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Abstract—This paper presents the design of a research
platform for autonomous driving applications, the Delft’s
Autonomous-driving Robotic Testbed (DART). Our goal was
to design a small-scale car-like robot equipped with all the
hardware needed for on-board navigation and control while
keeping it cost-effective and easy to replicate. To develop DART,
we built on an existing off-the-shelf model and augmented
its sensor suite to improve its capabilities for control and
motion planning tasks. We detail the hardware setup and
the system identification challenges to derive the vehicle’s
models. Furthermore, we present some use cases where we
used DART to test different motion planning applications to
show the versatility of the platform. Finally, we provide a git
repository with all the details to replicate DART, complete
with a simulation environment and the data used for system
identification.

I. INTRODUCTION

Autonomous driving technologies have seen significant
advancements in recent years leading to many companies
around the world investing in, testing, and, in some cases,
commercializing autonomous driving services, such as robo-
taxis [1] and truck platooning [2]. Despite these encouraging
signals, the day when fully autonomous cars will be a large
percentage of traffic participants is decades ahead of us [3],
and much research is sill needed to unlock the full benefits
of autonomous driving.

To deploy these technologies in our cities, extensive
testing and validation of tailored navigation algorithms are
necessary steps to understand potential limitations, but also
gain users’ trust. Assessing these methods in simulation is a
cost effective solution, yet despite the increasing number of
available driving simulators in recent years [4], [5], issues
concerning fidelity of sensor data and vehicle dynamics
still remain a significant drawback [6]. Indeed it is quite
challenging, if not impossible, to accurately capture and
model all the interactions among the different components of
an autonomous vehicle such as road-tire interactions, actuator
and sensor dynamics, electronic and software components
that give rise to measurement noise and delays. On the
other hand, testing autonomous driving algorithms directly
on full-scale platforms entails for significant costs and long
time scales, not to mention safety and regulatory restrictions.
Small-scale testing platforms provide an intermediate step
(or a compromise) between a purely simulated system and a
full-scale autonomous car. Compared to the latter, small-scale
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Fig. 1: DART, a small-scale robotic platform for autonomous
driving research.

testbeds feature simpler hardware components with simpler
dynamics and low-level embedded controllers, like braking
systems, powertrain and suspensions, and they also typically
feature cheaper sensors such as cameras, Lidars and Radars.
Yet despite these differences they still need to fulfill all the
functional requirements as their full-scale counterparts, and
thus offer a holistic and more realistic testing environment
compared to a simulator, at a fraction of the cost of a full-
scale system.

Despite the advantages of using small-scale platforms in
autonomous driving research, very few models are available
on the market, most of which focus on machine-learning
perception algorithms for racing, making them challenging
to use for control and multi-agent applications. As a result
many research groups have developed their own customized
platform, leading to reproducibility and accessiblity issues.

With the previously mentioned issues in mind this paper
presents the Delft’s Autonomous-driving Robotic Testbed
(DART), shown in Figure 1. This affordable and easy to
build small-scale car-like robot is designed for both single
and multi-vehicle autonomous driving experiments.

II. RELATED WORKS

This section reviews small-scale car-like robots, roughly
between 1:5 and 1:20 of a full vehicle. Full-scale research
platforms and differential wheeled robots like TurtleBot [7]
and Duckiebot [8] are considered out of scope for the present
paper and will thus not be covered. We will describe the
most well-known platforms starting from largest (1:5 scale)
to smallest (1:16 scale) highlighting their main features,
summarised in table I for convenience. Notice that the listed
prices are indicative, as costs may vary over time and across
different countries.
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The AutoRally [9] is 1:5 scale vehicle-like robot platform
developed for aggressive autonomous outdoor driving at the
Georgia Tech Autonomous Racing Facility. The AutoRally
platform is based on a 1/5 scale RC trophy truck. Due to
its size, it can include a powerful mini desktop computer for
state-of-the-art computationally heavy algorithms. The mini
desktop can communicate through 2.4GHz/5GHz Dual-Band
High-Speed WiFi and through an extra added 900 MHz XBee
Pro providing a low latency, low-bandwidth wireless com-
munication channel. Featuring high-end computation units,
sensors, and actuators the total cost of this platform is around
5000$. To add these components to the main body and
make them ready for outdoor conditions, several parts are
customized.

The MIT RACECAR [10] (Rapid Autonomous Complex-
Environment Competing Ackermann-steering Robot) is a
1:10 scale vehicle-like robot platform developed by MIT.
The RACECAR uses a Traxxis Rally Car platform with a
powerful Nvidia Jetson TX1 computer to process all the
data from the attached sensors. Communication is provided
by 2.4GHz/5GHz Dual-Band High-Speed WiFi supported
by the Nvidia Jetson TX1. Featuring high-end computation
units, sensors, and actuators the total cost of this platform,
including the lidar and Jetson TX1 computer, is = 37008$.
The system is also equipped with a self-made Vedder ESC
that can prove difficult to replicate.

The BARC [11] (Berkeley Autonomous Race Car) is a
1:10 scale car-like robotic platform developed by UC Berke-
ley. The latest version, V4.0, consists of a Tamiya chassis and
a Nvidia Jetson Nano, that supports the same Communication
features as the more powerful TX1 computer. The platform,
featuring an front facing Intel Depth camera and rear facing
RGB camera, costs around 950$.

The MuSHR [12] (Multi-agent System for non-Holonomic
Racing) is a 1:10 scale platform developed at the University
of Washington’s Paul G. Allen School of Computer Science
Engineering. MuSHR can be built using the Redcat Racing
Blackout SC 1:10 chassis and has two additional features
compared to the BARC, which are a 2D Lidar and a bumper
switch for collision detections. This platform comes at a cost
of around 10508.

The Donkey Car [13] is a 3D printed platform that can
easily be attached to a 1:16 scale vehicle-like robot platform,
with a few mentioned in the build instructions [13] but
they are no longer available. The computing module on
the Donkey Car is a Raspberry Pi that uses 2.4Ghz WiFi
for communication. This platform features only one RGB
camera and costs around 3008.

Contributions. The main factor that hinders the widespread
adoption of the small-scale platforms available in literature is
the need for custom parts. Indeed many prestigious research
institutions have a team of skilled technicians specifically
dedicated to design and maintain the robotic platforms, yet
this may not be the case for other research labs. Some DIY
robots, like the Donky Car project, solve this problem by
relying on easily printable 3D parts, yet they feature a limited
computation power and sensor-actuator suite, diminishing
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their appeal as research platforms. DART aims to fill this gap
in the literature by presenting itself as a low-cost yet versatile
platform. The contributions of this paper are threefold:

o« DART. We present the result of the design process
behind the platform, as well as a list of parts and
indications on the level of skill required to build it.
System identification. A reliable dynamic model is
essential to accurately control the vehicle, yet in contrast
to full-scale cars where a vast amount of literature
is available, much fewer works focus on model-fitting
practices for small-scale cars. In this paper we present
a model identification process specifically designed for
1:10 scale car-like robots.

Hardware and software setup. To ease reproducibility
and speed up the setup of the platform the building
instructions and the code relative to low level control,
system identification and some examples of high level
controllers, as well as a simulation environment can be
found in the GitHub repository [14].

III. DART

This section presents the main features of the proposed
robotic platform. For a quick overview of the functionalities
and the relative required parts see Table II, while for a
complete hardware and setup guide please refer to the
GitHub repository [14].

DART’s design adhers to the following criteria:

Accessibility: the total cost of the platform should be
as low as possible, making it affordable for most research
institutions, even for educational purposes.

Reproducibility: the platform should be based on a com-
mercially available hardware and the custom parts should be
as few as possible.

Versatility: the platform should lend itself to a broad
variety of research fields, thus maximizing the number of
researchers using the same platform, ultimately facilitating
knowledge transfer.

With these criteria in mind, the robot is based on the
commercially available JetracerPro Al kit [15]. This platform
is originally designed for machine learning tasks and features
a good computation unit (the Nvidia Jetson Nano), high
reachable speeds due to the powerful brushed electric motor
and 4-wheel drive.

Our goal is to use the platform to test navigation and
control algorithms for autonomous and cooperative driving.
Hence, to be able to use such a vehicle for these applications,
we augmented the base kit as follows. We introduced a
custom-made magnetic and infrared wheel encoder and an
IMU necessary to produce odometry measurements, as well
as an Arduino to process the raw sensor data. We also
added a Lidar needed for localization and mapping (note
that a camera with fish-eye lenses is already available in
the base kit). Furthermore, after some testing, we upgraded
the servomotor used for steering and included an external
LiPo battery to power both the latter and the longitudinal
driving electric motor. These two upgrades have proven to
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Platform Cost [$] Scale Computing

Sensors Drawbacks

AutoRally [9] 5.000,00

Powerfull custom-build computer

Lord Microstrain 3DM-GX4-25 IMU
Emisphere P307 GPS
2 RGB cameras
Odemetry sensor

High number of custom parts

MIT RACECAR [10] | 3.663,00 1:10 Nvidia Jetson TX1

Hokuyo UST-10LX
Stereolabs ZED
Structure.io depth camera

Self made ESC
No shipping outside USA

BARC [11] 950,00 1:10 Jetson Nano

Intel Realsense D435i
RGB camera

MuSHR [12] 1050,00 1:10 Jetson Nano

Intel Realsense D435i
YDlidar X4
VEX bumber switch

Donkey Car [13] 300,00 1:16 Raspberry Pi

Low computational power

RGB camera
One camera sensor

TABLE I: Main features of the small-scale car-like platforms available in the literature.

significantly improve the consistency of the measured lon-
gitudinal acceleration and steering angle, largely increasing
control performances. The total cost of the platform is around
€700 and requires little technical knowledge to assemble.

One challenge we faced was how to optimize the available
space to accommodate the extra hardware given the size of
the platform without compromising its driving performance.
For this, we developed custom PVC plates to accommodate
the augmented sensor suite and the encoder to measure
wheel velocity. The PVC plates can be produced from the
.stl files available in the GitHub repository [14] and many
companies or university workshops offer online laser cutting
services. The encoder requires fitting small magnets on
the gear of the main shaft, yet no soldering is required
and this operation requires low technical skills. Compared
to platforms in the same price range, i.e. [12] and [11],
DART features comparable hardware components and thus
offers similar performance in terms of control accuracy and
overall platform capabilities, yet relying more on off-the
shelf components such as the JetracerPro Al base Kkit, it is
much easier to replicate.

IV. SYSTEM IDENTIFICATION

Building reliable vehicle models is not only required to run
model-based controllers such as MPC, but is also necessary
to develop realistic simulators to test any kind of controller
before deploying it on the real hardware.

A dynamic system, such as a robot, can be represented
by a system of ordinary differential equations & = f (&, u),
where & € R"= u € R™ are the real state and control input,
respectively. System identification refers to the problem of
building a function f, i.e., the model of the system, that
is able to adequately approximate the real dynamics f [16].
This can be achieved by recording measurements of the state
and control action, collected in a matrix X of size N X
M, where N is the number of data points and M is the
dimension of the input data. Note that the field of control
the term “input” usually refers to the control action, while
in system identification and machine learning the same term
indicates the inputs to the model. In the remainder of this
section we will follow the latter’s terminology, i.e., M =
ng + ny. For each row in X, the corresponding measured
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system output is collected in a matrix Y of size N X n,. In
this paper we will make use of parametric models, that is,
we assume that the function f has a fixed structure where
a set of parameters p € R™ can be chosen in order to
better approximate the real dynamics, ie., f = f(X,p).
The optimal set of parameters p is chosen as the solution
the following minimization problem:

N
min » D (f (X, p), Yi), ()
k=0
where X, and Y} indicate the k-th row in the repsective
matrices, and D is a function that measures the distance
between the observed data point Yj and the model output
f (X, p). A typical choice for D is the squared error, i.e.
D(f (Xk,p),Ys) = (f (X1, p) — Y) " (f (X, p) — Y).

The most critical aspect of parametric model identification
is the design of the function f(X,p) and the definition of
reasonable parameter bounds, since this will heavily influ-
ence the ability of the model to correctly represent the data.
While for full-scale vehicles there is a rich literature featuring
various models [17], empirical formulas like the Pacejka tire
model [18] for tire forces estimation, best practices for data
collection and reference values for the fitting parameters [19],
much less is available for small-scale cars. Furthermore, the
dynamic models used for full-scale cars do not easily transfer
to their small-scale counterparts, since for example the latter
do not feature pressurised tires and the weight scale is around
2-3 orders of magnitude different. As a result, the range
of typical values for some important parameters (e.g., the
cornering stiffness) can be significantly different between
full-scale and small-scale cars, making model identification
particularly challenging for the latter.

In the remaining part of this section we will describe how
to obtain reliable kinematic and dynamic bicycle models [20]
for these small-scale vehicles. We will describe how to obtain
{X, Y} in problem (1) from the raw sensor data and how
to define reasonable parameter bounds. The values of the
parameters are obtained by numerically solving problem (1)
where D has been chosen as the square error, using the
ADAM gradient descent based algorithm implemented in
PyTorch. Table III shows the obtained parameter values.
Notice that all the raw data and the code for data processing
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Component Functionality Notes Cost [€]
JetracerPro Al kit Base robotic platform 18650 batteries are not included 420,00
YLidar X4 Lidar Localization and mapping - 100,00

Encoder Wheel velocity measurement Requires medium-low technical skills to build 10,00

IMU BNOO055 Acceleration and yaw rate measurement - 40,00
Arduino Nano Collect data from encoder and IMU Price includes jumper-wires and adaptors 30,00
LiPo battery Power servo and driving motor Price is for 2 batteries and a charger 30,00
Servomotor DS3225 Improved steering consistency - 20,00
PVC mounting plates Accommodate augmented sensor suite Needs to be custom made 20,00
Total cost 670,00

TABLE II: Overview of the parts needed to build DART.

and model fitting is available in the GitHub repository [14],
as well as a simulation environment that uses the obtained
vehicle models.

A. Kinematic bicycle model

The kinematic bicycle model consists of the following
system of ordinary differential equations:

VoS
vsinny
vtan(d)/1
(Ey + Fr)/m

Where the states x, y, n and v are the position of the rear
axle, orientation, and longitudinal velocity of the vehicle, re-
spectively. The mass and distance between the front and rear
axles of the robot are indicated by m and [, respectively. F},,
and Fy are the motor and friction forces, respectively. For
full-scale cars, the motor characteristic curve that indicates
the longitudinal force F;,, transmitted to the wheels, and the
steering angle § as a function of the steering input are usually
provided by the manufacturer. For small-scale cars, on the
other hand, throttle 7 and steering input s are provided to an
ESC module and a servomotor, respectively, both of which
accept normalized non-dimensional values between [—1, 1].
Identifying how these inputs are related to motor torque and
steering angles represents an additional complication in the
model fitting process.

The kinematic bicycle model (2) for small-scale cars re-
quires the identification of the following sub-models: F(v),
F.(1,v), 6(s), as well as the actuation delays. Simply
collecting driving data and fitting the model poses significant
challenges since the fitting function for each sub-model needs
to be user designed, and the relative parameters need to be
initialized to some reasonable value in order to numerically
solve Problem (1). For this reason our approach was to isolate
each component and progressively build the full model.
Attempting to identify one sub-model at a time allows us to
tailor the type of test (e.g., step input or sinusoidal input test)
to better highlight its contribution, while clearly visualizing
the measured data aids in the design of the fitting function.

1) Longitudinal dynamics: We performed a series of step
response tests for different throttle values on a smooth and
level surface, while the steering is kept equals to zero. The
collected raw data is a time series of throttle-velocity pairs.
The acceleration is then obtained by numerically deriving

2)

e 3I L rw
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Fig. 2: The velocity profile (top) and the estimated resulting
force acting on the vehicle (bottom) measured in response
to a step throttle input (shaded area).

the velocity, while the resulting longitudinal force F
F,, + Fy acting on the vehicle is estimated by multiplying
the acceleration by the mass of the vehicle m = 1.67 Kg
that can be easily measured. The training inputs X are thus
the throttle and velocity, while the training labels Y are
the resulting measured longitudinal force. Figure 2 shows
an example of the step response data.

We start by modeling the friction force Fy. To isolate its
contribution we selected the data with 7 = 0, that is, when
the motor is switched off and vehicle is slowing down due
to friction alone. By using the data showed in Figure 3, we
designed the friction curve as:

F¢(v) = —(atanh(bv) + ve)

Where a, b, c are the fitting parameters. Notice that reason-
able parameter initialization can be found by plotting the
resulting friction curve over the data.

We now procede to model the motor force F,,. Since the
friction term F; has been successfully identified, we can
define new training labels Y as the estimated motor force
F,,, obtained as Y = F — F;(X). We designed F,, in
accordance to the characteristic curve of a brushed electric
motor [21]:

F,, = (d—ve)T
7 = (1 + ¢)0.5(tanh(100(7 + g)) + 1)
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Fig. 3: Friction curve fitting results.
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Fig. 4: Motor curve fitting results.

Where d, e, g are the fitting parameters. Note that the term
7 is an approximation of the function 7 = max(0,7 + g)
but is continuously differentiable. This is highly desirable
if the model will be used for model-based control such as
MPC. Reasonable first guess parameter values for d and e
can be obtained by plotting the measured step response data
for a certain throttle value on the {v,F,,}, plane. The initial
value for g was estimated by increasing the throttle from
7 = 0 until the vehicle begins moving. Figure 4 shows the
step response data for 7 = 0.4 and 1 < v < 3m/sec used
to initialize d and e, and the overall characteristic motor
curve, note that the latter was obtained using the full dataset
featuring 7 in the range 7 € [0.15, 0.4].

2) Steering input to steering angle mapping: The servo-
motor used for steering only accepts steering inputs in the
range s € [—1,1], we therefore need to identify how they
relate to actual steering angles §. To do so, we preformed
a series of constant steering input tests while keeping the
throttle at a constant value. The raw data consists of the
resulting yaw rate 7 and the vehicle longitudinal speed wv.
By inverting the 1 dynamics (i.e., the third equation in (2))
we are able to estimate the steering angle as:

n

v

6 = arctan ( 3)
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Fig. 5: Steering input to steering angle static mapping.

We can thus create a dataset using the steering input s as the
training input X and the measured steering angle J as the
training labels Y . Using the data shown in Figure 5 we define
the steering input to steering angle mapping as the weighted
sum of two sigmoidal curves. This is needed to capture the
asymmetry between steering to the left and steering to the
right. The curve 0(s) is defined as:

w

0

d(s) =

&tanh(g(s +¢))+(1— w)dtanh(é(s +2) @
S(tanh(30(s + €)) + 1) (&)

Reasonable first guess values were identified empirically
from the shape of the measured data.

3) Actuation delays: The longitudinal actuation delay was
measured by lifting the robot off the ground (so to reduce
the system’s inertia) and measuring the time delay between
a throttle step input and a change in the wheel speed v.
From these tests the longitudinal actuation delay was found
to be negligible (in the order of 0.01sec). The steering
delay was instead obtained by providing the vehicle with a
low frequency sinusoidal steering input. This allowed us to
capture the reaction time of the steering, that is, the time
interval before seeing a reaction after sending a steering
command. The delay was then estimated by performing the
cross correlation [22] between the steering angle input §(s)
and the measured steering angle obtained from equation (3).
The steering delay was found to be around 0.15sec and is
thus not negligible.

B. Dynamic bicycle model

DART allows one to perform highly dynamic maneuvers
(e.g., racing). In such a context, a kinematic model is no
longer a good representation of the vehicle dynamics, since
it neglects the lateral dynamics of the vehicle. Indeed it relies
on the assumption that no lateral slipping occurs, that is,
there is no lateral motion in the vehicle body frame. This
assumption holds until the tires are able to provide enough
lateral friction force to counter the centrifugal force during
curves. The centrifugal force can be evaluated as I, = m1v.
For high speed and high yaw rate, the assumption that lateral
slip is negligible is no longer valid and the kinematic bicycle
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model fails. The dynamic bicycle model, on the other hand,
does account for the lateral dynamics and relies on a tire
model to predict tire force saturation, providing better model
accuracy at high speeds.

The dynamic bicycle model is defined as:

T Uy COST) — Uy SIN Y

Y Uy Sinm + vy cos N

n R R @

Uy (Fyr+ Fppcosd — Fy psind)/m+ wuy |’
Uy (Ey + Ey fcosd + E, psind)/m — wo

w (I (Fy fcosd + Fy psind) — 1. E, ) /1

(6)

where v, and v, are the velocity components of the centre of
mass measured in the vehicle body frame. [y and [, are the
distances between the centre of mass and the front and rear
axle, respectively. w is the yaw rate and I, is the moment
of inertia around the vertical axes. The front and rear tire
forces components Ff@, F‘f,y, F,, and Fr,y are measured
in the respective tire’s body frame. The evaluation of the tire
forces is the most critical component of the dynamic bicycle
model and a vast amount of literature is available for full-
scale cars. One of the most famous tire models is the Pacejka
magic formula [18], defined as:

E, = Dsin(C arctan(Ba — E(Ba — arctan(Ba)))) (7)

where « is the slip angle, defined as the angle from the
direction of motion of the tire and the tire axis. Front and
rear slip angles are defined as:

af = —arctan(vy + wlf) +9

—arctan(v, — wir).

®)
€))

To identify the parameters D,C, B, E we collected driving
data keeping a constant steering angle and gradually increas-
ing the longitudinal velocity. Since we need to measure both
longitudinal and lateral velocities in the vehicle body frame
we used an external motion capture system, as the on-board
sensors are not able to measure such quantities. The raw data
thus consists of the vehicle’s centre of mass position and
orientation in the global reference frame. We then computed
the time derivatives to measure the absolute velocity v, v,
and acceleration fzz, QL)y, as well as the yaw rate w and it’s
time derivative w. The training inputs X are thus the front
and rear slip angles evaluated as in equations (8) and (9),
where the velocities in the vehicle body frame are evaluated
cos(—n) —sin(—n)

as:
H:[sinw) cos (—7) }

The training labels Y are the lateral forces in the tire body
frame and have been evaluated by solving the equations of
motion of the body in the absolute frame of reference:

Ay

Vg

I[:

Vg

(10)

Uy y

F, cosn —sinn —siny Up/m
Fy 5| = |sinnp cosn  cosny v,/m| (11
F,, o iy /L.
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Fig. 6: Lateral tire force model for the front tire (top) and
rear tire (bottom).

a | 172 | d | 2888 | a | 1.64 | d 1.66
b 13.32 e 5.99 b 0.33 3 0.38
c 0.29 g —0.15 c 0.02 | Cy 0.39
D| 298 | C| 069 | B|029| E | —3.07
TABLE III: Identified parameter values.

Where F, is the total longitudinal force in the vehicle
frame, F, ; and F,, , are the front and lateral forces in vehicle
frame, and I, ~ 0.006513Kgm? was estimated considering
the robot as a rectangle with uniformly distributed mass of
size | X w, where w = 0.1m is the width of the vehicle.
The lateral forces in the tire frame of reference are finally
evaluated as:

Fy,f =sin (—0)Fy, r + cos (—0)Fy ¢ (12)
By, =F,, (13)
Where F, ; = %Fz since the vehicle features a 4 wheel

drive and we assume that the motor force is equally shared
by front and rear axle. Figure 6 shows the obtained data and
fitting results. Notice that since the rear tire does not reach
saturation we chose to model it with a simple linear relation
instead of equation (7), i.e., as:

F, . =Croy (14)

V. USE CASES

This section presents an overview of work that featured
DART as a test bed!. From a functional point of view all
these applications can be seen as a tracking problem, where
a vehicle needs to follow a path at a certain reference speed.
This reference speed may be fixed, or may be evaluated
at runtime based on the robot’s global position or on the
position and/or velocity of other robots. To perform this
planning task the robot needs a good dynamic model in
order to track the reference velocity, access to its own pose

IThe aim of this section is to showcase the platform’s capabilities thus
we will not provide an in-depth discussion on the scientific merits of the
described experiments.
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(position and orientation) in the global reference frame, and
access to the other robots’ poses if needed. This can be
achieved by means of an external motion capture system
if it’s available, or by means of on-board localization. The
latter is however a viable option only for low to medium
speeds, since the two key components are a sensor to
perceive the environment, such as a camera or a lidar, and
odometry data provided by the kinematic bicycle model (see
section IV). In the remainder of the section we will describe
the main features of each kind of experiment, focusing on
the functional requirements the platform needed to meet.

1) Distributed MPCC [23]: We presented a distributed
Model Predictive Contouring Control algorithm (D-MPCC)
for a team of robots. Each robot aims at following a certain
path at a given reference speed, while avoiding collisions
with other agents. This is achieved through a distributed
computation scheme that also accounts for possible packet
loss over the communication network. The algorithm was
tested in an intersection crossing, shown in Figure 7, and a
lane merging scenario. In both cases the robots need to be
aware of each other’s position and intended future trajectory
in order to avoid collisions. To achieve this a good vehicle
model is required, to ensure a consistent behaviour.

2) Persistent monitoring [24]: A team of robots is tasked
with monitoring a certain area. Each robot is equipped with
omnidirectional sensors that are able to detect a target within
a certain range. By relying on Lissajous curves and time-
inverted Kuramoto dynamics, all vehicles follow the same
smooth path within the designated area and adjust their speed
based on the current position of the preceding and following
vehicles, as shown in Figure 8. The emerging behaviour
of the mobile sensor network is guaranteed to detect a
moving target within bounded time and avoid collisions
among agents. To successfully carry out the experiments the
vehicles need to follow a highly curved path while accurately
control their speed, since the latter needs to be adjusted
according to the local path curvature and to the position of
the other robots.

3) Vehicle platooning: Platooning refers to the problem
of vehicles driving along a relatively straight path while
maintaining a certain distance among each other. The typical
application is heavy duty trucks driving on a highway, where
for small inter-vehicle distances significant fuel efficiency
can be gained due to air drag reduction. To achieve this
behaviour the vehicles need to share information on their
current speed and position. From a practical point of view,
the main challenge is that experiments require a long straight
path, thus an external motion capture system will typically
not be large enough, requiring the robots to rely on on board
sensors for localization. Thanks to the lidar and on board
odometry data this can be achieved using standard ROS li-
braries for Simultaneous Localization And Mapping (SLAM)
and Adaptive Monte Carlo Localization (AMCL). Another
significant challenge is to carefully adjust the steering in
order to limit lateral deviations from the path. This is why
we upgraded the servomotor used to steer the robot. Figure 9
shows the robot using on-board localization and steering and

135

(©

Fig. 7: A team of robots navigate through an unsupervised
intersection crossing using a distributed MPC scheme. This
figure has been taken from [23].

(a) B (b) B
() (d)
Fig. 8: A team of robots following a Lissajous curve under a

time-inverted Kuramoto dynamics feedback controller. This
figure has been taken from [24] .

(d)

velocity controllers to follow a straight path.

4) Contouring MPC [25]: We present a Model Predictive
Contouring Control algorithm (MPCC) that also includes the
information on the local path curvature, called Curvature-
Aware MPCC. The new formulation features an improved
estimation of the progress along the path and consequently
more reliable lane boundary constraint satisfaction. Fur-
thermore it features less cost function terms and is thus
easier to tune. As far as experiments are concerned the
main requirement for the platform is to exhibit consistent
behaviour in order to highlight the differences due to the
specific algorithm’s formulation. This requires a good vehicle
model. Figure 10 shows the robot following a highly curved
path while avoiding collision with a virtual dynamic obstacle.

VI. CONCLUSIONS

This paper introduced the Delft’s Autonomous-driving
Robotic Test bed (DART), a small-scale car-like robot suit-
able for (multi-robot) motion planning and control. Com-
pared to other available small-scale platforms DART maxi-
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Fig. 9: A robot following a straight line using on-board
sensors for both localization and state feedback controllers.
This image was taken from [26].
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Fig. 10: A robot following a highly curved path with the
Curvature-Aware MPCC controller. This figure has been
taken from [25].

mizes the use of available off-the-shelf hardware and features
a lower number of custom parts, making it cost-effective
and easier to reproduce. We provide a system identification
procedure to obtain kinematic and dynamic bicycle models
that allow the platform to be used for a wide range of
applications, as demonstrated by the number of published
works that featured DART as a test bed. Finally, we provide
a GitHub repository containing building instructions, the
data and code used for the identification, as well as a
simulation environment and some readily-available low-level
controllers.
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