

Towards **Zero Carbon** Buildings

Reducing the embodied carbon footprint of a construction

1st July 2020

Rahul Grover | 4771818

Global CO₂ emissions by sector

Global CO₂ emissions by sector

Operational vs Embodied carbon emissions

Towards zero carbon buildings

Source: Bionova Ltd/One Click LCA, 2018

Problem Statement

With advancements in the building industry towards achieving net-zero energy goals, the operational carbon emissions from the building have reduced remarkably. However, in this process of development, the share of embodied carbon footprint has increased.

Introduction Research Question Research and Analysis Conclusions Guideline

WGBC

- By 2030, all new buildings must be net zero operational carbon and 40% reduction in embodied carbon of all construction.
- By 2050, all buildings, including existing buildings must be net zero operational carbon and all construction must be

zero embodied carbon.

Klimaatakkoord by the Netherlands Government

- By 2030, reduce the carbon emissions by 49% as compared to 1990 in the Netherlands
- By 2050, reduce carbon emissions by 95% as compared to 1990 in the Netherlands

TU Delft

• By 2030, carbon neutral campus including scope 1 and scope 2 emissions.

Towards zero carbon buildings

Source: World Green Building Council, 2019

Energy to extract and procure raw materials

Energy used in primary production processes

Research Question Research and Analysis Conclusions Guidelines

Introduction

so how can we lower the

Embodied Carbon?

so how can we lower the

Embodied Carbon?

- Using less materials
- Buying local materials
- Using renewable energy

so how can we lower the **Embodied Carbon?**

- Using less materials
- Buying local materials
- Using renewable energy

Using carbon sequestering materials

Carbon Sequestration

Bio-Based Materials

Carbon Capture and Utilization

Artificial Sequestration

Wood

Bamboo

Hempcrete

Carbon curing

Low cement concrete

Carbon storing aggregates

Introduction Research Question Research and Analysis Conclusions Guidelines

Concrete change: Making cement carbon-negative

By Jeffrey Rissman

December 6, 2018

Cement is one of the world's most-used building materials, with production reaching 4.3 billion tons/year in 2014 and growing 5 percent to 6 percent annually. Today, it is responsible for 5.6 percent of global carbon dioxide (CO2) emissions and a major contributor to climate change — if the cement industry were a country, it would be the world's third-largest emitter. To stay below 2 degrees Celsius of global warming, cement's carbon intensity must be reduced to near-zero as soon as technically feasible.

Fortunately, the right policies and technologies can make cement manufacturing a net climate benefit. During its lifetime and after demolition, cement naturally captures a significant fraction of the CO2 emitted during its manufacture. When this effect is combined with carbon capture and storage (CCS), energy efficiency technologies and biofuels or

CarbiCrete

GLOBAL CLEANTECH

ABOUTUS TECHNOLOGY NEWS CONTACT FRANÇAIS

Game-changing technology

arbicrete's technology enables the production of high-quality concrete using

Using a process called carbonation activation, we eliminate the need for cement in concrete by replacing it in the mix with ground steet slag, a by-product of steetmaking. The concrete mix is poured into molds just like conventional concrete and is then cured using CO2.

During curing, the gas becomes a solid, binding together the slag granules, and giving the concrete its strength.

The process can be implemented in any precast concrete manufacturing plan

Lower your carbon footprint through carbonnegative concrete

Carbicreté's process avoids the GHG emissions associated with cement production about 2kg of CO2 per standard-size concrete block) and then injects CO2 (kg per block) into its products. Because more CO2 is consumed than emitted during the process, it is carbon-negative, allowing users of the technology to lower their carbon footbrint. Services Markets Innovation Sustainability News Careers

Steel for a sustainable future

Steel is the most commonly used metal in the world. It is intrinsic to our way of life now, to the products society will demand in future, and to achieving a circular economy. Steel maximises the value of resources more than any other material, through its recovery and reuse, manufacturing and recycling.

Carbon-neutral steelmaking for a sustainable future

The steel industry today is responsible for a significant contribution to carbon dioxide emissions. As a primary steelmaker, we bring together iron ore and coal in blast furnaces to create iron, which is then refined to create thousands of different grades of steel. This process also produces carbon dioxide. There are limits to how much the blast furnace

parameters effecting Embodied Carbon?

parameters effecting Embodied Carbon?

parameters effecting Embodied Carbon?

Introduction Research Question Research and Analysis Conclusions Guidelines

parameters effecting Embodied Carbon?

Net impact?

Research Question

What alternate materials and strategies can be used in building design to reduce its embodied carbon footprint and meet zero-carbon goals?

<u>Methodology</u>

what Materials?

What alternate materials and strategies can be used in building design to reduce its

embodied carbon footprint and meet zero-carbon goals?

Assessment method?

Analysis Results?

Life cycle assessment method

Life Cycle Assessment (LCA) is a method to assess the environmental impact of a product or a service. It uses the Life Cycle Inventories (LCI) of smaller units to calculate the impact on a specific indicator.

Conduct a Whole building life cycle assessment

Assess a product or a process

Compare two or more products or processes

Achieve green labels such as EPD (Environmental Product Declaration)

Life cycle assessment method

Production Stage (A)						Use Stage (B)							End-of-Life Stage (C)				Benefits and loads beyond the system boundary (D)		
	Kaw material supply	Transport	Manufacturing	Transport to building site	Installation into building	Use/application	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling
	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D	D	D
	Х		Х	Х	X					Module not relevant		X				X			

Shortcomings of existing assessment method

Material quantities are often not considered

Shortcomings of existing assessment method

Material quantities are often not considered

Shortcomings of existing assessment method

- Material quantities are often not considered
- Module B (repair/replacement) and C-D (end-of-life) not accounted

Shortcomings of existing assessment method

- Material quantities are often not considered
- Module B (repair/replacement) and C-D (end-of-life) not accounted

Shortcomings of existing assessment method

- Material quantities are often not considered
- Module B (repair/replacement) and C-D (end-of-life) not accounted
- Carbon sequestration not accounted (e.g. concrete carbonation)

C3-C4 & D
End of life and benefits

Shortcomings of existing assessment method

- Material quantities are often not considered
- Module B (repair/replacement) and C-D (end-of-life) not accounted
- Carbon sequestration not accounted (e.g. concrete carbonation)

Proposed assessment method

Proposed assessment method- scenario names

Proposed assessment method- scenario names

Analysis

Building components

Carbon footprint of structure

All possible combinations for 120 years building

Carbon footprint of structure

All possible combinations for 60 years building

Introduction Research Question Research and Analysis Conclusions Guideline

Interpretations

• Impact of life span of buildings and materials on embodied carbon

Interpretations

• Impact of life span of buildings and materials on embodied carbon

Introduction Research Question Research and Analysis Conclusions Guideline

Interpretations

- Impact of life span of buildings and materials on embodied carbon
- Impact of **end of life** on embodied carbon

Introduction Research Question Research and Analysis Conclusions Guideline

Interpretation

- Impact of life span of buildings and materials on embodied carbor
- Impact of **end of life** on embodied carbon
- Hypothesis check for artificial carbon sequestering materials

What does that mean for Echo building?

Introduction Research Question Research and Analysis Conclusions Guideline

Details

Materials used and construction detail

Proposed Design

Results

Carbon emissions from existing design

Results

Carbon emissions from proposed design

Results: summary for Echo Building

• What? Bio-based materials can serve as suitable alternatives

• How much? Almost 1900MtCO₂eq. or 120% reduction in carbon emissions

Offset period? Carbon offset time reduces by almost 30 years.

• 120 years/ 60 years? 120 years scenario has lower carbon footprint than 60 years (circular building)

For architects, engineers and project managers

Introduction Research Question Research and Analysis Conclusions Guidelines

Design Guidelines

For architects, engineers and project managers

Aid early design stage to achieve feasible and low carbon building

Provides **estimation** to compare with benchmarks and green labels

For architects, engineers and project managers

Introduction Research Question Research and Analysis Conclusions Guidelines

Design Guidelines

For architects, engineers and project managers

Defining the type of construction

Checking structural and economic feasibility of material solutions

For architects, engineers and project managers

For architects, engineers and project managers

For architects, engineers and project managers

For architects, engineers and project managers

$$GWP_{1 \text{ year}} = \frac{GWP_{A1-A3} - E.R.P.}{S.L.}$$

Introduction Research Question Research and Analysis Conclusions Guidelines

Design Guidelines

For architects, engineers and project managers

Introduction Research Question Research and Analysis Conclusions Guidelines

Relevance and Application

• Echo building and future projects- TU Delft Carbon Roadmap and CRE (Campus and Real Estate) department

Relevance and Application

- Echo building and future projects- TU Delft Carbon Roadmap and CRE (Campus and Real Estate) department
- Stepping stone in advancement of LCA- Integration of circularity in LCA

Introduction Research Question Research and Analysis Conclusions Guidelines

Relevance and Application

- Echo building and future projects- TU Delft Carbon Roadmap and CRE (Campus and Real Estate) department
- Stepping stone in advancement of LCA- Integration of circularity in LCA
- Highlighting the importance of bio-based materials in mitigating climate change

Introduction Research Question Research and Analysis Conclusions Guidelines

Relevance and Application

- Echo building and future projects- TU Delft Carbon Roadmap and CRE (Campus and Real Estate) department
- Stepping stone in advancement of LCA- Integration of circularity in LCA
- Highlighting the importance of bio-based materials in mitigating climate change
- Highlighting the role of policymakers, stakeholders and academia

Using carbon might (must) soon become equivalent to using money and we'll have start making critical choices while spending it

Let's start acting on it!

Thank you! Questions?

Artificial carbon sequestration

Method 1: Capturing CO2 from industries and curing concrete with it

Artificial carbon sequestration

Method 1: Capturing CO2 from industries and curing concrete with it

Method 2: Using steel slag in place of cement

Artificial carbon sequestration

Findings Column- Concrete (with carbonation)

KG C02

-100000									
100000	120_I	120_RC	120_L	60_RU_I	60_RU_RC	60_RU_L	60_RC_I	60_RC_RC	60_RC_L
■ Second Life External Impacts (D') *can't take this into account					-2450			-2450	
Second Life End of Life (C1'-C4')					4167	3605		4167	3605
■ Second Life Maintenance and replacement (B1'-B5')					-4097	-4097		-4097	-4097
■ Second Life Transportation (A4')					2629	2629		2629	2629
■ Second Life Primary Production (A1'-A3')								65062	65062
■ First Life External Impacts (D) *A5 not included		-2450						-2450	-2450
■ First Life End of Life (C1-C4) *A5 not included		4167	3605		3969	3969		4167	4167
First Life Maintenance and replacement (B1-B5) *A5 not included		-8194	-8194		-4097	-4097		-4097	-4097
■ First Life Transportation (A4) *A5 not included		2629	2629		2629	2629		2629	2629
■ First Life Primary Production (A1-A3)		65062	65062		65062	65062		65062	65062

KG C02

Column- Concrete with 20% SCM (with carbonation)

200000

-100000									
100000	120_I	120_RC	120_L	60_RU_I	60_RU_RC	60_RU_L	60_RC_I	60_RC_RC	60_RC_L
■ Second Life External Impacts (D') *can't take this into account					-2450			-2450	
Second Life End of Life (C1'-C4')					4167	3605		4167	3605
■ Second Life Maintenance and replacement (B1'-B5')					-1646	-1646		-1646	-1646
Second Life Transportation (A4')					2629	2629		2629	2629
■ Second Life Primary Production (A1'-A3')								47100	47100
■ First Life External Impacts (D) *A5 not included		-2450						-2450	-2450
■ First Life End of Life (C1-C4) *A5 not included		4167	3605		3969	3969		4167	4167
■ First Life Maintenance and replacement (B1-B5) *A5 not included		-3292	-3292		-1646	-1646		-1646	-1646
■ First Life Transportation (A4) *A5 not included		2629	2629		2629	2629		2629	2629
■ First Life Primary Production (A1-A3)		47100	47100		47100	47100		47100	47100

Column- Wood (excluding sequestered carbon)

600000									
-600000	120_I	120_RC	120_L	60_RU_I	60_RU_RC	60_RU_L	60_RC_I	60_RC_RC	60_RC_L
■ Second Life External Impacts (D') *can't take this into account				-107698	0	-20627	-107698	0	-20627
Second Life End of Life (C1'-C4')				8736	4257	31684	8736	4257	31684
■ Second Life Maintenance and replacement (B1'-B5')				0	0	0	0	0	0
Second Life Transportation (A4')				1098	1098	1098	1098	1098	1098
■ Second Life Primary Production (A1'-A3')							36091	36091	36091
■ First Life External Impacts (D) *A5 not included	-107698	-2193	-20627				-2193	-2193	-2193
■ First Life End of Life (C1-C4) *A5 not included	8736	4257	31684	2819	2819	2819	4257	4257	4257
■ First Life Maintenance and replacement (B1-B5) *A5 not included	0	0	0	0	0	0	0	0	0
■ First Life Transportation (A4) *A5 not included	1098	1098	1098	1098	1098	1098	1098	1098	1098
■ First Life Primary Production (A1-A3)	36091	36091	36091	36091	36091	36091	36091	36091	36091

KG C02

Column- Wood (including sequestered carbon)

-600000	120_I	120_RC	120_L	60_RU_I	60_RU_RC	60_RU_L	60_RC_I	60_RC_RC	60_RC_L
■ Second Life External Impacts (D') *can't take this into account				-107698	0	-20627	-107698	0	-20627
Second Life End of Life (C1'-C4')				220611	216132	243559	220611	216132	243559
■ Second Life Maintenance and replacement (B1'-B5')				0	0	0	0	0	0
Second Life Transportation (A4')				1098	1098	1098	1098	1098	1098
■ Second Life Primary Production (A1'-A3')							-175785	-175785	-175785
■ First Life External Impacts (D) *A5 not included	-107698	-2193	-20627				-2193	-2193	-2193
■ First Life End of Life (C1-C4) *A5 not included	220611	216132	243559	2819	2819	2819	216132	216132	216132
■ First Life Maintenance and replacement (B1-B5) *A5 not included	0	0	0	0	0	0	0	0	0
■ First Life Transportation (A4) *A5 not included	1098	1098	1098	1098	1098	1098	1098	1098	1098
■ First Life Primary Production (A1-A3)	-175785	-175785	-175785	-175785	-175785	-175785	-175785	-175785	-175785

All Columns-comparison

Concrete-1

30,50 to 50,50 plans 10,00 pla

Concrete-2 (20% SCM)

10 10 k 10 10 10 km 10 k

Concrete-3 (with recycled aggregate and SCM)

Original presumed choice

Steel 60_RC_RC

125,331

Wood 120_1

Wood 60_RU_I -57,857

Wood 60_RC_ -22,522

Concrete-3 120_L 30,142

Concrete-3 120_L 30,704

Kg CO₂

Findings Beam- Concrete (with carbonation)

KG C02

-200000									
200000	120_I	120_RC	120_L	60_RU_I	60_RU_RC	60_RU_L	60_RC_I	60_RC_RC	60_RC_L
■ Second Life External Impacts (D') *can't take this into account					-21907			-21907	
Second Life End of Life (C1'-C4')					37189	32172		37189	32172
■ Second Life Maintenance and replacement (B1'-B5')					-36550	-36550		-36550	-36550
Second Life Transportation (A4')					23444	23444		23444	23444
Second Life Primary Production (A1'-A3')								578830	578830
■ First Life External Impacts (D) *A5 not included		-21907						-21907	-21907
■ First Life End of Life (C1-C4) *A5 not included		37189	32172		35422	35422		37189	37189
First Life Maintenance and replacement (B1-B5) *A5 not included		-73100	-73100		-36550	-36550		-36550	-36550
■ First Life Transportation (A4) *A5 not included		23444	23444		23444	23444		23444	23444
■ First Life Primary Production (A1-A3)		578830	578830		578830	578830		578830	578830

Findings 1400000 Beam- Concrete with recycled aggregate and SCM 1200000 1000000 800000 KG CO2 600000 593654 400000 350657 - 345640 291791 - 286774 200000 -200000 120 I 120_RC 120_L 60_RU_I 60_RU_RC 60_RU_L 60_RC_I 60_RC_RC 60_RC_L ■ Second Life External Impacts (D') *can't take this into account Second Life End of Life (C1'-C4') 32172 37189 32172 37189 ■ Second Life Maintenance and replacement (B1'-B5') -5036 -5036 -5036 -5036 ■ Second Life Transportation (A4') 23444 23444 23444 23444 ■ Second Life Primary Production (A1'-A3') 241230 241230 ■ First Life External Impacts (D) *A5 not included ■ First Life End of Life (C1-C4) *A5 not included 37189 32172 35422 35422 37189 37189 ■ First Life Maintenance and replacement (B1-B5) *A5 not -10072 -10072 -5036 -5036 -5036 -5036 included ■ First Life Transportation (A4) *A5 not included 23444 23444 23444 23444 23444 23444 ■ First Life Primary Production (A1-A3) 241230 241230 241230 241230 241230 241230

KG CO2

Beam- Wood (excluding sequestered carbon)

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ Second Life Primary Production (A1'-A3')

First Life Primary Production (A1-A3)

■ First Life End of Life (C1-C4) *A5 not included

included

17649

17649

17649

17649

17649

17649

17649

17649

17649

Beam- Wood (including sequestered carbon)

90000									
-800000	120_I	120_RC	120_L	60_RU_I	60_RU_RC	60_RU_L	60_RC_I	60_RC_RC	60_RC_L
■ Second Life External Impacts (D') *can't take this into account				-137529	0	-26340	-137529	0	-20627
Second Life End of Life (C1'-C4')				281718	224348	311022	281718	224348	311022
■ Second Life Maintenance and replacement (B1'-B5')				0	0	0	0	0	0
Second Life Transportation (A4')				1180	1180	1180	1180	1180	1180
■ Second Life Primary Production (A1'-A3')							-202131	-202131	-202131
■ First Life External Impacts (D) *A5 not included	-137529	-2801	-26340				-2801	-2801	-2801
■ First Life End of Life (C1-C4) *A5 not included	281718	224348	311022	3026	3026	3026	224348	224348	224348
■ First Life Maintenance and replacement (B1-B5) *A5 not included	0	0	0	0	0	0	0	0	0
■ First Life Transportation (A4) *A5 not included	1180	1180	1180	1180	1180	1180	1180	1180	1180
■ First Life Primary Production (A1-A3)	-202131	-202131	-202131	-202131	-202131	-202131	-202131	-202131	-202131

Findings
Beam- Steel

KG CO2

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ First Life Primary Production (A1-A3)

All Beams-comparison

Slab- Concrete (with carbonation)

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ First Life Primary Production (A1-A3)

KG CO2

Slab- Wood (including sequestered carbon)

2000000

391976

-2000000									
2000000	120_I	120_RC	120_L	60_RU_I	60_RU_RC	60_RU_L	60_RC_I	60_RC_RC	60_RC_L
■ Second Life External Impacts (D') *can't take this into account				-401932	0	-76980	-401932	0	-20627
Second Life End of Life (C1'-C4')				823327	771719	908969	823327	771719	908969
Second Life Maintenance and replacement (B1'-B5')				0	0	0	0	0	0
Second Life Transportation (A4')				2710	2710	2710	2710	2710	2710
Second Life Primary Production (A1'-A3')							-632660	-632660	-632660
■ First Life External Impacts (D) *A5 not included	-401932	-8185	-76980				-8185	-8185	-8185
■ First Life End of Life (C1-C4) *A5 not included	823327	771719	908969	8748	8748	8748	771719	771719	771719
■ First Life Maintenance and replacement (B1-B5) *A5 not included	0	0	0	0	0	0	0	0	0
■ First Life Transportation (A4) *A5 not included	2710	2710	2710	2710	2710	2710	2710	2710	2710
First Life Primary Production (A1-A3)	-632660	-632660	-632660	-632660	-632660	-632660	-632660	-632660	-632660

All Slabs-comparison

Concrete-2 (20% SCM)

Original presumed choice

Hollow core concrete 60_RC_RC

609,584

Wood 120_I -208,555

Wood 60_RU_I -197,097

Wood 60_RC_I -74,971

120_RC 133,584

Wood

Wood 60_RU_RC 153,226

Kg CO₂

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ Second Life Primary Production (A1'-A3')

■ First Life Primary Production (A1-A3)

All Awnings- comparison

Original presumed choice

Aluminium 60_RC_RC

161,492

Bamboo 120_I 14,906

>

Wood 120_I 23,419

>

Wood 120_RC 55,042

>

Wood 120_L 55,206

1st

>

Bamboo 120_RC

120 L

63,186

Kg CO₂

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ Second Life Primary Production (A1'-A3')

■ First Life Primary Production (A1-A3)

Findings Insulation- Hempcrete

KG C02

-1000			
	120_RC	60_RU_RC	60_RC_RC
■ Second Life External Impacts (D') *can't take this into account		0	0
Second Life End of Life (C1'-C4')		479	479
■ Second Life Maintenance and replacement (B1'-B5')		-247	-247
■ Second Life Transportation (A4')		6.2	6.2
■ Second Life Primary Production (A1'-A3')			608
■ First Life External Impacts (D) *A5 not included	0	0	0
■ First Life End of Life (C1-C4) *A5 not included	479	53	479
■ First Life Maintenance and replacement (B1-B5) *A5 not included	-495	-247	-247
■ First Life Transportation (A4) *A5 not included	6.2	6.2	6.2
■ First Life Primary Production (A1-A3)	608	608	608

-10000						
10000	120_I	120_RC	60_RU_I	60_RU_RC	60_RC_I	60_RC_RC
■ Second Life External Impacts (D') *can't take this into account			-4143	0	-4143	0
Second Life End of Life (C1'-C4')			7957	1711	7957	1711
■ Second Life Maintenance and replacement (B1'-B5')						
Second Life Transportation (A4')			2.7	2.7	2.7	2.7
■ Second Life Primary Production (A1'-A3')					7270	7270
■ First Life External Impacts (D) *A5 not included	-4143	0				
■ First Life End of Life (C1-C4) *A5 not included	7957	1711	0	0	1711	1711
■ First Life Maintenance and replacement (B1-B5) *A5 not included						
■ First Life Transportation (A4) *A5 not included	2.7	2.7	2.7	2.7	2.7	2.7
First Life Primary Production (A1-A3)	7270	7270	7270	7270	7270	7270

-15000						
15000	120_I	120_RC	60_RU_I	60_RU_RC	60_RC_I	60_RC_RC
■ Second Life External Impacts (D') *can't take this into account			-2044	-1361	-2044	-1361
Second Life End of Life (C1'-C4')			5328	5328	5328	5328
■ Second Life Maintenance and replacement (B1'-B5')						
■ Second Life Transportation (A4')			43.3	43.3	43.3	43.3
■ Second Life Primary Production (A1'-A3')					-3819	-3819
■ First Life External Impacts (D) *A5 not included	-2044	-1361			-1361	-1361
■ First Life End of Life (C1-C4) *A5 not included	5328	5328			5328	5328
■ First Life Maintenance and replacement (B1-B5) *A5 not included						
■ First Life Transportation (A4) *A5 not included	43.3	43.3	43.3	43.3	43.3	43.3
■ First Life Primary Production (A1-A3)	-3819	-3819	-3819	-3819	-3819	-3819

-6000						
0000	120_I	120_RC	60_RU_I	60_RU_RC	60_RC_I	60_RC_RC
■ Second Life External Impacts (D') *can't take this into account			-449	-241	-449	-241
Second Life End of Life (C1'-C4')			2594	2594	2594	2594
■ Second Life Maintenance and replacement (B1'-B5')						
■ Second Life Transportation (A4')			43.5	43.5	43.5	43.5
■ Second Life Primary Production (A1'-A3')					-2275	-2275
■ First Life External Impacts (D) *A5 not included	-449	-241				
■ First Life End of Life (C1-C4) *A5 not included	2594	2594			2594	2594
■ First Life Maintenance and replacement (B1-B5) *A5 not included						
■ First Life Transportation (A4) *A5 not included	43.5	43.5	43.5	43.5	43.5	43.5
■ First Life Primary Production (A1-A3)	-2275	-2275	-2275	-2275	-2275	-2275

All Insulations - comparison

Façade- Aluminium frames

KG CO2

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ First Life Primary Production (A1-A3)

Façade- Wood aluminium frames

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ First Life Primary Production (A1-A3)

KG CO2

Second Life End of Life (C1'-C4')

■ Second Life Transportation (A4')

■ Second Life Primary Production (A1'-A3')

■ First Life Primary Production (A1-A3)

All Façade- comparison

Original presumed choice

Aluminium 120_RC

186,436

Aluminium 120_RC 186,436 Wood-Alu
120_I
301.709

Wood-Alu
120_RC
309,511

Wood-Alu
120_L
316,929

PVC U 120_RC 342,318

Kg CO₂