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Abstract

Attacks using drones are increasing, war zones see more and more use of drones and civilian areas are threat-
ened by cheap commercial drones. In order to prevent drone attacks, they have to be detected; identified
and neutralized. Faster identification results in more time to respond, making identification vital. This thesis
uses radar to identify drone threats using behavioral history. The basis for identification is created by flying
experiments around critical infrastructure whilst recording the movement using radar. Subsequently multi-
ple identification algorithms are compared to determine the fastest and most accurate way of identification.
We determined distance to critical infrastructure and degrees scouted around critical infrastructure are the
most important features. Next to that, the random forest achieves 96% accuracy, decreasing to 86% when
challenged. The decision tree scores 94% accuracy, but due to its explanatory nature it becomes the desired
algorithm. Understanding the basis for action is essential in neutralizing drone threats, making decision trees
the preferred method of identification.
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Introduction

This chapter provides an introduction into the thesis. It first introduces the field and relevance of this thesis
in Section 1.1. Section 1.2 introduces the subject. Followed by an explanation of the research question in
Section 1.3 and ending in an overview of the structure of the thesis in Section 1.4.

1.1. Relevance
1

With the advent of widespread use of cheap commercial Unmanned Aerial Vehicles (UAVs) or Drones' comes
an array of potential security issues, such as delivering contraband to secured locations [71], performing acts
of terror [22] or committing privacy violations [21]. These issues are becoming increasingly dangerous and
prevalent, due to the low cost of attaining and arming a drone. Cheap drones create a big economical asym-
metry in war zones, insurgents build and operate drones for around 2000 euros. The drone can subsequently
fly into an air base and take out a $300m fighter jet, providing a "profit’ of $299.999.998 [22]. Conversely, pro-
tection against a single drone is the use of specially fitted stinger-missiles costing around $175.000 each, a
loss of $173.200. In other words, if the decision is made to deactivate a drone, it has to be correct. In order to
combat drone security threats Solomitckii et al. [63] define 5 stages and issues in preventing a drone attack,
the 4'" step is expanded with identification. The 6 steps are shown in Figure 1.1. Classification step is further
subdivided into Classification and Identification for clarification.

Detection >> Localization >> Tracking >>Classification> Identiﬁcation>> Deactivation>

Figure 1.1: Drone attack prevention process

The first step, Detection, is becoming aware of objects entering an area that is safeguarded. After de-
tecting an object entering an area we want to find out where exactly it is located, i.e. Localization. When
the location is determined we want to keep on determining the location over time, i.e. Tracking. Following
Tracking comes classification, determining the type of object we are tracking. Types like birds or trees are not
relevant, types like fixed-wing drones or quad-copters are. Knowing the presence, location, movements and
type of an object does not provide sufficient grounds for action. To determine the ground, the next step is
identification, more specifically identification of a threat or no threat. Identification is the topic of this the-
sis, designing an algorithm for identifying drones based on tracking information. We perform valuation of
and identification algorithm by running it against real-world simulations. Deactivation is the final step in the
drone attack prevention process, this is currently another major problem in the process and a whole field of
research in its own right. With scoping in mind, only Identification is addressed extensively in this thesis. For
the other steps, the state of the art is discussed in Related Work.

LFor the rest of the thesis the term drone will be used.
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1.2. Subject

The primary subject of this thesis is use of radar data to perform identification of drones. With the rapid
technological advances in drone sophistication, radar is the preferred method of detection. Additionally it is
robust at detection in changing environments. Identification is chosen because it is a complex, urgent and
little researched part of the literature surrounding drones.

This thesis is written in cooperation with the military. The military provides access to radar and flies ex-
periments to generate data. In return we perform research that aids the military in the identification process.
The military currently uses a combination of radar and camera to identify drones. Radar uses electromag-
netic waves that reflect off the surfaces on the drone to detect, localize and track it [35]. The signature created
by the reflection is used by the radar to classify it. Identification is performed entirely by an operator with the
assistance of a very high resolution camera. This method is effective in short range, clear weather environ-
ments with a small amount of drones, extrapolation to more difficult environments or a multitude of drones
becomes problematic.

The aim of this thesis is augmenting the identification process of the military operators. The question
posed by the military is: "is it possible to use radar data to improve identification by a radar-operator?". In
practice this translates to: is it possible to add a threat level to drones classified by the radar to identify their
intent? The operator can then use the added information to make better decisions. In layman’s terms: the
monitor with radar data changes color for drones representing threat.

Due to the nature of the subject and the repercussions of deactivation, an important component in the
recommendation towards the military is comprehensibility. The imperfect nature of the real world and
chances of freak occurrences, requires the basis for action to be clear. The operator needs to justify deac-
tivating a drone using comprehensible information. A clear example of this is the story of Stanislav Petrov:
in September 1983 Stanislav prevented global nuclear war when the sensors on his radar system told him
the United States were launching multiple nuclear warhead. Because he could see the basis for the warhead
launch warning and determined they were highly unlikely he decided not to take action and saved our world
as we know it today [31]. For this research it translates into a preference for a sufficient and clear basis of
information for the operator. Enriching the information basis and preferring white box or "explainable" al-

gorithms as solutions?.

1.3. Research Question

The aim of this thesis is to use data extracted from a radar system to perform identification of unmanned
aerial vehicles. The research question is: "How accurately can we identify Intelligence, Surveillance, Recon-
naissance (ISR) from non-ISR behavior in drones using data collected by radar? “. The central hypothesis
this thesis answers is “there is no significant difference in behavior, as detected by radar, between ISR drones
and other types of drones.”. The solution accepts or rejects this hypothesis and uses it to answer the research
question.

To answer the research question, time series data is gathered using radar. Due to the lack of available
data it is generated by flying experiments. During these experiments a radar collects flight information. After
collecting the data it is converted to a flight path. Using these flight paths a comparison is made to check
for a significant difference in behavior within flight paths. If there is a significant difference in behavior this
difference is used to build a model which identifies the actors.

This thesis will not focus on detection, localization, tracking, classification or deactivation of drones. A
lot of research is done on these topics and there is still a lot more to be done. However the scope of this thesis
is to initiate the literature on drone identification.

2White box algorithms are defined further in Section 5.3.2
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1.4. Structure of the Thesis

The first chapter of the report is the Introduction, where the relevance of the subject is argued and the re-
search question posed. The second chapter is the Related Work, this chapter provides an overview of the
current research in this field and positions this thesis within the current state of the art. Chapter 3, System
Model, presents the system within which this research will take place. The system model discusses the pre-
liminary information needed in order to understand the system used to identify drones. In the Threat Model,
an overview of threat actors their resources, capabilities and common behavior is given. Following the threat
model the 5" chapter Solution expands on the previous chapters by proposing a solution to the threats of the
system. It discusses the general method and algorithms proposed to provide a mitigation of the stated threat.
The Evaluation, goes deeper into the solution and explains how the solution is tested, it then explores the data
and provide numerical results. With the 7" chapter, Future Work, the recommendations for improvement of
the provided solution is given. Ultimately chapter 8, Conclusion, will summarize the work done and provide
an answer to the hypothesis and the research question. Additionally it will contain a recommendation for the
military based on the results of this thesis.



Related Work

This chapter provides an overview of the state of the art in drone attack prevention. The chapter is divided
into the steps of the drone attack prevention process. Starting off with the literature surrounding detection,
localization and tracking in Section 2.1. Followed by a foray into the deactivation literature in Section 2.2.
Section 2.3 then provides an overview of classification literature. The central focus of this thesis will then be
discussed in Section 2.3.2. Finally the knowledge gap which this thesis fills is given in Section 2.4. A very
extensive and fascinating literature review of counter-drone systems around airports is provided by Lykou
et al. [39]. This literature review has a similar focus and expands on their work.

2.1. Detection, localization and tracking literature

A large amount of literature is being produced in the field of detection [3, 7, 18, 59, 60, 63, 65, 88]l. The
literature of drone detection can be divided into two major methods: detection of air vibration (sound) or
detection of electromagnetic radiation (visible light, WiFi, Bluetooth, etc.). In both methods a receiver is used
to receive the signals sent by another object?. The limiting factors in detection of signals are the strength of
the signal as well as the amount of similar signals (or noise). With drone attack prevention comes another
dimension to signal detection: adversarial behavior. A malicious operator will try to diminish a signal, avoid
an active signal or even try to flood a receiver with signals so that it is very difficult to detect the malicious
drone. Alternatively he might try to alter the signal, to try and confuse a receiver.

The adversarial factor produces a preference for passive detection methods, where the detector only re-
ceives incoming signals. Imagine standing on a field and watching for something to approach, you wait for
light to come from the sun and bounce of the object (some other examples are SONAR, Camera, WiFi re-
ceivers). As opposed to active methods where a signal is sent and the time taken to return to the sender is
measured. Imagine standing in the same field but there is no sun to provide a signal, you now need to use
a flashlight to bounce light of an object to see it approaching (other examples include Radar, Echolocation,
Identification Friend or Foe). In the passive method, if the object is adversarial, it does not know that you are
looking for it. In the active method you are standing there with a flashlight so it is easy for the adversary to
know that you are looking for him. The rest of this section is dedicated to providing a short overview of the
main methods used in detection.

2.1.1. Air vibration

First of all, detection of air vibration. This method involves the implementation of an acoustic array (an array
of microphones) to listen for sound produced by drones. The literature on this method is improving but still
not impervious to the limitations of signals mentioned before [4, 11, 13, 57]. An environment with a lot of
noise such as urban area’s will severely limit the effectiveness of this method. On top of that the effective

1This whole section will be focused on detection, even though localization and tracking are distinct activities it is assumed that they are
possible with detection for purpose of brevity.

some methods, often called active, like radar and echolocation first send a signal towards an object and record the return of the signal
bouncing of the object. The active part referring to the active sending of a signal.

2
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range is just around 300m, which is short if a drone is flying at top speed towards an objective it wants to
attack [11, 57]. Another downside is that acoustic sensors use a database of know drone sounds, an unknown
sounds from a new or adjusted model will go undetected [39]. All in all this method will likely be developed
further in the future, but currently does not look promising.

2.1.2. Electromagnetic radiation

The second major detection method is the detection of electromagnetic radiation. Electromagnetic radiation
"refers to the waves (or their quanta, photons) of the electromagnetic field, propagating through space, car-
rying electromagnetic radiant energy" [49, 73]. The difference in the frequency of the wave defines its name,
some examples ordered from low to high frequency: radio, microwave, Bluetooth, WiFj, visible light and X-
rays. The main electromagnetic waves used in detection of drones are visible light or optical based methods,
radio frequency detection and radar based detection.

Visible light or optical based detection is a promising method of detection, localization, tracking. Pro-
posed systems include using camera’s attached to cars or drones [53, 58] or the use of a wide-angle stationary
camera to perform broad range detection [70]. The limitations of optical methods are their sensitivity to low-
visibility environments (lots of other objects to bounce the reflections off) as well as a limitation on range,
depending on the camera used. Optical methods in the right environment are however a very promising
method in the detection of drones.

Passive Radio Frequency (RF) detection is a good example of a passive detection method that is slowly
becoming obsolete. As mentioned in the introduction to this chapter some drones require a constant con-
nection with its operator in order to receive orders. This connection between a drone and its operator requires
both parties to send radio waves in order to communicate. Radio frequency is the most popular method but
WiFi or Bluetooth based methods work in the same way, a WiFi or Bluetooth receiver could also be used to
detect if a drone is present (and communicates via that medium) [23, 45]. The limitation of this method is the
increasing technological advancement of drones, such that they can fly without a connection to its operator
(i.e. navigation based on GPS coordinates or even solely on an inertial measurement unit (IMU) or lasers as
used in GPS deprived environments [20]) making it impossible to passively detect them. Another downside
of RF based detection, accurate till 600m [45], is that in environments with a lot of RF use (for Wi-Fi, mobile
data, etc.) detection of RF can be limited to just 100m [56].

An active way of using the radio frequency for detection is commonly referred to as radar. Radar consists
of an electromagnetic wave transmitter and receiver. Waves are sent by the transmitter and upon encoun-
tering an object bounced back towards the receiver. The returning waves towards the receiver provide infor-
mation on it’s size and distance. The main challenge of using radar in the detection of drones is the choice
of frequency used. High frequency radar is very accurate but only up to several tens of meters. Whereas low
frequency radar has a very large range but has difficulty detecting smaller objects such as drones [44, 61]. The
downsides of radar based detection are the costs, interference by obstacles, lower detection rates in crowded
air spaces and the difficulty of classification or identification [39]. Interference by obstacles is a problem
suffered by all detection methods, a possible solution is usage of multiple radar systems placed at different
locations to maximize coverage. Lower detection rates in crowded air spaces can be prevented by higher fre-
quencies and usage of multiple radar systems.

An interesting development in the field of drone attack prevention is the utilization of drones to mitigate
the limitations of detection methods. A system of smaller drones that is communicating with a control sta-
tion is deployed in an area. When an unidentified drone enters the area the relay drones perform the act
of detection, tracking and localization by flying towards and following the unidentified drone [3, 12]. Use of
smaller drones is limited by the speed of the used drones (packed with sensors and deactivation methods to
perform its task), the weather conditions (smaller drones are more susceptible to bad weather) and the cost
of designing and implementing a large system of drones like this.

In conclusion, detection is a big field of study which is constantly evolving and improving. It consists of
a variety of different methods for detection each having its challenges. Based on the nature of the adversary
and the environment in which to operate a choice has to be made for a specific method. Before exploring the
literature of classification, the next section provides a short discussion of the current deactivation literature.
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2.2. Deactivation literature

Deactivation of drones as explained in the introduction can be a very expensive and difficult process. With
deactivation the goal is to make sure that a drone is not able to continue it’s mission. In order to perform it’s
mission the drone has to receive an objective, navigate towards it and execute a task (possibly returning to
it’'s operator afterwards). Deactivation is aimed at preventing the drone from receiving an objective, making
navigation towards it impossible or by simply destroying or immobilizing the drone.

The first step is the receiving of an objective, simply put: if a drone has no objective it can not execute
it. The simplest way that a drone receives and executes objectives is by having an active connection to it’s
operator. The operator continuously receives a video feed and sends commands toward the drone in real-
time. Deactivating a drone with an active connection can be as simple as flooding the medium with which
it communicates so that it is unable to receive other commands (jamming). A major drawback of jamming,
however, is that it also interrupts surrounding actors using the same medium (airplanes, friendly drones or
even radar systems). The solution being the use of rifle-like jammers that jam only a small beam (in busy
area’s this is still to blunt an instrument) [47]. Conversely the connection could be hijacked, giving control of
the drone to the defenders. There are even examples of counter-drones being able to hijack a drone mid-air
(54].

An alternative to an active connection is the use of a more abstract set of commands (follow a specific
object). Allowing the drone to temporarily lose connection to its operator while still being able to execute its
objective. This connection is still open to jamming and could be hijacked by a defender.

Finally drones can circumvent these defenses and be pre-programmed with an objective before being de-
ployed (follow magnetic direction for x minutes). Allowing its operator to drop the drone off, drive far away
and let it execute it’s task. Making it very difficult to deactivate this drone. Jamming is not possible on most
frequencies, however the drone could still be GPS based. Hijacking the "session" existing between the drone
and it’s operator is no longer possible. Supply chain attacks are however still possible.

An alternative to changing the objective of a drone is the interruption of it’s navigation module. A fully
autonomous drone, without a connection to its operator, can still execute objectives. Instead of navigating
via the operator it uses methods like an IMU sensor, LiDAR, microphones, GPS, camera or heat sensors [20].
Navigating using solely these sensors is often complicated and can be performed by swarms of drones com-
municating together [14, 84]. Fully autonomous drones are still very sophisticated so it is unlikely to be used
by most actors, but it will become easier in the future. In the case of a fully autonomous drone the attacker
will have to determine its means of navigation and then attack it accordingly or resort to the final method of
deactivation.

The main method of taking down drones is often referred to as the "kinetic approach”, where the drone
is taken down by using kinetic force. The first example was created in the Netherlands and involves the use
of birds of prey [39]. The drawback of this is the training required, but also the need for the birds to be in
a constant state of hunger in order to be willing to attack a drone. The second example, already alluded to
in the introduction is the use of rockets. This is a very expensive method, especially when considering the
cheap cost of building a drone. Additionally this method has the potential for collateral damage as well as the
spreading of fear when used in urban environments. Alternatively, companies proposed the use of drones
carrying nets which they can deploy on malicious drones [39]. Finally the use of hunter drones carrying
means to deactivate a malicious drone could still be considered. Limiting factor being its requirement to be
fast to get near to a malicious drone as well as being capable of carrying a payload useful in taking down said
drone.

Finally, depending on influence and resources of the defender, a supply chain attack could be performed.
Supply chain attacks assume the defender has access to part of the supply chain of the attacker. This allows
the defender to build in a kill-switch into the drone without the knowledge of the attacker. The ability to
build your own drone from scratch makes this kind of deactivation a lot more difficult (even then the hard-
and software could still contain a kill-switch).

In the end the deactivation of drones is not a straightforward process and research will have to be done.
The taking down of a single drone is difficult and often expensive. Combined with the low cost of producing
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a drone and with that the opportunity to create multiple attacking drones is a serious threat. Before deacti-
vation can happen though, classification must still be performed. Lest a non-malicious drone is taken down
accidentally. The next section will go deeper into the known classification methods.

2.3. Classification literature

The central subject of this thesis is the classification and more specifically the identification step in drone
attack prevention. This section provides an overview of the main strategies used in classification. Starting off
with a deep dive in the classification literature in section 2.3.1, zooming in on identification specific literature
in section 2.3.2. Finising with zooming in on, and justifying behavior based identification methods in section
2.3.3.

2.3.1. Classification
Classification or the determining of the type of drone detected is a challenging subject. It involves distinction
between any type of material in the air, birds and drones (as well as type of drone).

Acoustic based detection method look attractive at short ranges (less than 300m [57]). A positive aspect
is that they can differentiate between models and even load of a drone, providing basis for classification and
more specifically identification. However acoustic fingerprints vary based on weather conditions. A hot, zero
wind day at an open plain has different fingerprints than a cold, high wind day in the forest [42]. However in
environments with high amounts of noise the arrays are not effective [39].

Optical based methods are also seen as a realistic method of classification. Proposed systems include the
use of a wide-angle camera to perform broad range and general detection and is then supported with a higher
resolution camera to perform classification [66, 70]. The paper suggests using it as a primary filter in the clas-
sification task and backing it up with a more precise method. Classification distances are not mentioned.
The limitations of optical methods are their sensitivity to low-visibility environments as well as a limitation
on range, depending on the camera used. Optical methods in the right environment are a very promising
method in the classification of drones. Currently the main focus has been on classification of Persons or
animals [82], but drone classification is increasingly performed [66]. A good supplementation to optical de-
tection is the use of radars, Chadwick et al. [10] proposes the use of camera in combination with radar to
perform small object detection. They show that radar classification can be improved by use of camera. This
expands upon the longer range provided by radar for detection. But still suffers from the drawbacks of envi-
ronmental effects like clouds and rain.

Classification based on radar is attractive due to it being unaffected by low visibility, fog or haze, unlike
optical methods [32]. It is also resistant to the use of camouflage. The most prevalent radar based classifi-
cation method is the use of a micro-Doppler to distinguish between birds, planes or drones is. Statistically
describing the micro-Doppler signature of an object [15, 26, 43, 52]. However drones which have a smaller
Radar Cross Section (RCS) can still be difficult to detect. [32, 80].

An interesting radar based classification method is the use of range profiles. One of the first attempts at
this has been done by Zyweck and Bogner [89], classifying between Boeing 727 and Boeing 737 aircraft. This
is done using High Range Resolution Profiles, they achieve high accuracy with simple classifiers. Zhang et al.
[87] has shown that using high frequency radar and neural networks it is possible to use bi-spectra to classify
targets. Mentioning that the range profile "which is the projection of a target’s back-scattering on the radar
line of sight" is a suitable identification vector. However these range profiles are sensitive to time shift and
aspect angle change. The limitation here being the large size of the objects on which classification has been
performed. Another limitation compared to our research is the use of raw signal data. The radar systems used
by our research will not provide this kind of data. In conclusion, this method look promising and will have to
be performed on smaller objects but this is not within the possibilities of our research.
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2.3.2. Identification
In the identification step the aim is to determine intent of an object classified as a drone. Identifying it as a
friend or foe.

The first strategy comes from commercial air traffic control. Commercial air traffic is a mature and related
field, it uses a system of Identification Friend or Foe (IFF), which consists of a transponder fitted to aircraft
and aradar-based system for identification. The traffic controller sends an interrogation signal to an uniden-
tified object. The responder on the unidentified object then sends a response, identifying itself [72]. One
limitation of IFF is the occurrence of spoofing or the presence of a malfunctioning transponder, resulting in
miss-identification.

A very crude but effective method is a simple no-fly zone: define a zone within which every object is con-
sidered to be malicious and will thus be deactivated. In some situations this will be sufficient. However in
events where friendly drones are used for patrolling or where media drones are present for recording this can
be undesirable. Additionally the no-fly zone only starts identification once it is entered, decreasing the re-
sponse time to threats by operators. No-fly zones can be augmented by an IFF system to create a very robust
identification method. If a drone cannot identify itself and is within a no-fly zone, it is considered hostile and
will be deactivated.

Another alternative to radar is the use of relay/surveillance drones to perform in-flight IFE A system of
smaller drones that is communicating with a control station is deployed in an area. One of the smaller drones
is fitted with a camera and a pre-trained machine learning algorithm that is used to perform identification
for speeds up to 1.5 m/s, achieving a detection accuracy of 77% [3, 12, 83]. Additionally this vision-based sys-
tem can be used in GPS-deprived environments [20]. This method is limited by the speed of the used drones
(becoming heavy when packed with sensors and deactivation methods to perform its task), the weather con-
ditions (optical recognition and navigation does not work well in low visibility conditions such as fog, haze or
the night) and the cost of designing and implementing a large system of drones like this.

A proposed radar based identification method is the use of micro-Doppler. The current research into the
use of micro-Doppler in identification is vast and ever expanding [6, 50, 85, 86]. Zhang et al. [85] uses 2 radar
sensors which are 1 meter apart and 1.2 meters away from the drone in a quiet environment. They are able
to classify between different types of drones using the radar data and a state vector machine. Our use case
requires longer distances containing more noise, making this method less viable. This method could however
be used by having a network of stationary or drone-mounted radars capable of doing short range identifica-
tion.

Finally Caris et al. [8, 9] performs identification of small drones using W-band radar. Their results look
promising as they require very small amounts of power however their range is very small, current results are
only accurate up to around 100 meters with a possibility of going up to 300 meters. In order for this research
to be useful an increase in detection range will have to be achieved. W-band radar can be considered an ex-
pansion of a detection system, placing multiple radars to validate data gathered by longer range radar.

Conclusively, these identification based on raw signals look promising but all have their limitations. Which
iswhy the choice has been made to zoom out and look at behavior-based identification. The only data needed
is the x, y, z-coordinates over time and to perform identification. The subsequent section covers an explo-
ration into the behavior based identification methods.

2.3.3. Behavior based identification

Because radar cross-section based methods do not look viable the remaining method is the use of behavior
based classification. Simply put: using x, y, z -coordinates over time (flight paths) to classify behavior. Re-
search into flight paths of drones is currently limited, which is why alternative fields are also considered.

Andersson and Luong [2] performs classifications of birds and UAV’s using flights paths obtained by radar.
They achieve 90% accuracy in classification of birds and drones using only coordinates over time. This result
is achieved using filter based classification on a Recurrent Neural Network using Gated Recurrent Units. Their
thesis is promising because they show that it is possible to perform classification on drones and birds using
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detection history. Their method of classification can possibly be extrapolated to the identification step. How-
ever their use of a neural network is undesirable in the context of this thesis as explained in section 1.2.

The field of driver classification looks promising. With the huge influx of money and interest into au-
tonomous vehicles also comes an increase in research done into classification. For example, Bouhoute et al.
[5] looks at building graphical models to represent driver behavior. This is done using probabilistic hybrid
automata and labeled directed graphs. This method is interesting because it uses transitions of states to de-
fine behavior. In the case of drones the states can be a simplistic way of representing threat. From the point of
detection the different states keep track of behavior and when behavior changes significantly the drone can
be classified as malicious. An alternative is lane changing prediction as performed in Kim et al. [29]. They use
multi-class support vector machines to predict lane changing. This method sounds promising in detecting
behavior changes.

Crowd classification is another alternative field which tries to analyze behavior, however the focus here
is in large and dense data [33]. The data is subsequently used for crowd counting, violent behaviour detec-
tion and density level classification [41]. Violent behavior detection is done by looking at instant entropy and
temporal occupancy variation in crowds to estimate changes in the “mood” of a crowd [48]. Whereas our aim
is more akin to detecting the intentions of multiple actors in a crowd. Computer vision is effectively used in
detection of animal behavior, recognizing behaviors which can be used as features. In the case of hens they
detect moving or resting with close to 100% accuracy, however exploration only shows 54% accuracy [34].
Exploration detection is useful, however radar data is not fine-grained enough to extract the same features.
Another paper looks at the behavior of sows, they define different postures: standing, sitting, lying left and
lying right. And use a deep learning based feature extractor to extract these postures from images. Subse-
quently a convolutional neural network (CNN) is used to estimate the heat stress experienced by the sows
[28]. The extraction of features using computer vision differs from my case as the features in radar data are
easier to extract. The extraction of an entropy feature can be used to signal changes in behavior also present
in radar data.

By basing identification on radar behavior, identification ranges can be increased from just no-fly or warn-
ing zones to the maximum range of a radar system. Providing an early warning system. A possible limitation
lies in the high granularity of radar data, providing a small basis to base identification on. As well as the limita-
tions discussed in section 2.1: susceptibility to noise and obstacles. Because no research has been performed
on radar based behavior identification yet, it offers an important learning opportunity to the field of drone
identification.

2.4. Knowledge Gap

In conclusion, adversarial behavior is the main challenge of the drone attack prevention process. With a
risk of catastrophic consequences reliance on standards and compliance is insufficient. Requiring robust-
ness against adversarial behavior in every step of the drone attack prevention process. Based on the current
state-of-the-art radar based detection, localization, tracking and classification looks promising in terms of
robustness. However, improvements and augmentation are still needed. Due to it’s robustness against adver-
sarial behavior, we decided to utilize radar for identification.

The problem of identification currently has little research and no solution. Limitations by range, noise or
weather conditions make current solutions undesirable. A radar behavior based solution offers the opportu-
nity to diminish range and noise, as well as solve weather problems. Next to that the lack of research in radar
and behavior based identification provides a chance for exciting new research.



System Model

This chapter presents the preliminary knowledge needed to understand the current system in which identi-
fication takes place. Section 3.1 elaborates on the set-up on the side of the military, the equipment used and
the classification strategy used. Section 3.2 discusses the anatomy of a drone and the components most com-
monly found in a drone. Finally Section 3.3 covers the main types of actors and uses of drones and explains
their aim, behavior and characteristics.

3.1. Field set up by the military

The set up used by the military consists of a sensor group which controls the radar equipment. Within the
sensor group a small team controls the individual radar units and another team sits in a control room that
receives the signals from the radars and displays it on a screen. The control room group also has access to a
high resolution camera which includes a range finder. On localization of a drone the camera is used to better
classify the target. The primary goal of the sensor group is to increase the time to react to threats. Faster
detection, localization, tracking, classification and identification equates to increased time for deactivation.
The operator in the control room receives information from the radar concerning a drone in the vicinity, the
operator then uses the camera to perform a classification of the target, finally a decision for deactivation is
made by the operator.

3.1.1. Radar

The objective of the radar within the system is detection, localization, tracking and initial classification of
drones. Performed by sending and receiving electromagnetic waves. The radar is positioned close to the con-
trol room and is aimed at critical infrastructure. The radar classifies drones from other objects and connects
coordinates of drones to create tracks that are unique to a drone. Figure 3.1 shows a very simplistic overview
of the basic components of a sensor group. The radar is deployed facing critical infrastructure and its radar
beam covers a specific area. It is linked to a laptop that displays and records the objects captured by the data.
Figure 3.2 shows an actual picture of the radar position. The radar is indicated with a white 1 and the truck
containing the laptop is indicated by a white 2.
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Figure 3.1: Experimental Setup

Figure 3.2: Aerial picture of the radar set-up
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3.2. Drone

The central target in the system is the drone, a drone is an Unmanned Aerial Vehicle (UAV). It's most common
commercial form is the quad-copter or fixed wing variant. The basic components of a drone are shown in
Figure 3.3.
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Figure 3.3: Composition/Technology — Typical drone (quad or fixed wing) [24]

The ’brain’ of the drone is the flight controller and processor, they process signals and convert it into ac-
tions related to flying or executing one of its capabilities. The battery powers the drone and is connected to
Electronic Speed Controllers (ESC), the ESC controls and adjusts the speed of the attached motors. Drones
that receive instructions from an operator use telematics to receive said orders and relay information. De-
pending on the medium used the telematics uses a radio frequency or SatCom connection and possibly relays
a live-feed captured by a First Person View (FPV) camera. The drone can be enhanced by adding different
types of sensors, some examples are: Barometer for height data, GPS for receiving GPS positions, LiDAR to
navigate or make images using radar or a pitot tube for measuring speed. Next to that drones often have a
gimbal board to which a camera or servo’s carrying other kinds of payloads can be attached. Finally drones
can have extra servo’s to operate wings in the case of fixed wing drones.

The drone represents the central actor of the system, it operates in 3-D centering on the critical infrastruc-
ture. It is often controlled by an operator in direct control of the drone and navigating by video feed. However
other navigational methods do exist as discussed in section 2.1
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3.3. Common drone actors and behaviors
Due to it’s low operating cost and large range of capabilities drones are used in a wide variety of purposes, the
most common uses of drones are currently:

1. Media drones.

2. Transportation, i.e. first-aid drones, drones used by postal/food services;
3. Communication, i.e. mobile hot spots;

4. Hobby drones;

5. Race drones;

6. Inspection drones.

For each type of drone a short description of its aim, behavior and operating characteristics is defined.
These attributes are used to distinguish between different actors and in practise are used as a starting point
in mapping out actors present in an environment. The aim of an actor describes what goal that actor is
trying to achieve. The behavior provides a general description of the behaviors used to achieve the aim. The
characteristics make the behaviors concrete the characteristics used are the following.

¢ Control: either manual control or automatic control, this influences the movement of the drone;

 Flight-path: either direct or indirect, if the drone flies in a very direct fashion towards an 'objective’ or
flies more indirect without a purpose;

¢ Distance to object: the distance with regards to a critical infrastructure as defined by the guarding actor;
* Speed: the speeds used by the drone to perform it’s aim;

» Altitude: the heights most commonly used while executing the drone’s aim.

3.3.1. Media

Aim: Taking pictures, making video’s or using a live video feed to capture current events,

Behavior: The drone stays close to objects of interest for as long as possible, to gather more images. Once in
place it will be still or moving slowly, often manually, to get good quality images. In order to swap batteries or
drop off data the drone will have to return to a drop-off location. In order to record longer, the drone can be
deployed nearby. The drone will not fly too high in order to maintain image quality.

Table 3.1 shows the main characteristics of this drone actor.

Characteristics of media drones

Control Manual
Flight-path Indirect

Distance to object  1000-2000 meters
Speed 5-60 kmh
Altitude 200-100 meters

Table 3.1: Characteristics of media drones
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3.3.2. Transportation

Aim: Transportation of goods between two or more locations.

Behavior: The drone spends a short time at the drop-off location. It flies in straight lines straight towards
drop-off locations. It might be used to make multiple flights to and from a location. The drone can come
from a large distance and has a low speed to provide longer range and a bigger payload.

Table 4.2 shows the main characteristics of this drone actor.

Characteristics of transportation drones

Control Manual/automatic
Flight-path Direct

Distance to object  2000-3000 meters
Speed 40km/h

Altitude 50-100 meters

Table 3.2: Characteristics of transportation drones

3.3.3. Communication

Aim: Provide connection services in crowded area’s. Often done to "relieve" the more permanent network
infrastructure.

Behavior: The drone will stay on location for a longer time, possibly landing while the access point is active.
It might return to recharge the drone and hub. To save energy the drone can take off from a nearby location.
A high altitude could be used to increase connection distance.

Table 3.3 shows the main characteristics of this drone actor.

Characteristics of communication drones

Control Manual/automatic
Flight-path Direct

Distance to object 0-2000 meters
Speed 40km/h

Altitude 50-100 meters

Table 3.3: Characteristics of communication drones

3.3.4. Hobby

Aim: Practise of drone flying.

Behavior: The drone performs erratic behavior centered on a location often within view of it's operator. It
shows large changes in speed and altitude.

Table 3.4 shows the main characteristics of this drone actor.

Characteristics of hobby drones

Control Manual
Flight-path Indirect

Distance to object 2000-3000 meters
Speed 20-80 km/h
Altitude 50-100 meters

Table 3.4: Characteristics of hobby drones
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3.3.5. Race

Aim: Training for drone racing.

Behavior: The drone moves at fast speeds and performs short turns. It can move further away from it’s oper-
ator and moves in an indirect manner.

Table 3.5 shows the main characteristics of this drone actor.

Characteristics of race drones

Control Manual
Flight-path Direct

Distance to object  2000-3000 meters
Speed 80km/h

Altitude 50-100 meters

Table 3.5: Characteristics of race drones

3.3.6. Inspection

Aim: Creating images or LiDAR scans of an object in order to determine its status.

Behavior: The drone flies towards an object, then makes a calibration flight to set up it’s sensors. Then it flies
in a pattern around the object while performing a scan. It repeats the calibration and scan phases multiple
times at different angles to create a complete image.

Table 3.6 shows the main characteristics of this drone actor.

Characteristics of inspection drones

Control Manual
Flight-path Direct

Distance to object 2000-3000 meters
Speed 5-10km/h
Altitude 50-100 meters

Table 3.6: Characteristics of inspection drones



Threat Model

This chapter describes the threats to the system model. A short overview of all possible threat actors their
aims, behavior and characteristics is given in Section 4.1.

4.1. Standard Threat Scenario’s

The military uses 6 main Standard Threat Scenarios. These scenarios outline behaviors of actors. When
approached to secure an environment the possible threats are divided in these categories. They function as
a starting point in defining a new environment, providing a general description of behavior. The definitions
are by not exhaustive and actors can deviate from the defined behavior. The Threat Scenario’s used are:

1. Intelligence, Surveillance and Reconnaissance (ISR);
2. Transportation;

3. Man-in-the-middle (MITM);

4. Air Disruption;

5. Harassment;

6. Attack.

The first two scenario’s are similar to scenario’s in the System Model, however as a threat they have dif-
ferent characteristics. Each scenario is discussed shortly, it’s aim, the associated behavior and characteristics
are discussed.

16
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4.1.1. Intelligence, Surveillance and Reconnaissance (ISR)

Aim: Gathering of information by taking pictures, making video’s or using a live video feed. The information
can be used to plan successive action or sold to media outlets.

Behavior: The drone stays close to the critical infrastructure for as long as possible, to gather more data. Once
in place it will be still or moving slowly, often manually, to get good quality images. In order to swap batteries
or drop off data the drone will have to return to a drop-off location. In order to record the critical infrastruc-
ture longer the drone can be deployed nearby. The drone will not fly too high in order to maintain image
quality.

Table 4.1 shows the main characteristics of this drone actor.

Characteristics of ISR drones

Control Manual
Flight-path Indirect

Distance to object  1000-2000 meters
Speed 40-60 kmh
Altitude 200-100 meters

Table 4.1: Characteristics of ISR drones

4.1.2. Transportation

Aim: Transportation of (illegal) goods between two or more locations.

Behavior: The drone spends a short time at the drop-off location. It might be used to make multiple flights to
and from a location. The drone can come from a large distance and has a low speed to provide longer range
and a bigger payload.

Table 4.2 shows the main characteristics of this drone actor.

Characteristics of transportation drones

Control Manual/automatic
Flight-path Direct

Distance to object  2000-3000 meters
Speed 40km/h

Altitude 50-100 meters

Table 4.2: Characteristics of transportation drones

4.1.3. Man-in-the-middle

Aim: Transportation of a WiFi-hub to provide a rogue access point at a remote location. The access point can
be used to sniff traffic, relay a signal or hack into a device.

Behavior: The drone will stay on location for a longer time, possibly landing while the access point is active.
It might return to recharge the drone and hub. To save energy the drone can take off from a nearby location.
A high altitude could be used to avoid detection.

Table 4.3 shows the main characteristics of this drone actor.

Characteristics of MITM drones

Control Manual/automatic
Flight-path Direct

Distance to object 1000-2000 meters
Speed 40km/h

Altitude 50-100 meters

Table 4.3: Characteristics of MITM drones
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4.1.4. Air Disruption

Aim: Disrupt take-off and landing routes of air traffic without causing physical damage.

Behavior: The drone needs a short time on location to cause disruption. It might make return flights to be
used more frequently. High altitude and high speeds are used for avoidance against countermeasures.

Table 4.4 shows the main characteristics of this drone actor.

Characteristics of air disruption drones

Control Manual
Flight-path Indirect

Distance to object 2000-3000 meters
Speed 60-80km/h
Altitude 200+ meters

Table 4.4: Characteristics of air disruption drones

4.1.5. Harassment

Aim: Causing panic or disruption without physical damage, at airports, urban areas, mass crowds or specific
people.

Behavior: Drone follows a specific target. Flies at a low altitude and speed varies depending on the target.
Table 4.5 shows the main characteristics of this drone actor.

Characteristics of harassment drones

Control Manual
Flight-path Indirect

Distance to object  2000-3000 meters
Speed 40-60 km/h
Altitude 10-100 meters

Table 4.5: Characteristics of harassment drones

4.1.6. Attack

Aim: Modifying a drone so that it can be used as a weapon. The drone can then be used as a means or plat-
form for direct attacks. Targeting resources, personnel or infrastructure.

Behavior: Drone only needs to be on target for a short time. Drone makes a single flight to a target. Without
a return flight or long time on target the drone can take off at a larger distance. High speeds are used to ap-
proach a target faster. Low altitude is used to increase accuracy.

Table 4.6 shows the main characteristics of this drone actor.

Characteristics of attack drones

Control Manual or autonomously
Flight-path Direct

Distance to object 2000-3000 meters

Speed 80+ km/h

Altitude 10-100 meters

Table 4.6: Characteristics of attack drones



Solution

In Section 5.1 the target behavior of this thesis is discussed. Then in Section 5.2 the features that are used by
the model to classify the target behavior are explored. Finally in Section 5.3 the approach used to classify the
target behavior using the designed features is discussed.

5.1. Target Behavior

The system and threat models describe possible behaviors that are encountered in the field. From the profiles
available, the identification of ISR drones is picked as the main behavior for answering the research question
of this thesis. The identification of ISR drones requires the recognizing of: “Gathering of information by tak-
ing pictures, making video’s or using a live video feed. The information can be used to plan successive action
or sold to media outlets”. The key behavior to identify is the ability to make accurate videos or provide a live
video feed. This behavior is chosen for its ambiguity and loose definition, providing a challenging behavior
for classification.

The most common environment encountered is a deployment of the sensor group in a compound which
has a nearby village. Based on that environment the most common actors are non-professional or hobby
drones. Data for identification is generated by simulating this environment in experiments. The experiments
simulate ISR behavior, the pilot approaches an object defined as critical infrastructure and attempts to get a
clear view. During the flight the radar system captures the movement of the drone and sends it to a laptop
that records the capture data.

Non ISR-behavior is generated in two ways. Firstly the ISR tracks that are flown with respect to a specific
critical infrastructure location, are rotated. This affects the distance and angle based features but does not
change the other features. Making it more difficult for a model to distinguish rotated from actual ISR behavior.
Secondly, recordings of drones performing normal test flights for the radar are added to the dataset to provide
normal behavior independent of critical infrastructure.
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5.2. Feature design

To start identify ISR behavior, a set of features is defined. This set is used in the next step to define the bound-
aries of ISR behavior. As described in the System Model, the raw data contains x,y,z-coordinates over time.
We define artificial features to increase the basis of information for identification. The goal of the feature
design phase is to increase the information extracted from the raw radar data. The full list of features with
elaborate explanations is shown in Appendix A. A short breakdown of the used features is provided below.

5.2.1. General features

These features are based on the characteristics of actors defined in System Model and Threat Model. The
characteristics are: Control (Manual/Automatic), Flight-path: (Direct/Indirect), distance to object, Speed and
Altitude. Detecting control and flight paths is difficult due to the large-grained nature of the data. It is defined
by using three features: Degrees of operation, speed variance and altitude variance. The features describe
erratic behavior, hinting at automated behavior as well as how focused the behavior of a drone is. The other
three features are directly implemented from the System Model.

5.2.2. ISR specific features

These features are designed specifically for ISR-behavior, with a focus on camera accuracy. The first feature
is degrees of operation and captures the totality of the view created by a drone. Time within accurate zone is
based on the effective range of the camera on a drone and captures the time spent in that zone.

Non-moving time and covering of precious trajectories aim at detecting superresolution imaging. The
supperresolution method takes advantage of statistics in combining information from different images. By
aligning pictures of a setting taken from slightly different angles the information gathered is combined into a
higher resolution image [16, 46]. This method requires shots of a critical infrastructure taken from the same
position, which can be detected by tracking non-moving time. New methods are being developed to create
superresolution for video-feeds, in the future this becomes a bigger problem [36]. The covering of precious
trajectories captures video feed superresolution. Next to that it is used to detect scouting over time to map
troop movements.
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5.2.3. Extra features

To augment the feature space further, we add four additional features. First of all movement towards critical
infrastructure, this captures the focus of a drone on the critical infrastructure. Point of detection/loss detects
take-off and landing locations which creates an understanding of the environment and locations of actors.
Area of operation is a meta-feature that distinguishes less hostile actors, hobbyists operate in much smaller
area’s than bigger actors. Finally, weather conditions adds crucial information about the environment. Sunny
conditions indicate higher accuracy of camera’s at bigger distances. A full breakdown of each feature and its
calculation is given in Appendix A.

5.3. Approach

We want to answer the following research question: “How accurately can we Identify Intelligence, Surveil-
lance, Reconnaissance (ISR) from non ISR behavior in drones using data collected by radar?”. Will be an-
swered in two steps. First of all a theoretical model explaining ISR behavior is built. We build this model
to provide insight into the most important features. The model itself provides a novel way of discussing ISR
behavior and a starting point for discussing drone behavior in general. In step two we compare strengths of
multiple algorithms for predicting ISR behavior.

Before the theoretical model or the prediction algorithms are tested, data is generated. This is done by
flying ISR missions using a drone and capturing the movements using radar. During the capturing a laptop
is connected to the radar and parses the data stream containing the radar information packets'. Next to the
flown missions, some non-ISR captures from training sessions are captured and added to the data set. The
data set is then processed: removing perfect predictors, removing redundant features, performing normal-
ization. Finally a theoretical model is built and the prediction algorithms are tested.

5.3.1. Theoretical model

In order to identify ISR behavior we perform an exploration of the feature space. To understand the impor-
tance of individual features in explaining behavior feature importance is calculated. The feature importance
of avariable is a measure that describes how powerful that variable is in predicting a target variable [55]. Fea-
ture importance for each individual feature is calculated, using univariate as well as multivariate measures.
Information on feature importance forms the basis of a theoretical model for drone behavior. The informa-
tion on feature importance is used in exploring different machine learning algorithms for identification.

5.3.2. Prediction algorithms

Data is put into different algorithms to show underlying patterns. The algorithms produce separations within
the features based on ISR-behavior. Finally the separation of data found by the algorithm is examined to gain
further insight into ISR-behavior.

We use two types of algorithms: white box and black box algorithms. White box algorithms have simple
inner-workings and because of that can be understood and explained (e.g. decision tree, linear regression).
Black box algorithms are more complex and often have a higher accuracy but are difficult to understand and
explain (e.g. neural networks). White box algorithms are very useful as they provide a good insight into the
data and form a basis on which to talk to experts about results. Black box algorithms are useful because if
they provide a good separation of data that separation can be used in the final model, however the separation
is often too complex to be reasoned about with experts.

LEXPLAIN PACKETS?



Evaluation

This chapter describes how the solution are evaluated. The first section, Section 6.1, explains the experimen-
tal setup used to test the solution. Consequently the experiments that are executed are discussed in Section
6.2. The third section, Section 6.3, summarizes the most important results found in the experiments. Section
6.4, provides a brief overview of the evaluated algorithms. The numerical results found by the algorithms are
given and discussed in Section 6.5. Lastly, Section 6.6 explores the robustness of the algorithms to changes
in features and data.

6.1. Experimental setup

The actual equipment used to create the system model is explained in this section.

6.1.1. SQUIRE Radar system

The radar used in this thesis is the Signal Quiet Universal Intruder Recognition Equipment (SQUIRE) radar
system as produced by Thales. The SQUIRE is a portable radar system which can be carried by 2 operators
(in backpacks weighing 23kgs). It uses Frequency Modulated Continuous Wave (FMCW) technology and is
the preferred radar for quick and temporary deployments [67, 81]. The SQUIRE performs filtering such as on
Clutter, i.e. non moving objects and birds which are filtered using micro-Doppler data. The effective clas-
sification range of UAV’s is up to 6km depending on weather conditions [51]. The SQUIRE is attached to a
laptop running a Graphical User Interface (GUI)! that shows the received data . An operator uses this GUI to
coordinate troop movements as well as communicate with the radar.

The operational azimuth? of the SQUIRE is 360 degrees, however it is most often operated in 1200mils,
which allows a group of 3 SQUIRE’s to cover a half circle . The opening angle of the radar is 8 degrees or 142
mills. Which is why the SQUIRE is limited in the height of its detection area at shorter ranges (at 250 meters
the scanning height is 35 meters, at 3000 meters the scanning height is 420 meters).

The SQUIRE produces a binary stream of data in a custom protocol designed by Thales, a parser is built
to convert this data stream into (Python) objects usable for further analysis. The SQUIRE converts the data
points into x, y, z coordinates relative to it’s position. Next to that the SQUIRE connects related data points to
create tracks as well as perform a classification of the objects. Discerning between drones and other objects.

Connected to the SQUIRE is a laptop that receives the radar data and displays it on a map. That laptop
has a listening function duplicating the received data stream for connected systems. We connect to the lis-
tening port and receive the same stream of data as the Operators’ laptop. Combining the coordinates per
track with information on the location of critical infrastructure, the data is enriched with extra features. A de-
tailed explanation per feature is provided in Appendix A. In order to simulate lack of information the received

I The graphical user interface is a form of user interface that allows users to interact with electronic devices through graphical icons and
audio indicator such as primary notation, instead of text-based Uls, typed command labels or text navigation [78].
2The azimuth is an angular measurement in a spherical coordinate system [74]
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data tracks (consisting of up to 80 data points) are subdivided into tracks of 10 data points each. During the
evaluation the increase of data points per track is explored, increasing to 20 and 30 data points.

6.1.2. DJI Inspire 2

Due to the large variety in drone models and different qualities in camera, the choice is made for a single
drone and camera model. By showing the correct identification of behavior for a single make and model the
results can be extrapolated to a wider range of drones, camera and even behaviors in further research.

The chosen drone is the DJI Inspire 2, frequently used by armies and private actors across the world to
perform operations. The top speed is 94%, it ascends at 9% and descends at 6°. It can operate to a height of
2500-5000m above sea level depending on the propellers and up to (-20°C). It can fly up to 27 minutes or up
to 7km before needing a recharge. It is connected to an operator using a radio frequency between 2.4 and 5.8
GHz. It has a camera capable of recording video in 6K at 4.44%1’. The live video feed provides 1080p as well
as 720p. It has the possibility to approach and track a designated object. The camera is attached to a gimbal
allowing the operator to perform movement while the camera stays centered [19].

6.2. Experiments run

Generating ISR behavior requires actual flight recordings using radar. To reproduce ISR behavior for the
radar, different flight patterns are flown and recorded. Using a variety of altitudes and perspectives. The
flights create video images of the critical infrastructure, but also show behavior of an ISR pilot before the
critical infrastructure is within clear sight. Figure 6.1 shows the position used as critical infrastructure, the
drone approaches the critical infrastructure from a distance and creates a video feed.

Figure 6.1: Aerial picture of the critical infrastructure scouted.
1. Flying around the critical infrastructure at 700 meter distances, while circling around the infrastructure
to get a clear view. Altitude used is 50 meters.

2. Flying around the critical infrastructure at 300 and 500 meter distances, while circling around the in-
frastructure to get a clear view. Altitudes used are 70 and 50 meters.

3. Approaching the critical infrastructure in a straight line at an altitude of 50 meters. Then flying back in
a straight line.

4. Approaching the critical infrastructure in a straight line at an altitude of 10 meters. Then flying back in
a straight line.

5. Approaching the critical infrastructure in a straight line, then performing manoeuvres to distort the
video feed.
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6.3. Feature Exploration

The dataset generated by flying experiments, extracting features and adding additional features is explored
in this section. The feature set contains both dependent and independent variables®. The independent vari-
ables are continuous and the dependent variable is categorical. For data exploration a track length of 10
data points is used. The dataset contains 2529 data points on non-ISR behavior and 1588 data points on ISR
behavior.

First of all Pearson’s correlation is used to find statistical relationships between the independent vari-
ables [75]. To strengthen the feature set all columns which show a correlation above 0.8 are removed. Com-
paring time, max time and percentage spent in rings a direct correlation is seen between time and max time
in Figure 6.2. Justifying the removal of max time *.
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Figure 6.2: Heat map containing correlations for different ring based features

6.3.1. Feature Importance

Following the removal of these columns a range of measures is used to explore the feature importance. Both
univariate and multivariate feature importance are explored, a complete list of the used measures their defi-
nitions and results is given in Appendix B.2. The main indicators are discussed in this section.

The first measure is the Maximal Information Coefficient (MIC), which measures uncertainty reduction
about a random variable by knowledge of another variable [30]. The second measure is the absolute impor-
tance, representing how far a specific feature influences the final prediction of the test set [27].

The 10 best scoring features are shown in Figure 6.3. Distance to critical infrastructure scores best on
both measures, followed by the z-value or altitude and the average height.

3“Dependent and Independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. De-
pendent variables receive this name because, in an experiment, their values are studied under the supposition or demand that they
depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not
seen as depending on any other variable in the scope of the experiment in question.”[76]

4The same relation can be seen in sectors Appendix B.1
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Figure 6.3: Strongest predictors

In order to see the decrease in feature importance on removal of distance to critical infrastructure the tests
were executed without this feature. Resulting in Figure 6.4. The removal clearly shows the impact of distance
to critical infrastructure, where z and max time in any zones are only 0.24 for the univariate measure with
it. Removing the distance to critical infrastructure makes both max time and z the new 1 and scales the rest
accordingly. This makes degrees of operation very important where it was not as important before. However
the normalized % of importance is 7.13 compared to the 26.34 of the distance to critical infrastructure. Re-
moving distance to critical infrastructure evens out the other feature and shows a more uniform distribution
of features.

MIC Absolute importance Total Normalized [%]
degrees_of_operation
height_average
z
max_time_any_zone
perc_same_traj
max_time_per ring_l
perc_ring_1
time ring_1

max_time_per_sector_4

time_sector 4

Figure 6.4: Strongest predictors without distance

Taking a closer look at distance to critical infrastructure, multiple boxplots are created. One with ISR
tracks, one with rotated scouting tracks and one with non ISR tracks. As figure 6.5 clearly shows, the distances
for the ISR tracks are a lot nearer to the critical infrastructure than the distances for non ISR and rotated tracks.
Showing clearly that the distance to the critical infrastructure is a very good predictor.
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Figure 6.5: Boxplot of distance to critical infrastructure
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6.3.2. Theoretical model
From the data exploration we can build a theoretical model of drone behavior. The model used in the System
Model and Threat Model uses control, flight-path, distance to critical infrastructure, speed and altitude. For
ISR behavior these characteristics can be improved. Due to the lack of fine-grained data it is difficult to dis-
tinguish control and flight-path characteristics, standard deviation metrics might indicate control and flight
path but have low feature importance. Distance to critical infrastructure and altitude are good indicators as
proven by their feature importance. Speed is not a good predictor of ISR behavior as it has a low importance.
Features that explain movement are better predictors. First of all max time in any zone, an indicator for how
much an actor moves scores high on univariate measures but on multivariate measures it scores very poor.
Indicating that it might not be an ideal predictor. Subsequently, degrees of operation, an indicator for the as-
pects of an object that have been seen is an important predictor. Percentage covering of the same trajectory
is an indicator for repetitive patterns, corresponding to winning information on a target. This feature scores
high on univariate and multivariate measures.

Using this information we can conclude that the following features should be used in discussing ISR be-
havior:

¢ Distance to critical infrastructure;
¢ Degrees of operation around critical infrastructure;
e Z-coordinate or altitude;

* Percentage covering of the same trajectory.

Finally the addition of rings sectors and zones is too specific for a general theoretical model but they are
not insignificant and can be used when discussing specific scenarios.
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6.4. Description of Algorithms
This section gives a short overview of the classification algorithms that were considered, how they work and
how they can be tweaked.

6.4.1. Decision tree

The first white box classification algorithm is the decision tree. The algorithm explores data and attempts to
find single independent variables that explain the dependent variable. Per independent variable it find the
maximum separation for the dependent variable and creates a decision node on that separation boundary
(split). Continuing till a maximum separation of data is achieved. The tree consists of internal nodes or
branches with splits and external nodes or leaf nodes which have no children. Figure 6.6 shows a small
decision tree, we can see the decision points in the graphs. it also shows a single data point and what path is

taken to reach its classification.
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Figure 6.6: Decision tree with pathing

We explore the parameters listed below’:

e Minimum samples in leaf: “The minimum number of samples required to be at a leaf node. A split point
at any depth will only be considered if it leaves at least min_samples_leaf training samples in each of the
left and right branches.”

e Minimum samples in split: “is a fraction and ceil(min_samples_split * n_samples) are the minimum
number of samples for each split.” The min samples split refers to inner nodes in the tree and the mini-
mal amount of dependent variable classes required per branch. The ideal value is often found between
1 and 40 [40].

e Max depth: “The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure
or until all leaves contain less than min_samples_split samples.”. A higher depth results in a better fit on
the training data and a higher possibility of overfitting.

6.4.2. Random forest

The black box classifier is a random forest algorithm. The random forest uses multiple decision tree classi-
fiers, which are fitted to subsets of the dataset. It averages the results of the individual decision tree’s to create
an extensive decision structure. It expands the decision tree algorithm with one paramater. The number of
trees used in the forest. Next to that it uses all the decision tree parameters as seen in section 6.4.1.

5 explanations are taken from sklearn [62]
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6.4.3. Support Vector Machine

The other white box classifier is the Support Vector Machine (SVM). An “SVM maps training examples to
points in space so as to maximise the width of the gap between the two categories. New examples are then
mapped into that same space and predicted to belong to a category based on which side of the gap they
fall” [79]. The two parameters used to tune the SVM are discussed below.

¢ Cvalue: regularization parameter, the higher the value the smaller the margin used by the SVM.

¢ Gamma: the amount of support vectors used, a high gamma has a "linear decision boundary", a lower
gamma provides a "non-linear decision boundary".

6.5. Numerical results

The algorithms used are compared on their performance for track lengths of 10, 20 and 30 data points. The
length of the track corresponds to the amount of previous data points used in determining features. An exam-
ple of the calculation of x-coordinate for generic track lengths is given in equation 6.1. Where x,, represents
the n'" data point and x;,,,; represents the summation of the past n datapoints.

Ntracklength
Xtotal = Xy Xn (6.1)

Per track length, accuracy, precision and recall is calculated. All of them are aggregated into a generalized
score for performance [68]. For identification of ISR behavior, every positive requires an action, so if a track
is classified positively it should be correctly classified. Making recall the most important metric. Missing of
ISR behavior limits the preparation time for possible attacks, if a track is positive it should be correctly iden-
tified making precision important. Accuracy provides an overall indication of performance, high accuracy is
desirable. Prior to comparing classifiers, the individual classifiers are calibrated for optimal results. Using 5
fold cross validation, optimal parameters are found for each algorithm. This is done by calculating accuracy
over 5 folds.

Finally a statistical test is used to compare differences in results between different algorithms. a “5x2
Cross-Validation Test” is used to compare statistical significance between algorithms [17]. The assumption
for the “5x2 Cross-Validation Test” is that the results follow a Gaussian distribution ®, to check this a Shapiro-
Wilk test is performed on the results. If the results follow a Gaussian, we can use the “5x2 Cross-Validation
Test”. The “5x2 Cross-Validation Test” is picked over the commonly used Student’s T-test as the key assump-
tion of the Student t-test does not hold, independence of observations. Independence of observation equates
to the train set and test set being independent sets, sampling the train and test set from the same data set re-
moves independence. This results in an incorrect interpretation of the t-statistic and p value for the Student’s
T-test [17]. If the results do not follow a Gaussian distribution, a less powerful’ non-parametric test is used to
compare difference: the Wilcoxon signed rank test. The result of a test is a calculated t-statistic representing
how the test scored, followed by a p-value indicating the likeliness of a result if the null-hypothesis is true. If
the results of two classifiers are significantly different the p-value is higher than 0.05. A value lower than 0.05
indicates no significant difference between classifiers.

6A Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. A Gaussian distribution is
said to be normally distributed, and is called a normal deviate. [77]

“Power is the probability of wrongly concluding that two classifiers are or are not distinct. Hence a higher power reduces this probability
and is preferred.
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6.5.1. Track length 10

Figure 6.7 shows a summary of the most important metrics. In a, the accuracy, precision and recall for each
classifier is shown in a heatmap, the green color indicating performance on the metric. Next to that in b the
statistical comparison on the results for the classifiers is shown. The first column explains which classifiers
are compared, the second column show the statistical test used, the third column covers the t-statistic and
the final column is the p-value.

Classification of tracks at length 10 is very good, the “worst” classifier is the decision tree, which still
achieves 92% accuracy. The random forest performs is the most accurate classifier. The results of all classi-
fiers are statistically distinct: the decision tree and the random forest results do not follow a Gaussian and
Wilcoxon signed rank test provides a p-value of 0.125, which is larger than 0.05 resulting in a rejection of the
null hypothesis (the results of both classifiers are equal). The results of the decision tree and SVM follow a
Gaussian and the 5x2 Cross-Validation Test provides a p-value of 0.8, resulting in rejection of the null hy-
pothesis. Finally the random forest and SVM show a p-value of 1.8. Due to the p-values, all classifiers are
distinct.

Accuracy Precision Recall

Decision Tree

Random Forest

Test T-statistic p-value

Classifiers compared

SVM Decision tree x Random forest W 10
Decision tree x SVM lidation Test 0

Random forest x SVM tion Test -1

(a) Results (b) Statistical comparison

Figure 6.7: Track length 10 results

6.5.2. Track length 20

Figure 6.8 shows the results for a track length of 20. As expected, classification using more information be-
comes better, resulting in higher accuracy, precision and recall scores for all classification algorithms. The
increase is around 2% for each metric. The decision tree is now closer in results to the other classifiers, the
SVM is the worst classifier for a track length of 20. The p-values are above 0.05, resulting in distinct results.

Accuracy Precision Recall

Decision Tree

Random Forest

Test T-statistic p-value

Classifiers compared

SVM Decision tree x Random forest
Decision tree x SVM

Random forest x SWM

(a) Results (b) Statistical comparison

Figure 6.8: Track length 20 results
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6.5.3. Track length 30
Figure 6.9 shows the results for a track length of 20. At a track length of 30 precision is the most improved
metric. The decision tree becomes slightly worse than the others. The results are still statistically significant.

Accuracy Precision Recall

Decision Tree

Random Forest

Test T-statistic p-value

Classifiers compared
SVM Decision tree x Random forest

Decision tree x SVM

Random forest x SVM

(a) Results (b) Statistical comparison
Figure 6.9: Track length 30 results

At a track length of 30 precision is the most improved metric. The decision tree becomes slightly worse
than the others. The results are still statistically significant.
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6.6. Challenging the models

Next to regular comparisons, a change in features is used to compare classification algorithms. The goal is to
explore changes in performance when information is missing. Track lengths of 10 are used, as they show the
worst results for all classifiers, amplifying distinctions. 5 different experiments are run:

¢ All, this experiment contains all the features as used previously.

* No degrees, this experiment removes all angle-based features.

* No distance, this experiment removes all distance based features.

* No critical infrastructure, this experiment removes all critical infrastructure related features®.

* No rotated data, due to rotated data being identical to ISR tracks we explore the results without rotated
tracks, using all features.

The results are shown for all metrics, for each experiment and per classifier in Figure 6.10. The con-
clusions in feature exploration are confirmed by all classifiers. The distance to critical infrastructure is the
best predictor, removing that removes a significant amount of accuracy. Removing all critical infrastructure
related features makes rotated and normal ISR-features inseparable and impossible to distinguish. Which ex-
plains the difference between the no critical infrastructure experiments and the no rotated data experiments.
Another interesting trend is that recall suffers relatively more from a decrease in features. In other words:
non-ISR behavior is more often miss-classified as ISR behavior with a lack of features.

The random forest scores highest with removal of features, with the decision tree and SVM being close
but significantly worse. It is interesting to see that the recall for the SVM becomes very bad if more features
are removed.

Accuracy Precision Recall Accuracy Precision Recall

All All

no degrees no degrees
no distance no distance
no critical infrastructure

no critical infrastructure

No rotated data No rotated data

(a) Decision tree (b) Random forest
Accuracy Precision Recall

All
no degrees
no distance

no critical infrastructure

No rotated data

() SVM

Figure 6.10: Robustness in features per classifier

8This makes rotated data indistinguishable from non rotated data. As angle and distance based features are calculated with respect to
critical infrastructure
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6.6.1. Explaining effects with decision trees

The decision tree classifier being a white box classifier provides a lot of insight into the changes occurring
with less features present. Because it is fully white box, it is possible to visualize the final decision tree. The
visualized trees are shown with a max depth of 3, making it easier to visualize®. The trees with all features and
the tree without critical infrastructure related features are shown, the trees for no angle based features and
the tree for no distance based features are shown in Appendix C.

Figure 6.11 shows a decision tree using all features. The first 2 nodes contain distance to critical infras-
tructure, showing it’s importance. Next to that only speed average is not critically infrastructure related. Con-
firming the strength of adding critical infrastructure to classification.
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Figure 6.11: Decision tree with all features

Figure 6.12 shows a decision tree where all critical infrastructure related features are removed. With no
critical infrastructure related features, the covering of the same trajectory becomes the best divider reflect-
ing the multivariate test performed in feature exploration. Speed average is still present as a divisor in this
tree. The visualization clearly shows the ambiguity in classification, where the all features tree has pie charts
showing large single classes. The no critical infrastructure tree showing larger minority classes in the pie
chart.

9optimal depths are between 11 and 14 nodes deep.
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Figure 6.12: Decision tree without critical infrastructure based features

In summary, the Random forest is the best performing classifier, in terms of accuracy and robustness. The
decision tree and SVM perform very well too, making them good alternatives.



Future work

This chapter covers improvements recommendations for future work. There are a number of improvements
to the solution. The first section, Section 7.1, is a discussion of improvements to the dataset. Section 7.2
covers improvements to the theoretical model. And Section 7.3 goes into the identification process and its
improvements.

7.1. Improvements to the dataset

One of the main challenges of this thesis is the lack of “in the wild” recordings of behavior. Future work can
aim to get recordings from war zones as well as civilian identification missions. Next to that a new iteration
of ISR flights can be performed with the knowledge and models provided by this thesis. Knowing the bound-
aries of classification, flying adversarial missions that avoid known ISR patterns will challenge and improve
the current models. Next to flying ISR data, other benign and malicious (as defined in System Model and
Threat Model) flights can be added to the dataset.

Additionally changing the equipment and environments used improve the dataset: flying with other
drone models, changing the camera used by the drone, flying missions with different operators, using differ-
ent radar systems or settings and flying missions in other environments (different weather and/or locations).

Addition of more features is another improvement for the future. Incorporating the weather and changes
in visibility into the dataset for example. Rings, sectors and zones are a big improvement in implementing
terrain features, however altitude based layers are another extra step to make. Allowing a more precise allo-
cation of importance to layers.

7.2. Improvements to the theoretical model

The theoretical model derived from the dataset removes the control and flight path characteristics as stated
in System Model and Threat Model are removed in our solution. In the future a good proxy for these char-
acteristics should be found, the best predictors for control are: “standard deviation of each of acceleration,
jerk, roll velocity, roll acceleration and pitch velocity”[69]. These were determined with computer simulation
programs. Increase in accuracy of radar and validation of these factors in the field would be an interesting ex-
pansion to this thesis. Due to the precision of the SQUIRE radar system it is not possible to accurately detect
the features in our dataset. A higher frequency could solve this problem, at the cost of range. Finally, valida-
tion of the theoretical model with subject matter experts should be performed, a discussion on its parameters
would be very valuable.

34



7.3. Improvements to the algorithms 35

7.3. Improvements to the algorithms

Due to the performance of the used algorithms, improvement is currently not a high priority. The main
improvement to the algorithms is the prevention of overfitting our notion of ISR behavior. Actual ISR behavior
might be different to our definition, strict adherence to the solution might make one blind to adversarial
ISR behavior. Because of that the solution should be used as an accessory to decision making and not as a
sole basis of decision making as explained in section 1.2. As section 1.2 explains and due to the sufficient
performance of the current algorithms, more complex black box algorithms are not explored in this thesis. In
the future our classifiers could decrease in performance and justify exploration of more complex black box
algorithms such as neural networks.



Conclusion

The final chapter, Conclusion, reiterates the research question of this thesis and answers it in Section 8.1.
Based on the answer a recommendation for the military is provided in Section 8.2.

8.1. Research question

The research question of this thesis is: "How accurately can we identify Intelligence, Surveillance, Reconnais-
sance (ISR) from non ISR behavior in drones using data collected by radar.“ In order to answer the resaerch
question the central hypothesis will first be answered: “there is no significant difference in behavior, as de-
tected by radar, between ISR drones and other types of drones.”.

The evaluation chapter clearly shows that there is a distinction in behavior between ISR and other drones.
Decision trees, random forest as well as an SVM are able to distinguish ISR from non ISR behavior. Hence the
null-hypothesis is rejected. This rejection enables identification of ISR behavior. To answer the research ques-
tion: the accuracy achieved varies between 85% and 96% based on the features used and track lengths. The
longer the track length available the better the classification and random forest classifier is the best classifier
by a small margin. Removing features continues to provide an accuracy of 86%.

8.2. Recommendation Military

The question posed by the military is: “is it possible to use radar data to improve identification by a radar-
operator?”. The simple answer is: Yes, to a high degree our conception of ISR behavior can be distinguished
from other behavior.

In achieving this answer we discovered new features which are useful in talking about ISR behavior: the
distance to critical infrastructure, total amount of degrees of operation around critical infrastructure, altitude
and the percentage covering of the same trajectory. In discussing drone behavior these features should be
used. Next to that we recommend the addition of important rings, sectors and zones in observing environ-
ments. This research provides a starting point for a more complex understanding and discussion of drone
behavior. Improving the teaching process of drone and radar operators.

The addition of identification algorithms to the decision making process of radar operators looks very
promising. In environments with a high drone-density the algorithms assist in making preliminary identifi-
cations. Removing work load of the operators. In lower drone-density environments the algorithms can help
in identifying behavior at a longer distance, providing more time to react. Three algorithms were compared,
all three identify in a negligible amount of time because they are calibrated before deployment. Due to the
nature of operations the recommendation is to use a decision tree classifier. The decision tree classifier allows
a tracing of the identification process, providing operators a clear explanation of the achieved identification.
Because the decision tree classifier is only slightly worse than a random forest the loss in accuracy is accept-
able. The consequences of deactivation of drones and the dangers of miss-identification call for verification
by a human operator.

In conclusion, radar and behavior based identification of drone intention are a continuously evolving field
of research. These results look promising. With the challenging of the current algorithms and discussions
about the theoretical model, the identification process will grow stronger.
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Feature list

This appendix provides an overview of all the explored and implemented features. Providing a short title
followed by the unit it is measured in and subsequently a short definition of the feature.

 Distance to objective [meters]: the main feature used for identification, this feature will be enriched by
combining it with other features to get better threat levels.

¢ Degrees of operation [degrees]: the amount of degrees that a drone has flown around the sensitive
object, a larger amount of degrees corresponds to a more complete view.

¢ Changes in direction [count]: the changes in direction bigger than X degrees made by the drone. A large
amount of changes might correspond to more erratic and less of a focus on a clear objective

» Speed variance [kilometers per hour]: the changes in speed a drone performs with respect to its average.
If a drone comes in flying fast and then slows down its movement that might indicate a switch to ISR
behavior.

¢ Height variance [meters]: this feature can correspond to a change in perspective, the drone can attempt
to get an overview of the sensitive object and its surroundings. A low height at bigger distance might
correspond to having a bad view of the object.

* Average speed [kilometers per hour]: the average speed of a drone since the moment of detection. A
faster drone has a different objective than a slow flying drone, as defined in the Threat Model.

» Average Height [meters]: the average height of a drone since the moment of detection. A higher flying
drone has a different objective than a low flying drone, as defined in the Threat Model.

» Time within accurate zone [seconds]: the amount of seconds spent within ISR range, the longer a drone
is within this range, the more information can be gathered.

* Non moving time [seconds]: the amount of seconds that the drone has not changed position. By being
more stable more images from the same perspective are gathered. Using interpolation these images
can be merged to get a more detailed view.

» Covering of previous trajectory [% covered]: this is an indicator for automated behavior, useful in gath-
ering information at multiple points in time to build up a profile of a location.

¢ Max time spent in zone, ring or sector [s]: an indicator of what the longest time between 2 data points
. . l
in an area is.

¢ Time spent in zone or sector [s]: the total amount of time spent by a track within an area.

* Percentage of time spent in zone, ring or sector [%]: the percentage of the total amount of time spent
by the track within each area.!

1 The definition of sectors, rings and zones is given in Section A.1
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* Movement towards sensitive object [percentage]: the amount of movement the drone has performed
towards the objective. This feature is subdivided into movement in a 45 and a 90 foot cone, further
definition of this feature is found in Section A.2

* Volume of operation [m3]: the volume covered by all the data points provided with a track.

¢ Point of detection/loss [x,y,z coordinate]: is a useful feature for finding rogue access points or creating
amap of possible bad actor locations. This feature is not explored in this thesis.

¢ Weather conditions [type of weather]: a feature that adds information about the current weather con-
ditions. A change in weather could affect other indicators. This feature is not explored in this thesis.

A.1. Sectors, Rings and zones

In order to quantify location information with regards to critical infrastructure the area surrounding the criti-
cal infrastructure is subdivided into zones. Instead of relying solely on distance or angle regarding the critical
infrastructure a more abstract approach is made. Making reasoning about distance and angle easier. As
shown in Figure A.1, the area surrounding the critical infrastructure is subdivided into rings as well as sec-
tors. The rings start at the critical infrastructure and are subdivided based on radius (250 meters, 500, 750 and
1000 meters). The sectors originate from the critical infrastructure and begin at unit vector (1, 0). The sectors
divide the 360 degrees around the object into 45 degree sectors. Based on preference the rings and sectors
can be changed at will. Zones are created by the combination of rings and sectors, so a zone would be sector
0 (0-45 degrees) and ring 0 (0-250 meters).

Sector 2 Sector 1

Sector 3 Sector 0

Critical
frastructus

1000m
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Radar
System

Figure A.1: Sectors and Rings surrounding critical infrastructure

Using the defined zones and sectors, features can be subdivided into features per zone or sector. The
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Figure A.2: Time in cone (45 degrees)

The time in cone feature creates a cone or "view" based on the direction the drone has moved in the last 2
coordinates (coordinate 0 and coordinate 1). Using this cone it calculates if the position of the critical infras-
tructure (coordinate c) is inside this cone or not as well as how long the critical infrastructure was inside the
cone on the previous time interval. This is done by calculating the perpendicular intersection of the critical
infrastructure on the line between coordinate 0 and 1 (coordinate I). Coordinate I represents the division of
the distance between coordinate 0 and 1 if the cone is 90 degrees. At the time in cone at 90 degrees the time
spent between coordinate 0 and 1 is thus divided by the ratio of the distance till coordinate I and the distance
after coordinate 1. For time in cone at other degrees the distance from coordinate c to coordinate I is divided
by the tangent of the angle to provide the distance between coordinate A and I. Using that distance the po-
sition of a on the distance between coordinate 0 and 1 is found and can be used to calculate the proportion
within view of any angle. The algorithm used is supplied below.

mmnn

so = senstitive object
a = point where angle hits sensitive object

.
I

point of intersect

cO = np.array(c0)

cl = np.array(cl)

sens_obj = np.array(self.sensitive_object)

# calc a - so - 7% triangle distances
# calc distance from sens_obj to the line between c0 and cl

mmnn

source: https://stackoverflow.com/questions/39840030/distance-between-point-and-a-line-|

mnmn

d_so_i = norm(up.cross(cl - cO, cO - sens_obj)) / norm(cl - cO)

# calc point at which the sens obj goes out of view
d_a_i = d_so_i / math.tan(math.radians(angle))

# calculate distances from c0
# calc distance sens obj and c0
d_so_cO = norm(cO - sens_obj)
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# calc distance 7 and c0
d_i_cO = math.sqrt(math.pow(d_so_cO, 2) - math.pow(d_so_i, 2))

# calc distance c0 and a

d_cO_a = d_i_cO - d_a_i

# find point a along the line between c0 and cl

# calculate unit vector from cO to cl

v_cO_cl = cl1 - c0

norm_cO_cl = math.sqrt(v_cO_c1[0] ** 2 + v_cO_c1[1] *x* 2)
unit_vector_cO_cl = [v_cO_c1[0] / norm_cO_cl, v_cO_c1[1] / norm_cO_c1]

# find point a which %s d_cO_a along unit vector clO_cl
a_x = d_cO_a * unit_vector_cO_c1[0] + cO[0]

a_y = d_cO_a * unit_vector_cO_c1[1] + cO[1]

a = [a_x, a_y]

# check whether point a ts on the line between cO and cl
# calculate distance cl and a
d_cl_a = norm(cl - a)

# calc distance cl and c0
d_cO_cl = norm(cO - c1)

if d_cO_a + d_cl_a !'= d_cO_cl:
return 1.0

else:
return d_cO_a / d_cO_c1



B.1. Sector Heat Map

Data exploration

The regular text shows the heat map for rings. Figure B.1 shows the heat map for sectors.
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Figure B.1: Sector Heat Map

B.2. Feature importance

In order to compare individual features, two kinds of measures are used: univariate and multivariate. uni-
variate measures consider individual features whereas multivariate measures measure the contribution of a
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feature conditionally on every other feature.

B.2.1. Univariate measures

The first univariate measure is the F-statistic which amounts to a Pearson correlation which addresses lin-
ear relationships only [64, 75]. The second measure is the Maximal Information Coefficient (MIC), which
measures uncertainty reduction about a random variable by knowledge of another variable [30].
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B.2.2. Multivariate measures

The first multivariate measures are determined in fit time, they reflect what a model learnt from training data.
The caveat for fit-time measures is that it may assign a high importance to features that do not work well on
unseen data. Starting off with impurity reduction, determined on decision trees, it measures the decrease in
mean impurity of all nodes that split on the measured feature [25]. The second fit-time measure is split count,
counting the amount of times a feature has been used for a split [37]. The number of splits is an ambiguous
measure as some splits contain just a small number of observations. Weighting splits by the coverage they
achieve bypasses this and provides the coverage metric [38].

The final measures regard predict-time measures, these measures are model independent. These mea-
sures are calculated after training is completed and measure how good a feature classifies unseen data. The
first feature is the permutation importance, it measures the performance of a classifier with or without a
certain feature [1]. The final measure is the absolute importance, representing how far a specific feature in-
fluences the final prediction [27].

The 10 best scoring features are shown in Figure :10,est,redictrors. The distance to critical infrastruc-
ture is by far the best predictor on both univariate and multivariate measures. Only on Coverage it scores less
than other features, meaning the splits created by it do not cover a lot of dependent cases. It is interesting to
see that max time per sector scores well on split-time measures but bad on predict-time measures.

f-statistic MIC Impurity Reduction Split count Coverage Permutation importance Absolute importance Total Normalized [%]
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height_average
z
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Figure B.2: Strongest predictors

In order to see the decrease in feature importance on removal of distance to critical infrastructure the
tests were executed without this feature. Resulting in Figure B.3. Removing the distance results in a shift in
most importance features, degrees of operation becoming very important where it was not important before.
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z
max_time_per_ring_1

speed_std
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Figure B.3: Strongest predictors without distance



Decision tree visualization

Further visualization of the decision tree classifier, without the use of angle based features and without the
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