− 2ωF⊕ × vFBF − ωF⊕ ×
(
ωF⊕ × rFBF

)
(2.9)

Attitude representations
Up to this point in the thesis, rotation matrices were used as the only method of transforming vectors
from one reference frame to another. If a vector v needs to be rotated from frame A to frame B, the
task is performed by multiplication with the matrix RBA:

vB = RBA · vA (2.10)

Euler’s theorem states that any rotation is a rotation about a fixed axis. As the unit vector e, this
is called the Euler axis, and it corresponds to the eigenvector of the matrix. The angle of rotation
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about this axis is the Euler angle θ, and these two define one of the many rotation formalisms in three
dimensions [4].

R(e, θ) =

 cos θ + (1− cos θ) e21 (1− cos θ) e1e2 + sin θe3 (1− cos θ) e1e3 − sin θe2
(1− cos θ) e2e1 − sin θe3 cos θ + (1− cos θ) e22 (1− cos θ) e2e3 + sin θe1
(1− cos θ) e3e1 + sin θe2 (1− cos θ) e3e2 − sin θe1 cos θ + (1− cos θ) e23

 (2.11)

In Aerospace applications, one of the most widely used formalisms is the Euler angle representation,
which expresses a rotation from an initial frame I to a final frame F as the product of three rotations:
a rotation first from I to an intermediate frame H, then to a second intermediate frame G, and finally
to frame F. As such, the overall transformation is expressed as a series of three rotations [4].

RFI(eϕ, eθ, eψ;ϕ, θ, ψ) = RFG(eψ, ψ)RGH(eθ, θ)RHI(eϕ, ϕ) (2.12)

The rotation axes of the classical Euler angle representation are selected from a set of three vectors,
with a compacted notation [4].

eX =

10
0

 eY =

01
0

 eZ =

00
1

 (2.13)

Rijk(ϕ, θ, ψ) = R(ek, ψ)R(ej , θ)R(ei, ϕ) (2.14)
There are 12 valid rotation sequences in total, Tait-Bryan angles being the most useful ones for the thesis,
considering their property to represent horizontal attitude with zero degree elevation. The sequence
used in the thesis is XYZ, which is generally useful for describing the attitude of an Earth-pointing
spacecraft. The three angles in such a sequence are called roll (ϕ), pitch (θ), and yaw (ψ) [4]. An
added benefit for the project is the sequence’s property to render the last rotation (yaw) to a simple
one around the optical axis of the spacecraft. The rotation matrix can be developed as follows.

RXY Z(ϕ, θ, ψ) =

 cosψ sinψ 0
− sinϕ cosψ 0

0 0 1

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (2.15)

Euler angles have some major disadvantages. First off, using three rotation matrices that all involve
trigonometrical functions is a huge strain on performance. Even worse is the existence of singularities.
When cos θ = 0 (so the pitch angle is ±90◦), gimbal lock occurs, which is the undesirable state of
collinearity of the physical rotation axis vectors of the first and third rotations in the sequence, leading
to the loss of one degree of freedom in rotation [4].
As such, Euler angles are only used for visualization and attitude commands in the thesis, and the
dynamical model uses quaternion representation. At the cost of a somewhat increased degree of ab-
straction, the use of quaternions involves relatively simple multiplications in the dynamics and avoids
gimbal lock through redundancy. Quaternions are defined by substituting sin (θ) = 2 sin (θ/2) cos (θ/2)
and cos (θ) = cos2 (θ/2)− sin2 (θ/2) into the rotation matrix R(e, θ)[4]:

q(e, θ) =
[

cos (θ/2)
e sin (θ/2)

]
=


q0
q1
q2
q3

 (2.16)

This means that the conversion from quaternions to rotation matrices and vice versa is a relatively
simple operation:

R(q) =

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

 (2.17)

For the inverse operation, four mathematically equivalent paths exist, and the selection depends on the
numerical conditioning of the denominator q0:

q0 =
1

2

√
1 + tr(R)

q1q2
q3

 =
1

4q0

R12 +R21

R13 +R31

R32 −R23

 (2.18)
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Rotational kinematics with quaternions
The second set of differential equations was derived from the relative dynamics of rotating reference
frames and the kinematics of quaternions. Including the body-frame torques τB and reaction wheel
angular momentum hrw in the equation, the angular velocity of the body frame with respect to the
inertial frame can be expressed as:

ω̇BBI = J−1
[
τB − ωBBI ×

(
hBrw + JωBBI

)]
(2.19)

Using a scalar-first convention and defining ω̊BBF as a quaternion with a zero scalar element, the kine-
matics of the quaternion between the fixed and body frames can be expressed as a single quaternion
product. Note that during simulation, the inertial frame is not tracked with rotation matrices to re-
duce model complexity. As such, the RBF matrix is used to rotate the angular velocity of the Earth,
considering the rotation axis of RFI is largely coincident with the planet’s axis of rotation.

q̇BF =
1

2
qBF ◦ ω̊BBF ω̊BBF =

[
0

ωBBI − RBFω
F
⊕

]
(2.20)

The outer product works out to the following matrix operation:

q̇BF =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 qBF (2.21)

Additionally, the orientation is defined to be the quaternion between the Body and the local frames.
This quaternion also serves as the basis for the Local-to-Body rotation matrix, as well as the definition
of Euler angles with an XYZ rotation order.

qBL = qBF q−1
LF −→ RBL −→ ϕ, θ, ψ (2.22)

Initial conditions
Initial conditions for all the states have been calculated by extracting position and velocity data from
the reference spacecraft’s two-line orbital elements. The perifocal frame is used in this section: its
origin lies at the focus of the orbit, with the x-axis directed towards the perigee, the y-axis having a
true anomaly of 90 degrees past the perigee, and the z-axis being orthogonal to the orbital plane. [25]

Figure 2.7: Perifocal frame of the satellite. [25]

First, Kepler’s equation is solved numerically to determine the eccentric anomaly (E) from the mean
anomaly (M) and eccentricity (e) of the orbit. Due to the circular orbit, this roughly matches the mean
anomaly:

M = E − e sinE −→ E = 29.3660◦ (2.23)



2.3. Equations of motion 12

From here, Kepler’s first law of planetary motion is employed to calculate the position (rp) and velocity
(vp) of the spacecraft in the perifocal frame, using the semi-minor axis (b), specific relative angular
momentum (h), and distance from the Earth (r) [4].

b = a
√
1− e2 (2.24)

rPBP =

a (cosE − e)
b sinE

0

 (2.25)

h =
√
aµ (1− e2) r = a (1− e cos(E)) (2.26)

vPBP =
h

r

−a
b sinE
cosE
0

 (2.27)

From there, the position and velocity vectors are rotated from the perifocal to the ECI frame, taking
into account the angles of right ascension (Ω), inclination (i), and argument of perigee (ω) [4].

RT
IP =

 cosω sinω 0
− sinω cosω 0

0 0 1

1 0 0
0 cos i sin i
0 − sin i cos i

 cosΩ sinΩ 0
− sinΩ cosΩ 0

0 0 1

 (2.28)

rIBI = RIP rPBP (2.29)
vIBI = RIP vPBP (2.30)

Finally, the position and velocity of the spacecraft are expressed in the ECEF frame, giving the initial
conditions for the first two state vectors:

rFBF = RFIrIBI (2.31)
vFBF = RFIvIBI − ωF⊕ × rFBF (2.32)

In order to determine the initial conditions of the rotation state vectors, first some assumptions need to
be made. In this case, the spacecraft is in a nadir-pointing orientation (i.e. straight down) and has zero
angular velocity with respect to the local frame (i.e. stays roughly nadir-pointing through the orbit).

qBL = [1 0 0 0]
T −→ RBL =

1 0 0
0 1 0
0 0 1

 (2.33)

ωBBL = [0 0 0]
T (2.34)

The initial quaternion between the Body and the ECEF frame can be calculated with a simple multi-
plication:

RBF = RBL · RLF −→ qBF (2.35)

However, determining the initial angular velocity of the Body in the inertial frame is more complicated.
The rotation rates of all rotating frames have to be rotated into the Body frame and summed up in
order to keep the body nadir-pointing.

ωBBI = ωBBL + ωBLF + ωBFI = ωBBL + RBFω
I
LI + RBIω

I
⊕ (2.36)

The angular velocity of the local frame can be calculated from the specific relative angular momentum
divided by the square of the distance from Earth.

ωILI =
rIBI × vIBI
||rIBI ||2

(2.37)
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First results
Once these equations are all implemented in Simulink, the first step was to verify the system behaviour
against an independent reference. This is illustrated in figure 2.8.
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Figure 2.8: Ground track verification for orbit propagator.

The dots are placed one minute apart from each other, and show the ground track of the satellite as
calculated by the orbit propagator. The solid line is the reference ground track from Heavens Above,
half an orbital period into the past and future. Since there’s a close visual match between the two lines,
the longitude and latitude calculations can be considered valid.
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Figure 2.9: Desired apogee overshoot with non-spherical gravity.

It should be noted that while the nominal perigee was respected, there was an enormous overshoot of the
nominal apogee height of the spacecraft (fig. 2.9). This discrepancy comes from the assumptions made
during the calculation of initial conditions: classical orbital elements and orbital mechanics are based on
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a spherical gravity model, so in order to accommodate non-spherical gravity models, the calculations
would require some adjustments. However, an exact match with the real altitude of Sentinel is not
necessary for the thesis, so the effect is accepted as an environmental disturbance.
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Figure 2.10: Euler angles with no control.

The Euler angles of the spacecraft (fig. 2.10) were also checked to see the magnitude of attitude drift.
Ideally, all angles should remain close to zero, given the initial conditions for the angular velocity. This
ensures that when the designed controllers are switched on, they do not have to rein in a rapidly rotating
spacecraft and can expend more control effort on ground tracking. Since none of the angles drift outside
of 10 degrees during a single orbit, this requirement is also fulfilled.

2.4. Modelling a flexible appendage
A major source of disturbance to the spacecraft comes from its structural dynamics. The solar panel
attached to the side of the satellite acts as a flexible appendage, are there are numerous approaches to
modelling its behaviour. In this project, the panel is considered to be a flexible beam element with a
rigid single-point connection (P) to the spacecraft. This description of the flexible body results in a
linear state-space model, following the derivation of pure flexion dynamics from Chebbi et al [26].

Figure 2.11: Parametrization of the flexion beam deflection. [26]
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This approach is a Lagrange-based technique that involves a moving body frame attached to the beam
at the connection point P. Considering the shape and material properties of the panel, torsion and
traction modes can be safely neglected, as well as the x-z plane bending modes. As such, this section is
mainly concerned with the derivation of a linear model for the x-y bending modes of the beam element
representing the solar panel. The final model is verified against the Satellite Dynamics Toolbox of
Alazard et al [21][27][28].
As presented in figure 2.11, in the x-y plane, the dynamics of the beam only consist of two components:
translation along the y-axis and rotation around the z axis. The state of the beam (q) is described
using the beam deflection v and its spatial derivatives and then split into rigid and flexible components
by the shape functions Φr and Φf .

q(x, t) =

 v(x, t)v′(x, t)
v′′(x, t)

 = Φr(x)qr(t) +Φf (x)qf (t) (2.38)

Our main concern in this description is determining the effects of flexible behaviour. As such, every
step along the way the purely rigid components of the beam dynamics are slowly being worked away.
This is done through an analysis of the elements of equation 2.38. The total deflection is also split into
components, describing the purely rigid and purely flexible motion of the beam:

v(x, t) = vP (t) + xv′P (t) + vf (x, t) vP (t) = v(0, t) (2.39)

Here, the flexible part vf (x, t) is approximated with a 5th order polynomial for x with time-dependent
coefficients af (t) such that vf (0, t) and v′f (0, t) are both zero:

vf (x, t) = p(x)af (t) p(x) =
[
x2 x3 x4 x5

]
(2.40)

Considering the four-component vector of flexible coordinates, one can make a connection to the poly-
nomial coefficients of the deflection:

qf (t) =


v′′f (0, t)

vf (l, t)
v′f (l, t)

v′′f (l, t)

 = Paf (t) P =


p′′(0)
p(l)
p′(l)
p′′(l)

 (2.41)

As a result of this parametrization, the shape functions take the following values:

Φr(x) =

1 x
0 1
0 0

 Φf (x) = Pf (x)P−1 Pf (x) =

 p(x)
p′(x)
p′′(x)

 (2.42)

Now, they can be used to define the mass and stiffness matrices of the flexible system. The following
formulas are derived from the Lagrange equations for the kinetic and elastic potential energies [26].
Note that in the mass matrix, the rotational contribution of the kinetic energy is neglected.

M =

[
Mrr Mrf

MT
rf Mff

]
=

∫ l

0

[
ΦT
r

ΦT
f

]ρs 0 0
0 0 0
0 0 0

 [
Φr Φf

]
dx (2.43)

K =

∫ l

0

ΦT
f

0 0 0
0 0 0
0 0 EJz

Φfdx (2.44)

These matrices can then be used in the dynamic model obtained by Lagrange derivation, giving the 2
DOF wrench WP (z-torque and y-force) applied by the beam and acting in point P as output.[

Mrr Mrf

MT
rf Mff

] [
q̈r
q̈f

]
+

[
02x2 02x4
04x2 K

] [
qr
qf

]
= −WP (2.45)
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In order to define a damping matrix D, the following eigenvector-eigenvalue problem is solved for the
purely flexible mass matrix and the stiffness matrix:

MffVΩ2 = KV −→ V,Ω2 = diag
(
ω2
i

)
(2.46)

D = Vdiag (2ξωi)V−1 (2.47)
Considering the acceleration twist q̈P at point P as the input and the wrench wP as output, the linear
dynamics of the solar panel in the local frame of P can be described with the following state-space
matrix. Note that the purely rigid component of the mass matrix (in red) is set to zero in the final
model, in order to not duplicate the inertial contribution of the solar panel in the full model of the
spacecraft.  q̇f

q̈f
wP

 =

 04x4 I4x4 04x2
−M−1

ff K −D −M−1
ff MT

rf

MrfM−1
ff K MrfD MrfM−1

ff MT
rf−Mrr

qf
q̇f
q̈P

 (2.48)

The calculation of this matrix requires the definition of five material properties for the beam (tab. 2.4).
These can either be determined from the dimensions and mass of the solar panel. In the case of the
Young modulus, an approximation for single-crystal silicon is used from catalogue data.

Symbol Definition Value Unit
ρ Average density 561 kgm−3

s Cross-sectional area 0.023 m2

l Beam length 3.1 m
E Young modulus 150 GPa
Jz Mass moment of inertia 1.9167 · 10−7 kgm2

Table 2.4: Material properties of the solar panel.

In order to include the dynamical equations of the beam in the larger nonlinear model of the spacecraft,
first it has to be expanded from a two-input-two-output system to one with six inputs and six outputs,
then has to be transformed from the Panel frame to the Body frame. To this end, four transformation
matrices are applied to the state-space model. The first matrix (RPB1

) expands the size of inputs and
outputs from two to six, while the second matrix (RPB2

) flips the axes of the panel reference frame to
is aligns with the body axes.

RPB1
=

[
0 1 0 0 0 0
0 0 0 0 0 1

]
RPB2

=

0 −1 0
1 0 0
0 0 1

 (2.49)

The third matrix (RPB3
) rotates the inputs and outputs according to the angle of the solar panel. The

fourth one (RPB4) shifts the origin of the frame from the panel connection point P to the body center
of gravity B using a skew-symmetric transformation matrix.

RPB3 =

cosαP 0 − sinαP
0 1 0

sinαP 0 cosαP

 RPB4 =

−0.0812
−0.0910

0

−

 0
−0.9000

0


×

(2.50)

Finally, all of these matrices are combined into a single transformation:

RPB = RPB1

[
RPB2

RPB3
03x3

03x3 RPB2RPB3

] [
I3x3 RPB4

03x3 I3x3

]
(2.51)

Which is then applied to the component matrices of the state-space model Gflex:[
q̇f
q̈f

]
= AF

[
qf
q̇f

]
+ BF

[
v̇
ω̇

]B
PB

(2.52)[
f
τ

]B
P

= CF

[
qf
q̇f

]
+ DF

[
v̇
ω̇

]B
PB

(2.53)



2.5. Modelling external disturbances 17

AF =

[
04x4 I4x4

−M−1
ff K −D

]
BF =

[
04x2

−M−1
ff MT

rf

]
RPB (2.54)

CF = RT
PB

[
MrfM−1

ff K MrfD
]

DF = RT
PB

[
MrfM−1

ff MT
rf

]
RPB (2.55)

The resulting linear model can be directly integrated into the larger nonlinear model of the spacecraft
while preserving its modularity. For the nominal case of the solar panel, the Bode plots presented in
figure 2.12 show the reaction torques and forces as a response to Body-frame acceleration.
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Figure 2.12: X-axis force and z-axis torque response of the panel to acceleration input.

The frequency response of the flexible system resembles a high-pass filter with a cutoff frequency of
roughly 17 rad/s. This is ideal for control purposes as the frequency is well within the bounds of
available spacecraft actuators. There are three more resonant frequencies for the appendage (table 2.5),
two of which are still within reasonable bounds for control purposes. The largest frequency bending
mode is likely uncontrollable, but fortunately has a low magnitude and can still be simulated with the
current time step, so its effect on control performance can be evaluated.

Frequency (rad/s) Damping coeff.
17.2702 0.1
108.836 0.1
311.149 0.1
1383.16 0.1

Table 2.5: Flexible characteristics.

2.5. Modelling external disturbances
There are a number of environmental factors that have undesirable effects on the dynamics of the
spacecraft by changing its overall momentum (linear or angular). This section will mainly focus on
external torques, which can vary greatly in magnitude, depending on the characteristics of the spacecraft,
the altitude of the orbit, or even time, among other factors. Note that for these disturbances, the main
goal is not to model them as numerically accurately as possible, which would be hard enough even with
unlimited computational resources. Rather, the goal is to build optimized representations of them that
match their real-world frequency and magnitude characteristics.
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A plot of the most significant external disturbing torques is shown in fig. 2.13. Due to the reference
spacecraft’s position in Low Earth Orbit, the sources of the main disturbing torques are aerodynamics,
magnetism, and gravity. Solar radiation pressure is excluded from modelling to increase simulation
speed, as it is a relatively minor effect in the selected altitude range.

Figure 2.13: Magnitudes of environmental torques on an Earth-orbiting satellite. [29]
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Gravity gradient torque
Any non-symmetrical rigid body in a gravity field is subject to a gravity-gradient torque. This is
the result of a drop in the magnitude of the field as various parts of the body are located farther
away from the source (i.e. the center of the planet). This torque is computed by the summation of
gravitational forces acting on the point masses constituting the rigid body. Assuming that the gravity
field is spherically symmetric, the torque can be calculated as [4]:

τBgg =
3µ

||rFBF ||3
nB × JnB (2.56)

Where µ is the gravitational parameter of the Earth, rFBF is the distance from the center of the Earth,
nB is the geocentric nadir-pointing unit vector in the body frame (same as r̂BBF ), and J is the moment
of inertia matrix of the body. Essentially, the gravity gradient torque will tend to align a spacecraft
with its principal axis of minimum inertia aligned with the nadir vector. This means that for specific
designs (not Sentinel-2B or the reference spacecraft), the disturbing torque can be used to provide some
coarse, passive stabilization to such spacecraft around rotation angles perpendicular to the nadir.

Magnetic torque
It is often the case for spacecraft that they have some magnetic dipole moment mM , roughly estimated
as a multiple (here: 10−3Am2 kg−1) of the spacecraft mass in a random direction. This could be a
result of residual magnetism from the onboard equipment, or electric current passing through a loop.
In the magnetic field (BF ) of Earth this generates a torque [4]:

τBm = mM × RBFBF (2.57)

Modelling the magnetic field of the Earth is done using spherical harmonics, similar to modelling the
gravity field. The major difference is the need to take into account the dipole nature of magnetism. To
this end, a simple approach would be to take the International Geomagnetic Reference Field (IGRF,
maintained by the International Association of Geomagnetism and Aeronomy) or the World Magnetic
Model (WMM, maintained by the US National Oceanic and Atmospheric Administration - NOAA).
Both are updated in regular, 5-year intervals and provide a precise approximation of Earth’s magnetic
field for given time periods [30].
However, the implementation of these models in Simulink is a major drain on computational resources,
so in order to speed up the calculations, a streamlined reimplementation is required. Using a third-order
approximation, most of the large model coefficients (table 2.6) can be captured in the calculation and
simulation time is barely affected. The magnetic flux density in the ECEF frame BF can be expressed
as the negative spatial gradient of the scalar V :

BF = −∇V (2.58)

Where the potential field is a spherical harmonic expansion of the field in terms of time, radius, and
geocentric longitude and latitude:

V (t, r, λ, ϕ′) = a

N=3∑
n=1

(a
r

)n+1 n∑
m=0

(gmn (t) cos (mλ) + hmn (t) sin (mλ))Pmn (sinϕ′) (2.59)

This formula described a third-degree expansion of the WMM and uses r geomagnetic reference radius
of the Earth (6371200 m), gmn (t) and hmn (t) time-dependent Gauss coefficients of degree n and order m,
and P̂mn Schmidt semi-normalized associated Legendre polynomials.

gmn (t) = gmn (t0) + ∆t · ġmn (t0) hmn (t) = hmn (t0) + ∆t · ḣmn (t0) (2.60)

As the exact algorithm is too unwieldy to present in this section, the code to calculate the flux density
is attached to the appendix.
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n m gmn (t0) hmn (t0) ġmn (t0) ḣmn (t0)
1 0 -29404.5 - 6.7 -
1 1 -1450.7 4652.9 7.7 -25.1
2 0 -2500.0 - -11.5 -
2 1 2982.0 -2991.6 -7.1 -30.2
2 2 1676.8 -734.8 -2.2 -23.9
3 0 1363.9 - 2.8 -
3 1 -2381.0 -82.2 -6.2 5.7
3 2 1236.2 241.8 3.4 -1.0
3 3 525.7 -542.9 -12.2 1.1

Table 2.6: WMM2020 coefficients for degree n and order m in nT and nT/yr.

Aerodynamic torque
One way to approximate drag is to consider the spacecraft to be a collection of flat plates, each with
surface area si and surface normal vector ni. Since the atmosphere is rotating with the Earth, an
”airspeed” vrel is also defined. Then, incident angles can be calculated for each of the plates, which
allows for cancelling out the non-contributing ones. The total aerodynamic torque can then be calculated
as the sum of individual forces and moment arms (rCP,i) on each of the plates making up the spacecraft:

τBae,i = rBCP,i ×
(
−1

2
ρcDsiv

2
rel max {cos θi, 0} · v̂rel

)
vrel = vBBF cos θi = ni · v̂rel

(2.61)

In the equation, there are two constants to be determined. First, the drag coefficient, which is assumed
to be that of a flat plate (cD = 1.28). Second, the atmospheric density (ρ), for which various models
exist to specific degrees of precision. In this thesis, NRLMSISE-00 was used, which is one of the few
models to also take into account the ionization of the upper atmosphere to give valid densities and
temperatures up to 1000 km in altitude.
In order to significantly speed up calculation speed, an altitude-dependent exponential approximation
(eq. 2.62) of the atmosnrlmsise00 model between 700 and 900 km (with 1km steps) is developed by
using averaged values for parameters that are relatively constant over the simulation timescale (minutes).
Latitude and longitude are assumed to be the average of ground targets, or, if none exist, zero. The
time measurement is assumed to be the same as the simulation start date at noon. Averaged values for
2022 are used for the magnetic indices F10.7 and APH. For the F10.7 index, 150, which is the level of
noise generated by the Sun at wavelength 10.7 cm. For the APH index, 4, which indicates the general
level of geomagnetic activity.

ρ(h) = AeBh + CeDh (2.62)

Overview
Figures 2.14 and 2.15 present the effect of the disturbance models. The first observation is that as a
result of these disturbances, the spacecraft is steadily becoming unstable in its orientation, and comes
close to tipping over after just one orbit. Overall, the Euler angle response to the simplified and ”real”
models is the exact same, leading to the conclusion that the models derived in the thesis are high-fidelity
enough for the purposes of the project.
The magnitude of various torques is also analyzed for both the early seconds of the simulation to capture
any transient behaviour, as well as for a longer run of 2000 s to assess the overall contribution of each
effect. Here, it can be concluded that the aerodynamic torque has the lowest contribution from the
environment, at roughly two orders of magnitude less the other two effects. Gravity gradient starts out
low but then increases to be the biggest component as the spacecraft starts tumbling. The magnetic
component stays within one order of magnitude of its initial value throughout the entire run.
Due to their large effect on attitude dynamics, it is reassuring to see that the approximated flux density
and gravity values match the ones calculated from higher fidelity models (WMM2020 and 120-degree
EGM2008). For gravity, the quantity in the comparison is the ”gravity anomaly”: the difference in
acceleration from the simple, spherical inverse-square model. The only noticeable divergence appears
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in the air density calculations, which might stem from the strong time-varying behaviour of the models
(air density drops at night and rises again during the day). However, due to the small scale of the
aerodynamic disturbing torque, the current density model is sufficient enough for simulation purposes
as it matches the order of magnitude and dynamics of NRLMSISE-00 well enough.
Another point of interest is the transient behaviour of flexible dynamics at the start of the simulation.
Counting the ”bumps” (half-periods) on the magnitude plot, the first vibrational mode of the solar
panel is clearly visible on the graph. The damping characteristics of the panel can also be observed,
which eventually brings the mode shapes to a steady state as the panel bends against the body-frame
accelerations acting in the connection point.
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Figure 2.14: The effect of environmental models, vector components in blue-yellow-red, high-fidelity simulated values
dotted.
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Figure 2.15: Disturbing torque magnitudes on initialization and in steady-state.
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2.6. Linearization
Linearizing the spacecraft model is an important task, as the success of control design is heavily de-
pendent on an accurate, linear model. For this chapter, consider that the inputs to the spacecraft are
body-frame forces and torques in all three directions, and the outputs are the accelerations and the
angular accelerations of the spacecraft body along the same axes. In the simplest, rigid case for a
spacecraft of mass m and moment of inertia J at rest in inertial space, the following model holds:[

p̈
θ̈

]
=

[
mI3x3 03x3
03x3 J

]−1 [
f
τ

]
Grigid

(2.63)

While a linear model for the environmental effects is hard to come by, one for the flexible appendage
was just developed in the last section. The derived linear model can be included in a feedback loop (fig.
2.16) with the rigid system like so:

+
−

Grigid(s)

Gflex(s)

[
p̈
θ̈

]
wflex

win

Figure 2.16: Block diagram of linearized spacecraft model GSC(s).

Considering the model is essentially a streamlined and transformed version of the one found in Satellite
Dynamics Toolbox, the toolbox is a good candidate to validate the final linear system. In the toolbox,
it’s possible to build a simple model of the spacecraft body in inertial space and add a flexible beam
element with vibrational modes in all 6 degrees of freedom (fig. 2.17).
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Figure 2.17: Flexible spacecraft representation in SDT.



2.6. Linearization 23

In this simulation, an eighth-order Dormand-Prince solver (ode8) is used with a 10000 Hz simulation
rate of the SDT model to accurately capture high-frequency behaviour. Both models are subjected to a
step input of 1 N and 1 Nm in all directions (fig. 2.18). It’s clear that there is little difference in the
overall behaviour of the two systems, with the exception of the short-term high-frequency transients
and some residual torque around the x-axis (likely as a reaction from the bending of the panel).
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3
Attitude Determination and Control

The attitude determination and control system (ADCS) is a critical component of any spacecraft that
ensures the system stays in the correct orientation at all times. This chapter documents the modelling
and design aspects of ADCS for the flexible spacecraft model that was derived in previous sections of
the thesis. The scientific basis of this process was the research done throughout the literature study,
which answered the following questions:

• What are the main sources of vibration on a flexible spacecraft and how are they affecting its
dynamics?

– What are the different approaches to modelling internal microvibration sources?

• How are flexible spacecraft controlled with high pointing precision?

– What kind of control structure is needed for the pointing control of the satellite?
– What are the state-of-the-art algorithms for pointing spacecraft at a ground target?

• What are the sensing and actuation characteristics of modern flexible spacecraft?

– What is the selection of sensors and actuators to allow for redundancy and extreme precision?
– How are sensor and actuator dynamics taken into account in modelling?
– How are flexible characteristics measured?

The main goal of the resulting systems is to accurately simulate the sensing and actuation errors that
might be present on a real spacecraft while providing a control solution that is both robust enough to
overcome these disturbances and has enough authority to precisely guide the line-of-sight vector along
the desired path for high-accuracy, stable imaging. To achieve this, a control-oriented linearized model
is built based on the high-fidelity nonlinear dynamics and the reduced models of ADCS components.

3.1. Actuator modelling
Reaction wheels are a type of torque motor with high-inertia rotors. Each wheel can spin in either
direction and can provide one axis of control. These rotating devices have two important parameters
that define their performance: angular momentum capacity, and torque capability [31]. Due to the
momentum storage of the wheels, they modify the total energy of rotational motion of the system,
leading to a change in the overall dynamics of the larger nonlinear model through the reaction wheel
angular momentum vector hrw [4]:

hrw,i = Jrwωrw,i (3.1)

On most modern spacecraft, the primary instruments for attitude control actuation are reaction wheels.
This is due to their high precision and wide performance range. As such, they are a natural choice for
actuation in flexible spacecraft. There is one drawback: despite many of these wheels having operated
flawlessly for decades, there is a growing number of missions facing problems due to wheel failures.
Protection can usually be achieved through the use of redundancy in the wheel assembly [31].

24
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Spacecraft that are equipped with more than three reaction wheels can use a range of different config-
urations. Redundant wheels are commonly placed in a hot backup configuration, and used in parallel
with the others. One such setup is the NASA Standard Configuration (fig. 3.1), which is also used in
this project due to its relatively simple design. In the model, one reaction wheel is used for each of
the spacecraft’s principal axes. For redundancy, an additional fourth wheel is added diagonally, at 45
degrees rotation to the three orthogonal ones.

Figure 3.1: NASA Standard Configuration. [4]

In order to distribute torques between the four wheels, a pseudoinverse distribution law was applied
that produces the following transformation matrices from the rotating frame to the body frame and
vice versa [4]:

Rrw
BR =

1 0 0 1√
3

0 1 0 1√
3

0 0 1 1√
3

 Rrw
RB =


5
6 − 1

6 − 1
6

− 1
6

5
6 − 1

6
− 1

6 − 1
6

5
6

1

2
√

(3)

1

2
√

(3)

1

2
√

(3)

 Rrw
BRRrw

RB = I3 (3.2)

Because of the many publications available on its experimental behaviour, the Ithaco TW-50E300
reaction wheel was selected as the actuator of the system. Reaction wheel assemblies have various
components: a rotating flywheel surrounded by ball bearings, an internal brushless DC electric motor,
and electronics to control the system. The driving motor of a single wheel is modelled as a low-pass
filter with a cutoff frequency of 100 rad/s, based on the experiences of the institute with BLDC motors.
Wheel friction, or drag, is usually modelled as a sum of viscous and Coulomb components that are
based on the velocity of the wheel (ωw). The coefficients kv and kc are empirically determined and
can be temperature-dependent. The model is not adequate for low speeds, where a dynamic model
incorporating hysteresis is required. To avoid this, the motors are usually operated away from the
motionless position. For the Ithaco wheel, these components are measured as kv = 10−6 Nms and
kc = 10−3 Nm. The rotation rate is directly related to the nominal torque, which can be expressed
as the difference between drag torques and the motor torque. The axial moment of inertia of the
wheel Jw = 0.2 kgm2 is taken from catalogue data for a wheel with 0.5 Nm of maximum torque, 50
Nms capacity, and 3850 rpm maximum rotation speed. The wheel’s behaviour follows the differential
equation presented below [32]:

ω̇w = J−1
w τwnom τwnom = τmot − kvω

w − kcsign (ωw) (3.3)
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Microvibrations
Reaction wheels are also a source of attitude disturbances, which come from forces and torques in both
axial and radial directions. Since disturbing forces only generate torques that are proportional to the
force’s distance from the center of mass, their effect can be minimized by placing the wheel close to
that point.
Deviations of the wheels from perfect balance are the main contributor to disturbances. This could
either be a static imbalance or a dynamic imbalance. In the case of static imbalance, the wheel’s center
of mass is not on the axis of rotation. In this case, the spacecraft provides a centripetal force through
the bearings to accelerate the center of mass about the axis of rotation. Dynamic imbalance, on the
other hand, is the condition when the axis of rotation of the wheel is not a principal axis. In this case,
to keep the wheel rotating at a constant rate about the spin axis, a counter-torque is required that
presents a disturbing effect. In addition to static and dynamic imbalance, a reaction wheel also exhibits
structural dynamic modes (fig. 3.2) resulting from compliance in the bearings [4].

Figure 3.2: Dynamical modes of a reaction wheel: (a) axial, (b) radial, (c) rocking. [4]

The rocking modes also interact with the rotation of the wheel, resulting in whirl modes. All of these
vibrational modes can be visualized on a Campbell diagram of the wheel (fig. 3.3). The fundamental
mode ωw arises from dynamics imbalance, as does the first harmonic 2ωw. Other non-integer modes
are the result of bearing disturbances. Intersections of the frequencies of different disturbances (marked
by circles) indicate resonance conditions. If the bearing restoring forces are perfectly isotropic, this is
not the case for intersections with ω− [4].

Figure 3.3: Campbell diagram of radial moment disturbances. [4]
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Simulation results
Since the dynamics of reaction wheels generally have a much higher frequency than orbital or even
attitude dynamics, modelling them to such high fidelity would be severely detrimental to simulation
speed. However, some empirical models are able to approximate these high-frequency microvibrations
with a harmonic series expansion of reaction wheel dynamics [15][32][33]. In the wheel’s rocking frame,
N harmonic disturbances affect the wheel, which present as forces and torques in the x-y plane and then
are added to the nominal values. Additionally, there is an axial force acting along the axis of rotation.
The parameters af,t,ai and hf,t,ai are the same as the ones used by Masterson et al (which are estimated
from experimental data - table 3.1), while ϕf,t,ai are random phase angles defined during initialization.

i hfi afi
[
10−6

]
hai aai

[
10−6

]
hti ati

[
10−6

]
1 1 3.7889 1 2.7703 1 2.0107
2 2 0.7587 1.98 2.5697 2 0.5553
3 3 0.4952 2.96 0.6556 3 0.2207
4 4 0.5663 4 0.6246 4 0.2125
5 4.42 1.0003 4.33 0.9219 4.42 0.4423
6 5.37 0.4942 5.58 0.4541
7 5.57 0.6292

Table 3.1: Experimental parameters of the simplified reaction wheel model in SI.

As such, the full 6-DOF force and torque dynamics of the reaction wheel work out to the model presented
below which is mainly dependent on the angular velocity of a given wheel:


fxi
fyi
fzi
τxi
τyi
τzi

 =



−afi ω2 sin
(
hfi ωt+ ϕfi

)
afi ω

2 cos
(
hfi ωt+ ϕfi

)
aai ω

2 sin (hai ωt+ ϕai )
atiω

2 cos (hmi ωt+ ϕti)
atiω

2 sin (hmi ωt+ ϕti)
−τwnom


(3.4)

Then, the forces and torques for a single wheel are the sum of contributions from the individual harmonic
components: [

fx,y,z
τx,y,z

]
=

∑
i

[
fxi fyi fzi τxi τyi τzi

]T (3.5)

The resulting model is presented in block diagram form in figure 3.4. Note that the transformation
matrices and electric motor are not included for clarity, and equation 3.4 is represented with the
parameter-varying subsystem MV (ωrw)

+
−

+
+

1
Jws

kc sgn

kv

MV (ω)
ωrwτmot frw, τ rw, hrw

τnom

Figure 3.4: Block diagram of a single reaction wheel’s mechanical model.
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The model was tested in Simulink with a 10−4 s time step and a constant 1 Nm torque on the wheel.
This leads to a linear increase in wheel speed up to 6000 rpm, as well as the gradual deterioration of
its torque capabilities as disturbances rise in magnitude (fig. 3.5). The Ithaco wheel is rated up to
3850 rpm, at which point there is a roughly 2:1 ratio between nominal and disturbance torques. The
disturbing torque’s quadratic relation to wheel speed is also clearly visible.
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Figure 3.5: Simulated torque disturbances as a result of increasing wheel speed.

The disturbances can be better visualized using a spectrogram (fig. 3.6), in order to find similarities
between the simulation results and the Campbell diagram of a generic wheel. For disturbance torques
in the x-y plane, the linear relationship between wheel speeds and excited frequencies is very prominent
on the chart, as the gradual rise in magnitude can also be observed under increasing wheel speeds.
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Figure 3.6: Spectrogram of simulated reaction wheel torque disturbances.
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Linearization
A linearized model of the reaction wheel assembly (RWA) is constructed for the purpose of control
design. It includes the transformation matrices from the body frame to the wheel frames (and back)
and the four electric motor transfer functions. Microvibrations are not included in the controller tuning
process due to their parameter-varying nature, but they are considered in the evaluation of control
performance. The result is a 3-input 3-output LTI MIMO system from the desired torques to the
reaction wheel output torques.

G∗
RWA(s) = Rrw

BR


100
s+100 0 0 0

0 100
s+100 0 0

0 0 100
s+100 0

0 0 0 100
s+100

 Rrw
RB

GMot(s)

(3.6)

Note that wheel friction is excluded from this linearized model. This is done due to the low bandwidth
of the process which degrades the performance of many automatic controller tuning algorithms. In the
validation process, an adjusted model is used that also takes into account the linear components of
wheel friction.

GRWA(s) = Rrw
BR


s

s+kv/Jw
0 0 0

0 s
s+kv/Jw

0 0

0 0 s
s+kv/Jw

0

0 0 0 s
s+kv/Jw

 GMot(s)Rrw
RB

GFric(s)

(3.7)

3.2. Sensor modelling
Due to the use of 3-axis stabilization in precise pointing missions to meet the required attitude accuracy,
a higher class of sensors is needed for state estimation. This usually means a top-shelf star sensor for
orientation and precision GPS for position determination. However, the structural modes of flexible
spacecraft have a higher bandwidth than what these sensors can cover. To expand the capabilities of
the control algorithm, gyros and accelerometers are also used in an IMU (inertial measurement unit)
package [31].
This selection of sensors is supported by many of the relevant missions examined in the literature
review process, the principal one being JAXA’s Advanced Land Observing Satellite (ALOS), a flagship
mission for high-resolution Earth observation in the 2000s and one of the first high precision flexible
spacecraft in orbit [12]. As a more recent example, the sensor suite of ESA’s Sentinel-2 also proved to
be a great source of inspiration for the design of this project, whose normal mode of operations also
relies on a fusion of IMU, GPS, and star tracker measurement data. The exact hardware selection and
characteristics have a decent record in publications and allowed this project to find modern products
that match or exceed their performance [34].
In conclusion, to estimate the states, four physical quantities are measured and then mixed with normally
distributed random noise in the sensor models. ECEF position is measured with high-precision GPS,
Body-frame velocity with an integrated accelerometer, body-frame angular velocity with a drifting gyro,
and Euler angles with a star tracker. This section presents all of these models in detail, which are largely
based on the examples in Bayard’s High Precision Three-Axis Pointing and Control [35].

GPS characteristics
GPS (Global Positioning System) sensors are frequently used in space applications for position and
velocity sensing, for example in the Sentinel program. The current state-of-the-art of precise real-time
orbit determination in LEO is described in detail by Montenbruck et al, supported by six months of
Sentinel-6 measurement data [36]. Following their findings, the sensor is modelled as a white noise
(nGPS) block being added to the ECEF position of the spacecraft [4].

rGPS = rFBF + nGPS (3.8)

This noise block has no bias and 10−2 variance at 1 Hz, matching the GPS performance of a Sentinel-
class spacecraft at 0.2 m (fig. 3.7).
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Star tracker characteristics
Star trackers (STR) are among the most precise sensors used in the three-axis stabilization of space-
craft, providing attitude measurements with errors on the scale of a few arcseconds. They are essentially
optical cameras with sophisticated algorithms matching visible stars to a known database of celestial
coordinates. The performance of contemporary star trackers was reviewed in 2019 by Fialho et al in
a rigorous analysis [13]. In this project, their sensing characteristics are modelled with additive white
noise (nSS) to the Euler angles of the spacecraft.

qSS ∼
[
ϕ θ ψ

]
SS

=
[
ϕ θ ψ

]
BF

+ nSS (3.9)

This noise block has no bias and 10−11 variance at 10 Hz, to reach the current state-of-the-art perfor-
mance given by Fialho et al at 2 arcsecs (fig. 3.7).

0 10 20 30 40 50 60
Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
os

iti
on

 e
rr

or
 [m

]

0 10 20 30 40 50 60
Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
tti

tu
de

 e
rr

or
 [a

rc
se

c]

Figure 3.7: Sensor noise on 3-axis GPS and STR measurements (each color an axis).

IMU characteristics
An inertial measurement unit is a device that measures the acceleration and angular rate of a body
relative to a known starting point with a combination of accelerometers and gyroscopes in an orthogonal
configuration. They have decent accuracy and high bandwidth but are very susceptible to sensor drift
due to the integrative nature of measurements. As a result, they need to be regularly calibrated to clear
any accumulated errors [37].
The sensor characteristics of the project were selected from the Astrix line of gyros from Airbus, and
the accelerometers found in Honeywell’s IMU suites [38][39]. The aerospace-grade products of these
manufacturers are featured in a wide variety of missions and were found to be performant enough to
be included in a precise pointing application.
The accelerometer has a single noise component (dACC) that is integrated and added to the measured
body-frame velocity.

vIMU = vBBF +
dACC
s

(3.10)

This noise block has no bias and 10−9 variance at 100 Hz, which matches the desired 0.01 mg precision
of Honeywell sensors. These characteristics also result in a position drift on the scale of 0.1-1 m over
an hour of runtime (fig. 3.8).
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Figure 3.8: Sensor noise and drift on 3-axis accelerometer measurements (each color an axis).

The gyroscope has two noise components that are added to the body-frame angular velocity vector: an
integrated noise source to model sensor drift (dGY R), and another white noise source to model angle
random walk (nGYR).

ωIMU = ωBBI + nGY R +
dGYR
s

(3.11)

The noise source for sensor drift has no bias and 7 · 10−18 variance at 100 Hz. The source for angle
random walk has also no bias and 10−18 variance at 100 Hz. This ensures the matching of Astrix gyros
which have a 0.0006 deg/hr precision in angular rate, and 0.002 deg/

√
hr Allan random walk (ARW),

meaning after 1 hour of integration the standard deviation is 0.002 deg [37] (fig. 3.9).
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Figure 3.9: Left: Sensor noise on 3-axis gyro measurements (each color an axis). Right: Standard deviation of gyro
drift in black compared to random samples of ARW.
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3.3. State estimation
Raw sensor measurements are often too noisy to define an attitude reference and control the spacecraft.
Additionally, the outputs of the sensors are not the same physical quantities as the ones required by
these algorithms. Therefore, a state estimator block is constructed that takes care of filtering and
processing the measured signals. Usually, this process would be handled by Kalman filtering, however
in order to limit the scope of the thesis, a ”simulator-based” approach is taken. At the cost of some
performance loss in sensor fusion, this removes all tuning and linearization requirements in designing
the estimator.
The raw sensor output signals are filtered with a first-order holder and then fed into a system of
equations based on the previously derived equations of motion. The outputs of state estimation to be
used in reference generation and control are ECEF position rFB , ECEF velocity vFB , body-frame angular
velocity ωBBI , and the Euler angles θ. To handle sensor drift, the integrators driven by the IMU’s gyro
and the accelerometer are periodically reset with more accurate lower frequency measurements from the
GPS and star tracker. The state estimator also has some time delay (0.01 s) to model the duration of
electrical processes, which is linearized as a 5th order Padé approximant in the control-oriented model
with a safety factor of 10 [6].

e−10·0.01s ≈ G∗
Pade(s) = −s− 72.93

s+ 72.93

s2 − 134.1s+ 5709

s2 + 134.1s+ 5709

s2 − 92.99s+ 7263

s2 + 92.99s+ 7263
(3.12)

Of course for analytical purposes, the exact length of the time delay should be used in modelling:

e−0.01s ≈ GPade(s) = −s− 729.3

s+ 729.3

s2 − 1341s+ 57090

s2 + 1341s+ 57090

s2 − 929.9s+ 72630

s2 + 929.9s+ 72630
(3.13)

The 5th-order approximation allows the control tuning algorithms to take into account the dead time
characteristics of the embedded hardware to a degree that was deemed acceptable for this project (fig.
3.10). Further increasing the accuracy of the approximant would have led to an increase in the states
of the system, which is undesirable in control design.
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Figure 3.10: Padé approximation of time delay function.

In the estimation algorithm, the first step is determining the body-frame angular velocity ωsen = ωBBI ,
which is the exact same as the output of the gyro:

ωsen[T ] = ωIMU [T ] (3.14)

Then, the attitude quaternion qsen = qBL and ECEF-to-Body rotation matrix Rsen = RBF are calcu-
lated from a discretized version of the kinematic model that was detailed in the previous chapter.

q̇sen[T ] =
1

2
qsen[T − 1] ◦

[
0

ωsen[T − 1]− Rsen[T − 1] · ωF⊕

]
(3.15)

Here, the resulting derivative of the quaternion is numerically integrated using the previously mentioned
method of resetting the integrator block (fig. 3.11) with incoming star sensor measurements.
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q̇sen[T ] qsen[T ] ∼ Rsen[T ]

Figure 3.11: Block diagram of quaternion integrator.

Afterwards, the equations of translational motion are used to calculate the ECEF position rsen = rFBF
and ECEF velocity vsen = vFBF vectors.

vsen[T ] = R−1
sen[T ] · vIMU [T ] (3.16)

To obtain the position vector, a similar method is used for integration (fig. 3.12) as previously shown
for the quaternion derivative.

1
s

x0

rGPS [T ]

vsen[T ] rsen[T ]

Figure 3.12: Block diagram of position integrator.

These equations already allow for the estimation of orbital dynamics. In order to visualize the data
better, only the first 60 seconds of simulation runtime are shown with the number of data points greatly
reduced in frequency (fig. 3.13).
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Figure 3.13: Estimated states of orbital dynamics.

The absolute errors are no surprise after the performance of sensor models developed in the previous
section. The accelerometer aided by the high-precision GPS sensor provides reliable position data at
0.2 m accuracy which translates to a relative error between 10−7 − 10−5. Some ”choppiness” is visible
on the absolute error plot, which can be attributed to the regular resets of the position integrator.
This jagged data stream gives way to slightly drifting white noise when looking at the absolute error of
velocity measurements. The relative error is slightly lower at 10−5 − 10−3, which is explained in part
by the difference in numeric scale between spacecraft positions and velocities. Overall, it can be noted
that there are no significant differences between the measurements made on the three different axes,
and they are in line with the expected values as seen in the AOCS datasheets of the analyzed missions.
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Finally, the Euler angles are calculated from the processed position, velocity, and quaternion signals
using the previously presented method for constructing the LVLH-to-ECEF rotation matrix:

o1[T ] = o2[T ]× o3[T ]
o2[T ] = −rsen[T ]×

(
vsen[T ] + ωF⊕ × rsen[T ]

)
o3[T ] = −rsen[T ]

RLF [T ] =
[
ô1[T ] ô2[T ] ô3[T ]

] (3.17)

The angles follow an XYZ rotation order, which makes the line-of-sight vector (body frame ”Z”) inde-
pendent of the yaw angle. This is beneficial in two ways: first, the complexity of trajectory generation
is vastly reduced as pointing precision only requires two Euler angles. Second, a potential operations
team would gain more options as the yaw angle becomes a free parameter.

Rsen[T ] · RLF [T ] = RLB [T ] −→ ϕ[T ], θ[T ], ψ[T ] (3.18)

Similarly to the orbital dynamics, only the first 60 seconds of simulation runtime are shown with the
number of data points greatly reduced in frequency to aid in the visualization of estimator performance
(fig. 3.14).
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Figure 3.14: Estimated states of rotational dynamics.

Unlike the estimation of orbital states, the estimated rotational states uncover some interesting dynam-
ical properties of the algorithms. First off, due way sensor data is combined in the calculation of the
Euler angles, yaw errors are much lower than roll and pitch, by about 2 orders of magnitude. This
could have some uses in a potential future system identification experiment, as the main flexible modes
largely excite the yaw dynamics of the system. Relative error on the Euler angles starts off quite bad
around the start time of the simulation, largely due to the initial conditions being set around zero and
some transient properties of the Simulink solver. This indicates the need for a waiting period after
startup time in order to properly assess control performance.
In the angular velocity error charts, a drifting white noise behaviour is visible, which is the main
drawback of the ”simulation-based estimator”. While orientation data is periodically reset with precise,
non-drifting measurements from the star trackers, the same can not be done again with angular rates.
As a result, rate control on the spacecraft will gradually decrease over the simulation time span. While
this is still acceptable for the relatively short maneuvers detailed in this thesis, building a Kalman-based
estimator algorithm is necessary to solve this issue and future-proof the project.



3.4. Attitude reference definition 35

3.4. Attitude reference definition
The geometry of pointing control for an Earth-observing spacecraft is considered in the general case,
such as the one presented by Lian et al [40]. The nadir vector of the local frame aligns with the optical
axis of the spacecraft, which needs to be pointed at some ground point on the surface of the planet.
This is essentially a rotation between two unit vectors, which is accomplished in the paper by building
a rotation matrix from the nadir vector to the desired pointing vector and then converting it to Euler
angles. However, this approach heavily relies on the use of inverse trigonometric functions which have
undesirable qualities in terms of computational performance and the existence of singularities.
For this reason, a quaternion-based algorithm was developed for trajectory generation, which solves the
following question: what is the quaternion qBL that rotates the nadir vector i3 (”Z” base of LVLH) into
the vector rTB that connects the position of the spacecraft rBF with the ground target position rTF ?
The first vector corresponds to the line-of-sight vector where all Euler angles are zero, while the second
vector defines the desired orientation of the spacecraft’s optical axis. Since the coordinates of both the
ground target and the spacecraft are given in the ECEF frame, first a rotation matrix from the ECEF
to LVLH frames needs to be constructed from available sensor data:

o1[T ] = o2[T ]× o3[T ]
o2[T ] = −rsen[T ]×

(
vsen[T ] + ωF⊕ × rsen[T ]

)
o3[T ] = −rsen[T ]

RLF [T ] =
[
ô1[T ] ô2[T ] ô3[T ]

] (3.19)

Then, both the targeting and nadir vectors are calculated for the current time step:

rLTB [T ] = RLF [T ]
(
rFTF [T ]− rFBF [T ]

)
i3 = [0 0 1]

T (3.20)

The desired rotation quaternion can then be found with a simple combination of scalar and vector
products of these two vectors. The targeting vector is normalized to improve numerical performance,
then the constructed 4-length vector is normalized to unit length in order to convert it to quaternion
form.

qBL[T ] ∼
[
1 + i3 · r̂LTB [T ]

i3 × r̂LTB [T ]

]
(3.21)

Reaching the desired targeting orientation usually requires a large slew angle which most control algo-
rithms would fail to complete on their own without significant overshoot or the excitation of flexible
modes in the system. In order to reduce the required control effort, some smoothing is required [17]. In
this thesis, a polynomial smoothing factor is applied to the attitude reference calculations. The value
of the smoothing factor starts at zero and ends at one when reaching the end of the defined smoothing
time. The derivatives of the polynomial are all required to be zeroes up to the third order on both ends,
which ensures continuity in the reference signal and further reduces the demanded control effort.

y(x) = P1x
7 + P2x

6 + P3x
5 + P4x

4 + P5x
3 + P6x

2 + P7x
1 + P8

y(0) = y′(0) = y′′(0) = y′′′(0) = 0

y′(Tmax) = y′′(Tmax) = y′′′(Tmax) = 0 y(Tmax) = 1

(3.22)

As it turns out, the solution to this problem can be parametrized by the smoothing length Tmax to
reduce all coefficients to integers (eq. 3.23). This is greatly beneficial to calculation speed as it reduces
this section of an algorithm to a simple multiplication of integers with some power of a double-precision
floating-point number between 0 and 1.

P1..8 =
[
− 20
T 7
max

70
T 6
max

− 84
T 5
max

35
T 4
max

0 0 0 0
]

(3.23)

For the current case of single-point tracking, a smoothing time of 150 s was selected to ensure that the
slew maneuver can be completed within the torque limits of the reaction wheel assembly. Throughout
the thesis, various other smoothing times are used which are derived from the same parametrization
and presented in fig. 3.15.
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Figure 3.15: Generated smoothing multiplier curves for various time intervals.

In order to calculate the reference signal for the angular velocities, the measured position and velocity of
the spacecraft are used to propagate its orbit 0.01 s ahead in time using the Bogacki–Shampine method
on the orbital equations of motion [41].

y′[T ] = f(T, y[T ]) =
[

r′[T ]
v′[T ]

]
=

[
v[T ]

−µ⊕
r̂[T ]
r[T ]2 − ω⊕ × (ω⊕ × r[T ])− 2ω⊕ × v[T ]

]
(3.24)

k1[T ] = f (T, y[T ])

k2[T ] = f

(
T +

1

2
Ts, y[T ] +

1

2
Tsk1[T ]

)
k3[T ] = f

(
T +

3

4
Ts, y[T ] +

3

4
Tsk2[T ]

)
y[T + 1] = y[T ] + 2

9
Tsk1[T ] +

3

9
Tsk2[T ] +

4

9
Tsk3[T ]

(3.25)

Then, the desired rotation quaternion is also calculated, normalized, and smoothed for the propagated
states. Finally, both are rotated to represent ECEF-to-Body quaternions (qBF ). Then, first-order
numerical differentiation is applied to get q̇BF , which was plugged into the inverted rotation kinematics
to define the desired ωBBI [42].

ω̊BBI,T [T ] =
1
Ts

(qBF [T + 1]− qBF [T − 1])

qBF [T ]
+

[
0

RBF [T ]ω⊕

]
(3.26)

Since the control algorithms use Euler angles, a single conversion from quaternions is still needed. How-
ever, since the Yaw angle represents a rotation around the optical axis in the XYZ rotation order, it can
be set to zero for the entire length of the observation period, which slightly decreases the computational
effort required to determine the angles, reduced momentum buildup on the reaction wheel, and limits
the excitation of the flexible structure.

3.5. Outer loop control design
For the main loop that will control the orientation and rotation rate of the spacecraft with reaction
wheels, three controllers are designed. First, a linear PID as a baseline. Second, a robust H∞-based
controller that would improve performance by taking into account the noise and uncertainty charac-
teristics of the system. And third, a model predictive controller (MPC) whose main advantage is the
online optimization effort that seeks the best path to matching future samples of the reference signal.

On control synthesis
First, a closed-loop is constructed that consists of a state estimator with sensor models, a trajectory
generator using sensor measurements, and a controller that calculates desired torques to be delivered
by the reaction wheels. The control-oriented linear model (GSC(s)) serves as the basis of control design.
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There, the linearized reaction wheel torques (G∗
RWA(s)) are free of vibrations and friction but still have

transient behaviour related to motor dynamics. The reduced flexible dynamics only respond to torques,
as force control is not part of the design process. To prepare the controller for real-world systems, a
Padé-approximant of time delay is added with a safety factor of 10 (G∗

Pade(s)). A block diagram of the
plant structure with the double integrators is presented in figure 3.16.

+
−

K(s) G∗
Pade(s) G∗

RWA(s) GSC(s)
1
s2

θ,ω(θ,ω)ref

Figure 3.16: Linearized system model with time delay and actuator dynamics.

This closed-loop is then tuned by adjusting the parameters of the controller, either using the automatic
methods of Matlab toolboxes or manually changing the numerical values. Performance is iteratively
evaluated by the step response and frequency-domain characteristics of the linearized closed-loop, as
well as the pointing performance in the high-fidelity nonlinear environment for a simple scenario.
This scenario is the single-point tracking case, whose reference angles and angular rates are presented
in fig. 3.17. There, the satellite starts from the previously defined initial conditions and is pointed
at the tip of the TU Delft Library, at latitude 52.00265 deg and longitude 4.3756 deg. The precise
pointing segment of this trajectory is used in the temporal design of all controllers in this chapter,
which completes the otherwise suboptimal frequency-domain design in an iterative manner.
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Figure 3.17: Comparison of ideal and smooth reference attitude angles and angular rates around Euler angles.

On control analysis
For the purposes of linear control analysis, the closed-loop system is a simple negative feedback loop
of the controller and the linearized system dynamics (fig. 3.18). The plant, GLin(s) is slightly different
from the one used for control design, as the reaction wheel model (GRWA(s)) is not subjected to friction,
and time delay is not approximated with a safety factor anymore (GPade(s)).
The analysis of a controller starts with a pole-zero map. For a given closed-loop system, poles (marked x)
are eigenvalues of the matrix A in a state-space representation, and roots of the denominator polynomial
in a transfer function representation. They indicate system stability, in that a linear dynamic system
is only stable if all the poles are in the left half-plane, i.e. they have a real component smaller than
zero. Zeroes (marked o) arise from competing effects within the system, and they cause zero outputs
even when the inputs and states are not zero. From the state-space matrix, zeroes are usually found as
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+
−

K(s) GLin(s)
(θ,ω)e τ c

θ,ω
(θ,ω)ref

Figure 3.18: Block diagram of closed-loop control model.

non-trivial solutions to the eigenvalue problem in which case the system loses rank. They can also be
found as the roots of the numerator polynomial in a transfer function representation [6].
The pole-zero map of the closed-loop system was generated after some reduction steps took place. Most
notably, numerical inaccuracies in Matlab result in some poles and zeros very close to the origin (and
in some cases in the right half-plane) that can be cancelled out in pairs with some tolerance using the
minreal function. Another useful function is balred, which reduces the order of the system using
a balanced realization in order to remove the lowest singular values that have little effect on system
dynamics. These two functions are used at several points in the thesis to improve numerical consistency,
the performance of automated control design algorithms, and visualization.
Another tool for frequency-domain analysis is a Bode plot, which presents the magnitude and phase of
the system response as a function of sinusoidal input frequencies. The open-loop Bode diagrams (left
half of figure 3.21) are important for validating stability criteria. The greater the phase and gain margins
of the open-loop system, the better the stability of the closed-loop system will be. Gain margin is
the amount of gain by which the curve of the Bode magnitude diagram is below 0 dB at the frequency
where the phase is equal to -180 degrees. Similarly, phase margin is the amount of phase by which
the curve of the Bode phase diagram is above -180 degrees at the frequency where the magnitude is
equal to 0 dB.

Controller 1: PID
To begin the control design process, first a PID (proportional-integral-derivative) controller is developed
and tested. A PID is a relatively simple controller with a several decade-long research background and
solid theoretical foundations. The demanded control torque is calculated by first subtracting measured
Euler angles (θsen) and angular velocities (ωsen) from the desired reference signals (θref and ωref ) to
get error signals θe(t) and ωe(t). Then, these error signals are multiplied by the individual components
of the PID.

τ c(t) = kP · θe(t) + kI
∫

θe(t)dt+ kD · ωe(t) (3.27)

The term P is proportional to the current error of the system and is usually the biggest component of
PID control in bringing the output closer to the reference. Raising the gain kP decreases settling time
at the cost of a larger overshoot and more violent residual vibrations. Setting it too high may cause the
system to become unstable, setting it too low results in insufficient control authority and a decreased
ability to reject disturbances.
The term I is proportional to the accumulated error in the outputs and is related to managing residual
error. Increasing the gain kI eliminates steady-state errors and decreases the convergence time of the
output at the cost of overshooting the reference signal.
The term D is proportional to the rate of change in the error signal and is related to damping. It does
not consider the current error of the system but rather seeks to flatten out the trajectory of the output.
It reduces overshoot and vibrations at the cost of slowing down control response and introducing noise
sensitivity. For this reason, either a filter is applied to the term to reduce the effect of sensor noise,
or the D term is replaced with a P term on the angular velocity error. This thesis takes the latter
approach.

Controller kP kI kD
Roll 500 400 2000
Pitch 500 400 2000
Yaw 1e-1 1e-4 100

Table 3.2: List of PID controller coefficients.
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There are many available options for tuning the controller coefficients, this thesis employs a combina-
tion of automated software tools and manual tuning. First, the time-delayed linearized equations of
rotational dynamics are decoupled into three separate models, one for each Euler angle. Then, the
proprietary PID Tuner tool of Simulink is used on each SISO model to reach a stable system response.
The resulting controllers are further tuned manually to improve stability on the linearized system and
pointing performance on the nonlinear system. Roll and pitch are more strictly controlled as they have
the largest impact on pointing precision, while Yaw is tuned for disturbance rejection as it is the main
channel for the effects of structural dynamics. The final design is presented in table 3.2 [22].
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Figure 3.19: Step response of PID loop. Bottom right: output Y when a reference is applied to input X.

As shown in fig. 3.19, the closed-loop system has a promising step response with a roughly 60 sec
settling time around all angles and about 25% overshoot in roll and pitch. Cross-coupling effects are
negligible with sufficiently dampened vibrations at 10−8 − 10−3 rad magnitudes in all channels.
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Figure 3.20: Closed-loop pole-zero map of designed PID controller. Right side: zoom on origin.
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Figure 3.21: Bode plots of designed PID controller, first two flexible modes in grey. Right side: reference tracking and
disturbance rejection.

On the resulting pole-zero map (fig. 3.20), several interesting features can be observed. First, note
that all poles of the system are in the left half-plane, meaning the system is stable. The flexible modes
of the structure are also clearly visible, placed along two radial lines leaving the origin of the plot.
Additionally, the 5th order Padé approximant forms a circle of poles and zeros a great distance away
from the origin.
The phase of all three angles in the open-loop bode plot drops off dramatically around the 60 rad/s
mark, with a large notch also visible on the yaw dynamics around the location of the largest flexible
mode. The gain and phase margins indicate stable system behaviour.
The closed-loop bode magnitude plot shows decent reference tracking (top plot) up to 2 rad/s in roll and
pitch, and 0.05 rad/s in yaw. The roll and pitch response has a maximum gain of 5-10 dB around 0.5
rad/s. In terms of disturbance rejection (bottom plot), all responses are placed well below the nominal
roll, pitch, and yaw curves. Two exceptions are the cross-coupling responses between roll and pitch,
which reach a maximum gain of -40 dB at 0.5 rad/s, which is still much lower than the gains of the
three other Euler angle dynamics.
It can be concluded that the controller does not attempt to control, and barely excites the flexible modes
of the system, opting to let them dissipate on their own. However, it shows acceptable reference tracking
characteristics and decent reference tracking, and can now be tested in a nonlinear environment.

Smooth tracking performance: PID
Throughout the control design process, linear and nonlinear testing forms an iterative process in which
results from both simulation environments are taken into account for adjusting the parameters of de-
signed controllers. Reaction wheel torques are also monitored in the nonlinear model, as they need to
fit within the torque limits imposed by the manufacturer and perform without producing unreasonably
high noise levels on the actuators (beyond microvibrations). Additionally, as reaction wheels are not
suited for operation around their resting points, their starting speeds are randomized on each start,
hence the small ”wiggles” of the motor torque at the beginning of the simulation (fig. 3.22).
There are two clearly demarcated stages in the scenario. First, the large-scale slew maneuver rotates the
spacecraft away from nadir orientation, and into targeting mode. This is accompanied by a generous
torque around the pitch axis, which is supplied by all wheels to fit below the limits. Then, the much
gentler pointing phase begins as the smoothing algorithm concludes its work at 150 s. The precise
pointing section lasts 450 s, with most of the control effort still going towards the pitch axis to follow
the target as the spacecraft speeds past its location.
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The tracking errors of each Euler angle are shown in fig. 3.23. Roll and pitch stay well below 2 arcsecs
for most of the precise pointing segment, with an increase in pointing error around the time of closest
approach (where relative velocity between the spacecraft and the target is highest). Yaw is kept at a
low angle by its slow PID loop tuned for disturbance rejection, at roughly a sixth of a degree.
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Figure 3.22: Reaction wheel outputs of designed PID controller, torque limits in grey.
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Figure 3.23: Euler angle tracking error of designed PID controller.
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Controller 2: Robust H∞-based
Generally speaking, in closed-loop control design there is a trade-off between performance and robust-
ness. The closer a controller gets to zero in reducing errors in the loop, the more sensitive it becomes
to disturbances, noise, delay, and uncertainty. In recent years, there has been an increase in robust
control publications for flexible spacecraft across Europe, a technique that offers to find a balance in
this trade-off and increase reliability for future missions [9][43].
In the field of robust control, one of the most important applied methods is H∞-based loop shaping.
For a given SISO transfer function G, the H∞ norm is the worst-case magnitude of the system over the
entire frequency domain and is defined as:

||G||∞ = sup
ω

|G(jω)| = lim
p→∞

(∫ ∞

−∞
|G(jω)|pdω

) 1
p

(3.28)

Now, consider a system P with an exogenous input w (e.g. disturbances and commands) and u control
variables. There are also measured variables v and z error signals to be minimized. The controller K is
used to transform the measurement signals into control signals in a feedback loop (fig. 3.24).

P(s)

K(s)

vu

w z

Figure 3.24: General configuration for H∞-based control.

This system can be described with the following model:[
z
v

]
= P(s)

[
w
u

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
w
u

]
(3.29)

u = K(s)v (3.30)

From these, the closed-loop MIMO transfer function from the disturbances to error signals can be
determined by linear fractional transformation:

z = Fl(P,K)w (3.31)

where
Fl(P,K) = P11 + P12K(I − P22K)−1P21 (3.32)

The main design goal is the minimization of the H∞ norm of this system in order to attenuate the effect
of disturbances on the system’s performance. This also provides a measure of system robustness with γ,
which is the H∞ norm of the closed-loop system. Note that the definition of the norm has been adjusted
to account for the MIMO nature of the system, with σ̄() representing the largest singular value of the
matrix:

γ = ||Fl(P,K)||∞ = sup
ω
σ̄(Fl(P,K)(jω)) (3.33)

In practice, there is no need for an optimal controller to the H∞-problem, and it is usually computation-
ally and theoretically simpler to design a sub-optimal one. Because of this, the value of γ is iteratively
reduced until a sufficient solution is found [6].
In the design of the controller, various weights are added to the input and output signals of the plant
model. The result is called an augmented plant and is the major component of the loop-shaping process.
These weights are used to prescribe desired characteristics in noise suppression, disturbance rejection,
control effort, and control performance. Any transfer function can be used as a filter, even zero gain
(for off-diagonal elements) or constant gain (to start with). Then, the resulting plant undergoes robust
stabilization, which has no effect on gains in the lowest and highest frequencies but maximizes the
system’s stability margins by shifting the unity-gain crossover of the augmented plant. [6]
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In the case of the flexible spacecraft model (fig. 3.25), there are four filters placed on the signals. The
exogenous input signal is split between two components: disturbances and sensor noises, to be weighed
by Wd and Wn, respectively. Instead of the error output z, a performance output e is used, split between
system outputs (to be used as performance indicators) and control torques, to be weighed by We and
Wu. These are all diagonal matrices to speed up the design process, with their shape, cutoff frequency,
and gain determined manually in an iterative process that involved the testing of each iteration in the
nonlinear environment to reach the performance of the PID.
Initially, these transfer functions are all defined as constant gains which is sufficient for Matlab’s algo-
rithms to stabilize the system. Then, individually, each transfer function is exchanged with either a
low-pass or a high-pass filter with a cutoff frequency of 1 rad/s, depending on the expected physical
characteristics of the given signal (see: next page). Once an ideal combination is found, the cutoff fre-
quencies and gains are shifted by small steps until a desirable solution is found for pointing performance.
As a last step, additional integrators or derivators might be added, for example on the noise weights.

GSC(s)+
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Act(s)

Wd(s)

Wu(s)
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Figure 3.25: Augmented plant for robust control design.
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Figure 3.26: Weights used in the design of H∞-based controller.
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While the final weights themselves (fig. 3.26) are slightly arbitrary, they do hold some relevance to the
real-world frequency response of the system. For example, the input weights bar the controller from
demanding high-frequency torques from the reaction wheel assembly:

Wu(s) = diag

(
0.1

s+ 1
,

0.1

s+ 1
,

0.1

s+ 1

)
(3.34)

The disturbance filter defines high-frequency torques as the main detrimental effect to be rejected:

Wd(s) = diag

(
0.01s+ 1

s+ 0.002
,
0.01s+ 1

s+ 0.002
,
0.0002s+ 0.02

s+ 0.002

)
(3.35)

The performance filters give increased weight to the elimination of steady-state errors with the increased
gain on lower frequencies:

We,θ(s) = We,ω(s) = diag

(
100

s+ 0.5
,

100

s+ 0.5
,

250

s+ 0.5

)
(3.36)

Finally, the noise filter defines the range in which sensor noise sources are active:

Wn,θ(s) = Wn,ω(s) = diag

(
10s+ 25

s+ 50000
,
10s+ 25

s+ 50000
,
1000s+ 2500

s+ 50000

)
(3.37)

The closed-loop system that hinfsyn produced has a γ of 50, as well as a controller with 51 states.
To reduce numerical complexity and improve computational performance, this must be drastically cut
back. It was found that control performance is not decreased if 32 states with the lowest Hankel singular
values are eliminated from the controller block. The final, 19-state H∞-based controller can then be
tested in a closed-loop to evaluate time-domain performance.
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Figure 3.27: Step response of H∞-based loop. Bottom right: output Y when a reference is applied to input X.

Regarding the step response of the closed-loop linear system (fig. 3.27), performance is markedly
improved compared to the PID. Settling time is significantly reduced to 15s around the roll and pitch
axes, and slightly increased to 100s around the yaw axis. Overshoot is doubled to 50% for roll and
pitch, and there is a 25% overshoot added to the yaw axis where there was not any before. In terms of
cross-coupling effects, the oscillations are dampened much faster, and they take a smaller magnitude at
10−8 − 10−5 rad on all channels.
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On the pole-zero map (fig. 3.28), all closed-loop poles are on the right half-plane, meaning the system
is stable. There are several new zeroes added on the left half-plane, largely to account for time delay
(which was not possible in the PID design). There are also a number of new poles and zeros slightly
right of the origin as well. These account for the majority of the difference in control action between
the H∞-based controller and the PID. Stability can also be verified on the Bode plots (fig. 3.29), which
present greater phase and gain margins, as well as better disturbance rejection than the PID loop. In
reference tracking, the roll and pitch dynamics are similar to the PID, but the frequency range of yaw
tracking is slightly increased.
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Figure 3.28: Closed-loop pole-zero map of designed H∞-based controller. Right side: zoom on origin.
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Figure 3.29: Bode plots of designed H∞-based controller. Flexible modes in grey.
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Smooth tracking performance: H∞
Similarly to the PID loop, the tracking errors of each Euler angle are shown in figure 3.31. Roll and
pitch stay well below 2 arcsecs for most of the precise pointing segment, with an increase in pointing
error slightly before and after the time of the closest approach in the pitch axis. At the moment of
closest approach, both roll and pitch errors approach zero. Yaw is kept at a much lower angle than
what was achieved with the PID loop, staying within a few dozen arcsecs of zero at all times except for
the first minute. Overall, pointing stability is greatly improved in H∞ control, with the cost of slightly
noisier reaction wheels (fig. 3.30 - increased noise levels below the threshold of printing resolution).
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Figure 3.30: Reaction wheel outputs of designed H∞-based controller.
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Figure 3.31: Euler angle tracking error of designed H∞-based controller.
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Controller 3: MPC
A significant drawback of the PID and H∞-based controllers is that they only account for the present
state of the system. Model Predictive Control accounts for the future states of the system within a given
horizon while optimizing the system dynamics in real-time. Another feature of the MPC is constraint
handling, which is the main way of preserving the stability of the system due to the lack of mathematical
tools for the analysis of the closed-loop.
While predictive control has enormous utility in numerous engineering fields, MPCs have seen relatively
few applications in the space sector despite their potential according to a thorough literature review
carried out in 2017 by Eren et al According to their assessment, a model predictive control system has
four constituents [11]:

1. The model, which is a discrete-time system. It can be described as either LTI (linear time-
invariant), LTV (linear time-varying), LPV (linear parameter-varying), piecewise-affine, or non-
linear - based on available computational capacity

2. The available information, which means that at any time, the system states are known when the
control value is determined.

3. Stage constraints, which means that the system variables (states and controls) are subject to
hard constraints. This can represent either actuator limitations or algorithmic concerns about
feasibility.

4. A stage cost function, which associates the quality of performance with the pair of the state and
control variables, and penalizes deviation from the desired values. A terminal cost function is also
defined to help ensure suitable stabilizing properties.

The basic idea behind model predictive control is that this discrete-time system is used to propagate
the currently measured states some time steps into the future to optimize the control signal on each
time step. There are two horizons: first, the prediction horizon, which defines the number of predicted
samples for the future state vector; second, the control horizon, which determines how many samples
are predicted and optimized for the control input.

Figure 3.32: Basic operation of an MPC control loop. (source: Wikimedia Commons)

On every single time step, this control input is re-optimized and the first value is taken as the control
command. As such, optimization is the core component of MPC, and its performance greatly depends
on the available plant model. Constraints are also a major advantage of the technique, as an ordinary
controller would often make unreasonable demands of a physical system or drive it far away from the
operating point, hence the need for smoothing algorithms on the reference signal generator. MPC on
the other hand is able to place bounds on its own control demands and handle possible overshoots of
the system states [44].
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Besides the handful of publications on the control of flexible spacecraft, there is very little research
done on the impact of precise pointing control [10][18]. As such, this section is going to be slightly
experimental and aims to match the performance of the previously designed controllers as closely as
possible.
The design of the controller began with the definition of the plant, which is the exact same as the
one used in both the design of the PID and the H∞-based controllers. Another important difference
between the MPC and the two other controllers is that the MPC block does not require an error signal
for calculating the control torque: instead, it takes two signals, one for the ideal predicted states, and
another for sensor data (fig. 3.33). Because of this, the operation of the trajectory generator is adjusted
so it produces reference signals for the entire prediction horizon, instead of just the current time step.
Then, the time step of the controller is set at 0.1s, due to the fact that an MPC has an enormous
computational demand compared to PID or H∞-based control, which are running at 100 Hz.

MPC GLin(s)
τ c

θ,ω

(θ,ω)sen

(θ,ω)pred

Figure 3.33: Block diagram of closed-loop model predictive controller.

With this time step defined, an iterative process began in which various prediction and control horizons
were tested in the nonlinear simulation to find a combination that yields decent performance in both the
large-scale slew maneuver as well as the precise pointing segment of the reference signal. It was found
that the most promising candidates for horizon lengths are 15 steps for the prediction process, and 3
steps for the control signal. For the prediction horizon, going beyond this number gradually decreases
pointing performance at high reference signal velocities because of inaccuracies in the prediction process.
For the control horizon, any additional step drastically increased the length of optimization, and it was
determined that going much beyond these two numbers would be unacceptable for the performance of
space embedded hardware.
To improve numerical accuracy, scaling factors are used in the design process. They convert the re-
lationship between outputs and control torques to dimensionless form and make it easier to specify
tuning weight magnitudes. If a model is scaled well, the maximum absolute scaled response on the
main input-output channels should be around 1. On Simulink’s suggestion, the scaling factors were set
as 5 ·10−4 for all channels. To make use of the constraints provided by predictive control, the minimum
and maximum values for the control signal were set as ±0.6 Nm to fit the torque limits of the reaction
wheel assembly. Additionally, weights were added to the outputs (OV ), control signals (MV ), and the
rate of control signals (dMV ) to slow down yaw dynamics and not disturb the flexible modes of the
system:

WOV = [1 1 0.1 1 1 10] (3.38)

WMV = [0 0 0] WdMV = [1 1 0.1] (3.39)

Smooth tracking performance: MPC
Due to the lack of linear analysis tools for model predictive control loops, only the controller’s nonlinear
performance is analyzed in this section. There are two notable differences in the reaction wheel torques
(fig. 3.34). First, there is a large transient at the start of the simulation which is mainly caused by the
MPC being unable to optimize the system fast enough. However, this undesirable error gives way to a
much smoother torque curve than what was determined in PID and H∞-based control.
In terms of angle tracking error (fig. 3.35), the MPC also stays below ±2 arcsec for the entire run,
although there is a noticeable constant error in the pitch dynamics. Pointing stability is improved
compared to both other controllers, and the yaw dynamics do not show any transient effects anymore,
staying within a few dozen arcsecs of zero error.
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This residual error might be caused by the internal state estimation functionality of Simulink’s MPC
block that uses the linearized system equations as a basis. Unfortunately, the exact settings of this
block can be very hard to access and tune, and completely turning it off results in drastically reduced
performance. As a result, the estimation of pitch dynamics is slightly delayed compared to the real
system. To solve this problem, building a complete state estimator with Kalman filtering will be
necessary, which will be carried out at a future stage of the project.
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Figure 3.34: Reaction wheel outputs of designed model predictive controller.
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Figure 3.35: Euler angle tracking error of designed model predictive controller.



4
Pointing Performance

The main goal of the thesis is to raise the pointing performance of flexible spacecraft, which has two
components: accuracy and stability. This chapter presents a rigorous performance assessment of the
controllers designed in previous sections of the thesis and presents a cascade control loop design with an
active-passive isolator platform to tackle the microvibration environment of the spacecraft, counteract
residual errors from the outer control loop, and improve overall pointing stability. The scientific basis
of this process was the research done throughout the literature study, which answered the following
questions:

• How are flexible spacecraft controlled with high pointing precision?

– What kind of control structure is needed for the pointing control of the satellite?
– What are the state-of-the-art algorithms for pointing spacecraft at a ground target?

• How is the coupling between the spacecraft and the payload modelled?

– What is the state of the art for vibration isolation of precision payloads?
– What are the advantages of passive, active, and hybrid isolators?
– What are the characteristics of a hexapod strut construction?

The framework of pointing performance indicators makes it possible to numerically compare the opera-
tions of different control loops, and the flexibility of the attitude generator block provides a way to push
both the single-loop and cascade-loop systems to the edge of their capabilities. These developments
are crucial in ADCS evaluation, going further beyond the more heuristic analysis of simple trajectories
presented in the last chapter.

4.1. Pointing performance indicators
The performance of the payload can be assessed in terms of the imaging characteristics of the optical
system. This can be affected by three main disturbances. First, displacement is the average pointing
offset over the exposure interval, and it contributes to the focus of the image shifting off-center. Second,
smear is a linear motion related to smear rate, the average rate of change in pointing error. It contributes
to the smearing of the image as the rolling shutter fails to line up the samples of the camera. Third, jitter
is the noise component of pointing error and causes a blurring of the image. These three components
all add up to the absolute pointing error of the control system [45].
In terms of pointing performance requirements, the European Cooperation for Space Standardization
(ECSS) categorizes the causes of the effects into pointing performance indices. Since these indices were
identified as playing an important role in the future of cosmic vision and Earth observation missions,
a great deal of effort went into the precise definition and efficient usage of them. In essence, there are
three groups of errors: absolute, windowed-time, and stability-time. All three can be evaluated in the
statistical analysis of time-domain simulation data, and some frequency-domain behaviours can also
be described with the use of Image Motion Modulation Transfer Functions (MTF) and FFT. However,
there are no straightforward ways to directly include the indices in the control design process [46].

50
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Figure 4.1: Pointing performance error indices. [46]

The ECSS defines five pointing performance error indices (fig. 4.1). Absolute performance error (APE)
is the first and simplest one, and it is generally used in the control design of all pointing systems. It
is the absolute difference of the current line-of-sight vector from the desired one in terms of pointing
angles.
For the definition of the two windowed-time errors, a time-averaged error signal is defined:

ē(t,∆t) = ⟨e(t)⟩∆t =
1

∆t

∫ t+∆t/2

t−∆t/2

e(t)dt (4.1)

Where e(t) is the time-dependent error signal and ∆t is the window-time. For the project, it was
found that 10 sec produces a sufficiently smooth windowed-time error signal. Using this metric, the
mean performance error (MPE) and relative performance error (RPE) can be defined, with MPE being
equivalent to the windowed-time error signal, and RPE arising as the difference between APE and MPE.
In terms of stability-time errors, the performance drift error (PDE) and performance reproducibility
errors (PRE) can be defined with ∆ts as the stability-time. Despite them being mathematically identical
(see table 4.1), a PDE requirement specifies the MPE difference among two points in time, but within
one observation period. The PRE specifies an MPE difference between two points in time, which must
be within different observation periods.

Index Name Metric Formula
APE Absolute Performance Error Absolute e(t)
MPE Mean Performance Error Windowed mean ē(t,∆t)
RPE Relative Performance Error Windowed variance e(t)− ē(t,∆t)
PDE Performance Drift Error Windowed mean stability ē(t,∆t)− ē(t+∆ts,∆t)
PRE Performance Reproducibility Error Windowed mean stability ē(t,∆t)− ē(t+∆ts,∆t)

Table 4.1: Description of pointing performance error indices.

In their 2011 paper, Ott et al describe a frequency-domain framework which can be used to approximate
these error indices with specific filters placed on the APE channel of a pointing system. This can then
be used in solving a multi-objective H2/H∞ control problem and designing a robust controller that
optimizes the indices to the desired degree [46].
In this thesis, only the APE is used in the design of the outer loop controllers, with the rest of the
parameters being only used in the analysis of time-domain error signals. This is done for two reasons:
first, the goal of this research is not merely to design an acceptable controller for a given mission, but
to develop a suitable framework for the integration of control design, nonlinear simulation, and V&V
methods. Second, each additional index to the APE also requires weights in the augmented plant which
rapidly increases the complexity of the robust control design process, which was already substantial for
the project. It was decided that the indices should only be part of the project as a future goal, once all
higher priority tasks were finished. Third, currently there is no way to include these parameters in the
design of linear and predictive controllers, making the concurrent design process biased towards robust
solutions, which would be undesirable.
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4.2. Outer loop control performance
The simulation parameters were all specified in previous sections of the thesis, but just to summarize:
all simulations are carried out using an ode3 (Bogacki-Shampine) solver at a fixed step time of 1 ms,
with a simulation length of 600 s. For testing the control loop, the satellite was initialized with two-line
orbital elements measured during the morning pass and then pointed at an off-track city nearby (fig.
4.2). In this case, the target is the peak of the TU Delft Library, at latitude 52.00265 deg and longitude
4.3756 deg. This ensured a realistic test scenario with a large roll angle.

Figure 4.2: Smooth single-point tracking scenario layout.

After closely following the smooth portion of the trajectory and staying within the maximum torque
range of the reaction wheels, the designed controllers enter the precise pointing stage where the APE
requirements are below 2 arcsecs (fig. 4.3). In case of wheel failure, the smooth portion of the trajectory
can be extended to further reduce the required torque. After intersecting the line-of-sight vector with
the WGS84 reference ellipsoid, the ground errors are calculated and evaluated for all three control loops.
The total length of the ground pass is 450 s which can be further extended by relaxing the performance
requirements or optimizing the timing of the overpass.
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Figure 4.3: Pointing performance comparison for smooth single-point tracking.
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For evaluating pointing performance, an RMS-like (root-mean-square) error signal is defined based on
the norm of the roll and pitch errors, since yaw is relatively unimportant in precise pointing.

e(t) =
√
ϕ2e(t) + θ2e(t) (4.2)

The first thing that’s immediately visible is a slight delay in the MPE (fig. 4.4) of the linear and robust
controllers that predictive control does not suffer from due to the length of the prediction horizon. The
PID is performing very well in the first and last segments and only drops below 1 arcsec precision
around the time of the ground target pass due to the large relative velocity between the target and the
spacecraft. The H∞-based robust controller is oscillating between 0.5 and 1 arcsec MPE, frequently
meeting the accuracy of the PID. MPC starts off worst, barely meeting the main requirement (<2
arcsecs) at first, but then meets the other two controllers halfway through the observation time. This is
likely caused by an error in the internal state estimator of the MPC, as mentioned in the design process.
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Figure 4.4: Pointing stability comparison for smooth single-point tracking.

To assess pointing stability, the RPE index is used (fig. 4.4). It shows generally worse performance
for the PID and similar performances for the H∞-based controller and the MPC, validating the main
drawback of simple, linear controllers. While robust and predictive controllers have full access to the
state-space model of the system, the PID has barely half the states of the other two. As a result, pointing
stability degrades. Overall, the three controllers perform on similar orders of magnitude, which was the

Controller APEavg [arcsec] MPEmin [arcsec] MPEmax [arcsec] RPEavg [arcsec]
PID 0.5611 0.1900 1.2766 0.1598
H∞ 0.7355 0.2005 1.2340 0.1134

MPC 0.9659 0.3049 1.7611 0.1086

Table 4.2: Pointing performance error indices for smooth single-point tracking in terms of RMS error.

main goal of this first, simple experiment. The average APE is almost twice as much for the MPC than
the PID, with H∞ being in the middle. The minimum MPE is roughly similar for all three, with the
peak values being smallest for H∞ and largest for the MPC (by far). The average RPE is 50% higher
for the PID than for the other two controllers, indicating the decreased pointing stability.
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Ground track error
Pointing error is not everything in the performance of the optical system. While it is a strong indicator
of imaging performance, the ground error of the LOS vector is the only measurement to give a precise
result for a simulated camera image. Due to the geometry of the Earth and the spacecraft’s orbit, not
all segments of the precise pointing phase are made equal. Pointing errors and instabilities are greatly
amplified while the spacecraft is far away from the target, and only reflect true performance in a roughly
one-minute-long window of time while the spacecraft is passing over the ground target.
To calculate the exact location of the camera image centroid, three elements are needed: the line-of-sight
vector of the spacecraft in terms of ECEF coordinates, the current ECEF position of the spacecraft,
and a geometric representation of the planet. In this case, the WGS84 reference ellipsoid is used with
a constant equatorial radius (semi-major axis) of 6378.137 km and a polar radius (semi-minor axis) of
6356.752. This gives an inverse flattening value of 298.257223563.
Then, to simplify the coordinate geometry problem significantly, these elements are made dimensionless
with the WGS84 radii of the planet. First, the line-of-sight vector:x1y1

z1

 =

R⊕ 0 0
0 R⊕ 0
0 0 Rpol

−1

RFB

00
1

 (4.3)

Then, the ECEF position vector: x0y0
z0

 =

R⊕ 0 0
0 R⊕ 0
0 0 Rpol

−1

rFBF (4.4)

Finally, the reference ellipsoid is reduced to a perfect sphere in the dimensionless system:

x2 + y2 + z2 = 1 (4.5)

Now, consider a straight line that is defined by the LOS vector and ECEF position vector, representing
all potential visible points from the camera:

LOS(k) = rFBF + k · RFB

00
1

 −→

x0y0
z0

+ k ·

x1y1
z1

 (4.6)

This expression can be substituted into the equation of the perfect sphere to find the closest intersection.

(x0 + kx1)
2
+ (y0 + ky1)

2
+ (z0 + kz1)

2
= 1 (4.7)

This can be reformulated as a quadratic formula for k:(
x21 + y21 + z21

)︸ ︷︷ ︸
a

k2 + 2 (x0x1 + y0y1 + z0z1)︸ ︷︷ ︸
b

k +
(
x20 + y20 + z20

)︸ ︷︷ ︸
c

= 0 (4.8)

And can be solved with an adjusted form of the quadratic formula due to the 2b portion in the middle.
Note that only a single root needs to be calculated, as the smaller one is guaranteed to be the closest
intersection of the planet due to how the vectors have been set up. The exact ECEF coordinates of the
target are then determined with the SI position and LOS vectors:

k1 =
−2b−

√
4b2 − 4ac

2a
= −b+

√
b2 − ac

a
b2 − ac ≥ 0 (4.9)

rFGF = rFBF + k1 · RFB

00
1

 (4.10)

Finally, the ground pointing error is quantified with the norm of the ground error:

re = ||rFGF − rFTF || (4.11)
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As expected, the period of the closest approach will yield the smallest ground errors for all controllers
(fig. 4.5). This is roughly on the scale of 1-5 meters, about the size of a car. The amplification of
pointing instability can also be observed, especially as the spacecraft moves away from the target. For
another visualization, images were simulated at 1 Hz and plotted on top of the satellite map of Delft.
The centroids of images taken with the PID loop have an ellipse-shaped spread, while the H∞-based
controller causes a barbell-shaped deformation, and MPC has a clear bias towards one side of the target
(fig. 4.6). Interestingly enough, this transforms the spread into an L-shape.
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Figure 4.5: Ground error characteristics for smooth single-point tracking.

Figure 4.6: Camera images at 1 Hz for smooth single-point tracking, target in yellow. Left to right: PID, H∞, MPC.

4.3. The impact of trajectory design
For the next experiment, the controllers will receive a much larger demand from the reference angle
generator. Another target is added before the library, as the spacecraft will first point towards the bell
tower of Nieuwe Kerk on the main square of Delft (lat 52.0123596 deg, lon 4.3608797 deg). Another
change is that the simulation is started from steady-state, a full 3 minutes later than the previous
experiment. Between the two targets, a 15-second long smoothing takes place to ensure that the
controllers do not have to deal with a step-like change in the trajectory which would disturb the
structural dynamics and push the actuators to torque saturation.
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In this dual-point tracking scenario, some interesting changes can be observed. First, the pointing
performance of the PID drops drastically once the change is made (fig. 4.7). This is caused by the
much slower dynamics of the PID loop compared to the two other, more advanced controllers. There
is also a residual oscillation in the PID response which is only attenuated to acceptable levels in about
a minute. In contrast, the H∞ and MPC loops show no immediately noticeable difference between
the tracking of the two targets (fig. 4.8). While the PID takes about 30 seconds from the end of the
smoothing period to reach the desired 2 arcsec threshold of the system requirements, both the H∞ and
MPC reach this in a few seconds. During the transient, the PID reaches a peak of 12 arcsecs of error,
compared to the MPC’s 5 arcsecs and the H∞-based controller’s 3 arcsecs. Pointing stability is also
greatly reduced for the PID at 1-5 arcsecs of divergence from the windowed mean. As in the previous
scenario, here the robust and predictive controllers also show similar RPE at 0.01-0.1 arcsec.
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Figure 4.7: Pointing performance comparison for dual-point tracking.
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Figure 4.8: Pointing stability comparison for dual-point tracking.
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Because of its residual error, the average APE for MPC is still worse than the PID loop, however H∞
vastly outperforms both (table 4.3). Robust control is also a winner in the MPE bounds, with the PID
explicitly failing the 2 arcsec requirement, and MPC’s best MPE barely meeting H∞’s worst.

Controller APEavg [arcsec] MPEmin [arcsec] MPEmax [arcsec] RPEavg [arcsec]
PID 1.5038 0.4167 6.4843 0.5524
H∞ 0.9609 0.4811 1.3788 0.1220

MPC 1.5771 1.2365 1.8301 0.0903

Table 4.3: Pointing performance error indices for dual-point tracking.

The ground errors also reflect these differences with all loops producing worse results due to the more
aggressive reference signal. Both advanced controllers produce relatively stable tracking at 5-10 m
ground error which is largely due to a lopsided bias. PID’s spread keeps the same ellipse shape but at
a loss of large oscillations that the controller has trouble dampening. As a result, even without bias,
PID is vastly outperformed by both advanced controllers in a more demanding control scenario.
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Figure 4.9: Overlaid ground error characteristics for dual-point tracking. Both targets in yellow.

Figure 4.10: Camera images at 1 Hz for dual-point tracking. Left to right: PID, H∞, MPC.
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4.4. Active-passive vibration isolation
Based on the outer loop tuning campaign, it can be determined that in a single-loop setup, the maximum
frequency of decent reference tracking is roughly 5 rad/s, much lower than the estimated vibrational
modes of structural dynamics or the microvibration environment of the reaction wheel assembly. This
does not come as a surprise, considering the findings of the literature study.
In their 2014 overview of the field, Liu et al have identified several candidates for space applications.
High-frequency (above 200 rad/s) microvibrations are usually handled via passive means, while low-
frequency vibrations can be tackled with active control. Since a flexible spacecraft suffers from disturb-
ing effects in the entire frequency range, sensitive payloads must be protected using both active and
passive means. Some promising isolation techniques involve electro-rheological fluids, smart materials,
or nonlinear dampers, however these methods are yet to go through the rigorous testing and verifica-
tion process of space systems. Fortunately, there is a candidate with a proven track record and reliable
pointing performance: isolation platforms with hybrid struts [14].

Figure 4.11: Active-passive isolation device based on a cubic Stewart-Gough platform design. [5]

A Stewart-Gough platform (fig. 4.11) is a parallel manipulator device with linear actuators and uni-
versal joints that allow for the 6-DOF control of the payload plate. Their use in space applications is
supported by a large research interest due to their inherent capability to not only provide articulation
between different subsystems but also isolate microvibrations. This has the added benefit of merging
two functionalities in the same mechanical system, decreasing both the complexity and the mass of
the vehicle. The platform should be supported by at least 6 struts (a hexapod platform), but for the
purpose of redundancy, there are also designs for 8 struts (octopod) or more. The configuration of the
struts also influences the degree of cross-coupling in the device, which should be taken into consider-
ation during the design process. In the case of extremely sensitive payloads, multiple isolation layers
can also be considered [16][47]. As part of this thesis, the design of a single hexapod Stewart platform
is investigated in a cascade precise pointing control system, placed between the spacecraft bus and the
imaging subsystem (fig. 4.12).

Figure 4.12: Spacecraft architecture with isolator between the bus and the telescope on a flexible spacecraft. [5]
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Mathematical modelling of Stewart-Gough platforms
The mathematical model of the isolation platform is largely inspired by the work of Hanieh and
Preumont. Their work also involved the construction of a hardware demonstrator, whose frequency-
domain characteristics should be matched as closely as possible. The goal is to build an idealized model
of the hexapod device with struts capable of active-passive isolation. First off, the hexapod should fol-
low a cubical structure (fig. 4.13) with all struts being orthogonal to each other in the neutral position.
This reduces the effects of cross-coupling between them to the smallest degree possible [5][48].

Figure 4.13: Geometry of cubic hexapod isolator. Bold numbers indicate actuated struts. [5]

Second, the length of a strut is fixed at 10 cm, and the mass of the payload platform at 1 kg. Struts are
considered massless ideal spring-dampers to simplify the dynamical model with a stiffness coefficient of
1 N/m and a damping coefficient of 0.5 Ns/m. These values (summarized in table 4.4) are supported
by the transfer functions identified in Hanieh’s dissertation [5][48].

Symbol Name Value Unit
ℓ0 Neutral strut length 0.1 m
mI Mass of payload platform 1 kg
kI Strut stiffness coefficient 1 N/m
cI Strut damping coefficient 0.5 Ns/m

Table 4.4: Parameters of designed Stewart-Gough platform.

Based on this geometry, the initial states of the model can be constructed. Consider that xS and xP
are state vectors containing the position and rotation quaternion of the support plate (centered on the
S frame) attached to the body of the spacecraft, as well as the payload plate (centered on the P frame)
containing the imaging device. The derivatives of the state vectors are the velocities and angular veloci-
ties of the frames, with all of these physical quantities expressed in the body frame (B) of the spacecraft.

xS =
[ ︸ ︷︷ ︸

rBSB

0 0 1.175 ︸ ︷︷ ︸
qSB

1 0 0 0
]T ẋB =

[ ︸ ︷︷ ︸
vB
SB

0 0 0 ︸ ︷︷ ︸
ωSB

0 0 0
]T (4.12)

xP =
[ ︸ ︷︷ ︸

rBPB

0 0 1.233 ︸ ︷︷ ︸
qPB

1 0 0 0
]T ẋB =

[ ︸ ︷︷ ︸
vB
PB

0 0 0 ︸ ︷︷ ︸
ωPB

0 0 0
]T (4.13)

From the rotation quaternion, rotation matrices can also be defined that will be useful in deriving the
Jacobian matrix of the mechanical system:

qPB , qSB −→ RPB ,RSB RSP = RSBRT
PB (4.14)
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Finally, the positions of each strut connection node are defined in the support and the payload frames,
based on the corners of an equilateral triangle. The i-th column of these matrices corresponds to the
start and end nodes of the i-th strut.

rSSi =
ℓ0√
6

2 2 −1 −1 −1 −1

0 0
√
3

√
3 −

√
3 −

√
3

0 0 0 0 0 0

 (4.15)

rPPi =
ℓ0√
6

 1 1 1 −2 −2 1

−
√
3

√
3

√
3 0 0 −

√
3

0 0 0 0 0 0

 (4.16)

Deriving the force Jacobian
Now, let us consider the suspension dynamics of the Stewart platform. There, the system can be thought
of as an LTI MIMO 6-DOF mass-spring-damper system with six identical actuators:(

MIs
2 + CIs+ KI

)
xP = JPu (4.17)

Here, JP is the force Jacobian matrix, which is the transpose of the Jacobian connecting the state vector
xP to the spring extensions ∆ℓi:

∆ℓi = JTPxP (4.18)
It can be calculated from the geometry of the isolator system. First, let us determine the positions of
each strut’s end node in the support frame:

rSPi = RSP rPPi + RSB

(
rBPB − rBSB

)
(4.19)

From here, the length of individual struts can also be defined:

ℓi = rSPi − rSSi ℓ̂i =
ℓi

||ℓi||
(4.20)

And finally, the force Jacobian matrix in the neutral state is constructed as the well-known inverse
kinematics solution for hexapods [5][16][48]. Note that JP is rebuilt on every simulation time step:

JP =

[
ℓ̂i

rSPi × ℓ̂i

]
=



1 1 −2 1 1 −2√
3 −

√
3 0

√
3 −

√
3 0√

2
√
2

√
2

√
2

√
2

√
2

0 0 ℓ0 ℓ0 −ℓ0 −ℓ0
− 2ℓ0√

3
− 2ℓ0√

3
ℓ0√
3

ℓ0√
3

ℓ0√
3

ℓ0√
3√

2ℓ0 −
√
2ℓ0

√
2ℓ0 −

√
2ℓ0

√
2ℓ0 −

√
2ℓ0

 (4.21)

Modelling system dynamics
In order to expand the previously derived linear dynamics to a nonlinear simulation model that can be
included in the high-fidelity Simulink environment, some adjustments are needed to the mass-spring-
damper system. First off, let us define the rate of change in the length of a strut based on a body-fixed
support plate and a free payload plate:

δℓi = ℓ̂i · RSB

(
vBPB + ωBPB × RSP rPPi

)
(4.22)

Then, consider the force transformation matrix from the Body frame to the Payload frame that accounts
for the shifted center of the payload frame as well as its orientation compared to the body frame:

JBP =

[
RT
SB 03x3

RPBRT
SB

[
rBSB − rBPB

]
× RPBRT

SB

]
(4.23)

Then, the forces acting on the payload plate can be expressed in the body frame with the use of the
force transformation and force Jacobian matrices:[

f
τ

]B
P

= JBP JP [fa − cIδℓi − kI (ℓi − ℓ0)] (4.24)
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Finally, the equations of motion for the payload plate are expressed in terms of relative dynamics,
considering the rotating frame of the spacecraft Body and the arising Coriolis, Euler, and centrifugal
forces. Rotational dynamics are also expressed in the body frame, JI is the mass moment of inertia
matrix of the payload plate, approximated as a flat equilateral triangle:

ẍP =

[
v̇BPB
ω̇BPB

]
=

[
1
mI

fBP + gB − v̇BBF − 2ωBBI × vBPB − ω̇BBI × rBPB − ωBBI ×
(
ωBBI × rBPB

)
J−1
I

(
τBP − ωBPB × JIωBPB

) ]
(4.25)

Despite the complexity of the dynamical equations, the kinematics are relatively simple with similar
formulas used in the EOM of the spacecraft body as well:

ẋP =

[
ṙBPB
q̇PB

]
=

[
vBPB

1
2qPB ◦ ω̊BPB

]
(4.26)

There are two possible linearizations to construct from this dynamical model, because of the way the
inputs and outputs are set up: for a single output channel (state vector of P), there are two input
channels. The first input channel corresponds to the active forces of the struts and is represented
by the transfer function GI

F (s), to be used in control design. The second input channel covers the
disturbances from the Body frame and is represented by the transfer function GI

X(s), to be used in
the evaluation of cascade performance and to match the passive isolation characteristics of the isolator
model to the design of Hanieh. First, an auxiliary transfer function is defined to make the derivation
clearer:

GI
A(s) = M−1

I JBP JP (cIs+ kI) JTPRSB MI =

[
mII3x3 03x3

03x3 JI

]
(4.27)

Then, the two transfer functions characterizing the Stewart platform are:

GI
F (s) =

(
s2I6x6 + GI

A(s)
)−1 M−1

I GI
X(s) =

(
s2I6x6 + GI

A(s)
)−1 GI

A(s) (4.28)

The Bode plot of the isolator for disturbance rejection from the Body frame shows similar frequency-
domain characteristics to the measurements of Hanieh et al (fig. 4.14). In all directions, they are
low-pass filters with a cut-off frequency of roughly 1 rad/s and -20 dB/decade of attenuation.
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Figure 4.14: Bode response of isolator plant model for Body-frame disturbances. Cross-coupling effect between
opposite-axis forces and torques in black.
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Linearization for control design
The linear actuators of the struts are saturated at ±0.05 N and have a 0.01-sec delay which is reduced
in the control-oriented linearized model with a 5-th order Padé approximant:

e−0.01s ≈ GIPade(s) = −s− 729.3

s+ 729.3

s2 − 1341s+ 57090

s2 + 1341s+ 57090

s2 − 929.9s+ 72630

s2 + 929.9s+ 72630
(4.29)

The actuators themselves are driven by electric motors with a cutoff frequency of 100 rad/s that form
a 6x6 diagonal matrix to represent all struts:

G6x6,diag
Strut (s) =

100

s+ 100
(4.30)

And body-frame forces and torques are converted to strut forces with the use of a decoupling matrix
based on the force Jacobian and the force transform matrices:

DI = (JBP JP )−1 (4.31)

The final model is an expansion of GI
F (s) with actuator dynamics and time delay characteristics, as

presented in fig. 4.15. It allows the design of a collocated controller by defining the outputs as the
position and orientation of the payload plate while system inputs are the overall forces and torques
acting on the payload plate instead of individual strut forces.

GI
Act(s) = GStrut(s)D(s)GI

Pade(s) (4.32)

+
−

D−1(s) M−1
I (s) 1

s2

cIs+ kI JTP (s)

GAct(s)
xPfa

Figure 4.15: Linearized isolator plant model for control design.

4.5. Control design of pointing platform
The inner loop is chosen to be driven by an H∞-based robust controller. A PID was tested but its
performance was found insufficient for the complexity of the isolator system, and a predictive controller
would not have allowed for the precise definition of frequency ranges to be tackled by the controller.
However, there is an important change from the robust control design presented in the previous chapter.
For the isolator loop, the controller is tuned for mimicking a reference system in its closed-loop behaviour.
This reference system is also an integral part of the augmented plant (fig. 4.16) with its own filters.

GI
ref,diag(s) =

100

s2 + 20s+ 100
(4.33)

This reference system is the exact same for the entire 6x6 diagonal. However, to somewhat speed up
the pitch dynamics, the damping coefficient of the transfer function is adjusted for output 5:

GI
ref,5(s) =

100

s2 + 4s+ 100
(4.34)

The weights of the reference system are a constant gain of 1 as any adjustment to this value was found
to produce undesirable reference tracking characteristics:

WI
r(s) = I6x6 (4.35)
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The rest of the filters are various low-pass and high-pass filters, as well as zero gains for off-diagonal
elements (fig. 4.17). Similarly to the previous design, the filter parameters were tuned using a combina-
tion of intuitive initial values selected based on desired system performance and iterative tuning based
on the achieved disturbance rejection and reference tracking characteristics.
There were two main goals in the tuning process. First, to diminish the cross-coupling effects from
X-displacement to Pitch and Y-displacement to Roll. Second, to bring the cutoff frequency of the point-
ing loop beyond 17 rad/s in order to actively control at least the first flexible mode of the system and
achieve at least -40 dB/decade of attenuation for higher frequencies. While some of the poles ended up
too fast, they can be slowed down in future design iterations.
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Figure 4.16: Augmented plant for isolator control loop design.
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Figure 4.17: Tuning weights of isolator control loop.
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The control synthesis algorithms concluded with a final γ of 1.0058. The final controller had 81 states,
which was reduced to the 18 largest ones in terms of Hankel singular value, with the methods described
in the last chapter. The pole-zero map of the closed-loop is stable, with the highest frequency points
corresponding to the Padé-approximant (fig. 4.19). Most system modes can be found below 100 Hz,
with some poles placed near the imaginary axis, but still on the stable side.
The closed-loop shows low-pass reference tracking characteristics with a cut-off slightly above 20 rad/s
for Roll and Pitch, and 30 for Yaw (fig. 4.18). The cross-coupling between position and pointing
dynamics has been significantly reduced in magnitude to sit below the tracking modes, and disturbance
rejection for all other transfers is sufficiently low at -100 dB peaks. The position loop is slightly lower,
which is acceptable as the only requirement there is to fit within the operational bounds of the isolator.

10-3 10-2 10-1 100 101 102 103

Frequency [rad/s]

-250

-200

-150

-100

-50

0

50

M
ag

ni
tu

de
 [d

B
]

Position Loop

X
Y
Z
Dist.

10-3 10-2 10-1 100 101 102 103

Frequency [rad/s]

-250

-200

-150

-100

-50

0

50

M
ag

ni
tu

de
 [d

B
]

Pointing Loop

Roll
Pitch
Yaw
Dist.

Figure 4.18: Reference tracking and disturbance rejection closed-loop Bode plots on the position and pointing outputs.
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Figure 4.19: Pole-zero map of closed isolator control loop. Right side: Zoom on origin.
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The step response of the position loop shows a greatly reduced capacity to match a reference signal of 1.
As explained for the Bode diagram, this is acceptable behaviour. The position loops all reach a steady
state within 1-5 seconds with no residual error, and disturbances from other reference signals have a
noticeably diminished magnitude compared to the main tracking signal.
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Figure 4.20: Step response and disturbance rejection for designed H∞-based isolator control loop.

Virtual sensor in the isolator loop
Due to the highly idealized model of the isolator loop, a virtual sensor is used that could be based
on AI-driven image-based solutions or a laser-based method analogous to communication terminals. It
measures the difference between the real angle of the target and the current orientation of the spacecraft.
In order to limit the potential performance of the control loop, the virtual sensor has a 5-degree wide
range in roll, pitch, and yaw, and its output is digitized in a signed 16-bit integer. In this process, a
zero-mean Gaussian noise is added to all channels with 10−13 variance, which puts the virtual sensor
higher than an IMU but lower than a gyro in terms of performance. Overall, this results in roughly
0.15 arcsec of noise at 100 Hz.
To improve system dynamics around the saturation of the sensor, an arctangent-based smoothing al-
gorithm is applied between ±2 and ±2.5 degrees instead of a harsh cutoff, which would cause a slight
overshooting of the sensor bounds with a fast controller. The equation is a simple linear transformation
of the function, visualized in figure 4.21.

ϕsat = ±2 +
1

π
arctan (π (ϕ∓ 2)) ϕ /∈ [−2, 2] (4.36)
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Figure 4.21: Arctangent-based saturation function for the isolator loop.
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4.6. Cascade loop control performance
In the cascade loop, the isolator’s robust controller (as the inner loop) is combined with one of the
three designed controllers for the spacecraft ADCS (as the outer loop). This section compares the
time-domain performances of various combinations and assesses the improvements in pointing precision
from the inclusion of the payload isolator.

Dual-point tracking
In the purely outer loop case, the H∞-based controller had the best APE with PID and MPC tied slightly
behind it, while MPC and the H∞-based controller produced the best RPE with PID far behind them.
The addition of the isolator changes these standings quite significantly (table 4.5, fig. 4.22).
In all indicators, the PID and MPC-based cascade loops performed best, at roughly similar average
APE (0.17-0.19) and RPE (0.06-0.08), as well as a similar MPE ranges (0.12-0.6 for PID, 0.14-0.55 for
MPC). Surprisingly, the H∞-based controller benefited much less from the expansion of the control loop.
While its APE was brought down to 0.27 arcsec, and the MPE range was lowered to similar levels as
the other two controllers (0.18-0.69), its average RPE barely changed: dropping from 0.122 to 0.115.
This could be caused by the H∞ tuning algorithm producing a more aggressive controller to achieve
better performance indicators in the outer loop. As a result, the general noisiness and speed of this
controller cause disturbances on the payload platform that are harder to attenuate for the isolator loop.
This is an important conclusion that will be elaborated on later in this section: with the addition of
the isolator, there is no need to provide precise control in the outer loop at all costs, and there should
be more emphasis on robust and loose control that makes the inner loop’s operation easier.

Controller APEavg [arcsec] MPEmin [arcsec] MPEmax [arcsec] RPEavg [arcsec]
PID 1.5031 0.4174 6.4772 0.5520

PID+Isol 0.1701 0.1272 0.6008 0.0654
H∞ 0.9612 0.4832 1.3772 0.1220

H∞+Isol 0.2659 0.1844 0.6861 0.1154
MPC 1.5930 1.2444 1.8495 0.0902

MPC+Isol 0.1890 0.1372 0.5510 0.0867

Table 4.5: Pointing performance error indices for dual-point tracking with cascade control.
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Figure 4.22: Performance indicators of cascade control loop for dual-point tracking. Solid MPE, dashed APE.
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Figure 4.23: Ground error characteristics of cascade control loop for dual-point tracking.

However, there is a limit to relaxing control requirements in the outer loop. The slow settling time of
the PID causes some extra strain in the isolator loop, which adds some extra seconds in eliminating
residual errors. This is especially visible on the ground error chart (fig. 4.23), where the two advanced
controllers have little issue reaching the target in time while the PID struggles.

Multi-point tracking experiment
To expand on the conclusion of the cascade loop dual-pointing scenario, new targets are defined. In a
multi-tracking experiment, the satellite would be observing the town centers of Terschelling (in the West
Frisian Islands), Den Helder, Amsterdam, and Delft (fig. 4.24). The spacecraft takes about 40 seconds
to pass through the entire country of the Netherlands, with its ground track progressing roughly 400
km in a minute. At this speed, it would be impossible for the outer loop to observe four targets with
the given actuator limits, and even two of them posed a challenge to the PID. However, if the outer
loop follows an approximate center line through the country, the inner loop can switch rapidly from one
target to another, with the only limitation being that they can be no further than 2.5 degrees off track.
The simulation is initialized from steady-state, 2 minutes after the dual-tracking mode’s start time,
right above the maritime boundary of the country. Switches between the targets are made at 18, 30,
and 43 seconds after the start time. The roll angle is kept at a constant 1 degree, while the pitch angle
decreases linearly from 4 to -1 degrees.

Figure 4.24: Multi-point tracking trajectory. Ground track in cyan, outer loop in red, inner loop in blue.
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Each switch takes about 3 seconds to complete, this length was found to result in the best tracking
performance. The inner pitch loop is starting to saturate its sensors at some points in the scenario,
but this is expected and did not seem to cause any issues (fig. 4.25). The overall pointing performance
is worse than in the dual-tracking scenario, with the MPE settling around 10-15 arcsec error after
3-5 seconds (fig. 4.26). Surprisingly, performance is almost the exact same for all three outer loops,
indicating that the reference generator does not pose any large demands for the controllers. This
translates to a ground error of 50 meters, about the size of a large building. Note that the settling time
delay corresponds to some short-term oscillations in the ground error which last half the imaging time.
This worsened performance is expected, considering the much harsher demands from the inner loop
compared to the dual-tracking case. In conclusion, the best candidate for the cascade control would be
some combination of an approximative, but not linear outer loop where the operational range of the
isolator is reduced to a few hundred arc seconds.
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Figure 4.25: Simulation results in multi-point tracking scenario. Target switches in grey.
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Figure 4.26: Pointing performance of cascade control loop for multi-point tracking. Target switches in grey.



5
Verification and Validation

The main obstacle in the implementation of a precise pointing control system for flexible spacecraft
is the difficulty of verification and validation (V&V). This usually covers the estimation of uncertain
parameters and dynamics of the system and guaranteeing correct functionality under different scenarios.
There is an intensive ongoing research effort to solve the problems arising from this uncertainty, which
tends to be larger in space-bound vehicles due to the differences in the gravity environment compared
to a ground-based test chamber. This chapter presents two approaches to validate the three designed
control loops based on the research done during the literature study, which answered the following
questions:

• How to evaluate and validate the model, taking uncertainty into account?

– What are the most modern approaches to nonlinear Monte Carlo simulations of flexible
spacecraft?

– How is control performance evaluated in probabilistic analysis?

The first one is a linear analysis to identify worst-case combinations of uncertain parameters using
analytical tools, then evaluating the results in the nonlinear simulation environment. The second
one also involves model uncertainty in a multi-frequency worst-case analysis. This method combines
time-domain and frequency-domain performance indicators in order to validate the system faster than
conventional Monte Carlo methods with higher confidence in the final results.

5.1. Parameter uncertainty analysis
One way of verification and validation is to use µ-analysis techniques, which rely on advanced approaches
to LFT modelling (linear fractional transformation) and a significant effort in model reduction. However,
even with reduction, these methods generate high-order models, which severely complicate the process
of verification. As a result, it is standard practice in the aerospace industry (in Europe, as of 2010) to
use Monte Carlo simulations to test the performance of a robust controller. This method essentially
evaluates a large number of simulations with random dynamics, in order to provide statistical guarantees
for the worst-case behaviour of the closed-loop system. However, while large iterations (approx. 1000)
would be required for a hard proof, typical simulation numbers are much lower (around 300) due to
computational costs, which can render the results of the analysis unreliable [19][20].
To give a ballpark estimate, the current runtime of a single dual-pointing simulation is roughly 100
seconds on a high-end processor manufactured in 2020. To reach any significant statistical result from
a purely random sampling of uncertain parameters, several days’ worth of constant simulations would
be required. High-fidelity models in the industry suffer from similar constraints. As a result, Wang
et al developed a hybrid optimization algorithm in the early 2010s to analyze robustness in flexible
satellites. Besides the large computation effort, there were other serious shortcomings identified in
Monte Carlo-based methods, largely involving uncertain high-frequency flexible modes, which further
motivated their commitment to exploring optimization methods. In 2012, the V&V methods developed
by Gasbarri et al also came to the same conclusions [2].

69
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Modelling for uncertainty
In all of these verification campaigns, four parameters were considered to be uncertain. The primary ones
are the frequency and damping of the flexible modes of the spacecraft structure, and the secondary ones
are the inertia and overall mass of the vehicle. To limit the complexity of the analysis, some assumptions
are made. First, the uncertainty of frequency and damping ratio is controlled by two multiplicators with
5% and 15% range respectively, which were defined according to the aerospace verification practices
of SZTAKI (the host institute for this thesis). Second, the contribution of uncertainty in the inertia
and mass of the system is assumed to be largely caused by the rotation angle of the solar panel and
the filling ratio of the propellant tank. For the tank, the range is set up to cover any possible options
between empty and full. For the panel, the rotation is constrained between 0 and 90 degrees, which
sufficiently covers all options due to the symmetry of the flexible model. These values are summarized
in table 5.1, with their nominal values used during the setup of the simulator [22].

Parameter Nominal value Range of uncertainty
Tank mass multiplier 0.5 0-1
Panel rotation angle 0 0 - 90 deg

Panel damping ratio multiplier 1 0.85-1.15
Panel frequency multiplier 1 0.95-1.05

Table 5.1: Uncertain parameters in the linear analysis.

For each simulation run, the relevant parameters and models of the spacecraft model are re-initialized
with the controllers left the same. The calculations of the start sequence are decoupled in a way that
this can be done in a fast and efficient manner, with no unnecessary steps taken (i.e. redefinition of
initial conditions in orbital dynamics or rebuilding trajectories).

Frequency-domain analysis
To verify the designed controllers, they need to be robust concerning parameter uncertainty. The
targets of this analysis are the four variables defined in the previous section. First, their effect is
individually assessed on system stability using Bode diagrams and pole-zero plots, where the most
important performance indicators are the frequency-domain stability margins and the real distance of
the poles from the half-plane of instability. It was found that the panel rotation angle is markedly
different from the other three parameters since it provides a way for flexible behaviour to be transferred
from purely yaw dynamics to purely roll dynamics (and anything in between). This shows up as large
dips on the Bode diagrams of both rotation axes at the vibration frequencies.
This pointed out two optimization strategies in finding the worst-case parameter set: one for purely yaw
disturbances (no rotation, ”Param 1”), and another for purely roll disturbances (fully rotated, ”Param
2”). The remaining three parameter ranges are then sliced up with 10% intervals to form two cubes
of potential parameter sets, one for each rotation angle. Then, all of the cases are analyzed in an
exhaustive search to identify the case with the worst characteristics in phase margin, gain margin, and
pole locations. These were found to be at the edges, as presented in table 5.2.

Parameter Param 1 Param 2
Tank mass multiplier 0 0

Panel rotation angle (deg) 0 90
Panel damping ratio multiplier 0.85 0.85

Panel frequency multiplier 1.05 1.05

Table 5.2: Worst-case parameter sets for parameter uncertainty analysis.

Two figures showcase the effect of uncertainty on the PID loop’s performance. Figure 5.1 presents Bode
diagrams and pole-zero maps for both the yaw and the roll responses. Several systems are shown on
the graphs at the same time, transforming the nominal case parameter set (blue) into the worst-case
parameter set (red) in a linear manner. The main feature is the gradual loss of phase margin at the
vibration frequencies as system dynamics move away from the nominal case, visible as a deepening dip
on the phase diagrams. There is also a noticeable migration of the closer to the imaginary axis.
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Figure 5.1: The effect of uncertainty on linearized yaw and roll dynamics for parameter sets between nominal (blue)
and worst-case (red)

Time-domain analysis
Regarding performance in the nonlinear simulation, little difference was found between the three cases,
despite the controller retaining its tuning. Table 5.3 summarizes the results in terms of pointing per-
formance indicators, which would prove that all control loops are sufficiently resilient to parameter
uncertainty.
Unfortunately, there are also some major issues in the nonlinear simulation results (figs. 5.2, 5.3). It
is hard to miss that the worst-case systems actually perform better with the nominal controllers than
the nominal systems themselves. While only finding the edges of a parameter set in a semi-random
analysis is expected, the edge cases performing better than the nominal system is unusual. This is likely
caused by two factors. First, the controller tuning was largely done manually, which means that the
best possible performance with a given controller might not actually be achieved with the system it
was designed for. Second, there is an insufficient degree of uncertainty in the spacecraft model with the
current parameter set, and other sources of uncertainty should be investigated to validate the designed
controllers.

Controller APEavg [arcsec] MPEmin [arcsec] MPEmax [arcsec] RPEavg [arcsec]
Nominal PID 1.5038 0.4167 6.4843 0.5524
PID - WC1 1.2341 0.3571 5.7280 0.4088
PID - WC2 1.2248 0.3578 5.6204 0.4145

Nominal H∞ 0.9609 0.4811 1.3788 0.1220
H∞ - WC1 0.9267 0.5029 1.3130 0.1200
H∞ - WC2 0.9642 0.5100 1.3689 0.1207

Nominal MPC 1.5771 1.2365 1.8301 0.0903
MPC - WC1 1.5568 1.1437 1.8310 0.0895
MPC - WC2 1.5689 1.1504 1.8623 0.0896

Table 5.3: Pointing performance error indices for parameter uncertainty analysis.
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Figure 5.2: Pointing performance indicators of the three control loops in the nominal case and the two worst cases.
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Figure 5.3: Ground error of the three control loops in the nominal case and the two worst cases.

5.2. Validation using worst-case analysis
To expand the capabilities of the V&V process without resorting to a Monte Carlo campaign whose
drawbacks have been detailed in the previous sections, a worst-case uncertainty construction method is
used that was developed by Patartics et al. It maximizes the gain of a system at multiple user-defined
frequencies and is currently applied in the analysis of flutter suppression in flexible aircraft [23][49].
Consider the block diagram in figure 5.4, with the stable MIMO LTI system M(s) and its corresponding
MIMO uncertainty block ∆(s). There, M(s) is an augmented version of the nominal system model with
widened output and input channels to tie the effect of uncertainty into the model. The exact description
of how this uncertainty is acting in the system dynamics is described by ∆(s), which has two components.
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Figure 5.4: Interconnection of an uncertain system for upper LFT.

The first one is parametric uncertainty, which is the main type of uncertainty introduced to the system
so far. It describes deviations in the value of certain physical parameters. The second one is dynamic
uncertainty, which represents unmodelled behaviour in the system. Examples include high-frequency
vibrations or residual dynamics from model reduction. The most important criterion is that uncertain
dynamics must be stable and unit norm-bounded, but they can be weighted to adjust their magnitude.
Then, similarly to the lower LFT defined in the ADCS chapter, partition the system model so that the
upper left block has compatible dimensions with the uncertainty block:

M =

[
M11 M12

M21 M22

]
(5.1)

The upper LFT of M and ∆ is then defined as:

Fu (M,∆) = M22 + M21∆ (I − M11∆)
−1 M12 (5.2)

With the overall uncertain system being:

P (∆, s) = Fu (M(s),∆(s)) (5.3)

Now, assume the following: ∆(s) ∈ ∆, P (∆, s) is robustly stable (i.e. stable for ∀∆(s) ∈ ∆), given are a
set frequencies [ωk]

Nω

k=1 and worst-case gain lower bounds [Lk]
Nω

k=1. Then, define the function J : ∆ → R
that it is the sum of gains at the given frequencies:

J (∆(s)) =

Nω∑
k=1

σ̄ (Fu (M(jωk),∆(jωk))) (5.4)

The worst-case uncertainty sample construction problem is to find ∆m(s) ∈ ∆ for which J (∆m(s)) is
maximized. The function J has a theoretical upper bound, which is the sum of the worst-case gain
lower bounds at the given frequencies:

JU =

Nω∑
k=1

Lk, J(∆(s)) ≤ JU , ∀∆(s) ∈ ∆ (5.5)

If the system is only subjected to dynamic uncertainty, then it is possible to find a ∆m(s) that
J(∆m(s)) = JU , based on the boundary Nevanlinna-Pick interpolation [50]. However, in the case
of mixed uncertainty with both dynamic and parametric components, it is generally not possible to find
such a ∆m(s), because parametric uncertainty couples the frequencies together and different values of
the same parameter may be required to achieve the lower bound at each frequency.
The worst-case uncertainty construction method applied in this section addresses these issues by us-
ing a nonlinear optimization method that performs an efficient search of the full range of parametric
uncertainty as well as a boundary Nevanlinna-Pick interpolation of dynamic uncertainty [23][49].

System analysis
Analyzing the performance of a closed-loop control system with the worst-case uncertainty construction
method is an iterative process which offers increased speed and reliability compared to random sampling-
based Monte Carlo methods. First, an uncertain model is constructed (to be detailed in the next section)
with both parameter and dynamic uncertainty. Then, the uncertain transfer function of the cascade
loop from the 3 reference angles to the 6 pointing angles is converted to an LFT model that is passed
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to the optimization script along with two parameter sets: the relevant frequencies and the input-output
pair where the effect of uncertainty should be maximized. The selected channel can either correspond
to reference tracking or disturbance rejection.
The result is an exact parametrization of the uncertain block, which is used to update the high-fidelity
nonlinear simulation environment and evaluate pointing performance. To speed up the process, the most
interesting frequencies are selected iteratively by first checking the step-tracking characteristics of the
adjusted closed-loop and shifting the set of frequencies as needed. Usually, most pessimistic models are
reached when the frequencies are placed in the peaks and inflection points of the Bode magnitude plot.
A disadvantage of the method is that controllers without an LTI model (MPC) can not be evaluated.

+
+u

WUC(s)∆(s)

G(s)
y

Figure 5.5: Block diagram of dynamic uncertainty applied to some plant G(s).

Modelling for uncertainty
Considering the varied dynamics of reaction wheels, it was determined that their model should be
adjusted with uncertain dynamics (fig. 5.5). First, ∆(s) is created with Matlab’s ultidyn function
which generates a fourth-order LTI model with a gain bound of 1. Then, a filtering function WUC(s) is
defined that produces a roughly 1 dB variance in the DC gain and a 5 dB/decade variance in the rolloff
of the reaction wheel model (fig. 5.6):

WUC(s) =
1.89s+ 100

3.78s+ 1000
(5.6)
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Figure 5.6: Bode magnitude plot of uncertain reaction wheel model. Nominal in blue, samples in grey.

Finally, the previous parameter sets are slightly shrunk to improve the granularity of the search, as it
was found that the method tends to find solutions away from the edges (unlike the previous analysis).
The ranges for the damping ratio and frequency are still in line with SZTAKI’s usual assumptions, and
the rotation angle was calculated based on the uncertainty in the exact rotation angle of the panel.

Parameter Value Range
Tank mass multiplier 0.5 0-1
Panel rotation angle 0 -0.2 - 0.2 rad

Panel damping ratio multiplier 1 0.90-1.10
Panel frequency multiplier 1 0.98-1.02

Table 5.4: Uncertain parameters for multifrequency worst-case uncertainty construction.
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PID validation
The PID loop has proven itself to be robust enough against uncertainty in the multi-frequency analysis.
Note that the Bode plot for Yaw dynamics only shows the isolator response, as the Yaw loop is too
slow to show up on the chart. Using the method, the magnitude of disturbances on the roll and pitch
outputs increased by 15 dB, which translates to a ten-fold time-domain rise in the oscillations caused
by cross-coupling. Yaw dynamics were also perturbed to a significant degree, reaching up to 2.5 degrees
of error in response to a roll or pitch reference. While step-tracking was not affected much for roll, the
settling time and damping ratio for the pitch were significantly higher in the worst case. From all plots,
it is clearly visible that the worst cases found by the method (in red) produce far worse performance
than random samples (in grey), further motivating the use of the algorithm.

Figure 5.7: Bode magnitude plots of the cascade PID loop in the nominal (blue), worst (red), and random cases (grey).

Figure 5.8: Step response of the PID outer loop in the nominal (blue), worst (red), and random cases (grey).
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In the nonlinear environment, some of the cases produce similar, slightly improved results as seen in
the parameter uncertainty analysis. While the isolator loop did not produce any bad responses, the
outer pitch loop is very sensitive to worst cases optimized for any combinations except for θref − θisol.
There is an increase of about 50% in average APE, minimum MPE, and average RPE, even in reference
tracking. This is the main contributor to the increase in outer loop errors seen in the plots below.

Worst cases APEavg [%] MPEmin [%] MPEmax [%] RPEavg [%]
ϕ 5.7692 36.4967 13.3539 -16.8891
ϕi -7.3312 -5.1719 5.5011 -27.84
θ 15.4798 11.463 17.0646 6.8491
θi 9.5391 9.6623 10.5315 1.7747
ψ -8.3419 -15.5535 4.3249 -26.8561
ϕ 3.4734 2.2609 -0.5763 2.3426
ϕi 3.0224 6.4758 0.4347 5.2049
θ 1.716 -6.4621 -1.3918 2.4789
θi 2.3448 -0.3614 -1.1395 0.7831
ψ 4.1801 -0.4102 0.355 3.5919

Table 5.5: Worst-case pointing indices of output channels for Roll tracking in the outer PID and inner H∞ loops.

Worst cases APEavg [%] MPEmin [%] MPEmax [%] RPEavg [%]
ϕ 46.1561 44.6434 23.747 63.8876
ϕi 46.7421 40.3529 23.1732 66.7845
θ 48.313 52.6568 26.2055 58.2175
θi -21.0268 4.9021 -20.0858 -28.4494
ψ 46.9345 43.742 23.2947 66.2167
ϕ 6.9861 1.677 -1.8676 6.184
ϕi 5.691 -4.4375 -3.2708 6.6777
θ 9.7447 6.4081 -1.7015 6.841
θi 2.1466 5.1227 -1.6103 8.981
ψ 5.6184 -4.1579 -2.3021 9.3367

Table 5.6: Worst-case pointing indices of output channels for Pitch tracking in the outer PID and inner H∞ loops.

Figure 5.9: Simulation results for worst cases (grey) and nominal case (blue) with the cascade PID loop.
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H∞ validation
The H∞ loop has also proven itself to be robust enough against uncertainty in the multi-frequency
analysis. Using the method, the magnitude of disturbances on the roll and pitch outputs increased by
35 dB and 20 dB, respectively. This translates to a major time-domain rise in the oscillations in all axes,
which still stay lower than the PID loop’s. Step tracking is slightly affected in the form of some lightly
dampened oscillations in the roll and pitch loops. As with the PID, it is clearly visible on the plots that
the worst cases found by the method (in red) produce far worse performance than random samples (in
grey), further motivating the use of the algorithm. One exception would be the disturbance rejection of
the yaw loop, which was optimized for settling time instead of overshoot. This was a deliberate choice,
as long-term errors have a larger impact on dynamics compared to transients.

Figure 5.10: Bode magnitude plots of the cascade H∞ loop in nominal (blue), worst (red), and random cases (grey).

Figure 5.11: Step response of the H∞ outer loop in the nominal (blue), worst (red), and random cases (grey).
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In the nonlinear environment, most cases produce similar, slightly improved results as seen in the
parameter uncertainty analysis. Unlike the PID, both loops have very low susceptibility to uncertainty,
highlighting the importance of robust control. The most significant effect is perhaps a 29% increase in
APE and 10% in RPE for roll reference tracking, and the effect of uncertainty seems to be diminishing
with time as the controller brings system dynamics close to nominal for all cases, even with large initial
errors.

Worst cases APEavg [%] MPEmin [%] MPEmax [%] RPEavg [%]
ϕ 29.1943 -6.749 77.511 10.5943
ϕi -5.4575 -2.6953 -6.3912 -0.3264
θ 6.1577 -2.3725 9.8517 -0.5488
θi 8.315 -5.8852 15.7487 -0.7847
ψ -17.2412 -30.6985 -5.6572 -10.1902
ϕ -4.0103 -0.7906 2.9481 -5.4492
ϕi 4.5953 2.1361 0.1395 5.2307
θ -2.8671 -4.93 -0.6716 -7.1753
θi -1.1565 -7.8672 0.6591 -2.6894
ψ -1.7688 -4.0452 2.3889 -2.4326

Table 5.7: Worst-case pointing indices of output channels for Roll tracking in the outer H∞ and inner H∞ loops.

Worst cases APEavg [%] MPEmin [%] MPEmax [%] RPEavg [%]
ϕ 7.3854 12.127 11.7233 0.6467
ϕi 6.3038 3.2714 10.4044 0.8901
θ -1.2012 39.8143 -1.6015 3.2027
θi -6.0763 -7.4852 -3.5371 -2.8062
ψ 17.7994 2.0899 40.7737 1.7107
ϕ -2.978 -0.8368 -3.6655 -5.6737
ϕi 1.5117 1.1538 0.5031 1.9138
θ -5.046 -0.111 -5.2367 -4.6331
θi 1.2504 1.2171 1.1474 2.5651
ψ -2.792 -7.1414 0.8685 -4.3276

Table 5.8: Worst-case pointing indices of output channels for Pitch tracking in the outer H∞ and inner H∞ loops.

Figure 5.12: Simulation results for worst cases (grey) and nominal case (blue) with the cascade H∞ loop.



6
Conclusion

The main research question of the thesis was: How can the pointing precision of flexible spacecraft be
improved, compared to the current state of the art? Before it can be answered, it would be useful to
go over the general conclusions of the project.
First off, it was determined that even in the case of weak structural dynamics, single-loop control
design has to take the flexible modes into account. Despite not being able to actively dampen these
disturbances due to the limitations of actuator suites, it is of utmost importance that the structural
dynamics of the system are not excited by the ADCS loop. In this, all three tested controllers have
proven themselves to be sufficiently robust with lower than 2 arcsecs of absolute pointing error. In both
single and dual-tracking scenarios, the advanced controllers showed similar performance characteristics
in terms of pointing indices and ground-tracking errors. While the MPC showed greater pointing sta-
bility, it was prone to residual errors in APE which led to an offset in the simulated camera images.
The H∞-based controller on the other hand showed consistently good APE and MPE results at the
cost of slightly more noise being transmitted to the outputs. While the PID was able to keep up with
both advanced controllers in the simple single-point tracking case, its weaknesses showed quickly in the
more demanding dual-tracking scenario where it produced significantly worse results, especially in the
30 seconds following the transient phase. This can be attributed to the lower complexity of the PID,
along with its slightly lower cutoff frequency in reference tracking.
However, all of these shortcomings were eliminated with the implementation of a cascade control loop.
The H∞-based controller running the active-passive vibration isolation loop of the hexapod pointing
platform vastly expanded the reference tracking capabilities of the control loop. Both in terms of con-
trollable frequencies and pointing indices, the cascade loops were superior to single-loop control in all
tested scenarios. They rapidly diminished any residual error and noise in the outer control loops and
even made it possible to speed up the trajectory generator and expand its operations to several tracked
ground points. This was done by offloading control requirements from the outer loop to the isolation
loop, leading to an overall more relaxed ADCS which was much less susceptible to inducing microvibra-
tions, which would have led to a degradation of pointing characteristics.
This also highlights the importance of reference angle generation. The use of smoothing algorithms
and quaternion operations massively improved the chances of a simple controller performing demand-
ing maneuvers, but it quickly became evident that beyond 1-2 targets in a small country such as the
Netherlands, a dedicated pointing system is required on any Earth-observing spacecraft. As a result,
it is not sufficient to rely on simple step-tracking scenarios when evaluating control performance, as
a more detailed look into the real-world use cases of pointing systems can eliminate many desirable
candidates for control.
This is especially true for verification & validation efforts, which often rely heavily on frequency-domain
analysis and only a random sampling of time-domain behaviour. With the addition of realistic refer-
ence tracking scenarios, high-fidelity nonlinear modelling, and standardized pointing indices, the time
domain turned out to be a far more important indicator for the robustness of a control system to
uncertainty. This is especially true for mixed uncertainty problems as a combination of parametric
and dynamic uncertainty, where Monte Carlo consistently fails to find the worst-case models. This
means that V&V processes must be augmented with a heavily optimized methodology that relies on the
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evaluation of time-domain performance besides frequency-domain reference tracking and disturbance
rejection characteristics. In this project, this was solved by the multi-frequency worst-case uncertainty
construction method presented by Patartics et al, which resulted in a more thorough identification of
the boundaries of pointing characteristics than what would have been possible with a significantly more
time-intensive Monte Carlo campaign.
In the literature study that was carried out prior to this thesis, plenty of articles were identified that
were dealing with complex problems in high-fidelity modelling, advanced control, or V&V techniques
for flexible spacecraft, however most prominent publications only focus on one or maybe two of these
fields. As a result, there can be significant blind spots in their conclusions due to the complexity of the
precise pointing problem of these systems. The combination of all three fields yields a robust framework
for the control engineering of flexible space structures, whose first iteration was developed in this thesis.
In conclusion, to improve the pointing performance of flexible spacecraft, there must be more synergy
between modelling, validation, and control efforts. A cascade control system is an absolute necessity
that offloads most of the control effort to an active-passive isolation loop, and various reference angle
generation methods should be investigated and optimized in order to bring the most performance out
of the designed control loops.

6.1. Critical review and recommendations
Of course, in case of a complex design problem, the work is never fully done. There are several points in
the development process where work was cut short at a satisfactory level in order to bring the project
to the finish line. This section will go over each of these points to provide an explanation for some of
the decisions and explore ideas for future work.

Structural modelling
While the selected spacecraft model (Sentinel-2) was a good choice due to the vast availability of
documentation on its systems and operations, its structural dynamics did not have the desired strength
that would risk destabilising the system. There were some experiments done to adjust the parameters
of the solar panel to emphasize its flexible characteristics, but they were still insufficient in causing
critical disturbances. At this point, the outer loop controllers were already tuned, so it was decided
that instead of a redo of the previous work packages, more effort should go into future-proofing the
simulation environment. This led to a redesign of the structural dynamics implementation that allows
for easy exchange of models in the future. There is an ongoing effort at SZTAKI to develop a vastly
more flexible FEM model of an interplanetary spacecraft which will eventually be tested in the Simulink
environment.
However, it should be pointed out that the lack of strong vibrations does not equal an easy control
and validation problem. The flexible modes are still there, and they can still be excited to levels that
are detrimental to pointing precision. In essence, the current thesis is more about building a robust,
future-proof control design and verification environment than proposing specific controllers for a specific
mission.

Control design
After the initial mathematical setup of the controllers, parameter tuning is a time-intensive process
that follows the Pareto principle: 80% of the results stem from 20% of the effort. At the start of the
thesis, it was decided to place an arbitrary limit as the pointing requirement for all controllers: 2 arcsec.
The reasoning goes that the current star tracker model can only reliably measure angles with 1 arcsec
accuracy, so a doubling of this error is an acceptable result for pointing systems. As a result, controllers
are not as optimal as they can possibly be. Additionally, the cascade control loop would be better tuned
in a single step, using robust control in a structured way with the process focusing on the sensitivity
and complementary sensitivity matrices, as well as the pointing index weighing functions introduced by
Ott and Pittelkau. Each new controller tuned in the future will follow these guidelines.

State estimation
A major shortcoming of the current closed loop is the lack of a reliable state estimator. Properly
setting up a Kalman filter in the nonlinear environment would have gone too far beyond the scope of
the thesis, and the ”simulator-based” estimator was implemented as a backup. There is no significant
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loss in absolute pointing performance, but pointing stability could be vastly improved with Kalman
filtering. Additionally, predictive control suffered from greatly increased pointing errors due to relying
on its internal estimator algorithm. As a result, besides implementing a properly flexible FEM model
in the structural dynamics, the next most important future task is the implementation of a Kalman
filter.

Isolation platform
A future work package should deal with the high-fidelity modelling and proper design of the Stewart
platform, complete with a sensor suite and accurate models for the noise processes. The current one
is a good approximation of the real hardware and its parameters have a strong basis in empirical
research, but it is not yet reliable enough to move any designed controllers into a hardware-in-the-loop
environment.

6.2. Outlook
With the conclusion of this thesis, work does not stop on the project. The already heavily modular
codebase is being further de-hardcoded in preparation for future internship topics and research activities.
Some of the plans for industry applications involve carrying out the system identification and ADCS
validation campaign of an interplanetary flexible spacecraft or developing AI-based AOCS algorithms
using the developed framework.
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A
Simulink Model Blocks

The simulation environment forms a large feedback loop with three components. To obtain results, their
outputs are exported into the Matlab workspace, where post-processing is done with Matlab scripts
written individually for specific figures. During runtime, the outputs are observed with Simulink
Scopes to take a quick, ballpark estimation of performance without needing to wait for the entire
simulation length to pass.
Besides base Simulink blocks like integrators, state-space blocks, gains, multiplexers, etc. all
of the detailed systems here have been created by the graduating student under the supervision of the
thesis advisors for the purpose of this project. The chapters containing the equations behind the blocks
are referenced for each functionality.

A.1. Spacecraft dynamics
Description: The system dynamics block contains the nonlinear equations of motion for a point mass
system (ch.2), as well as the calculation of the real pointing error (ch.3).
Inputs:

• fB : Body-frame forces acting on the COG
• τB : Body-frame torques acting on the COG
• hrw: Body-frame angular momentum vector of the RWA
• xP : State of the isolation platform

Outputs:
• v̇BBF : Body-frame accelerator vector of the COG (real and virtual component vectors)
• vBBF : Body-frame velocity vector of the COG
• rFBF : ECEF-frame position vector of the COG
• λ, ϕ, h: Latitude, Longitude, Altitude of the spacecraft
• ω̇BBI : Body-frame angular acceleration vector of the COG
• ωBBI : Body-frame angular velocity vector of the COG
• qBL: Rotation quaternion between from the ECEF to Local frames (i.e. Euler angles ϕ, θ, ψ)
• qBF : Rotation quaternion from the ECEF to Body frames
• qPL: Rotation quaternion from the Local to Payload frames
• qTL: Rotation quaternion from the Local to Target frames
• qTB : Rotation quaternion from the Body to Target frames

Component: Translational Equations of Motion
Description: The translational EOM block contains the nonlinear equations for the orbit propagation
of a point mass in Earth orbit (ch.2), the calculation of the base vectors for the local frame (ch.2), as
well as the conversion of the spacecraft position vector to LLA coordinates (ch.2).
Inputs:
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• fB : Body-frame forces acting on the COG
• qBF : Rotation quaternion from the ECEF to Body frames

Outputs:
• v̇BBF : Body-frame accelerator vector of the COG (real and virtual component vectors)
• vBBF : Body-frame velocity vector of the COG
• rFBF : ECEF-frame position vector of the COG
• λ, ϕ, h: Latitude, Longitude, Altitude of the spacecraft
• qLF : Rotation quaternion from the ECEF to Local frames

Component: Rotational Equations of Motion
Description: The rotational EOM block contains equations for the rotational kinematics and dynamics
of a point mass system (ch.2), as well as the calculations of various rotation quaternions using the chain
rule (ch.2).
Inputs:

• τB : Body-frame torques acting on the COG
• hrw: Body-frame angular momentum vector of the RWA
• qLF : Rotation quaternion from the ECEF to Local frames
• xP : State of the isolation platform

Outputs:
• ω̇BBI : Body-frame angular acceleration vector of the COG
• ωBBI : Body-frame angular velocity vector of the COG
• qBL: Rotation quaternion between from the ECEF to Local frames (i.e. Euler angles ϕ, θ, ψ)
• qBF : Rotation quaternion from the ECEF to Body frames
• qPL: Rotation quaternion from the Local to Payload frames

Component: Real Pointing Angle
Description: The pointing angle block uses the equations for reference angle generation to define an
idealized LOS vector (ch.3) for evaluating pointing precision.
Inputs:

• rFBF : ECEF-frame position vector of the COG
• qBL: Rotation quaternion between from the ECEF to Local frames (i.e. Euler angles ϕ, θ, ψ)
• qLF : Rotation quaternion from the ECEF to Local frames

Outputs:
• qTL: Rotation quaternion from the Local to Target frames
• qTB : Rotation quaternion from the Body to Target frames

A.2. Forces and torques
Description: The force block contains the mathematical models for the effects of the environment
(ch.2), the structural dynamics of the spacecraft (ch.2), as well as the actuators of the reaction wheel
assembly (ch.3) and the isolator platform (ch.4).
Inputs:

• τ c: Control demand of the outer loop in terms of reaction wheel torques.
• fa: Control demand of the inner loop in terms of actuator forces in the isolator.
• v̇BBF : Body-frame accelerator vector of the COG (real and virtual component vectors)
• vBBF : Body-frame velocity vector of the COG
• rFBF : ECEF-frame position vector of the COG
• λ, ϕ, h: Latitude, Longitude, Altitude of the spacecraft
• ω̇BBI : Body-frame angular acceleration vector of the COG
• ωBBI : Body-frame angular velocity vector of the COG
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• qBF : Rotation quaternion from the ECEF to Body frames
Outputs:

• fB : Body-frame forces acting on the COG, the sum of 3 components
• τB : Body-frame torques acting on the COG, the sum of 5 components
• hrw: Body-frame angular momentum vector of the RWA
• xP : State of the isolation platform

Component: Gravity Model
Description: Calculates the gravitational acceleration (and force) affecting the spacecraft at its current
position along its orbit (ch.2).
Inputs:

• rFBF : ECEF-frame position vector of the COG
• qBF : Rotation quaternion from the ECEF to Body frames

Outputs:
• aBgrav: Gravitational acceleration in the Body frame
• fBgrav: Gravitational force in the Body frame

Component: Structural Dynamics
Description: Contains the reduced state-space model that describes the flexible structural dynamics
of the spacecraft (ch.2).
Inputs:

• v̇BBF : Body-frame accelerator vector of the COG (real and virtual component vectors)
• vBBF : Body-frame velocity vector of the COG
• ω̇BBI : Body-frame angular acceleration vector of the COG
• ωBBI : Body-frame angular velocity vector of the COG

Outputs:
• fBflex: Body-frame structural forces acting on the COG
• τBflex: Body-frame structural torques acting on the COG

Component: Environmental Torques
Description: This block calculates torque disturbances from the orbital environment of the spacecraft
based on approximations of gravitational, magnetic, and atmospheric data (ch.2).
Inputs:

• vBBF : Body-frame velocity vector of the COG
• rFBF : ECEF-frame position vector of the COG
• λ, ϕ, h: Latitude, Longitude, Altitude of the spacecraft
• qBF : Rotation quaternion from the ECEF to Body frames

Outputs:
• τBgg: Body-frame gravity gradient torque acting on the COG
• τBmag: Body-frame magnetic torque acting on the COG
• τBaero: Body-frame aerodynamic torque acting on the COG

Component: Reaction Wheel Assembly
Description: Contains the decoupling matrices, DC motor characteristics, and friction dynamics of
the reaction wheel assembly, as well as an implementation of the microvibration environment generated
by the component wheels (ch.3).
Inputs:

• τ c: Control demand of the outer loop in terms of reaction wheel torques.
Outputs:

• fBrw: Body-frame RWA forces acting on the COG
• τBrw: Body-frame RWA torques acting on the COG
• hrw: Body-frame angular momentum vector of the RWA
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Component: Hexapod Stewart-Gough Platform
Description: Contains the nonlinear equations of motion for the hybrid vibration isolation and pointing
platform (ch.3).
Inputs:

• fa: Control demand of the inner loop in terms of actuator forces in the isolator.
• v̇BBF : Body-frame accelerator vector of the COG (real and virtual component vectors)
• ω̇BBI : Body-frame angular acceleration vector of the COG
• ωBBI : Body-frame angular velocity vector of the COG
• aBgrav: Gravitational acceleration in the Body frame

Outputs:
• xP : State of the isolation platform

A.3. Onboard computer
Description: The onboard computer block is the heart of the control loop, where all the functionalities
are separated in the simulation which would be carried out autonomously by the spacecraft electronics.
This was done to prepare the environment for a future processor-in-the-loop testing campaign to assess
computational speed. It contains the sensor models, state estimator, reference angle generator, and
outer loop controllers (ch.2), as well as the isolator loop controller and virtual sensor (ch.3).
Inputs:

• vBBF : Body-frame velocity vector of the COG
• rFBF : ECEF-frame position vector of the COG
• ωBBI : Body-frame angular velocity vector of the COG
• xP : State of the isolation platform
• qBF : Rotation quaternion from the ECEF to Body frames
• qTB : Rotation quaternion from the Body to Target frames

Outputs:
• τ c: Control demand of the outer loop in terms of reaction wheel torques.
• fa: Control demand of the inner loop in terms of actuator forces in the isolator.

Component: Sensor Models
Description: Contains the various sensor models (ch.3) which add noise to the precise, simulated
states according to the characteristics of specific devices.
Inputs:

• vBBF : Body-frame velocity vector of the COG
• rFBF : ECEF-frame position vector of the COG
• ωBBI : Body-frame angular velocity vector of the COG
• qBF : Rotation quaternion from the ECEF to Body frames
• xP : State of the isolation platform

Outputs:
• rGPS : GPS measurement of spacecraft position
• vIMU : Integrated IMU measurement of spacecraft acceleration
• ωIMU : IMU measurement of spacecraft angular velocity
• qSS : Star tracker measurement of spacecraft orientation
• xP,virt: Measured isolation platform states using virtual sensor
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Component: State Estimation
Description: Contains the state estimator (ch.3) which calculates estimated states from noisy sensor
measurements.
Inputs:

• rGPS : GPS measurement of spacecraft position
• vIMU : Integrated IMU measurement of spacecraft acceleration
• ωIMU : IMU measurement of spacecraft angular velocity
• qSS : Star tracker measurement of spacecraft orientation
• xP,virt: Measured isolation platform states using virtual sensor

Outputs:
• rsen: Estimated spacecraft position
• vsen: Estimated spacecraft acceleration
• ωsen: Estimated spacecraft angular velocity
• qsen: Estimated spacecraft orientation
• xP,sen: Estimated isolation platform states

Component: Controllers
Description: Contains all designed controllers (ch.3-4) in a single block, that can be individually
turned on or off. The outer loop controllers all share a reference angle generator which calculates the
desired orientation based on the estimated states (ch.3).
Inputs:

• rsen: Estimated spacecraft position
• vsen: Estimated spacecraft acceleration
• ωsen: Estimated spacecraft angular velocity
• qsen: Estimated spacecraft orientation
• xP,sen: Estimated isolation platform states
• qTB : Rotation quaternion from the Body to Target frames

Outputs:
• τ c: Control demand of the outer loop in terms of reaction wheel torques.
• fa: Control demand of the inner loop in terms of actuator forces in the isolator.
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Code Snippets

Calculating LOS Vector Intersection with the WGS84 Ellipsoid
The function LOSintersect calculates the closest intersection of the WGS84 reference ellipsoid with
the line-of-sight vector. It takes the LOS vector and the current position of the spacecraft in the ECEF
frame as inputs, using the equatorial and polar radii of the planet as a parameter. Using dimensionless
coordinate geometry, it returns the ECEF coordinates of the ground location at which the spacecraft
is pointing.

1 function intersect = LOSintersect(Xecef,LOSecef,geo)
2 x0 = Xecef(1)/geo.Req;
3 y0 = Xecef(2)/geo.Req;
4 z0 = Xecef(3)/geo.Rpol;
5 x1 = LOSecef(1)/geo.Req;
6 y1 = LOSecef(2)/geo.Req;
7 z1 = LOSecef(3)/geo.Rpol;
8

9 a = x1^2+y1^2+z1^2;
10 b = x0*x1+y0*y1+z0*z1;
11 c = x0^2+y0^2+z0^2-1;
12

13 d = b^2-a*c;
14 if (d < 0)
15 interd = [NaN NaN NaN];
16 else
17 k = -(b+sqrt(d))/a;
18 interd = Xecef+k*LOSecef;
19 end
20 intersect = [geo.Req geo.Req geo.Rpol].*interd
21 end

90
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Magnetic Field Approximation
The function geomag calculates the magnetic field vector at the ECEF coordinates of the spacecraft,
according to a lower-order approximation of the 2020 World Magnetic Model. The function uses the
geomagnetic coefficients g and h as parameters in the calculation, which are tabulated in Chapter 2.

1 function B = geomag(Xecef, geo)
2 r = sqrt(Xecef(1)^2+Xecef(2)^2+Xecef(3)^2);
3 lam = atan2(Xecef(2),Xecef(1));
4 phi = asin(Xecef(3)/r);
5

6 Bx = 0; By = 0; Bz = 0;
7

8 cp = cos(phi);
9 sp = sin(phi);

10

11 P = [cp,0,0;
12 3*sp*cp,3*cp^2,0;
13 6*cp-(15*cp^3)/2,-15*sp*(sp^2-1),15*cp^3];
14 Pd = [-sp,0,0;
15 3*(cp^2-sp^2),-6*sp*cp,0;
16 -(3*sp*(15*sp^2-11))/2,45*cp^3-30*cp,45*sp*(sp^2-1)];
17

18 for n = 1:3
19 switch n
20 case 1
21 P0 = sp;
22 Pd0 = cp;
23 case 2
24 P0 = (3/2)*sp^2-1/2;
25 Pd0 = 3*sp*cp;
26 case 3
27 P0 = (5/2)*sp^3-(3/2)*sp;
28 Pd0 = cp*(3/2)*(5*sp^2-1);
29 otherwise
30 P0 = 0;
31 Pd0 = 0;
32 end
33 rr = (geo.Rm/r)^(n+2);
34 Bx = Bx - rr * (geo.g0(n)) * Pd0;
35 Bz = Bz - (n+1) * rr * (geo.g0(n)) * P0;
36 for m = 1:n
37 Schmidt = sqrt(2*factorial(n-m)/factorial(n+m));
38 Bx = Bx - rr * (geo.g(n,m)*cos(m*lam)+geo.h(n,m)*sin(m*lam)) * Schmidt * Pd(n,m);
39 By = By + (1/cp) * rr * m * (geo.g(n,m)*sin(m*lam)-geo.h(n,m)*cos(m*lam)) *

Schmidt * P(n,m);
40 Bz = Bz - (n+1) * rr * (geo.g(n,m)*cos(m*lam)+geo.h(n,m)*sin(m*lam)) * Schmidt *

P(n,m);
41 end
42 end
43 B = 1e-9*[Bx;By;Bz];
44 end
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