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No amount of (apparent) statistical
evidence will make a statement
invulnerable to common sense.

Robert Merton Solow

We are suffering just now from a bad
attack of economic pessimism. It is
common to hear people say that the epoch
of enormous economic progress which
characterised the nineteenth century is
over; that the rapid improvement in the
standard of life is now going to slow down;
that a decline in prosperity is more likely
than an improvement in the decade which
lies ahead of us.

John Maynard Keynes
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Executive summary

Across the advanced western economies, productivity growth decelerated to near zero per cent
despite marvellous technological advancements. Machine Learning (ML) based technology surpasses
human-level performance in an increasing number of domains (Brynjolfsson and McAfee, 2014). The
juxtaposition between incredible technologies and non-existent productivity acceleration is known
in the literature as the productivity paradox (OECD, 2019). Resolving the productivity paradox is
a primary concern of academics and politicians. Suppose growth were to return to long-run historic
levels of 2% (Vollrath, 2020). In that case, many political issues such as rising health care costs
and record levels of debt could be less politically divisive (Obama, 2016). Techno-optimists claim
ML technology will create profound economical gains (Brynjolfsson et al., 2017). Therefore we ask
the question:

Will Machine Learning accelerate productivity growth in the United States?

We considered four candidate explanations for the modern productivity paradox. We expect too
much, we have to wait longer, we measure it incorrectly, and productivity growth happens only in
a few industries. This last one is known in the literature as Baumol’s model of unbalanced growth
(Baumol, 1967). In this model, the industries can be divided into two groups: stagnant and pro-
gressive industries. The stagnant industries are industries that are inherently difficult to increase
productivity growth due to the nature of the occupations in the industries. These are typically
labour-intensive and provide the time and attention of workers as the product. These industries
have constant productivity growth, or relatively low compared to the progressive industries. The
progressive industries enjoy higher productivity growth because technology can automate occupa-
tions.

A consequence is that the increasing share of stagnant industries reduce the aggregate US pro-
ductivity growth. In other words, the economy showed a structural shift towards low productivity
growth industries and in turn reduced the aggregate productivity growth. Nordhaus (2008) iden-
tified that as the Growth Disease effect. Our first test analyses if this effect is still present. We
rely on the methodology by Nordhaus (2008) and use the US KLEMS data provided by Eldridge
et al. (2020). We compare the average annual labour productivity growth rate over four periods
(1963-1973, 1973-1989, 1989-2001, 2001-2016) and the nominal output shares of 61 industries of
five fixed years (1963, 1973, 1989, 2001, 2016). This period extends the Nordhaus (2008) analysis,
who found the rising share of stagnant industries reduced the aggregate US productivity growth in
the US over the period 1948-2001. Using the US KLEMS data set, we also find this for the period
1963-2016. However, this effect is zero over the period 2001-2016. We conclude that aggregate US
productivity growth was unaffected by the continued structural shift towards service-providing in-
dustries. The labour productivity growth in service-providing sectors mitigates the declining shares
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of goods-producing industries between 2001 and 2016.

To test the assumption of technologically progressive industries, we investigate the expectation of
IT potential. Our IT potential metric is based on the Routine Based Technological Change (RBTC)
model of Autor et al. (2003). In this model, occupations are a combination of tasks. Tasks can
be either improved by automation currently available or not available at all. RBTC follows the
assumptions of the unbalanced growth of industries (Autor and Dorn, 2013). Therefore we expect
industries that show high automation potential to exhibit higher productivity growth.

Therefore, as a second test, we assess if the expectation for IT holds any predictive power. More
specifically, we investigate if the assessment of expectations of IT predicts labour productivity
growth from 1989 through 2016 and its periods 1989-2001, 2002-2016. We rely on the occupational
data of the ’Routine Task Intensity’ (RTI) by Autor and Dorn (2013). The higher the RTI score,
the more tasks are substituted by computers. RTI is based on the assumptions of the RBTC model
and therefore Autor and Dorn (2013) claim that RTI is consistent with the unbalanced growth of
industries. Therefore we test if industries with high RTI industry scores correspond to progressive
industries, and low RTI to stagnant industries. We rely on the Occupational Employment Statis-
tics (OES) data to aggregate the RTI occupation values and match it to the industries of the US
KLEMS data. We perform a clustered ordinary least squares regression on the labour productivity
growth, with IT investment and industry-level RTI as variables. We find no statistical significance
for the aggregated assessment of the expectation of IT potential. We do find, in the period 1989-
2001, that investment in IT and software did predict labour productivity growth. This is consistent
with Jorgenson et al. (2006).

As the third test, we assess the expectation of ML. In the RBTC model, tasks are categorised as
routine and non-routine. The expectation was that automation is possible in routine tasks. The
possibilities of Machine Learning are such that some non-routine tasks can potentially be auto-
mated. If ML automation is concentrated in historically stagnant sectors, there is reason to believe
it could resolve the productivity paradox.

For ML potential, we rely on the occupational data of ’Suitability to Machine Learning’ (SML)
provided by Brynjolfsson et al. (2018). We again use the OES data set to aggregate SML from
occupational-level to industry-level. We find that the expectation of ML potential is concentrated
in historically stagnant industries. Furthermore, we show a low correlation with the measure of IT
potential. This implies the expectation is that ML will impact different industries than what was
expected with IT automation. This is in line with the claims of techno-optimists.

Based on these results, we expect historically stagnant industries to show the highest ML potential.
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These industries are 36% of the US economy’s 2016 nominal output and would therefore signifi-
cantly impact the aggregate US labour productivity growth. However, the future is uncertain, and
we do not know when ML automation will significantly accelerate productivity growth.

Returning to the four explanations of the productivity paradox. It can take decades before sus-
tained long-term growth is recorded. Furthermore, many of the promised ML technologies may
never actually happen. Although SML is based on near-term ML applications, it is still uncertain
if organisations use ML to its full benefit.

Despite this, we should recognise there is no economic law that guarantees perpetual productivity
growth (Gordon, 2012). Productivity growth deceleration can be an inconvenient truth of maturing
economies. Policymakers should be aware of this and the consequences. As long as essential service-
providing industries remain stagnant, we can expect costs such as education and healthcare to
increase above inflation and median household income (Baumol, 2012).
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1 Introduction

1.1 General Introduction

Since the beginning of the third Industrial Revolution, academics and politics have been disap-
pointed by the recorded productivity growth. Previous industrial revolutions significantly impacted
economic welfare and dramatically improved the standard of living. In 2021, we are again on the
verge of the next industrial revolution. The optimists claim the confluence of emerging technology
breakthroughs technologies is so profound that the scale and breadth of the coming technological
revolution are impossible to envision (Schwab, 2017). In the widely discussed book ”The Second
Machine Age”, Brynjolfsson and McAfee (2014) claim the economy is on the cusp of the biggest
transformation since the first Industrial Revolution.

However, these claims are eerily analogous to the expectations of the third Industrial Revolution.
The technologies enabled by Information Technology (IT) would usher in ”the biggest technological
revolution men have ever known” (Snow, 1966). Although it is indisputable that computers have
changed our lives significantly, we fail to measure them in the productivity statistics. Nobel Lau-
rette Robert Solow (1987) famously quipped, ”We can see the computer age everywhere but in the
productivity statistics”, and it became known as the productivity paradox. Although productivity
growth was high during the 1990s and mid-200s, a short decade of 2 % growth is lacklustre to the
century-long productivity growth of the first and second Industrial Revolutions. Since 2004, the
US economy has continued to decelerate.

Politicians and academics are greatly concerned with accelerated productivity growth. Today,
United States leadership is faced with record level national debt, an expensive energy transition
and rising health care costs. Obama (2016) argues the decades of declining productivity growth
rates created rising inequality and slow income growth for low- and middle-income households. As
he argues, if the economic pie does get bigger, we cannot solve the problems regardless of how we
divide it.

However, Machine Learning (ML) technology is different from previous automation technologies.
The potential of ML is that it can automate tasks that always require human input. For exam-
ple, advancements in image recognition software currently surpass human capabilities, which could
substitute tasks such as interpreting MRI scans Brynjolfsson and McAfee (2014). This thesis in-
vestigates, if ML technology can revive productivity growth and therefore solve the productivity
paradox.
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1.2 Research Gap

A powerful explanation for the productivity paradox is Baumol’s model of unbalanced growth of
industries (Baumol, 1967). The implication is that the aggregate US productivity growth is re-
duced by a growing share of low growth industries, known in the literature as the Growth Disease.
Literature has not investigated the implications of Baumol’s model for the US after 2001 (Nord-
haus, 2008). The model divides the economy into two types of industries. Progressive industries
and stagnant industries, that show high and low productivity growth, respectively. In the stagnant
industries, Baumol assumes occupations are inherently less suitable for substitution by technology.
For the first time in history, some of these occupations can now be automated through ML technol-
ogy. If ML can enable high productivity growth in historically stagnant industries, the aggregate
US productivity growth can accelerate.

However, previous literature is concerned with the impact of technological advancement on occu-
pations primarily in the US (Autor and Dorn, 2013; Frey and Osborne, 2016; Brynjolfsson et al.,
2018). Others have investigated it for other advanced economies (Arntz et al., 2016; Goos et al.,
2014). All these disregard analysis on the industrial- or aggregate level and its correlation with
productivity growth.

1.3 Research Questions

The main research question of the thesis is: Does data support the expectation of accelera-
tion of productivity growth through ML?

To answer this question, we study the productivity growth of the US at the industry- and US
aggregate-level. We use industry-level data to answer three questions that help to answer the main
questions.

We ask question 1: Is the Growth Disease effect still present in the US economy? This
question analyses if stagnant industries have rising shares of the total US output. This is one of
the consequences of Baumol’s model of unbalanced growth, as identified by Nordhaus (2008). The
implication is that a growing share of stagnant industries reduces the aggregate US productivity
growth. Unless technology is capable of transforming the stagnant sectors into progressive sectors,
US productivity growth is reduced. Questions two and three to analyse Baumol’s assumption that
high productivity growth occurs only in technologically progressive industries.

We ask question 2: Did the expectation of IT potential predict productivity growth
in the US over the period 1989-2016? Productivity growth has decelerated since the third
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Industrial Revolution despite the diffusion of IT. Therefore we assess if industries that have high
productivity growth correspond to industries high IT potential.

Finally, we ask question 3: Is the expectation of automation of ML concentrated in his-
torically stagnant industries? The expectation is that ML automation can automate previously
impossible tasks. This suggests Baumol’s assumption of hard-to-automate stagnant industries can,
through ML, show high productivity rates. We cannot predict the future, but we can analyse if ML
is different from IT automation. Furthermore, we can test what types of industries are expected
to show the highest potential for ML.

1.4 Outline

The outline of the thesis is as follows. In chapter 2 ’Literature Review’, take stock of the current
productivity levels and productivity growth. We analyse four explanations for the productivity
paradox and conclude to use Baumol’s model of unbalanced growth of industries. In chapter 3,
’Data’, we discuss the data we chose to answer the three questions. This includes data on the
occupational- and industry-level. We explain how the occupational-level data, for IT and ML, is
transformed to industry-level. In chapter 4, ’Methodology’, we the econometric tests to answer the
three questions. Chapter 5, ’Results’, then discusses the results based on the data and tests of the
previous chapters. Finally, in chapter 6, we present a research summary, recommendations, and
future work.

3



2 Literature Review

This chapter presents the current state of the literature of the productivity paradox. We define
the paradox and evaluate explanations. From there we analyse the framework that allows us to do
econometric tests. Finally, we discuss the expectation techno-optimists have for ML technology.

2.1 The Productivity Paradox

Productivity measures the efficiency of the volume of inputs to create the volume of outputs
(Schreyer, 2001). To increase productivity, the key drivers are physical capital, human labour
and technology (Dieppe, 2020). Firstly, physical capital depends on the size of investments and
the physical assets in the economy. Secondly, human labour depends on the number of workers,
the hours they work, the level of skill and the experience. The higher the education and the better
the health of workers, the higher the productivity. Thirdly, technology is determined by the rate
of innovation and the diffusion of technology. To support the drivers, they require a supporting
environment including institutions, infrastructure, policies, and social conditions (Dieppe, 2020).
These four create an environment for the exchange of ideas, goods and services. A well-functioning
economy then lubricates technological and economical progress (Pinker, 2018).

However, productivity growth has declined in the last several decades. Figure 1 shows the labour
productivity growth rates over four intervals prepared by Gordon (2012). He selected these periods
to reflect the contributions of the Industrial Revolutions. Such that period 1891-1972 coincides
with IR2. The three periods after 1972 all cover the third Industrial Revolution. Where 1972-1996
and 2004-2012 reveal a deceleration of growth. Only in the period 1996-2004 did growth return to
its historic average. In this thesis, we define productivity growth as slow if it is below 2%. This is
consistent with the observations of Gordon (2012) and Vollrath (2020).

Figure 1: Average labour productivity growth rates over selected intervals over 1891-2012 prepared by
Gordon (2012).

The deceleration of productivity growth is not unique to the US and is recorded across the ad-
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vanced Western economies. Figure 2 shows the labour productivity growth for the Group of Seven
(G7) since 1950. The countries include US, United Kingdom, France, Italy, Germany, Canada and
Japan. For example, Japan showed growth rates above 7% in the 1960s, significantly higher than
the below 1% growth rates after 2004. This pattern occurs across all countries in the G7, with
decelerating recorded growth. Not one country had growth rates above 4% after the 2000s, while
4 out of 7 showed had growth above 4% before 1970.

Figure 2: Erber et al. (2017) plot the labour productivity growth using data of the Conference Board
Total Economy Database for the period 1950-2015 for G7 countries.

All G7 countries show a long-run decline in productivity growth to near 0 % despite different en-
vironments. It is much debated why productivity growth has continued to slow since the start of
the third Industrial Revolution. Although the period 1996-2004 crossed the 2% threshold of pro-
ductivity growth, it is disappointing compared to the century-long growth of the second Industrial
Revolution. The deceleration of productivity growth at a time of significant technological change
is known in the literature as the productivity paradox (OECD, 2019).

2.2 Why productivity growth matters

One of the objectives to measure productivity is assessing standards of living (Schreyer, 2001).
Higher productivity growth can lead to higher income, more leisure time or a combination of both
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(Sprague, 2017). Consider the US and Columbia, countries with vastly different standards of living.
In 2019, the labour productivity was 78$/h and 15.2 $/h respectively (OECD, 2019). Productivity
growth creates growth in labour income and profits such that the economy has more wealth to
distribute.

Publications such as ”The rise and fall of American Growth” by Robert Gordon (2016) imply the
deceleration of productivity growth a sense of failure. However, the author of the book argues
that productivity growth is assumed to be a continuous process without end, even though growth
before 1750 was non-existent. Most of the population worked in agriculture. As economies develop,
workers shift from agriculture to manufacturing to produce cheap and necessary goods. As the econ-
omy increases, basic needs are satisfied, and the fraction of money spent on services increases in
proportion to goods. As people get wealthier, their spending shifts toward services (Vollrath, 2020).

However, the costs of essential services such as education and health are increasing dramatically.
Between 1980 and 2008, the price of college tuition in the US increased by 440%, far more than the
increase of inflation (110%) over the same period (Baumol, 2012). Over the same period, median
family income rose 150 %, while medical care rose 250%. So, while the productivity still grows,
it becomes harder for median households to afford college and medical care in the US. One of the
biggest policy problems of the US is the student debt crisis, with total debt surpassing 1.6 trillion
dollars in 2019 (Kantor, 2019). US graduates are burdened with over a hundred thousand dollars
in debt at the start of their careers. The declining affordability of essential services makes them
politically contentious, as shown by the universal health care coverage, known as Obamacare, since
its introduction (Green, 2021).

While costs for essential services have increased dramatically, productivity growth has decelerated.
The annualised Gross Domestic Product per Capita over the 20th century averaged 2.25% in the
US, and between 2000 and 2016, the annualised GDP per Capita declined to 1 % (Vollrath, 2020).
With the power of compounding, this makes a significant difference. Over a 20 year period this
difference compounds to 41 % difference is productivity (1.022520 − 1.0120). Economic growth is in
part driving by productivity growth. And economic growth is a determinant to solving problems
such as rising healthcare costs or the student debt crisis in the US. Brynjolfsson and McAfee (2014)
argue if the growth rates were 1% higher between 2013 and 2033, the US would be five trillion
dollars richer. At current levels, the total student debt of 1.6 trillion dollars could easily be paid
off. To quote Nobel Laurette Paul Krugman (1997): ”Productivity is not everything, but in the
long run, it is almost everything. A country’s ability to improve its standard of living over time
depends almost entirely on its ability to raise its output per worker”.

6



2.3 Explanations for the Productivity Paradox

From the literature, we consider four candidate explanations for the disparity between technological
optimism and the lower than expected productivity growth. We identified four explanations based
on work of Brynjolfsson et al. (2017), Adler and Siegel (2019) , and OECD (2021). We summarise
the explanations as follows:

1. We are too pessimistic, or the mismeasurement hypothesis.

2. We have to wait longer, or lagged learning.

3. We are too optimistic, or over-promised potential.

4. Innovation happens only in a few types of industries, or unbalanced growth of industries.

2.3.1 The Mismeasurement Hypothesis

The mismeasurement hypothesis implies the benefits of new technologies are enjoyed but escape
measurement in growth accounting. For example, services such as Youtube and Facebook are free
to consumers and provide many benefits. The services make money from selling advertisements,
but these are excluded from the national output of the economy. Because the statistics ignore the
direct benefits of innovation, we underestimate output growth (Feldstein, 2017).

Syverson (2017) argues that the productivity growth slowdown, analysed over 1994-2015, is not
explained by the underestimated gains of new technologies. He recognises that fast diffusing tech-
nologies, such as smartphones and online social networks, consume large amounts of time of users
but have insignificant impact on the aggregate output measures. He argues that the underes-
timation cannot explain the full extent of the productivity growth deceleration across advanced
economies.

We agree there is a mismeasurement of productivity. The Internet allows for fast and costless
expansion of services through marketplaces like the app store. When a software developer launches
a calculator app for the iPhone, she will not incur extra costs for each download. Whereas in
the traditional marketplace, one has to produce a calculator each time one is sold. Through the
Internet, the developer has only development costs. However, better measuring of productivity
will not solve the policy problems reviewed in the previous sections. Therefore we review other
explanations to analyse the productivity paradox quantitatively.

However, from the Feldstein (2017) analysis, we want to discuss two arguments. Firstly, inflation
is overcompensated. In economics, the output is measured in real and nominal value. Real refers
to the total money spent, measured as nominal, stripped of inflation. These are the real quantities
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or stocks of goods and services in the economy each year. The prices are chained on a base year,
for example, 2021, such that all observed values are for the 2021 dollar value. Feldstein argues
that the methodology for compensation inflation introduces error. In growth accounting, inflation
is the total spending change of a basket of goods and services such as commodities or housing.
This implies that certain products are more heavily weighted than they are in actuality. As a
consequence, we underestimate the benefits. Secondly, Feldstein (2017) reviews a recent set of
studies that show output statistics, in especially the service industries as health care, are poorly
measured. These are exactly the industries that show historically low productivity growth.

2.3.2 Lagged Learning

We distinguish two contrasting views of the role of technology in the productivity paradox. We
have the techno-optimists who claim we still have to see the true potential of recent technological
progress. In the other camp, we have the Luddites who claim new technological innovation can
never be as important as those that came before. This section discusses the arguments made by
the techno-optimists, the next section discusses the arguments of the Luddites.

The fundamental assumption of techno-optimists is that IT and ML are a General Purpose Tech-
nologies (GPT). Some technologies are so disruptive that they serve to create enormous welfare
and productivity (Bresnahan and Trajtenberg, 1995). GPTs include steam power and electricity.
These technologies significantly increase the production output of many sectors within the econ-
omy. They are a building block for new technologies on top of it. Brynjolfsson et al. (2017) argue
it takes longer for society to reap the fruits it has sowed, longer at least than it appreciates. A new
GPT must iterate and evolve before it has a measurable aggregate effect. Moreover, Ortt (2010)
estimates that it takes 33 years on average for a disruptive technology for innovation to adapt to
reach large-scale diffusion in the economy.

Syverson (2013) compared the labour productivity growth since the introduction of the GPTs elec-
tricity and IT, as shown in Figure 3. The initial diffusion of electricity was slow and analogous to IT.
The period 1890-1915 resembles the period 1970-1995. This period was followed by a decade long
acceleration before slowing down again. Only after 1932 did annual labour productivity growth
average 2.7%. The point Syverson makes is that GPT arrives in multiple waves, and sluggish
growth is to be expected of a GPT. In the case of electricity, it took decades before organisational
change, management techniques, and complementary innovations created the productivity acceler-
ation (Brynjolfsson and McAfee, 2014). Whether IT continues to follow the productivity growth
pattern of electricity remains to be seen.
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Figure 3: Labour Productivity Growth During the Electrification Era (1890-1940) and the IT Era
(1970-2012) in the U.S. chained to 100 for in 1915 and 1995. Image by Syverson (2013).

2.3.3 Over-promised potential

Luddites claim high productivity growth is over for advanced economies as all-important innova-
tions have occurred. New technologies can never be as important as those that came before. Gordon
(2016) identifies 1870 – 1970 as the ’special century’ when prosperity in the United States increased
dramatically and completely transformed American life. People’s standard of living improved in all
major effects of their life, including improved homes with electricity, water and telephone, trans-
portation with cars, health with better nutrition and increased life expectancy. The most recent
innovations occurred in entertainment communication and information processing. These tech-
nologies are comparatively less important, Gordon claims, than what came before them. Gordon’s
(2016) view is that productivity growth will continue to decline because the innovations and facili-
tating drivers of the ’special century’ are unique and cannot be repeated. Other academics such as
Summers (2014) and Krugman (2014) agree that low economic growth is here to stay. We picked
the ”low-hanging fruit”, and today’s innovations such as IT and AI are pale in comparison.

We considered the claims made by the techno-optimists and the Luddites. The two arguments
are based on anecdotes and comparisons. They lack any empirical validation because we cannot
predict the future.

Furthermore, some promising technologies never actually deliver on their potential. Brynjolfsson
et al. (2017) uses nuclear energy as an example. It never delivered people expectations of cheap
energy and further advancements to nuclear fusion. Cognitive and emotional capabilities promised
by ML might thus never materialise. Until today, the most profitable ML applications are consumer
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targeting & marketing by, for example, Facebook (Brynjolfsson et al., 2017). The applications have
thus far had little impact on aggregate impact on productivity.

However, Mokyr (2014) states the ’human shortfall of imagination is largely responsible for much
of today’s pessimism. The current labour market, with video-game designers and cybersecurity ex-
perts, were unimaginable occupations in the early 1900s (Mokyr, 2014). Therefore it is impossible
to determine if the techno-optimists or Luddites are correct because the future is uncertain.

2.3.4 Unbalanced Productivity Growth of Industries

Consider a two-sector economy that is evenly divided. For illustrative purposes, let industry 1
show 4% productivity growth per annum due to technological advancements. Industry 2, has no
improvements and produces the same each year. The stable productivity growth (0%) of industry
2, thereby, lags the total productivity growth of the two-sector economy. The 50/50 shares split,
ceteris paribus, creates 2% total productivity growth.

With this example, Baumol and Bowen (1965) introduced the model of unbalanced growth of indus-
tries. In the model, industry 2 is defined as a stagnant sector. The nature of the occupations that
reside here are hard to automate, and therefore fail to show any productivity growth. For example,
the performing arts industry consists of live entertainers such as violinists and ”the output per
hour playing a Schubert quartet in a standard concert hall is relatively fixed” (Baumol and Bowen,
1965). In subsequent papers, Baumol and others observed specifically that service-providing sectors
were hard to automate due to the labour-intensive characteristics of occupations.

Returning to the example, if after 20 years, half of the employees shift from progressive industry 1
to stagnant industry 2 the average growth rate will decline. Such that average productivity growth
decreases from 2% to 1%: (0.5)4 + (0.5)0 = 2.0 to (0.25)4 + (0.75)0 to 1.0, respectively. The
decrease, compounded over time, has an enormous result on overall growth. For a 20 year period
this a 1 % difference creates a productivity difference of 38.5 %: 1.0420 − 1.0320 = 1.385. If US
GDP in 2020 was 38.5% higher then it was (21 trillion dollars), and the total number of hours
remained equal, an additional 8 trillion dollars of wealth would be available to US citizens. So the
compounded effect of percentage differences cannot be understated.

Nordhaus (2008) investigated how the rise in the share of stagant sectors slowed the overall produc-
tivity growth in the US over the second half of the twentieth century and called this the ’Growth
Disease’. His methodology allows for empirical tests. Therefore we consider this a good model to
test for the expectation of technological automation.
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2.4 The Growth Disease

In the previous section, we shortly described the Growth Disease. This was identified by Nord-
haus (2008) as one of six consequences of the Cost Disease. In 1965, Baumol and Bowen (1965)
observed that the cost of stagnant industries outpaced the cost of progressive industries. Consider
a consumer who attends a concert. A violinist must perform for there to be music and to create
value. It is hard to reduce the amount of labour because it is part of the experience. A violinist
can play an electric violin, but it will not change the price of the ticket. The violist is part of a
stagnant industry with constant productivity growth. In contrast, progressive industries excel due
to technological advancement. The strong productivity growth in progressive sectors means higher
output with fewer inputs (such as workers’ time). If it is assumed wages rise pari-passu across
industries, then the productivity of stagnant industries is lower. In these industries, the input
(labour) becomes more costly; therefore, productivity is lower ceteris-paribus. For example, when
wages grow equally in the economy, then the salary of a violinist, in the stagnant sector, does so
too. Despite no productivity gains, the violinist’s wage increases. If the violinist’s job succeeds at
keeping income equal to progressive sectors, the performance cost continues to increase indefinitely
over time. So, the price of services grows relative to the price of goods.

Furthermore, Baumol further simplified the model such that stagnant industries are identified as
service-providing industries and progressive industries as goods-producing industries. He assumed
demand for services is income elastic and demand for goods is income inelastic (Baumol et al.,
1985). Income elasticity describes how money allocation changes as incomes grow. For example, if
one has a weekly budget of 100 dollars, one would spend 50 on goods and 50 on services. However,
as one’s budget increases, their allocation does so too. The fraction of money spends on services
increases in proportion to goods. The wealthier people get, the more their spending shifts toward
services. The combination of higher spending and higher costs results in a bigger relative size of
service industries. Consequently, the aggregate productivity growth declined as the share of stag-
nant industries increased, while progressive industries declined. Nordhaus (2008) defined this the
Growth Disease.

2.4.1 Empirical Evidence

Nordhaus (2008) tested the Growth Disease hypothesis on the US. That is if stagnant sectors in-
crease in relative share size to progressive sectors, it decelerates the aggregate US economy. His
results show that the US was negatively affected by the Growth Disease over the period 1948-2001.
The shares of progressive industries decreased over time, such that productivity growth was a 1.5
% lower between 1948 and 2001. The composition of the US economy shifted from manufacturing
to stagnant sectors such as education and construction.
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Hartwig (2011), did a replication study of Nordhaus (2008) on the European Union over 1971–2005.
Despite many differences between the US and the EU, the union exhibits similar patterns. Hartwig
notes that this is confusing considering the countries have different policies, institutions and
economies. His suggestion is that the structural change in combination with Baumol’s assumption
of progressive and stagnant sectors is so strong that it overrides the differences between countries.

2.4.2 Not all services are stagnant

To illustrate the effects of Cost Disease, Baumol and Bowen (1965) oversimplified the economy.
They argued that stagnant sectors show constant labour productivity growth because they are
labour intensive and difficult to automate. However, not all stagnant industries slow aggregate
productivity growth and not all service industries show constant productivity growth.

Oulton (2001) nuances Baumol’s model and argues that stagnant industries can create higher
aggregate productivity growth. To illustrate, consider again the example of section 2.3.4 about
progressive industry 1 and stagnant industry 2. Let industry 1 be a car manufacturer and 2 be
hairdressers. The car industry uses only two inputs: labour and intermediate services. We introduce
a third sector that is a (low-growth) financial & business services industry. This industry’s only
input is labour and supplies intermediary inputs for the car manufacturing industry. Oulton found
that, paradoxically, if labour shifts from the ”progressive” industry 1 to the ”stagnant” industry
3, aggregate productivity growth rises. Even though labour moves from a high growth industry
to a low growth industry, the aggregate productivity of this 3 industry economy increases. Later
research corroborates this observation and Baumol endorsed Oulton’s argument Baumol (2012);
Hartwig and Krämer (2019).

Moreover, Oulton (2001) showed that not all service industries that produce intermediary inputs
show low productivity growth. Industries that are large producers of intermediary inputs are trans-
port & communications, distributive trades, finance & business services, and miscellaneous personal
services (Oulton, 2001). Table 1 on page 13 shows the annualised labour productivity growth rates
over the period 1973-1996 for five countries. The four industries mentioned above exceed the tech-
nologically progressive industry manufacturing. Furthermore, note that the US annualised labour
productivity growth over period 1972-1996 in the US, of Figure 1 on page 1, was only 1.4 %. This
makes the industries growth rates of construction and transport & communications more impres-
sive. Therefore not all labour-intensive industries are stagnant.
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Table 1: Labour productivity growth rates for selected high growth industries over period 1973-1996.

Sector UK US France Germany Japan

Agriculture, forestry, fishing 3.66 3.93 6.03 5.05 2.87
Manufacturing 4.96 1.39 4.22 2.95 2.93
Utilities 2.60 -0.77 2.37 1.04 1.07
Construction 3.14 2.21 3.65 2.93 4.47
Transport & communications 3.88 2.01 3.95 4.23 2.66
Financial & business services 2.07 -0.08 0.26 3.06 1.87
Miscellaneous personal services 1.57 0.46 0.65 3.00 1.60

Notes: The table is from Oulton (2001). The numbers are based is value-added labour productivity reported in per

cent per year.

2.5 The potential of Artificial Intelligence

Autor (2014) defines ML as ”applying statistics and inductive reasoning to supply best guess an-
swers in cases where formal procedural rules are unknown”. Brynjolffson, Mitchell and Rock (2018)
write, ”ML automation is expected to be radically different from previous automation waves”.
However, thus far, ML has lived short of the economic possibilities, only creating added value for
advertising (Brynjolfsson et al., 2017).

In section 2.4, we discussed how stagnant industries slow economic growth. One promising technol-
ogy that could revolutionise these sectors is ML. Figure 4 shows the predicted productivity growth
of sectors by ML. The biggest increase is for the ’other public and personal services’ with 21%. This
sector includes healthcare, education, public, and recreational services. ’Consumer goods, accom-
modations, and food services’ with 15% productivity growth by ML. This suggests that the largest
productivity gains by ML are concentrated in stagnant industries. This prediction would mean
the structural composition of the economy has no negative effect on the US aggregate productivity
growth. Then assumptions of the Baumol’s model have run their course.

Artificial Intelligence (AI) is the next evolution of ML technology, and Accenture investigated the
potential effect that AI can have on the US economy. Accenture (2017) claims AI is ’the future of
growth’ and predicts the US economy to grow by 4.6% per year with AI. The consultancy office
finds three key accelerators to support its claim for productivity growth.

Firstly, AI enables businesses to create a new virtual workforce. This ’intelligent automation’,
can sense, comprehend, and act to drive down errors and cost. This type of automation removes
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Figure 4: The Gross Domestic Product gains from only AI by 2030 (?)

labour input and leaves humans to focus on other tasks. This is a widely discussed topic within
the literature because it is unclear if AI, and other types of computer automation, will destroy or
complement occupations. The seminal paper by Frey and Osborne (2016) claims about 47 % of
total US employment is at risk of automation by 2030. Theoretically, US productivity would be
two times higher because nearly half of US occupations are displaced, ceteris paribus. Over 20
years that is an annualised productivity growth rate of over 3.5% (= 20√2). This is significantly
higher than the current productivity rate.

Secondly, Accenture claims AI allows for ’labour and capital augmentation’. Brynjolfsson et al.
(2018) argue similar things. They claim that AI-related technologies will create a significant reor-
ganisation of business processes and redesign of jobs. Accenture (2017) predicts economic growth
will not come from cost-saving automation but enabling more effective labour and capital.

Thirdly, ’Innovation diffusion’ allows researchers to use AI to create new ideas. A recent example
is how biotechnological company Moderna developed COVID-19 vaccines using AI. Moderna dis-
closed AI is central to accelerating mRNA based vaccines (Damiani, 2017). The company claims
critical insights without AI were otherwise inaccessible and unachievable. It goes so far as to claim
AI is one of the core digital building blocks of research and development.

However, technological progress is not the only factor that determines productivity growth. Other
factors such as demographics have a significant impact on the US productivity (Vollrath, 2020).
However, Manyika (2018) argues that other factors than technological feasibility can stall the pace
of innovation implementation. These include the cost of automation, regulatory barriers and social
acceptance.
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2.6 Conclusions

Since the 1970s, productivity growth has decelerated, and the reason for it is unknown. This is
not unique to the US and is recorded for other advanced western economies. At the same time, we
saw the diffusion of IT. In the literature, this is known as the productivity paradox or the disparity
of impressive technology and disappointing productivity growth. We argued it is important for
productivity growth to increase such that important political issues could be resolved. Essential
services such as education and healthcare are increasing dramatically, with household income barely
keeping up.

We considered four explanations for the productivity paradox and concluded Baumol’s model of
unbalanced growth. The consequence, known as the Growth Disease, allows for empirical testing.
The model classifies industries as either technologically progressive or stagnant. Progressive in-
dustries benefit from cost-reducing automation, whereas stagnant industries do not. Due to the
shifting consumption pattern of consumers towards services and the cost-reducing automation in
progressive industries, the aggregate US productivity growth decelerated. This holds empirically
for the US and European countries. However, techno-optimists expect ML technology to create
cost-reducing benefits in historically stagnant industries.
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3 Data

This chapter presents the data to analyse the impact of technology on productivity growth. As
explained in the literature review, we use the assumption of the paper by Baumol and Bowen (1965)
that the nature of some occupations is such that labour cannot be substituted by automation. The
consequence is Baumol’s (1967) model of unbalanced growth such that the aggregate productivity
growth decelerates due to an increasing share of constant productivity growth industries.

In the thesis, we first test the Growth Disease using the methodology from Nordhaus (2008) and
a newer dataset. Secondly, we investigate the assumption of stagnant and progressive industries
using data sets that measures IT and ML’s technological potential. Current research captures
technological potential at the occupational-level; therefore, we propose a new method for analysing
the potential at the industry-level. The following list is an overview of the data sets used to answer
each research question:

• Q1: Is the Growth Disease effect still present in the US economy?- Industry-level macro
variables.

• Q2: Did the expectation of IT potential predict productivity growth in the US over the period
1989-2016? - Industry-level macro variables and occupational-level technology potential on
IT.

• Q3: Is the expectation of automation of ML concentrated in historically stagnant industries?
- technological potential of IT and AI at the occupational-level.

To answer these questions, we rely on four data sets. In chapter 4 Methodology, we discuss how
the data sets are used. This chapter focuses on the input variables for the analysis and the data
cleaning to conduct the analysis. The data sets are:

• Industry-level data, known as US KLEMS. This data set contains macro-economic vari-
ables for 63 industries in the economy.

• Occupation-level data, known as RTI and SML. For the analysis, we use two data sets to
analyse the expectations of the technological potential for (1) IT and (2) AI. The data set is
given at the occupational-level. These technological potential metrics and rationale for them
are discussed in sections 3.2 and 3.3

• Industry - Occupational crosswalk data, Occupational Employment Statistics or here-
after OES Matrix. This crosswalk file allows occupational-level data to be aggregated into
industry-level data. So that the RTI and SML data can be compared to the US KLEMS data.
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3.1 Industry data - US KLEMS

For industry-level data, we follow the technical paper by Eldridge et al. (2020). The paper is a
collaboration between the Bureau of Economic Analysis (BEA) and the Bureau of Labor Statistics
(BLS) to provide a consistent data set over the 1947 to 2016 period. The paper is inspired by the
work of Jorgenson et al. (2006), who identified the need for an integration of national accounts.
The data set (Eldridge et al., 2020) provides a ”new architecture” of US industry data. Let this
data set be called ”US KLEMS”. It contains estimates of the sources of economic growth, including
capital (K), labour (L), and intermediary inputs such as energy (E), materials (M), and services
(S). The benefit of this data set is that it is consistent for industries over time over two periods
(1947-1962 and 1963-2016). Due to major changes in industry classification, other data set sources
are incompatible for time-continuous analysis. When classifications change over time, there may be
breaks in the historical data due to reclassification. This logic also applies to omitting 1947-1962
from the analysis; this earlier period includes only 44 industries. Some of these industries, such as
’Finance and Insurance’ came to be more narrowly defined in the later period of the dataset, such
that we have 4 separate industries. It is possible to mitigate this issue, but due to the thesis’s time
constraint of the thesis, it was not included in the analysis. A critique of the US KLEMS data is
that this is not official data but rather provides a proof of concept. Eldridge et al. (2020) created a
data set that is harmonised for a long time horizon, which is not readily available and would cost
considerable time to match changing industry classification over time.

The US KLEMS data provides industry accounts over t ∈ {1963, ..., 2016} for 63 industries. In the
analysis, the last two sectors (62) ’Federal’ and (63) ’State and local’ are excluded from the analysis.
These industries are governmental whose value-added are more difficult to measure accurately; for
more information, see Harper et al. (2009). The remaining 61 industries included data on gross out-
put, intermediary inputs, and capital in nominal value-added and quantity index. Capital includes
’Research & Development’, ’IT capital’ and ’Software’. For all industries, ’total hours worked’ is
included. These data allow for the construction of real-value added and productivity of industries.
How this is done can be read in chapter 4 Methodology. For an overview of variable names and
respective data names refer to Table 2 on page 18.

The 61 industries are classified by using the 2007 North American Industry Classification System
(NAICS 2007). In Appendix C Table 14 is a list of the 61 industries with industry names and
NAICS 2007 code. The US KLEMS file has different digit depths for each sector, and some include
multiple digits. We have 61 industries with 88 respective NAICS 2007 codes. We make the strong
assumption that the 61 industries with respective NAICS code represents the whole private US
economy and are well-measured. As discussed in section 2.3.1, recording service sector productivity
is very difficult and prone to underestimation.
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Table 2: Macro variables of the US KLEMS data set.

Symbol Description US KLEMS notation

H Hours worked hrs.
X Gross output quantity index goqi.
B Intermediate input quantity index iiqi.
IT IT capital quantity index qkit.
S Software capital quantity index qks.
nX Nominal gross output goqi.
nB Nominal intermediate inputs iiqi.
nIT Nominal IT capital vkit.
nS Nominal Software capital vksoft.

Notes: All nominal variables are in current dollars.

3.2 Occupation data on IT Potential

Several measures of the impact of IT on occupations in the US exist in recent literature. This
section evaluates the models and available data for measuring the potential of IT. We can test the
assumption of technological progressive and stagnant industries of Baumol’s model of unbalanced
growth.

3.2.1 IT potential metric

In the literature, there exist two prominent theories which try to explain the relationship between
technology and the labour market (Sebastian and Biagi, 2018). The fundamental assumption of
both theories is that technological innovation affects labour demand. In that way, we can use these
as a substitute to analyse the productivity growth. Technology might substitute workers, such that
technological progress can have a strong impact on industries. The Skill-Biased Technical Change
(SBTC) hypothesis states the technology improvements of IT create capital accumulation such that
high skilled (computer) workers have increased wages, but low skilled workers are displaced by the
automation (Acemoglu and Autor, 2011). In other words, high-skilled workers are better able to
use new technology, such that low-skilled workers are at risk of substitution. However, SBTC is
unable to capture the relationship of technological advancement and the labour market (Sebastian
and Biagi, 2018).

This led Autor et al. (2003), ALM-03 hereafter, to put forth the Routine Biased Technical Change
(RBTC) hypothesis. The RBTC hypothesis states the technology improvements of IT leads to a
decline in jobs that heavily rely on either or both routine components (manual or cognitive) (Se-
bastian and Biagi, 2018). ALM-03, defined occupations as a bundle of tasks. This insight means we
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can categorise how likely tasks can be automated. The more routine a task, the more automatable
it becomes. This implies the substitution of human labour activities. A task is defined as ”routine”
if a machine can follow an explicit set of programmable rules. ALM-03 define ”non-routine” when
a task has a rule that is not sufficiently understood to translate it to lines of code. This is built
on the idea of ”We can know more than we can tell” (Polanyi, 1966). In other words, a human
understands intuitively what to do (tacit knowledge) but cannot verbalise it (explicit knowledge).
In the RBTC model, it is assumed that occupations of the same title are equal. The underlying
tasks in the occupation create the jobs in the O*NET database. O*NET is a database by the US
department of labour to study the changing skills and tasks of occupations over time in the US.

ALM-03 developed a framework to look back at how automation by IT altered labour requirements.
Routinised jobs are more likely to have computer invested capital to substitute labour. In contrast,
non-routinised tasks saw increased demand and complemented computer capital. ALM-03 was later
updated by Autor, Katz and Kearney (2006) (AKK-06) to reduce the task categories from five to
three. ALM-03 included task categories routine manual, routine cognitive, non-routine analytic,
non-routine interactive and non-routine manual. AKK-06 reduced the task categories to abstract,
routine and manual, which are defined as:

• Routine – a task is based on a set of rules and procedures which can be automated with a
computer.

• Manual – a task requires physical dexterity and interpersonal skills, thus hard to automate.

• Abstract – a task requires creative thinking, problem-solving and other tasks that can only
be performed by highly skilled professionals.

Then Autor and Dorn (2013) (AD-13) formalised AKK-06 and created the Routine Task Intensity
(RTI). AD-13 use RTI to study how technology displaces routine-based professions. This model
implies that technological change creates decreased costs of computerising routine tasks. There-
fore, the authors state that the model broadly implies Baumol’s model of unbalanced growth of
industries. The assumption is that well-defined and repetitive work can be ’computerised’, such
that it substitutes for workers.

The RTI measure is the logarithmic sum of measures for the three types of tasks and assigns a
score for the degree to which occupation is affected by computerisation. Formula 1 shows RTI for
each occupation k.

RTIk = ln(T R
k ) − ln(T M

k ) − ln(T A
k ) (1)

Where T R
k ,T M

k and T A
k are respectively routine, manual and abstract task inputs. The formula is

logarithmic, so RTI becomes a summary measure of occupations. In other words, the log trans-
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formation allows the authors to analyse the skewness and kurtosis of all occupations in the model.
Hence, a 1% in routine task translates to a 1% increase of RTI. Similarly, a 1% increase in either
manual or abstract tasks results in a 1% decrease of RTI. Figure 5 is an illustration of how the
RTI, and underlying variables, behave for major occupations groups.

Figure 5: Routine Task Intensity for Major Occupation Groups, Table 2 from Autor and Dorn (2013).

Notes: The table shows several major occupation groups, to illustrate how RTI works. Occupation with above average

values show a (+) and below average (-). The shaded field indicates which type of task has the highest value within

the major occupation group.

Occupations within service sectors show low RTI scores, as they consist of non-routine and highly
manual tasks. Furthermore, the paper finds that service-providing sector employment grew signifi-
cantly since the 1980s after remaining constant for more than two decades. These observations are
consistent with the growing shares of stagnant industries of Nordhaus (2008).

Sebastian and Biagi (2018) critique the computerisation, by AD-13, because the approach relies
on the 1977 O*NET Database. Although O*NET is updated every five years, the metric is not.
Therefore RTI cannot be compared over time.

After AD-13, several papers were published that use using RTI (Goos et al., 2014; Squicciarini
et al., 2016). Because the literature that followed was based on David Autor’s model, and he
created a model that implies Baumol’s theory, we chose his RTI as a measure for the expectation
of IT potential.

3.2.2 Routine Task Intensity

Table 3 on page 21 shows the summary statistics of the the RTI metric. Figure 6 shows a histogram
of the frequency of RTI scores. It counts 330 occupations, based on 1977 task description, indexed
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to Census 2000. Census 2000 is the US official data of occupations released in 2000. This is not
directly compatible with the US KLEMS data set nor the OES Matrix data set. Therefore we need
to do a crosswalk to match the RTI score to the classification of OES Matrix. We discuss this
in the next section. The aggregation of occupation scores to industry score, with OES Matrix, is
discussed in section 3.4.

Figure 6: Histogram of frequency of occupation scores of RTI

Table 3: Description statistics of the RTI dataset used in the paper by Autor and Dorn (2013).

Abstract Task Routine Task Manual Task RTI

Count 330.0 330.0 330.0 330.0
Mean 2.886 4.627 1.309 1.469
Std. Dev 2.265 2.236 1.405 2.194
Minimum 0.042 1.186 0.001 -2.411
25th Percentile 1.119 2.461 0.189 -0.044
75th Percentile 4.057 6.776 2.143 2.492
Maximum 9.002 8.642 10.0 9.325

3.2.3 RTI crosswalk

In section 3.1, we discussed how the US KLEMS data is consistent over time for all industries.
This is, however, not the case for the RTI occupational data. The data set contains RTI scores for
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330 occupations indexed to Census 2000. This classification is not compatible with the crosswalk
data of the OES matrix (formatted to 2010 Standard Occupational Classification or SOC 2010).
The simple fact is that classification of Census and SOC is different. Furthermore, the occupations
become more granular over time when newer versions of the classification system are introduced.
In SOC 2010, we have 840 occupations, adding 510 occupations. To mitigate this problem, we have
to make the strong assumption that tasks of granular occupations overlap. So we cannot correct
for occupational changes, such as new tasks within jobs. What further complicates matters is that
Census and SOC are regularly updated and require multiple extra crosswalks 1. The crosswalk
steps between datasets can be summarised as follows:

1. Match Census 2000 to Census 2002. From 330 to 510 occupations.

2. Match Census 2002 to SOC 2000. From 510 to 525 occupations.

3. Match SOC 2000 to SOC 2010. From 525 to 840 occupations. Here we assume that missing
RTI score can be constructed using broader groups such that tasks are overlapping.

For the 310 occupations of Census 2000, we find a perfect match to 763 occupations of the SOC
2010 data. Again, we assumed more narrowly defined occupations, in later versions, have overlap-
ping tasks and therefore equal RTI scores. Table 4 shows an example of how occupations codes are
matched using Python. Occupation ’Computer scientists and system analysts’ (or 100 in Census
2000) has four respective occupation codes after three crosswalks. A full version is shown in Ap-
pendix B, Table 13 on page 67 with titles for all occupation codes. The crosswalk from Census 2002
to SOC 2000 shows one occupation is more narrowly defined to correspond to three occupations.
In the final step, the occupation 15-105, in SOC 2000, splits to 15-1121 and 15-1143.

Table 4: Crosswalk match for ’Computer scientists and system analysts’ from Census 2000 to SOC 2010.

Census 2000 Census 2002 SOC 2000 SOC 2010 SOC 2010 title

100 1000 15-101 15-1111 Computer & Information Research Scientists
100 1000 15-105 15-1121 Computer Systems Analysts
100 1000 15-105 15-1143 Computer Network Architects
100 1000 15-109 15-1199 Computer Occupations, All Other

Notes: The table shows how one occupation for the Census 2000 data set is matched to four occupations of SOC

2010. The first crosswalk (of step 1) has an identical crosswalk of 100 to 1000. In the second crosswalk, 1000 is

matched to three occupations 15-101, 15-105, and 109. In the third crosswalk occupation 15-105 has two matches for

15-1121 and 15-1143. The final dataset has four occupations with and RTI score that is equal for all four occupations.

1For more information, please refer to https://www.bls.gov/soc/soc_2010_user_guide.pdf
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However, 77 occupations do not have an RTI score. To solve this, we assigned the mean RTI score
of the larger group of occupations it belongs to. This works as follows: The SOC data is classified
at four levels of aggregation: major group, minor group, broad occupation and detailed occupation.
Figure 7 shows how the six digits classification works. The first two digits specify the major groups
and end with 0000. The majors are then divided into more specific minor group or the third digit.
The minor groups generally end with 000, but there are exceptions such as 15-1100 Computer
Occupations and 51-5100 Printer Workers, which end with 00. The fourth and fifth digits represent
the broad occupation and end with 0. The final digit corresponds to the detailed occupation.

Figure 7: SOC classification.

Notes: SOC 2000 and SOC 2010 consist of six digits split. The two digits before the hyphen represent the major group

of an occupation. Additional digit(s) further specify the occupation. This specific occupation is ’Survey Researchers’

falling within ’Life, Physical, and Social Science Occupations’ major group.

The BLS (2010) claims the SOC dataset encompasses all occupation in the United States economy.
If a specific occupation is not listed, then it is part of the broad occupation. The 2010 version of
the dataset consists of 23 major groups, 97 minor groups, 461 broad occupations and 840 detailed
occupations. A small number of occupations are indexed to more than one SOC code. After ad-
justing for this, the total number of detailed occupations expands to 860.

Returning to the problem, consider the major group ’Education, Training and Library Occupa-
tions’ (25-0000). It has five minor groups beneath it. These scores end with 1000, 2000, 3000, 4000,
9000. More recent data becomes more granular. For example, in SOC 2000 there is only one minor
group for Postsecondary teachers (25-1000), but in SOC 2010 this is more granular and includes 38
detailed occupations such as ’Law Teachers, Postsecondary’ (25-1112). Thus in a later version of
the classification, occupations are assumed to be different. Here we assume the tasks are overlap-
ping (although specialisation is different). Such that we match the RTI score with the larger unit
groups, if occupations become more granular. Occupations that become more granular from minor
groups are: Postsecondary Teachers (25-1000), Other Teachers and Instructors (25-3000), Other
Healthcare Practitioner and Technical Occupations (29-9000), Funeral Service Workers (39-4000),
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Construction Trades Workers (47-2000), Plant and System Operators (51-8000), and Supervisors,
Transportation and Material Moving Workers (53-1000).

Finally, the following minor groups do not a not have corresponding RTI values, as this type of oc-
cupation was not measured by the RTI score of Autor and Dorn (2013): Military Officer Special and
Tactical Operations Leaders/Managers (55-1000), First-Line Enlisted Military Supervisors/Man-
agers (55-2000), Military Enlisted Tactical Operations and Air/Weapons Specialists Crew Members
(55-3000). These occupations are excluded from the analysis.

3.3 Occupation data on ML Potential

To asses, if the technological potential of AI can revive productivity growth acceleration, we re-
quire ML potential scores for industries as we did for IT. The potential of ML, is that it can do
more than ’simple’ computers. Section 3.2.1 described how computers can automate routine tasks.
The promise of ML is that it can do ”non-routine tasks”; therefore, we are interested if these type
of potential autonomous ”non-routine” tasks are highly concentrated in service sectors (Autor and
Dorn, 2013). For example, in the health care sector, dermatologists primarily diagnose skin visually
(Esteva et al., 2017). This task can be automated using image recognition software to diagnose skin
cancer. The ML application allows one to take a picture of the skin and upload it to the machine.
In a test environment, scientists showed ML matched dermatologist accuracy for diagnosing skin
cancer. Here, ML could alter critical tasks within occupations, such as recognising cancer. If so,
then the technological potential suggests service industries, which Baumol and Bowen (1965) argue
are more likely to be stagnant, can become progressive. To analyse this we can consider three no-
table papers based on US occupation data by Frey and Osborne (2016), Brynjolfsson et al. (2018),
and Felten et al. (2019).

Frey and Osborne (2016) tests the susceptibility to computerization. They define computerisation
as ”job automation by means of computer-controlled equipment”. With this new measure, the au-
thors hope to address the gap of technological automation beyond routine tasks. In other words, the
measure addresses the emerging innovations capable of ”non-routine” tasks through AI or robotics.
The metric is a ratio scale measurement and modifies the theoretical model of Autor et al. (2003)
by identifying three engineering bottlenecks that prevent the automation of jobs. These include
(1) perception and manipulation tasks, (2) creative intelligence tasks, (3) social intelligence tasks.
The sum of these labour inputs produces the most likely occupations to be fully automated.

Then Frey and Osborne (2016) surveyed experts from Oxford categorised occupations as fully auto-
mated or partially automated for 70 occupations. The papers label only 70 out of 702 occupations in
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the O*NET database. The authors only selected jobs that are assumed to be highly susceptible to
’computerisation’ to reduce bias. In doing so, over 90 % of the jobs are excluded from the forecast.
Therefore we do not consider using this data set because 90 % omission of occupations is too large
to aggregate occupation-level score to industry-level. As a final critique, the word computerisation’
is a weasel word. It does not identify what type of technology might replace what jobs. The paper
suggests the term includes ML and mobile robotics but fails to specify if it includes further IT
substitution.

Brynjolfsson et al. (2018) argue Machine Learning (ML) can circumvent Polanyi’s Paradox. The
technology allows for new automation because non-routine work does not need a procedure verba-
tim. Rather ML models use inputs and outputs to map functions. To test this, they construct the
Suitability to ML measure (SML). For each Direct Working Activity (DWA), seven to ten knowl-
edgeable respondents fill out the 21 questions ranking each based on eight criteria. The questions
are ordinal, allowing respondents to answer a ’1’ (strongly disagree) until a ’5’ (strongly agree).
The higher the score, the more suitable the DWA to ML. Here a ’3’ corresponds to a neutral expose
to ML. There are two additional questions where respondents fill out DWA for the eighth criteria,
which is the physically intensive activities. Here the scores are reversed, so the lowest score repre-
sents the highest physical activity and thus lowest suitability to ML.

Brynjolfsson et al. (2018) have three points of critiques about the metric. Firstly, the rubric focuses
on technical feasibility and omits economic, organisational, legal, cultural and societal factors. Sec-
ondly, the rubric focuses on short term opportunities, where Frey and Osborne (2016) focus on
long term results. Thirdly, the paper only looks at implications for the US labour force. There
should be further investigation into other countries to rule out other explanations. Despite this,
we select the SML metric. The SML directly addresses the ”non-routine” tasks of the model of
ALM-03. SML assess how much tasks will be affected by ML. Therefore we select SML, because it is
based on the same conceptual model as RTI, and the critiques do not negatively affect this research.

Finally, Felten et al. (2019) proposes a new measure: Artificial Intelligence Occupational Impact
(AIOI). Like the other papers, it uses the O*NET database. The study uses the crowd-sourced
platform to fill 52 O*NET abilities. This paper only predicts automation caused by AI, where Frey
and Osborne (2016) considers all automation. It looks back at advances in AI between 2010 to
2015. For forward-looking analysis of question three, this eliminates AIOI.

We considered three ML potential metrics. The SML metric by Brynjolfsson et al. (2018) suits this
research best. As a final note, we again only analyse the US. New forms of survey-based data, like
the crowdsourced database, such as Crowdflower and mTurk, are not yet applied to other OECD
countries.
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3.3.1 Suitability to Machine Learning

After downloading the occupation-level SML data set2, we find 966 occupations indexed by SOC
2010. This is is the same classification as the OES Matrix data set. Table 8 shows the frequency
for occupation-level scores. Table 5 shows the summary statistics of the dataset. The calculated
maximum (3.90) and minimum (2.78) are significantly far from the theoretical maximum (5) and
minimum(1). Tasks show higher variation than the occupation aggregated values. The mean value
3.47 for occupations is interpreted as slightly more ML potential than indifferent.

Figure 8: Histogram of frequency of occupation score of SML

Table 5: Description statistics of the SML data set used in the paper by Brynjolfsson et al. (2018).

Occupation Task

Count 966 19,612
Mean 3.47 3.47
Std. Dev. of SML 0.11 0.31
Minimum SML 2.78 2.38
25th Percentile SML 3.40 3.25
75th Percentile SML 3.50 3.68
Maximum SML 3.90 4.48

2Data set available for download at https://www-aeaweb-org.eur.idm.oclc.org/articles?id=10.1257/pandp.
20181019
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3.4 Crosswalk data - OES Matrix

For research questions two and three, we use the technological potential metrics, RTI and SML,
to quantitatively analyse at the industry-level. The metrics are at the occupational-level, so we
have to aggregate them. For the aggregation of occupational scores of RTIk and SMLk, we rely on
the OES Matrix provided by the BLS 3. The data contains 65,531 occupations for 432 industries
(indexed for NAICS 2007). Furthermore, the dataset contains the share employees of different
occupations within industries for the US in 2019. We would have preferred to use the employment
data of 1977 for RTI and 2016 for SML, respectively. However, earlier employment data is publicly
unavailable. The industries contain line and summary items, such that industries can be aggregated
using grananular industries. The OES Matrix data that we use consists of:

• Occupation code (& title) in SOC 2010

• Industry code (& title) in NAICS 2007

• 2019 Percent of Industry (wi,k) – This number represents the employment share of an occu-
pation k in industry i in 2019.

For our analysis, we use the 61 industries of the US KLEMS data set. Each industry of the 61
industries is labelled with a number i ∈ {1, ..., 61}. Note that some industries have more than one
NAICS code and therefore differ in digit depth. A new data frame df is made for 61 industries by
filtering on the NAICS values. df consists of 88 industries with a total of 24,652 occupations. Each
job is classified by SOC 2010 and appears multiple times in the dataset. For example, occupations
such as Chief Executives work in most industries such as construction and air transportation. The
share (w) of Chief Executives differ for each industry because some industries have more Chief
Executives than others. So wi,k is different for each occupation k and industry i.

The next step is to find a weighted average technological potential score for each of the industry.
Formula 2 shows the weighted average technology score (Tj) for the 88 industries. Set J include
88 industries where with number j ∈ 1, .., 88. The 88 industries are matched to the 61 industries
of the US KLEMS dataset. For example, industry 1 ’Farms’ is equal to i = 1 and j ∈ 1, 2. And so
is industry 2 ’Forestry, fishing, and related activities’ equal to i = 2 and j ∈ 3, 4, 5.

Tj =
nj∑
k

Tj,k ∗ wj,k (2)

Where Tj is the weighted average of technology potential for occupation k in industry j. Tj can
be RTIj or SMLj . Here nj is the share of occupations of the US economy in 2019 in industry j.

3The data set is downloadable at https://www.bls.gov/emp/tables/industry-occupation-matrix-occupation.
htm
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Here we have weight wj,k. At this point, we have the weighted average technology potential score
for 88 (NAICS) industries. We want to convert the average technology scores to the 61 industries
score. Some industries only have one technological score such as ’Oil and gas extraction’ with i = 3
and j = 6. Next, we calculate the weighted average for industry i classification. We use formula
4 to find the average score for industries that have more than one NAICS match. This is done in
two steps. First, we use Formula 3 to find total average percentage representation of occupations
in industry i represented by the dataset after merge.

pi = 1
zi

ni∑
k=1

wi,k (3)

Variable zi is the unique number of occupation codes (the number of j’s) for industry i. And wi,k

is the share of occupation k in industry i. Here ni is the sum of shares of occupations represented
in the dataset for the US economy in 2019 of nj for industries j matched to industry i. Then, using
formula 4 we find the weighted average of the technology score (Ti,W A) for each industry i. Here∑

j∈Ji
means it is the sum of all industries in set Ji that are equal to industry i.

Ti,W A =
∑

j∈Ji
wj,kTj

pi
(4)

Because we aggregate to industry values, we evaluate 3. It is deemed satisfactory if pi is above 90%
or more for most industries. We do not find 100% matching for each industry, but very close to it.
Appendix C, table 14, shows the aggregation results after we matched RTI and SML to the OES
Matrix for 61 industries. The summary statistics are shown here in Table 6. We find technology
potential scores for all 61 industries.

Table 6: Summary statistics of SML and RTI industry scores.

SML % of Industry SMLi RTI % of Industry RTIi

Count 61 61 61 61
Mean 97.01 3.482 97.01 1.168
Std. Dev. 2.91 0.038 2.91 0.734
Minimum 84.05 3.396 84.05 -0.229
25th Percentile 96.8 3.453 96.80 0.792
50th Percentile 98.10 3.477 98.10 1.232
75th Percentile 98.5 3.515 98.50 1.576
Maximum 99.7 3.549 99.70 3.859

Notes: Columns one and three are the results for pi reported in percentages. Columns two and four are the results

for Ti,W A.
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4 Methodology

4.1 Measuring Productivity

To study the effects of technology on aggregate labour productivity growth, we require a measure
of productivity. In its simplest form, productivity is the volume of output divided by the volume
of inputs. A long body of literature discusses how these inputs and output are measured and what
must be included for measuring the direct effect of technological change. This subject could be a
thesis, but we summarise the topic to justify our decision to use labour productivity growth for the
analysis.

The OECD provides a compendium of the most frequently used productivity measures. Here we
discuss the arguments for using either the labour productivity (LP) or the Total Factor Productivity
(TFP) for the analysis. The connection between technological change and technological progress is
not straightforward.

LP is the real output per labour hour. It measures partial productivity and reflects the influence of
a host of factors, including technological progress. For example, consider a car factory that builds
20 cars per hour. Now, management modernises the factory equipment and trains workers to use
the new technology. With the new machinery, productivity performance increased to 30 cars per
hour. This is a 50 % productivity increase, but the car company does not have that much demand,
so management reduces the number of workers to achieve 25 cars per hour. Capital, technology,
and market demand are all factors in this example. Therefore LP is not equal to technological
change but a key part of it.

TFP is a productivity measure intends for disentangling of the contributions to growth of labour,
capital, and technology (Schreyer, 2001). TFP growth is often referred to as Solow’s residual. This
measures the contributions to GDP growth that cannot be explained by the inputs labour and
capital. In “Technical Change and the Aggregate Production Function,” Solow (1957) observed
between 1909 - 49, 87% of gross output per capita was attributable to technological change. The
rest was attributable to human and physical capital. This observation is frequently misinterpreted
as ’TFP growth is technological change’, which is not the case OECD (2019). Solow’s model does
show strong evidence that technological progress determines long-run productivity growth. Among
academics, there is further debate about metrics and their adequacy for measuring technological
change.

Murray (2016) argues why a partial productivity measure, such as LP, is better suited for captur-
ing technological change in productivity. Technologies that are embedded in products are excluded
from TFP and therefore fail to capture the technological change. The technological improvements
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substitute capital and labour, allowing for cheaper inputs. Thus, TFP growth does not account for
all technological progress.

In chapter 2, we reviewed Gordon (2016) who argues the pace of innovation is decelerating. For
the analysis, he used TFP to make his argument. Mokyr (2018) criticises Gordon for this and
so far as to state: “students of contemporary technological progress should wean themselves of
TFP-fetishism; aggregate measures such as GDP (the basis for TFP calculations) were designed for
a wheat-and-steel economy, not for an information and mass-customisation economy in which the
service economy accounts for 70–80% of value-added”. In other words, Mokyr strongly disagrees
with Gordon because TFP mismeasures the rate of technological progress. Mismeasurement is the
negligence of inputs and has gained has considerable attention from academics, as briefly discussed
in section 2.3.1.

The time constraint of the thesis means we can only do one and choose to use LP. The main reasons
are: Firstly, Schreyer (2001) argues LP reflects the efficiency of labour and is a good starting point
for the analysis of factors. Secondly, for research question two, we consider task automation such
that hours worked should be reduced in progressive industries. This makes LP more interpretable
because hours worked is the denominator in LP. Thirdly, Solow’s residual (TFP growth) is an im-
portant measure for productivity influenced by factors including technological change. However,
the literature disagrees about its interpretation of technological change. Further research could be
done using TFP.

4.2 Preliminary Variables

We rely on the methodology provided by Eldridge et al. (2020), who constructed the US KLEMS
data set. The authors refer to Jorgenson et al. (2006). In section 3.1 Table 2 are the inputs we
use to do our analysis. Table 7 show the preliminary steps for the analysis. The notation in the
thesis is as follows; we use only upper-case Roman letters to indicate we use the quantity index.
The lower-case letter in front of it can be the following:

• w - weight

• s - share

• l - level

• n - nominal values (notation also used in table 2.
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Table 7: Calculated variables dictionary using US KLEMS data set, using the variables of table 2

Symbol Description Calculation

sBi,t Share of intermediate inputs Bi,t/Xi,t

wBi,t weight of intermediate inputs (sBi,t + sBi,t−1)/2
wVi,t weight of value-added (sVi,t + sVi,t−1)/2
gBi,t Growth rate of intermediate inputs ln(qBi,t) − ln(qBi,t−1)
gXi,t Growth rate of gross output ln(qXi,t) − ln(qXi,t−1)
gVi,t Real value-added growth Formula 5
lVi,t Level value-added Algorithm 2 on page 66
lAi,t Level of labour productivity lVi,t/Hi,t

τ length of time period tend − tbegin

Notes: All nominal variables are in current US dollars.

4.3 Labour Productivity Growth

To analyse past productivity growth, we use the annualised labour productivity growth denoted by
gLPi,t for each industry i in year t. This is not readily available in the US KLEMS data set; therefore
we use the variables of Table 2 to construct it. To do so we rely on the methodology provided by
Eldridge et al. (2020), who are referring to Jorgenson et al. (2006). Firstly, we calculate the real
value-added growth in equation 5, where intermediate steps for the growth rates and weights are
in Table 7:

gVi,t = gXi,t − wBi,t ∗ gBi,t

wVi,t
(5)

To find the real level of value-added, we first need to set the base year (here 2009). The real
value-added is measured against goods and services, where nominal is the real dollar value. We
choose to set the real value-added level in 2009 equal to 100. The next step is to recursively and
iteratively find the level of value-added (lVi,t). This is done using Algorithm 2, in Appendix A.2 on
page 66. To find the level of labour productivity, we divide the level of value-added by the hours
(Hi,t):

lAi,t = lVi,t

Hi,t
(6)

Finally we find the annualised labour productivity growth (ai, t, τ) for the chosen length τ , which
is by default 1 using Formula 7.

ai,t,τ = ln(lAi,t) − ln(lAi,t−τ )
τ

(7)
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4.4 Fixed Shares Growth Rate

In the literature review, section 2.4, we discussed the Growth Disease as tested by Nordhaus (2008).
We rely on the methodology of Nordhaus (2008) and Nordhaus (2004) to measure the Growth Dis-
ease effect. That is, the reduction of aggregate productivity growth due to stagnant industries.
Nordhaus (2004) outlined three ways to measure productivity growth. The paper presented an
alternative method for measuring productivity and determining the underlying factors. That is,
how the share of stagnant and progressive sectors affected the aggregate productivity growth.

The first method is a classical approach and studies the difference in growth rates. This standard
method does not account for the structural change of the economy. In this approach, we measure
productivity growth.

The second method, the welfare-theoretic measure, multiplies the weighted average of productivity
using the nominal output shares of a given year. The third approach, the fixed-weight measure,
’fixes’ the nominal output shares for different based years as weight. Using the average of produc-
tivity growth rates, we get multiple fixed-share growth rates. The differences between the welfare-
theoretic and fixed weight methods are called the Fixed Shares Growth Rate analysis (FSGR).
Nordhaus (2008) uses the growth rates for different periods with different fixed years, to capture
a complex set of factors, including the Growth Disease. The hypothesis is that changing nominal
output shares of industries will decrease the aggregate FSGR of the US for later years. As the
stagnant industries, those with low productivity growth, grow in nominal shares, the aggregate US
growth decelerates.

Therefore, we rely on the FSGR methodology by Nordhaus (2004) and Nordhaus (2008). Firstly,
we find the annualised growth rate ai,t,τ for all 61 industries in the US KLEMS dataset over period
T . ai,t,τ is constructed as described in section 4.3 using Formula 7, where τ is the length of the
period. Nordhaus does not detail how he finds ai,t,τ . Therefore, we considered using the either long
log growth (Eldridge et al., 2020) or the geometric means (Hartwig and Krämer, 2019). Because
the long log growth rate is consistent with the US KLEMS data, we chose this over the replication
technique proposed by Hartwig and Krämer (2019).

The next step is to construct the weights (Wi,Y ) for ’fixed years’ (Y ). We chose the chosen fixed
years to be the beginning and end of each period as Nordhaus (2008) did. Formula 8 shows how
nominal shares of output Wi,Y . Here Xj,T is the nominal gross output of industry j (or i) and Bj,T

is the nominal intermediary input of industry j (or i).

Wi,t,Y = Xi,t − Bi,t∑n
j=1

(
Xj,Y − Bj,Y

) (8)
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(a) Total Productivity Factor. Figure 6 from Nordhaus
(2008).

(b) Labour Productivity. Figure 7 from Nordhaus
(2008)

Figure 9: Fixed share growth rate for two measures of productivity for different base years and periods.

Using ai,τ and Wi,Y , we find the aggregate labour productivity growth for each period and each
fixed year (Y ) as shown in Formula 9. For example, if we have four periods, and five fixed years,
we find twenty FSGR’s.

FSGR(Y ) =
n∑

i=1
âi,t,τ Wi,t,Y (9)

Nordhaus reports the following results. Figures 9a and 9b shows the fixed shares growth rate for
both TFP and labour productivity growth of the US economy over the period 1948-2001. Both fig-
ures are constructed similarly for different outputs. Each figure plots a histogram for four different
periods. Each bar corresponds to one of five different weights (1948, 1959, 1973, 1989, 2001) for
a given period. TFP drops from 1.27% with 1948 industry weights to 0.38% with 2001 industry
weights. Therefore, rising shares of low growth industries, relative to high growth industries, reduce
the US economy’s aggregate growth.

Nordhaus (2008) creates a summary statistic to compare the linear difference of shift of composition
of output. He subtracts the productivity growth of two base years (Yt2 − Yt1) for one period and
divides that number by the length of the period (τ). We call this the Growth Disease effect, and
it allows for comparison for different period lengths. Based on his results, he concludes that the
changing composition of the US economy over the 1948-2001 period reduced the annual productivity
growth by 64 basis points per year. Thus the Growth Disease effect, is slightly more than 1 basis
points per year: 64 basis points / 53 years = 1.20 basis points per year.
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4.4.1 Periodization

The Nordhaus (2008) paper analysed the growth disease over 1948 - 2001. He divided the data set
based on two criteria according to (Nordhaus, 2004). The periods are of approximately equal length
and start and end at the peak of economic cycles. The fixed weights are based on the nominal
output shares of industries at these peak years. He arrives at four samples 1948–1959, 1959–1973,
1973–1989, and 1989–2001. The weights years are subsequently 1948, 1959, 1973, 1989, 2001.

The US KLEMS data set spans 1963 until 2016. The period 1948-1962 is therefore excluded from
the analysis. The US KLEMS data adds 15 more years, but introduces the challenge of choosing
periods that are both equal in length and from peak to peak. Table 8 shows the periods in the US
KLEMS set when the US economy had negative business cycles and their characteristics.

Table 8: Economic downturns between 1960 until 2020 according to NBER (2021).

Period Time since previous downturn

Apr 1960 - Feb 1961 2 years
Dec 1969 - Nov 1970 8 years 10 months
Nov 1973 - Mar 1975 3 years
Jan 1980 - Jul 1980 4 years 10 months
Jul 1981 - Nov 1982 1 year
Jul 1990 - Mar 1991 7 years 8 months
Mar 2001 - Nov 2001 10 years
Dec 2007 - Jun 2009 6 years 1 month
Feb 2020 - Apr 2020 10 years 8 months

For example, The Great Recession of 2007/08, significantly impacted industries such as construc-
tion and finance. If we chose 2007 as a fixed year, it would produce biased results right after a big
downturn. It is biased in the sense that some industries, such as construction, have smaller nominal
value-added output shares. Ideally, we look at the steady-state of the economy (which does not
exist). The characteristic of the last ten years in the US KLEMS data set, is that 2007 shows the
most significant GDP decline. However, 2007 makes it hard to make statistically coherent breaks.
The economic repercussion has been severe, even in the years after the recession. Most crucially,
it affects the fixed weights. If the number of years between fixed weights is small, it is likely more
affected by the shocks in 2001 and 2007, than structural change (Nordhaus, 2004).

Thus we arrive at a periodization, that extends Nordhaus (2008): 1973-1989, 1989-2001, 2001-2016,
with fixed weights 1973, 1989, 2001, 2016. Just like Nordhaus, the fixed weights are based on the
start and end dates of the periodizations. For completeness, we add the period 1963-1973 and
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weight 1963 even though it is not a business cycle peak. As a robustness check, test for an addi-
tional periodization. In this periodization, the average business cycle is shorter than the extended
periodization. We choose: 1973-1979, 1979-1989,1989-2001, 2001-2007, 2007-2016. Here each pe-
riod is six to eleven years. Let this be called ’Robustness short’. This periodization can be affected
by the shocks mentioned above.

4.5 Correlation Analysis of Productivity Growth and Technological Potential

4.5.1 Ordinary Least Squares Regression

To estimate the predictive power of IT potential, we conduct a cross-industry regression using an
Ordinary Least Squares (OLS) model. The model is of the form y = Xβ + ϵ. Here y is the depen-
dent variable, X are the independent variables. β is a k x 1 vector of unknown parameters and ϵ

is a n x 1 vector of unobserved disturbances. We estimate β’s with b = (X ′X)−1X ′y, such that
it minimises the sum of squares of the residuals. To do a Least squares estimation, we take the
following three steps.

Firstly, the choice of the variables. Here we regard the RTI metric (RTIi), as discussed in sec-
tion 3.2.2, as the assessment of expectation of IT automation potential. The variable is inadequate
for a time-series test because it is constant over time for industries. Therefore, we argue to use
growth of investments into IT and software capital, defined as gITK, to exploit the potential and
carry it into practice. We assume that technological potential drives IT investments, so we use
interaction term to capture this. The chosen dependent variable is the annualised growth of labour
productivity gLPi,t using the long log difference of five years. The number five is chosen because
we assume that the rewards should be measurable in a relatively short period for investments to
make sense.

Secondly, we collect the data. As described in chapter 3, we use variables of 2 of the US KLEMS
data set to find dependent variables, the annualised labour productivity with and explanatory vari-
able gITK. gLPit and gITK it are both defined as long differences in the log of the respective
variable: gLPi,t = ln

(
LPit

LPi,t−τ

)
/τ and gITK i,t = ln

(
lITK i,t

LPi,t−τ

)
/τ , where τ is the length of the time

period (the default is τ = 5). For the assessment of the expected of IT potential we use the aggre-
gated values of RTI, as described in section 3.2.2. Here LPi,t is equal to ai,t,1. Table 9 shows an
overview of variables in the regression.

The regression tests the following hypothesis: Industries that display high automation potential
and make the necessary investments display high labour productivity growth. We specify a model
with interaction terms to test the hypothesis:
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Table 9: Variables overview for regression.

Symbol Description Calculation

LPi,t Annualised labour productivity in year t ln(lAi,t)
LPi,t−τ Annualised labour productivity in year t − τ ln(lAi,t)
RTI Industrial-level Routine Task Intensity See section 3.2.2
lITK Level of sum investment in IT and Software capital See section 4.5.2
gK Growth of sum investment in IT and Software capital Formula 15
gITK IT growth capital See section 4.5.2
RTI · gITK Interaction term of RTI and gITK RTI · gITK

τ length of time period For regression equal to 5

gLPi,t = β0 + β1 · RTI i + β2 · gITK i,t + β3 · RTI i · gITK i,t + ui,t (10)

Thirdly, we compute the estimate based on the assumptions. To compute the multiple regression,
we briefly discuss the statistical properties. Some do not hold, and this means we need to adjust
the model. The seven assumptions, according to Heij et al. (2004), of OLS are:

1. Fixed regressors

2. Random disturbances (ϵ), with a zero mean

3. Homoskedascity

4. No Correlation

5. Constant Parameters

6. The data generated processes is a linear model

7. The disturbances ϵ are jointly normally distributed

The model violates assumptions 3 and 4 of an OLS model, such that we need to adjust the model.
This model shows auto-correlation such that we have two challenges:

• The long log difference introduces at correlation of adjacent years.

• The RTI variable is constant over time, such that we observe clustering. Clusters exist because
RTI is repeatedly observed.
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In Python we cannot control for both 4. Therefore we consider using Newey-West standard errors
to control for serial correlation of growth rates or Clustered Standard Errors for constant RTI scores.

Serial correlation occurs when there is a relationship between consecutive residuals, common for
time-series regression. The annualised long log growth rates introduce serial and auto-correlation.
The growth rates overlap because they are constructed with equal values. Newey-West standard
errors use weighting kernels, known as lags, to adjust for heteroskedasticity and auto-correlation.
For more information see Heij et al. (2004).

Moreover, we consider clustering over industries because RTI is constant over time. For each year
of industry i, RTIi is equal with 100 % correlation. We have 54 observations that are equal for 61
industries in the case of RTI. On the opposite we have 54 observations with overlapping averages,
however, the correlation between them is smaller due to the rolling window of five years. So there
is a higher correlation for two adjacent years (4 out of 5 values are the same). Going ahead five
years ahead in time for the same industry, these observations do not overlap anymore. Therefore
we argue to use clustered standard errors 5.

4.5.2 Explanatory variables

The US KLEMS data set provides nominal and quantity indices of IT and Software for 61 industries.
For the analysis, we use those, using the following equations provided by Eldridge et al. (2020) who
follow Jorgenson et al. (2006), to construct the growth rate of the combined capital types for each
industry i at year t. We use the variables of the US KLEMS data set as shown in Table 2 on page 18.

Firstly, we find the share of Software (sS) using the total nominal invested capital in both IT (nIT )
and Software (nS) in year t. For IT we to calculate the share of IT. This is show in Formulas 11
and 12.

sSi,t = nSi,t

nSi,t + nITi,t
(11)

sITi,t = nITi

nSi,t + nITi,t
(12)

Next, we find the respective growth rates of Software and IT using the quantity indexes for each
industry i in year t as shown in Formulas 13 and 14.

gSi,t = ln(qSi, t) − ln(qSi, t − 1) (13)
4See documentation: https://www.vincentgregoire.com/standard-errors-in-python/
5We cluster industries in Python3, see ”OLS Coefficients and Standard Errors Clustered by Firm or Year ”https:

//www.vincentgregoire.com/standard-errors-in-python/
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gITi,t = ln(qITi,t) − ln(qITi,t−1) (14)

Then, find the growth rate of IT capital, thus the sum of Software and IT, with Formula 15.
Using Algorithm 2, in Appendix A.2, we use gK to find the level of ITK capital (lITK). Then by
dividing by the shifted, τ = 5, annualised labour productivity growth (LPi,t−τ ), we find the gITK

dependent variable of the OLS estimation.

gKi,t = sSi,t · gSi,t + sITi,t · gITi,t (15)

4.5.3 Correction of the model

Furthermore, there are a few adjustments made to the model to ensure interpretation and correct-
ness. Firstly, RTI is centred by standardising all 61 values. To standardise a variable is to subtract
the mean and dived by the standard deviation. After the variable is centred, β2 is the effect of
gITKi,t on gLPi,t for the industry that has “average” RTIi. If an industry has an average RTI
score, then the model reduces to:

gLPi,t = β0 + β2 · gITK i,t (16)

Similarly, we centre gITKi,t around the mean, by subtracting it. We do not standardise because
this is a growth rate over time, whereas for RTIi is an industry score. If an industry has an average
gITK score, then the model reduces to:

gLPi,t = β0 + β1 · RTI i (17)

When an industry has an average RTIi score and average gITKi, t, the model becomes:

gLPi,t = β0 (18)

4.5.4 Periodization

In section 4.4.1, we discussed the considerations of different periods to analyse the growth disease
of the US economy. In the RTI regression, these conditions still hold, such that we study the period
1989 until 2016. In the literature review we discussed that labour productivity growth was high
over the period 1994-2004. However, we prefer to analyse the period 1989-2001 over 2002-2016.
This period is consistent with the Fixed Shares Growth Rate analysis.
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4.6 Correlation Analysis of IT and ML potential

Finally, we investigate industries that show the highest potential for ML. We use the aggregated
data described in section 3.3.1. Furthermore, we analyse if the expectation of ML potential is
different from IT. In section 3.2.1 and 3.3.1, we discussed the measures are based on the RBTC
hypothesis, such that ”routine” tasks can be automated. In the assessment of ML, some type
”non-routine” task can be automated. Therefore we test if the assessment of expectation of ML
is correlated with RTI. We analyse the correlation relationship between the SML and RTI metric
as shown in equation 19. Where SMLi and RTIi are the technological potential scores at the
industry-level for industry i. We also introduce a constant β0 and an error term ut. Furthermore,
we assume all seven assumptions of OLS hold.

SMLi = β0 + β1 · RTI i + ut (19)
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5 Results

This chapter discusses the results to answer the three research questions. The chapter is outlined
as follows:

Firstly, in section 5.1 we analyse Baumol’s model of unbalanced growth of industries for the US over
the period 1963-2016. We test if the stagnant industries show increasing nominal output shares
and if these are concentrated in service-providing industries. We then analyse if the rising output
of low productivity growth industries negatively affected the labour productivity growth in the US,
using the methodology of the Nordhaus (2008) paper.

Secondly, in section 5.2 we test the explanatory power of the IT potential metric RTI. We use
the industry-level values, according to the data transformation of chapter 3.2.2. This allows us to
test if industry productivity growth was higher in industries where the automation potential by
computers was also higher.

Thirdly, in section 5.3, we analyse the expectation of ML-enabled technology. We investigate in
what industries ML potential is concentrated and if the expectation of ML potential is different
from the IT potential.

5.1 Is the Growth Disease effect still present in the US economy?

In this section, we take the following steps:

• Validate the structural shift of the US economy towards more service-providing industries
using the US KLEMS data set.

• Reproduction and extension of test 6 of Nordhaus (2008) analysis, the Fixed Shares Growth
Rate (FSGR) of labour productivity growth.

• Perform a robustness check of the results obtained in the previous step. This step is to
validate the results for different base years and periods.

5.1.1 From goods-producing to service-providing economy

In ”Macroeconomics of Unbalanced Growth” (1967), Baumol makes the assumption that most of
the economy can be grouped into two groups. One is known as progressive, where technological
innovation, capital accumulation and economies of scales create substantially more output while
reducing labour input. As discussed in the Literature Review, these industries are typically goods-
producing because human labour is not part of the product. Second is the stagnant industry, where
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the nature of the activity makes it difficult to use technological progress to reduce human labour.
By expectation of Baumol’s model of unbalanced growth, it is categorised as a service-providing
industry.

By the definition of the NAICS classification, one can divide the economy into two types of indus-
tries: goods-producing and service-providing. These consist of eight aggregated industries called
’super-sectors’. In the goods-producing industries, we have ”Agriculture, Forestry, Fishing, Hunt-
ing, Mining”, Construction and Manufacturing. By the assumptions of the Baumol, we expect
these goods-producing sectors to have declining nominal shares and growth rates above the aggre-
gate productivity growth of the US. In the service-producing industries, we have five super-sectors:
Trade, Transportation, Warehousing, and Utilities, Information, ”Finance, Insurance, Rental and
Leasing” (FIRL), and ”Other Services”. The last one encompasses business services, education,
health care, and leisure. Similarly, by Baumol’s model, we expect these sectors to show rising
nominal output shares and lower than aggregate productivity growth.

The shift of nominal output shares of goods-producing industries to service-providing is also known
as tetriazation. In the US, tetriazation did evidently occur, as shown in figure 10. The NAICS
defined goods-producing industries nominal output shares declined by nearly half from 43.7 %
to 22.7 % . This observation is coherent with the literature (Schettkat and Yocarini, 2006). A
complete overview of the shift of nominal output shares for all Super Sectors is shown in figure 16
in appendix D.

Figure 10: Nominal Value Added shares of the US economy Super sectors. The left pie chart shows
period 1947 - 1963 and the right pie chart shows shares for period 2007-2016

We further investigate how the assumptions of the model of Unbalanced growth of industries hold
up empirically. Figure 11 shows the the 31 service-providing industries according to the NAICS
classification. We expect, according to Baumol’s model, for all industries to have below the in-
dustry average (1.78%) annual labour productivity growth rates and all to have a rising share of
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nominal output over the period 1963-2016. We find that 18 out of 31 industries fit this assumption.
The remaining 13 industries also show above-average annual productivity growth rates or declining
shares. The above-average annual productivity growth rates is expected, as Oulton (2001) argued
not all service industries are stagnant. Especially industries 29, 34, 36,37,38, 42,43, and 56 show
progressive growth with rising shares of growth.

Consider industry 56, ’Social assistance’, which is a labour-intensive industry and is inconsistent
with the argument of Baumol. However, we argue that technology did affect the industry substan-
tially because it affected the US demographics and social norms. The average life expectancy in the
US has increased from 70 years old in 1960 to 79 years old in 2015 (Vollrath, 2020). The techno-
logical progress of medicine means that people today are getting older, and society needs facilities
such as elder care. Therefore technological progress increased demand for elder care, even though
the product bought is the attention and care of the nurses. Furthermore, research by Bailey (2010)
shows the significant effects of the contraceptive pill on the labour market. The pill gave women the
freedom to pursue careers. Gordon (2016) argues that before that, without technologies such as the
washing machine, taking care of the household required a full workweek. Because technologies freed
up time and cultural norms changed, women entered the workforce. With both parents at work,
it implies that the ’child care’ industry has increasingly grown in size and productivity. Therefore,
we argue that technological advancements indirectly affected the growth of the ’social assistance’
industry.
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Figure 11: Service-providing industries according to NAICS.
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5.1.2 Testing the Growth Disease with US KLEMS data

Figure 12 shows the FSGR plot over 1963-2016 using the fixed shares of years: 1963, 1973, 1989,
2001, 2016. Given that we use the methodology of Nordhaus (2008) and extend his timeline, it is
crucial to verify the correctness and limitations of our results. Here periods 1973-1989 and 1989-
2001 overlap with the Nordhaus (2008) analysis. There are two periods to compare with the fixed
shares of 1973, 1989 and 2001 with Nordhaus results to verify our results. In the 1973-1989 period,
the results are equal up to the one decimal point accuracy. However, the growth rates in 1989-2001
are roughly 50 basis points higher than with Nordhaus. However, the relative change between the
fixed shares for the second period is roughly equal to the results presented here. The variation can
be due to three reasons. Firstly, Nordhaus (2008) uses a BEA dataset for 67 industries, whereas
the thesis uses the US KLEMS data for 61 industries. Secondly, we excluded poorly measured
industries (government), whereas Nordhaus is vague if he includes them or not. Thirdly, Nord-
haus did not specify the technique used to calculate ai,t,τ . Our method was consistent with the
methodology of Eldridge et al. (2020). Our calculation method can therefore be different from the
Nordhaus (2008) analysis and explain some of the differences. Because we used a different data
set than Nordhaus and the results are not identical, we cannot make a direct comparison to the
Growth Disease effect of the Nordhaus (2008) analysis.

Table 10: Fixed Shares growth rate of labour productivity growth for different base years and periods for
the ’extension’ periodization.

1963-1973 1973-1989 1989-2001 2001-2016 1963-2016

1963 2.23 1.49 2.35 1.71 1.89
1973 2.24 1.56 2.33 1.70 1.90
1989 2.00 1.45 2.25 1.61 1.78
2001 1.81 1.40 2.23 1.48 1.69
2016 1.73 1.29 2.09 1.48 1.61

Notes: The results of the FSGR analysis, according to the methodology of test 6 of Nordhaus (2008). Values are re-

ported in percentages. The periodization is roughly equal, with minimally 10 to maximally 16 years. The annualised

labour productivity growth rates over a period (column) for 61 industries are multiplied by the weights (nominal

output shares) of the industries for five fixed years. The last column is the annualised growth rates over the whole

period (53 years) multiplied with weights of five fixed years.

Consider the final column in table 10. This shows the annualised labour productivity growth rate
over the complete period (not shown in the figure). If we use fixed shares 1963, the average labour
productivity growth would be 1.89 %. Using the fixed shares of 2016, this would be reduced to
1.61 %, equivalent to a 28 basis points drop per year over 53 years is a 0.51 basis points decline.

44



Figure 12: Fixed Shares Growth Rates analysis of labour productivity growth (% per year) extended with
period 2001-2016.

We conclude that Growth Disease still persists in the US economy.

However, in the period 2001-2016 we find no change between the fixed years 2001 and 2016 as both
are equal to 1.48 %. The Growth Disease effect is equal to zero for the extended period. We find
small differences between the fixed weights of 1963 and 1973. That is 2.23 % compared to 2.24 % in
period 1963-1973. One might conclude that the change for fixed weight in the earliest period is so
small, like in the latest period for the respective weights, that cannot conclude the Growth Disease
effect is declining. However, in the Nordhaus (2008) analysis, there was a significant difference for
1959-1973 with weights of 1959 and 1973. We discussed that our data set is different and the first
period are different. Therefore we further analyse the dynamics of the last period with weights
2001 and 2016 to find the Growth Disease effect in the new millennium. Furthermore, Figure
16 in Appendix D on page 71 shows tetriazation from 1995-2000 to 2007-2016 continued towards
service-providing industries. We conclude that US aggregate productivity growth is unaffected by
the structural shift towards service-providing industries.

5.1.3 Robustness

In Methodology 4.4.1, we discussed the challenges of choosing a period. To summarise, we use
the Nordhaus periodisation with extension, but due to the new data perform a robustness check
(robustness short) to verify the effect of the growth rates in the new millennium.
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The ’Robustness Short’ results are shown in appendix F, in figure 18 and table 15. In figure 18,
period 1979-1989 and 1989-2000 clearly show a declining output growth. However, for the later
periods, the effect of the weights on output growth is significantly smaller, showing a flat pattern.

We observe, over the whole period 1973-2016, the FSGR declines from 1.82 % for fixed year 1973
to 1.58 % for fixed year 2016. This shows that the composition of the output of industries lowered
the labour productivity growth by 24 basis points per year over the period 1973-2016 period. Put
differently, the changing shares lowered the productivity growth by 0.55 basis points per year.

We again compare the fixed weights of nominal output shares for the years 2001 and 2016 for period
2001-2007 and 2007-2016. In the first period, the FSGR increases from 2.25 % to 2.26%, and in
the second period, FSGR increases from 0.96% to 0.97%. This is consistent with the observations
of the previous section. The increase is further evidence that the Growth Disease effect has run its
course since 2001.

5.1.4 Conclusions

In this section, we have taken three steps to analyse how US labour productivity growth by the
shift of goods-producing to service-providing industries. Firstly, we found that the US economy
has shifted further from a goods-producing to a service-providing economy. However, within the
service-providing industries 8 out of 31 are shown above-average annual labour productivity growth
and rising nominal shares over the period 1963-2016. We focused on the ’social assistance’ industry
to show that technology has an indirect effect on industries and can create labour productivity
growth, even if the industry is very labour-intensive and difficult to automate.

In step two, we showed that over the period 1963-2016, the US annualised labour productivity
growth was decelerated by the sectoral shift towards low productivity industries. In all four pe-
riods, the labour productivity growth was lower for the later industry composition. However, we
found that in the last period, 2001-2016, that the US industry composition of 2001 to 2016 was
unaffected by the continued tetriazation between 2001 and 2016.

In step three, we did a robustness check to verify if the results of step two. We found when comparing
the weights of 2001 and 2016 for the periods 2001-2007 and 2007-2016 that the annualised labour
productivity growth was higher for the latest fixed years.
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5.2 Did the expectation of IT potential predict productivity growth in the US
over the period 1989-2016?

In this section, we test if the selected IT potential metric predicted past productivity performance.
In that way, we test if high RTIi corresponds to high labour productivity growth, such that the
expectation corresponds to Baumol’s progressive sectors. On the other hand, low RTIi corresponds
to constant productivity growth, such that it is a stagant sector. Table 14, in appendix C, shows the
61 industries from the US KLEMS data sets with the corresponding RTI industry values. Except
for industries 21 and 44, all industries are represented by over 90 % of the occupations. In other
words, the matching of occupational-level RTI to the OES Matrix data set was successful enough
to have a high corresponds of the industry. The median matching success of industries is 98.1 %.
This uses two strong assumptions. Firstly, missing occupations are equal to the mean of occupa-
tional scores for (higher-level) broad categories in the data set. The missing percentages represent
occupations that belong to higher-level groups without an RTI score. Secondly, we assume that
the industry composition of occupations is constant. This is a very strong assumption, considering
the Fixed Shares Analysis studies the change of industry structure, and we now assume that no
change occurred for 27 years within industries.

5.2.1 Correlation analysis of past productivity growth and IT potential

Table 11 shows the results for the regression (as described in chapter 4). The table shows three
periods, where the first is the total of models two and three. This periodisation corresponds to the
business peak cycles between 1989 until 2001 and 2002 and 2016 (the end of the data set). The
dependent variable gLPi,t is the annualised growth rate of labour productivity for industry i at
time t. We have a constant that is significant for all three models and three explanatory variables:

• RTI : The Routine Task Intensity for industry i.

• gITK : the IT capital stock of software and IT for industry i.

• RTIxgITK : The interaction term of the previous two.

Firstly, model 1 shows no significance in any explanatory variables, although all have positive coeffi-
cients. Due to a lack of statistical explanatory power, we conclude that the expectation of comput-
ers, by AD-13’s formulation, fails to predict sustained long-run productivity growth. Furthermore,
the investment into IT capital also fails to create statistically significant growth. Therefore the
assessment of the expectation of IT technology did not predict sustained long-term labour produc-
tivity growth for industries.
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Table 11: Regression results of three periods with dependent Variable: gLP . Between brackets is the
reported standard errors.

Variable Model 1 Model 2 Model 3
1989 - 2016 1989-2001 2002 - 2016

C 0.0192*** 0.0181*** 0.0203***
(0.001) (0.002) (0.001)

RTI 0.0008 0.0006 -0.0005
(0.001) (0.002) (0.001)

gITK 0.0089 0.0298*** -0.0187
(0.007) (0.010) (0.012)

RTI x gITK 0.0070 0.0239** -0.0073
(0.006) 0.009 (0.005)

N 1708 793 915
R2 0.003 0.034 0.009

***p < 0.01, **p < 0.05, *p < 0.1

Secondly, Model 2 is over the first half of period model 1, that is 1989-2001. This period is between
the peak cycles of 1990 and the 2001 dot-com recession. This model has statistical significance for
gITK and the interaction term, at 1% and 5%, respectively. The period is characterised by the
acceleration of productivity growth in several sectors such as wholesale trade, retail trade and the
finance industry (Remes et al., 2018). However, RTIi is statistically insignificant with a very small
positive coefficient.

Figure 13, on page 49, shows the relation between gLP and gITK for different values of RTI,
according to the coefficient results of model 2. We find for RTI = 0, the investment in IT and
Software does not create any additional labour productivity growth in an industry. If RTI = 1,
gITK is increasing and positive for values higher than gITK = −45%. If RTI = −1, we see an
almost flat line that is increasing. In this setup, gITK to be the better predictor of productivity
than aggregate RTI value. The results of gITK are consistent with the observations made by Jor-
genson et al. (2010). He argued industries that show high investment in IT equipment and software
tended to report higher productivity and faster growth rates than low IT and software investment
industries.

Model 3, again, holds no predictive power except for the constant. Furthermore, all explanatory
variables show negative coefficients. We, therefore, conclude using the US KLEMS macro variables
and the aggregated RTI scores using the 2019 OES Matrix data, that the expectation of IT holds
no predictive performance of past productivity growth over the 1989-2016 period.
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Figure 13: Coefficient effect of gTIK for different values of RTI on dependent variable gLP . All values
are reported in percentages.

5.2.2 Conclusions

To answer research question two: Did the expectation of IT potential predict productivity growth
in the US over the period 1989-2016? No, our measure of IT potential, or the industry-level aggre-
gated Routine Task Intensity, performed poorly.

The poor predictive performance can be explained by poor data quality is poor. Firstly, we made
very strong assumptions of constant occupation structure within industries. If the BLS shared
the occupation structure of the US over time, the RTI would become more variable over time.
Secondly, our data set uses macro variables that are relatively poor measures. Recent literature,
such as Raj and Seamans (2018) argues for the need for firm-level data. The paper argues it would
allow the researcher to investigate under what conditions ML is a substitute for labour. Thirdly,
in the literature review, we explained that service industries are often poorly measured (Triplett
and Bosworth, 2004).

However, if these results are correct, this show that the expected potential of IT never materialised,
and that we expect too much of IT technologies. However, during the COVID pandemic, appli-
cations of IT quickly diffused, such as remote work through video conferencing software or online
education at universities. These applications were technologically feasible before the pandemic, but
it took economic incentive, organisational change and social acceptance to happen. These factors
are not part of the part of the RTI score, but are well-documented drivers of productivity growth
(Dieppe, 2020; Brynjolfsson et al., 2017).
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Furthermore, that applications are technologically feasible does not mean that it will happen. It
takes ingenuity and deep understanding to use technology such that it creates productivity growth
(Brynjolfsson et al., 2017). In the literature review, we discussed the example of the potential of
nuclear energy that never materialised. Further research could investigate if the tasks, as described
by O*NET 1977, were automated using IT technology. This tests if technological potential was
achieved.
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5.3 Is the expectation of automation of ML concentrated in historically stag-
nant industries?

This section answers the third research question and relates the answers to the first and second
research questions. The following steps are taken:

• Analyse the distribution of the expectation of ML potential in industries.

• Investigate the correlation between the industry-level RTI and SML.

We investigate the SMLi scores for 61 industries of the US KLEMS data set. After the data
matching of section 3.3.1, we find two industries (21,44) that have an employment representation
below 90 %. This is like RTI satisfactory for the analysis. However, when we consider the variation
of aggregate SML scores, it is considerably lower than the variation of the tasks. This was expected
since occupation also showed low variation. Therefore, the results of aggregation suggest that the
data should not be trusted at face value.

5.3.1 Historically stagnant industries

Table 12 show the distribution of industries for historic growth rates and the industry-level SML.
The values reported are the number of industries with the nominal output share of the combined
industries in 2016. The average SMLi is equal to 3.48. We find 26 industries with historically
above-average annualised labour productivity growth rates (1.78%) over the period 1963-2016. We
expect 14 industries, which a combined 28% shares of nominal output in 2016, to show technologi-
cally progressive growth. Moreover, the most ML potential is expected in the stagnant industries
with 16 industries and 36 % total nominal output shares in 2016. Notice that 64 % of the nomi-
nal output shares of the industries show historically below average annualised labour productivity
growth rates. Similarly, 64 % of the nominal output shares of the industries shows higher than
average expectation of ML potential. Thus, above-average SML potential is expected to occur in a
significantly larger part of the US economy than the below-average SML potential industries.

We focus on industries with a lower than average labour productivity growth rate and above-average
SMLi in the lower left quadrant. Figure 14 shows the 16 industries, of which 4 industries are goods-
producing industries and 12 are service-providing industries. All service-providing industries show
an increased change of share over the period 1963-2016. This result shows that the potential of
ML learning is concentrated in historically stagnating industries and are 36% of the nominal out-
put shares of US output. Even industry 57, which includes violinists, is expected to benefit from
the technological advancements in ML. This is an important result because this goes against the
model of unbalanced growth of industries. Because in this model, historically stagnant industries
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are expected to continue to record relatively low productivity growth because the work is difficult
to automate. Therefore, we also test the correlation between RTI and SML to determine if the
same industries’ technological potential is expected. If the potential of ML-enabled technology is
realised, as these results show, then the model of unbalanced growth of industries has run its course.

Table 12: Distribution of historically progressive and stagnant industries versus value of SML.

SMLi > 3.48 SMLi < 3.48 Total

Progressive 14 (28%) 12 (8%) 26 (36%)
Stagnant 16 (36%) 19 (28%) 35 (64%)

Total 30 (64%) 31 (36%) 61 (100%)

Notes: Progressive industries have a annual labour productivity growth rate over the period 1963-2016 above 1.78%,

whereas stagnant industries have a annual labour productivity growth rate over the period 1963-2016 below 1.78%.

Figure 14: Industries with below average annual labour productivity growth rates (1.78%) over the
period 1963-2016 and above average SML (3.48).
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5.3.2 Correlation analysis of RTI and SML

We cannot predict if the expectation of SMLi accelerates growth, but we can compare it to RTIi.
In section 5.2 we concluded that our selected measure of IT potential was a poor predictor of labour
productivity growth over the period 1989-2016. Figure 14 in Appendix C shows the SML and RTI
values for the 61 industries of the US KLEMS data set. These values are used for the correlation
analysis of SML and RTI, as discussed in section 4.6.

Figure 15: Scatterplot of 61 industries with SML and RTI scores.

SMLi = 3.454 + 0.023 · RTI i (20)

The scatter plot in figure 15 provides the graphical relationship between SMLi and RTIi. Each
plotted point represents an industry with its respective SML and RTI value. The orange line is
equal to the OLS regression with coefficients values as shown in equation 20. The relation between
the two is positive and increasing. The correlation is low, and the positive relationship shows that
industries with higher RTI scores will have higher SML scores. Notice that the outlier at (3.859,
3.531) is legal services. The correlation R2 between the two variables for 61 industries is 0.22. This
shows that RTI and SML are very different metrics. RTI is based on the likelihood that computer-
enabled technology can substitute for routine work done based on task description from O*NET
in 1977. SML measures the likelihood that ML-enabled technology can substitute human work for
both routine and non-routine tasks in 2016. Furthermore, the two measures do not have the same
results for measuring the ’routineness’ of tasks because the survey are different despite being based
on the same model, and the years of recording it are years apart. This shows that ML-enabled
potential is expected to be different from IT-enabled potential.
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5.3.3 Conclusions

To answer research question three: Is the expectation of automation of ML concentrated in his-
torically stagnant industries? Yes, the higher potential for ML is concentrated in the majority
share of the US (64 %). Here above-average potential for ML is concentrated in 36 % share of
US nominal output is expected in historically stagnant industries. Furthermore, the expectation of
ML potential is very different from the expectation of IT potential with only a 22 % correlation.
Based on our data, ML potential affects different industries than the previous wave of technology
(IT potential). Furthermore, the high concentration in stagnant industries means Baumol’s model
of unbalanced growth will be tested over the next few decades. The potential shows that growth
can occur in previously hard-to-automate industries.
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6 Conclusion

6.1 Main results

The third wave of automation led to disappointing productivity growth rates. This is known in the
literature as the productivity paradox. Although it is indisputable that IT has changed our daily
lives, we fail to see any acceleration of productivity growth. Rather the productivity growth has
decelerated since the start of the third Industrial Revolution. Still, techno-optimists are hopeful
that the fourth wave of automation can bring the US economy back to the historical growth rates
of 2% and higher. Many argue ML is key to achieving this. This thesis analysed this claim, and
asked: Does data support the expectation of acceleration of productivity growth through ML?

We considered four explanations for the productivity paradox. We chose to further investigate Bau-
mol’s model, because of the assumption that technological automation determines if an industry is
stagnant or progressive. This allows for a direct test if ML technology is able to automate tasks
within stagnant industries.

Our first question was: Is the Growth Disease effect still present in the US economy? This test
is one of the six consequences of Baumol’s model of unbalanced growth as identified by Nordhaus
(2008). We relied on his methodology to test if the increasing shares of low growth industries
reduced the aggregate US productivity growth. Our results show that the structural shift of the
US economy reduced labour productivity growth by 28 basis points between 1963 until 2016. Thus
higher productivity growth industries were a larger share of the US economy in 1963 than in 2016
as measured by the nominal output share. However, the aggregate US labour productivity growth
showed a 0 basis point difference for the period 2001 to 2016. Although the US economy shifted
further towards service-providing industries, as shown by Figure 16 in Appendix 16.

After we established the Growth Disease effect is still present, we investigated the assumption of
technologically progressive and hard-to-automate stagnant industries. In chapter 3 ’Data’ we ex-
plained how we developed a methodology that aggregates occupational-level of existing assessments
of IT and ML to industry-level. Prior research investigates the impact of IT and ML on occupations
(Autor and Dorn, 2013; Brynjolfsson et al., 2018). However, none test the effect it has on industries
productivity growth. That is, are the expectations of technological potential concentrated in the
industries of high productivity growth industries.

The second question was: Did the expectation of IT potential predict productivity growth over the
period 1989-2016? To answer this question, we used the Routine Task Intensity (RTI) of Autor and
Dorn (2013). This scales all occupations in the data set as likelihood to automation by computers.
We chose this metric as our data set for IT potential. RTI was aggregated to industry-level and
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used as explanatory variables in an Ordinary Least Squares regression. Over the period 1989-2016
we tested the explanatory power of RTI and IT capital growth for the dependent variable labour
productivity growth. We found no statistical significance for RTI. Considering labour productivity
is ’disappointing’ while computers are everywhere, we argue this is a logical result. Furthermore,
we found in the period 1989-2001 that IT capital growth was significant. This is consistent with
the results of Jorgenson et al. (2010), who found industries with high IT investment significantly
outperformed industries with low IT investments.

The third question was: Is the expectation of automation of ML concentrated in historically stag-
nant industries? We used the occupational data by Brynjolfsson et al. (2018) as a measure for ML
potential. The paper created the ’Suitability to Machine Learning’ (SML) metric to analyse the
effect of ML on occupations. We found that ML potential is concentrated in historically stagnant
industries. For 36% of the total nominal output share of 2016, industries with annualised labour
productivity growth rates below average (1.78%) had the highest industry-level SML scores.

Furthermore, RTI and SML are both measures of technological potential. Therefore we investigate
if the expectations of IT and ML are similar. We found that the industry-level SML has a low
correlation (22%) with industry-level RTI. This result means the expectations of the technologi-
cal potential of ML is very different from IT. The combination of these two results implies that
the assumption of technologically stagnant industries has run its course. In Baumol’s model, it
is assumed that industries are stagnant because it is very difficult to automate tasks. However,
these results show ML can automate these difficult tasks, showing high SML scores in, especially
service-providing industries.

We conclude that the expectation of ML potential will affect different sectors than automation by
IT. However, IT alone did not predict the productivity growth of industries. To turn potential into
growth, firms must innovate and invest. Both measures of technological potential omit economic,
organisational, legal, cultural and societal factors. If ML potential is achieved, the fundamental
assumption of Baumol’s model of unbalanced growth has run its course. We expect ML to turn
a large share of the US economy from stagnant to progressive. However, it takes more than just
computers and algorithms.

6.2 Policy Recommendations

Today we live in an age of paradox. Although recent productivity growth rates may appear dis-
appointing, we have achieved enormous wealth in less than 250 years. The average workweek has
decreased from over 70 hours in the 1800s to 40 hours today (Vollrath, 2020). One is more likely to
die from obesity than starvation (Pinker, 2018). Furthermore, we can provide food, shelter, cloth-
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ing and free entertainment (through YouTube) to most citizens in advanced economies. However,
we cannot escape the fact that the cost of essential services, such as education and healthcare, are
increasing dramatically.

Let us, therefore, consider two scenarios. In the first scenario, technology or a different driving fac-
tor creates sustained long-term productivity growth above the 2% threshold. Then we will be able
to afford the ever-increasing essential services and help the less affluent members of our countries
and the rest of the world. This is a continuation of the trend of the 20th century.

In the second scenario, productivity growth stops, and productivity remains equal. Here poli-
cymakers should be aware of the negative effects of the Cost- and Growth Disease. As long as
technology fails to accelerate the productivity growth in the stagnant industries, which grow in rel-
ative size in the US economy, costs for essential services are expected to rise continually (Baumol,
2012). The thesis concludes that we can be hopeful about the future. However, we do not know
how long it will take for the ML technology to fully diffuse such that they are recorded in the US
productivity statistics. Until that happens, we have to assume scenario two and plan for increased
costs in essential services. We argue that even though the costs of essential services are rising, we
can afford them. Progressive industries will create goods and services at lower costs, such that our
budget can pay for the services. Knowing the dynamics of the Growth Disease, we must protect
the less affluent of society. Especially because the third Industrial Revolution lead to an increase
in inequality and wage polarisation (Autor and Dorn, 2013). The jury is still out if ML will have
the same negative effects (Brynjolfsson and Mitchell, 2017).

To achieve high productivity growth, we must make sure society is ready for ML technologies. That
means the supporting environment should adapt quickly to the emergence of breakthrough tech-
nologies. Organisations will require new management techniques, workers need to be re-educated,
and policy should incentivise firms to innovate. Finally, government officials also require training
to make sure they plan ahead instead of reacting. When Facebook testified for congress in 2018,
senators failed to comprehend what the then 14 years old company did (Stewart, 2018). This makes
it hard for lawmakers to regulate. For the next wave of automation, we should all be ready.

6.3 Limitations

The aim of the thesis is to analyse future productivity growth. We relied on the expectations of
technology to answer our main research question. The claim that ML can accelerate productivity
growth is based on technological feasibility and disregards drivers of productivity growth such as
physical capital and human. We only briefly discussed the importance of investments, but other
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literature show that it is essential for realising technological potential (Jorgenson et al., 2010; Bryn-
jolfsson et al., 2017). Furthermore, we agree with the observations of Dieppe (2020) and Gordon
(2016) about human labour. The post-war economy of the United States enjoyed a surge in edu-
cated workers (Vollrath, 2020). However, this trend reversed as the baby-boomer generation retires,
and fertility rates are falling.

Furthermore, we disregarded the effect of supporting environments such as institutions. Dieppe
(2020) argues these can impose regulations that incentivise firms to invest in acquiring techno-
logical innovation. But it can also create inefficient competition leading to market power abuse.
Supporting environments such as policy can also reduce output for industries. Consider Industry
24 ’ Petroleum and coal products’, largely focused on fossil energies. With the US signing the Paris
agreement, the US seeks to decrease carbon emissions to 50% by 2030 (Detrow, 2021). In that
sense, if efficiency improves through technology but the output decreases, productivity can still
decline. This also shows productivity growth should not be a mindless pursuit. If historically pro-
gressive industry 24 disappeared, US productivity growth would decline, but so would the emissions.

Moreover, for the analysis of technological potential, we made strong assumptions. For the aggre-
gation of the occupational-level to industry-level RTI we assumed that employment share within
industries did not change. This is strictly false because the composition of occupations changed
within industries (Autor, 2015). Our solution is to aggregate occupation data that is transformed
from 1990 to 2010. This 2010 occupation data is then aggregated by using the employment shares
of the US in 2019. In a perfect scenario, we would like to aggregate the 1990 occupation data based
on a US employment dataset from 1990, but this was not possible because such a data set does not
exist publicly.

Finally, we assumed that all these jobs have overlapping tasks. Consider the crosswalk example
of section 3.4. The complete crosswalk of occupation from Census 2000 to SOC 2010 is shown in
Table 13 in Appendix 13. The Bureau of Labour Statistics regularly updates occupations classi-
fications. This leads to occupations descriptions becoming more granular due to the changing of
tasks within occupations and to better reflect the occupations in the US economy. Therefore, it is
false to assume that the four granular occupations that stem from ’Computer scientists and system
analysts’ occupation have equal values for RTI.

6.4 Future Work

The US KLEMS by Eldridge et al. (2020), is a fantastic step towards a more harmonised data set
for all industries. In chapter 3, we discussed using 61 industries of the second period (1963-2016)
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in the US KLEMS data set. The timeline can be expanded using the first period (1947-1963) in
a follow-up paper. Furthermore, when the data set is updated, the analysis of the thesis could be
expanded for the latest years until the COVID-19 recession. Thereby creating a good break as the
data set then end at a business peak cycle.

This analysis used the value-added labour productivity growth rates to measure the effect of the
Growth Disease and historical growth rates of industries. It is common in the literature to anal-
yse productivity growth using the Total Factor Productivity (TFP), as discussed in section 4.1
’Measuring Productivity’. Furthermore, in section 4.4 we discussed that Nordhaus analysed the
Growth Disease effect using both TFP and labour productivity. Because TFP is widely used in the
literature, this thesis could be replicated using the TFP as a complement to the results of labour
productivity presented in the thesis.

Furthermore, it warrants further research if upcoming economies such as China and Vietnam ex-
perience the Growth Disease. On the one hand, the declining manufacturing industry in the US
is due to labour-saving automation. On the other hand, the Asian countries produce many of the
articles due to globalisation. It warrants further research if these countries show a reversed Growth
Disease effect, where the economy is growing due to a shift from agriculture to manufacturing.
The analysis of Nordhaus started in 1948, when most of the US workers had already shifted from
agriculture to goods-producing and service-providing industries. Using the newer data of upcoming
economies, we can better investigate the Growth Disease effect.

Another point is that we based the industry averages on the employment composition of the US
in 2019. This is constant over time, which is a gross oversimplification when considering that we
tested for the shift of industries. Due to lack of availability of the data, this was the best consid-
erable option. Consider if one would have OES Matrix data set for years t ∈ 1989, ..., 2016. Then
one could construct the IT potential, RTI, with variation over time, such that RTIi becomes RTIi,t.

59



Bibliography

Acemoglu, D. and Autor, D. (2011). Skills, Tasks and Technologies: Implications for Employment
and Earnings. In Handbook of Labor Economics, volume 4, pages 1043–1171. Elsevier.

Adler, D. and Siegel, L. B. (2019). The Productivity Puzzle: Restoring Economic Dynamism.
SSRN Electronic Journal.

Arntz, M., Gregory, T., and Zierahn, U. (2016). The Risk of Automation for Jobs in OECD
Countries: A Comparative Analysis.

Autor, D. (2014). Polanyi’s Paradox and the Shape of Employment Growth. Technical Report
w20485, National Bureau of Economic Research.

Autor, D. (2015). Why Are There Still So Many Jobs? The History and Future of Workplace
Automation. Journal of Economic Perspectives, 29(3):3–30.

Autor, D. and Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of the
US Labor Market. American Economic Review, 103(5):1553–1597.

Autor, D., Katz, L. F., and Kearney, M. (2006). The Polarization of the U.S. Labor Market.
96(2):36.

Autor, D., Levy, F., and Murnane, R. J. (2003). The Skill Content of Recent Technological Change:
An Empirical Exploration. The Quarterly Journal of Economics, 118(4):1279–1333.

Bailey, M. J. (2010). ”Momma’s Got the Pill”: How Anthony Comstock and Griswold v. Connecticut
Shaped US Childbearing. American Economic Review, 100(1):98–129.

Baumol, W. (2012). The Cost Disease: Why Computers Get Cheaper and Health Care Doesn’t.
Yale University Press.

Baumol, W. J. (1967). Macroeconomics of Unbalanced Growth: The Anatomy of Urban Crisis.
The American Economic Review, 57(3):415–426.

Baumol, W. J., Blackman, S. A. B., and Wolff, E. N. (1985). Unbalanced Growth Revisited:
Asymptotic Stagnancy and New Evidence. The American Economic Review, 75(4):806–817.

Baumol, W. J. and Bowen, W. G. (1965). On the Performing Arts: The Anatomy of Their Economic
Problems. The American Economic Review, 55(1):495–502.

BLS (2010). 2010 SOC User Guide.

Bresnahan, T. F. and Trajtenberg, M. (1995). General purpose technologies ‘Engines of growth’?
Journal of Econometrics, 65(1):83–108.

60



Brynjolfsson, E. and McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity
in a Time of Brilliant Technologies. W. W. Norton & Company.

Brynjolfsson, E. and Mitchell, T. (2017). What can machine learning do? Workforce implications.
Science, 358(6370):1530–1534.

Brynjolfsson, E., Mitchell, T., and Rock, D. (2018). What Can Machines Learn, and What Does
It Mean for Occupations and the Economy? AEA Papers and Proceedings, 108:43–47.

Brynjolfsson, E., Rock, D., and Syverson, C. (2017). Artificial Intelligence and the Modern Pro-
ductivity Paradox: A Clash of Expectations and Statistics. Technical Report 24001, National
Bureau of Economic Research.

Damiani, M. (2017). Building The Digital Biotech Company: Why and How Digitization is Mission-
Critical for Moderna.

Detrow, S. (2021). Biden Makes New Pledge For U.S. Greenhouse Gas Emissions: A 50% Cut.
NPR.

Dieppe, A. (2020). Global Productivity: Trends, Drivers, and Policies. The World Bank Group.

Eldridge, L., Garner, C., Howells, T. F., Moyer, B. C., Russell, M., Samuels, J. D., Strassner,
E. H., and Wasshausen, D. B. (2020). Technical Document: Toward a BEA-BLS Integregrated
Industry-level Production Account for 1947-1963.

Erber, G., Fritsche, U., and Harms, P. (2017). The Global Productivity Slowdown: Diagnosis,
Causes and Remedies. Intereconomics, 52:45–50.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S.
(2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115–118.

Feldstein, M. (2017). Underestimating the Real Growth of GDP, Personal Income, and Productiv-
ity. Journal of Economic Perspectives, 31(2):145–164.

Felten, E. W., Raj, M., and Seamans, R. (2019). The Occupational Impact of Artificial Intelligence:
Labor, Skills, and Polarization. Technical Report 3368605, Social Science Research Network.

Frey, C. B. and Osborne, M. A. (2016). The future of employment: How susceptible are jobs to
computerisation? Technological Forecasting and Social Change, 114:254–280.

Goos, M., Manning, A., and Salomons, A. (2014). Explaining Job Polarization: Routine-Biased
Technological Change and Offshoring. American Economic Review, 104(8):2509–2526.

61



Gordon, R. J. (2012). Is US economic growth over? Faltering innovation confronts the six head-
winds. National Bureau of Economic Research, (63):13.

Gordon, R. J. (2016). The Rise and Fall of American Growth. Princeton University Press.

Green, L. (2021). The Ten Year War review: Obamacare, Trump and Biden’s battles yet to come.
The Guardian.

Harper, M. J., Moulton, B. R., Rosenthal, S., and Wasshausen, D. B. (2009). Integrated GDP-
Productivity Accounts. American Economic Review, 99(2):74–79.

Hartwig, J. (2011). Testing the Baumol-Nordhaus model with EU KLEMS data. Review of Income
and Wealth, 57(3):471–489.
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Appendices

A Algorithms

All code for the thesis is written using Python 3.

A.1 Algorithm for Real Value Added

Algorithm 1: level of real value-added
Result: list of level real value-added values over 1963-2016 for industry i

Create an empty list listi for industry i, and store 100 as the first element.
for t = 2009, .., 1963 do

y = y ∗ e−gVi,t+1

append y to listi

end
Reverse list, so the first value is the real value-added growth in 1963
for t = 2010, .., 2016 do

y = y ∗ e−gVi,t

append y to listi

end
Return listi containing lVi, t for t ∈ {1963, ..., 2016}
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A.2 Algorithm for level of IT and Software investment

Algorithm 2: level of IT and Software investment
Result: list of lITK values over 1963-2016 for industry i

Create an empty list listi for industry i, and store 100 as the first element.
for t = 2009, .., 1963 do

y = y ∗ e−gKi,t+1

append y to listi

end
Reverse list, so the first value is the real value-added growth in 1963
for t = 2010, .., 2016 do

y = y ∗ e−gKi,t

append y to listi

end
Return listi containing lITKi, t for t ∈ {1963, ..., 2016}
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B Full table of RTI crosswalk

Due to the size of the table, it is broken up into two parts

Table 13: Crosswalk match for ’Computer scientists and system analysts’ from Census 2000 to SOC 2010.

Census 2000 Census 2000 Title Census 2002 Census 2002 Title SOC 2000 code

100 Computer scientists and system analysts 1000 Computer scientists and system analysts 15-101
100 Computer scientists and system analysts 1000 Computer scientists and system analysts 15-105
100 Computer scientists and system analysts 1000 Computer scientists and system analysts 15-105
100 Computer scientists and system analysts 1000 Computer scientists and system analysts 15-109

SOC 2000 code SOC 2000 title SOC 2010 code SOC 2010 title RTI

15-101 Computer and Information Scientists, Research 15-1111 Computer and Information Research Scientists -0.95
15-105 Computer Systems Analysts 15-1121 Computer Systems Analysts -0.95
15-105 Computer Systems Analysts 15-1143 Computer Network Architects -0.95
15-109 Computer Specialists, All Other 15-1199 Computer Occupations, All Other -0.95
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C Aggregation of industry for technology metrics

Table 14: Aggregation of the SML and RTI industry scores. To make sure the table fit on the page, the
column names were shortenend. ’Ind.’ is the industry number according to the BEA file. NAICS is the
NAICS 2007 code. SML% and RTI % is the total conversion rate of occupations to industries. Finally

SMLi and RTIi are the respective technology potential metrics for a given industry.

Ind. Industry Description NAICS SML% SMLi RTI % RTIi

1 Farms 111, 112 99.7 3.441 99.7 -0.12

2
Forestry, fishing, and related
activities

113, 114, 115 96.833 3.397 96.833 0.222

3 Oil and gas extraction 211 98.0 3.463 98.0 0.946
4 Mining, except oil and gas 212 98.5 3.434 98.5 0.821
5 Support activities for mining 213 98.2 3.42 98.2 0.745
6 Utilities 22 98.3 3.487 98.3 0.845
7 Construction 23 97.4 3.441 97.4 0.669
8 Wood products 321 99.3 3.444 99.3 1.44
9 Nonmetallic mineral products 327 98.1 3.448 98.1 1.182
10 Primary metals 331 99.7 3.474 99.7 1.451
11 Fabricated metal products 332 98.7 3.493 98.7 1.644
12 Machinery 333 98.4 3.497 98.4 1.6

13
Computer and electronic
products

334 98.3 3.505 98.3 0.957

14
Electrical equipment,
appliances, and components

335 98.2 3.483 98.2 1.693

15
Motor vehicles, bodies and
trailers, and parts

3361, 3362,
3363

96.733 3.469 96.733 1.914

16 Other transportation equipment
3364, 3365,
3366, 3369

92.8 3.485 92.8 1.296

17 Furniture and related products 337 98.9 3.463 98.9 1.482
18 Miscellaneous manufacturing 339 98.5 3.497 98.5 1.576

19
Food and beverage and tobacco
products

311, 312 98.25 3.453 98.25 1.871

20
Textile mills and textile product
mills

313, 314 93.3 3.515 93.3 2.011

21
Apparel and leather and allied
products

315, 316 84.05 3.519 84.05 1.725

22 Paper products 322 98.4 3.459 98.4 1.455

23
Printing and related support
activities

323 98.8 3.513 98.8 1.829

24 Petroleum and coal products 324 98.0 3.452 98.0 0.93
25 Chemical products 325 98.0 3.475 98.0 1.259
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26 Plastics and rubber products 326 98.7 3.453 98.7 1.631
27 Wholesale trade 42 93.9 3.507 93.9 1.309
28 Retail trade 44, 45 97.8 3.525 97.8 2.017
29 Air transportation 481 93.1 3.492 93.1 0.19
30 Rail transportation 482 96.0 3.43 96.0 -0.229
31 Water transportation 483 89.3 3.458 89.3 -0.084
32 Truck transportation 484 98.6 3.431 98.6 0.3

33
Transit and ground passenger
transportation

485 98.7 3.464 98.7 -0.136

34 Pipeline transportation 486 94.2 3.441 94.2 0.769

35
Other transportation and
support activities

487, 488, 492 96.467 3.464 96.467 0.828

36 Warehousing and storage 493 98.7 3.396 98.7 1.331

37
Publishing industries, except
internet (includes software)

511, 516 98.8 3.536 98.8 0.967

38
Motion picture and sound
recording industries

512 96.8 3.515 96.8 1.034

39
Broadcasting and
telecommunications

515, 517 98.2 3.509 98.2 1.232

40
Data processing, internet
publishing, and other
information services

518, 519 98.2 3.538 98.2 0.792

41
Federal Reserve banks, credit
intermediation, and related
activities

521, 522 95.4 3.534 95.4 1.997

42
Securities, commodity contracts,
and investments

523 99.1 3.531 99.1 2.345

43
Insurance carriers and related
activities

524 98.1 3.549 98.1 2.363

44
Funds, trusts, and other
financial vehicles

525 86.9 3.541 86.9 2.218

45 Real estate 531 98.0 3.527 98.0 1.552

46
Rental and leasing services and
lessors of intangible assets

532, 533 95.4 3.526 95.4 1.209

47 Legal services 5411 99.1 3.531 99.1 3.859

48
Computer systems design and
related services

5415 98.4 3.518 98.4 -0.003

49
Miscellaneous professional,
scientific, and technical services

5412-5414,
5416-5419

97.714 3.518 97.714 1.436

50
Management of companies and
enterprises

55 96.8 3.526 96.8 1.311
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51
Administrative and support
services

561 93.5 3.477 93.5 1.472

52
Waste management and
remediation services

562 97.7 3.471 97.7 1.056

53 Educational services 61 97.1 3.486 97.1 0.088
54 Ambulatory health care services 621 99.1 3.475 99.1 1.214

55
Hospitals and Nursing and
residential care

622, 623 98.05 3.45 98.05 0.607

56 Social assistance 624 98.2 3.466 98.2 0.216

57
Performing arts, spectator
sports, museums, and related
activities

711, 712 97.35 3.508 97.35 0.828

58
Amusements, gambling, and
recreation industries

713 96.5 3.492 96.5 0.351

59 Accommodation 721 98.5 3.468 98.5 0.969

60
Food services and drinking
places

722 99.3 3.447 99.3 1.313

61
Other services, except
government

81 96.8 3.475 96.8 1.441
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D Tertiarization

Figure 16: Change of nominal output shares of the US economy for eight super sectors between
1947-2016. Data from Eldridge et al. (2020).
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E Stagnant and Progressive industries over period 1963-2016

The following table shows the annualised growth rates for the period 1963-2016, the RTI and SML.
If growth is above the average (1.78%) the colour is blue, and we claim this is a high growth in-
dustry (progressive). Otherwise it is orange. Also, RTI and SML are coloured. When the value for
a given industry is above the average of all industries, the colour is blue. Otherwise (when lower)
it is orange. The RTI and SML average are 1.12 and 3.48, respectively. Finally the share change is
over the period 1963-2016, and is red for negative values and green for positive values.
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Figure 17: Annualised labour productivity growth rates for 61 industries over 1963-2016 period.
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F Robustness Short for Fixed Shares Growth Rate Analysis

Figure 18: Fixed Shares Growth Rate Analysis for ’short’ periodization.

Table 15: Fixed Shares Growth Rate Analysis for ’short’ periodization

1973-1979 1979-1989 1989-2001 2001-2007 2007-2016 1973-2016

1973 1.01 1.89 2.33 2.55 1.14 1.82
1979 0.88 1.89 2.32 2.47 1.10 1.78
1989 1.04 1.70 2.25 2.49 1.02 1.73
2001 1.15 1.55 2.23 2.25 0.96 1.73
2007 0.96 1.58 2.19 2.21 0.98 1.62
2016 1.05 1.44 2.09 2.26 0.97 1.58

Notes: This is an robustness check for the results of the FSGR analysis, according to the methodology of test 6

of Nordhaus (2008). Values are reported in percentages. The periodization is roughly equal, with minimally 6 to

maximally 11 years. The annualised labour productivity growth rates over a period (column) for 61 industries are

multiplied by the weights (nominal output shares) of the industries for six fixed years. The last column is the

annualised growth rates over the whole period (43 years) multiplied with weights of six fixed years.
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