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Abstract

Central configurations provide the only closed-form analytical solutions of the n-body problem. All possible
central configurations of three bodies have been extensively studied along with the stability of the associated
periodic orbits. Stable cases have been found for the Lagrangian triangle configuration, which we see oc-
curring with the Trojan asteroids. However, the knowledge about four-body central configurations remains
limited. An explicit parameterization of a family of kite shaped four-body central configurations has recently
been published. The present research investigates the stability of periodic solutions provided by these cen-
tral configurations. An analytical treatment of linear stability is carried out and the eigenvalues for circular
periodic orbits are calculated. This is complemented with a numerical estimation of Floquet multipliers to
determine the linear stability of eccentric periodic orbits. While most of the kite configurations are found
to be unstable, regions of linearly stable cases are discovered for both circular and eccentric orbits. Further,
numerical simulations of the non-linear system are performed as an independent approach to validate the
linear stability results. Perfect agreement with the linear analysis is found, suggesting that stable kites may be
observed in the universe.
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1
Introduction

1.1. Background
The n-body problem is a classic problem of mathematics and physics, where the aim is to predict the motion
of n point-masses, which attract each other by Newton’s law of gravitation; all other forces are ignored. It is
the basis for the entire discipline of celestial mechanics. Newton’s second law together with Newton’s law of
gravitation results in a system of second-order ordinary differential equations

mi q̈i =
n∑

j 6=i

Gmi m j
(
q j −qi

)∥∥q j −qi
∥∥3 , i = 1, . . . ,n, (1.1)

where mi are the masses, qi ∈ R3 are the position vectors of objects i and G is the universal gravitational
constant. Solving the n-body problem amounts to solving the initial-value problem: for given initial position
and velocity vectors qi (0), q̇i (0) find the vector function q(t ) which provides the positions of the bodies in
terms of the time t .

The problem dates back to Newton’s Philosophiæ Naturalis Principia Mathematica [22] and has been
tackled by a great many minds since then. Finding a general solution was of great importance, because that
would allow an exact prediction of the evolution of planetary systems like our own or, in fact, any system of
celestial objects. Newton started from the laws of Kepler and proceeded to prove that a body moving on an
ellipse, parabola or hyperbola according to the second law of Kepler is attracted to the focus by the inverse
square law [31]. Proving that two-body motion follows conic sections starting from the force law Eq. (1.1) back
then was called the "inverse problem" [31]. The two-body "inverse problem" (complete solution of Eq. (1.1)
for n = 2) was solved by Johann Bernoulli in 1710 [4, 6]. It took two centuries before an exact series solution
was obtained for three bodies in 1912 by Karl Sundman and then another eight decades until Quidong Wang
in 1991 provided a convergent power-series solution for the full n-body problem (excluding only collisions)
[6, 25]. The series solutions of Sundman and Wang, even though convergent and exact, are impractical for
actual calculations, "because the speed of convergence of the resulting solution is terribly slow. One has to
sum, for example, an incredible number of terms, even for an approximate solution of first order in q, p, t ."
[25]. Hence, it seems that for three or more bodies we have to rely mostly on numerical methods or some
special cases which allow a tractable analytical treatment.

A class of such special cases is called central configurations. These are characterized by the property that
the resultant force on each body is directed to the center of mass of the configuration and directly propor-
tional to the body’s distance from it. Such configurations allow so-called homographic or self-similar solu-
tions, where the bodies remain in the same geometry for all time as they move on conic sections about the
center of mass [20]. For example, any arrangement of two bodies is a trivial central configuration, as in these
cases the two bodies remain on a straight line as they move along conic sections. The first non-trivial central
configurations were found by Euler in 1767 and consist of three bodies positioned on a straight line [7, 20].
Euler found that for any ordering of arbitrary three masses there exists a unique equivalence class of central
collinear configurations (they may be scaled and rotated, but the ratios of the distances are unique). In fact,
Moulton showed in 1910 that the same holds for any number of point-masses positioned on a line [20, 21].

The only other possible central configuration of three bodies was found by Lagrange in 1772 [13, 20].
It is the equilateral triangle configuration and holds for any masses. The bodies remain on the vertices of

3
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Figure 1.1: Convex and concave kite central configurations.

an equilateral triangle for all time, given correct initial velocities that set their orbits on appropriate conic
sections.

Considering four-body central configurations, many more possibilities exist. Some well-known cases are
the trapezoidal configurations [38], the square central configuration [16] and the equilateral triangle with a
body in the middle [15]. The last two fall into a family of kite central configurations, where two bodies with
equal mass are positioned symmetrically with respect to the axis on which the other two bodies lie. Such
shapes are known as kite geometries and can be of two types: convex and concave. The convex kite contains
no body in the interior of the triangle formed by the other three, such as the square, while in the concave case
one body lies inside the triangle formed by the other three, such as the equilateral triangle configuration with
one body in the center. The two types of kite central configurations are illustrated in Fig. 1.1.

The family of kite central configurations was given an elegant treatment recently in [40], where a descrip-
tion of all possible cases is given and explicit algebraic expressions for the masses which make the configura-
tions central are derived in terms of the angles of the geometry. Further, in [34] the possibility of binary star
systems occuring as any of the cases discussed in [40] is assessed and the mass-geometry relations are further
simplified.

An essential question about such configurations is the question of their stability. For instance, all collinear
configurations are known to be unstable, while the Lagrangian triangle configurations are linearly stable only
for a dominant mass [20]. This work concerns the problem of stability of four-body kite central configura-
tions, pictured in Fig. 1.1.

1.2. Applications
The applications of such results may be numerous. First of all, there is significant interest in central configu-
rations and their properties from the pure mathematics perspective. The finiteness of the number of central
configurations for a choice of positive masses is one of the unsolved questions in the set of 18 mathematical
problems for the 21st century compiled by Stephen Smale [30], which shows significant interest in central
configurations topics from the mathematical community. Contributing to the body of knowledge regarding
this topic is an end in itself and hopefully the methods and results developed and generated here may be used
in future explorations of this interesting niche of mathematics.

Considering the physical relevance, there are several possible scenarios of different scales where astro-
nomical bodies could exist in a kite four-body central configuration. The research presented in this thesis, in
turn, will reveal which of these scenarios can actually exist long-term and which would be inherently unsta-
ble, giving insight into the possible occurence of such systems in the actual universe.

1.2.1. One massive object
A qualitative distinction may be made for the cases where one of the four masses is much larger than the other
three, as very often systems of celestial bodies exist in these kinds of hierarchical configurations. Then, one
possibility corresponding to this scenario is a star with three planets orbiting around it with equal periods.
Take, for instance, the mass m3 to be the star. Then, it is possible that planets m1 and m2 are situated in one
orbit, while planet m4 is orbiting further away, making a convex configuration. It is even possible that the
three planets m1, m2 and m4 are of (approximately) the same mass, which would correspond to a situation
where they all orbit the star m3 along the same orbit, following each other. Even though we know these
situations do not occur in the Solar System, if they are found to be stable, we could reasonably expect to find
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Figure 1.2: The possible kite central configurations for the mass constraints of binary star systems, as found in [34].

such configurations in exoplanetary systems.
Another scenario is the situation where the objects m1, m2 and m4 are much less massive, such as as-

teroids, pebbles, dust, etc. The massive object m3 can then either be a star or a planet. An example could
be ring particles orbiting a planet in a "lumpy ring" [20], which may even be found in the Solar System, for
instance, in the rings of Uranus or Neptune. This scenario corresponds to a limit case, where three masses
are negligible compared to the fourth one.

1.2.2. Two massive objects
Another possibility is that of two massive objects and two smaller ones. An important and exciting example
is that of a binary star system with two planets. The kite central configurations which such a system might
assume were specifically singled out in [34]. It is assumed in that article that each star is at least 10 times
more massive than any of the planets and that the stellar masses are within a factor of 10 of each other.
According to [34] virtually every known binary star system satisfies these criteria. Using the mass constraints
the plausible configuration space is heavily reduced and it is found that for the concave configurations, the
stars would necessarily have to take the positions of the equal mass bodies, positioned equidistantly from
the axis of symmetry, see Fig. 1.2. The reason cases 3 and 5 in Fig. 1.2 are impossible is because, in order
to have a concave kite central configuration, only the center body m4 can be 10 times more massive than
the symmetric bodies m1 and m2 . Body m3 is only allowed to be slightly more massive than the symmetric
bodies, as can be seen in Figs. 2.6 and 2.8.

There is no lower limit imposed on the masses in [34], so these results apply just as well to two clusters of
asteroids or dust near two planets or stars, such as the Trojan and Greek asteroids, situated at the vertices of
Lagrangian equilateral triangles with Jupiter and Sun at the other two vertices.
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1.2.3. Three or four massive objects
Multiple (three or more) star systems are a well-known phenomenon, in fact, "nearly half of all stars reside
in multiple star systems" [24] and "approximately two thirds of the stars in our Galaxy exist as part of multi-
stellar systems. <...> The number of quadruple stellar systems in the Galaxy is estimated to be of the order of
thousands of millions." [2]. Given the extremely big number of such systems, it seems plausible that some of
them might be arranged in a kite central configuration, either with three stars and one planet or a complete
four-star kite configuration. This study will reveal whether such systems can be long-term stable and, if so,
can help predict the masses or geometries of observed multiple star systems and/or help anticipate a planet
in a kite configuration with the stars.

1.3. Research aim
Having introduced the context and relevance of the problem, we now explicitly define the goals of the present
research project. To this end, we state a research objective and a research question with sub-questions.

The objective is the main reason for executing this work and the success of our efforts will depend on the
extent that this objective is achieved.

Research objective. Contribute to the body of knowledge of celestial mechanics through a stability assessment
of the four-body kite central configuration family.

To guide our efforts towards this goal, we have the main research question.

Research question. What are the stability properties of kite central configurations of four bodies?

The pursuit of an answer to this research question is motivated, for instance, by the following statement
in [10]: "Whether the new four-body central configurations are stable is an interesting, unexplored question
and is an inviting direction for future research", where the configurations being referred to are the kite CCs.
This specific research gap is also referred to in [34]: "A proper stability analysis of planar four-body central
configurations with two equal masses and an axis of symmetry connecting the unequal masses has not yet
been carried out, and could represent a significant undertaking."

To give additional structure to our investigation we distinguish three research sub-questions, answering
each of which will constitute a part of the solution to the main question and move us closer towards the
research objective.

Sub-question 1. Are the homographic solutions provided by the kite central configurations linearly stable?

This sub-question is addressed in Part I. An attempt is made to take this treatment as far as possible using
exact, analytical methods and only utilize the help of numerical techniques where an exact solution is no
longer feasible.

Sub-question 2. Do the homographic solutions provided by kite central configurations possess non-linear sta-
bility?

An investigation into this sub-question is presented in Part II. We turn to a purely numerical approach for
this question.

Sub-question 3. Can kite central configurations occur in real astronomical systems?

The answer to this sub-question is inferred from the two previous answers in Part III.

1.4. Structure
We now present an overview of the organization of the rest of this report. In the following chapter (Chapter 2),
a description and parameterization of kite central configurations and their types are given. Moving on, in
Chapter 3 we start the mathematical treatment of the dynamics: state variables are introduced and a series of
coordinate transformations are performed to reduce the dimensions of the system of differential equations.

The question of linear stability is treated in Part I. First for the convex type of kite CCs in Chapter 4, then
for the first concave kind in Chapter 5 and, finally, for kite CCs of the second concave kind in Chapter 6. The
entire procedure to determine linear stability is developed and explained in Chapter 4, whereas Chapters 5
and 6 contain solely the application of said procedure to the concave cases.
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Having dealt with the linear stability, Part II contains a numerical investigation into non-linear stability of
the kite periodic solutions. We again divide the treatment into three parts, corresponding to each type of kite
CC. Section 8.3 deals with the convex cases, while Sections 8.4 and 8.5 contain the non-linear stability results
for the first and second concave cases, respectively.

Finally, in Part III we summarize, draw conclusions, assess the extent to which the objective has been
achieved as well as give recommendations for future work.





2
Kite central configurations

In this chapter the kite central configurations are illustrated and the relationship between the geometry and
the point masses is demonstrated. The description of the kite central configurations in [40] divides them into
three categories: the convex case, first concave case and second concave case.

2.1. Convex configurations
The convex kite configurations are described by two angles α and β, as shown in Fig. 2.1, with [40]

α= 30°+2κ

β= 30°+λκ
where

0 ≤ κ≤ 15°

−1 ≤λ≤ 2
(2.1)

describing the domain shown in Fig. 2.2. The angle α is allowed to take on values from 30° to 60°, while β (≤α

because mirror images of the configurations are considered equivalent) can take on a range of values that is
increasing with α (increasing κ), the widest range being 15° ≤ β≤ 60° at α= 60° (κ= 15°). At this edge of the
domain m4 is infinitesimal, while the other three bodies sit on the vertices of an equilateral triangle.

Looking now at the leftmost edge of the green area in Fig. 2.2, we see that on this line m3 = m4, which
represents the situation with two pairs of equal masses in a rhombus geometry. Going downwards, we reach
the point ’S’, which is a singularity where all mass is in bodies 3 and 4 (bodies on the symmetry axis) and
infinitesimal masses 1 and 2 are situated at the triangular Lagrange points. Finally, the rightmost edge of the
domain represents the limit case where β is minimal, all mass is in m3, and the three infinitesimal masses
are situated on a circle centered on m3. This is the convex coorbital case, such as the "lumpy ring" situation
mentioned in Section 1.2.1.

Using the mass relationships derived by [34] we obtain a range of convex kite central configurations as
shown in Fig. 2.3. One can notice that increasing α tends to make the symmetric bodies 1 and 2 more massive,

𝑚1

𝑚2

𝑚3𝑚4

𝛼𝛽

Figure 2.1: The parameterization of the convex kite configurations in [40].
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Figure 2.2: The region of possible convex kite central configurations parameterized in terms of α and β. 0 ≤µ3 ≤ 1 and 0 ≤µ4 ≤ 1 denote
normalized masses m3 and m4, respectively, 1 being the total mass of the four-body configuration. ’S’ denotes the singular case where
all mass is in bodies 3 and 4 and infinitesimal masses 1 and 2 are situated at vertices of equilateral triangles, i.e. the fourth and fifth
Lagrange points of masses 3 and 4. In this case bodies 3 and 4 can take on any masses as long as µ3 +µ4 = 1. Figure reproduced from
[40], with body indices adjusted to be consistent with the present work.

while increasing β has the effect of equalizing the masses of bodies 3 and 4.

2.2. Concave configurations
2.2.1. First concave case
In the concave cases, one of the bodies is inside the triangle defined by the other three. In the first concave
case this body (m4) is behind the center of mass of the configuration marked by x in Fig. 2.4. The direction of
the angle β is now changed, as seen in Fig. 2.4. The domain of the first concave configurations is given by [34]

α= 45°+κ

β=λκ
where

0 ≤ κ≤ 15°

0 ≤λ≤ 2
(2.2)

which describes the green triangle on the left in Fig. 2.5. The angle α can range between 45° and 60°, which
is parameterized by κ, while the range of β increases with increasing α, reaching 0° to 30° at α= 60° (κ= 15°).
At this edge of the domain (top bound on the left triangle in Fig. 2.5) masses 1, 2 and 3 sit on the vertices of an
equilateral triangle, making a Lagrange triangle central configuration, while mass 4 is infinitesimal, sitting on
the symmetry axis of this triangle. That is until β= 30° is reached, where we get the singular case of m4 in the
center of mass of the Lagrange triangle taking on any mass value and the other three bodies on the vertices
taking on arbitrary equal mass values.

The bottom edge of the triangle in Fig. 2.5 corresponds to the cases where β is maximum and all mass is
in the interior body m4. Then, the three infinitesimal masses are situated on a circle centered on m4 and the
configuration is concave coorbital (e.g. three satellites orbiting Earth in the same plane with equal periods
and, thus, equal semi-major axes). Finally, the leftmost edge of the domain corresponds to collinear con-
figurations, where β = 0°, m3 = 0 and masses 4, 1 and 2 are positioned in a Euler central configuration on a
straight line. Going from bottom to top, first all mass is in body 4 at α= 45°, then m4 decreases until it is zero
at α= 60° and all mass is in the equal mass bodies 1 and 2.

A range of possible concave configurations of the first kind is shown in Fig. 2.6. In this case, increasing α

seems to shrink the central body, while increasing β grows the central body.
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Figure 2.3: A range of possible convex kite central configurations. The radii of the bodies are proportional to cube roots of the masses,
such that the volumes would be directly proportional to the masses. Unit radius is chosen for optimal viewing in each case and is not to
scale. Unit distance is chosen to be the distance from the axis of symmetry to one of the equal masses. All angles are in degrees.

𝑚1
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𝑚4

𝛼

𝛽

Figure 2.4: The parameterization of the first concave kite configurations in [40]. The center of mass is marked by x.
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Figure 2.5: The region of possible concave kite central configurations parameterized in terms of α and β. 0 ≤µ3 ≤ 1 and 0 ≤µ4 ≤ 1
denote normalized masses m3 and m4, respectively, 1 being the total mass of the four-body configuration. ’S’ denotes the singular case
where body 4 is in the center of mass of an equilateral triangle made by the three remaining masses. In this case body 4 can take on any
mass in the range 0 ≤µ4 ≤ 1 and the remaining masses are equal, with values in the range 0 ≤µ3 ≤ 1 [40]. Figure reproduced from [40],
with body indices adjusted to be consistent with the present work.

2.2.2. Second concave case
The second concave case differs from the first as the interior body m4 is now in front of the center of mass in
Fig. 2.7. The second concave cases satisfies [34]

α= 60°+κ

β= 60°+λ (15°−κ)
where

0 ≤ κ≤ 15°

−2 ≤λ≤ 0
(2.3)

which corresponds to the green area on the right in Fig. 2.5. Now α ranges from 60° to 75°, again parame-
terized by κ. However, this time the range of permissible β angles decreases with increasing α. The range is
maximum at α= 60°, with 30° ≤β≤ 60°.

Similarly to the first concave case, the bottom domain boundary at α = 60° in Fig. 2.5 marks the cases
where m4 is infinitesimal, placed on the symmetry axis of an equilateral triangle formed by the remaining
three bodies. At the bottom right corner α = 60°, β = 60°, we have that both m3 and m4 are infinitesimal
and positioned on the same vertex of an equilateral triangle with bodies 1 and 2 of equal mass at the other
vertices. Going up from this point, mass 3 is still infinitesimal, while mass 4 increases until all mass is in m4

at the top most point α= 75°, β= 60°. This point is part of the slope 2α−β= 90°, which, as in the first concave
case, marks the coorbital concave configurations, where three bodies of equal infinitesimal mass orbit body
4 in the center.

A range of possible concave configurations of the second kind is shown in Fig. 2.8. Here we see an opposite
pattern from the first concave case: increasing α makes the central body massive, while increasing β shrinks
it.
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Figure 2.6: A range of possible concave kite central configurations of the first kind. The radii of the bodies are proportional to cube roots
of the masses, such that the volumes would be directly proportional to the masses. Unit radius is chosen for optimal viewing in each
case and is not to scale. Unit distance is chosen to be the distance from the axis of symmetry to one of the equal masses. All angles are
in degrees.
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Figure 2.7: The parameterization of the second concave kite configurations in [40]. The center of mass is marked by x.
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3
Reduction of symmetries

The idea of this chapter is to simplify our dynamical system which is described by eight position variables
qi and eight momentum variables pi by changing to coordinates where fewer state variables are needed to
contain the essential information about the system. This can be achieved with the use of symmetries and
first integrals. By symmetry we refer to the property of the dynamical system that the differential equations
are unchanged under some transformation. For example, rotating the coordinate frame does not influence
the dynamics of our four-body system and this is called rotational symmetry. By Noether’s theorem, symme-
tries have conservation laws associated to them, which implies a first integral. In the case of the rotational
symmetry we have the total angular momentum as the associated conserved quantity.

If we find coordinates where one position variable is the rotation angle of the system, this variable can
be discarded, as its value is irrelevant for the dynamics. Similarly, when a momentum variable is equal to
the total angular momentum of the system, we can set this variable to a constant, because the total angular
momentum is conserved. Together, this would result in two less state variables, as all information about the
evolution of the system is now contained in the rest of the variables. This is possible, because the symmetry
allows us to eliminate information irrelevant to the stability and a first integral constrains the possible states
the system can take to only the set where the conserved quantity is constant.

The planar n-body problem has two translational symmetries from the fact that we can vary the horizon-
tal or vertical position of the whole system with no impact on the dynamics and one rotational symmetry
from invariance of the system to rotation in the plane. Corresponding to these three symmetries are the three
first integrals: linear momentum in two directions and angular momentum. In this chapter we use these to
reduce our system from 16-dimensional one to a 10-dimensional one. This will set the stage for lineariza-
tion of the system in Part I, where double partial derivatives with respect to each pair of variables have to be
calculated. Linearizing the reduced system will require 55 of these double derivatives, instead of 136, were
we to proceed with the 16-dimensional system. Further, the symmetries and integrals would show up as +1
eigenvalues of the monodromy matrix of the linearized system [27], as will be seen in Section 4.4. The reduc-
tion procedure gets rid of these trivial multipliers and only the essential multipliers that actually determine
linear stability are left. Lastly, with further treatment in Part I we will remove two more dimensions, leading to
an eight-dimensional system which allows an analytical computation of the eigenvalues. If we left any more
dimensions than that, analytical computations would become unfeasible, which is why the dimensionality
reduction of this chapter is instrumental for the analytical treatment of stability of kite central configurations.

3.1. Hamiltonian formulation
A mechanical system in which the forces are derived from a potential function can be described in a Hamilto-
nian formulation [17]. In this formulation, the equations of motion are derived from a Hamiltonian function
H(q , p) through Hamilton’s equations [17]:

q̇i = ∂H

∂pi
ṗi =− ∂H

∂qi
(3.1)

where qi (t ) is the i -th position variable, pi (t ) is the corresponding, or conjugate, momentum variable, q
the vector containing all the position variables and p the vector containing all the momentum variables.

15
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As we will see in this chapter, using the theory of Hamiltonian mechanics will allow us to perform multiple
coordinate changes easily where all information about the dynamics is always completely contained in the
Hamiltonian function.

The Hamiltonian function in this case is equal to the total energy of the mechanical system [17]:

H(q , p) = T (p)+U (q) (3.2)

where T is the kinetic energy and U is the potential energy. The Hamiltonian function H for a conservative
dynamical system is independent of time, because energy is conserved.

The kinetic energy for the four-body problem is [17]

T = 1

2

4∑
i=1

mi
∥∥q̇i

∥∥2 = 1

2

(
m1

∥∥q̇1
∥∥2 +m2

∥∥q̇2
∥∥2 +m3

∥∥q̇3
∥∥2 +m4

∥∥q̇4
∥∥2

)
(3.3)

where qi is the position vector to the i -th body from the barycenter in an inertial frame. Introducing the
linear momentum of the i -th body pi = mi q̇i we write the kinetic energy as

T = 1

2

(‖p1‖2

m1
+ ‖p2‖2

m2
+ ‖p3‖2

m3
+ ‖p4‖2

m4

)
(3.4)

The potential energy is given by [17]

U =− ∑
1≤i< j≤4

Gmi m j∥∥qi −q j
∥∥ =− Gm1m2∥∥q1 −q2

∥∥ − Gm1m3∥∥q1 −q3
∥∥ − Gm1m4∥∥q1 −q4

∥∥ − Gm2m3∥∥q2 −q3
∥∥ − Gm2m4∥∥q2 −q4

∥∥ − Gm3m4∥∥q3 −q4
∥∥ (3.5)

Applying Eq. (3.1) to Eq. (3.2) with Eqs. (3.4) and (3.5) yields the familiar Eq. (1.1).

3.2. Canonical transformations
The vectors q and p together describe the state of the system completely. Meaning that, given a state of
the system

(
q , p

)
, all the subsequent and previous states are uniquely determined by the system of differ-

ential equations (3.1). The set of all points
{(

q , p
)}

, that is, every possible combination of the position vari-
ables qi and their conjugate momenta pi is called the phase space. It represents the set of all possible states
the system can take and therefore includes all possible solutions of Eq. (3.1). For a system with n degrees
of freedom, there will be n position variables q1, . . . , qn and a single state will be described by 2n numbers(
q1, . . . , qn , p1, . . . , pn

)
. Therefore, the dimension of the phase space of such a system will be 2n. In our case,

each body has two independent directions where it may move in the plane, so the system has 8 degrees of
freedom, and the phase space is of dimension 16:

{(
q , p

)}=R16.
Consider a transformation g : R2n → R2n which maps points in phase space to points in phase space.

There is a special class of such transformations which preserve the differential 2-form [3]∑
i

d pi ∧d qi (3.6)

and they are called canonical transformations; d pi and d qi are differentials [32]: for our purposes, simply
functions that take a vector as an argument and output the pi -th and qi -th components respectively. By the
"wedge product" operation ∧ the two differentials combine as in Eq. (3.6) to produce a 2-form: a function that
takes two vectors as arguments and outputs a single number. The 2-form in Eq. (3.6) operates the following
way: ∑

i
d pi ∧d qi (x , y) =∑

i
Xi yi −Yi xi (3.7)

The property that this 2-form is preserved means that two vectors in phase space x = (x1, . . . , xn , X1, . . . , Xn)
and y = (

y1, . . . , yn ,Y1, . . . ,Yn
)

transformed with a canonical transformation g to g (x) = a = (a1, . . . , an , A1, . . . , An)
and g (y) = b = (b1, . . . ,bn ,B1, . . . ,Bn) will satisfy the following property∑

i
d pi ∧d qi (x , y) =∑

i
d pi ∧d qi (a,b) =∑

i
Xi yi −Yi xi =

∑
i

Ai bi −Bi ai
(3.8)
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As we will see, a very useful property of these transformations is that given a canonical transformation Q =
Q(q , p), P = P (q , p) of variables q and p which satisfy Hamilton’s equations Eq. (3.1) for a Hamiltonian func-
tion H(q , p), we have that the new phase space coordinates (Q ,P ) again satisfy Hamilton’s equations [3]:

Q̇i = ∂K

∂Pi
Ṗi =− ∂K

∂Qi
(3.9)

where K is the same Hamiltonian function expressed in new variables K (Q ,P ) = H(q , p).
Using canonical transformations, coordinates can be changed simply by substituting the transformation

relations in the Hamiltonian function and the new equations of motion are then simply obtained through
Eq. (3.1). Alternatively, one would have to change the coordinates directly in the equations of motion, which
requires expressing the derivative terms in new variables and can quickly get cumbersome. Especially since
we perform a series of coordinate changes in this chapter, not having to rewrite the equations of motion in
each step really saves a lot of work.

More importantly, because of the nature of canonical coordinates and the Hamiltonian formulation, once
we change to a coordinate corresponding to a symmetry, as explained at the start of this chapter, it no longer
appears in the Hamiltonian function, because it has no influence on the dynamics. Such a coordinate is said
to be cyclic. Then, the partial derivative of the Hamiltonian with respect to the cyclic variable is zero and
we see immediately from Eq. (3.1) that the conjugate momentum to the cyclic variable is constant, because
it is the first integral associated with the symmetry. So, using canonical transformations, we arrive at the
reduction from the symmetry and the first integral simultaneously.

3.3. Jacobi coordinates
Jacobi coordinates are a standard tool in the analysis of the n-body problem. In conservative systems these
coordinates allow reducing the dimensions of the problem by four by eliminating the information about the
position of the center of mass and the total linear momentum from the equations. These coordinates start
from a chosen body in the system and the first position vector then points to the next body. The next position
vector starts from the center of mass of the previous bodies and points to the next chosen body of the system
and so on. In this way only the relative positions of the bodies are described by the coordinates. In our
case these coordinates are ideal, because, not only do we reduce the system’s many dimensions, but also by
choosing the two equal masses as the first bodies we obtain a very natural representation of the configuration
with position vectors laying perpendicular and parallel to each other, as seen on the right in Figure 3.1. This
will lead to simplifications later, when we plug in the periodic solution to the equations of motion.

The procedure to generate Jacobi coordinates is taken from [17]:

uk = qk −gk−1

gk = 1

µk

(
mk qk +µk−1gk−1

)
µk =µk−1 +mk

(3.10)

with

g1 = q1 µ1 = m1 (3.11)

where uk is the k-th Jacobi position vector, gk is the center of mass of the first k bodies and µk is the total
mass of the first k bodies. For the four-body problem this yields:

µ2 =µ1 +m2 = m1 +m2

g2 = m2q2 +µ1g1

µ2
= m2q2 +m1q1

m1 +m2

u2 = q2 −g1 = q2 −q1

(3.12)

µ3 =µ2 +m3 = m1 +m2 +m3

g3 = m3q3 +µ2g2

µ3
=

m3q3 + (m1 +m2) m1q1+m2q2
m1+m2

m1 +m2 +m3
= m1q1 +m2q2 +m3q3

m1 +m2 +m3

u3 = q3 −g2 = q3 − m1q1 +m2q2

m1 +m2

(3.13)
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µ4 =µ3 +m4 = m1 +m2 +m3 +m4

g4 = m4q4 +µ3g3

µ4
= m1q1 +m2q2 +m3q3 +m4q4

m1 +m2 +m3 +m4

u4 = q4 −g3 = q4 − m1q1 +m2q2 +m3q3

m1 +m2 +m3

(3.14)

The conjugate momenta are generated using [17]:

vk = µk−1

µk
pk −

mk

µk
Gk−1

Gk = pk +Gk−1

(3.15)

with
G1 = p1 (3.16)

where vk is the k-th Jacobi momentum variable and Gk is the total linear momentum of the first k bodies. In
our case we get:

v2 = µ1

µ2
p2 − m2

µ2
G1 = m1

m1 +m2
p2 − m2

m1 +m2
p1

G2 = p2 +G1 = p2 +p1

(3.17)

v3 = µ2

µ3
p3 − m3

µ3
G2 = m1 +m2

m1 +m2 +m3
p3 − m3

m1 +m2 +m3

(
p1 +p2

)
G3 = p3 +G2 = p1 +p2 +p3

(3.18)

v4 = µ3

µ4
p4 − m4

µ4
G3 = m1 +m2 +m3

m1 +m2 +m3 +m4
p4 − m4

m1 +m2 +m3 +m4

(
p1 +p2 +p3

)
(3.19)

Recall that pi = mi q̇i and notice that the mass factors in front of the pi in Eqs. (3.17) to (3.19) multiply with
the masses mi such that each Jacobi momentum variable vi represents the relative velocity of particle mi with
respect to the velocity of the center of mass of the previous i −1 particles, scaled by a mass ratio Mi = mi

µi−1
µi

:

v2 = m2
m1

m1 +m2

(
q̇2 − q̇1

)= M2
(
q̇2 − q̇1

)
(3.20)

v3 = m3
m1 +m2

m1 +m2 +m3

(
q̇3 − m1q̇1 +m2q̇2

m1 +m2

)
= M2

(
q̇3 − m1q̇1 +m2q̇2

m1 +m2

)
(3.21)

v4 = m4
m1 +m2 +m3

m1 +m2 +m3 +m4

(
q̇4 − m1q̇1 +m2q̇2 +m3q̇3

m1 +m2 +m3

)
= M4

(
q̇4 − m1q̇1 +m2q̇2 +m3q̇3

m1 +m2 +m3

)
(3.22)

The mass factor M2 = m1m2
m1+m2

is known as "reduced mass" in the context of the two-body problem [8], as it is
the effective mass that one uses when writing the two-body problem as a "one-body" problem of the relative
position vector between the bodies. What we have in our case is essentially three two-body systems, with the
center of mass of the bodies in the first system, becoming the first body in the next and likewise the c.o.m.
of the bodies in this system becoming the first body of the third system. Then, the Mi are just the "reduced
masses" of the three respective systems and vi are the linear momenta of these two-body systems.

To express the potential terms in Jacobi coordinates, the distances between the bodies need to be ex-
pressed in the new variables:

m2

m1 +m2
u2 +u3 = m2

m1 +m2
q2 − m2

m1 +m2
q1 +q3 − m1

m1 +m2
q1 − m2

m1 +m2
q2 =

= q3 − m1 +m2

m1 +m2
q1 = q3 −q1

(3.23)

u4 + m2 +m3

m1 +m2 +m3
u2 = q4 − m1q1 −m2q2 −m3q3 + (m2 +m3) q2 − (m2 +m3) q1

m1 +m2 +m3
=

= q4 −q1 + m3

m1 +m2 +m3

(
q2 −q3

) (3.24)

u3 − m1

m1 +m2
u2 = q3 + −m1q1 −m2q2 −m1q2 +m1q1

m1 +m2
= q3 −q2 (3.25)
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Figure 3.1: Jacobi coordinates for the general four-body problem on the left and for a four-body convex kite configuration on the right.

q4 −q1 = u4 + m2 +m3

m1 +m2 +m3
u2 − m3

m1 +m2 +m3

(
q2 −q3

)=
= u4 + m2 +m3

m1 +m2 +m3
u2 + m3

m1 +m2 +m3
u3 − m3

m1 +m2 +m3
· m1

m1 +m2
u2

(3.26)

u4 − m1 +m3

m1 +m2 +m3
u2 = q4 + −m1q1 −m2q2 −m3q3 − (m1 +m3) q2 + (m1 +m3) q1

m1 +m2 +m3
=

= q4 −q2 + m3

m1 +m2 +m3

(
q1 −q3

) (3.27)

q4 −q2 = u4 − m1 +m3

m1 +m2 +m3
u2 + m3

m1 +m2 +m3

(
q3 −q1

)=
= u4 − m1 +m3

m1 +m2 +m3
u2 + m3

m1 +m2 +m3
u3 + m3

m1 +m2 +m3
· m2

m1 +m2
u2

(3.28)

m1 +m2

m1 +m2 +m3
u3 −u4 = (m1 +m2) q3 −m1q1 −m2q2 +m1q1 +m2q2 +m3q3

m1 +m2 +m3
−q4 =

= q3 −q4

(3.29)

Introduce the mass parameters

M12 = m1

m1 +m2
M22 = m2

m1 +m2

M13 = m1

m1 +m2 +m3
M23 = m2

m1 +m2 +m3
M33 = m3

m1 +m2 +m3

(3.30)

Then, the distances become

q2 −q1 = u2

q3 −q1 = M22u2 +u3

q4 −q1 = u4 + (M23 +M33 −M33M12)u2 +M33u3

q3 −q2 = u3 −M12u2

q4 −q2 = u4 + (M33M22 −M13 −M33)u2 +M33u3

q3 −q4 = (M13 +M23)u3 −u4

(3.31)

It can be checked using the definitions (3.15) that the following identity holds for k = 2,3,4 [17]

‖Gk−1‖2

2µk−1
+ ‖pk‖2

2mk
= ‖Gk‖2

2µk
+ ‖vk‖2

2Mk
(3.32)
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Using Eq. (3.32) the kinetic energy can be expressed by [17]:

T =
4∑

k=1

‖pk‖2

2mk
= ‖p1‖2

2m1
− ‖G1‖2

2µ1
+ ‖G2‖2

2µ2
+ ‖v2‖2

2M2
− ‖G2‖2

2µ2
+ ‖G3‖2

2µ3
+ ‖v3‖2

2M3
− ‖G3‖2

2µ3
+ ‖G4‖2

2µ4
+ ‖v4‖2

2M4

= ‖p1‖2

2m1
− ‖G1‖2

2µ1
+ ‖v2‖2

2M2
+ ‖v3‖2

2M3
+ ‖G4‖2

2µ4
+ ‖v4‖2

2M4

(3.33)

Then, using Eqs. (3.11) and (3.16) we get

T = ‖G4‖2

2µ4
+

4∑
k=2

‖vk‖2

2Mk
(3.34)

Since the total linear momentum is conserved, G4 is a constant that influences the value of kinetic energy,
but has no influence over the dynamics of the system. Therefore, we do not lose generality by setting the total
linear momentum to zero G4 = 0 [17] (we set the center of mass to be stationary) to get

T =
4∑

k=2

‖vk‖2

2Mk
(3.35)

Now introducing the following compound mass parameters for brevity of the expressions:

Mc1 = M23 +M33 −M33M12

Mc2 = M33M22 −M13 −M33

Mc3 = M13 +M23

(3.36)

we get that the Hamiltonian in terms of the Jacobian variables u2, u3, u4, v2, v3, v4 is

H =‖v2‖2

2M2
+ ‖v3‖2

2M3
+ ‖v4‖2

2M4

−Gm1m2

‖u2‖
− Gm1m3

‖M22u2 +u3‖
− Gm1m4

‖u4 +Mc1u2 +M33u3‖
− Gm2m3

‖u3 −M12u2‖
− Gm2m4

‖u4 +Mc2u2 +M33u3‖
− Gm3m4

‖Mc3u3 −u4‖

(3.37)

Clearly, we have six Jacobian variables, each of which has two components in R2, therefore the dimension of
our system is 12. This is already significantly simplified from the 16-dimensional system we started with. It
will especially become clear when linearizing how much labour we avoid by not carrying around unnecessary
information.

3.4. Polar coordinates
Now we wish to reduce the system by two more dimensions using the rotational symmetry and angular mo-
mentum integral. Since the rotation of the system is naturally described by angles and their rates of change
we first introduce polar coordinates, as shown in Figure 3.2.

u21 = r2 cosθ2

u31 = r3 cosθ3

u41 = r4 cosθ4

u22 = r2 sinθ2

u32 = r3 sinθ3

u42 = r4 sinθ4

(3.38)

We use the generating function S2, given in [17], to generate the conjugate momenta:

S2 = v21r2 cosθ2 + v22r2 sinθ2 + v31r3 cosθ3 + v32r3 sinθ3 + v41r4 cosθ4 + v42r4 sinθ4 (3.39)

R2 = ∂S2

∂r2
= v21 cosθ2 + v22 sinθ2

Θ2 = ∂S2

∂θ2
=−v21r2 sinθ2 + v22r2 cosθ2

R3 = ∂S2

∂r3
= v31 cosθ3 + v32 sinθ3

Θ3 = ∂S2

∂θ3
=−v31r3 sinθ3 + v32r3 cosθ3

R4 = ∂S2

∂r4
= v41 cosθ4 + v42 sinθ4

Θ4 = ∂S2

∂θ4
=−v41r4 sinθ4 + v42r4 cosθ4

(3.40)
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Figure 3.2: Polar coordinates.

We see that the conjugate momenta of the distance variables Ri are the components of vi that change the
magnitude of ui , in other words, they are proportional to the rate of change of the corresponding lengths
ri and have units of linear momentum. Meanwhile, the conjugate momenta of the angle variables Θi are
the angular momenta of the three respective two-body problems associated to the three Jacobi variables (as
explained in Section 3.3) and are proportional to the rate of change of the corresponding angles θi .

Rearranging we obtain:

v22 = R2 − v21 cosθ2

sinθ2

v21 = v22
cosθ2

sinθ2
− Θ2

r2 sinθ2

(3.41)

Solving the system:

v21 = R2
cosθ2

sin2θ2
− v21

cos2θ2

sin2θ2
− Θ2

r2 sinθ2

=⇒ v21 = R2 cosθ2 − Θ2

r2
sinθ2

=⇒ v22 = R2

sinθ2
−R2

cos2θ2

sinθ2
+ Θ2

r2
cosθ2 = R2 sinθ2 + Θ2

r2
cosθ2

(3.42)

The rest of the momenta are obtained in the same way and only differ by indices:

v31 = R3 cosθ3 − Θ3

r3
sinθ3

v32 = R3 sinθ3 + Θ3

r3
cosθ3

v41 = R4 cosθ4 − Θ4

r4
sinθ4

v42 = R4 sinθ4 + Θ4

r4
cosθ4

(3.43)
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The kinetic terms then become:

‖v2‖2 = v2
21 + v2

22 = R2
2 cos2θ2 −2R2 cosθ2

Θ2

r2
sinθ2 +

Θ2
2

r 2
2

sin2θ2+

+R2
2 sin2θ2 +2R2 sinθ2

Θ2

r2
cosθ2 +

Θ2
2

r 2
2

cos2θ2 =

= R2
2 +

Θ2
2

r 2
2

‖v3‖2 = v2
31 + v2

32 = R2
3 +

Θ2
3

r 2
3

‖v4‖2 = v2
41 + v2

42 = R2
4 +

Θ2
4

r 2
4

(3.44)

Similarly, the potential terms can be expressed in polar coordinates:

‖u2‖ =
√

u2
21 +u2

22 =
√

r 2
2 cos2θ2 + r 2

2 sin2θ2 = r2 (3.45)

‖M22u2 +u3‖ =
√

(M22u21 +u31)2 + (M22u22 +u32)2

=
√

M 2
22u2

21 +2M22u21u31 +u2
31 +M 2

22u2
22 +2M22u22u32 +u2

32

=
√

M 2
22r 2

2 cos2θ2 +2M22r2 cosθ2r3 cosθ3 + r 2
3 cos2θ3 +M 2

22r 2
2 sin2θ2 +2M22r2 sinθ2r3 sinθ3 + r 2

3 sin2θ3

=
√

M 2
22r 2

2 +2M22r2r3 cos(θ2 −θ3)+ r 2
3

= κ1

(3.46)

‖u4 +Mc1u2 +M33u3‖ =
√

(u41 +Mc1u21 +M33u31)2 + (u42 +Mc1u22 +M33u32)2

=

√√√√√√√
u2

41 +Mc1u21u41 +M33u31u41 +u41Mc1u21 +M 2
c1u2

21 +M33u31Mc1u21

+u41M33u31 +Mc1u21M33u31 +M 2
33u2

31 +u2
42 +Mc1u22u42 +M33u32u42

+u42Mc1u22 +M 2
c1u2

22 +M33u32Mc1u22 +u42M33u32 +Mc1u22M33u32 +M 2
33u2

32

=
√√√√r 2

4 +M 2
c1r 2

2 +M 2
33r 2

3 +2Mc1r2 cosθ2r4 cosθ4 +2M33r3 cosθ3r4 cosθ4 +2M33Mc1r3 cosθ3r2 cosθ2

+2Mc1r2 sinθ2r4 sinθ4 +2M33r3 sinθ3r4 sinθ4 +2M33Mc1r3 sinθ3r2 sinθ2

=
√

M 2
c1r 2

2 +M 2
33r 2

3 + r 2
4 +2Mc1r2r4 cos(θ2 −θ4)+2M33r3r4 cos(θ3 −θ4)+2M33Mc1r2r3 cos(θ2 −θ3)

= κ2

(3.47)

‖u3 −M12u2‖ =
√

r 2
3 +M 2

12r 2
2 −2M12r2r3 cos(θ2 −θ3) = κ3 (3.48)

‖u4 +Mc2u2 +M33u3‖ =
=

√
r 2

4 +M 2
c2r 2

2 +M33r 2
3 +2Mc2r2r4 cos(θ2 −θ4)+2M33r3r4 cos(θ3 −θ4)+2M33Mc2r3r2 cos(θ3 −θ2)

= κ4

(3.49)

‖Mc3u3 −u4‖ =
√

M 2
c3r 2

3 + r 2
4 −2Mc3r3r4 cos(θ3 −θ4) = κ5 (3.50)

Substituting all results into the Hamiltonian yields:

H =
(

R2
2 +

Θ2
2

r 2
2

)
1

2M2
+

(
R2

3 +
Θ2

3

r 2
3

)
1

2M3
+

(
R2

4 +
Θ2

4

r 2
4

)
1

2M4

−Gm1m2

r2
− Gm1m3

κ1
− Gm1m4

κ2

−Gm2m3

κ3
− Gm2m4

κ4
− Gm3m4

κ5

(3.51)
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Figure 3.3: Polar coordinates with rotational symmetry eliminated for the general four-body problem on the left and for a four-body
convex kite configuration on the right. The positive angle direction is counterclockwise. The angles in the left diagram have arrows to
indicate sign, whereas the minus sign indicates that the magnitude of an angle is negative in the right diagram.

3.5. Eliminating angular momentum
The rotational symmetry and angular momentum are not eliminated yet. For that we wish to make the rota-
tion of the whole system disappear from the Hamiltonian and to have a momentum variable correspond to
the total angular momentum, which can then be set to a constant. However, the fact that the angles in the
Hamiltonian (3.51) appear only in pairs tells us that a single angle coordinate, representing the absolute rota-
tion of the system, does not influence the Hamiltonian. Hence, we make θ2 a cyclic coordinate (a coordinate
which does not appear in the Hamiltonian) and make the other coordinates represent the angular differences
with the following canonical coordinate transformation

Θ2,Θ3,Θ4,θ2,θ3,θ4 →Ψ,Γ,Φ,ψ,γ,ϕ

where we set (cf. Fig. 3.2 and Fig. 3.3)

ψ= θ2

γ= θ3 −θ2

ϕ= θ4 −θ3

(3.52)

From Figure 3.3 we see that ψ= θ2 describes the absolute rotation of the configuration with respect to some
arbitrary datum, while γ and ϕ describe the relative rotations of the bodies with respect to one another.

Now, since we have one cyclic coordinate, by Noether’s theorem [17] we know that its conjugate momen-
tum must be a conserved quantity, which we anticipate to be the total angular momentum. The conjugate
momenta are derived using the fact that a symplectic transformation must preserve the 2-form∑

i
d pi ∧d qi

Introduce two arbitrary vectors in the Θi , θi coordinate basis:

v1 = (Θ12,Θ13,Θ14,θ12,θ13,θ14)

v2 = (Θ22,Θ23,Θ24,θ22,θ23,θ24)

which give

d p1 ∧d q1(v1, v2)+d p2 ∧d q2(v1, v2)+d p3 ∧d q3(v1, v2) =
= (Θ12θ22 −Θ22θ12)+ (Θ13θ23 −Θ23θ13)+ (Θ14θ24 −Θ24θ14)

(3.53)

Now denote the transformed vectors, i.e. the same vectors in the new coordinate basis as

v ′
1 =

(
Ψ1,Γ1,Φ1,ψ1,γ1,ϕ1

)= (Ψ1,Γ1,Φ1,θ12,θ13 −θ12,θ14 −θ13)

v ′
2 =

(
Ψ2,Γ2,Φ2,ψ2,γ2,ϕ2

)= (Ψ2,Γ2,Φ2,θ22,θ23 −θ22,θ24 −θ23)
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which give

d p1 ∧d q1(v ′
1, v ′

2)+d p2 ∧d q2(v ′
1, v ′

2)+d p3 ∧d q3(v ′
1, v ′

2) =
= (Ψ1θ22 −Ψ2θ12)+ (Γ1 (θ23 −θ22)−Γ2 (θ13 −θ12))+ (Φ1 (θ24 −θ23)−Φ2 (θ14 −θ13)) =
=θ12 (−Ψ2 +Γ2)+θ22 (Ψ1 −Γ1)+θ13 (Φ2 −Γ2)+θ23 (Γ1 −Φ1)+θ14 (−Φ2)+θ24Φ1 =
=θ12 (−Θ22)+θ22Θ12 +θ13 (−Θ23)+θ23Θ13 +θ14 (−Θ24)+θ24Θ14

(3.54)

Therefore:
Ψ2 −Γ2 =Θ22

Ψ1 −Γ1 =Θ12

Γ2 −Φ2 =Θ23

Γ1 −Φ1 =Θ13

Φ2 =Θ24

Φ1 =Θ14

=⇒
Ψ=Θ2 +Γ=Θ2 +Θ3 +Θ4 = c

Γ=Θ3 +Φ=Θ3 +Θ4

Φ=Θ4

=⇒
Θ2 = c −Γ

Θ3 = Γ−Φ

Θ4 =Φ

(3.55)

Clearly, Ψ is the total angular momentum, as expected, and is set to a constant value c.
Making the substitutions gives

κ1 =
√

M 2
22r 2

2 + r 2
3 +2M22r2r3 cos

(
γ
)

(3.56)

κ2 =
√

M 2
c1r 2

2 +M 2
33r 2

3 + r 2
4 +2Mc1r2r4 cos

(
γ+ϕ

)+2M33r3r4 cos
(
ϕ

)+2M33Mc1r2r3 cos
(
γ
)

(3.57)

κ3 =
√

M 2
12r 2

2 + r 2
3 −2M12r2r3 cos

(
γ
)

(3.58)

κ4 =
√

M 2
c2r 2

2 +M 2
33r 2

3 + r 2
4 +2Mc2r2r4 cos

(
γ+ϕ

)+2M33r3r4 cos
(
ϕ

)+2M33Mc2r2r3 cos
(
γ
)

(3.59)

κ5 =
√

M 2
c3r 2

3 + r 2
4 −2Mc3r3r4 cos

(
ϕ

)
(3.60)

and the Hamiltonian becomes

H =
(

R2
2 +

(c −Γ)2

r 2
2

)
1

2M2
+

(
R2

3 +
(Γ−Φ)2

r 2
3

)
1

2M3
+

(
R2

4 +
Φ2

r 2
4

)
1

2M4

−Gm1m2

r2
− Gm1m3

κ1
− Gm1m4

κ2

−Gm2m3

κ3
− Gm2m4

κ4
− Gm3m4

κ5

(3.61)

Thus, the problem has been reduced from 16-dimensional to a 10-dimensional one with the variables r2, r3,
γ, r4, ϕ, R2, R3, Γ, R4, Φ.

Applying Hamilton’s equations yields:

ṙ2 = ∂H

∂R2
= R2

M2
ṙ3 = ∂H

∂R3
= R3

M3
ṙ4 = ∂H

∂R4
= R4

M4
(3.62)

Ṙ2 =−∂H

∂r2
= (c −Γ)2

M2

1

r 3
2

− Gm1m2

r 2
2

− Gm1m3

κ3
1

(
M 2

22r2 +M22r3 cosγ
)

− Gm1m4

κ3
2

(
M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)− Gm2m3

κ3
3

(
M 2

12r2 −M12r3 cosγ
)

− Gm2m4

κ3
4

(
M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)

(3.63)

Ṙ3 =−∂H

∂r3
= (Γ−Φ)2

M3

1

r 3
3

− Gm1m3

κ3
1

(
r3 +M22r2 cosγ

)− Gm1m4

κ3
2

(
M 2

33r3 +M33r4 cosϕ+M33Mc1r2 cosγ
)

− Gm2m3

κ3
3

(
r3 −M12r2 cosγ

)− Gm2m4

κ3
4

(
M 2

33r3 +M33r4 cosϕ+M33Mc2r2 cosγ
)

− Gm3m4

κ3
5

(
M 2

c3r3 −Mc3r4 cosϕ
)

(3.64)
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Ṙ4 =−∂H

∂r4
= Φ2

M4

1

r 3
4

− Gm1m4

κ3
2

(
r4 +Mc1r2 cos(γ+ϕ)+M33r3 cosϕ

)
− Gm2m4

κ3
4

(
r4 +Mc2r2 cos(γ+ϕ)+M33r3 cosϕ

)− Gm3m4

κ3
5

(
r4 −Mc3r3 cosϕ

) (3.65)

And for the angular variables:

γ̇= ∂H

∂Γ
= Γ− c

M2r 2
2

+ Γ−Φ

M3r 2
3

ϕ̇= ∂H

∂Φ
= Φ−Γ

M3r 2
3

+ Φ

M4r 2
4

(3.66)

Γ̇=−∂H

∂γ
=Gm1m3

κ3
1

M22r2r3 sinγ+ Gm1m4

κ3
2

(
Mc1r2r4 sin(γ+ϕ)+M33Mc1r2r3 sinγ

)
− Gm2m3

κ3
3

M12r2r3 sinγ+ Gm2m4

κ3
4

(
Mc2r2r4 sin(γ+ϕ)+M33Mc2r2r3 sinγ

) (3.67)

Φ̇=−∂H

∂ϕ
=Gm1m4

κ3
2

(
Mc1r2r4 sin(γ+ϕ)+M33r3r4 sinϕ

)
+ Gm2m4

κ3
4

(
Mc2r2r4 sin(γ+ϕ)+M33r3r4 sinϕ

)− Gm3m4

κ3
5

Mc3r3r4 sinϕ

(3.68)

Note that (c−Γ)2

M2

1
r 3

2
, (Γ−Φ)2

M3

1
r 3

3
and Φ2

M4

1
r 3

4
in Eqs. (3.63) to (3.65) are centrifugal force terms, arising because

of the rotating reference frame:

(c −Γ)2

M2

1

r 3
2

= Θ2
2

M2

1

r 3
2

=
(
M2r 2

2 θ̇2
)2

M2r 3
2

= M2r2θ̇
2
2 (3.69)

(Γ−Φ)2

M3

1

r 3
3

= Θ2
3

M3

1

r 3
3

=
(
M3r 2

3 θ̇3
)2

M3r 3
3

= M3r3θ̇
2
3 (3.70)

Φ2

M4

1

r 3
4

= Θ2
4

M4

1

r 3
4

=
(
M4r 2

4 θ̇4
)2

M4r 3
4

= M4r4θ̇
2
4 (3.71)

where we used the definitions Eq. (3.55) and the fact that we can express the angular momenta of each two-
body problem Θi , (as discussed in Section 3.4) in terms of the angular velocities and moments of inertia,
which, in turn, can be expressed using the reduced masses of each two-body problem (as introduced in Sec-
tion 3.3): Θi = Mi r 2

i θ̇i .

3.6. Further elimination
It is possible to reduce the equations of motion further. Since the total energy is constant, H = constant = h,
the independent variable can be changed from time t to one of the state variables r2,r3,γ,r4,ϕ,R2,R3,Γ,R4,Φ.
Suppose we would like to make r2 the new independent variable. Then, its conjugate momentum, R2, be-
comes the new Hamiltonian function [23]:

R2 = K (h,r2,r3,γ,r4,ϕ,R3,Γ,R4,Φ) (3.72)

where K = R2 is the new Hamiltonian function and r2 is the new independent variable. In this way, one more
state variable can be eliminated. Note that this Hamiltonian is no longer autonomous, nor is it equal to the
total energy [23], as its value now depends on the independent variable r2 and is no longer constant. Any
other state variable could have been chosen as the new Hamiltonian, however, explicit expressions are easy
to get only for the momentum variables, since they appear only once as squared terms in H . Each position
variable appears multiple times under square roots in the denominator, which would be very difficult to get
an explicit expression in the form of Equation 3.72. Thus, our best bet is to make one of the momentum
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variables the new Hamiltonian. For R2 = K we get:

K = R2 =±

√√√√√√√√√
2M2h − (c −Γ)2

r 2
2

− M2

M3

(
R2

3 +
(Γ−Φ)2

r 2
3

)
− M2

M4

(
R2

4 +
Φ2

r 2
4

)

+2
Gm1m2M2

r2
+2

Gm1m3M2

κ1
+2

Gm1m4M2

κ2
+2

Gm2m3M2

κ3
+2

Gm2m4M2

κ4
+2

Gm3m4M2

κ5

(3.73)
We notice immediately that K can take on two values, a positive and a negative one, which correspond to the
two directions of time, since time has been eliminated and the dynamics do not change with the direction of
time for a conservative system. The equations of motion are then obtained from Hamilton’s equations:

dr3

dr2
= ∂K

∂R3

dr4

dr2
= ∂K

∂R4

dϕ

dr2
= ∂K

∂Φ

dγ

dr2
= ∂K

∂Γ

dR3

dr2
=− ∂K

∂r3

dR4

dr2
=− ∂K

∂r4

dΦ

dr2
=−∂K

∂ϕ

dΓ

dr2
=−∂K

∂γ

(3.74)

The fact that the expression for K is entirely under a square root means that each first derivative of the equa-
tions of motion is going to have a 1

2K factor in front. This becomes a major inconvenience when we attempt to
linearize the system, because every state variable now appears in every first derivative under K . This causes
all second derivatives to be non-zero. Thus, even though there are two variables less in this reduced formula-
tion, linearizing this system would be much more computationally heavy than the previous formulation and
we will continue with time as the independent variable and a four-body system still described by 10 parame-
ters.
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4
Convex cases

In this chapter we investigate the stability of one subset of kite configurations: the convex cases. An attempt
is made to take this assessment as far as possible with analytical techniques. To that aim, we linearize the
equations of motion, so that the theory of Floquet can be applied and linear stability can be determined. The
linearized system is evaluated at the periodic solution, so that the linear equations describe the perturba-
tions from the central configuration. The procedure we follow closely resembles the one followed in [27] for
linear stability determination of circular and eccentric three body Lagrange triangle periodic solutions. Be-
fore proceeding, it might be worth mentioning that this chapter includes a fair share of lenghty and at times
somewhat tedious computations, however we feel they are quite fundamental for the understanding of our
mathematical model and, therefore, they are left in the text instead of an appendix.

4.1. Periodic solution
For describing the periodic solution corresponding to a central configuration we identify the plane R2 with
the complex plane C. Then, for a central configuration we require:

qi (t ) =α(t )zi (4.1)

where qi ∈C is the inertial position of the i -th body, α(t ) ∈C is a scaling factor and zi ∈C is the initial position
of the i -th body. Since multiplying a complex number by another complex number is equivalent to a scaling
and a rotation in the complex plane, this equation says that at any time, the positions of all bodies can be
obtained by applying the same scaling and rotation to the initial positions, since the geometry is required to
stay the same in a central configuration. Substituting this constraint into the Newtonian equations of motion

q̈i =
∑
i 6= j

Gm j
(
q j −qi

)∥∥q j −qi
∥∥3 (4.2)

gives

α̈ |α|3α−1zi =
∑
i 6= j

Gm j
(
z j − zi

)∥∥z j − zi
∥∥3 (4.3)

Because all zi are constants, so must be the term on the left hand side:

α̈ |α|3α−1 = constant =GΛ (4.4)

where Λ is a proportionality constant, depending on the masses and geometry of the configuration. Then we
have the conditions on initial positions to have a central configuration:

Λzi =
∑
i 6= j

m j
(
z j − zi

)∥∥z j − zi
∥∥3 (4.5)

This means that in a central configuration the net acceleration on each body has to be directly proportional
to the body’s distance from the barycenter and directed towards the barycenter. Hence the name "central
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configuration". Rearranging Equation 4.4 we obtain

α̈= GΛα

|α|3 (4.6)

Note that the solutions of Equation 4.6 are simply the Kepler orbits described by [36]

r (t ) =− ω2/GΛ

1+e cosθ(t )

θ̇(t ) = ω

r 2(t )
, θ(0) = 0

(4.7)

where r is the magnitude of α and θ is the angle from the real axis. We choose the argument of perihelion and
initial true anomaly as zero. The period is obtained from Kepler’s third law [36]:

T = 2π

√
a3

−GΛ
= 2π

√
a3 (4.8)

where −GΛ is the gravitational parameter and a is the semi-major axis of the orbit, given by [36]:

a = ω2/−GΛ

1−e2 (4.9)

For simplicity of expressions we set the proportionality constant Λ = −1/G such that −GΛ = 1. This simply
fixes the scale of the configuration in such a way that Eq. (4.5) holds. The semi-major axis then becomes

a = ω2

1−e2 , (4.10)

which in turn gives for the period

T = 2π
ω3(

1−e2
) 3

2

. (4.11)

The complex variables are then
α(t ) = r (t )e iθ(t )

zi = |zi |e iηi
(4.12)

where ηi is the angle of the i -th body from the real axis. Then, the position of the i -th body in time is described
by:

qi (t ) =α(t )zi = r (t ) |zi |e i(θ(t )+ηi ) (4.13)

or, turning back to the plane R2 again:

qi = r (t )‖zi‖
[

cos(θ(t )+ηi )
sin(θ(t )+ηi )

]
(4.14)

4.2. Convex case
Here, we introduce the common mass of the kite central configurations:

m1 = m2 = m (4.15)

The proportionality constant is given by [40]:

Λ=−m3

d 3
1

− m4

d 3
2

− 1

4

m

y3 (4.16)

Since we set ΛG =−1, then
−1

G
=−m3

d 3
1

− m4

d 3
2

− 1

4

m

y3 (4.17)

r (t ) = ω2

1+e cosθ(t )
(4.18)
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𝑚1

𝑚2

𝑚3𝑚4

𝑦

𝑦

𝛼𝛽 𝑑1
𝑑2

Figure 4.1: Convex kite geometry.

Looking at Equation 3.62, Equation 4.14 and Figure 4.1 we express the state variables for the periodic
solution in terms of the Kepler orbit and geometric parameters of the convex central configuration:

r2 = c2r (t )

r3 = c3r (t )

r4 = c4r (t )

γ=−π

2
ϕ=π

R2 = M2c2R(t )

R3 = M3c3R(t )

R4 = M4c4R(t )

Γ= M3c2
3ω+M4c2

4ω

Φ= M4c2
4ω

(4.19)

where

c2 = 2y

c3 = y tanα

c4 = ‖z4‖ M

m1 +m2 +m3

(4.20)

and R(t ) = ṙ (t ). The expressions for Γ and Φ are obtained from

Θ3 = M3r 2
3 θ̇3 = M3c2

3 r 2 ω

r 2 = M3c2
3ω

Θ4 = M4r 2
4 θ̇4 = M4c2

4 r 2 ω

r 2 = M4c2
4ω

(4.21)

and therefore

Γ=Θ3 +Θ4 = M3c2
3ω+M4c2

4ω

Φ=Θ4 = M4c2
4ω

(4.22)

Also note that

c =Θ2 +Θ3 +Θ4 = M2r 2
2 θ̇2 +M3r 2

3 θ̇3 +M4r 2
4 θ̇4

= M2c2
2 r 2 ω

r 2 +M3c2
3 r 2 ω

r 2 +M4c2
4 r 2 ω

r 2

= M2c2
2ω+M3c2

3ω+M4c2
4ω

(4.23)
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The mass ratios in terms of the angles are [34]

m3

m1
= m3

m2
= tanβ

(
tanα+ tanβ

)2 (
8cos3β−1

)
4
[(

sinα+cosα tanβ
)3 −1

] = tnβ

4scα

m4

m1
= m4

m2
= tanα

(
tanα+ tanβ

)2 (
8cos3α−1

)
4
[(

sinβ+cosβ tanα
)3 −1

] = tnα

4scβ

(4.24)

with

α= 30°+2κ

β= 30°+λκ
where

0 ≤ κ≤ 15°

−1 ≤λ≤ 2

The distances between the bodies are:

κ1

r
= κ3

r
= r23

r
= r13

r
= d1 = y secα= y

cosα
κ2

r
= κ4

r
= r24

r
= r14

r
= d2 = y secβ= y

cosβ
κ5

r
= r34

r
= d34 = y

(
tanα+ tanβ

) (4.25)

Applying these to Equation 4.17 we get a useful equation relating the distance parameter y to the masses and
geometry of the configuration:

y3 =G
(m

4
+m3 cos3α+m4 cos3β

)
(4.26)

The mass parameters become

M12 = M22 = m1

m1 +m2
= m2

m1 +m2
= 1

2

M13 = M23 = m1

m1 +m2 +m3
=

(
m1

m1
+ m2

m1
+ m3

m1

)−1

=
(
2+ tnβ

4scα

)−1

= 4scα
8scα+ tnβ

M33 = m3

m1 +m2 +m3
=

(
m1

m3
+ m2

m3
+ m3

m3

)−1

=
(
2

4scα
tnβ

+1

)−1

= tnβ

8scα+ tnβ

(4.27)

Mc1 = M23 +M33 −M33M12 = M23 + 1

2
M33 =

m2 + 1
2 m3

m1 +m2 +m3
= m + 1

2 m3

2m +m3
= 1

2

Mc2 = M33M22 −M13 −M33 =−1

2
M33 −M13 =−Mc1 =−1

2

Mc3 = M13 +M23 = 2M13 = 2M23 = 8scα
8scα+ tnβ

(4.28)

and

M2 = m2
m1

m1 +m2
= m2M12 = m

2

M3 = m3
m1 +m2

m1 +m2 +m3
= m3 (M13 +M23) = 2m3M13 = 2m3M23

M4 = m4
m1 +m2 +m3

m1 +m2 +m3 +m4
= m4M34

(4.29)
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Furthermore, applying the condition on κ2 from Equation 4.25, we get

κ2
2 =

1

4
c2

2 r 2 +M 2
33c2

3 r 2 + c2
4 r 2 −2M33c3c4r 2 = r 2 y2

cos2β

y2 + y2 m2
3

(m1 +m2 +m3)2 tan2α+‖z4‖2 M 2

(m1 +m2 +m3)2 −2
m3M

(m1 +m2 +m3)2 y tanα‖z4‖ = y2

cos2β

y2 + y2 tan2αm2
3 +‖z4‖2 M 2 −2m3M y tanα‖z4‖

(m1 +m2 +m3)2 = y2

cos2β

y2 +
(
m3 y tanα−‖z4‖M

)2

(m1 +m2 +m3)2 = y2

cos2β(
m3 y tanα−‖z4‖M

)2

(m1 +m2 +m3)2 = y2
(

1

cos2β
−1

)
= y2 sin2β

cos2β

=⇒ m3 y tanα−‖z4‖M =±y tanβ (m1 +m2 +m3)

=⇒ ‖z4‖ = m3 y tanα± (m1 +m2 +m3) y tanβ

M

(4.30)

Thus

c4 = ‖z4‖ M

m1 +m2 +m3
= m3 y tanα± (m1 +m2 +m3) y tanβ

M

M

m1 +m2 +m3
= M33 y tanα± y tanβ (4.31)

To find the right sign in this equality we calculate the other κ at the periodic solution, which also serves to
verify that the state variables and mass parameters have been set up correctly.

κ1 =
√

M 2
22r 2

2 + r 2
3 +2M22r2r3 cosγ=

√
M 2

22c2
2 r 2 + c2

3 r 2 = r
√

M 2
22c2

2 + c2
3

= r

√
1

4
4y2 + y2 tan2α= r y

√
1+ tan2α= r y

√
1

cos2α
= r y

cosα

κ3 =
√

M 2
12r 2

2 + r 2
3 −2M12r2r3 cosγ=

√
M 2

12c2
2 r 2 + c2

3 r 2 = r

√
1

4
4y2 + y2 tan2α= r y

p
1+ tanα= r y

cosα
= κ1

κ4 =
√

M 2
c2c2

2 r 2 +M 2
33c2

3 r 2 + c2
4 r 2 −2M33c3c4r 2

= r y
√

1+M 2
33 tan2α+M 2

33 tan2α−2M33 tanα tanβ+ tan2β−2M 2
33 tan2α+2M33 tanα tanβ

= r y
√

1+ tan2β= r y
√

1+ tan2β= r y

cosβ
= κ2

κ5 =
√

M 2
c3r 2

3 + r 2
4 −2Mc3r3r4 cosϕ=

√
4M 2

13c2
3 r 2 + c2

4 r 2 +4M13c3c4r 2

= r y
√

4M 2
13 tan2α+M 2

33 tan2α±2M33 tanα tanβ+ tan2β+4M13M33 tan2α±4M13 tanα tanβ

= r y
√
±2tanα tanβ (M33 +2M13)+ tan2α

(
4M 2

13 +M 2
33 +4M13M33

)+ tan2β

= r y
√
±2tanα tanβ+ tan2α+ tan2β= r y

√(
tanα± tanβ

)2 = r y
(
tanα± tanβ

)
(4.32)

Since κ5 = yr
(
tanα+ tanβ

)
we must have that

‖z4‖ = m3 y tanα+ (m1 +m2 +m3) y tanβ

M
(4.33)

Comparing this with Eq. (4.31) we find

c4 = M33 y tanα+ y tanβ (4.34)

c4 can be expressed purely in terms of geometric parameters, as c2 and c3 are by expressing the mass ratio
M33 in terms of α and β, as in Eq. (4.27).
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4.3. Linearization
As Moeckel shows in [19], attempting to prove the stability of a full non-linear relative equilibrium (RE) solu-
tion (name for a circular periodic solution of a central configuration, since it becomes stationary in a rotating
frame) of an n-body problem is hopeless. A classic approach to prove or disprove non-linear stability is by
finding a Lyapunov function [19, 35] which can be the Hamiltonian or some other integral. One then pro-
ceeds to prove that the equilibrium point (relative equilibrium in a rotating frame) in phase space rests at an
isolated minimum or maximum of the Lyapunov function. The idea is that the solution must stay on a mani-
fold defined by a constant conserved quantity. If our solution in phase space rests at a local minimum of the
total energy, for instance, we would know that it is a stable solution. This is because all regions surrounding
an isolated minimum would be of a higher energy level and, since energy is conserved, the solution could
never climb out of the energy "hole".

Apparently, "this approach never works for RE’s" [19], because one can always find a direction at an RE
point in phase space where the Hamiltonian function will increase and one where it will decrease, prevent-
ing the point from ever being at an isolated minimum/maximum, as proved in [19]. Thus we proceed to
investigate linear stability, just as is done for three bodies in [19, 27, 28].

The equations of motion of a Hamiltonian system are given by Hamilton’s equations (Eq. (3.1)):



q̇1
...

q̇n

ṗ1
...

ṗn


=



∂H
∂p1

...
∂H
∂pn

− ∂H
∂q1
...

− ∂H
∂qn


(4.35)

Or
ẋ = f (x) = JD H(x) (4.36)

in shorthand, where x ∈ R2n is the state vector, f (x) : R2n → R2n is the vector valued function that maps the
vector of state variables to the vector of their derivatives, D H(x) is the gradient vector of the Hamiltonian and
J is the canonical matrix [

0 I
−I 0

]
(4.37)

We denote the periodic orbit, given by expressions (4.19), by

γ(t ) =



c2r (t )
c3r (t )
−π/2
c4r (t )
π

M2c2R(t )
M3c3R(t )

M3c2
3ω+M4c2

4ω

M4c4R(t )
M4c2

4ω


(4.38)

To linearize the system around the periodic solution we set x =γ(t )+ y [35], where y is a perturbation vector,
representing deviations from the periodic solution. Substitute into Eq. (4.36) and write the Taylor expansion
to get

γ̇(t )+ ẏ = f (γ(t )+ y) = f (γ(t ))+ y T D f (γ(t ))+·· · (4.39)

where D f (γ(t )) is the gradient vector vector evaluated at the periodic solution, · · · denotes the higher order
terms and we have assumed that f (x) has a Taylor expansion to at least degree two. Notice that since γ(t ) is
a solution of Eq. (4.36), we have γ̇(t ) = f (γ(t )), so canceling this solution out we get:

ẏ = y T D f (γ(t ))+·· · (4.40)
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By linearizing we get rid of the higher order terms and obtain the equations of motion linearized around γ(t ):

ẏ = y T D f (γ(t )) = JD2H(γ(t ))y (4.41)

where D2H(γ(t )) is the Hessian of H evaluated at the periodic solution.

D2H(γ(t )) =



∂2 H
∂q1∂q1

∣∣∣
γ(t )

· · · ∂2 H
∂q1∂qn

∣∣∣
γ(t )

∂2 H
∂q1∂p1

∣∣∣
γ(t )

· · · ∂2 H
∂q1∂pn

∣∣∣
γ(t )

...
...

...
...

∂2 H
∂qn∂q1

∣∣∣
γ(t )

· · · ∂2 H
∂qn∂qn

∣∣∣
γ(t )

∂2 H
∂qn∂p1

∣∣∣
γ(t )

· · · ∂2 H
∂qn∂pn

∣∣∣
γ(t )

∂2 H
∂p1∂q1

∣∣∣
γ(t )

· · · ∂2 H
∂p1∂qn

∣∣∣
γ(t )

∂2 H
∂p1∂p1

∣∣∣
γ(t )

· · · ∂2 H
∂p1∂pn

∣∣∣
γ(t )

...
...

...
...

∂2 H
∂pn∂q1

∣∣∣
γ(t )

· · · ∂2 H
∂pn∂qn

∣∣∣
γ(t )

∂2 H
∂pn∂p1

∣∣∣
γ(t )

· · · ∂2 H
∂pn∂pn

∣∣∣
γ(t )


(4.42)

The double derivative terms in Eq. (4.42) with respect to our position variables r2, r3, γ, r4, ϕ and conjugate
momenta R2, R3, Γ, R4 and Φ are computed as follows

∂2H

∂r 2
2

= ∂

∂r2



− (c −Γ)2

M2

1

r 3
2

+ Gm1m2

r 2
2

+ Gm1m3

κ3
1

(
M 2

22r2 +M22r3 cosγ
)

+ Gm1m4

κ3
2

(
M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)+ Gm2m3

κ3
3

(
M 2

12r2 −M12r3 cosγ
)

+ Gm2m4

κ3
4

(
M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)


=3

(c −Γ)2

M2

1

r 4
2

−2
Gm1m2

r 3
2

−3
Gm1m3

κ5
1

(
M 2

22r2 +M22r3 cosγ
)2 + Gm1m3

κ3
1

M 2
22

−3
Gm1m4

κ5
2

(
M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)2 + Gm1m4

κ3
2

M 2
c1

−3
Gm2m3

κ5
3

(
M 2

12r2 −M12r3 cosγ
)2 + Gm2m3

κ3
3

M 2
12

−3
Gm2m4

κ5
4

(
M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)2 + Gm2m4

κ3
4

M 2
c2

(4.43)
Evaluated at the periodic solution γ(t ) (from Eqs. (4.15), (4.19), (4.25), (4.27) and (4.28)) :

r2 = c2r (t )

r3 = c3r (t )

r4 = c4r (t )

γ=−π

2
ϕ=π

R2 = M2c2R(t )

R3 = M3c3R(t )

R4 = M4c4R(t )

Γ= M3c2
3ω+M4c2

4ω

Φ= M4c2
4ω

κ1 = κ3 = r y

cosα

κ2 = κ4 = r y

cosβ

κ5 = r y
(
tanα+ tanβ

)
M12 = M22 = 1

2

Mc1 =−Mc2 = 1

2
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the term becomes

∂2H

∂r 2
2

∣∣∣∣∣
γ(t )

=3

(
c −M3c2

3ω−M4c2
4ω

)2

M2

1

c4
2 r 4

−2
Gmm

c3
2 r 3

−3
Gmm3

r 5 y5 cos5α

(
1

4
c2r

)2

+ Gmm3

r 3 y3 cos3α
1

4

−3
Gmm4

r 5 y5 cos5β

(
1

4
c2r

)2

+ Gmm4

r 3 y3 cos3β
1

4
−3

Gmm3

r 5 y5 cos5α

(
1

4
c2r

)2

+ Gmm3

r 3 y3 cos3α
1

4
−3

Gmm4

r 5 y5 cos5β

(
1

4
c2r

)2

+ Gmm4

r 3 y3 cos3β
1

4

=3

(
M2c2

2ω
)2

M2

1

c4
2 r 4

−2
Gmm

c3
2 r 3

−6
Gmm3

r 3 y5 cos5α

(
1

4
c2

)2

+2
Gmm3

r 3 y3 cos3α
1

4

−6
Gmm4

r 3 y5 cos5β

(
1

4
c2

)2

+2
Gmm4

r 3 y3 cos3β
1

4

=3M2
ω2

r 4 − Gmm

4y3r 3 − 3

2

Gmm3

r 3 y3 cos5α+ 1

2

Gmm3

r 3 y3 cos3α− 3

2

Gmm4

r 3 y3 cos5β+ 1

2

Gmm4

r 3 y3 cos3β

= 3M2
ω2

r 4 − 1

4

Gmm

r 3 y3 − 1

2

Gmm3

r 3 y3

(
3cos5α−cos3α

)− 1

2

Gmm4

r 3 y3

(
3cos5β−cos3β

)

(4.44)

Similarly,

∂2H

∂r2∂r3
=−3

2

Gm1m3

κ5
1

(
2r3 +2M22r2 cosγ

)(
M 2

22r2 +M22r3 cosγ
)+ Gm1m3

κ3
1

M22 cosγ

−3

2

Gm1m4

κ5
2

(
2M 2

33r3 +2M33r4 cosϕ+2M33Mc1r2 cosγ
)(

M 2
c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ

)
+Gm1m4

κ3
2

M33Mc1 cosγ

−3

2

Gm2m3

κ5
3

(
2r3 −2M12r2 cosγ

)(
M 2

12r2 −M12r3 cosγ
)− Gm2m3

κ3
3

M12 cosγ

−3

2

Gm2m4

κ5
4

(
2M 2

33r3 +2M33r4 cosϕ+2M33Mc2r2 cosγ
)(

M 2
c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ

)
+Gm2m4

κ3
4

M33Mc2 cosγ

(4.45)
then at the periodic solution γ(t )

∂2H

∂r2∂r3

∣∣∣∣
γ(t )

=−3
Gmm3

r 5 y5 cos5α · c3r · 1

4
c2r −3

Gmm4

r 5 y5 cos5β · (M 2
33c3r −M33c4r

) ·(1

4
c2r

)
−3

Gmm3

r 5 y5 cos5α · c3r · 1

4
c2r −3

Gmm4

r 5 y5 cos5β · (M 2
33c3r −M33c4r

) ·(1

4
c2r

)
=− 3

2

Gmm3

r 3 y5 cos5α · c3 · c2 − 3

2

Gmm4

r 3 y5 cos5β · (M 2
33c3 −M33c4

) · c2

=− 3

2

Gmm3

r 3 y5 cos5α · y tanα ·2y − 3

2

Gmm4

r 3 y5 cos5β · (M 2
33 y tanα−M33 y

(
M33 tanα+ tanβ

)) ·2y

= −3
Gmm3

r 3 y3 cos4αsinα+3
Gmm4

r 3 y3 M33 cos4βsinβ

(4.46)
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also

∂2H

∂r2∂r4
=− 3

2

Gm1m4

κ5
2

· (2r4 +2Mc1r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)

+ Gm1m4

κ3
2

·Mc1 cos(γ+ϕ)

− 3

2

Gm2m4

κ5
4

· (2r4 +2Mc2r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)

+ Gm2m4

κ3
4

·Mc2 cos(γ+ϕ)

(4.47)
at the periodic solution:

∂H

∂r2∂r4

∣∣∣∣
γ(t )

=−3
Gmm4

r 5 y5 cos5β · (c4r −M33c3r ) ·
(

1

4
c2r

)
+0

−3
Gmm4

r 5 y5 cos5β · (c4r −M33c3r ) ·
(

1

4
c2r

)
+0

=− 3

2

Gmm4

r 3 y5 cos5β · (c4 −M33c3) · c2 =−3

2

Gmm4

r 3 y5 cos5β · (M33 y tanα+ y tanβ−M33 y tanα
) ·2y

= −3
Gmm4

r 3 y3 cos4βsinβ

(4.48)
Derivative with respect to γ:

∂2H

∂r2∂γ
=−3

2

Gm1m3

κ5
1

·−2M22r2r3 sinγ · (M 2
22r2 +M22r3 cosγ

)+ Gm1m3

κ3
1

·−M22r3 sinγ

−3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33Mc1r2r3 sinγ
) · (M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)

+Gm1m4

κ3
2

· (−Mc1r4 sin(γ+ϕ)−M33Mc1r3 sinγ
)

−3

2

Gm2m3

κ5
3

·2M12r2r3 sinγ · (M 2
12r2 −M12r3 cosγ

)+ Gm2m3

κ3
3

·M12r3 sinγ

−3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33Mc2r2r3 sinγ
) · (M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)

+Gm2m4

κ3
4

· (−Mc2r4 sin(γ+ϕ)−M33Mc2r3 sinγ
)

(4.49)
at the periodic solution:

∂2H

∂r2∂γ

∣∣∣∣
γ(t )

=− 3

2

Gmm3

r 5 y5 cos5α · c2c3r 2 · 1

4
c2r + Gmm3

r 3 y3 cos3α · 1

2
c3r

− 3

2

Gmm4

r 5 y5 cos5β · (−c2c4r 2 +M33c2c3r 2) ·(1

4
c2r

)
+ Gmm4

r 3 y3 cos3β ·
(
−1

2
c4r +M33

1

2
c3r

)
− 3

2

Gmm3

r 5 y5 cos5α ·−c2c3r 2 · 1

4
c2r + Gmm3

r 3 y3 cos3α ·−1

2
c3r

− 3

2

Gmm4

r 5 y5 cos5β · (c2c4r 2 −M33c2c3r 2) ·(1

4
c2r

)
+ Gmm4

r 3 y3 cos3β ·
(

1

2
c4r −M33

1

2
c3r

)
= 0

(4.50)



38 4. Convex cases

Finally, the derivative with respect to ϕ:

∂2H

∂r2∂ϕ
=− 3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)

− Gm1m4

κ3
2

Mc1r4 sin(γ+ϕ)

− 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)

− Gm2m4

κ3
4

Mc2r4 sin(γ+ϕ)

(4.51)
at the periodic solution:

∂H

∂r2∂ϕ

∣∣∣∣
γ(t )

=−3
Gmm4

r 5 y5 cos5β ·−1

2
c2c4r 2 · 1

4
c2r − Gmm4

r 3 y3 cos3β · 1

2
c4r

−3
Gmm4

r 5 y5 cos5β · 1

2
c2c4r 2 · 1

4
c2r − Gmm4

r 3 y3 cos3β ·−1

2
c4r

= 0

(4.52)

We see that the partial derivatives of ∂H
∂r2

=−Ṙ2 with respect to the two angle variables γ and ϕ are zero at the
periodic solution. This can be explained by the fact that, looking at Fig. 3.3, an incremental positive change
in γ would move the particle m3 slightly upwards. As a result, slightly weaker upwards acceleration would be
exerted on particle m1, however a slightly stronger downwards acceleration would be exerted on particle m2.

The net result is that the rate of change of the relative distance r2 remains constant, hence ∂Ṙ2
∂γ

∣∣∣
γ(t )

= 0. This

is reflected in the equations by the fact that m1m3 acceleration terms get an opposite sign from the m2m3

acceleration terms in Eq. (4.50) and cancel each other out, where the same thing also happens with m1m4

and m2m4.
The same reasoning can be applied to the ϕ derivative, only now incremental increase in ϕ will move

the particle m4 slightly downwards. Because of the symmetry of the configuration, again m1m4 acceleration
terms cancel the m2m4 acceleration terms in Eq. (4.52).

We also need the derivatives with respect to the momentum variables:

∂2H

∂r2∂R2
= ∂2H

∂r2∂R3
= ∂2H

∂r2∂R4
= 0 (4.53)

∂2H

∂r2∂Φ
= 0 (4.54)

∂2H

∂r2∂Γ
=2

c −Γ

M2

1

r 3
2

(4.55)

at the periodic solution:
∂H

∂r2∂Γ

∣∣∣∣
γ(t )

= 2
M2c2

2ω

M2

1

c3
2 r 3

= 2ω

c2r 3 = 2ω

2yr 3 = ω

r 3 y
(4.56)

Clearly, the derivatives with respect to Ri and Φ are zero, since, from Eq. (3.63), ∂H
∂r2

= −Ṙ2 depends only on
gravitational force terms, which, in turn, depend only of the relative positions of the bodies, and the centrifu-
gal force term, which depends on the rotation rate of u2, implicit in c −Γ=Θ2. Thus, out of the momentum
variables, only Γ has an influence on Ṙ2.

Moving on to the r3 equation:

∂2H

∂r 2
3

= ∂

∂r3



− (Γ−Φ)2

M3

1

r 3
3

+ Gm1m3

κ3
1

(
r3 +M22r2 cosγ

)+ Gm1m4

κ3
2

(
M 2

33r3 +M33r4 cosϕ+M33Mc1r2 cosγ
)

+ Gm2m3

κ3
3

(
r3 −M12r2 cosγ

)+ Gm2m4

κ3
4

(
M 2

33r3 +M33r4 cosϕ+M33Mc2r2 cosγ
)

+ Gm3m4

κ3
5

(
M 2

c3r3 −Mc3r4 cosϕ
)


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=3
(Γ−Φ)2

M3

1

r 4
3

−3
Gm1m3

κ5
1

· (r3 +M22r2 cosγ
)2 + Gm1m3

κ3
1

−3
Gm1m4

κ5
2

· (M 2
33r3 +M33r4 cosϕ+M33Mc1r2 cosγ

)2 + Gm1m4

κ3
2

·M 2
33 (4.57)

−3
Gm2m3

κ5
3

· (r3 −M12r2 cosγ
)2 + Gm2m3

κ3
3

−3
Gm2m4

κ5
4

· (M 2
33r3 +M33r4 cosϕ+M33Mc2r2 cosγ

)2 + Gm2m4

κ3
4

·M 2
33

−3
Gm3m4

κ5
5

· (M 2
c3r3 −Mc3r4 cosϕ

)2 + Gm3m4

κ3
5

·M 2
c3

Evaluated at the periodic solution:

∂2H

∂r 2
3

∣∣∣∣∣
γ(t )

=3

(
M3c2

3ω
)2

M3

1

c4
3 r 4

−3
Gmm3

r 5 y5 cos5α · c2
3 r 2 + Gmm3

r 3 y3 cos3α

−3
Gmm4

r 5 y5 cos5β · (M 2
33c3r −M33c4r

)2 + Gmm4

r 3 y3 cos3β ·M 2
33

−3
Gmm3

r 5 y5 cos5α · c2
3 r 2 + Gmm3

r 3 y3 cos3α

−3
Gmm4

r 5 y5 cos5β · (M 2
33c3r −M33c4r

)2 + Gmm4

r 3 y3 cos3β ·M 2
33

−3
Gm3m4

r 5 y5
(
tanα+ tanβ

)5 · (M 2
c3c3r +Mc3c4r

)2 + Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·M 2
c3 (4.58)

=3M3
ω2

r 4 −6
Gmm3

r 3 y5 cos5α · y2 tan2α+2
Gmm3

r 3 y3 cos3α

−6
Gmm4

r 3 y5 cos5β · (M 2
33 y tanα−M33

(
M33 y tanα+ y tanβ

))2 +2
Gmm4

r 3 y3 cos3β ·M 2
33

−3
Gm3m4

r 3 y5
(
tanα+ tanβ

)5 · (M 2
c3 y tanα+Mc3

(
M33 y tanα+ y tanβ

))2

+ Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·M 2
c3

=3M3
ω2

r 4 −2
Gmm3

r 3 y3

(
3cos5α tan2α−cos3α

)−2
Gmm4

r 3 y3

(
3M 2

33 cos5β tan2β−M 2
33 cos3β

)
− Gm3m4

r 3 y3
(
tanα+ tanβ

)5

(
3
(
M 2

c3 tanα+Mc3
(
M33 tanα+ tanβ

))2 −M 2
c3

(
tanα+ tanβ

)2
)

=3M3
ω2

r 4 −2
Gmm3

r 3 y3

(
3cos3α

(
1−cos2α

)−cos3α
)−2

Gmm4

r 3 y3 M 2
33

(
3cos3β

(
1−cos2β

)−cos3β
)

− Gm3m4

r 3 y3 M 2
c3

tan2α
(
3M 2

c3 +6Mc3M33 +3M 2
33 −1

)+2tanα tanβ (3Mc3 +3M33 −1)+2tan2β(
tanα+ tanβ

)5

=3M3
ω2

r 4 −2
Gmm3

r 3 y3

(
2cos3α−3cos5α

)−2
Gmm4

r 3 y3 M 2
33

(
2cos3β−3cos5β

)
− Gm3m4

r 3 y3 M 2
c3

tan2α
(
3(Mc3 +M33)2 −1

)+2tanα tanβ (3(Mc3 +M33)−1)+2tan2β(
tanα+ tanβ

)5
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using the fact that Mc3 +M33 = M13 +M23 +M33 = 1 we get

∂2H

∂r 2
3

∣∣∣∣∣
γ(t )

=3M3
ω2

r 4 −2
Gmm3

r 3 y3

(
2cos3α−3cos5α

)−2
Gmm4

r 3 y3 M 2
33

(
2cos3β−3cos5β

)
− Gm3m4

r 3 y3 M 2
c3

2tan2α+4tanα tanβ+2tan2β(
tanα+ tanβ

)5

=
3M3

ω2

r 4 −2
Gmm3

r 3 y3

(
2cos3α−3cos5α

)−2
Gmm4

r 3 y3 M 2
33

(
2cos3β−3cos5β

)
−2

Gm3m4

r 3 y3 M 2
c3

(
tanα+ tanβ

)−3

(4.59)

Then, the derivative with respect to γ:

∂2H

∂r3∂γ
=− 3

2

Gm1m3

κ5
1

· (−2M22r2r3 sinγ
) · (r3 +M22r2 cosγ

)+ Gm1m3

κ3
1

· (−M22r2 sinγ
)

− 3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33Mc1r2r3 sinγ
) · (M 2

33r3 +M33r4 cosϕ+M33Mc1r2 cosγ
)

+ Gm1m4

κ3
2

· (−M33Mc1r2 sinγ
)

− 3

2

Gm2m3

κ5
3

· (2M12r2r3 sinγ
) · (r3 −M12r2 cosγ

)+ Gm2m3

κ3
3

· (M12r2 sinγ
)

− 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33Mc2r2r3 sinγ
) · (M 2

33r3 +M33r4 cosϕ+M33Mc2r2 cosγ
)

+ Gm2m4

κ3
4

· (−M33Mc2r2 sinγ
)

(4.60)
at the periodic solution:

∂2H

∂r3∂γ

∣∣∣∣
γ(t )

=3

2

Gmm3

r 5 y5 cos5α · (−c2c3r 2) · (c3r )+ Gmm3

r 3 y3 cos3α ·
(

1

2
c2r

)
3

2

Gmm4

r 5 y5 cos5β · (c2c4r 2 −M33c2c3r 2) · (M 2
33c3r −M33c4r

)+ Gmm4

r 3 y3 cos3β ·
(

1

2
M33c2r

)
− 3

2

Gmm3

r 5 y5 cos5α · (−c2c3r 2) · (c3r )+ Gmm3

r 3 y3 cos3α ·
(
−1

2
c2r

)
− 3

2

Gmm4

r 5 y5 cos5β · (c2c4r 2 −M33c2c3r 2) · (M 2
33c3r −M33c4r

)− Gmm4

r 3 y3 cos3β ·
(

1

2
M33c2r

)
= 0

(4.61)
The derivative with respect to r4:

∂2H

∂r3∂r4
=− 3

2

Gm1m4

κ5
2

· (2r4 +2Mc1r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (M 2

33r3 +M33r4 cosϕ+M33Mc1r2 cosγ
)

+ Gm1m4

κ3
2

· (M33 cosϕ
)

− 3

2

Gm2m4

κ5
4

· (2r4 +2Mc2r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (M 2

33r3 +M33r4 cosϕ+M33Mc2r2 cosγ
)

+ Gm2m4

κ3
4

· (M33 cosϕ
)

− 3

2

Gm3m4

κ5
5

· (2r4 −2Mc3r3 cosϕ
) · (M 2

c3r3 −Mc3r4 cosϕ
)+ Gm3m4

κ3
5

· (−Mc3 cosϕ
)

(4.62)
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at the periodic solution:

∂2H

∂r3∂r4

∣∣∣∣
γ(t )

=−3
Gmm4

r 5 y5 cos5β · (c4r −M33c3r ) · (M 2
33c3r −M33c4r

)+ Gmm4

r 3 y3 cos3β ·−M33

−3
Gmm4

r 5 y5 cos5β · (c4r −M33c3r ) · (M 2
33c3r −M33c4r

)+ Gmm4

r 3 y3 cos3β ·−M33

−3
Gm3m4

r 5 y5
(
tanα+ tanβ

)5 · (c4r +Mc3c3r ) · (M 2
c3c3r +Mc3c4r

)+ Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·Mc3

=6
Gmm4

r 3 y5 cos5β ·M33 (c4 −M33c3)2 −2
Gmm4

r 3 y3 cos3β ·M33

−3
Gm3m4

r 3 y5
(
tanα+ tanβ

)5 ·Mc3 (c4 +Mc3c3)2 + Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·Mc3

=6
Gmm4

r 3 y5 cos5β ·M33
(
M33 y tanα+ y tanβ−M33 y tanα

)2 −2
Gmm4

r 3 y3 cos3β ·M33

−3
Gm3m4

r 3 y5
(
tanα+ tanβ

)5 ·Mc3
(
M33 y tanα+ y tanβ+Mc3 y tanα

)2 + Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·Mc3

=6
Gmm4

r 3 y3 cos5β ·M33 tan2β−2
Gmm4

r 3 y3 cos3β ·M33

−3
Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·Mc3 + Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·Mc3

=2
Gmm4

r 3 y3 M33
(
3cos5β tan2β−cos3β

)−2
Gm3m4

r 3 y3

Mc3(
tanα+ tanβ

)3

= 2
Gmm4

r 3 y3 M33
(
2cos3β−3cos5β

)−2
Gm3m4

r 3 y3 Mc3
(
tanα+ tanβ

)−3

(4.63)
Next, the derivative w.r.t. ϕ:

∂2H

∂r3∂ϕ
=− 3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (M 2

33r3 +M33r4 cosϕ+M33Mc1r2 cosγ
)

+ Gm1m4

κ3
2

· (−M33r4 sinϕ
)

− 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (M 2

33r3 +M33r4 cosϕ+M33Mc2r2 cosγ
)

+ Gm2m4

κ3
4

· (−M33r4 sinϕ
)

− 3

2

Gm3m4

κ5
5

· (2Mc3r3r4 sinϕ
) · (M 2

c3r3 −Mc3r4 cosϕ
)+ Gm3m4

κ3
5

· (Mc3r4 sinϕ
)

(4.64)
at the periodic solution

∂2H

∂r3∂ϕ

∣∣∣∣
γ(t )

=3
Gmm4

r 5 y5 cos5β ·
(

1

2
c2c4r 2

)
· (M 2

33c3r −M33c4r
)+0

+3
Gmm4

r 5 y5 cos5β ·
(
−1

2
c2c4r 2

)
· (M 2

33c3r −M33c4r
)+0

+0+0 = 0

(4.65)

Then, for the momentum variables we have:

∂2H

∂r3∂R2
= ∂2H

∂r3∂R3
= ∂2H

∂r3∂R4
= 0 (4.66)

∂2H

∂r3∂Γ
=−2

Γ−Φ

M3

1

r 3
3

(4.67)
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∂2H

∂r3∂Γ

∣∣∣∣
γ(t )

=−2
M3c2

3ω

M3

1

c3
3 r 3

=−2
ω

c3r 3 = −2
ω

r 3 y
tan−1α (4.68)

∂2H

∂r3∂Φ
= 2

Γ−Φ

M3

1

r 3
3

(4.69)

∂2H

∂r3∂Φ

∣∣∣∣
γ(t )

= 2
ω

r 3 y
tan−1α (4.70)

Once again we find all derivatives with respect to Ri are zero, since Eq. (3.64) depends only on the gravitational
forces, which are conservative and, thus, depend only on the positions, and on the centrifugal force, which,
in this case, depends on the rotation rate of u3, implicit in Γ−Φ=Θ3.

Now the ∂H
∂γ terms:

∂2H

∂γ2 = ∂

∂γ


−Gm1m3

κ3
1

M22r2r3 sinγ− Gm1m4

κ3
2

(
Mc1r2r4 sin(γ+ϕ)+M33Mc1r2r3 sinγ

)
+ Gm2m3

κ3
3

M12r2r3 sinγ− Gm2m4

κ3
4

(
Mc2r2r4 sin(γ+ϕ)+M33Mc2r2r3 sinγ

)


=3

2

Gm1m3

κ5
1

· (−2M22r2r3 sinγ
) · (M22r2r3 sinγ

)− Gm1m3

κ3
1

M22r2r3 cosγ

+ 3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33Mc1r2r3 sinγ
) · (Mc1r2r4 sin(γ+ϕ)+M33Mc1r2r3 sinγ

)
− Gm1m4

κ3
2

(
Mc1r2r4 cos(γ+ϕ)+M33Mc1r2r3 cosγ

)
− 3

2

Gm2m3

κ5
3

· (2M12r2r3 sinγ
) · (M12r2r3 sinγ

)+ Gm2m3

κ3
3

M12r2r3 cosγ

+ 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33Mc2r2r3 sinγ
) · (Mc2r2r4 sin(γ+ϕ)+M33Mc2r2r3 sinγ

)
− Gm2m4

κ3
4

· (Mc2r2r4 cos(γ+ϕ)+M33Mc2r2r3 cosγ
)

(4.71)
at the periodic solution:

∂2H

∂γ2

∣∣∣∣
γ(t )

=−3
Gmm3

r 5 y5 cos5α ·
(
−1

2
c2c3r 2

)2

−3
Gmm4

r 5 y5 cos5β ·
(

1

2
c2c4r 2 − 1

2
M33c2c3r 2

)2

−3
Gmm3

r 5 y5 cos5α ·
(
−1

2
c2c3r 2

)2

−3
Gmm4

r 5 y5 cos5β ·
(
−1

2
c2c4r 2 + 1

2
M33c2c3r 2

)2

=− 3

2

Gmm3

r y5 cos5α · (2y y tanα
)2 − 3

2

Gmm4

r y5 cos5β · (2y y
(
M33 tanα+ tanβ

)−M332y y tanα
)2

= −6
Gmm3

r y
cos3αsin2α−6

Gmm4

r y
cos3βsin2β

(4.72)
Now the derivative w.r.t. r4:

∂2H

∂γ∂r4
=3

2

Gm1m4

κ5
2

· (2r4 +2Mc1r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (Mc1r2r4 sin(γ+ϕ)+M33Mc1r2r3 sinγ

)
− Gm1m4

κ3
2

·Mc1r2 sin(γ+ϕ)

+ 3

2

Gm2m4

κ5
4

· (2r4 +2Mc2r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (Mc2r2r4 sin(γ+ϕ)+M33Mc2r2r3 sinγ

)
− Gm2m4

κ3
4

·Mc2r2 sin(γ+ϕ)

(4.73)
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at the periodic solution:

∂2H

∂γ∂r4

∣∣∣∣
γ(t )

=3
Gmm4

r 5 y5 cos5β · (c4r −M33c3r ) ·
(

1

2
c2c4r 2 −M33

1

2
c2c3r 2

)
− Gmm4

r 3 y3 cos3β · 1

2
c2r

+3
Gmm4

r 5 y5 cos5β · (c4r −M33c3r ) ·
(
−1

2
c2c4r 2 +M33

1

2
c2c3r 2

)
− Gmm4

r 3 y3 cos3β ·−1

2
c2r

= 0

(4.74)

Next, the ϕ term:

∂2H

∂γ∂ϕ
=3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (Mc1r2r4 sin(γ+ϕ)+M33Mc1r2r3 sinγ

)
− Gm1m4

κ3
2

·Mc1r2r4 cos(γ+ϕ)

+ 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (Mc2r2r4 sin(γ+ϕ)+M33Mc2r2r3 sinγ

)
− Gm2m4

κ3
4

·Mc2r2r4 cos(γ+ϕ)

(4.75)
at the periodic solution:

∂2H

∂γ∂ϕ

∣∣∣∣
γ(t )

=−3
Gmm4

r 5 y5 cos5β ·
(

1

2
c2c4r 2

)
·
(

1

2
c2c4r 2 −M33

1

2
c2c3r 2

)
−0

−3
Gmm4

r 5 y5 cos5β ·
(
−1

2
c2c4r 2

)
·
(
−1

2
c2c4r 2 +M33

1

2
c2c3r 2

)
−0

=− 3

2

Gmm4

r y5 cos5β · c2
2 c4 · (c4 −M33c3)

=− 3

2

Gmm4

r y5 cos5β ·4y2 (
M33 tanα+ tanβ

)
y · ((M33 tanα+ tanβ

)
y −M33 y tanα

)
= −6

Gmm4

r y
cos4βsinβ

(
M33 tanα+ tanβ

)

(4.76)

Since ∂H
∂γ =−Γ̇ does not depend on no momentum variables (Eq. (3.67)) we have

∂2H

∂γ∂R2
= ∂2H

∂γ∂R3
= ∂γ∂Γ= ∂2H

∂γ∂R4
= ∂2H

∂γ∂Φ
= 0 (4.77)

Moving on, we have for the ∂H
∂r4

terms:

∂2H

∂r 2
4

= ∂

∂r4


− Φ2

M4

1

r 3
4

+Gm1m4

κ3
2

(
r4 +Mc1r2 cos(γ+ϕ)+M33r3 cosϕ

)
+Gm2m4

κ3
4

(
r4 +Mc2r2 cos(γ+ϕ)+M33r3 cosϕ

)+ Gm3m4

κ3
5

(
r4 −Mc3r3 cosϕ

)


= 3
Φ2

M4

1

r 4
4

−3
Gm1m4

κ5
2

(
r4 +Mc1r2 cos(γ+ϕ)+M33r3 cosϕ

)2 + Gm1m4

κ3
2

−3
Gm2m4

κ5
4

(
r4 +Mc2r2 cos(γ+ϕ)+M33r3 cosϕ

)2 + Gm2m4

κ3
4

−3
Gm3m4

κ5
5

(
r4 −Mc3r3 cosϕ

)2 + Gm3m4

κ3
5

(4.78)



44 4. Convex cases

evaluated at the periodic solution:

∂2H

∂r 2
4

∣∣∣∣∣
γ(t )

=3
M 2

4 c4
4ω

2

M4

1

c4
4 r 4

−3
Gmm4

r 5 y5 cos5β (c4r −M33c3r )2 + Gmm4

r 3 y3 cos3β

−3
Gmm4

r 5 y5 cos5β (c4r −M33c3r )2 + Gmm4

r 3 y3 cos3β

−3
Gm3m4

r 5 y5
(
tanα+ tanβ

)5 (c4r +Mc3c3r )2 + Gm3m4

r 3 y3
(
tanα+ tanβ

)3

=3
M4ω

2

r 4 −6
Gmm4

r 3 y5 cos5β
(
y M33 tanα+ y tanβ−M33 y tanα

)2 +2
Gmm4

r 3 y3 cos3β

−3
Gm3m4

r 3 y5
(
tanα+ tanβ

)5

(
y M33 tanα+ y tanβ+Mc3 y tanα

)2 + Gm3m4

r 3 y3
(
tanα+ tanβ

)3

=3
M4ω

2

r 4 −6
Gmm4

r 3 y3 cos5β tan2β+2
Gmm4

r 3 y3 cos3β−3
Gm3m4

r 3 y3
(
tanα+ tanβ

)3 + Gm3m4

r 3 y3
(
tanα+ tanβ

)3

=3M4
ω2

r 4 −2
Gmm4

r 3 y3

(
3cos5β tan2β−cos3β

)−2
Gm3m4

r 3 y3
(
tanα+ tanβ

)3

= 3M4
ω2

r 4 −2
Gmm4

r 3 y3

(
2cos3β−3cos5β

)−2
Gm3m4

r 3 y3

(
tanα+ tanβ

)−3

(4.79)
Next, we have the derivative w.r.t. ϕ:

∂2H

∂r4∂ϕ
=− 3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (r4 +Mc1r2 cos(γ+ϕ)+M33r3 cosϕ

)
+ Gm1m4

κ3
2

· (−Mc1r2 sin(γ+ϕ)−M33r3 sinϕ
)

− 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (r4 +Mc2r2 cos(γ+ϕ)+M33r3 cosϕ

)
+ Gm2m4

κ2
4

· (−Mc2r2 sin(γ+ϕ)−M33r3 sinϕ
)

− 3

2

Gm3m4

κ5
5

· (2Mc3r3r4 sinϕ
) · (r4 −Mc3r3 cosϕ

)+ Gm3m4

κ3
5

·Mc3r3 sinϕ

(4.80)

at the periodic solution:

∂2H

∂r4∂ϕ

∣∣∣∣
γ(t )

=−3
Gmm4

r 5 y5 cos5β ·
(
−1

2
c2c4r 2

)
· (c4r −M33c3r )+ Gmm4

r 3 y3 cos3β ·
(
−1

2
c2r

)
−3

Gmm4

r 5 y5 cos5β ·
(

1

2
c2c4r 2

)
· (c4r −M33c3r )+ Gmm4

r 3 y3 cos3β ·
(

1

2
c2r

)
−0+0

= 0

(4.81)

Similarly to the situation for ∂H
∂r2

and ∂H
∂r3

, ∂H
∂r4

= −Ṙ4 (Eq. (3.65)) does not depend on no momentum vari-
ables except Φ=Θ4 through the centrifugal force term, which depends on the rotation rate of u4.

∂2H

∂r4∂R2
= ∂2H

∂r4∂R3
= ∂2H

∂r4∂R4
= ∂2H

∂r4∂Γ
= 0 (4.82)

∂2H

∂r4∂Φ
=−2

Φ

M4

1

r 3
4

(4.83)

∂2H

∂r4∂Φ

∣∣∣∣
γ(t )

=−2
M4c2

4ω

M4
· 1

c3
4 r 3

=−2
ω

c4r 3 = −2
ω

r 3 y

(
M33 tanα+ tanβ

)−1 (4.84)
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Finally, we compute the linear coefficients for the ∂H
∂ϕ equation. Starting with the derivative w.r.t. ϕ:

∂2H

∂ϕ2 = ∂

∂ϕ


−Gm1m4

κ3
2

(
Mc1r2r4 sin(γ+ϕ)+M33r3r4 sinϕ

)
−Gm2m4

κ3
4

(
Mc2r2r4 sin(γ+ϕ)+M33r3r4 sinϕ

)+ Gm3m4

κ3
5

Mc3r3r4 sinϕ


= 3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (Mc1r2r4 sin(γ+ϕ)+M33r3r4 sinϕ

)
− Gm1m4

κ3
2

· (Mc1r2r4 cos(γ+ϕ)+M33r3r4 cosϕ
)

+ 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (Mc2r2r4 sin(γ+ϕ)+M33r3r4 sinϕ

)
− Gm2m4

κ3
4

· (Mc2r2r4 cos(γ+ϕ)+M33r3r4 cosϕ
)

− 3

2

Gm3m4

κ5
5

·2Mc3r3r4 sinϕ ·Mc3r3r4 sinϕ+ Gm3m4

κ3
5

·Mc3r3r4 cosϕ

=−3
Gm1m4

κ5
2

· (Mc1r2r4 sin(γ+ϕ)+M33r3r4 sinϕ
)2 − Gm1m4

κ3
2

· (Mc1r2r4 cos(γ+ϕ)+M33r3r4 cosϕ
)

−3
Gm2m4

κ5
4

· (Mc2r2r4 sin(γ+ϕ)+M33r3r4 sinϕ
)2 − Gm2m4

κ3
4

· (Mc2r2r4 cos(γ+ϕ)+M33r3r4 cosϕ
)

−3
Gm3m4

κ5
5

· (Mc3r3r4 sinϕ
)2 + Gm3m4

κ3
5

·Mc3r3r4 cosϕ

(4.85)
at the periodic solution:

∂2H

∂ϕ2

∣∣∣∣
γ(t )

=−3
Gmm4

r 5 y5 cos5β ·
(

1

2
c2c4r 2

)2

− Gmm4

r 3 y3 cos3β · (−M33c3c4r 2)
−3

Gmm4

r 5 y5 cos5β ·
(
−1

2
c2c4r 2

)2

− Gmm4

r 3 y3 cos3β · (−M33c3c4r 2)
−0− Gm3m4

r 3 y3
(
tanα+ tanβ

)3 ·Mc3c3c4r 2

=− 3

2

Gmm4

r y5 cos5β · (2y y
(
M33 tanα+ tanβ

))2 +2
Gmm4

r y3 cos3β ·M33 y tanαy
(
M33 tanα+ tanβ

)
− Gm3m4

r y3
(
tanα+ tanβ

)3 ·Mc3 y tanαy
(
M33 tanα+ tanβ

)
=−6

Gmm4

r y
cos5β · (M33 tanα+ tanβ

)2 +2
Gmm4

r y
cos3β ·M33 tanα

(
M33 tanα+ tanβ

)
− Gm3m4

r y
(
tanα+ tanβ

)3 ·Mc3 tanα
(
M33 tanα+ tanβ

)
=2

Gmm4

r y

(
M33 tanα+ tanβ

)
cos3β

(−3cos2β
(
M33 tanα+ tanβ

)+M33 tanα
)

− Gm3m4

r y
(
tanα+ tanβ

)3 ·Mc3 tanα
(
M33 tanα+ tanβ

)

=
2

Gmm4

r y

(
M33 tanα+ tanβ

)
cos3β

(
M33 tanα

(
1−3cos2β

)−3cosβsinβ
)

− Gm3m4

r y
(
tanα+ tanβ

)3 ·Mc3 tanα
(
M33 tanα+ tanβ

)
(4.86)
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Same as in the ∂H
∂γ case, ∂H

∂ϕ =−Φ̇ (Eq. (3.68)) contains no momentum terms and, therefore:

∂2H

∂γ∂R2
= ∂2H

∂γ∂R3
= ∂2H

∂γ∂Γ
= ∂2H

∂γ∂R4
= ∂2H

∂γ∂Φ
= 0 (4.87)

Now we move on to the momentum equations:

∂2H

∂R2
2

= ∂

∂R2

[
R2

M2

]
= 1

M2
(4.88)

∂2H

∂R2∂R3
= ∂2H

∂R2∂Γ
= ∂2H

∂R2∂R4
= ∂2H

∂R2∂Φ
= 0 (4.89)

∂2H

∂R2
3

= ∂

∂R3

[
R3

M3

]
= 1

M3
(4.90)

∂2H

∂R3∂Γ
= ∂2H

∂R3∂R4
= ∂2H

∂R3∂Φ
= 0 (4.91)

∂2H

∂Γ2 = ∂

∂Γ

[
Γ− c

M2r 2
2

+ Γ−Φ

M3r 2
3

]
= 1

M2r 2
2

+ 1

M3r 2
3

= 1

M2c2
2 r 2

+ 1

M3c2
3 r 2

= 1

4M2r 2 y2 + 1

M3r 2 y2 tan−2α (4.92)

∂2H

∂Γ∂R4
= 0 (4.93)

∂2H

∂Γ∂Φ
= ∂

∂Φ

[
Γ− c

M2r 2
2

+ Γ−Φ

M3r 2
3

]
=− 1

M3r 2
3

=− 1

M3c2
3 r 2

= − 1

M3r 2 y2 tan−2α (4.94)

∂2H

∂R2
4

= ∂

∂R4

[
R4

M4

]
= 1

M4
(4.95)

∂2H

∂R4∂Φ
= 0 (4.96)

∂2H

∂Φ2 = ∂

∂Φ

[
Φ−Γ

M3r 2
3

+ Φ

M4r 2
4

]
= 1

M3r 2
3

+ 1

M4r 2
4

= 1

M3c2
3 r 2

+ 1

M4c2
4 r 2

= 1

r 2

(
1

M3c2
3

+ 1

M4c2
4

)
= 1

r 2

(
1

M3 y2 tan2α
+ 1

M4 y2
(
M33 tanα+ tanβ

)2

)

= 1

r 2 y2

(
1

M3
tan−2α+ 1

M4

(
M33 tanα+ tanβ

)−2
)

(4.97)

Notice that the rates of change of the relative distances ṙ2 = HR2 , ṙ3 = HR3 , ṙ4 = HR4 only depend on the
respective momenta R2, R3 and R4, while both angular rates γ̇= HΓ and ϕ̇= HΦ depend on both Γ and Φ.

Now that all individual terms have been developed and evaluated at the periodic solution γ(t ), we refer
to Eq. (4.41) to produce the matrix of coefficients of the linearized system of equations of motion:

JD2H =



∂2 H
∂R2∂r2

∂2 H
∂R2∂r3

∂2 H
∂R2∂γ

∂2 H
∂R2∂r4

∂2 H
∂R2∂ϕ

∂2 H
∂R2

2

∂2 H
∂R2∂R3

∂2 H
∂R2∂Γ

∂2 H
∂R2∂R4

∂2 H
∂R2∂Φ

∂2 H
∂R3∂r2

∂2 H
∂R3∂r3

∂2 H
∂R3∂γ

∂2 H
∂R3∂r4

∂2 H
∂R3∂ϕ

∂2 H
∂R3∂R2

∂2 H
∂R2

3

∂2 H
∂R3∂Γ

∂2 H
∂R3∂R4

∂2 H
∂R3∂Φ

∂2 H
∂Γ∂r2

∂2 H
∂Γ∂r3

∂2 H
∂Γ∂γ

∂2 H
∂Γ∂r4

∂2 H
∂Γ∂ϕ

∂2 H
∂Γ∂R2

∂2 H
∂Γ∂R3

∂2 H
∂Γ2

∂2 H
∂Γ∂R4

∂2 H
∂Γ∂Φ

∂2 H
∂R4∂r2

∂2 H
∂R4∂r3

∂2 H
∂R4∂γ

∂2 H
∂R4∂r4

∂2 H
∂R4∂ϕ

∂2 H
∂R4∂R2

∂2 H
∂R4∂R3

∂2 H
∂R4∂Γ

∂2 H
∂R2

4

∂2 H
∂R4∂Φ

∂2 H
∂Φ∂r2

∂2 H
∂Φ∂r3

∂2 H
∂Φ∂γ

∂2 H
∂Φ∂r4

∂2 H
∂Φ∂ϕ

∂2 H
∂Φ∂R2

∂2 H
∂Φ∂R3

∂2 H
∂Φ∂Γ

∂2 H
∂Φ∂R4

∂2 H
∂Φ2

− ∂2 H
∂r 2

2
− ∂2 H

∂r2∂r3
− ∂2 H

∂r2∂γ
− ∂2 H

∂r2∂r4
− ∂2 H

∂r2∂ϕ
− ∂2 H

∂r2∂R2
− ∂2 H

∂r2∂R3
− ∂2 H

∂r2∂Γ
− ∂2 H

∂r2∂R4
− ∂2 H

∂r2∂Φ

− ∂2 H
∂r3∂r2

− ∂2 H
∂r 2

3
− ∂2 H

∂r3∂γ
− ∂2 H

∂r3∂r4
− ∂2 H

∂r3∂ϕ
− ∂2 H

∂r3∂R2
− ∂2 H

∂r3∂R3
− ∂2 H

∂r3∂Γ
− ∂2 H

∂r3∂R4
− ∂2 H

∂r3∂Φ

− ∂2 H
∂γ∂r2

− ∂2 H
∂γ∂r3

− ∂2 H
∂γ2 − ∂2 H

∂γ∂r4
− ∂2 H

∂γ∂ϕ − ∂2 H
∂γ∂R2

− ∂2 H
∂γ∂R3

− ∂2 H
∂γ∂Γ − ∂2 H

∂γ∂R4
− ∂2 H

∂γ∂Φ

− ∂2 H
∂r4∂r2

− ∂2 H
∂r4∂r3

− ∂2 H
∂r4∂γ

− ∂2 H
∂r 2

4
− ∂2 H

∂r4∂ϕ
− ∂2 H

∂r4∂R2
− ∂2 H

∂r4∂R3
− ∂2 H

∂r4∂Γ
− ∂2 H

∂r4∂R4
− ∂2 H

∂r4∂Φ

− ∂2 H
∂ϕ∂r2

− ∂2 H
∂ϕ∂r3

− ∂2 H
∂ϕ∂γ − ∂2 H

∂ϕ∂r4
− ∂2 H

∂ϕ2 − ∂2 H
∂ϕ∂R2

− ∂2 H
∂ϕ∂R3

− ∂2 H
∂ϕ∂Γ − ∂2 H

∂ϕ∂R4
− ∂2 H

∂ϕ∂Φ


(4.98)
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Substituting the terms derived in this section we get the coefficient matrix evaluated at γ(t ):

JD2H(γ(t )) =

0 0 0 0 0 1
M2

0 0 0 0

0 0 0 0 0 0 1
M3

0 0 0
a0 −a1 0 0 0 0 0 HΓ2 0 −a3

0 0 0 0 0 0 0 0 1
M4

0
0 a1 0 −a2 0 0 0 −a3 0 HΦ2

−Hr 2
2

−Hr2,r3 0 −Hr2,r4 0 0 0 −a0 0 0

−Hr3,r2 −Hr 2
3

0 −Hr3,r4 0 0 0 a1 0 −a1

0 0 −Hγ2 0 −Hγ,ϕ 0 0 0 0 0
−Hr4,r2 −Hr4,r3 0 −Hr 2

4
0 0 0 0 0 a2

0 0 −Hϕ,γ 0 −Hϕ2 0 0 0 0 0



(4.99)

where

a0 = 2
ω

r 3

1

c2
= ω

r 3 y
(4.100)

a1 = 2
ω

r 3

1

c3
= 2

ω

r 3 y
tan−1α (4.101)

a2 = 2
ω

r 3

1

c4
= 2ω

r 3 y
(
M33 tanα+ tanβ

) (4.102)

a3 = 1

M3r 2c2
3

= 1

M3r 2 y2 tan2α
(4.103)

HΓ2 = 1

r 2 y2

(
1

4M2
+ 1

M3 tan2α

)
(4.104)

HΦ2 = 1

r 2 y2

(
1

M3 tan2α
+ 1

M4
(
M33 tanα+ tanβ

)2

)
(4.105)

−Hr 2
2
=−3M2

ω2

r 4 + 1

4

Gmm

r 3 y3

+ 1

2

Gmm3

r 3 y3

(
3cos5α−cos3α

)+ 1

2

Gmm4

r 3 y3

(
3cos5β−cos3β

) (4.106)

−Hr2,r3 =−Hr3,r2 = 3
Gmm3

r 3 y3 cos4αsinα−3
Gmm4

r 3 y3 M33 cos4βsinβ (4.107)

−Hr2,r4 =−Hr4,r2 = 3
Gmm4

r 3 y3 cos4βsinβ (4.108)

−Hr 2
3
=−3M3

ω2

r 4 +2
Gmm3

r 3 y3

(
2cos3α−3cos5α

)
+2

Gmm4

r 3 y3 M 2
33

(
2cos3β−3cos5β

)+2
Gm3m4

r 3 y3 M 2
c3

(
tanα+ tanβ

)−3
(4.109)

−Hr3,r4 =−Hr4,r3 =−2
Gmm4

r 3 y3 M33
(
2cos3β−3cos5β

)+2
Gm3m4

r 3 y3 Mc3
(
tanα+ tanβ

)−3 (4.110)

−Hγ2 = 6
Gmm3

r y
cos3αsin2α+6

Gmm4

r y
cos3βsin2β (4.111)

−Hγ,ϕ =−Hϕ,γ = 6
Gmm4

r y
cos4βsinβ

(
M33 tanα+ tanβ

)
(4.112)

−Hr 2
4
=−3M4

ω2

r 4 +2
Gmm4

r 3 y3

(
2cos3β−3cos5β

)+2
Gm3m4

r 3 y3

(
tanα+ tanβ

)−3 (4.113)

−Hϕ2 =−2
Gmm4

r y

(
M33 tanα+ tanβ

)
cos3β

(
M33 tanα

(
1−3cos2β

)−3cosβsinβ
)

+ Gm3m4

r y
(
tanα+ tanβ

)3 ·Mc3 tanα
(
M33 tanα+ tanβ

) (4.114)
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Keeping in mind that y3 ∝Gm, the coefficients have the form:

HΓ2 = 1

mr 2 y2 KΓ2 (α,β) = 1

mω4 y2 (1+e cosθ)2 KΓ2 (α,β)

HΦ2 = 1

mr 2 y2 KΦ2 (α,β) = 1

mω4 y2 (1+e cosθ)2 KΦ2 (α,β)

−Hr 2
2
= m

r 3

[
Kr 2

2
(α,β)+ ω2

r
Wr 2

2
(α,β)

]
= m

ω6 (1+e cosθ)3
[

Kr 2
2

(α,β)+Wr 2
2

(α,β) (1+e cosθ)
]

−Hr2,r3 =
m

r 3 Kr2,r3 (α,β) = m

ω6 (1+e cosθ)3 Kr2,r3 (α,β)

−Hr2,r4 =
m

r 3 Kr2,r4 (α,β) = m

ω6 (1+e cosθ)3 Kr2,r4 (α,β)

−Hr 2
3
= m

r 3

[
Kr 2

3
(α,β)+ ω2

r
Wr 2

3
(α,β)

]
= m

ω6 (1+e cosθ)3
[

Kr 2
3

(α,β)+Wr 2
3

(α,β) (1+e cosθ)
]

−Hr3,r4 =
m

r 3 Kr3,r4 (α,β) = m

ω6 (1+e cosθ)3 Kr3,r4 (α,β)

−Hγ2 = Gm2

r y
Kγ2 (α,β) = Gm2

ω2 y
(1+e cosθ)Kγ2 (α,β)

−Hγ,ϕ = Gm2

r y
Kγ,ϕ(α,β) = Gm2

ω2 y
(1+e cosθ)Kγ,ϕ(α,β)

−Hr 2
4
= m

r 3

[
Kr 2

4
(α,β)+ ω2

r
Wr 2

4
(α,β)

]
= m

ω6 (1+e cosθ)3
[

Kr 2
4

(α,β)+Wr 2
4

(α,β) (1+e cosθ)
]

−Hϕ2 = Gm2

r y
Kϕ2 (α,β) = Gm2

ω2 y
(1+e cosθ)Kϕ2 (α,β)

(4.115)

4.4. Further reduction
Having linearized the system, there is more room for reduction and simplification, but we need a few con-
cepts from the theory of linear Hamiltonian systems first.

To start, a matrix A is called Hamiltonian if AT J + J A = 0 holds [17], where J is the canonical matrix,
as defined in Eq. (4.37). If and only if A satisfies A = JR, where R is a symmetric matrix, is A Hamiltonian,
according to Theorem 2.1.1. in [17]. Notice that the Hessian matrix D2H(γ(t )) in Eq. (4.42) is symmetric,
therefore the matrix of coefficients of the linearized system JD2H(γ(t )) is Hamiltonian. A linear system of
differential equations, whose matrix of coefficients is Hamiltonian (such as our system Eq. (4.41)) is known
as a linear Hamiltonian system.

Next, consider a linear periodic system of differential equations

ż = A(t )z (4.116)

with A(t +T ) = A(t ) for all t ∈ R and let Z (t ) be the fundamental matrix solution of Eq. (4.116) that satisfies
Z (0) = I . Then, Z (t +T ) = Z (t )Z (T ) holds for all t ∈R and Z (T ) is called the monodromy matrix of Eq. (4.116)
[17], while the eigenvalues of Z (T ) are called the characteristic multipliers of Eq. (4.116) [17].

The values of the characteristic multipliers are indicators of the behaviour of the solutions [17]. To see this,
consider a characteristic multiplier ρ and its associated eigenvector s. x̃(t ) = Z (t )s is a solution of Eq. (4.116).
Then [33]:

x̃(t +T ) = Z (t +T )s = Z (t )Z (T )s = Z (t )ρs = x̃(t )ρ (4.117)

Therefore, |ρ| < 1 indicates a contraction of the solution after one period, |ρ| > 1 indicates expansion and |ρ| =
1 indicates an unchanged magnitude. Because of this, the characteristic multipliers can tell us something
about the stability of the system.

A symplectic matrix T is one, for which T T JT = J holds, where J is, again, the canonical matrix [17]. An
essential fact about linear Hamiltonian systems is that their fundamental matrix solutions are symplectic for
all t (Theorem 2.1.3. in [17]) and, as a consequence, so are their monodromy matrices. The monodromy
matrix of the linearized Hamiltonian system Eq. (4.41) is, then, also symplectic. There are many well known,
useful properties of Hamiltonian and symplectic matrices that will be instrumental in further analysis of the
linearized problem.
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The linearized system still has two +1 characteristic multipliers left. One of them is because of the fact
that, as mentioned in Chapter 3, first integrals show up as +1 eigenvalues of the monodromy matrix [27] and
we have not eliminated the energy intergral, as explained in Section 3.6. The second one stems from the fact
that the derivative of the periodic solution γ̇(t ) satisfies the linearized equations Eq. (4.41). To show this fact,
we write the equations of motion at the periodic solution as

γ̇(t ) = JD H(γ(t )) (4.118)

where D H(γ(t )) is the gradient of the Hamiltonian evaluated at γ(t ) and J is the canonical matrix (it can be
checked that this produces Hamilton’s equations in vector form). Now taking the derivative on both sides we
get (Jacobian matrix of the gradient of a function is the Hessian of that function)

γ̈(t ) = JD2H(γ(t ))γ̇(t ) (4.119)

which shows that the time derivative of the periodic solution γ̇(t ) satisfies the linearized equations Eq. (4.41).
Note that, while it might be tempting to think that the periodic solutionγ(t ) satisfies the linearized variational
equations Eq. (4.41), make no mistake - it does not. γ(t ) is a periodic solution of the full equations of motion
of our four-body system, around which we have linearized to arrive at Eq. (4.41). In the variational equations
γ(t ) is represented by the zero vector solution (no variation from the solution), while γ̇(t ) is now a non-trivial
periodic solution instead of γ(t ).

Having established this, let Ψ(t ) be the fundamental solution of the linearized system Eq. (4.41) with
Ψ(0) = I and let Ψ(T ) then be the monodromy matrix, where T is the period of our periodic solution γ̇(t ),
which, in turn, can be expressed as γ̇(t ) =Ψ(t )γ̇(0). Then,

γ̇(t +T ) =Ψ(t +T )γ̇(0) =Ψ(t )Ψ(T )γ̇(0) =Ψ(t )γ̇(0) = γ̇(t ) (4.120)

since γ̇(t ) is T -periodic. So, we find thatΨ(T )γ̇(0) = 1γ̇(0) must hold, which requires the multiplier associated
to the eigenvector γ̇(0) to have value +1.

In this section we use a property of Hamiltonian matrices to decouple the linearized system such that
the 2×2 system with the remaining +1 multipliers is separated from the 8×8 system which determines the
stability. The procedure to achieve this is from [27] and we anticipate the separation of multipliers to be
produced by the decoupling since an analogous procedure for three bodies produces the desired result in
[27]. By isolating only the stability-determining part of the system we simplify the problem, but we also get a
clearer view of the variables that actually matter for stability.

Using the fact that for the Kepler orbit we have

r̈ = ω2

r 3 − 1

r 2
...
r =

(
−3ω2

r 4 + 2

r 3

)
ṙ (4.121)

we take the time derivative of γ(t ) (as defined in Eq. (4.38)) to get

γ̇=



c2ṙ
c3ṙ

0
c4ṙ

0
M2c2r̈
M3c3r̈

0
M4c4r̈

0


γ̈=



c2r̈
c3r̈

0
c4r̈

0

M2c2

(
− 3ω2

r 4 + 2
r 3

)
ṙ

M3c3

(
− 3ω2

r 4 + 2
r 3

)
ṙ

0

M4c4

(
− 3ω2

r 4 + 2
r 3

)
ṙ

0



(4.122)
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Combining Eqs. (4.99) to (4.102) and (4.122) we find that

JD2H(γ(t ))γ̇=



1
M2

M2c2r̈
1

M3
M3c3r̈

2ω
c2r 3 c2ṙ − 2ω

c3r 3 c3ṙ
1

M4
M4c4r̈

2ω
c3r 3 c3ṙ − 2ω

c4r 3 c4ṙ

−Hr 2
2

c2ṙ −Hr2,r3 c3ṙ −Hr2,r4 c4ṙ

−Hr3,r2 c2ṙ −Hr 2
3

c3ṙ −Hr3,r4 c4ṙ

0
−Hr4,r2 c2ṙ −Hr4,r3 c3ṙ −Hr 2

4
c4ṙ

0



=



c2r̈
c3r̈

0
c4r̈

0
−Hr 2

2
c2ṙ −Hr2,r3 c3ṙ −Hr2,r4 c4ṙ

−Hr3,r2 c2ṙ −Hr 2
3

c3ṙ −Hr3,r4 c4ṙ

0
−Hr4,r2 c2ṙ −Hr4,r3 c3ṙ −Hr 2

4
c4ṙ

0


(4.123)

According to Eqs. (4.119) and (4.122) we should have

−Hr 2
2

c2ṙ −Hr2,r3 c3ṙ −Hr2,r4 c4ṙ = M2c2

(
−3ω2

r 4 + 2

r 3

)
ṙ

−Hr3,r2 c2ṙ −Hr 2
3

c3ṙ −Hr3,r4 c4ṙ = M3c3

(
−3ω2

r 4 + 2

r 3

)
ṙ

−Hr4,r2 c2ṙ −Hr4,r3 c3ṙ −Hr 2
4

c4ṙ = M4c4

(
−3ω2

r 4 + 2

r 3

)
ṙ

(4.124)

Here we verify that this is indeed the case. Using

−Hr 2
2
=−3M2

ω2

r 4 +2
Gmm

r 3c3
2

+4
Gmm3

r 3c3
2

(
3cos5α−cos3α

)+4
Gmm4

r 3c3
2

(
3cos5β−cos3β

)
−Hr2,r3 = 3

Gmm3

r 3c3
3

cosαsin4α−3
Gmm4

r 3c3
3

M33 cos4βsinβ tan3α

−Hr2,r4 = 3
Gmm4

r 3c3
4

cos4βsinβ
(
M33 tanα+ tanβ

)3

and Eqs. (4.20) and (4.34), we have

−Hr 2
2

c2ṙ −Hr2,r3 c3ṙ −Hr2,r4 c4ṙ =

=−3M2
ω2

r 4 c2ṙ +2
Gmm

r 3c2
2

ṙ +4
Gmm3

r 3c2
2

(
3cos5α−cos3α

)
ṙ +4

Gmm4

r 3c2
2

(
3cos5β−cos3β

)
ṙ

+3
Gmm3

r 3c2
3

cosαsin4αṙ −3
Gmm4

r 3c2
3

M33 cos4βsinβ tan3αṙ +3
Gmm4

r 3c2
4

cos4βsinβ
(
M33 tanα+ tanβ

)3 ṙ

=−3M2
ω2

r 4 c2ṙ + 1

2

Gmm

r 3 y2 ṙ + Gmm3

r 3 y2

(
3cos5α−cos3α

)
ṙ + Gmm4

r 3 y2

(
3cos5β−cos3β

)
ṙ

+3
Gmm3

r 3 y2 cos3αsin2αṙ −3
Gmm4

r 3 y2 M33 cos4βsinβ tanαṙ +3
Gmm4

r 3 y2 cos4βsinβ
(
M33 tanα+ tanβ

)
ṙ

now using

3cos5α−cos3α+3cos3αsin2α= cos3α
(
3cos2α−1+3sin2α

)= 2cos3α

3cos5β−cos3β+3cos4βsinβ tanβ= 3cos5β−cos3β+3cos3βsin2β= 2cos3β
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and Eqs. (4.26) and (4.29) we get

−Hr 2
2

c2ṙ −Hr2,r3 c3ṙ −Hr2,r4 c4ṙ =

=−3M2
ω2

r 4 c2ṙ + 1

2

Gmm

r 3 y2 ṙ +2
Gmm3

r 3 y2 cos3αṙ +2
Gmm4

r 3 y2 cos3βṙ

=−3M2
ω2

r 4 c2ṙ + c2

4

Gmm

r 3 y3 ṙ + c2
Gmm3

r 3 y3 cos3αṙ + c2
Gmm4

r 3 y3 cos3βṙ

=−3M2
ω2

r 4 c2ṙ + c2Gmṙ

r 3

m
4 +m3 cos3α+m4 cos3β

G
( m

4 +m3 cos3α+m4 cos3β
) =−3M2

ω2

r 4 c2ṙ + c2mṙ

r 3

=−3M2
ω2

r 4 c2ṙ +2
c2M2ṙ

r 3 =

=M2c2

(
−3ω2

r 4 + 2

r 3

)
ṙ

(4.125)

We use the property that a skew-orthogonal complement (defined below) to an invariant subspace of
a Hamiltonian matrix is also invariant [27] to come up with the bases for two invariant subspaces, together
spanning the whole 10-dimensional vector space. Denote by b1 and b2 the bases of two invariant subspaces of
a square matrix A and introduce the matrix P = [

b1 b2
]
. Then, the coordinate change x = Pξ will decouple

the system ẋ = Ax as follows:
P ξ̇= APξ

ξ̇= P−1 APξ

ξ̇= P−1
[

a11 a12

a21 a22

][
b1 b2

]
ξ

ξ̇= P−1 [
v1 v2

]
ξ

where v1 = Ab1 and v2 = Ab2 are matrices containing vectors in the first invariant subspace and the second
invariant subspace, respectively, by definition of b1 and b2. Note that ξ= P−1x can be thought of as x written
in the basis of the columns of P , because mutiplying them by entries of ξ yields x . In the same way P−1v1 will
give the vectors v1 written in the basis (b1,b2):

ξ̇=
[

c11 0
0 c22

]
ξ

where we have the block diagonal form, because v1 written in the basis (b1,b2) will only have non-zero entries
that scale the columns of b1 and, likewise v2 will only have non-zero entries that lie in the second invariant
subspace and, hence are formed by a linear combination of basis vectors b2.

Define the skew-inner product of two vectors v , w ∈R10 as [27]

Ω(v , w ) = v T J w (4.126)

Two vectors are then called skew-orthogonal if their skew-inner product is zero. Given an invariant subspace
W of the matrix JD2H(γ(t )), Lemma 3.1 in [27] then states that the skew-orthogonal complement of W ,
defined as W ⊥ = {v : Ω(v , w ) = 0,∀w ∈W }, is also an invariant subspace of JD2H(t ).

Using the fact that γ̇(t ) satisfies the variational equations (Eq. (4.119)) and looking at the expressions for
γ̇(t ) and γ̈(t ) Eq. (4.122) we identify the basis vectors of our first invariant subspace:

c2

c3

0
c4

0
0
0
0
0
0





0
0
0
0
0

M2c2

0
M3c3

M4c4

0


(4.127)
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Looking at Eqs. (4.122) and (4.123) we see that the first basis vector multiplying JD2H(γ(t )) produces the
second basis vector scaled by (

−3ω2

r 4 + 2

r 3

)
and the second basis vector produces the first.

To find the skew-orthogonal complement we take the skew-inner product of a general vector
w = [ac2 ac3 0 ac4 0 bM2c2 bM3c3 0 bM4c4 0]T from the first invariant subspace with an arbi-
trary vector v containing 10 unknowns:

Ω(v , w ) = v T J w = [
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

]



bM2c2

bM3c3

0
bM4c4

0
−ac2

−ac3

0
−ac4

0


= b (v1M2c2 + v2M3c3 + v4M4c4)−a (v6c2 + v7c3 + v9c4)+0(v3 + v5 + v8 + v10) = 0

(4.128)

Thus we have to satisfy two equations with 6 unknowns:

v1M2c2 + v2M3c3 + v4M4c4 = 0 =⇒ v4 =−v1M2c2 + v2M3c3

M4c4

v6c2 + v7c3 + v9c4 = 0 =⇒ v9 =−v6c2 + v7c3

c4

(4.129)

We make a choice for v1, v2, v6 and v7:

v1 = v2 =−M4c4 =⇒ v4 = M2c2 +M3c3

v6 = v7 =−c4 =⇒ v9 = c2 + c3
(4.130)

We make four independent basis vectors out of the remaining four free variables and set them to v3 = v5 =
v8 = v10 = 1. This gives us six basis vectors for the skew-orthogonal subspace:



−M4c4

−M4c4

0
M2c2 +M3c3

0
0
0
0
0
0





0
0
0
0
0

−c4

−c4

0
c2 + c3

0





0
0
1
0
0
0
0
0
0
0





0
0
0
0
1
0
0
0
0
0





0
0
0
0
0
0
0
1
0
0





0
0
0
0
0
0
0
0
0
1


(4.131)

We need two more linearly independent vectors to have a basis that spans an eight-dimensional subspace of
JD2H(γ(t )). Towards that end, we set v1 equal to v4 in Eq. (4.129) and v6 equal to v9:

v1 = v4 =−M3c3 =⇒ v2 =−v1M2c2 + v4M4c4

M3c3
= M2c2 +M4c4

v6 = v9 =−c3 =⇒ v7 =−v6c2 + v9c4

c3
= c2 + c4

(4.132)
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This gives us the two desired extra basis vectors:

−M3c3

M2c2 +M4c4

0
−M3c3

0
0
0
0
0
0





0
0
0
0
0

−c3

c2 + c4

0
−c3

0


(4.133)

It can be checked that all vectors in Eqs. (4.131) and (4.133) are linearly independent and, therefore, span an
eight-dimensional subspace of JD2H(γ(t )). Furthermore, by construction, any linear combination of these
basis vectors v will satisfy the criterion Ω(v , w ) = 0 (with w as in Eq. (4.128)) and, therefore, the subspace they
span is invariant by Lemma 3.1 in [27].

As explained above, we construct a matrix P out of the basis vectors of the two invariant subspaces (vec-
tors (4.127) being the basis of the first and vectors (4.131) and (4.133) making up the basis of the second
subspace) and introduce a coordinate change ξ= P−1x .

P =



c2 0 −M4c4 −M3c3 0 0 0 0 0 0
c3 0 −M4c4 M2c2 +M4c4 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
c4 0 M2c2 +M3c3 −M3c3 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 M2c2 0 0 −c4 −c3 0 0 0 0
0 M3c3 0 0 −c4 c2 + c4 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 M4c4 0 0 c2 + c3 −c3 0 0 0 0
0 0 0 0 0 0 0 0 0 1


(4.134)

Inverting P with Mathematica we find:

P−1 =

ω

c



c2M2 c3M3 0 c4M4 0 0 0 0 0 0
0 0 0 0 0 c2 c3 0 c4 0

− c2c4 M2+c2
3 M3+c2

4 M4
k0

(c2−c4)c3 M3
k0

0
c2

2 M2+c2
3 M3+c2c4 M4

k0
0 0 0 0 0 0

− c2c3 M2+c2
3 M3+c2

4 M4
k0

c2
2 M2+c2c3 M3+c2

4 M4
k0

0 (c2−c3)c4 M4
k0

0 0 0 0 0 0

0 0 0 0 0 − c2
3 M3+c2c4 M4+c2

4 M4
k

c3(c2 M2−c4 M4)
k 0

c2
2 M2+c2c4 M2+c2

3 M3
k 0

0 0 0 0 0 − c2c3 M3+c2
3 M3+c2

4 M4
k

c2
2 M2+c2c3 M2+c2

4 M4
k 0

c4(c2 M2−c3 M3)
k 0

0 0 c
ω 0 0 0 0 0 0 0

0 0 0 0 c
ω 0 0 0 0 0

0 0 0 0 0 0 0 c
ω 0 0

0 0 0 0 0 0 0 0 0 c
ω



=ω

c



c2M2 c3M3 0 c4M4 0 0 0 0 0 0
0 0 0 0 0 c2 c3 0 c4 0

−
c
ω −c2 M2(c2−c4)

k0

c3 M3(c2−c4)
k0

0
c
ω +c4 M4(c2−c4)

k0
0 0 0 0 0 0

−
c
ω −c2 M2(c2−c3)

k0

c
ω +c3 M3(c2−c3)

k0
0

c4 M4(c2−c3)
k0

0 0 0 0 0 0

0 0 0 0 0 −
c
ω −c2(c2 M2−c4 M4)

k
c3(c2 M2−c4 M4)

k 0
c
ω +c4(c2 M2−c4 M4)

k 0

0 0 0 0 0 −
c
ω −c2(c2 M2−c3 M3)

k

c
ω +c3(c2 M2−c3 M3)

k 0
c4(c2 M2−c3 M3)

k 0

0 0 c
ω 0 0 0 0 0 0 0

0 0 0 0 c
ω 0 0 0 0 0

0 0 0 0 0 0 0 c
ω 0 0

0 0 0 0 0 0 0 0 0 c
ω


(4.135)

where we used definition (4.23) and introduced

k = c2 + c3 + c4

k0 = c2M2 + c3M3 + c4M4
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Since ξ=



ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10


= P−1



r2

r3

γ

r4

ϕ

R2

R3

Γ

R4

Φ


we have the expressions for the new variables:

ξ1 = ω

c
(c2M2r2 + c3M3r3 + c4M4r4) = c2M2r2 + c3M3r3 + c4M4r4

c2
2 M2 + c2

3 M3 + c2
4 M4

ξ2 = ω

c
(c2R2 + c3R3 + c4R4) = c2R2 + c3R3 + c4R4

c2
2 M2 + c2

3 M3 + c2
4 M4

= c2M2ṙ2 + c3M3ṙ3 + c4M4ṙ4

c2
2 M2 + c2

3 M3 + c2
4 M4

ξ3 = ω

c

(
−

c
ω − c2M2 (c2 − c4)

c2M2 + c3M3 + c4M4
r2 + c3M3 (c2 − c4)

c2M2 + c3M3 + c4M4
r3 +

c
ω + c4M4 (c2 − c4)

c2M2 + c3M3 + c4M4
r4

)
ξ4 = ω

c

(
−

c
ω − c2M2 (c2 − c3)

c2M2 + c3M3 + c4M4
r2 +

c
ω + c3M3 (c2 − c3)

c2M2 + c3M3 + c4M4
r3 + (c2 − c3)c4M4

c2M2 + c3M3 + c4M4
r4

)
(4.136)

ξ5 = ω

c

(
−

c
ω − c2 (c2M2 − c4M4)

c2 + c3 + c4
R2 + c3 (c2M2 − c4M4)

c2 + c3 + c4
R3 +

c
ω + c4 (c2M2 − c4M4)

c2 + c3 + c4
R4

)
ξ6 = ω

c

(
−

c
ω − c2 (c2M2 − c3M3)

c2 + c3 + c4
R2 +

c
ω + c3 (c2M2 − c3M3)

c2 + c3 + c4
R3 + c4 (c2M2 − c3M3)

c2 + c3 + c4
R4

)
ξ7 = γ

ξ8 =ϕ

ξ9 = Γ

ξ10 =Φ

Notice that the first six variables are divided by the moment of inertia of the four-body system c
ω . We see

that ξ1 represents the scaling of the configuration, weighted by the first moments of mass of the kite config-
uration. ξ2 is the time derivative of ξ1, e.g. its momentum. ξ3, ξ4 represent geometric deviations from the
central configuration in two independent directions, while ξ5 and ξ6 represent the respective momenta of
these deviations. Finally, ξ7 and ξ8 represent the angles γ and ϕ, while ξ9 and ξ10 are equal to the respec-
tive momenta Γ and Φ. Expressing the periodic solution in the new variables (plugging in expressions from
Eqs. (4.19) and (4.23) into expressions (4.136)) we have:

ξ1 = 1

c2
2 M2 + c2

3 M3 + c2
4 M4

(
c2

2 M2r + c2
3 M3r + c2

4 M4r
)= r

ξ2 = 1

c2
2 M2 + c2

3 M3 + c2
4 M4

(
c2

2 M2R + c2
3 M3R + c2

4 M4R
)= R

ξ3 = ωr

c (c2M2 + c3M3 + c4M4)

(−c2
2 c4M2 − c2

3 c2M3 − c2
4 c2M4 + (c2 − c4)c2

3 M3 + c2
2 c4M2 + c2

3 c4M3 + c2c2
4 M4

)= 0

ξ4 = ωr

c (c2M2 + c3M3 + c4M4)

(−c2
2 c3M2 − c2

3 c2M3 − c2
4 c2M4 + c2

2 c3M2 + c2
3 c2M3 + c2

4 c3M4 + c2
4 (c2 − c3) M4

)= 0

ξ5 =

=ωR
−c2

3 M3c2M2 − c2
2 M2c4M4 − c2

4 M4c2M2 + c2
3 M3c2M2 − c2

3 M3c4M4 + c2
2 M2c4M4 + c2

4 M4c2M2 + c2
3 M3c4M4

c (c2 + c3 + c4)

= 0

ξ6 =

=ωR
−c2

2 M2c3M3 − c2
3 M3c2M2 − c2

4 M4c2M2 + c2
2 M2c3M3 + c2

3 M3c2M2 + c2
4 M4c3M3 + c2

4 M4c2M2 − c2
4 M4c3M3

c (c2 + c3 + c4)

= 0
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ξ7 =−π

2
(4.137)

ξ8 =π

ξ9 =ω
(
M3c2

3 +M4c2
4

)
ξ10 =ωM4c2

4

The decoupled system in the new coordinates is

ξ̇= P−1 JD2H(γ(t ))Pξ=V (t )ξ (4.138)

We will now compute the new coefficient matrix V . Starting with JD2H(γ(t ))P , we have:

JD2H(γ(t ))P =

=



0 c2 0 0 − c4
M2

− c3
M2

0 0 0 0

0 c3 0 0 − c4
M3

c2+c4
M3

0 0 0 0
2ω
r 3 − 2ω

r 3 0 −2M4
c4
c2

ω

r 3 +2M4
c4
c3

ω

r 3 −2M3
c3
c2

ω

r 3 −2M2
c2
c3

ω

r 3 −2M4
c4
c3

ω

r 3 0 0 0 0 HΓ2 − 1
M3c2

3 r 2

0 c4 0 0
c2+c3

M4
− c3

M4
0 0 0 0

2ω
r 3 − 2ω

r 3 0 −2M4
c4
c3

ω

r 3 −2M2
c2
c4

ω

r 3 −2M3
c3
c4

ω

r 3 2M2
c2
c3

ω

r 3 +2M4
c4
c3

ω

r 3 +2M3
c3
c4

ω

r 3 0 0 0 0 − 1
M3c2

3 r 2 HΦ2

a61 0 a63 a64 0 0 0 0 − 2ω
c2r 3 0

a71 0 a73 a74 0 0 0 0 2ω
c3r 3 − 2ω

c3r 3

0 0 0 0 0 0 −Hγ2 −Hγ,ϕ 0 0

a91 0 a93 a94 0 0 0 0 0 2ω
c4r 3

0 0 0 0 0 0 −Hϕ,γ −Hϕ2 0 0



=



0 c2 0 0 − c4
M2

− c3
M2

0 0 0 0

0 c3 0 0 − c4
M3

c2+c4
M3

0 0 0 0

0 0 2M4
ω

r 3

(
c4
c3

− c4
c2

)
2 ω

r 3

(
−M3

c3
c2

−M2
c2
c3

−M4
c4
c3

)
0 0 0 0 HΓ2 − 1

M3c2
3 r 2

0 c4 0 0
c2+c3

M4
− c3

M4
0 0 0 0

0 0 2 ω

r 3

(
−M4

c4
c3

−M2
c2
c4

−M3
c3
c4

)
2 ω

r 3

(
M2

c2
c3

+M4
c4
c3

+M3
c3
c4

)
0 0 0 0 − 1

M3c2
3 r 2 HΦ2

a61 0 a63 a64 0 0 0 0 − 2ω
c2r 3 0

a71 0 a73 a74 0 0 0 0 2ω
c3r 3 − 2ω

c3r 3

0 0 0 0 0 0 −Hγ2 −Hγ,ϕ 0 0

a91 0 a93 a94 0 0 0 0 0 2ω
c4r 3

0 0 0 0 0 0 −Hϕ,γ −Hϕ2 0 0


(4.139)

where

a61 =−c2Hr 2
2
− c3Hr2,r3 − c4Hr2,r4 a63 = M4c4Hr 2

2
+M4c4Hr2,r3 − (M2c2 +M3c3) Hr2,r4

a71 =−c2Hr3,r2 − c3Hr 2
3
− c4Hr3,r4 a73 = M4c4Hr3,r2 +M4c4Hr 2

3
− (M2c2 +M3c3) Hr3,r4

a91 =−c2Hr4,r2 − c3Hr4,r3 − c4Hr 2
4

a93 = M4c4Hr4,r2 +M4c4Hr4,r3 − (M2c2 +M3c3) Hr 2
4

a64 = M3c3Hr 2
2
− (M2c2 +M4c4) Hr2,r3 +M3c3Hr2,r4

a74 = M3c3Hr3,r2 − (M2c2 +M4c4) Hr 2
3
+M3c3Hr3,r4

a94 = M3c3Hr4,r2 − (M2c2 +M4c4) Hr4,r3 +M3c3Hr 2
4



56 4. Convex cases

The coefficient matrix of the transformed system is then:

V =



0 v12 0 0 0 0 0 0 0 0
v21 0 v23 v24 0 0 0 0 0 0
0 0 0 0 v35 v36 0 0 0 0
0 0 0 0 v45 v46 0 0 0 0

v51 0 v53 v54 0 0 0 0 v59 v5,10

v61 0 v63 v64 0 0 0 0 v69 v6,10

0 0 v73 v74 0 0 0 0 HΓ2 − 1
M3c2

3 r 2

0 0 v83 v84 0 0 0 0 − 1
M3c2

3 r 2 HΦ2

0 0 0 0 0 0 −Hγ2 −Hγ,ϕ 0 0
0 0 0 0 0 0 −Hϕ,γ −Hϕ2 0 0



(4.140)

where

v21 =ω

c
(c2a61 + c3a71 + c4a91) =

=− ω

c

[
c2

2 Hr 2
2
+2c2c3Hr2,r3 +2c2c4Hr 2,r 4 + c2

3 Hr 2
3
+2c3c4Hr3,r4 + c2

4 Hr 2
4

]
=− ω

c

[
c2

(
c2Hr 2

2
+ c3Hr2,r3 + c4Hr2,r4

)
+ c3

(
c2Hr3,r2 + c3Hr 2

3
+ c4Hr3,r4

)
+ c4

(
c2Hr4,r2 + c3Hr4,r3 + c4Hr 2

4

)]
=− ω

c

[
−c2

2 M2

(
−3ω2

r 4 + 2

r 3

)
− c2

3 M3

(
−3ω2

r 4 + 2

r 3

)
− c2

4 M4

(
−3ω2

r 4 + 2

r 3

)]
=− 1

c2
2 + c2

3 M3 + c2
4 M4

·−(
c2

2 M2 + c2
3 M3 + c2

4 M4
)(−3ω2

r 4 + 2

r 3

)

= −3ω2

r 4 + 2

r 3

v51 =− ω

c (c2 + c3 + c4)

[(
c2

3 M3 + c4 (c2 + c4) M4
)

a61 − c3 (c2M2 − c4M4) a71 −
(
c2 (c2 + c4) M2 + c2

3 M3
)

a91
]

= ω

ck

[
−Hr 2

2
k1 −Hr2,r3 k2 −Hr2,r4 k3 −Hr 2

3
k4 −Hr3,r4 k5 −Hr 2

4
k6

]
k = c2 + c3 + c4

k1 = c2
(−M3c2

3 −M4c4 (c2 + c4)
)

k2 = c3
(
M2c2

2 −M4c4 (2c2 + c4)−M3c2
3

)
k3 = M2c2

2 (c2 + c4)+M3c2
3 (c2 − c4)−M4c2

4 (c2 + c4)

k4 = c2
3 (M2c2 −M4c4)

k5 = M3c3
3 −M4c3c2

4 +M2c2c3 (c2 +2c4)

k6 = c4
(
M2c2 (c2 + c4)+M3c2

3

)
(4.141)

v61 =− ω

ck

[(
c3 (c2 + c3) M3 + c2

4 M4
)

a61 −
(
c2 (c2 + c3) M2 + c2

4 M4
)

a71 − c4 (c2M2 − c3M3) a91
]=

= ω

ck

[
−Hr 2

2
k7 −Hr2,r3 k8 −Hr2,r4 k9 −Hr 2

3
k10 −Hr3,r4 k11 −Hr 2

4
k12

]
k7 = c2

(−M3c3 (c2 + c3)−M4c2
4

)
k8 = M2c2

2 (c2 + c3)−M3c2
3 (c2 + c3)+M4c2

4 (c2 − c3)

k9 = c4
(
M2c2

2 −M3c3 (2c2 + c3)−M4c2
4

)
k10 = c3

(
M2c2 (c2 + c3)+M4c2

4

)
k11 = c4

(
M2c2 (c2 +2c3)−M3c2

3 +M4c2
4

)
k12 = c2

4 (M2c2 −M3c3)

(4.142)

v12 = ω

c

(
M2c2

2 +M3c2
3 +M4c2

4

)= 1 (4.143)
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v23 =ω

c
(c2a63 + c3a73 + c4a93) =

= ω

c

[
Hr 2

2
k13 +Hr2,r3 k14 +Hr2,r4 k15 +Hr 2

3
k16 +Hr3,r4 k17 +Hr 2

4
k18

]
k13 = M4c4c2

k14 = M4c4 (c2 + c3)

k15 = c2 (−M2c2 −M3c3)+M4c2
4

k16 = M4c4c3

k17 = c3 (−M2c2 −M3c3)+M4c2
4

k18 = c4 (−M2c2 −M3c3)

(4.144)

v53 =− ω

ck

[(
c2

3 M3 + c4 (c2 + c4) M4
)

a63 − c3 (c2M2 − c4M4) a73 −
(
c2 (c2 + c4) M2 + c2

3 M3
)

a93
]

= ω

ck

[
−Hr 2

2
k19 −Hr2,r3 k20 −Hr2,r4 k21 −Hr 2

3
k22 −Hr3,r4 k23 −Hr 2

4
k24

]
k19 = M4c4

(
M3c2

3 +M4c4 (c2 + c4)
)

k20 = M2c2 (−M4c4c3)+M 2
4 c2

4 k +M3c2
3 M4c4

k21 = M2c2
(−2M4c4 (c2 + c4)−M3c2

3

)−M3c3M4c4k −M 2
3 c3

3

k22 = M4c4 (−M2c2c3 +M4c4c3)

k23 = M 2
2 c2

2 c3 −M2c2M4c4k +M3c2
3 (M2c2 −2M4c4)

k24 = M 2
2 c2

2 (c2 + c4)+M2c2M3c3k +M 2
3 c3

3

(4.145)

v63 =− ω

ck

[(
c3 (c2 + c3) M3 + c2

4 M4
)

a63 −
(
c2 (c2 + c3) M2 + c2

4 M4
)

a73 − c4 (c2M2 − c3M3) a93
]

= ω

ck

[
−Hr 2

2
k25 −Hr2,r3 k26 −Hr2,r4 k27 −Hr 2

3
k28 −Hr3,r4 k29 −Hr 2

4
k30

]
k25 = M4c4

(
M3c3 (c2 + c3)+M4c2

4

)
k26 = M4c4 (−M2c2 +M3c3) (c2 + c3)

k27 =−M2c2
(
2M4c2

4 +M3c3 (c2 + c3)
)−M 2

3 c2
3 (c2 + c3)

k28 =−M4c4
(
M2c2 (c2 + c3)+M4c2

4

)
k29 = M2c2 (M2c2 +M3c3) (c2 + c3)+2M3c3M4c2

4

k30 = c4
(
M 2

2 c2
2 −M 2

3 c2
3

)

(4.146)

v73 = 2M4
ω

r 3

(
c4

c3
− c4

c2

)

v83 = 2
ω

r 3

(
−M4

c4

c3
−M2

c2

c4
−M3

c3

c4

) (4.147)

v24 =ω

c
[c2a64 + c3a74 + c4a94] =

= ω

c

[
Hr 2

2
k31 +Hr2,r3 k32 +Hr2,r4 k33 +Hr 2

3
k34 +Hr3,r4 k35 +Hr 2

4
k36

]
k31 = M3c3c2

k32 =−M2c2
2 +M3c2

3 −M4c4c2

k33 = M3c3 (c2 + c4)

k34 =−M2c2c3 −M4c4c3

k35 = M3c2
3 −M4c2

4 −M2c2c4

k36 = M3c3c4

(4.148)
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v54 =− ω

ck

[(
c2

3 M3 + c4 (c2 + c4) M4
)

a64 − c3 (M2c2 −M4c4) a74 −
(
c2 (c2 + c4) M2 + c2

3 M3
)

a94
]=

= ω

ck

[
−Hr 2

2
k37 −Hr2,r3 k38 −Hr2,r4 k39 −Hr 2

3
k40 −Hr3,r4 k41 −Hr 2

4
k42

]
k37 = M3c3

(
M3c2

3 +M4c4 (c2 + c4)
)

k38 = M3c2
3 (−2M2c2)−M4c4 (M2c2 +M4c4) (c2 + c4)

k39 = M3c3 (−M2c2 +M4c4) (c2 + c4)

k40 = c3
(
M 2

2 c2
2 −M 2

4 c2
4

)
k41 = M2c2 (M2c2 +M4c4) (c2 + c4)+2M3c2

3 (M4c4)

k42 =−M2c2M3c3 (c2 + c4)−M 2
3 c3

3

(4.149)

v64 =− ω

ck

[(
c3 (c2 + c3) M3 + c2

4 M4
)

a64 −
(
c2 (c2 + c3) M2 + c2

4 M4
)

a74 − c4 (M2c2 −M3c3) a94
]=

= ω

ck

[
−Hr 2

2
k43 −Hr2,r3 k44 −Hr2,r4 k45 −Hr 2

3
k46 −Hr3,r4 k47 −Hr 2

4
k48

]
k43 = M3c3

(
M3c3 (c2 + c3)+M4c2

4

)
k44 = (c2 + c3) (−2M2c2M3c3 −M4c4M3c3)−M4c2

4 (M2c2 +M3c3 +M4c4)

k45 = M3c3
(−M2c2c4 +M3c3k +M4c2

4

)
k46 = M 2

2 c2
2 (c2 + c3)+M2c2M4c4k +M 2

4 c3
4

k47 = M 2
2 c2

2 c4 +M2c2
(
M4c2

4 −M3c3k
)−M3c3

(
2M4c2

4

)
k48 =−M2c2M3c3c4 +M 2

3 c2
3 c4

(4.150)

v74 = 2
ω

r 3

(
−M3

c3

c2
−M2

c2

c3
−M4

c4

c3

)

v84 = 2
ω

r 3

(
M2

c2

c3
+M4

c4

c3
+M3

c3

c4

) (4.151)

v35 = ω

c (c2M2 + c3M3 + c4M4)

(
c2c2

4 + c3c2
4 + c2

2 c4 +
M3c2

3 c4 +M4c3
4

M2
+ M2

(
c3

2 + c2
2 c3

)+M3
(
c3

3 + c2c2
3

)
M4

)

= (c2 + c3) M2 + c4M4

M2M4 (c2M2 + c3M3 + c4M4)
= (c2 + c3) M2 + c4M4

M2M4k0

v45 = ω

c (c2M2 + c3M3 + c4M4)

(
c2

2 c4 − c2
3 c4 +

M3c2
3 c4 +M4c3

4

M2
− M2c2

2 c4 +M4c3
4

M3

)

= c4 (−M2 +M3)

M2M3 (c2M2 + c3M3 + c4M4)
= c4 (−M2 +M3)

M2M3k0

(4.152)

v36 = ω

c (c2M2 + c3M3 + c4M4)
c3

(
c2

2 − c2
4 +

M3c2
3 +M4c2

4

M2
− M2c2

2 +M3c2
3

M4

)

= c3 (−M2 +M4)

M2M4 (c2M2 + c3M3 + c4M4)
= c3 (−M2 +M4)

M2M4k0

v46 = ω

c (c2M2 + c3M3 + c4M4)

(
c2c2

3 + c2
2 c3 + c2

3 c4 +
M3c3

3 +M4c3c2
4

M2
+ M2c2

2 (c2 + c4)+M4c2
4 (c2 + c4)

M3

)

= (c2 + c4) M2 + c3M3

M2M3 (c2M2 + c3M3 + c4M4)
= (c2 + c4) M2 + c3M3

M2M3k0

(4.153)

v59 = 2ω2

cr 3k

(
c2

3

c2
M3 +

c2
4

c2
M4 + c2M2

)
= 2ω

r 3

1

c2k

v69 = 2ω2

cr 3k

(
c3

c2
(c2 + c3) M3 +

c2
4

c2
M4 + c2

c3
(c2 + c3) M2 +

c2
4

c3
M4

)
= 2ω

r 3

c2 + c3

c2c3k

(4.154)
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v5,10 = 2ω2

cr 3k

(
c4M4 +

c2
2

c4
M2 +

c2
3

c4
M3

)
= 2ω

r 3

1

c4k

v6,10 =− 2ω2

cr 3k

(
c2

2

c3
M2 +

c2
4

c3
M4 + c3M3

)
= −2ω

r 3

1

c3k

(4.155)

Using Eq. (4.124) we get

v51 =−Hr 2
2

k1 −Hr2,r3 k2 −Hr2,r4 k3 −Hr 2
3

k4 −Hr3,r4 k5 −Hr 2
4

k6

=−Hr 2
2

c2
(−M3c2

3 −M4c4 (c2 + c4)
)−Hr2,r3 c3

(
M2c2

2 −M4c4 (2c2 + c4)−M3c2
3

)
−Hr2,r4

(
M2c2

2 (c2 + c4)+M3c2
3 (c2 − c4)−M4c2

4 (c2 + c4)
)−Hr 2

3
c2

3 (M2c2 −M4c4)

−Hr3,r4

(
M3c3

3 −M4c3c2
4 +M2c2c3 (c2 +2c4)

)−Hr 2
4

c4
(
M2c2 (c2 + c4)+M3c2

3

)
=M2c2

2

(
−Hr4,r2 c2 −Hr4,r3 c3 −Hr 2

4
c4

)
+M3c2

3

(
Hr 2

2
c2 +Hr2,r3 c3 −Hr2,r4 (c2 − c4)−Hr3,r4 c3 −Hr 2

4
c4

)
+M4c2

4

(
Hr 2

2
c2 +Hr2,r3 c3 +Hr2,r4 c4

)
+M2c2c3

(
−Hr3,r2 c2 −Hr 2

3
c3 −Hr3,r4 c4

)
+M2c2c4

(
−Hr4,r2 c2 −Hr4,r3 c3 −Hr 2

4
c4

)
+M4c4c2

(
Hr 2

2
c2 +Hr2,r3 c3 +Hr2,r4 c4

)
+M4c4c3

(
Hr3,r2 c2 +Hr 2

3
c3 +Hr3,r4 c4

)
=M2c2

2 M4c4

(
−3ω2

r 4 + 2

r 3

)
−M3c2

3 M2c2

(
−3ω2

r 4 + 2

r 3

)
+M3c2

3 M4c4

(
−3ω2

r 4 + 2

r 3

)
−M4c2

4 M2c2

(
−3ω2

r 4 + 2

r 3

)
+M2c2c3M3c3

(
−3ω2

r 4 + 2

r 3

)
−M4c4c2M2c2

(
−3ω2

r 4 + 2

r 3

)
+M2c2c4M4c4

(
−3ω2

r 4 + 2

r 3

)
−M4c4c3M3c3

(
−3ω2

r 4 + 2

r 3

)
= 0

(4.156)
Similarly,

v61 =−Hr 2
2

k7 −Hr2,r3 k8 −Hr2,r4 k9 −Hr 2
3

k10 −Hr3,r4 k11 −Hr 2
4

k12

=−Hr 2
2

c2
(−M3c3 (c2 + c3)−M4c2

4

)−Hr2,r3

(
M2c2

2 (c2 + c3)−M3c2
3 (c2 + c3)+M4c2

4 (c2 − c3)
)

−Hr2,r4 c4
(
M2c2

2 −M3c3 (2c2 + c3)−M4c2
4

)−Hr 2
3

c3
(
M2c2 (c2 + c3)+M4c2

4

)
−Hr3,r4 c4

(
M2c2 (c2 +2c3)−M3c2

3 +M4c2
4

)−Hr 2
4

c2
4 (M2c2 −M3c3)

=M2c2
2

(
−Hr3,r2 c2 −Hr 2

3
c3 −Hr3,r4 c4

)
+M3c2

3

(
Hr 2

2
c2 +Hr2,r3 c3 +Hr2,r4 c4

)
+M4c2

4

(
Hr 2

2
c2 +Hr2,r3 c3 +Hr2,r4 c4 −Hr3,r2 c2 −Hr 2

3
c3 −Hr3,r4 c4

)
M2c2c3

(
−Hr3,r2 c2 −Hr 2

3
c3 −Hr3,r4 c4

)
+M2c2c4

(
−Hr4,r2 c2 −Hr4,r3 c3 −Hr 2

4
c4

)
M3c3c2

(
Hr 2

2
c2 +Hr2,r3 c3 +Hr2,r4 c4

)
+M3c3c4

(
Hr4,r2 c2 +Hr4,r3 c3 +Hr 2

4
c4

)
=M2c2

2 M3c3

(
−3ω2

r 4 + 2

r 3

)
+M3c2

3 (−M2c2)

(
−3ω2

r 4 + 2

r 3

)
+M4c2

4 (−M2c2 +M3c3)

(
−3ω2

r 4 + 2

r 3

)
+M2c2c3M3c3

(
−3ω2

r 4 + 2

r 3

)
+M2c2c4M4c4

(
−3ω2

r 4 + 2

r 3

)
+M3c3c2 (−M2c2)

(
−3ω2

r 4 + 2

r 3

)
+M3c3c4 (−M4c4)

(
−3ω2

r 4 + 2

r 3

)
= 0

(4.157)
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and

v23 = Hr 2
2

k13 +Hr2,r3 k14 +Hr2,r4 k15 +Hr 2
3

k16 +Hr3,r4 k17 +Hr 2
4

k18

=Hr 2
2

M4c4c2 +Hr2,r3 M4c4 (c2 + c3)+Hr2,r4

(
c2 (−M2c2 −M3c3)+M4c2

4

)
+Hr 2

3
M4c4c3 +Hr3,r4

(
c3 (−M2c2 −M3c3)+M4c2

4

)+Hr 2
4

c4 (−M2c2 −M3c3)

=M4c4

(
Hr 2

2
c2 +Hr2,r3 c3 +Hr2,r4 c4 +Hr3,r2 c2 +Hr 2

3
c3 +Hr3,r4 c4

)
− (M2c2 +M3c3)

(
Hr 2

4
c2 +Hr4,r3 c3 +Hr 2

4
c4

)
=M4c4

(
−3ω2

r 4 + 2

r 3

)
(−M2c2 −M3c3)− (M2c2 +M3c3)

(
−3ω2

r 4 + 2

r 3

)
(−M4c4)

= 0
(4.158)

and

v24 = Hr 2
2

k31 +Hr2,r3 k32 +Hr2,r4 k33 +Hr 2
3

k34 +Hr3,r4 k35 +Hr 2
4

k36

= Hr 2
2

M3c3c2 +Hr2,r3

(−M2c2
2 +M3c2

3 −M4c4c2
)+Hr2,r4 M3c3 (c2 + c4)

+Hr 2
3

(−M2c2c3 −M4c4c3)+Hr3,r4

(−M2c2c4 +M3c2
3 −M4c2

4

)+Hr 2
4

M3c3c4

=M2c2

(
−Hr3,r2 c2 −Hr 2

3
c3 −Hr3,r4 c4

)
+M3c3

(
Hr 2

2
c2 +Hr2,r3 c3 +Hr2,r4 c4 +Hr4,r2 c2 +Hr4,r3 c3 +Hr 2

4
c4

)
+M4c4

(
−Hr3,r2 c2 −Hr 2

3
c3 −Hr3,r4 c4

)
=M2c2

(
−3ω2

r 4 + 2

r 3

)
M3c3 +M3c3

(
−3ω2

r 4 + 2

r 3

)
(−M2c2 −M4c4)+M4c4

(
−3ω2

r 4 + 2

r 3

)
M3c3

= 0

(4.159)

We find that, as expected, the new system is decoupled into 2x2 and 8x8 systems

ξ̇1

ξ̇2

ξ̇3

ξ̇4

ξ̇5

ξ̇6

ξ̇7

ξ̇8

ξ̇9

ξ̇10


=



0 1 0 0 0 0 0 0 0 0

− 3ω2

r 4 + 2
r 3 0 0 0 0 0 0 0 0 0

0 0 0 0 v35 v36 0 0 0 0
0 0 0 0 v45 v46 0 0 0 0
0 0 v53 v54 0 0 0 0 2ω

r 3
1

c2k
2ω
r 3

1
c4k

0 0 v63 v64 0 0 0 0 2ω
r 3

c2+c3
c2c3k − 2ω

r 3
1

c3k
0 0 v73 v74 0 0 0 0 HΓ2 − 1

M3c2
3 r 2

0 0 v83 v84 0 0 0 0 − 1
M3c2

3 r 2 HΦ2

0 0 0 0 0 0 −Hγ2 −Hγ,ϕ 0 0
0 0 0 0 0 0 −Hϕ,γ −Hϕ2 0 0





ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10


(4.160)

The 2x2 system is
ξ̇1 = ξ2

ξ̇2 =
(
−3ω2

r 4 + 2

r 3

)
ξ1

(4.161)

Making use of Eq. (4.121), we find as a solution

ξ1(t ) = kṙ (t )

ξ2(t ) = kr̈ (t )
(4.162)

If we set the initial conditions to ξ1(0) = 0, ξ2(0) = 1, we obtain

k = ω4

e (1+e)2 (4.163)

Since our solution is periodic we have that x(T ) = x(0) = 0 and X (T ) = X (0) = 1. We set the fundamental
matrix at initial time X (0) to the identity matrix. Then,

X (0) =
[

1 0
0 1

]
X (T ) =

[
⋆ 0
⋆ 1

]
(4.164)
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because we know that (0,1) is the initial condition of the periodic solution. Further, we know that the mon-
odromy matrix X (T ) is symplectic and, therefore has 1 as its determinant. That means

X (T ) =
[

1 0
⋆ 1

]
(4.165)

and we have that the two eigenvalues are both 1. So, we confirmed that the two remaining +1 characteristic
multipliers are contained in the 2x2 system and linear stability is determined by the remaining 8x8 system:



ξ̇3

ξ̇4

ξ̇5

ξ̇6

ξ̇7

ξ̇8

ξ̇9

ξ̇10


=



0 0 v35 v36 0 0 0 0
0 0 v45 v46 0 0 0 0

v53 v54 0 0 0 0 2ω
r 3

1
c2k

2ω
r 3

1
c4k

v63 v64 0 0 0 0 2ω
r 3

c2+c3
c2c3k − 2ω

r 3
1

c3k
v73 v74 0 0 0 0 HΓ2 − 1

M3c2
3 r 2

v83 v84 0 0 0 0 − 1
M3c2

3 r 2 HΦ2

0 0 0 0 −Hγ2 −Hγ,ϕ 0 0
0 0 0 0 −Hϕ,γ −Hϕ2 0 0





ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10


(4.166)

From Eq. (4.115) we see that all radius double derivatives take the form

m

r 3

[
K (α,β)+ ω2

r
W (α,β)

]
while the v coefficients are scaled by

Coefficient v53 v63 v54 v64

Term k19−24
ω
ck k25−30

ω
ck k37−42

ω
ck k43−48

ω
ck

Scaling m2 y3 1
my3 m2 y3 1

my3 m2 y3 1
my3 m2 y3 1

my3

Thus the coefficients take the forms

v53 = m2

r 3

[
K31(α,β)+W31(α,β)

ω2

r

]
v63 = m2

r 3

[
K41(α,β)+W41(α,β)

ω2

r

]
v73 = mω

r 3 K51(α,β)

v83 = mω

r 3 K61(α,β)

v54 = m2

r 3

[
K32(α,β)+W32(α,β)

ω2

r

]
v64 = m2

r 3

[
K42(α,β)+W42(α,β)

ω2

r

]
v74 = mω

r 3 K52(α,β)

v84 = mω

r 3 K62(α,β)

v35 = 1

m2 K13(α,β)

v45 = 1

m2 K23(α,β)

v36 = 1

m2 K14(α,β)

v46 = 1

m2 K24(α,β)

(4.167)

while

v59 = 2ω

r 3

1

c2k
= ω

r 3 y2 K37(α,β)

v69 = 2ω

r 3

c2 + c3

c2c3k
= ω

r 3 y2 K47(α,β)

v5,10 = 2ω

r 3

1

c4k
= ω

r 3 y2 K38(α,β)

v6,10 =−2ω

r 3

1

c3k
= ω

r 3 y2 K48(α,β)
− 1

M3c2
3 r 2

= 1

my2r 2 K67(α,β)

(4.168)
To summarize, we have obtained an 8x8 linear periodic system of differential equations which describes

the stability-determining part of the linearized dynamics of perturbations from the periodic solution. We
have conveniently collected all geometric terms involving trigonometric functions of α and β into dimen-
sionless K and W variables, while the dimensional quantities are all pulled out as factors multiplying the K
and W coefficients in Eqs. (4.167) and (4.168). This suggests a possibility to cancel out some of the dimen-
sional factors by linear coordinate changes, as done in the next section.

4.5. Simplification
A linear change of variables does not change the characteristic multipliers [27]. In this section an attempt is
made to simplify the reduced system (4.166) as much as possible to make visible only the essential factors
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that determine the stability. To that end, we change the independent variable from t to θ and scale the eight
state variables by appropriate factors.

From Eq. (4.7)

ξ̇= dξ

d t
= dξ

dθ

dθ

d t
= dξ

dθ

ω

r 2 = ξ′
ω

r 2 (4.169)

Plugging it into Eq. (4.166) gives



ξ′3
ξ′4
ξ′5
ξ′6
ξ′7
ξ′8
ξ′9
ξ′10


= r 2

ω



0 0 v35 v36 0 0 0 0
0 0 v45 v46 0 0 0 0

v53 v54 0 0 0 0 2ω
r 3

1
c2k

2ω
r 3

1
c4k

v63 v64 0 0 0 0 2ω
r 3

c2+c3
c2c3k − 2ω

r 3
1

c3k
v73 v74 0 0 0 0 HΓ2 − 1

M3c2
3 r 2

v83 v84 0 0 0 0 − 1
M3c2

3 r 2 HΦ2

0 0 0 0 −Hγ2 −Hγ,ϕ 0 0
0 0 0 0 −Hϕ,γ −Hϕ2 0 0





ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10



=



0 0 r 2

ω v35
r 2

ω v36 0 0 0 0

0 0 r 2

ω v45
r 2

ω v46 0 0 0 0
r 2

ω v53
r 2

ω v54 0 0 0 0 2
r

1
c2k

2
r

1
c4k

r 2

ω v63
r 2

ω v64 0 0 0 0 2
r

c2+c3
c2c3k − 2

r
1

c3k
r 2

ω v73
r 2

ω v74 0 0 0 0 r 2

ω HΓ2 − 1
M3c2

3ω

r 2

ω v83
r 2

ω v84 0 0 0 0 − 1
M3c2

3ω
r 2

ω HΦ2

0 0 0 0 − r 2

ω Hγ2 − r 2

ω Hγ,ϕ 0 0

0 0 0 0 − r 2

ω Hϕ,γ − r 2

ω Hϕ2 0 0





ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10



(4.170)

Using Eqs. (4.115) and (4.167) we obtain the coefficient matrix



0 0 r 2

m2ω
K13(α) r 2

m2ω
K14(α) 0 0 0 0

0 0 r 2

m2ω
K23(α) r 2

m2ω
K24(α) 0 0 0 0

m2

rω

[
K31(α)+W31(α)ω

2

r

]
m2

rω

[
K32(α)+W32(α)ω

2

r

]
0 0 0 0 K37

r y2
K38
r y2

m2

rω

[
K41(α)+W41(α)ω

2

r

]
m2

rω

[
K42(α)+W42(α)ω

2

r

]
0 0 0 0 K47

r y2
K48
r y2

m
r K51(α) m

r K52(α) 0 0 0 0
KΓ2

mωy2
K67

mωy2

m
r K61(α) m

r K62(α) 0 0 0 0 K67
mωy2

KΦ2

mωy2

0 0 0 0 Gm2r
yω Kγ2

Gm2r
yω Kγ,ϕ 0 0

0 0 0 0 Gm2r
yω Kγ,ϕ

Gm2r
yω Kϕ2 0 0


(4.171)

Introducing

ξ5 = m2

r
ξ̂5 ξ6 = m2

r
ξ̂6 (4.172)

and applying the chain rule we get

ξ′5 =
m2

r
ξ̂′5 −

m2r ′

r 2 ξ̂5 ξ′6 =
m2

r
ξ̂′6 −

m2r ′

r 2 ξ̂6 (4.173)

and thus

ξ̂′5 =
r

m2 ξ
′
5 +

r ′

r
ξ̂5 ξ̂′6 =

r

m2 ξ
′
6 +

r ′

r
ξ̂6 (4.174)
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the matrix for ξ̂ variables is then



0 0 r
ωK13(α) r

ωK14(α) 0 0 0 0
0 0 r

ωK23(α) r
ωK24(α) 0 0 0 0

1
ω

[
K31(α)+W31(α)ω

2

r

]
1
ω

[
K32(α)+W32(α)ω

2

r

]
r ′
r 0 0 0 K37

m2 y2
K38

m2 y2

1
ω

[
K41(α)+W41(α)ω

2

r

]
1
ω

[
K42(α)+W42(α)ω

2

r

]
0 r ′

r 0 0 K47
m2 y2

K48
m2 y2

m
r K51(α) m

r K52(α) 0 0 0 0
KΓ2

mωy2
K67

mωy2

m
r K61(α) m

r K62(α) 0 0 0 0 K67
mωy2

KΦ2

mωy2

0 0 0 0 Gm2r
yω Kγ2

Gm2r
yω Kγ,ϕ 0 0

0 0 0 0 Gm2r
yω Kγ,ϕ

Gm2r
yω Kϕ2 0 0


(4.175)

Introducing

ξ9 = m2 y2ξ̂9 ξ10 = m2 y2ξ̂10

ξ′9 = m2 y2ξ̂′9 ξ′10 = m2 y2ξ̂′10

(4.176)

gives



0 0 r
ωK13(α) r

ωK14(α) 0 0 0 0
0 0 r

ωK23(α) r
ωK24(α) 0 0 0 0

1
ω

[
K31(α)+W31(α)ω

2

r

]
1
ω

[
K32(α)+W32(α)ω

2

r

]
r ′
r 0 0 0 K37 K38

1
ω

[
K41(α)+W41(α)ω

2

r

]
1
ω

[
K42(α)+W42(α)ω

2

r

]
0 r ′

r 0 0 K47 K48

m
r K51(α) m

r K52(α) 0 0 0 0
mKΓ2

ω
mK67
ω

m
r K61(α) m

r K62(α) 0 0 0 0 mK67
ω

mKΦ2

ω

0 0 0 0 Gr
y3ω

Kγ2
Gr
y3ω

Kγ,ϕ 0 0

0 0 0 0 Gr
y3ω

Kγ,ϕ
Gr
y3ω

Kϕ2 0 0


(4.177)

and setting

ξ3 = r

ω
ξ̂3 ξ4 = r

ω
ξ̂4

ξ′3 =
r

ω
ξ̂′3 +

r ′

ω
ξ̂3 ξ′4 =

r

ω
ξ̂′4 +

r ′

ω
ξ̂4

(4.178)

gives 

− r ′
r 0 K13 K14 0 0 0 0

0 − r ′
r K23 K24 0 0 0 0

r
ω2 K31 +W31

r
ω2 K32 +W32

r ′
r 0 0 0 K37 K38

r
ω2 K41 +W41

r
ω2 K42 +W42 0 r ′

r 0 0 K47 K48
m
ω K51

m
ω K52 0 0 0 0

mKΓ2

ω
mK67
ω

m
ω K61

m
ω K62 0 0 0 0 mK67

ω

mKΦ2

ω

0 0 0 0 Gr
y3ω

Kγ2
Gr
y3ω

Kγ,ϕ 0 0

0 0 0 0 Gr
y3ω

Kγ,ϕ
Gr
y3ω

Kϕ2 0 0


(4.179)

Finally, setting

ξ7 = m

ω
ξ̂7 ξ8 = m

ω
ξ̂8

ξ′7 =
m

ω
ξ̂′7 ξ′8 =

m

ω
ξ̂′8

(4.180)
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we obtain 

− r ′
r 0 K13 K14 0 0 0 0

0 − r ′
r K23 K24 0 0 0 0

r
ω2 K31 +W31

r
ω2 K32 +W32

r ′
r 0 0 0 K37 K38

r
ω2 K41 +W41

r
ω2 K42 +W42 0 r ′

r 0 0 K47 K48

K51 K52 0 0 0 0 KΓ2 K67

K61 K62 0 0 0 0 K67 KΦ2

0 0 0 0 Gm
y3

r
ω2 Kγ2

Gm
y3

r
ω2 Kγ,ϕ 0 0

0 0 0 0 Gm
y3

r
ω2 Kγ,ϕ

Gm
y3

r
ω2 Kϕ2 0 0


(4.181)

where

Gm

y3 =
(

1

4
+ m3

m
cos3α+ m4

m
cos3β

)−1

is a function of the angles α,β only and

r

ω2 = (1+e cosθ)−1

together with

r ′

r
= e sinθ

1+e cosθ

are functions of e and θ, which means that the matrix (4.181) and, in turn, the linear stability of our system
depends only on the eccentricity e and the angles α, β (θ is the independent variable). It is notable that,
similarly to the case of the elliptic Lagrangian triangle [27], ω and G are eliminated and do not affect lin-
ear stability. Actually, the fact that G is irrelevant to stability can easily be seen, as changing G effectively
only changes the units of length and mass and the relationship between size and mass of the configuration
Eq. (4.26). The irrelevance of ω can be explained by the fact that for a choice of r (0) (the simplest choice is
1, which sets the initial positions to r2(0) = c2, r3(0) = c3 and r4(0) = c4), and a choice of eccentricity e, ω is
uniquely determined by Eq. (4.18) (assuming ω> 0).

4.6. Circular square case
So far, linearized variational equations have been developed for the assessment of stability of general convex
kite central configurations. Before turning to that, it is insightful to take a look at a special case: the circular
square configuration. Owing to the symmetry of the square configuration, the equations of motion become
relatively simple and the linear stability of the circular solution has already been determined analytically,
allowing us to validate our equations and methods.

Towards that end, we set the angles to α=β= 45°, such that the four bodies are positioned at the corners
of a square. In that case, from Fig. 4.2 and Eqs. (4.27) to (4.29) we find:

c3 = y = 1

2
c2

c4 = 4

3
y = 4

3
c3 = 2

3
c2

m1 = m2 = m3 = m4 = m

M13 = M23 = 1

3

M33 = 1

3

Mc3 = M13 +M23 = 2

3

M3 = 2

3
m

M4 = 3

4
m

(4.182)

Furthermore, Equation 4.26 becomes

y3 =Gm

(
1

4
+cos3α+cos3β

)
=Gm

(
1

4
+ 1p

2

)
(4.183)
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𝛼 = 45°

𝑐4 =
4

3
𝑦

𝑚

𝑚

𝑚

𝑚

𝑐2
𝑦 𝑐3

𝑦

𝛽 = 45°

Figure 4.2: The square configuration. Rotated 45° w.r.t. previous plots.

The double derivatives then become, from Eqs. (4.106) to (4.108)

−Hr 2
2
=−3

2

m

r 3 (1+e cosθ)+ m

r 3

1+6 ·2−
5
2 −2 ·2−

3
2 +6 ·2−

5
2 −2 ·2−

3
2

1+4 ·2−
3
2 +4 ·2−

3
2

= −3

2

m

r 3 (1+e cosθ)+ m

r 3

1

14

(
2+3

p
2
)

−Hr2,r3 =
m

r 3

3 ·2−
4
2 ·2−

1
2 −2−

4
2 ·2−

1
2

1
4 +2−

3
2 +2−

3
2

= m

r 3

1

7

(
4−p

2
)

−Hr2,r4 = 3
Gm2

r 3 y3 cos4βsinβ= 3
m

r 3

cos4βsinβ
1
4 +cos3α+cos3β

= m

r 3

3 ·2−
4
2 ·2−

1
2

2−2 +2−
3
2 +2−

3
2

= m

r 3

3

14

(
4−p

2
)

(4.184)
From Eqs. (4.109) and (4.110)

−Hr 2
3
=−3

2

3
m

ω2

r 4 +2
Gm2

r 3 y3

(
2cos3α−3cos5α

)+2
Gm2

r 3 y3

1

9

(
2cos3β−3cos5β

)+2
Gm2

r 3 y3

4

9

(
tanα+ tanβ

)−3

=−2m
ω2

r 4 +2
m

r 3

2cos3α−3cos5α+ 2
9 cos3β− 1

3 cos5β+ 4
9

(
tanα+ tanβ

)−3

1
4 +cos3α+cos3β

=−2
m

r 3 (1+e cosθ)+2
m

r 3

2 ·2−
3
2 −3 ·2−

5
2 + 2

9 ·2−
3
2 − 1

3 ·2−
5
2 + 4

9 ·2−3

2−2 +2−
3
2 +2−

3
2

= −2
m

r 3 (1+e cosθ)+ m

r 3

2

63

(
18−p

2
)

−Hr3,r4 =−2
Gm2

r 3 y3

1

3

(
2cos3β−3cos5β

)+2
Gm2

r 3 y3

2

3

(
tanα+ tanβ

)−3

= 1

3

m

r 3

−4cos3β+6cos5β+4
(
tanα+ tanβ

)−3

1
4 +cos3α+cos3β

= 1

3

m

r 3

−4 ·2−
3
2 +6 ·2−

5
2 +4 ·2−3

1
4 +2−

3
2 +2−

3
2

= m

r 3

1

21

(
−6+5

p
2
)

(4.185)
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From Eqs. (4.111) and (4.112)

−Hγ2 = 6
Gm2

r y
cos3αsin2α+6

Gm2

r y
cos3βsin2β= 6

Gm2

r y

(
2−

3
2 ·2−

2
2 +2−

3
2 ·2−

2
2

)
= Gm2

r y

3

2

p
2

−Hγ,ϕ = 6
Gm2

r y
cos4βsinβ

(
1

3
tanα+ tanβ

)
= Gm2

r y
6 ·2−

4
2 ·2−

1
2 ·

(
1

3
+1

)
= Gm2

r y

p
2

(4.186)

From Eq. (4.113)

−Hr 2
4
=−3

3

4
m

ω2

r 4 +2
Gm2

r 3 y3

(
2cos3β−3cos5β

)+2
Gm2

r 3 y3

(
tanα+ tanβ

)−3

=−9

4
m

ω2

r 4 + m

r 3

4cos3β−6cos5β+2
(
tanα+ tanβ

)−3

1
4 +cos3α+cos3β

= −9

4

m

r 3 (1+e cosθ)+ 1

7

m

r 3

(
3+p

2
) (4.187)

From Eq. (4.114)

−Hϕ2 =−2
Gm2

r y

(
1

3
tanα+ tanβ

)
cos3β

(
1

3
tanα

(
1−3cos2β

)−3cosβsinβ

)

+ Gm2

r y

(
tanα+ tanβ

)−3 · 2

3
tanα

(
1

3
tanα+ tanβ

)
= 1

9

Gm2

r y

(
1+10

p
2
) (4.188)

From Eqs. (4.104) and (4.105)

HΓ2 = 1

r 2 y2

(
1

2m
+ 1

2
3 m tan2α

)
= 1

r 2 y2

4

2m
= 2

r 2 y2m

HΦ2 = 1

r 2 y2

(
1

2
3 m tan2α

+ 1
3
4 m

( 1
3 tanα+ tanβ

)2

)
= 1

r 2 y2

(
3

2m
+ 3

4m

)
= 9

4

1

r 2 y2m

(4.189)

With the values for c2, c3, c4, M2, M3 and M4 the k coefficients from Eqs. (4.145) to (4.147), (4.149) and (4.150)
become:

k = 13

3
y k19 = 4m2 y3 k25 = 10

3
m2 y3 k37 = 8

3
m2 y3 k43 = 20

9
m2 y3

c

ω
= 4my2 k20 = 4m2 y3 k26 =−m2 y3 k38 =−8m2 y3 k44 =−86

9
m2 y3

k21 =−32

3
m2 y3 k27 =−6m2 y3 k39 = 0 k45 = 52

27
m2 y3

k22 = 0 k28 =−13

3
m2 y3 k40 = 0 k46 = 26

3
m2 y3

k23 =−4m2 y3 k29 = 61

9
m2 y3 k41 = 8m2 y3 k47 =−2m2 y3

k24 = 20

3
m2 y3 k30 = 20

27
m2 y3 k42 =−8

3
m2 y3 k48 =− 8

27
m2 y3

The relevant v coefficients follow from Eqs. (4.145) to (4.147) and (4.149) to (4.155) using the values of the
radius double derivatives in Eqs. (4.184), (4.185) and (4.187) combined with the k coefficients above:

v53 = m2

r 3

[
3

182

(
−8+9

p
2
)
− 63

52
(1+e cosθ)

]
= m2

r 3

[
3

364

(
−163+18

p
2
)
− 63

52
e cosθ

]
v63 = m2

r 3

[
1

13

(
−7+3

p
2
)
+ 3

26
(1+e cosθ)

]
= m2

r 3

[
1

26

(
−11+6

p
2
)
+ 3

26
e cosθ

]
v73 = ωm

r 3

v83 =−9

2

ωm

r 3

v54 = m2

r 3

[
1

91

(
−40+17

p
2
)
+ 3

26
(1+e cosθ)

]
= m2

r 3

[
1

182

(
−59+34

p
2
)
+ 3

26
e cosθ

]
v64 = m2

r 3

[
10

273

(
3+p

2
)
− 15

13
(1+e cosθ)

]
= m2

r 3

[
5

273

(
−57+2

p
2
)
− 15

13
e cosθ

]

v74 =−14

3

ωm

r 3

v84 = 5
ωm

r 3

v35 = 5

2m2

v45 = 1

4m2

v36 = 1

4m2

v46 = 21

8m2

(4.190)
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and

v59 = 3

13

ω

r 3 y2

v69 = 9

13

ω

r 3 y2

v5,10 = 9

26

ω

r 3 y2

v6,10 =− 6

13

ω

r 3 y2

− 1

M3c2
3 r 2

=− 3

2my2r 2 (4.191)

Comparing Eqs. (4.190) and (4.191) with Eqs. (4.167) and (4.168) and Eqs. (4.186), (4.188) and (4.189) with
Eq. (4.115) we find the K and W coefficients:

K13 = 5

2
K14 = 1

4
K23 = 1

4
K24 = 21

8

K31 = 3

182

(
−8+9

p
2
)

W31 =−63

52
K32 = 1

91

(
−40+17

p
2
)

W32 = 3

26
K37 = 3

13
K38 = 9

26

K41 = 1

13

(
−7+3

p
2
)

W41 = 3

26
K42 = 10

273

(
3+p

2
)

W42 =−15

13
K47 = 9

13
K48 =− 6

13

K51 = 1 K52 =−14

3
K61 =−9

2
K62 = 5 K67 =−3

2

Kγ2 = 3

2

p
2 Kγ,ϕ =p

2 Kϕ2 = 1+10
p

2

9
KΓ2 = 2 KΦ2 = 9

4

Using the K and W coefficients and the angle double derivatives Eqs. (4.186), (4.188) and (4.189), the 8x8
linear system (4.181) becomes:

− r ′
r 0 5

2
1
4 0 0 0 0

0 − r ′
r

1
4

21
8 0 0 0 0

r
ω2

3
182

(−8+9
p

2
)− 63

52
r
ω2

1
91

(−40+17
p

2
)+ 3

26
r ′
r 0 0 0 3

13
9

26
r
ω2

1
13

(−7+3
p

2
)+ 3

26
r
ω2

10
273

(
3+p

2
)− 15

13 0 r ′
r 0 0 9

13 − 6
13

1 − 14
3 0 0 0 0 2 − 3

2
− 9

2 5 0 0 0 0 − 3
2

9
4

0 0 0 0 Gm
y3

r
ω2

3
2

p
2 Gm

y3
r
ω2

p
2 0 0

0 0 0 0 Gm
y3

r
ω2

p
2 Gm

y3
r
ω2

1+10
p

2
9 0 0


(4.192)

Taking e = 0 and, therefore, r =ω2, r ′
r = 0 and plugging in Eq. (4.183) we get

0 0 5
2

1
4 0 0 0 0

0 0 1
4

21
8 0 0 0 0

3
364

(−163+18
p

2
) 1

182

(−59+34
p

2
)

0 0 0 0 3
13

9
26

1
26

(−11+6
p

2
) 5

273

(−57+2
p

2
)

0 0 0 0 9
13 − 6

13
1 − 14

3 0 0 0 0 2 − 3
2

− 9
2 5 0 0 0 0 − 3

2
9
4

0 0 0 0 − 6
7

(−4+p
2
) − 4

7

(−4+p
2
)

0 0
0 0 0 0 − 4

7

(−4+p
2
) − 4

63

(−39+8
p

2
)

0 0


(4.193)

Eq. (4.193) is a constant, exact Hamiltonian matrix, which means we can obtain the exact eigenvalues of the
square circular case. Calculating the characteristic equation with Mathematica gives:

λ8 +
(
11+8

p
2
)

9+4
p

2
λ6 + 5

(
7+6

p
2
)

9+4
p

2
λ4 + 5

(
75+4

p
2
)

7
(
9+4

p
2
) λ2 + −2160+4194

p
2

49
(
9+4

p
2
) = 0 (4.194)

We see that the characteristic polynomial is even, as expected of a Hamiltonian matrix [17].
We now exploit this evenness and apply the technique of a reduced characteristic polynomial where we

substitute a new variable, conventionally τ = −λ2, into the characteristic equation, which reduces the order
by half [12]. If the equilibrium is spectrally stable all eigenvalues have to lie on the imaginary axis and thus all
roots of the reduced characteristic equation have to be positive real numbers. Spectral stability is a weaker
form of linear stability, where eigenvalues are allowed to have algebraic multiplicity larger than the geomet-
ric multiplicity, meaning that the system can be on the verge of losing stability: as we will see later, stability
can only be gained or lost from a point of repeated eigenvalues. So, determining the roots of the reduced
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polynomial is enough to determine spectral stability. The reduced characteristic equation of the square con-
figuration is:

τ4 −
(
11+8

p
2
)

9+4
p

2
τ3 + 5

(
7+6

p
2
)

9+4
p

2
τ2 − 5

(
75+4

p
2
)

7
(
9+4

p
2
) τ+ −2160+4194

p
2

49
(
9+4

p
2
) = 0 (4.195)

This is a fourth-degree polynomial equation whose roots can be found analytically. The roots are:

1

7

(
−1+2

p
2−2i

√
56−14

p
2

)
1

7

(
−1+2

p
2+2i

√
56−14

p
2

)
1

14

(
7− i

√
−625+648

p
2

)
1

14

(
7+ i

√
−625+648

p
2

) (4.196)

The eigenvalues are then found by the relation λ = (−τ)
1
2 and by virtue of the fact that the eigenvalues of a

real Hamiltonian matrix are symmetric across the real and imaginary axes [17]:

λsq,1 =
√

1

7

(
1−2

p
2+2i

√
56−14

p
2

)

λsq,2 =
√

1

7

(
1−2

p
2−2i

√
56−14

p
2

)

λsq,3 =−
√

1

7

(
1−2

p
2+2i

√
56−14

p
2

)

λsq,4 =−
√

1

7

(
1−2

p
2−2i

√
56−14

p
2

)

λsq,5 =
√

1

14

(
−7+ i

√
−625+648

p
2

)

λsq,6 =
√

1

14

(
−7− i

√
−625+648

p
2

)

λsq,7 =−
√

1

14

(
−7+ i

√
−625+648

p
2

)

λsq,8 =−
√

1

14

(
−7− i

√
−625+648

p
2

)
(4.197)

In decimal approximation the eigenvalues for the square configuration are:

λsq,1 =−0.859533+ i

λsq,2 =+0.859533− i

λsq,3 =−0.859533− i

λsq,4 =+0.859533+ i

λsq,5 =−0.639481+0.953381i

λsq,6 =+0.639481−0.953381i

λsq,7 =−0.639481−0.953381i

λsq,8 =+0.639481+0.953381i

(4.198)

Thus, as is well known [5, 9, 14, 29, 39], we find that the square configuration is unstable in the circular case.
The eigenvalues match with the ones obtained in [18] for the restricted five-body configuration of a square
with a small mass in the middle. Figures 4.3 and 4.4, taken from [18], show the eigenvalues of the configu-
ration for a varying mass of the small body. The marked points correspond to 0 central mass, which is just
our square central configuration, but with an additional body of no mass and, therefore, no effect on the dy-
namics of the bodies on the vertices. As a result, eight of the eigenvalues match and there are four others,
which correspond to the additional degrees of freedom introduced by the 0-mass. These matching eigenval-
ues verify that the derived system of equations (4.181) and our procedure to obtain eigenvalues are correct.

4.7. Circular cases
As Eq. (4.181) depends only on the angles α, β, the eccentricity e and true anomaly θ, by setting e = 0 we
obtain a constant matrix of coefficients of our linear system of differential equations, whose eigenvalues can
be calculated to directly determine the linear stability for the full range of α and β.

If ρ is an eigenvalue, then we know that e2πρ is a characteristic multiplier [27]. For a complex eigenvalue
ρ = a + i b, we have

e2π(a+i b) = e2πa (cos(2πb)+ i sin(2πb))

and, therefore, in order for the characteristic multipliers to lie on the unit circle, we must have e2πa = 1, which
requires that a = 0. Hence, all the eigenvalues have to be purely imaginary for linear stability [12]. Strictly
speaking, all imaginary eigenvalues only guarantee spectral stability, whereas for linear stability it is also re-
quired that the matrix be diagonalizable, i.e. that the geometric multiplicity of each eigenvalue is not less than
its algebraic multiplicity [12]. In other words still, the eigenvalues must have as many unique eigenvectors
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Figure 4.3: Eigenvalues ±0.859533± i of the square from [18].

Figure 4.4: Eigenvalues ±0.639481±0.953381i of the square from [18].



70 4. Convex cases

Figure 4.5: Top view of the sums of the magnitudes of the real parts of the eigenvalues sampled from the convex domain. The coloured
region denotes the zero-plane.

associated to them as is their algebraic multiplicity, so there must be eight imaginary eigenvalues with eight
distinct eigenvectors to have linear stability. If all eigenvalues are unique then their algebraic and geometric
multiplicity is necessarily one and spectral stability implies linear stability. In the case of repeated eigenval-
ues on the imaginary axis, resonance type instabilities with linear growth rates may occur if the solution is
only spectrally stable [11]. Because of the symmetry of the characteristic multipliers around the unit circle,
stability is only gained or lost at a collision of two multipliers, therefore the boundary of linear and spectral
stability coincides.

4.7.1. Mathematica procedure
We calculate the eigenvalues for a sampling of the convex domain with Mathematica. Sums of the real parts
of these eigenvalues are plotted in Figs. 4.5 to 4.8. In Figs. 4.6 to 4.8 we see that some eigenvalues near the
edge of minimum β lie on the zero-plane. This implies that the real parts are all zero, which implies linear
stability. The line of minimum β corresponds to the case where all the mass of the system is in a single body,

Figure 4.6: Front view of sums of magnitudes of real parts of the eigenvalues of RE’s sampled from the convex domain. The coloured
region denotes the zero-plane.
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Figure 4.7: Sums of magnitudes of real parts of the eigenvalues of RE’s sampled from the convex domain. The coloured region denotes
the zero-plane.

while the three other bodies have zero mass. We have divisions by zero if we attempt to find the eigenvalues
on this line. Close to it, however, we have cases where most of the mass of the system is in one body, while
the other three have relatively small masses. It makes sense that we find stable solutions in this region, since
every known example of a linearly stable RE has a dominant mass [19], such as in the cases of Lagrangian
triangle central configurations [27, 28] and planetary rings. The stability region near the line of minimum β

will be explored and analyzed in higher resolution in Section 4.9.

4.8. Perturbations in eccentricity
In this section we develop a method to determine the effect on linear stability of four-body central config-
urations when small perturbations to the eccentricity e are applied. The basis of the method is a naive ex-
pansion perturbation method, which is used to estimate the coefficients of the characteristic equation of the
monodromy matrix.

4.8.1. Method
The monodromy matrix of a Hamiltonian system is a symplectic transformation, because it takes a state of
the system to a future state, according to the phase flow of the system, which is volume preserving [3]. The
characteristic polynomial of a symplectic matrix is always reciprocal (also called symmetric or reflexive in
literature) [3], meaning that coefficients of the polynomial

a0 +a1x +a2x2 + . . .+an xn

satisfy
ai = an−i , ∀i

A key property of reciprocal polynomials is that if λ is a root, then so is 1
λ [3]. Combined with the fact that

complex conjugates λ̄ are also roots we get the following relationship between eigenvalues

1

λ
= 1

a + i b
= a − i b

a2 +b2 = 1

R2 (a − i b) = 1

R2 λ̄ (4.199)

where R = |λ|. For linear stability, we require that the characteristic multipliers ρ lie on the unit circle in the
complex plane, |ρ| = 1. In that case R = 1 and λ̄= 1

λ .
In our problem the characteristic equation of the 8×8 monodromy matrix will take the form

p(ρ) = ρ8 +aρ7 +bρ6 + cρ5 +dρ4 + cρ3 +bρ2 +aρ+1 = 0 (4.200)
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Figure 4.8: Zoom view of sums of magnitudes of real parts of the eigenvalues of RE’s sampled from the convex domain. The coloured
region denotes the zero-plane.
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We would like to derive relations between a, b, c and d for which we have roots on the unit circle, |ρ| = 1.
However, this polynomial equation is of the 8-th degree, which is impossible to solve analytically. Still, we can
use yet another property of reciprocal polynomials, namely that for every reciprocal univariate polynomial f
of even degree 2n:

f (t ) =Σ2n
k=0ak t k

where a2n−k = ak for all k ∈ {0, . . . ,2n}, there exists a univariate polynomial (polynomial in one variable) g [1]:

g (u) := an +
n∑

j=1
2an− j T j (u/2) (4.201)

such that
f (t ) = t n g (t + t−1) (4.202)

where T j is the j -th Chebychev polynomial. We use this fact to write our 8-th degree characteristic equation
in the form ρ4g (ρ+ρ−1) where g is a 4-th degree polynomial.

The first five Chebychev polynomials are:

T0(u) = 1

T1(u) = u

T2(u) = 2u2 −1

T3(u) = 4u3 −3u

T4(u) = 8u4 −8u2 +1

(4.203)

Applying Eq. (4.201) to Eq. (4.200) we get

g (u) = a4 +Σ4
j=12a4− j T j (u/2)

= d +2c
u

2
+2b

(
2

u2

4
−1

)
+2a

(
4

u3

8
−3

u

2

)
+2

(
8

u4

16
−8

u2

4
+1

)
= u4 +au3 + (b −4)u2 + (c −3a)u +d −2b +2

(4.204)

It was checked that indeed
ρ4g (ρ+ρ−1) = p(ρ)

We also know that if τ is a root of g , then ρ and ρ−1 which satisfy τ= ρ+ρ−1 are roots of p [1]. Therefore,
we can analyze the four roots of g to find out about the characteristic multipliers ρ, since we assume that
ρ 6= 0. For stability we require |ρ| = 1 and thus:

ρ+ρ−1 = ρ+ ρ̄ = τ ∈R (4.205)

So, the roots of g must be real for linear stability. Writing g as

g (u) = u4 +Bu3 +Cu2 +Du +E (4.206)

the discriminant of this quartic polynomial is then:

∆=256E 3 −192BDE 2 −128C 2E 2 +144C D2E −27D4 +144B 2C E 2

−6B 2D2E −80BC 2DE +18BC D3 +16C 4E −4C 3D2 −27B 4E 2

+18B 3C DE −4B 3D3 −4B 2C 3E +B 2C 2D2

(4.207)

Now our goal is to find expansions for the coefficients B(e), C (e), D(e), E(e). We start by naive expansion
of our linear system:

ξ′ = (
A0 +e A1(θ)+e2 A2(θ)+·· ·)ξ (4.208)

and we substitute an expansion of the solution

ξ(θ) = ξ0(θ)+eξ1(θ)+e2ξ2(θ) (4.209)
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into Eq. (4.208) to get:
ξ′0 = A0ξ0

ξ′1 = A0ξ1 + A1(θ)ξ0

ξ′2 = A0ξ2 + A1(θ)ξ1 + A2(θ)ξ0

(4.210)

Now writing the fundamental matrix solution as

X (θ) = X0(θ)+e X1(θ)+e2X2(θ)+·· · (4.211)

with X0(0) = I4, X1(0) = 0, X2(0) = 0, . . .. Solving the system differential equations Eq. (4.210) we obtain

X0(θ) = e A0θ

X1(θ) = e A0θ
∫θ

0
e−A0s A1(s)e A0s d s

X2(θ) = e A0θ
∫θ

0
e−A0s (

A1(s)X1(s)+ A2(s)e A0s)d s

(4.212)

The coefficients of the characteristic polynomial of the monodromy matrix M (Eq. (4.200)) are given by
the Newton’s identities:

a =−Tr (M) =−Tr (X (2π))

b = 1

2

(
Tr (M)2 −Tr (M 2)

)= 1

2

(
Tr (X (2π))2 −Tr (X (4π))

)
c =−1

6
Tr (M)3 + 1

2
Tr (M)Tr (M 2)− 1

3
Tr (M 3)

d = 1

24
Tr (M)4 − 1

4
Tr (M)2Tr (M 2)+ 1

3
Tr (M)Tr (M 3)+ 1

8
Tr (M 2)2 − 1

4
Tr (M 4)

(4.213)

Then, we have that:

B = a =−Tr (X (2π))

C = b −4 = 1

2
Tr (X (2π))2 − 1

2
Tr (X (4π))−4

D = c −3a =−1

6
Tr (X (2π))3 +Tr (X (2π))

(
3+ 1

2
Tr (X (4π))

)
− 1

3
Tr (X (6π))

E = d −2b +2

= 1

24
Tr (X (2π))4 −Tr (X (2π))2

(
1+ 1

4
Tr (X (4π))

)
+ 1

3
Tr (X (2π))Tr (X (6π))

+Tr (X (4π))

(
1+ 1

8
Tr (X (4π))

)
− 1

4
Tr (X (8π))+2

(4.214)

To expand the matrix (4.181) in a Taylor series we find partial derivatives of the e-dependent terms:

r ′

r

∣∣∣∣
e=0

= e sinθ

1+e cosθ

∣∣∣∣
e=0

= 0

∂

∂e

r ′

r

∣∣∣∣
e=0

=
(

sinθ

1+e cosθ
− e sinθcosθ

(1+e cosθ)2

)∣∣∣∣
e=0

= sinθ

∂2

∂e2

r ′

r

∣∣∣∣
e=0

=
(
−2

sinθcosθ

(1+e cosθ)2 +2
e sinθcos2θ

(1+e cosθ)3

)∣∣∣∣
e=0

=−2sinθcosθ

r

ω2

∣∣∣
e=0

= 1

1+e cosθ

∣∣∣∣
e=0

= 1

∂

∂e

r

ω2

∣∣∣∣
e=0

= − cosθ

(1+e cosθ)2

∣∣∣∣
e=0

=−cosθ

∂2

∂e2

r

ω2

∣∣∣∣
e=0

= 2
cos2θ

(1+e cosθ)3

∣∣∣∣
e=0

= 2cos2θ

(4.215)
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which gives

A0 =



0 0 K13 K14 0 0 0 0
0 0 K23 K24 0 0 0 0

K31 +W31 K32 +W32 0 0 0 0 K37 K38

K41 +W41 K42 +W42 0 0 0 0 K47 K48

K51 K52 0 0 0 0 KΓ2 K67

K61 K62 0 0 0 0 K67 KΦ2

0 0 0 0 Gm
y3 Kγ2

Gm
y3 Kγ,ϕ 0 0

0 0 0 0 Gm
y3 Kγ,ϕ

Gm
y3 Kϕ2 0 0


(4.216)

A1 =



−sinθ 0 0 0 0 0 0 0
0 −sinθ 0 0 0 0 0 0

−cosθK31 −cosθK32 sinθ 0 0 0 0 0
−cosθK41 −cosθK42 0 sinθ 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −cosθGm

y3 Kγ2 −cosθGm
y3 Kγ,ϕ 0 0

0 0 0 0 −cosθGm
y3 Kγ,ϕ −cosθGm

y3 Kϕ2 0 0


(4.217)

A2 =



sinθcosθ 0 0 0 0 0 0 0
0 sinθcosθ 0 0 0 0 0 0

cos2θK31 cos2θK32 −sinθcosθ 0 0 0 0 0
cos2θK41 cos2θK42 0 −sinθcosθ 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 cos2θGm

y3 Kγ2 cos2θGm
y3 Kγ,ϕ 0 0

0 0 0 0 cos2θGm
y3 Kγ,ϕ cos2θGm

y3 Kϕ2 0 0



=−cosθ



−sinθ 0 0 0 0 0 0 0
0 −sinθ 0 0 0 0 0 0

−cosθK31 −cosθK32 sinθ 0 0 0 0 0
−cosθK41 −cosθK42 0 sinθ 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −cosθGm

y3 Kγ2 −cosθGm
y3 Kγ,ϕ 0 0

0 0 0 0 −cosθGm
y3 Kγ,ϕ −cosθGm

y3 Kϕ2 0 0


=−cosθA1

(4.218)
Now we will obtain expressions for the traces of the fundamental matrix (4.211) appearing in expressions
(4.214). Starting with X1:

Tr (X1(2π)) = Tr

(
e A02π

∫2π

0
e−A0s A1(s)e A0s

)
d s

=
∫2π

0
Tr

(
e A0(2π−s) A1(s)e A0s)d s

=
∫2π

0
Tr

(
A1(s)e A0s e A0(2π−s))d s

=
∫2π

0
Tr

(
e A02πA1(s)

)
d s = Tr

(
e A02π

∫2π

0
A1(s)d s

)
= 0

=⇒ Tr (X1 (4π)) = Tr (X1 (6π)) = Tr (X1 (8π)) = 0

(4.219)
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since
∫2π

0 A1(s)d s =∫4π
0 A1(s)d s =∫6π

0 A1(s)d s =∫8π
0 A1(s)d s = 0. Moving on to traces of X2:

Tr (X2(2π)) =Tr

[
e A02π

∫2π

0
e−A0s (

A1(s)X1(s)+ A2(s)e A0s)d s

]

=Tr

 e A02π
∫2π

0
e−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udud s

−e A02π
∫2π

0
e−A0s cos(s)A1(s)e A0s d s


=

∫2π

0
Tr

[
e A02πe−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udu

]
d s

−
∫2π

0
Tr

[
e A02πe−A0s cos(s)A1(s)e A0s]d s

=Tr

[
e A02π

∫2π

0
e−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udud s

]
−Tr

[
e A02π

∫2π

0
cos(s)A1(s)d s

]
(4.220)

now using A1(θ) = A1(0)cosθ+ A1(π/2)sinθ:

Tr (X2(2π)) = Tr

[
e A02π

∫2π

0
e−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udud s

]
−Tr

[
e A02πA1(0)

∫2π

0
cos2(s)d s

]
−Tr

[
e A02πA1(π/2)

∫2π

0
cos(s)sin(s)d s

]
= Tr

[
e A02π

∫2π

0
e−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udud s

]
−πTr

[
e A02πA1(0)

]
=⇒ Tr [X2(4π)] = Tr

[
e A04π

∫4π

0
e−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udud s

]
−2πTr

[
e A04πA1(0)

]
=⇒ Tr [X2(6π)] = Tr

[
e A06π

∫6π

0
e−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udud s

]
−3πTr

[
e A06πA1(0)

]
=⇒ Tr [X2(8π)] = Tr

[
e A08π

∫8π

0
e−A0s A1(s)e A0s

∫s

0
e−A0u A1(u)e A0udud s

]
−4πTr

[
e A08πA1(0)

]

(4.221)

Finally, combining Eq. (4.211) with Eqs. (4.219) and (4.221), we find the expansions in e for the traces of the
fundamental matrix at multiples of 2π:

Tr [X (2π)] = Tr [X0(2π)]+e2Tr [X2(2π)]+O(e3)

Tr [X (4π)] = Tr [X0(4π)]+e2Tr [X2(4π)]+O(e3)

Tr [X (6π)] = Tr [X0(6π)]+e2Tr [X2(6π)]+O(e3)

Tr [X (8π)] = Tr [X0(8π)]+e2Tr [X2(8π)]+O(e3)

(4.222)

Notice that, because the X1 traces vanished in Eq. (4.219), there are no linear terms in e in these expansions,
meaning that the coefficients of the reduced characteristic polynomial A, B , C and D (Eq. (4.214)) and, in
turn, the discriminant (4.207) also depend on e only quadratically plus higher orders. Perturbing from e = 0,
this means that the effect of eccentricity on stability is weaker than linear.

Having obtained the expressions for the traces Eqs. (4.219), (4.221) and (4.222) we are now able to estimate
the coefficient multiplying e2 in expanded discriminant, which then determines whether the influence of
increasing eccentricity for circular cases is stabilizing or not.

4.8.2. Application
After having derived general expressions, we apply the above method to assess analytically the effect of orbital
eccentricity on the stability of a circular periodic solution. To this end, we search for a configuration at the
border of a stability region, one whose eigenvalues just collided on the imaginary axis and thus, a multiple
eigenvalue is present. This border corresponds to the points where the real parts of the eigenvalues land on
the zero plane in Fig. 4.8. In such a case, the discriminant is zero and we are "on the fence" in terms of linear
stability, in other words, the solution is spectrally stable. Then, the e2 term in the expanded discriminant
will show whether an increment in eccentricity pushes the solution into the stability region or out of it. We
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Figure 4.9: Eigenvalue collision on the imaginary axis as β= 24° is held fixed and α is decreased from 42.308° to 42.3° in steps of
−0.0002°. An accurate collision point is given in Table 4.1

α 42.3°
Eigenvalue 1 0.731397831942222453414124645614 i
Eigenvalue 2 0.672029334754486791749030031617 i

α 42.3022276245°
Eigenvalue 1 0.702312251207510903616061876761 i
Eigenvalue 2 0.702299941824885747567900087799 i

α 42.3022276245959672481377022533790053372863448005888953166°
Eigenvalue 1 0.7023060965416562437844648655273426 i
Eigenvalue 2 0.7023060965416562437844648652833694 i

α 42.3022276245959672481377022533790053372863448005888953166376994462°
Eigenvalue 1 0.7023060965416562437844648654053561 i
Eigenvalue 2 0.7023060965416562437844648654053559 i

Table 4.1: Bisection results of varying α for β= 24° and e = 0 to find a configuration with a multiple eigenvalue.

choose to fix β = 24° and find the α for which we have all eigenvalues imaginary with two pairs of multiple
eigenvalues (two because of symmetry w.r.t. the real axis). This configuration corresponds to the collision
point in Fig. 4.9 where the eigenvalues are plotted in the top half of the complex plane for β = 24° and a
range of α that crosses the stability border. Our task is equivalent to finding a root of the discriminant of
the characteristic equation, as the discriminant is zero when multiple eigenvalues are present. However, the
characteristic polynomial, even if reduced to a quartic, is messy and complicated with a ton of trigonometric
functions of different powers involving α and thus, finding a root of the discriminant analytically is extremely
difficult and may be impossible.

Therefore, we have to find an estimate for α numerically. We do this by a simple bisection method using
the difference between the eigenvalues as a minimization goal. The results are shown in Table 4.1.

With Mathematica we calculate for e = 0, β= 24°,
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α= 42.3022276245959672481377022533790053372863448005888953166376994462°:

K31 = 1.88199515012320499097330147648285560586395197579148262

K32 =−1.50761230982951233084305573533596662179756795536262772

K41 =−0.102241967240333138505435018169711918909057761685896786

K42 =−0.91261064709329328148882183103853456795964532112434182

K75 = 2.684386506372517090614383756899770388829767503250749261910609332

K76 = 0.0388843337756305826935083826793570568734024665467100480878273335

K85 = 0.0388843337756305826935083826793570568734024665467100480878273335

K86 = 0.1024871234073476485873703102716732115958866873736937637178541492

(4.223)

The traces are then:

Tr [X0(2π)] =−0.324093415190300922768448987870301410195605398425761432769649

Tr [X0(4π)] =−2.819285767208687380460852587201525054169650316329901569738407

Tr [X0(6π)] = 6.008009854783563581196003096400628915152066276811439609581758

Tr [X0(8π)] = 0.592728146816084503378691814092313738600809253176266193129046

(4.224)

Surprisingly, all double integrals in expressions (4.221) turn out to be zero and the X2 traces are determined
solely by the trailing terms. They turn out to be:

Tr [X2(2π)] = 17.653002671864455374282529019648468723765434234894850

Tr [X2(4π)] =−136.479179551810618417985172826411999523038722541834465

Tr [X2(6π)] = 211.810019800417577449363278552445856918932260952628530

Tr [X2(8π)] = 274.12948395782508851235804340139054369890658276858652

(4.225)

We have kept all numbers after the comma, because through a series of multiplications while calculating the
discriminant the precision quickly diminishes, as one can see from the amount of certain digits that are left
in the expression for ∆ below. Plugging in the trace values into Eqs. (4.214) and (4.222) we obtain the reduced
polynomial coefficients B , C , D , E and calculate the discriminant with Eq. (4.207):

∆= 0−1800.48887e2 −492276.94407e4 +O(e6) (4.226)

We used automatic precision tracking functionality in Mathematica (discussed more in depth in the next
section) to leave in our discriminant expression only the significant digits of which we are certain, such that
we eliminate any random errors associated to machine precision. Notice that for e = 0 the discrimintant is
zero, which verifies the calculations at the multiple root point, because∆= 0 if and only if at least two roots are
equal. Recall that for stability we require all roots of the reduced characteristic polynomial to be real. This tells
us with certainty that increasing eccentricity by any positive amount will cause the discriminant to become
negative, meaning that we will have two real and two complex conjugate roots of the reduced polynomial,
which means four characteristic multipliers lie on the unit circle and four in the complex plane - instability
by a Krein bifurcation. Therefore, eccentricity causes a destabilizing effect and whereas in the circular case
at this configuration we are at the edge of stability, eccentric cases move into the unstable region, effectively
shrinking the stable boundary later seen in Figs. 4.11, 4.15, 4.19, 4.22 and 4.24.

4.9. Eccentric cases
For the eccentric cases the coefficient matrix (4.181) of our linearized system of equations is no longer con-
stant, but periodically varying, so we turn to Floquet theory and numerical simulation to assess the linear
stability. The method we use is standard: we integrate the linear system for one period with the identity ma-
trix as the initial state matrix [33]. This yields a fundamental matrix which tells us how each unit vector is
mapped from the initial time to one period later. As discussed in Section 4.4, this matrix is the monodromy
matrix X (2π), which transforms any state vector to a state vector one period later:

X (2π)x(θ) = x(θ+2π)

The eigenvalues of the monodromy matrix are called characteristic multipliers and for linear stability we
require that each of them has magnitude exactly 1, that is, they lie on the unit circle in the complex plane (the
monodromy matrix also has to be diagonalizable, otherwise we have spectral stability).
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Method Time [s] Precision Accuracy
Implicit RK10 1.14 14 26
RK9(8) 1.03 12 26
RK5(4) 7.59 12 26
RK8(9) 1.38 13 26
Adams 0.52 14 26
BDF 8.34 16 26

Table 4.2: Integration method comparison. The identity matrix is propagated by one period with each method for the square linearized
system (4.193) and the characteristic multipliers are compared with analytically computed ones, resulting in precision and accuracy
evaluations. We let the optimal order for Adams and BDF methods be automatically chosen by Mathematica.

4.9.1. Method of integration
We use the built-in Mathematica function NDSolve to numerically integrate the linear system of ODEs (4.181).
We have a number of built-in integration methods to choose from [26]:

• explicit Runge-Kutta methods with adaptive embedded pairs 2(1) through 9(8),

• predictor-corrector Adams method, orders 1 through 12

• implicit backward differentiation formulas (BDF), orders 1 through 5

• families of arbitrary-order implicit Runge-Kutta methods

• symplectic partitioned Runge-Kutta methods for separable Hamiltonian systems

Even though the linearized system is Hamiltonian, the Hamiltonian function is not separable anymore into
kinetic energy, which depends only on momenta, and potential energy that depends only on position vari-
ables. Therefore, we cannot use the symplectic partitioned Runge-Kutta methods in this case [37]. The other
four methods are tested by integrating the linearized system for the square configuration with zero eccen-
tricity. We set the initial states to the identity matrix, such that integration for one period produces the mon-
odromy matrix. Then, the numerically obtained characteristic multipliers are compared with the analytically
computed ones to obtain the precision and accuracy of the numerical method. Adapting the conventions
used within Mathematica, by precision we mean the number of correct significant digits and by accuracy we
mean the number of correct digits after the comma. These results along with the speed of each method are
shown in Table 4.2. We see that the most precise method seems to be BDF, however it is also the slowest.
We can sacrifice a couple of digits of accuracy for speed, as we will need to generate monodromy matrices
for hundreds of cases. The second-most accurate methods seem to be the Implicit Runge-Kutta (IRK) and
Adams methods, which we choose as our candidates to investigate further.

Next, we compare some settings of the integrators. Among the parameters we can choose is WorkingPre-
cision, AccuracyGoal and PrecisionGoal. These choices will impact the precision of the end result. As arbitrary
precision numbers are being used (this is the name within Mathematica for numbers that carry precision in-
formation with them), Mathematica keeps track of the error internally and estimates the precision of these
numbers after calculations automatically. The significant digits of arbitrary precision numbers within the in-
tegrator are set by WorkingPrecision parameter. In contrast, were we to use machine precision, the digits that
are affected by rounding error are kept and can often be completely random, because all machine precision
numbers are padded to 16 digits if some of the digits are unknown. With arbitrary precision numbers in Math-
ematica only the known digits are kept and if no digits are known with certainty anymore, a 0 is displayed with
a warning that no digits are known. We cross-verified the computed precision and accuracy results from Ta-
ble 4.2 with the ones estimated by Mathematica and found perfect agreement. The PrecisionGoal setting tells
the integrator how many correct significant digits to aim for (relative precision), while AccuracyGoal tells how
many digits after the floating point should be correct (absolute precision). Both of these settings are half the
WorkingPrecision by default. The results for various settings combinations for the IRK and Adams integrators
are shown in Tables 4.3 and 4.4 respectively.

We see that in all cases, the Adams integrator produces results of the same or better accuracy than IRK
and, therefore, we choose it as our integrator with the settings as in the last row of Table 4.4 (a smaller Start-
ingStepSize is required for higher precision integration for convergence).
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WorkingPrecision AccuracyGoal PrecisionGoal Time [s] Precision Accuracy
15 10 10 0.58 5 11
20 10 10 0.58 10 16
20 15 15 1.09 4 16
30 15 15 1.14 14 26
30 20 20 1.67 9 26

Table 4.3: Implicit RK integration precision comparison.

StartingStepSize WorkingPrecision AccuracyGoal PrecisionGoal Time [s] Precision Accuracy
1/10 15 10 10 0.28125 5 11
1/10 20 10 10 0.265625 10 16
1/10 20 15 15 0.53125 5 16
1/10 30 15 15 0.484375 14 26
1/20 30 20 20 0.875 10 26
1/20 40 20 20 0.875 20 36

Table 4.4: Adams integration precision comparison.

4.9.2. Results
The monodromy matrices are symplectic maps, since a state transition matrix of a Hamiltonian system is
always symplectic [3]. A known property of symplectic matrices is that their determinant is exactly 1. This
provides a way to check the accuracy of our integrations. The determinants of the monodromy matrices are
shown in Tables 4.5 and 4.6. We consider the number of significant digits to which the determinants round to
exactly 1 as the precision of the matrices. By finding the maximum and minimum determinants of a given set
of monodromy matrices we obtain the highest errors in the set and conclude that the monodromy matrices
in this set must be at least as precise as the least precise determinant.

The characteristic multipliers of the coarse sampling of the convex configurations domain are shown in
Fig. 4.10 for a range of eccentricities. We see that generally, the configurations become more unstable with
increasing eccentricity. As we saw before, the stable cases are only plausible near the line of minimum β.

We zoom in to the region near the limit line and calculate the characteristic multipliers for a dense sam-
pling of this region. The multipliers are rounded to 16 digits, as that is the minimum precision of all the
monodromy matrices. Then, we simply label each configuration as stable or unstable based on whether the
magnitudes of the multipliers are 1 or any other value. This yields the binary plots Figs. 4.11, 4.15, 4.19, 4.22
and 4.24 showing the stability regions for our sampling.

To verify the results shown in Figs. 4.11, 4.15, 4.19, 4.22 and 4.24 we plot the characteristic multipliers
along each of the horizontal lines containing stable configurations in Figs. 4.12 to 4.14, 4.16 to 4.18, 4.20, 4.21
and 4.23. We see that in each case stability is lost either through a Krein bifurcation (two multipliers collide

Eccentricity Precision Max determinant Min determinant
0 17 1.000000000000000002009 0.9999999999999999990040
0.1 17 1.000000000000000000805 0.9999999999999999974418
0.2 17 1.000000000000000001528 0.9999999999999999983374
0.3 17 1.000000000000000000792 0.9999999999999999974800
0.4 17 1.000000000000000002048 0.9999999999999999977990
0.5 17 1.000000000000000002894 0.9999999999999999982603
0.6 17 1.000000000000000003231 0.9999999999999999978438
0.7 17 1.000000000000000002396 0.9999999999999999982907
0.8 16 1.000000000000000004703 0.9999999999999999946127
0.9 16 1.000000000000000011508 0.9999999999999999768746

Table 4.5: Precision of the monodromy matrices of the coarse sampling of the convex cases, corresponding to Fig. 4.10.
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Eccentricity Precision Max determinant Min determinant
0 18 1.000000000000000002652 0.9999999999999999995163
0.1 17 1.000000000000000001199 0.9999999999999999962165
0.2 17 1.000000000000000004228 0.9999999999999999961145
0.3 17 1.000000000000000003863 0.9999999999999999969099
0.4 17 1.000000000000000002929 0.9999999999999999962863
0.5 17 1.000000000000000004979 0.9999999999999999961157
0.6 17 1.000000000000000003779 0.9999999999999999966292
0.7 17 1.000000000000000004709 0.9999999999999999973380
0.8 16 1.000000000000000013746 0.9999999999999999892503
0.9 16 1.000000000000000060294 0.9999999999999999562027

Table 4.6: Precision of the monodromy matrices of the fine sampling of the convex cases near the line of minimum β, corresponding to
Figs. 4.11, 4.15, 4.19, 4.22 and 4.24.

Figure 4.10: Sums of absolute values of characteristic multipliers for a sampling of the possible convex cases for eccentricities from 0 to
0.9. The coloured plane has height 8, which would be the sum of 8 multipliers on the unit circle.
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Figure 4.11: Stability diagram for the convex cases near the limit line for e = 0. Red means instability and green indicates linear stability.
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Figure 4.12: Characteristic multipliers along the bottom-most stable line for e = 0, 15.1° ≤β≤ 29.2°, 59.9° ≥α≥ 31.7°. Stability is lost at
β= 29.1°, α= 31.9°.
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Figure 4.13: Characteristic multipliers along the second bottom-most line for e = 0, 15.2° ≤β≤ 28°, 59.8° ≥α≥ 34.2°. Stability is lost at
β= 27.5°, α= 35.2°.
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Figure 4.14: Characteristic multipliers along the third bottom-most line for e = 0, 15.2° ≤β≤ 25°, 59.9° ≥α≥ 40.3°. Stability is lost at
β= 24.2°, α= 41.9°.
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Figure 4.15: Stability diagram for the convex cases near the limit line for e = 0.1. Red means instability and green indicates linear
stability.
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Figure 4.16: Characteristic multipliers along the bottom-most line of Fig. 4.15.

on the unit circle and split off to the complex plane) or a period-doubling bifurcation (two multipliers collide
at -1 and split off onto the real axis) [27]. In theory, there is another possibility, which is when two multipliers
collide at +1 and split off onto the real axis, but this bifurcation does not seem to appear in any of our cases.

These plots verify that inside the green regions we have 8 multipliers travelling along the unit circle, a
qualitative result that was expected and could not possibly be produced by numerical error, i.e. we could
not see the multipliers moving in such a fashion were they not actually on the unit circle, which serves as
a convincing verification. Moreover, we now see that throughout the absolute majority of the regions we
have eight distinct multipliers and the only places where we have multiple eigenvalues is at the collisions,
that is, at the boundaries of the stability regions. This means that all the green cases in the stability plots are
linearly stable, since none of them are exactly at a collision. Were we to consider a case that was exactly on
the boundary, we would have to investigate the dimension of its eigenspace to conclude linear stability, as
such cases may only be spectrally stable.

In conclusion, we find that up until at least e = 0.3 there is a thin region of stability near the limit case
where a single body has all the mass. Increasing the eccentricity generally has the effect of destabilizing the
configurations, as is clearly seen from Fig. 4.10 and from the shrinking green region in Figs. 4.11, 4.15, 4.19,
4.22 and 4.24. Even still, we find an anomaly for eccentricity e = 0.2, where one isolated sample is stable,
as seen in Figs. 4.19 and 4.21, while the same configuration is unstable for lower eccentricities. That region
seems to be very sensitive to changes in the parameters, as characterized by the rapidly changing eigenvalues
in Fig. 4.21, and so seems to be an almost accidental stable island, for which we can’t provide a clear reason.

It is proven in [27] that for the elliptic Lagrangian triangle configurations, there is also a region of mass
ratios, which are linearly stable in eccentric cases, but not in the circular ones. Therefore, it is a phenomenon
known to occur in central configurations. In our case, however, the stable configuration is isolated from the
main region of stability, which makes this result even stranger, but true nevertheless, as seen from Fig. 4.21,
where we find eight distinct eigenvalues on the unit circle, with significant digression from the boundary of
stability.
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Figure 4.17: Characteristic multipliers along the second bottom-most line of Fig. 4.15, e = 0.1, 15.2° ≤β≤ 27.8°, 59.8° ≥α≥ 34.6°.
Stability is lost at β= 22.2°, α= 45.8° (top right image), then regained at β= 26.9°, α= 36.4° (middle right image), lost again at β= 27.1°,
α= 36° (bottom left image), regained again at β= 27.3°, α= 35.6° (bottom left image) and finally lost at β= 27.5°, α= 35.2° (bottom right
image).
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Figure 4.18: Characteristic multipliers along the third bottom-most line of Fig. 4.15, e = 0.1, 15.2° ≤β≤ 25°, 59.9° ≥α≥ 40.3°. Stability is
gained at β= 22°, α= 46.3° (top right image), then lost again at β= 24.1°, α= 42.1° (bottom left image).
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Figure 4.19: Stability diagram for the convex cases near the limit line for e = 0.2. Red means instability and green indicates linear
stability.
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Figure 4.20: Characteristic multipliers along the bottom-most line of Fig. 4.19, e = 0.2, 15.1° ≤β≤ 27.5°, 59.9° ≥α≥ 35.1°. Stability is lost
at β= 27.1°, α= 35.9° (right image).

4.10. Closing remarks
To summarize, we have found that a region of linearly stable solutions exists in the convex case for eccentric-
ities from 0 up to at least 0.3. Each of these solutions describes four bodies moving on Keplerian ellipses in
a plane about the common center of mass. Note that we only considered the stability of the planar motion,
however, it is an established fact that when considering the out-of-plane perturbations of planar relative
equilibria, the variational equations decouple into the part governing the planar motion and another part
governing the out-of-plane motion, the latter of which is always linearly stable [29]. This is also intuitive from
observations, as many body systems, for example, planetary systems, such as our own Solar System, or rings
around planets generally tend to planar motion, therefore out-of-plane motion gets diminished over time.
Thus, our linear stability result extends to kite central configurations in three-dimensional space.

A very important observation is that all linearly stable configurations that we found are located within
0.4° from the α+2β= 90° line, which, recall from Chapter 2, corresponds to the convex coorbital case with all
mass in body 3 with other bodies situated on a ’lumpy ring” around it. The fact that we only find linearly stable
solutions near this configuration agrees with the general pattern for stability of relative equilibria, which is
that all known examples have a dominant mass and are ring-like, that is the small masses are situated near a
circle around the big mass [19]. In fact, it is proven in [29] that RE of four-body problem are only stable in the
planetary case, i.e. when there is a dominant mass. Hence, these facts verify that indeed our linear stability
assessment produced sensible results and our results, in turn, add to the existing evidence for R. Moeckel’s
conjecture that all stable relative equilibria are ring-like [19].

Lastly, we remark that our results extend beyond the theory of RE, because we also assessed the linear
stability of eccentric cases, which are not equilibria in a rotating frame. The linearly stable eccentric cases
that we found are also situated near the co-orbital line, in fact even more so than the circular cases, since the
stability region shrank for increasing eccentricity (see Figs. 4.11, 4.15, 4.19, 4.22 and 4.24). This, along with
the largely matching trend of multipliers for different eccentricities in Fig. 4.10 suggests that the dominant
mass and ring-like structure may also be required for stability of eccentric cases.
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Figure 4.21: Characteristic multipliers along the third bottom-most line of Fig. 4.19, e = 0.2, 15.2° ≤β≤ 26°, 59.9° ≥α≥ 38.3°. We have
instability until a linearly stable sample at β= 25.3°, α= 39.7° (middle right image) is encountered, after which the configurations are
again unstable.
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Figure 4.22: Stability diagram for the convex cases near the limit line for e = 0.3. Red means instability and green indicates linear
stability.
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Figure 4.23: Characteristic multipliers along the bottom-most line of Fig. 4.22, e = 0.3, 15.1° ≤β≤ 25°, 59.9° ≥α≥ 40.1°. Stability is lost at
β= 24.8°, α= 40.5°.
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Figure 4.24: Stability diagram for the convex cases near the limit line for e = 0.4, e = 0.5, e = 0.6, e = 0.7, e = 0.8, e = 0.9. Red means
instability and green means indicates stability.





5
First concave cases

So far, we have developed the procedure to compute the eigenvalues analytically (be it with the help of a
computer algebra system) for the circular periodic solutions and characteristic multipliers for the elliptical
solutions with the help of numerical integration. Having applied this to the convex cases, we now move on to
the second of the three types of kite central configurations, as described in Chapter 2 - the first concave type.
In these configurations, body m3 lies inside the triangle defined by the other three bodies, while the center
of mass lies inside the kite geometry described by all four bodies (see Fig. 2.4). The procedure to determine
linear stability is the same, with only some sign changes in the computations, as we will see shortly.

5.1. Linearization
The mass ratios in the first concave case are given by [34]

m3

m1
= m3

m2
= m3

m
= tanβ

(
tanα− tanβ

)2 (
1−8cos3β

)
4
[(

sinα−cosα tanβ
)3 −1

]
m4

m1
= m4

m2
= m4

m
= tanα

(
tanα− tanβ

)2 (
1−8cos3α

)
4
[(

sinβ−cosβ tanα
)3 +1

] (5.1)

where α and β must satisfy Eq. (2.2) The initial distances between the bodies are expressed in terms of y , α
and β as

d1 = y secα= y

cosα

d2 = y secβ= y

cosβ

d34 = y
(
tanα− tanβ

) (5.2)

where the expression for the distance between the third and fourth bodies differs from that for the convex
case by a minus sign, because now both bodies are on the same side of the vertical datum line (Fig. 2.4) and
we have to subtract the distance to the inner body from the distance to the outer body. The time-dependent
distances between the bodies are again obtained by multiplying with the scaling factor r (t ):

κ1 = κ3 = r23 = r13 = r d1 = r y

cosα

κ2 = κ4 = r24 = r14 = r d2 = r y

cosβ

κ5 = r d34 = r y
(
tanα− tanβ

) (5.3)
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The canonical coordinates of the linearized system are then

r2 = c2r = 2yr R2 = M2c2R

r3 = c3r = y tanαr R3 = M3c3R

r4 = c4r = y
(
M33 tanα− tanβ

)
R4 = M4c4R

γ=−π

2
Γ= M3c2

3ω+M4c2
4ω

ϕ=π Φ= M4c2
4ω

(5.4)

where r4, the length between the center of mass of the first three bodies and the fourth body, now has a minus
sign, because, similarly to d34, the two points are now both on the same side of the datum line (see Fig. 2.4),
hence we have to subtract the distances.

The expressions for the mass parameters in terms of the masses remain the same:

M12 = M22 = m1

m1 +m2
= m2

m1 +m2
= 1

2

M13 = M23 = m1

m1 +m2 +m3
=

(
m1

m1
+ m2

m1
+ m3

m1

)−1

=
(
2+ m3

m

)−1

M33 = m3

m1 +m2 +m3
=

(
m1

m3
+ m2

m3
+ m3

m3

)−1

=
(
2

m

m3
+1

)−1

(5.5)

however, the values of M13, M23 and M33 depend differently onα andβ compared to the convex case, because
of the different mass-geometry relationships Eq. (5.1).

The double derivatives for the first concave case are given below. Since the periodic solution of the first
concave case differs from the convex case only by the sign change in variables κ5 and c4, only the derivatives
which involve these variables will be different. They are marked orange to make tracking the changes easier.
Meanwhile the derivatives not involving these variables are the same as in the convex case and are simply
repeated here.

∂2H

∂r 2
2

∣∣∣∣∣
ϕ(t )

= 3M2
ω2

r 4 − 1

4

Gm2

r 3 y3 − 1

2

Gmm3

r 3 y3

(
3cos5α−cos3α

)− 1

2

Gmm4

r 3 y3

(
3cos5β−cos3β

)
(5.6)

∂2H

∂r2∂r3

∣∣∣∣
ϕ(t )

=−3

2

Gmm3

r 3 y5 cos5αc3c2 − 3

2

Gmm4

r 3 y5 cos5β
(
M 2

33c3 −M33c4
)

c2

=−3

2

Gmm3

r 3 y3 cos5α2tanα− 3

2

Gmm4

r 3 y3 cos5β
(
M 2

33 tanα−M33
(
M33 tanα− tanβ

))
2

= −3
Gmm3

r 3 y3 cos4αsinα−3
Gmm4

r 3 y3 M33 cos4βsinβ

(5.7)

∂2H

∂r2∂r4

∣∣∣∣
ϕ(t )

=−3

2

Gmm4

r 3 y5 cos5β (c4 −M33c3)c2 =−3

2

Gmm4

r 3 y3 cos5β
(
M33 tanα− tanβ−M33 tanα

)
2

=+3
Gmm4

r 3 y3 cos5β tanβ= +3
Gmm4

r 3 y3 cos4βsinβ

(5.8)

∂2H

∂r2∂γ

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r2∂ϕ

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r2∂R2

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r2∂R3

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r2∂R4

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r2∂Φ

∣∣∣∣
ϕ(t )

= 0

(5.9)

∂2H

∂r2∂Γ

∣∣∣∣
ϕ(t )

= ω

r 3 y
(5.10)
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∂2H

∂r 2
3

∣∣∣∣∣
ϕ(t )

=3
M 2

3 c4
3ω

2

M3

1

c4
3 r 4

−3
Gmm3

r 5 y5 cos5αc2
3 r 2 + Gmm3

r 3 y3 cos3α−3
Gmm4

r 5 y5 cos5β
(
M 2

33c3r −M33c4r
)2 + Gmm4

r 3 y3 cos3βM 2
33

−3
Gmm3

r 5 y5 cos5α (c3r )2 + Gmm3

r 3 y3 cos3α−3
Gmm4

r 5 y5 cos5β
(
M 2

33c3r −M33c4r
)2 + Gmm4

r 3 y3 cos3βM 2
33

−3
Gm3m4

r 5 y5

(
tanα− tanβ

)−5 (
M 2

c3c3r +Mc3c4r
)2 + Gm3m4

r 3 y3

(
tanα− tanβ

)−3 M 2
c3

=3M3
ω2

r 4 −6
Gmm3

r 5 y5 cos5αc2
3 r 2 +2

Gmm3

r 3 y3 cos3α

−6
Gmm4

r 3 y3 cos5β
(
M 2

33 tanα−M33
(
M33 tanα− tanβ

))2 +2
Gmm4

r 3 y3 M 2
33 cos3β

−3
Gm3m4

r 3 y3

(
tanα− tanβ

)−5 (
M 2

c3 tanα+Mc3
(
M33 tanα− tanβ

))2 + Gm3m4

r 3 y3

(
tanα− tanβ

)−3 M 2
c3

=3M3
ω2

r 4 −2
Gmm3

r 3 y3

(
3cos5α tan2α−cos3α

)−2
Gmm4

r 3 y3 M 2
33

(
3cos5β tan2β−cos3β

)
− Gm3m4

r 3 y3

(
tanα− tanβ

)−5
(
3
(
Mc3 tanα (Mc3 +M33)−Mc3 tanβ

)2 −M 2
c3

(
tanα− tanβ

)2
)

=
3M3

ω2

r 4 −2
Gmm3

r 3 y3

(
2cos3α−3cos5α

)−2
Gmm4

r 3 y3 M 2
33

(
2cos3β−3cos5β

)
−2

Gm3m4

r 3 y3 M 2
c3

(
tanα− tanβ

)−3

(5.11)

∂2H

∂r3∂r4

∣∣∣∣
ϕ(t )

=− 3

2

Gmm4

r 5 y5 cos5β (2c4r −2M33c3r )
(
M 2

33c3r −M33c4r
)− Gmm4

r 3 y3 M33 cos3β

− 3

2

Gmm4

r 5 y5 cos5β (2c4r −2M33c3r )
(
M 2

33c3r −M33c4r
)− Gmm4

r 3 y3 M33 cos3β

− 3

2

Gm3m4

r 5 y5

(
tanα− tanβ

)−5
(2c4r +2Mc3c3r )

(
M 2

c3c3r +Mc3c4r
)+ Gm3m4

r 3 y3

(
tanα− tanβ

)−3 Mc3

=−3
Gmm4

r 3 y5 cos5β (2c4 −2M33c3)
(
M 2

33c3 −M33c4
)−2

Gmm4

r 3 y3 M33 cos3β

− 3

2

Gm3m4

r 3 y5

(
tanα− tanβ

)−5
(2c4 +2Mc3c3)

(
M 2

c3c3 +Mc3c4
)+ Gm3m4

r 3 y3 Mc3
(
tanα− tanβ

)−3

=6
Gmm4

r 3 y5 cos5βM33 (M33c3 − c4)2 −2
Gmm4

r 3 y3 M33 cos3β

−3
Gm3m4

r 3 y5

(
tanα− tanβ

)−5 Mc3 (Mc3c3 + c4)2 + Gm3m4

r 3 y3 Mc3
(
tanα− tanβ

)−3

=6
Gmm4

r 3 y3 cos5βM33
(
M33 tanα−M33 tanα+ tanβ

)2 −2
Gmm4

r 3 y3 M33 cos3β

−3
Gm3m4

r 3 y3

(
tanα− tanβ

)−5 Mc3
(
Mc3 tanα+M33 tanα− tanβ

)2 + Gm3m4

r 3 y3 Mc3
(
tanα− tanβ

)−3

=2
Gmm4

r 3 y3 M33 cos3β
(
3sin2β−1

)−2
Gm3m4

r 3 y3 Mc3
(
tanα− tanβ

)−3

= 2
Gmm4

r 3 y3 M33
(
2cos3β−3cos5β

)−2
Gm3m4

r 3 y3 Mc3
(
tanα− tanβ

)−3

(5.12)
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∂2H

∂r3∂γ

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r3∂ϕ

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r3∂R2

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r3∂R3

∣∣∣∣
ϕ(t )

= 0

∂2H

∂r3∂R4

∣∣∣∣
ϕ(t )

= 0

(5.13)

∂2H

∂r3∂Γ

∣∣∣∣
ϕ(t )

= −2
ω

r 3 y
tan−1α

∂2H

∂r3∂Φ

∣∣∣∣
ϕ(t )

= 2
ω

r 3 y
tan−1α (5.14)

∂2H

∂γ2

∣∣∣∣
ϕ(t )

=−6
Gmm3

r 5 y5 cos5α

(
−1

2
c2c3r 2

)2

−6
Gmm4

r 5 y5 cos5β

(
1

2
c2c4r 2 − 1

2
M33c2c3r 2

)2

=− 3

2

Gmm3

r y
cos5α (2tanα)2 − 3

2

Gmm4

r y
cos5β

(
2
(
M33 tanα− tanβ

)−M332tanα
)2

= −6
Gmm3

r y
cos3αsin2α−6

Gmm4

r y
cos3βsin2β

(5.15)

∂2H

∂γ∂r4

∣∣∣∣
ϕ(t )

= 0 (5.16)

∂2H

∂γ∂ϕ

∣∣∣∣
ϕ(t )

=− 3

2

Gmm4

r y5 cos5βc2c4 (c2c4 −M33c2c3)

=− 3

2

Gmm4

r y5 cos5βc2
2 c4 (c4 −M33c3)

=−6
Gmm4

r y
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(
M33 tanα− tanβ

)((
M33 tanα− tanβ

)−M33 tanα
)

= +6
Gmm4

r y
cos4βsinβ

(
M33 tanα− tanβ
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(5.17)

∂2H

∂γ∂R2

∣∣∣∣
ϕ(t )

= ∂2H

∂γ∂R3

∣∣∣∣
ϕ(t )

= ∂2H

∂γ∂Γ

∣∣∣∣
ϕ(t )

= ∂2H

∂γ∂R4

∣∣∣∣
ϕ(t )

= ∂2H

∂γ∂Φ

∣∣∣∣
ϕ(t )

= 0 (5.18)

∂2H
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4

∣∣∣∣∣
ϕ(t )
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M4ω

2
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Gmm4
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−3
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−3
Gm3m4
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(
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(
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)−3

=3
M4ω

2

r 4 −6
Gmm4
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Gm3m4
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(
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r 4 −6
Gmm4
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(
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)−3

= 3M4
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r 4 −2
Gmm4

r 3 y3

(
2cos3β−3cos5β

)−2
Gm3m4

r 3 y3

(
tanα− tanβ

)−3

(5.19)

∂2H

∂r4∂ϕ

∣∣∣∣
ϕ(t )

= ∂2H

∂r4∂R2

∣∣∣∣
ϕ(t )

= ∂2H

∂r4∂R3

∣∣∣∣
ϕ(t )

= ∂2H

∂r4∂Γ

∣∣∣∣
ϕ(t )

= ∂2H

∂r4∂R4

∣∣∣∣
ϕ(t )

= 0 (5.20)
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∂2H

∂r4∂Φ

∣∣∣∣
ϕ(t )

=−2
ω

c4r 3 = −2
ω

r 3 y

(
M33 tanα− tanβ

)−1 (5.21)

∂2H
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r 3 y3

(
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r y

(
tanα− tanβ
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=
−2

Gmm4
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(
M33 tanα− tanβ

)(
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(
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)
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(5.22)

∂2H

∂ϕ∂R2
= ∂2H

∂ϕ∂R3
= ∂2H

∂ϕ∂Γ
= ∂2H

∂ϕ∂R4
= ∂2H

∂ϕ∂Φ
= 0 (5.23)

∂2H

∂R2
2

= 1

M2

∂2H

∂R2∂R3
= ∂2H

∂R2∂Γ
= ∂2H

∂R2∂R4
= ∂2H

∂R2∂Φ
= 0

(5.24)

∂2H

∂R2
3

= 1

M3

∂2H

∂R3∂Γ
= ∂2H

∂R3∂R4
= ∂2H

∂R3∂Φ
= 0

(5.25)

∂2H

∂Γ2

∣∣∣∣
ϕ(t )

= 1

4M2r 2 y2 + 1

M3r 2 y2 tan−2α (5.26)

∂2H

∂Γ∂R4
= 0

∂2H

∂Γ∂Φ
= − 1
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∂2H
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4
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∂2H
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= 0 (5.28)
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r 2

(
1
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3
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2

)
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r 2 y2

(
1

M3
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M4

(
M33 tanα− tanβ

)−2
)

(5.29)
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Finally, the coefficient matrix for the linearized system is given by:

JD2H(γ(t )) =

0 0 0 0 0 1
M2

0 0 0 0

0 0 0 0 0 0 1
M3

0 0 0
a0 −a1 0 0 0 0 0 HΓ2 0 −a3

0 0 0 0 0 0 0 0 1
M4

0
0 a1 0 −a2 0 0 0 −a3 0 HΦ2

−Hr 2
2

−Hr2,r3 0 −Hr2,r4 0 0 0 −a0 0 0

−Hr3,r2 −Hr 2
3

0 −Hr3,r4 0 0 0 a1 0 −a1

0 0 −Hγ2 0 −Hγ,ϕ 0 0 0 0 0
−Hr4,r2 −Hr4,r3 0 −Hr 2

4
0 0 0 0 0 a2

0 0 −Hϕ,γ 0 −Hϕ2 0 0 0 0 0



(5.30)

Having obtained these coefficients, the rest of the procedure to arrive at Eq. (4.181) is exactly the same as in
the convex case. The v coefficients are expressed in terms of the double derivatives and the k coefficients in
terms of the mass and length variables Mi , ci . Therefore, all we have to do is substitute the new coefficient
values into expressions for the terms of the transformed matrix (4.140) in Mathematica and the reduced 8x8
matrix for the first concave case is obtained. Then, performing the linear coordinate changes from Section 4.5
we arrive at the final matrix in the form of Eq. (4.181), but with new coefficients.

5.2. Circular cases
Linear stability of the circular cases may once again be analyzed using only algebraic computations of the
eigenvalues of the coefficient matrix Eq. (4.181) made constant by setting e = 0. The domain of the first
concave cases is sampled as shown in Fig. 5.1. Throughout most of the region the eigenvalues have real parts
whose magnitudes total up to 8. Similarly to the convex case, the real parts are diminished as we approach
the line 2α−β= 90°. This line corresponds to the limit case where all the mass is concentrated in body 4 (the
interior body). Therefore, we increase the sampling resolution in the β direction near this line, as can be seen
in Fig. 5.1. Although the real parts of the eigenvalues approach the zero plane (coloured plane in Figs. 5.1, 5.3
and 5.4) as we move towards the limit line, contrary to the convex case, they do not reach it. At 0.1° in β away
from the line the real parts still have magnitudes of order 0.1 (see Figs. 5.2 and 5.4). Hence, we conclude that
all circular cases in the first concave domain are linearly unstable.

5.3. Eccentric cases
The monodromy matrices are again found by numerical integration of the identity matrix for one period.
The settings given to the NDSolve function in Mathematica are the "Adams" method with starting step size
of 1/200, working precision 40, precision and accuracy goals 20. We estimate the monodromy matrices for
a sampling of the first concave region with 1° resolution for eccentricities 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9. The sums of the magnitudes of the characteristic multipliers for a range of eccentricities are shown
in Fig. 5.5.

The precision of the generated monodromy matrices is checked in the same way as for the convex cases.
For each eccentricity, the determinants of the 196 monodromy matrices are calculated and checked for the
biggest deviation from 1. In this way we obtain a precision estimate for the monodromy matrices for each
eccentricity, because they must be at least as precise as their determinants. The results are shown in Table 5.1.

The characteristic multipliers for the coarse sampling of the first concave region are shown in Fig. 5.5
for all eccentricities. We see that, again, eccentricity destabilizes the configurations, because the multipliers
grow in magnitude.

Zooming in near the line 2α−β = 90° and checking the magnitudes of the characteristic multipliers in
the same way as in the convex case, we are unable to identify any stable configurations for any eccentricities
(Fig. 5.6).

5.4. Closing remarks
One can clearly see from Figs. 5.3 and 5.4 that the real parts of the eigenvalues for the circular solutions of the
first concave type are diminishing as the configurations approach the 2α−β= 90° line. On the line, we have
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Figure 5.1: Top view of the total magnitudes of the real parts of the eigenvalues for the first concave domain.

45 60

Figure 5.2: Front view of the total magnitudes of the real parts of the eigenvalues for the first concave domain.



98 5. First concave cases

Figure 5.3: Total magnitudes of the real parts of the eigenvalues for the first concave domain.

Figure 5.4: Zoom view of the total magnitudes of the real parts of the eigenvalues near the limit line of the first concave domain.
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Eccentricity Precision Max determinant Min determinant
0 18 1.000000000000000004381 1.0000000000000000000000
0.1 17 1.000000000000000003714 0.9999999999999999956707
0.2 17 1.000000000000000003429 0.9999999999999999966389
0.3 17 1.000000000000000007273 0.9999999999999999960632
0.4 16 1.000000000000000010725 0.9999999999999999775570
0.5 16 1.000000000000000049886 0.9999999999999999770063
0.6 16 1.000000000000000226624 0.9999999999999999788055
0.7 14 1.000000000000000950938 0.9999999999999991438185
0.8 14 1.000000000000004880508 0.9999999999999968522191
0.9 13 1.000000000000026174559 0.9999999999999882456815

Table 5.1: Precision of the monodromy matrices of the coarse sampling of the first concave cases, corresponding to Fig. 5.5.

Eccentricity Precision Max determinant Min determinant
0 17 1.000000000000000009914 0.9999999999999999994023
0.1 17 1.000000000000000003849 0.9999999999999999970506
0.2 16 1.000000000000000004927 0.9999999999999999944167
0.3 16 1.000000000000000008575 0.9999999999999999942616
0.4 16 1.000000000000000007012 0.9999999999999999888213
0.5 16 1.000000000000000009889 0.9999999999999999842099
0.6 16 1.000000000000000019174 0.9999999999999999740597
0.7 16 1.000000000000000023999 0.9999999999999999839609
0.8 15 1.000000000000000113540 0.9999999999999999357822
0.9 15 1.000000000000000924879 0.9999999999999998295364

Table 5.2: Precision of the monodromy matrices of the fine sampling of the first concave cases near the line of maximum β,
corresponding to Fig. 5.6.

Figure 5.5: Sums of absolute values of characteristic multipliers for a sampling of the possible concave cases of the first kind for
eccentricities from 0 to 0.9. The coloured plane has height 8, which would be the sum of 8 multipliers on the unit circle.
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0.1 2.1 4.1 6.1 8.1 10.1 12.1 14.1 16.1 18.1 20.1 22.1 24.1 26.1 28.1

0.5β+45.7
0.5β+45.6
0.5β+45.5
0.5β+45.4
0.5β+45.3
0.5β+45.2
0.5β+45.1

0.5β+45.8
0.5β+45.9
0.5β+46

β[º]

α[º]

Figure 5.6: Stability diagram for the concave cases of the first kind near the limit line for e = 0, e = 0.1, e = 0.2, e = 0.3, e = 0.4, e = 0.5,
e = 0.6, e = 0.7, e = 0.8, e = 0.9.

the concave coorbital situation, as discussed in Chapter 2, where three massless bodies orbit the inner body
m4 on a common circle. Similarly to the convex case, linear stability increases when approaching a config-
uration with a dominant mass and ring-like positioning. However, interestingly, this time linear stability is
not reached, not even 0.1° away, as seen in Fig. 5.6. In Fig. 5.4 we see that the real parts of the eigenvalues
increase for increasing α and decrease for increasing β. Looking at Fig. 2.6, we see that increasing α (going
top to bottom in Fig. 2.6) diminishes the mass of the central body, thus destabilizing the configuration, while
increasing β (going left to right in Fig. 2.6) increases the central mass and moves it towards the middle, thus
providing a stabilizing effect. However, as we can see the balance works out to instability’s side for all sampled
concave cases of the first kind and even if for linear stability was found for some very fine sampling of the 0.1°
gap near the limit line, for all practical purposes one would already be looking at the degenerate case of three
infinitesimal masses orbiting one big mass.



6
Second concave cases

Finally, we are left with the last type of kite central configurations, that is the second concave type. Recall that
in these configurations we have body 4 positioned inside the triangle defined by the other bodies, however,
differently from the first concave case, the center of mass this time lies outside of the kite described by all four
bodies, as shown in Fig. 2.7. We once again apply the procedure of linearization and eigenvalue calculation
for the circular cases, complemented with the numerical estimation of characteristic multipliers for the el-
liptic cases. Also similarly to the last chapter, we encounter a sign change when comparing the expressions
developed below with the ones in the previous two chapters.

6.1. Linearization

This time we have the variables ϕ and c4 that are different from both the convex case and the first concave
case. The endpoints of c4 are now switched, because the center of mass of the first three bodies now switched
places with the fourth body. This leads to a c4 which is negative of the expression for the first concave case
and ϕ becomes zero, because r4 now points in the same direction as r3.

c4 = y
(
tanβ−M33 tanα

)
ϕ= 0

(6.1)

All other variables and mass coefficients are the same as in the first concave case, including the mass ratios
Eq. (5.1).

Once again, the double derivatives are given below with the changed variables marked in green, for con-
venience of tracking the changes.

∂2H

∂r 2
2

=3
(c −Γ)2

M2

1

r 4
2

−2
Gm1m2

r 3
2

−3
Gm1m3

κ5
1

(
M 2

22r2 +M22r3 cosγ
)2 + Gm1m3

κ3
1

M 2
22

−3
Gm1m4

κ5
2

(
M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)2 + Gm1m4

κ3
2

M 2
c1

−3
Gm2m3

κ5
3

(
M 2

12r2 −M12r3 cosγ
)2 + Gm2m3

κ3
3

M 2
12

−3
Gm2m4

κ5
4

(
M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)2 + Gm2m4

κ3
4

M 2
c2

(6.2)
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∂2H

∂r2∂r3
=−3

2

Gm1m3

κ5
1

(
2r3 +2M22r2 cosγ

)(
M 2

22r2 +M22r3 cosγ
)+ Gm1m3

κ3
1

M22 cosγ

−3

2

Gm1m4

κ5
2

(
2M 2

33r3 +2M33r4 cosϕ+2M33Mc1r2 cosγ
)(

M 2
c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ

)
+Gm1m4

κ3
2

M33Mc1 cosγ

−3

2

Gm2m3

κ5
3

(
2r3 −2M12r2 cosγ

)(
M 2

12r2 −M12r3 cosγ
)− Gm2m3

κ3
3

M12 cosγ

−3

2

Gm2m4

κ5
4

(
2M 2

33r3 +2M33r4 cosϕ+2M33Mc2r2 cosγ
)(

M 2
c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ

)
+Gm2m4

κ3
4

M33Mc2 cosγ

(6.3)

∂2H

∂r2∂r3

∣∣∣∣
ϕ(t )

=−3

2

Gmm3

r 3 y5 cos5αc3c2 − 3

2

Gmm4

r 3 y5 cos5β
(
M 2

33c3+M33c4
)

c2 (6.4)

∂2H

∂r2∂γ
=−3

2

Gm1m3

κ5
1

·−2M22r2r3 sinγ · (M 2
22r2 +M22r3 cosγ

)+ Gm1m3

κ3
1

·−M22r3 sinγ

−3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33Mc1r2r3 sinγ
) · (M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)

+Gm1m4

κ3
2

· (−Mc1r4 sin(γ+ϕ)−M33Mc1r3 sinγ
)

−3

2

Gm2m3

κ5
3

·2M12r2r3 sinγ · (M 2
12r2 −M12r3 cosγ

)+ Gm2m3

κ3
3

·M12r3 sinγ

−3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33Mc2r2r3 sinγ
) · (M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)

+Gm2m4

κ3
4

· (−Mc2r4 sin(γ+ϕ)−M33Mc2r3 sinγ
)

(6.5)

∂2H

∂r2∂r4
=− 3

2

Gm1m4

κ5
2

· (2r4 +2Mc1r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)

+ Gm1m4

κ3
2

·Mc1 cos(γ+ϕ)

− 3

2

Gm2m4

κ5
4

· (2r4 +2Mc2r2 cos(γ+ϕ)+2M33r3 cosϕ
) · (M 2

c2r2 +Mc2r4 cos(γ+ϕ)+M33Mc2r3 cosγ
)

+ Gm2m4

κ3
4

·Mc2 cos(γ+ϕ)

(6.6)
at the periodic solution:

∂H

∂r2∂r4

∣∣∣∣
ϕ2(t )

=−3
Gmm4

r 5 y5 cos5β · (c4r+M33c3r ) ·
(

1

4
c2r

)
+0

−3
Gmm4

r 5 y5 cos5β · (c4r+M33c3r ) ·
(

1

4
c2r

)
+0

=− 3

2

Gmm4

r 3 y5 cos5β · (c4+M33c3) · c2 =−3

2

Gmm4

r 3 y5 cos5β · (+y tanβ−M33 y tanα+M33 y tanα
) ·2y

= −3
Gmm4

r 3 y3 cos4βsinβ

(6.7)
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∂2H

∂r2∂ϕ
=− 3

2

Gm1m4

κ5
2

· (−2Mc1r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
) · (M 2

c1r2 +Mc1r4 cos(γ+ϕ)+M33Mc1r3 cosγ
)

− Gm1m4

κ3
2

Mc1r4 sin(γ+ϕ)

− 3

2

Gm2m4

κ5
4

· (−2Mc2r2r4 sin(γ+ϕ)−2M33r3r4 sinϕ
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(6.8)
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at the periodic solution:
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· (−Mc2r2 sin(γ+ϕ)−M33r3 sinϕ
)

− 3

2

Gm3m4

κ5
5

· (2Mc3r3r4 sinϕ
) · (r4 −Mc3r3 cosϕ

)+ Gm3m4

κ3
5

·Mc3r3 sinϕ

(6.19)

The first four terms change sign, while the last two terms are zero, as before, which gives

∂2H

∂r4∂ϕ

∣∣∣∣
ϕ2(t )

= 0 (6.20)

∂2H

∂r4∂Φ
=−2

Φ

M4

1

r4
3

(6.21)

∂2H

∂r4∂Φ

∣∣∣∣
γ(t )

=−2
M4c4

2ω

M4
· 1

c4
3r 3 =−2

ω

c4r 3 = +2
ω

r 3 y

(
M33 tanα− tanβ

)−1 (6.22)
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∂2H

∂ϕ2 =−3
Gm1m4

κ5
2

· (Mc1r2r4 sin(γ+ϕ)+M33r3r4 sinϕ
)2 − Gm1m4

κ3
2

· (Mc1r2r4 cos(γ+ϕ)+M33r3r4 cosϕ
)

−3
Gm2m4

κ5
4

· (Mc2r2r4 sin(γ+ϕ)+M33r3r4 sinϕ
)2 − Gm2m4

κ3
4

· (Mc2r2r4 cos(γ+ϕ)+M33r3r4 cosϕ
)

−3
Gm3m4

κ5
5

· (Mc3r3r4 sinϕ
)2 + Gm3m4

κ3
5

·Mc3r3r4 cosϕ

(6.23)
∂2H

∂Φ2 = 1

M3r 2
3

+ 1

M4r4
2 = 1

M3c2
3 r 2

+ 1

M4c4
2r 2 (6.24)

Again, the linearized system becomes:

JD2H(γ(t )) =

0 0 0 0 0 1
M2

0 0 0 0

0 0 0 0 0 0 1
M3

0 0 0
a0 −a1 0 0 0 0 0 HΓ2 0 −a3

0 0 0 0 0 0 0 0 1
M4

0
0 a1 0 −a2 0 0 0 −a3 0 HΦ2

−Hr 2
2

−Hr2,r3 0 −Hr2,r4 0 0 0 −a0 0 0

−Hr3,r2 −Hr 2
3

0 −Hr3,r4 0 0 0 a1 0 −a1

0 0 −Hγ2 0 −Hγ,ϕ 0 0 0 0 0
−Hr4,r2 −Hr4,r3 0 −Hr 2

4
0 0 0 0 0 a2

0 0 −Hϕ,γ 0 −Hϕ2 0 0 0 0 0



(6.25)

where

a0 = 2
ω

r 3

1

c2
= ω

r 3 y
(6.26)

a1 = 2
ω

r 3

1

c3
= 2

ω

r 3 y
tan−1α (6.27)

a2 = 2
ω

r 3

1

c4
=− 2ω

r 3 y
(
M33 tanα− tanβ

) (6.28)

a3 = 1

M3r 2c2
3

= 1

M3r 2 y2 tan2α
(6.29)

Having obtained these coefficients, the procedure to reach Eq. (4.181) is again exactly the same as before
and is executed using the same Mathematica code with the new coefficients substituted.

6.2. Circular cases
The eigenvalues of the circular cases are obtained with the same procedure as before. The totals of the mag-
nitudes of the eigenvalues for a sampling of the second concave region are shown in Figs. 6.1 to 6.4. We
find once again that the real parts are diminished as we approach the line 2α−β = 90°, however, just like in
the first concave case the real parts do not vanish, not even 0.1° away from this line, as shown in Fig. 6.4 and
below in Fig. 6.6.

6.3. Eccentric cases
The monodromy matrices for the eccentric cases are generated with the same integration technique as intro-
duced in Section 4.9. The precision of the generated monodromy matrices is checked using the same method
as for the convex and first concave cases. For each eccentricity, the determinants of the 196 monodromy ma-
trices are calculated and checked for the biggest deviation from 1. In this way we obtain a precision estimate
for the monodromy matrices for each eccentricity, because they must be at least as precise as their determi-
nants. The results are shown in Tables 6.1 and 6.2.



6.3. Eccentric cases 107

Figure 6.1: Top view of the total magnitudes of the real parts of the eigenvalues for the second concave domain.
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Figure 6.2: Front view of the total magnitudes of the real parts of the eigenvalues for the second concave domain.

Eccentricity Precision Max determinant Min determinant
0 17 1.000000000000000006126 0.9999999999999999999997
0.1 17 1.000000000000000002338 0.9999999999999999985516
0.2 17 1.000000000000000002559 0.9999999999999999982572
0.3 17 1.000000000000000002598 0.9999999999999999973959
0.4 16 1.000000000000000004759 0.9999999999999999904998
0.5 16 1.000000000000000015420 0.9999999999999999740633
0.6 16 1.000000000000000030069 0.9999999999999999559660
0.7 15 1.000000000000000288767 0.9999999999999999208465
0.8 15 1.000000000000001595564 0.9999999999999996372316
0.9 14 1.000000000000009919441 0.9999999999999972347007

Table 6.1: Precision of the monodromy matrices of the coarse sampling of the second concave cases, corresponding to Fig. 6.5.
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Figure 6.3: Total magnitudes of the real parts of the eigenvalues for the second concave domain.

Figure 6.4: Zoom view of the total magnitudes of the real parts of the eigenvalues near the limit line of the second concave domain.

Eccentricity Precision Max determinant Min determinant
0 17 1.000000000000000006782 0.9999999999999999999977
0.1 17 1.000000000000000002112 0.9999999999999999975577
0.2 17 1.000000000000000003825 0.9999999999999999964100
0.3 17 1.000000000000000003528 0.9999999999999999963131
0.4 17 1.000000000000000003991 0.9999999999999999965337
0.5 16 1.000000000000000004011 0.9999999999999999948461
0.6 16 1.000000000000000004375 0.9999999999999999944293
0.7 16 1.000000000000000012308 0.9999999999999999890511
0.8 16 1.000000000000000023135 0.9999999999999999750982
0.9 15 1.000000000000000207090 0.9999999999999998990869

Table 6.2: Precision of the monodromy matrices of the fine sampling of the second concave cases near the line of minimum β,
corresponding to Fig. 6.6.
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Figure 6.5: Sums of absolute values of characteristic multipliers for a sampling of the possible concave cases of the second kind for
eccentricities from 0 to 0.9. The coloured plane has height 8, which would be the sum of 8 multipliers on the unit circle.
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Figure 6.6: Stability diagram for the concave cases of the second kind near the limit line for e = 0, e = 0.1, e = 0.2, e = 0.3, e = 0.4, e = 0.5,
e = 0.6, e = 0.7, e = 0.8, e = 0.9.

The absolute values of the characteristic multipliers are plotted in Fig. 6.5. Clearly, none of the configu-
rations from the coarse sampling are linearly stable. The linear stability results of a fine sampling near the
line of minimum β are represented in Fig. 6.6 for ten values of eccentricity. Given that none of the samples
are linearly stable in the circular case and noticing the destabilizing effect of eccentricity in Fig. 6.5, it is not
surprising that we do not find any linearly stable configurations for any value of eccentricity.

6.4. Closing remarks
We see that in the second concave case, similarly to the first, linear stability increases as the configurations
appoach the coorbital line 2α−β = 90°. This time however, increasing α is stabilizing, since it increases the
mass of the central body (Fig. 2.8), while increasing β moves the central body away and reduces its mass,
therefore is destabilizing. It is interesting to note that, not unlike for the first concave cases, the eigenvalues
in Fig. 6.4 almost become imaginary, but do not quite reach linear stability. Even the bottom-right most
configuration in Fig. 6.6, α = 74.9°, β = 59.9°, is unstable, which may be surprising looking at the dominant
center mass and surrounding body positions in Fig. 2.8.

The instability of the bottom-left corner ties in with the previously known result that the configuration
with three equal masses at the vertices of an equilateral triangle with a body of arbitrary mass in the middle is
unstable for all mass ratios [39]. Since the middle body is right in the center of mass, this central configuration
is right on the border of the first and second concave cases of the present work (the singular configuration
marked ’S’ in Fig. 2.5), both of which are found to always be unstable.

The results also tie in with the analysis of the restricted four-body problem in [5], where the author finds
that the libration points, obtained by setting either of the masses on the symmetry line in the concave con-
figurations equal to zero, are unstable for any finite masses of the remaining three bodies. Our results show
that this property is extended to the non-restricted cases as well.





7
Verification and validation

7.1. Verification of linear stability
While moving through the computations laid down in Part I various verification steps were performed to
ascertain the correctness of intermediate and final results and expressions. This section lists the main checks
that were performed.

7.1.1. Coefficients of the Hessian
In assessing the linear stability, the linearization procedure is fundamental and, admittedly, a step where
mistakes are easy to make due to the big number of similar double derivatives that have to be taken. The
correctness of the expressions for the linearization coefficients obtained by evaluating the partial deriva-
tives at the periodic solutions in Sections 4.3, 5.1 and 6.1 was verified with the aid of Mathematica. Using a
FullSimplify routine the equivalence of each of our expressions with the partial derivatives independently
evaluated by Mathematica was checked.

Furthermore, having obtained the linearized matrix JD2H(γ(t )) for the convex cases, the fact that γ̇ sat-
isfies the linearized system was exploited to check in Eqs. (4.123) to (4.125) that indeed γ̈= JD2H(γ(t )γ̇. This
identity only holds if the linearization has been performed correctly.

7.1.2. Decoupling
Next, the v coefficients constituting the transformed matrix (4.140) produce exactly the decoupling which

was anticipated, with the two by two matrix

[
0 v12

v21 0

]
containing exactly the two +1 multipliers that were

needed, as shown in Eqs. (4.161) to (4.165). This is evidence that the matrix V (t ) = P−1 JD2H(γ(t ))P was
computed correctly, otherwise the terms would be very unlikely to cancel and produce just the decoupling
that we were after.

7.1.3. Final matrix
The simplified final form of our linearized equations, given by the coefficient matrix Eq. (4.181) is validated in
Section 4.6. It produces the correct eigenvalues for the square circular solution, as demonstrated in Figs. 4.3
and 4.4 through comparison with independently computed eigenvalues in [18].

7.1.4. Perturbation method
The correctness of expressions in Section 4.8 is verified through the fact that the expressions for the coeffi-
cients of the reduced polynomial in terms of traces of the fundamental matrix plugged into the disriminant
expression (4.207) results in 0 for the zero-degree term in Eq. (4.226) when evaluated at a multiple eigenvalue.
At first this was not the case and a mistake was detected using this check, since the discriminant is zero if and
only if at least two roots are equal.
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7.1.5. Numerical integrators
As mentioned in Section 4.9.1, the precision and accuracy estimates are verified by numerically computing
the monodromy matrix for the circular square case and comparing the multipliers with analytically obtained
ones.

7.1.6. Monodromy matrices
We exploit the fact that the monodromy matrix of a Hamiltonian system is symplectic and, therefore, has
determinant 1 to check the precision of the numerically generated monodromy matrices. The maximum and
minimum determinants for all cases are listed in Tables 4.5, 4.6, 5.1, 5.2, 6.1 and 6.2. The biggest detected
deviation from 1 in a determinant is 2.6×10−14 in the first concave case.

7.1.7. Characteristic multipliers
Plotting the characteristic multipliers for the linearly stable configurations in Figs. 4.12 to 4.14, 4.16 to 4.18,
4.20, 4.21 and 4.23 verifies that eight unique multipliers lie and travel along the unit circle in exactly the
symmetric fashion which is expected of eigenvalues of a symplectic matrix. Furthermore, at the places where
stability is lost we see multipliers colliding and splitting off into the complex plane (a Krein bifurcation),
which again confirms that these numerically computed values are behaving according to their mathematical
properties. Finally, seeing that throughout most of the identified linearly stable regions we have eight distinct
multipliers on the unit circle offers assurance that our solutions are truly linearly stable: because stability can
only be lost through a collision and our coefficient matrix is continuous in terms of α and β, we have that a
sudden instability cannot occur until the multipliers traveled on the circle and collided. This is in contrast to
if we were to have spectral stability.

7.1.8. Linear stability
As discussed in Sections 4.10, 5.4 and 6.4, the linear stability results are validated by the fact that they show
exactly the kind of behaviour as is described in literature (for instance [19, 29]), that is, increased stability
around configurations with a dominant mass and ring-like positioning.

Furthermore, the results in Part II serve as validation of the linear stability results. There we numerically
integrate the 10-dimensional, non-linear equations with a symplectic integrator for up to 200 periods and
compare the observed stability properties with those of Part I. Perfect agreement is found between the re-
sults obtained with these two independent approaches, even for the unusual result of the sole linearly stable
solution in Fig. 4.19.
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Non-linear stability
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8
Long-term numerical integration

In the previous chapter, the linear stability of a range of central four-body configurations was assessed. In
that sense, the conclusions were quite clear. However, some results suggest to have an alternative look at the
stability behaviour, if only to verify that results are as they were found. To this aim, we perform direct, long-
term numerical integrations of the reduced non-linear system of differential equations (Eqs. (3.62) to (3.68))
for several cases found to be stable or unstable by the linear analysis. This independent approach serves
to verify the stability conclusions drawn in the previous part and gain confidence that indeed our periodic
solutions behave as expected.

8.1. The system

As explained in Chapter 3, our non-linear system is a conservative Hamiltonian system with the Hamiltonian
function Eq. (3.61) constant for all time. The center of mass, linear momentum, rotational symmetry and
angular momentum have been eliminated, therefore the system of differential equations Eqs. (3.62) to (3.68)
has 10 dimensions, represented by the state variables r2, R2, r3, R3, γ, Γ, r4, R4, ϕ and Φ. As explained in
Chapter 3 all relevant dynamics of the entire four-body system are described by the reduced system, therefore
we can get our stability results by integrating just the 10 state variables above. Furthermore, for simplicity we
choose units such that G = 1 and omit them from the rest of this chapter, since the focus here is on the
qualitative behaviour of the solutions, on which units have no effect.

8.2. Numerical integration technique

Since we have a Hamiltonian system, a symplectic integrator would be well suited, as, by design, the integra-
tion steps yield symplectic maps, which adhere to the rules of Hamiltonian dynamics, namely, the symplec-
tic 2-form (3.6) is preserved between states. When applied to Hamiltonian systems, these integrators keep
a nearby Hamiltonian approximately conserved for exponentially long times [37]. This property results in
more accurate long-term qualitative behaviour of the solutions, as is especially clear by looking at the phase
portraits of Hamiltonian systems obtained with conventional and symplectic integrators [37].

Unfortunately, the built-in SymplecticPartitionedRungeKutta methods do not work with our system, be-
cause the canonical coordinate changes we used to arrive at the 10-dimensional system made the new mo-
mentum variables depend on the position variables, which destroyed the separability of the system (at first
the kinetic energy only depended on the momentum variables and the potential energy only on the posi-
tion). However, there is still a built-in symplectic integrator option, which does not require separability of the
kinetic and potential energies. This is the Gauss implicit Runge-Kutta method [37].
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Figure 8.2: Phase portraits of the e = 0.2 square case integration with 4th-order Gauss implicit Runge-Kutta method for 4T .
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Figure 8.1: Values of the Hamiltonian function at each time step of the Gauss implicit 4th-order Runge-Kutta integration on the left and
12th-order Adams integration on the right.

For comparison we perform a short integration of the square configuration with e = 0.2 with the 12th-
order Adams method and 4th-order implicit Gauss Runge-Kutta technique. The Hamiltonians for both cases
are plotted in Fig. 8.1, while the phase portraits (a dot is placed in phase space at every time step of the
integration) are shown in Figs. 8.2 and 8.3. We see clearly how the value of the Hamiltonian fluctuates around
the true value with errors as large as 0.004 for the Adams integration, whereas with implicit RK we have only
deviations smaller than 10−14. This is reflected in the quality of the phase portraits, which for the symplectic
integration show nicely periodic behaviour: the position variables trace out a repeating circular shape and
the angle variables stay a constant dot. With the non-symplectic integrator the circular figures are distorted
and the angle variables fail to stay constant. Therefore, all the subsequent integrations in this chapter are
performed with the Gauss implicit Runge-Kutta method of 4th order. The exact settings are the following:

NDSolve[
Method -> {"ImplicitRungeKutta", "DifferenceOrder" -> 4},
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Figure 8.3: Phase portraits of the e = 0.2 square case integration with 12th-order Adams method for 4T .

StartingStepSize -> 1/100, MaxSteps -> Infinity,
WorkingPrecision -> 20, PrecisionGoal -> 10, AccuracyGoal -> 10]

In principle, to prove non-linear stability with this straight-forward method we would have to run the
simulation for an infinite number of periods. However, as mentioned in the introduction to this chapter, we
would like to make use of an independent approach to gather evidence that our linear stability analysis has
been executed correctly. For this, it will suffice to run the simulations for 200 periods, after which, if the
periodic solution has remained bounded we will consider it as stable. Propagating a seemingly stable kite
solution for 200 periods on the author’s machine takes around 1.5-2 hours.

8.3. Convex configurations
In this section we perform long-time integrations of selected cases from the convex domain and compare
the resulting behaviour with the linear stability results of Section 4.9. Since all of our cases are periodic,
the symplectic integrator produces nice periodic behaviour like seen in Fig. 8.2 for more than 650 periods,
possibly indefinitely. Therefore, to test the stability of the configurations we introduce perturbations in the
initial conditions and see whether the bounded periodic behaviour is maintained or broken.

For convenience, we set the nominal initial conditions to be at the periapsis of the periodic solution
(Eqs. (4.7) and (4.19)), θ(0) = 0, which, in turn, means that R(0) = 0 and

r (0) = ω2

1+e

Without losing generality, we also choose the initial scaling to be r (0) = 1. This gives the relation ω2 = 1+ e
along with the following unperturbed initial state variables:

r2k0 = c2

r3k0 = c3

r4k0 = c4

γk0 =−π

2
ϕk0 =π

R2k0 = 0

R3k0 = 0

R4k0 = 0

Γk0 =
(
M3c2

3 +M4c2
4

)
ω

Φk0 = M4c2
4ω

(8.1)
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In the following, we will use Eq. (8.1) as nominal initial conditions, to which we will introduce perturba-
tions as a test of non-linear stability.

8.3.1. Square configuration

We choose to start our numerical analysis with the square configuration, shown in Fig. 8.4. Since the square
solution is well known to be unstable (see Section 4.6) we use it as a ground case to verify that the numerical
simulation produces the expected behabiour.

−1.0 −0.5 0.0 0.5 1.0

−1.00
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α = 45°, β = 45°

Figure 8.4: The special case of the square central configuration with all masses equal. Periodic solutions in this configurations are
well-known to be linearly unstable. Unit radius is chosen for optimal viewing in each case and is not to scale. Unit distance is chosen to
be the distance from the axis of symmetry to one of the equal masses.

e === 0.44, perturbation in r2 The period in this case is

T = 2πω3 (
1−e2)−3/2 = 2π

p
1+0.44

3 (
1−0.442)−3/2 = 14.9933 (8.2)

We apply a slight perturbation in the r2 initial value, r2(0) = r2k0

(
1+10−9

)
, and just after 100 time units

or 6.6 revolutions we see the solutions becoming unbounded, as seen in the phase portraits in Fig. 8.5. This
agrees with the fact that the square configuration was found to be unstable.
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Figure 8.5: Phase portraits of the e = 0.44 square case integration with perturbation r2(0) = r2k0 (1+10−9) over an interval of t = 100.

e === 0.2, compensating perturbations in γ(0) and Γ(0) As a second case we attempt to "compensate" the
perturbation to the angle variable by dividing the conjugate momentum variable by the same factor. To this
end we apply γ(0) = γk0

(
1+10−9

)
, Γ(0) = Γk0/

(
1+10−9

)
. The hypothesis here was that perhaps a perturba-

tion which mimics a symplectic transformation might retain stability. However we see in Fig. 8.6 that stability
is lost after four periods.

Figure 8.6: Phase portraits of the e = 0.2 square case integration with perturbations γ(0) = γk0(1+10−9), Γ(0) = Γk0/(1+10−9) over an
interval of t = 4T .
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e === 0.2, Hamiltonian preserving perturbations in r2 and R2 As a third experiment, we apply a perturbation
such that the Hamiltonian function is left unchanged. We use the expression for R2 in terms of h, given
in Eq. (3.73) to calculate the R2 initial value which compensates the perturbation r2(0) = r2k0

(
1+10−9

)
and

keeps the original Hamiltonian value. The hypothesis that this might preserve stability does not hold up and
we again see divergence of the solution just after four periods (Fig. 8.7).

Figure 8.7: Phase portraits of the e = 0.2 square case integration with perturbation r2(0) = r2k0 · (1+10−9), R2(0) =p·· · over an interval
of t = 4T .

Hence, we see that all three perturbations result in divergence of the solution just after a few periods,
agreeing with the strong linear instability of the square solutions.

8.3.2. Case α=== 59.9°, β=== 15.1°, e === 0.3

The first linearly stable case we consider is the bottom left case in Fig. 4.22, illustrated in Fig. 8.8. As the
solutions generally seem to be more strongly stable in the bottom left direction in the stability plots Figs. 4.15,
4.19 and 4.22 we expect that this solution should pass our test and keep its periodicity.
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Figure 8.8: The case α= 59.9°, β= 15.1°. The radii of the bodies are proportional to cube roots of the masses, such that the volumes
would be directly proportional to the masses. Unit radius is chosen for optimal viewing in each case and is not to scale. Unit distance is
chosen to be the distance from the axis of symmetry to one of the equal masses.

The period in this case is

T = 2πω3 (
1−e2)−3/2 = 2π

p
1+0.3

3 (
1−0.32)−3/2 = 10.7283 (8.3)

Perturbation in r2(0) We start by perturbing the initial value r2(0) = r2k0

(
1+10−9

)
. Running the simulation

for 200 periods confirms the hypothesis and we see nicely periodic motion in the position variables and
semi-periodic motion in the angle variables in Figs. 8.9 and 8.10. The perturbation causes the angle variables
to not stay constant anymore, but wiggle around the initial values, however around 199 periods at t = 2130
the motion has remained bounded with the angles oscillating in a neighborhood of about 0.00000001 rad.
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Figure 8.9: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation r2(0) = r2k0 (1+10−9) over an interval of
t = 2130.

Figure 8.10: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation r2(0) = r2k0 (1+10−9) over an interval
of t = 10T .

Perturbation in r3(0) Applying the perturbation r3(0) = r3k0

(
1+10−9

)
we find the same behaviour as when

r2(0) is perturbed, see Figs. A.1 and A.2.

Perturbation in γ(0) Applying γ(0) = γk0
(
1+10−9

)
we find the same behaviour as when r2(0) is perturbed,

however now the ϕ angle seems to follow even more irregular oscillations, see Figs. A.3 and A.4.

Perturbation in r4(0) Applying r4(0) = r4k0

(
1+10−9

)
we find again the same behaviour, except now ϕ oscil-

lates with a bigger amplitude, in a neighborhood of about 0.0000003 rad, see Figs. A.5 and A.6.

Perturbation inϕ(0) Perturbation ϕ(0) =ϕk0
(
1+10−9

)
results in the usual behavior, with angle oscillations

in a region of about 0.00000001 rad around the initial values, see Figs. A.7 and A.8.
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Perturbation in R2(0) Now perturbing the momentum variable, we have to add 10−9 to it, because the
initial value is 0 and cannot be scaled, R2(0) = 10−9. The resulting behaviour is again similar, this time almost
identical to the r3(0) perturbation, see Figs. A.9 and A.10.

Perturbation in R3(0) Perturbation R3(0) = 10−9 produces almost identical results as the perturbation to
R2(0), see Figs. A.11 and A.12.

Perturbation inΓ(0) ApplyingΓ(0) = Γk0
(
1+10−9

)
results in almost identical behaviour as the perturbation

in γ(0), see Figs. A.13 and A.14.

Perturbation in R4(0) Perturbation R4(0) = 10−9 results in almost identical behaviour as the perturbation
in r4(0), see Figs. A.15 and A.16.

Perturbation in Φ(0) Applying Φ(0) = Φk0
(
1+10−9

)
results in almost identical behaviour as perturbation

in ϕ(0), see Figs. A.17 and A.18
We see that perturbations in all 10 initial conditions resulted in retention of the periodic orbit even after

199 periods, with only small bounded oscillations persisting from the perturbations. This is in accordance
with our result of linear stability for this configuration.

8.3.3. Case α=== 39.7°, β=== 25.3°, e === 0.2
Now we turn to the peculiar case of the isolated stable island in Fig. 4.19, illustrated in Fig. 8.11.
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Figure 8.11: The α= 39.7°, β= 25.3° configuration. The radii of the bodies are proportional to cube roots of the masses, such that the
volumes would be directly proportional to the masses. Unit radius is chosen for optimal viewing in each case and is not to scale. Unit
distance is chosen to be the distance from the axis of symmetry to one of the equal masses.

The period in this case is

T = 2π
p

1+0.2
3 (

1−0.22)−3/2 = 8.78102

Once again, we perturb each initial condition by 10−9 and integrate the system for 200T.

Perturbation in r2(0) Applying r2(0) = r2k0

(
1+10−9

)
we find again the nice periodic motions of the radius

variables, this time on different scales though, as the geometry is different. The angle variables also follow
familiar oscillations, this time γ oscillates in an interval of around 0.00000003 rad, while ϕ moves about in an
interval of about 0.00000015 rad around the initial value, see Figs. 8.12 and 8.13.
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Figure 8.12: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation r2(0) = r2k0 (1+10−9) over an interval
of t = 1756.

Figure 8.13: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation e = 0.2, r2(0) = r2k0 (1+10−9) over an
interval of t = 10T .

Perturbation in r3(0) Perturbation in r3(0) = r3k0

(
1+10−9

)
produces very similar patterns, this time γ

varies in a region of around 0.00000001 rad, while ϕ moves about in a neighborhood or around 0.00000003
rad, see Figs. A.19 and A.20.

Perturbation in γ(0) Perturbation γ(0) = γk0
(
1+10−9

)
produces similar results to the r2(0) perturbation,

with the angle variations of the same magnitude, see Figs. A.21 and A.22.

Perturbation in r4(0) Applying r4(0) = r4k0

(
1+10−9

)
we find very similar results to the r3 case, with ϕ mov-

ing in a neighborhood of around 0.00000007 rad, see Figs. A.23 and A.24.

Perturbation in ϕ(0) Perturbing ϕ(0) = ϕϕ0
(
1+10−9

)
produces the familiar patterns, but this time the

range of motion of the angle variables is larger. Not surprising, as we directly perturbed one of the angle
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variables. γ now moves in a region of around 0.0000009 rad, while ϕ moves about in a neighborhood of
around 0.000001 rad, see Figs. A.25 and A.26.

Perturbation in R2(0) Applying R2(0) = 10−9 produces almost identical results to the perturbation in r2(0),
see Figs. A.27 and A.28.

Perturbation in R3(0) Perturbation R3(0) = 10−9 produces almost identical results to the perturbation in
r3(0), see Figs. A.29 and A.30.

Perturbation in Γ(0) Perturbation Γ(0) = Γk0
(
1+10−9

)
produces almost identical results to the perturba-

tion in γ(0), see Figs. A.31 and A.32.

Perturbation in R4(0) Setting R4(0) = 10−9 produces almost identical results to the perturbation in r4(0),
see Figs. A.33 and A.34.

Perturbation in Φ(0) Perturbation Φ(0) =Φk0
(
1+10−9

)
produces almost identical results to the perturba-

tion in ϕ(0), see Figs. A.35 and A.36.
Once again, the long-term integrations confirm the linear stability results for the convex cases, as assessed

in Section 4.9, and the perturbed solution in each case remains in the neighborhood of the original solution
for 200T .

8.4. Concave configurations of the first kind
The concave cases of the first kind were all found to be linearly unstable, therefore we expect all solutions to
diverge from the periodic solution as perturbations are applied. In this section we choose an arbitrary sample
and perform the numerical integration.

8.4.1. Case α=== 50°, β=== 5°, e === 0.1
We choose to test the geometry shown in Fig. 8.14 for eccentricity 0.1.
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Figure 8.14: The unstable α= 50°, β= 5° configuration of the first concave type. The radii of the bodies are proportional to cube roots of
the masses, such that the volumes would be directly proportional to the masses. Unit radius is chosen for optimal viewing in each case
and is not to scale. Unit distance is chosen to be the distance from the axis of symmetry to one of the equal masses.

The period in this case is

T = 2π
p

1+0.1
3 (

1−0.12)−3/2 = 7.35895 (8.4)
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Unperturbed t === 11T No perturbation needed in this case, as only after 11 periods we see divergence from
the periodic solution, see Fig. 8.15.

Figure 8.15: Phase portraits of the e = 0.1, α= 50°, β= 5° case integration over an interval of t = 11T .

Unperturbed t === 200 Integrating for a slightly longer time shows the solutions becoming chaotic and un-
bounded, see Fig. 8.16.

Figure 8.16: Phase portraits of the e = 0.1, α= 50°, β= 5° case integration over an interval of t = 200.
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8.5. Concave configurations of the second kind

For the second concave cases we again found instability for all periodic solutions. In this section we pick a
couple cases and test them against non-linear integration.

8.5.1. Case α=== 74°, β=== 59°, e === 0.1

The first geometry we try is shown in Fig. 8.17, for which we set e = 0.1.
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Figure 8.17: The unstable α= 74°, β= 59° central configuration of the second concave type. The radii of the bodies are proportional to
cube roots of the masses, such that the volumes would be directly proportional to the masses. Unit radius is chosen for optimal viewing
in each case and is not to scale. Unit distance is chosen to be the distance from the axis of symmetry to one of the equal masses.

The period for e = 0.1 is again

T = 7.35895

.

Unperturbed t === 300T Without perturbations this case remains periodic at least for 300 periods, as seen in
Fig. 8.18.
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Figure 8.18: Phase portraits of the e = 0.1, α= 74°, β= 59° case integration over an interval of t = 300T .

Perturbation in r2(0) Applying the perturbation r2(0) = r2k0

(
1+10−9

)
we quickly see the instability arise,

with the solutions diverging just after seven periods, see Fig. 8.19.

Figure 8.19: Phase portraits of the e = 0.1, α= 74°, β= 59° case integration with perturbation r 2(0) = r2k0 (1+1e −9) over an interval of
t = 7T .

Compensating perturbation in γ(0) and Γ(0) We once again attempt here to "compensate" the perturba-
tion to the angle variable by dividing the conjugate momentum variable by the same factor. To this end we
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apply γ(0) = γk0
(
1+10−9

)
, Γ(0) = Γk0/

(
1+10−9

)
. We see that after around 30 periods the solutions are fully

chaotic, as shown in Fig. 8.20.

Figure 8.20: Phase portraits of the e = 0.1, α= 74°, β= 59° case integration with perturbations γ(0) = γk0
(
1+10−9)

,
Γ(0) = Γk0/

(
1+10−9)

over an interval of t = 218.

8.5.2. Case α=== 65°, β=== 55°, e === 0
We try another concave case of the second kind, this time for zero eccentricity, with geometry as shown in
Fig. 8.21.
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Figure 8.21: The unstable α= 65°, β= 55° central configuration of the second concave type. The radii of the bodies are proportional to
cube roots of the masses, such that the volumes would be directly proportional to the masses. Unit radius is chosen for optimal viewing
in each case and is not to scale. Unit distance is chosen to be the distance from the axis of symmetry to one of the equal masses.
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The period is

T = 2π

.

Perturbation in r2(0) Applying r2(0) = r2k0

(
1+10−9

)
perturbation results in chaos just after four periods,

see Fig. 8.22.

Figure 8.22: Phase portraits of the e = 0, α= 65°, β= 55° case integration with perturbation r2(0) = r2k0

(
1+10−9)

over an interval of
t = 4T .

Perturbation inγ(0) We get the same outcome for theγ(0) = γk0
(
1+10−9

)
perturbation as well, see Fig. 8.23.
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Figure 8.23: Phase portraits of the e = 0, α= 65°, β= 55° case integration with perturbation γ(0) = γk0
(
1+10−9)

over an interval of
t = 4T .

8.6. Conclusions
To review, every case we put to test using non-linear long-time numerical integration behaved as predicted by
the linear stability analysis. While the linearly stable cases remained bounded for at least 200 periods for all
perturbations, every unstable case subjected to the same perturbations started diverging from the periodic
solution just after a few revolutions. The single concave case of the first type that was tested was especially
unstable, diverging by itself without any perturbation to the initial conditions (Fig. 8.15). All other solutions
needed a perturbation to distinguish the stable or unstable characteristics. Looking at Fig. 8.14, we see that
this solution has all four masses of a similar magnitude and is not ring-like in structure. This connects to
our remarks in Sections 4.10, 5.4 and 6.4, where we suggested these two properties are the recipe for stability
of circular and eccentric orbits alike. Perfect agreement of the linear stability results with the independent
approach of this chapter provides validation that the linear stability analysis has been performed correctly.
Furthermore, the combined results suggest that the linearly stable convex cases might possibly exist in the
universe, as they seem to be robust against various perturbations, whereas the concave cases could not pos-
sibly remain in a periodic orbit for long.
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Conclusions

9.1. Research questions
To summarize, we have provided answers to the main research question, ”What are the stability properties
of kite central configurations of four bodies?” using two independent approaches. One of them focused on
linear stability, which we determined for samplings of the domains of all three types of kite central config-
urations. We did this for both the circular and elliptic periodic solutions. The circular ones were treated
using an analytical approach (only some algebra was done with the help of Mathematica), whereas numeri-
cal integration was employed to compute the Floquet multipliers to determine linear stability of the eccentric
orbits. These results answer research sub-question 1 in Section 1.3, ”Are the homographic solutions provided
by the kite central configurations linearly stable?”. Our answer is for the most part not, except a region near
co-orbital configurations in the convex case.

The second approach to assess the stability properties was a long-time numerical simulation of the non-
linear 10-dimensional system, defined after using first integrals to constrain the phase space. This approach
let us to put under test some of the solutions that were found to be linearly stable. Perfect aggreement was
found between the two approaches, where two of the convex solutions from the discovered stability region
that we tested under perturbations in initial conditions succesfully stayed near the homographic solution
until the simulation was stopped after 200 periods. In contrast, the tested unstable configurations usually
lost stability after less than 10 revolutions. These results are progress towards definitively answering research
sub-question 2, ”Do the homographic solutions provided by kite central configurations possess non-linear
stability?”. The results we obtained do not prove a positive answer to this question, but they do hint that
the linearly stable convex periodic solutions, pinpointed in Section 4.9.2, are resilient to perturbations even
under the true non-linear dynamics.

Finally, we have decent evidence to attempt to answer the third research sub-question from Section 1.3,
”Can kite central configurations occur in real astronomical systems?”. Looking at the results from our two
stability investigations, it certainly seems possible that, provided four bodies of correct masses were started
on one of the stable convex kite homographic solutions, they would stay moving on or in a neighbourhood
of this periodic solution. The evidence we have to suggest that is the robustness against perturbations of the
two stable test cases, as well as the region of linear stability in the configuration space shown in Figs. 4.11,
4.15, 4.19 and 4.22. Having found not one linearly stable case, but a region, we can more strongly suggest that
real life occurence of convex kite periodic solutions is possible. First, because the probability of occurence
is simply higher when there is a continuous array of possible configurations, second, because stable neigh-
bouring configurations increase the structural stability of a solution (a perturbation in α is intuitively easier
to handle when the neighbouring orbits are also stable). Our analysis for the eccentric cases revealed that the
stable region has continuity also in the e direction, further reinforcing the integrity of these solutions.

That being said, celestial bodies have to first find their way into the somewhat thin strip of stability near
the co-orbital solutions. The fact that these solutions include a dominating mass, such as the two solutions
pictured in Figs. 8.8 and 8.11 help our case, because, as we know from observations, it is very common for a
massive body to catch smaller objects from its surroundings, be it asteroids, moons or ring material.

Another promising option for a real manifestation of a kite four-body solution was discussed in Chapter 1,
namely a binary star system in a kite central configuration with two other bodies, as proposed in [34]. How-
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ever, upon comparing the obtained stability results, it turns out that such a system cannot be stable in a kite
configuration. The reason for this is that the only feasible convex kite configurations for such a system were
identified in [34] to be close to a rhombus configuration, which we identified as an unstable region. That is,
unless two of the masses are so small as to effectively be in the singular configuration, marked ’S’ in Fig. 2.2.
We have not investigated the stability of such limit cases in the present work.

In any case, we can reasonably expect three satellites to be orbiting a star in a 1:1 resonance close to the
co-orbital configuration, or three moons orbiting a huge planet. For instance, in the Solar system, Janus and
Epimetheus - moons of Saturn - constitute the largest co-orbital objects [34]. Another co-orbital example
is the minor planet orbiting white dwarf WD 1145+017 [34], which has been torn apart by the star and co-
orbiting with its scattered fragments. Thus, there are certainly possibilities. Thinking even more broadly, any
number of the stable cases may also apply to massive objects on a very large scale, such as star clusters, black
holes, galaxies or galaxy clusters, as long as the interaction between them may be approximated as Newtonian
gravitational attraction between 4 point masses (and one of them is dominating).

9.2. Research objective
The main objective we set out to achieve in the present work is to contribute to the body of knowledge of
celestial mechanics through a stability assessment of the four-body kite central conguration family. We have
succeeded in this goal inasmuch as we have the following results:

• Regions of linear stability have been found for the convex kite central configurations for circular as well
as eccentric cases.

• No stable cases were found for our sampling of the domains of the first and second concave cases for
any eccentricity.

• The linearly stable cases agree with the dominant mass and ring-like linear stability hypotheses.

• Exact eigenvalues were provided for the square central configuration.

• Binary star systems in kite central configurations with two planets were determined to be unplausible.

• A perturbation method utilising properties of reflexive polynomials to allow an analytical assessment
of an impact of a parameter on the stability of an eight-dimensional Hamiltonian system.

The perturbation method was developed closely following the method in [27], but nonetheless, it con-
tains new elements which allow an analytical application to an eight-dimensional planar four-body problem
by use of special properties of symplectic matrices and reflexive polynomials. This method allows an analyti-
cal assessment of the impact of the move to an eccentric orbit from a circular one on the stability of four-body
solutions. The author has not seen this or an equivalent method applied to solutions of the four-body prob-
lem in literature.

Finally, the correctness of these results has been ensured by validating with existing results and various
verification checks, listed in Chapter 7. It must be noted that the stable convex cases found all have one
dominant mass, which falls in line with the common axiom that configurations tend to be stable only when a
dominant mass is present.

9.3. Recommendations
There are several promising directions from this point, where worthwhile research could be done. First, as
mentioned in the previous section, we have not provided absolute proof for non-linear stability of any of
the kite configurations. Pursuing such a proof would pose a truly challenging, but exciting endeavour. As
mentioned in the present work, Lyapunov methods are known to fail in assessing stability of central configu-
rations [19]. Attempts to apply KAM theory around central configuration periodic solutions could chart new
territory.

A second improvement upon this research could be to analyze the limit and singular cases at the borders
and vertices of the domains of kite central configurations Figs. 2.2 and 2.5, as in the present work only sta-
bility of four-body configurations with all finite masses was considered. The limit cases, however, may offer
different possibilities for orbits of small masses or man-made satellites and should be investigated.
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Even yet, the results of the present research could be placed in the context of, for example, investiga-
tions of the restricted five-body problem, or limit cases of five-body central configurations, similarly to how
Lagrangian triangles play a role at limit cases of the kite CCs.

Finally, those well-versed in astronomy can certainly improve on answering our third sub-question, namely
whether kite central configurations can be observed in the universe.
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A
Non-linear numerical integration plots

In this appendix we put the figures with numerical integration results for the two stable convex test cases
investigated in Section 8.3 that were too redundant to include in the main body of text. In particular, the
following shows the results of long-time integration for perturbations of initial conditions in all other state
variables apart from r2. All of them reinforce the verdict of stability.

A.1. Case α= 59.9°, β= 15.1°, e = 0.3

A.1.1. Perturbation in r3(0)

Figure A.1: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation r3(0) = r3k0 · (1+10−9) over an interval
of t = 2130.
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Figure A.2: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation r3(0) = r3k0 · (1+10−9) over an interval
of t = 10T .

A.1.2. Perturbation in γ(0)

Figure A.3: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation γ(0) = γk0 · (1+10−9) over an interval of
t = 2130.
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Figure A.4: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation γ(0) = γk0 · (1+10−9) over an interval of
t = 10T .

A.1.3. Perturbation in r4(0)

Figure A.5: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation r4(0) = r4k0 · (1+10−9) over an interval
of t = 2130.
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Figure A.6: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation r4(0) = r4k0 · (1+10−9) over an interval
of t = 10T .

A.1.4. Perturbation in ϕ(0)

Figure A.7: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation ϕ(0) =ϕk0 · (1+10−9) over an interval of
t = 2130.
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Figure A.8: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation ϕ(0) =ϕk0 · (1+10−9) over an interval of
t = 10T .

A.1.5. Perturbation in R2(0)

Figure A.9: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation R2(0) = 10−9 over an interval of t = 2130.
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Figure A.10: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation R2(0) = 10−9 over an interval of t = 10T .

A.1.6. Perturbation in R3(0)

Figure A.11: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation R3(0) = 10−9 over an interval of
t = 2130.
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Figure A.12: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation R3(0) = 10−9 over an interval of t = 10T .

A.1.7. Perturbation in Γ(0)

Figure A.13: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation Γ(0) = Γk0 · (1+10−9) over an interval
of t = 2130.
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Figure A.14: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation Γ(0) = Γk0 · (1+10−9) over an interval
of t = 10T .

A.1.8. Perturbation in R4(0)

Figure A.15: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation R4(0) = 10−9 over an interval of
t = 2130.
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Figure A.16: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation R4(0) = 10−9 over an interval of t = 10T .

A.1.9. Perturbation in Φ(0)

Figure A.17: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation Φ(0) =Φk0 · (1+10−9) over an interval
of t = 2130.
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Figure A.18: Phase portraits of the e = 0.3, α= 59.9°, β= 15.1° case integration with perturbation Φ(0) =Φk0 · (1+10−9) over an interval
of t = 10T .

A.2. Case α= 39.7°, β= 25.3°, e = 0.2

A.2.1. Perturbation in r3(0)

Figure A.19: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation r3(0) = r3k0 · (1+10−9) over an interval
of t = 1756.
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Figure A.20: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation r3(0) = r3k0 · (1+10−9) over an interval
of t = 10T .

A.2.2. Perturbation in γ(0)

Figure A.21: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation γ(0) = γk0 · (1+10−9) over an interval of
t = 1756.
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Figure A.22: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation γ(0) = γk0 · (1+10−9) over an interval of
t = 10T .

A.2.3. Perturbation in r4(0)

Figure A.23: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation r4(0) = r4k0 · (1+10−9) over an interval
of t = 1756.
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Figure A.24: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation r4(0) = r4k0 · (1+10−9) over an interval
of t = 10T .

A.2.4. Perturbation in ϕ(0)

Figure A.25: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation ϕ(0) =ϕk0 · (1+10−9) over an interval
of t = 1756.
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Figure A.26: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation ϕ(0) =ϕk0 · (1+10−9) over an interval
of t = 10T .

A.2.5. Perturbation in R2(0)

Figure A.27: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation R2(0) = 10−9 over an interval of
t = 1756.
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Figure A.28: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation R2(0) = 10−9 over an interval of t = 10T .

A.2.6. Perturbation in R3(0)

Figure A.29: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation R3(0) = 10−9 over an interval of
t = 1756.
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Figure A.30: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation R3(0) = 10−9 over an interval of t = 10T .

A.2.7. Perturbation in Γ(0)

Figure A.31: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation Γ(0) = Γk0 · (1+10−9) over an interval
of t = 1756.



A.2. Case α= 39.7°, β= 25.3°, e = 0.2 159

Figure A.32: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation Γ(0) = Γk0 · (1+10−9) over an interval
of t = 10T .

A.2.8. Perturbation in R4(0)

Figure A.33: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation R4(0) = 10−9 over an interval of
t = 1756.
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Figure A.34: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation R4(0) = 10−9 over an interval of t = 10T .

A.2.9. Perturbation in Φ(0)

Figure A.35: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation Φ(0) =Φk0 · (1+10−9) over an interval
of t = 1756.
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Figure A.36: Phase portraits of the e = 0.2, α= 39.7°, β= 25.3° case integration with perturbation Φ(0) =Φk0 · (1+10−9) over an interval
of t = 10T .
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