Floating Community

Designing a floating module for a resilient community in Manila, Phillipines

Yafim Simanovsky Explore Lab Graduation Tutors Robert Nottrot Diego Sepulveda Jan van de Voort

May 2017

Megatrends

The increasing frequency of climatic disasters, especially water related, coupled with the megatrend of **urbanization**, leads to a sense of urgency to offer long-term resiliant solutions in the urban context.

Cycle of Vulnerability

Diagram by author

To address the problem, the areas which are at **most risk** and which are the most populated should be examined.

Out of the top 10 countries on the WRI (World Risk Index), **HALF** are in the Southeast Asia region.

" In Asia, for example, more than 18 percent of the urban population lives in the Low Elevation Coastal Zone ... "

" ... around 3 million people in Manila live in areas threatened by flooding....

Quotes and risk locations according to World Risk Index (WRI) reports

World Risk Index (WRI) top 10:

Country:

Vanuatu Tonga Philippines Guatemala Bangladesh Solomon Islands Brunei Darussalam Costa Rica Cambodia Papua New Guinea

" [...] urbanization pressure leads to urban growth rates that exceed the capacity of government authorities to adequately develop and operate urban infrastructure e.g. for healthcare, flood protection, storm evacuation ... "

World Risk Index Report 2014 - City as a Risk Area

% risk:

36.28 29.33 26.70 19.88 19.17 19.14 17.00 17.00 16.58 16.43

How can sustainable interventions in **dense coastal vulnerable communities** help improve urban and environmental resilience?

Informal housing inhabitants

Age: 28

Previous Occupation: Rice farmer Current occupation: Rubbish collector Highest education: none Family size: 6 Housing location: Canal slum House size: 22 m2 Shared with: 6 Running water: no

Toilet: no

Stove: no

Flooring: yes

- Previous Occupation: Midwife
- Current occupation: Food vendor
- Highest education: secondary
- Family size: 5

Housing location: Coast slum

House size: 14 m²

- Shared with: 5
- Running water: yes

Flooring: yes

Adaptive design for urban risk

Assessment of Resilience

Multifunctionality

Phnom Penh, Cambodia

ACTIONS

No effective action has been implemented or properly organized to deal with flood-risk and climate change in the Phnom Penh urban context.

- Ineffective or partially successful drainage improvement projects by Japan International Cooperation Agency (JICA) since the early 2000's totalling € 300 million.

- Habitat For Humanity (HFH) conducted 600 house improvements since 2004.

Manila, Philippines

ACTIONS

- 2011 declogging of 39,436 linear meters of waterways to improve flood drainage.

- Relocation project for informal settlers for a 5-year plan costing € 1 billion. About 10% were relocated.

- Long term (until 2035) master plan of dams and river improvements at cost of € 6.5 Billion.

- ERF and UNDP program to raise housing above flood levels. 2,250 houses raised so far.

Dhaka, Bangladesh

ACTIONS

- Failed "Action Plan" of 1990 to embank rivers in Bangladesh. Cost is € 140 Billion.

- United Nations Development Programme's Early Recovery Facility (ERF) innovation of dismantable housing units from wood and metal sheets for relocation during disaster and flooding. 200 units so far.

"Urban Land that does not Flood"

NOT isolated

NOT expensive

Evolutionary Adaptivity

Modulus Magnus Modulus Medius Modulus Minimus Formula Hexagon Formula Rectangular Unda Imbecillus Unda Fortis Lumen Privus Lumen Publicus Lumen Vidos (external) Vastus Privus Vastus Publicus Aqua Privus Aqua Publicus

Modulus Ultimus Facio Pediculus Facio Navis

> Lumen Tribus Lumen Unos Vastus Tribus Vastus Unos Aqua Tribus Aqua Unos

Formula Domus Formula Structurus

Site Selection

Manila, Philippines

One of the **major metropolis** in Southeast Asia, Manila has a water network which includes both **coast and river**, which offers opportunities to analyze and address the needs of vulnerable urban populations from multiple aspects and can inform future contexts.

Manila, Philippines

Avg. elevation - 16m

Metropolitan population 12,877,253

Density 42,000 / km² (1 st)

Poor population 4 million

Tropical region

High humidity

24 - 32 °C

Comfort temperature 10% too hot 3% too cold

July - October

5-10 storms / year

30% of rainfall

Typhoon Haiyan November 2013 6,300 dead 2 Billion USD

Approach to existing urban fabric

Rural populations **in need** of land arrive to the city in search of new economic opportunities.

They would benefit from a location only in the **proximity** of the existing city center.

Therefore the module is not created as a separate entity but **new land in connection to the existing fabric.**

Elements of the Design

Elements of Value

How will it float?

If the structure is **more than twice the wavelength** in extent, its response will tend to zero.

- Seasteading engineeing report (2011)

A platform with very high width to depth ratio will have a very large metacentric height, adding to its stability.

Modularity = Value

Multifunctionality

Risk-spreading

Efficiency

Functional stacking

Decentralization of utilities

Centralized

Decentralized

Distributed

Community

Barangay Administrative urban unit > 2000 people

Human social unit Dunbar's number ~150 people

Density of Manila City

300 people / ~7000 m2

Area of stable module

6500 m2

General types of Modules

Dense housing

General types of Modules

Dense housing

Requirements for selection

Number of Units

Courtyard Access

** *** **

Public Space

Water Collection

Accessibility

Quality of Views

Adaptation of Manila

	Number of Units	Courtyard Access	Public Space	Water Collection	Accessibility	Quality of Views	Score	Weight
Number of Units		1	1	1	1	1	5	3
Courtyard Access	0		1	1	1	1	4	3
Public Space	0	0		0	0	1	1	1
Water Collection	0	0	1		1	1	3	2
Accessibility	0	0	1	0		1	2	2
Quality of Views	0	0	0	0	0		0	1

2.25

Evolutionary Variations

Adaptation of Manila

Modulus Magnus

Modulus Medius

Modulus Minimus

Formula Hexagon

Formula Rectangular

Unda Imbecillus

Unda Fortis

Lumen Privus

Lumen Publicus

Lumen Vidos (external)

Vastus Privus

Vastus Publicus

Aqua Privus

Aqua Publicus

Modulus Proximus

Modulus Ultimus

Facio Pediculus

Facio Navis

Lumen Tribus

Lumen Unos

Vastus Tribus

Vastus Unos

Aqua Tribus

Aqua Unos

Formula Domus

Formula Structurus

Size of prototype community

Infrastructure

Distribution of urban services

Employment radius

The average distance from **slum to work** is 2.5 km.

The intervention in Manila should therefore be kept at a close distance to shore, **adapting** to the local patterns.

500m

0

Public buildings

Power to the people

Manila - W / m2 / Day ~1800

Solar Panel Tilt (Avg.) 20 degrees from Horizontal

Typical Solar Panel 1.64 m2 - 17% efficiency

Output / Day

~1 Kwh

santiago Jariac Olongapo Manija Dasmadrias San Jose Puerto Princesa Zamboanga	Naga Tachuban Sacolod Cebu Butuan Cagayan de Oro Davao
Average annual sum, period 2007-2013	00 km
< 1500 1700 1900 2100 kWh/m ²	GHI Solar Map © 2014 GeoModel Solar
Map of Global Horizonal Irradia	lion (GHI) by SolarGIS

	w/hour MIN	w/hour MAX	Hours / day	Kwh/day MIN	Kwh/day MAX
Ventilation Fan	10	25	6	0.06	0.15
Lightbulb	25	100	6	0.15	0.6
TV	80	400	6	0.48	2.4
Refrigerator	100	400	24	2.4	9.6
Electric Stove	1000	1500	1	1	1.5
Total		-	-	4.09	14.25

Power to the people

Roof area :	2508 m2		
Families :	257		
Solar panels :	1529		
Kwh / Family :	5.95		

Water from the sky

Storage 325m3 / Pod

Sectors

Pipes

Liter storage over time

	July	August	September	October	 	June
1 Pod	23010	30810	26065	11830		18655
2 Pod	28020	71640	105770	111430		51930

Constructed wetland

"Phragmites Karka"

Water and Waste flows

Waste

Septic Tank

How to make a "module"?

Employment Local materials Circular usage

Bad

Pods and Caps

Street Pod

Wetland Pod

Wetland soil

Rainwater tank

Septic tank

1% slope IN

Bouyancy chamber

Family Pod

1% slope OUT

Bouyancy chamber

Multiple uses

Low green

Trees + Street

Socializing

Water feature

Small deck

Public bathroom

Large deck

Bouyancy chamber - Pod

- (5) 2cm inner HDPE panel with reinforcing ribs
- 6 2cm corner HDPE panel for rigidness - 1m cavity chamber

Pod layers

Center HDPE holding ring (optional)

Assembly package

Wetland Pod

Family Pod

Housing for the Urban Poor

Vernacular huts / Vernacular slums

Kitchen

Shower

35 m2 core

Solar Heating

ΪŻ

Toilet

STRUCTURE

- Metal sheet roof
- 6cm bamboo purlins
- 10cm bamboo truss
- 15cm bamboo beam
- Prefab concrete beam
- Prefab toilet and kitchen core
- Prefab concrete column
- 65m² pod surface

Prefab Columns & Bamboo Roof

Column to Cap connection

300

≁

200

ì

Basic plan

Plan variations

Construction

Climate section

Section B-B

INFILL

DIY extension

Appropriation and Improvement

Exploring other house typologies

Hexagonal options

38 m² 0.7m between houses

Hexagonal floorplan

Hexagonal volume

Comparison of hexagonal and rectangular houses

Collective informal

House extensions

Collective extensions

Street life

Housing in Time

Components in Time

Base pod

30 years

Modular elements

10 years

Daily life

3 years

Life on the water

Relation with water

Biodiversity

I Public I I Semi-private I Semi-public Private I

Couple with 4 children Α Home shop

3 generation home В Fishermen

Young couple with relatives С Street vendors

Young couple with children D Scavenging trash

Young couple with children Ε Construction worker

Types of movement

Transportation types

Street hierarchy

Urban section

0 20 m

Urban Scenarios

50 m

Urban Scenario _{Year 3}

10 communities
1000 pods

400 housing units **3000** inhabitants

65,000 m2

3 wavebreakers**45** IMTA units

Wave Breaker

A floating wave breaker which integrates nutrient remediation with economic opportunity could prove resilient on many scales.

Integrated multi-trophic aquaculture [IMTA]

Per m2 :

3 kg of fish 5 kg of shellfish 3 kg of seaweed

Working at sea

IMTA

Seaweed Lines

Large scale defensive strategy

IMTA unit section

Connecting modules

А

A-B

Connecting modules

Seabed anchoring - suction caissons

ŝ	ξ 3ξ	÷.	0	× ×	

1st Pod

Attached Pods

APPENDIX

Utility schematic for House and Courtyard

Safety measures

Evacuation path [max 50 m]

Hydrant and Ladder locations

Pod weight calculations

Material	m ³	m ³ * (Kg/m ³)	Kg / 325 m ³	% submerged
HDPE plastic	6.5	6240	19.20	1.92
Concrete	17	40800	125.54	12.55
Seawater	111	111000	341.54	34.15
Bamboo	0.25	125	0.38	0.04
Other	Х	~5000	15.38	1.54
		163165		50

_____ ____ ____ ____ _____