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Abstract—A novel procedure to approximate wavelet bases
using analog circuitry is presented. First, an approximation is
used to calculate the transfer function of the filter, whose impulse
response is the required wavelet. Next, for low-power low-voltage
applications, we optimize the state-space description of the filter
for dynamic range, sensitivity and sparsity requirements. The filter
design that follows is based on an orthonormal ladder structure
with log-domain integrators as the main building blocks. Simula-
tions demonstrate that it approximates the required wavelet base
(i.e., Morlet) in an excellent way. The circuit operates from a 1.2-V
supply voltage and a bias current of 1.2 A.

Index Terms—Analog electronics, log-domain filters, ortho-
normal ladder filter, wavelet transform (WT).

I. INTRODUCTION

FOR signal processing, the wavelet transform (WT) has
been shown to be a very promising mathematical tool

[1]–[3], particularly for local analysis of nonstationary and
fast transient signals, due to its good estimation of time and
frequency localizations. Wavelet analysis is performed using a
prototype function called the wavelet base, which decomposes
a signal into components appearing at different scales (or res-
olutions). Often, systems employing the WT are implemented
using digital signal processing. However, in ultra low-power
applications such as biomedical implantable devices [4]–[6], it
is not suitable to implement the WT by means of digital cir-
cuitry due to the high power consumption associated with the
required analog–digital (A/D) converter. In [7], we proposed a
method for implementing the WT in an analog way. However,
besides the derivatives of the Gaussian wavelet presented in
[7], there are several families of wavelets that have proven to
be especially useful [1]. Therefore, this paper presents a more
general procedure to obtain various types of wavelet bases.

Section II treats the basic theory of the WT. Section III deals
with the computation of a transfer function which describes a
certain wavelet base that can be implemented as an analog filter.
Section IV describes the complete filter design, taking into ac-
count the requirements for low-power low-voltage applications.
Subsequently, the dynamic range (DR) is optimized and log-
domain integrators are implemented to face the ultra low-power
challenges Some results provided by simulations are given in
Section V. Finally, Section VI presents the conclusions.
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II. WAVELET TRANSFORM

The WT is a linear operation that decomposes a signal into
components that appear at different scales (or resolutions) [2].
The WT is a so-called constant- analysis. The WT of a func-
tion at the scale and position is given by

(1)

where is the wavelet base (or mother wavelet) and de-
notes the complex conjugation. The factor is used for
energy normalization. Hence, the WT is based on the convo-
lution of the signal with a dilated impulse response of a filter
(defined by ), mapping the signal onto a two-dimensional
function of time and frequency. The main idea of the WT is
to look at a signal at various windows and analyze it with var-
ious resolutions. It provides an alternative to the classical short-
time Fourier transform (STFT) or Gabor transform [3]. In con-
trast to the STFT, which uses a single analysis window, the WT
uses short windows (small ) at high-frequency analysis and
long windows (large ) at low-frequency analysis. The time-fre-
quency plane of a WT is shown in Fig. 1(a). As one can see, the
time-frequency (or time-scale) representation has an intrinsic
limitation: the product of the resolution in time and frequency is
limited by the uncertainty principle (Heisenberg inequality) [3].
It means that one can only trade time resolution for frequency
resolution and vice versa. Furthermore, in order to avoid redun-
dancy, one can sample the scale parameter along the dyadic se-
quence , i.e., [2].

The wavelet analysis is performed using a prototype function
called the wavelet base, . The main character-
istic of the wavelet base is given by

(2)

This means that the wavelet base is oscillatory and has zero
mean value. Also, this function needs to satisfy the admissibility
condition so that the original signal can be reconstructed by the
inverse WT

(3)

where is the Fourier transform of the wavelet base .
The admissible condition implies that the Fourier transform
of the wavelet must have a zero component at zero frequency.
Hence, the wavelets are inherently bandpass filters in the
Fourier domain, defined as wavelet filters. Any function that
has finite energy is square integrable and satisfies the wavelet
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Fig. 1. WT system. (a) Time-frequency plane. (b) Morlet WT system with multiple scales.

admissibility condition can be a wavelet [1]. Fig. 1(b) shows a
wavelet system with multiple scales in parallel that can be used
to compute the WT in real time. As an example, a Morlet WT
system has been presented.

III. WAVELET BASES APPROXIMATION

Log-domain filters and analog filters in general are described
mathematically by either linear differential equations of finite
order in the time domain, or rational transfer functions in the
Laplace domain. Hence, in order to implement the wavelet filter
one must first derive these respective differential equations.
However, a linear differential equation having a predefined
desired impulse response does not always exist. Hence, one is
obliged to use a suitable approximation method. In addition,
any approximation method should be associated with some
measure of error. Therefore, we define an error criterion based
on the mean-square error (MSE) [8] which is defined as

(4)

where and are the desired impulse response and the
approximated impulse response, respectively. Nonetheless, one
of the most important aspects of an analog filter synthesis is that
the approximating function must lead to a physically realizable
network which is dynamically stable. There are several mathe-
matical techniques that are frequently used to achieve the best
approximation possible [9]. A method which has proven to be
successful is the Padé approximation in the Laplace domain of
the impulse response of the filter [9].

A. Padé Approximation in Laplace Domain

Just like the Taylor expression, the Padé approximation is an
approximation that concentrates around one point of the func-

tion that needs to be approximated [10]. In the Padé approxima-
tion, the coefficients of the approximating rational expression
are computed from the Taylor coefficients of the original func-
tion. If we were to apply the Padé approximation to in the
time domain, we would have to transform this function to the
Laplace domain, which would possibly yield difficult expres-
sions or even a noncausal or unstable filter.

The reason to apply the Padé approximation to the Laplace
transform of is that it immediately yields a rational expres-
sion which is suitable for implementation. Hence, a Padé ap-
proximation of represents the transfer function of a pos-
sible filter. If the approximation rational function has a numer-
ator of order and a denominator of order , the original func-
tion can be approximated up to order .

Now, we will derive the Padé approximation of a general
function . Suppose that we have the Taylor series expan-
sion of around some point, e.g., , then

(5)

The constants to are called the Taylor coefficients of
. Unfortunately, is not a suitable expression to build

a filter, since it has only zeros. Therefore, to solve this problem,
we apply a Padé approximation of function which is given
by

(6)

where is the truncated Taylor series given by (5) with
. The coefficients of can be computed as fol-

lows. When a product of two polynomials is taken, the coef-
ficients of the product polynomial can be computed by taking
the convolution of the coefficients of both factors. Thus, the co-
efficients of can be computed from the convolution of the
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Taylor coefficients of with the finite number of coefficients
of . We can write this convolution in a matrix-vector form

...
...

. . .
...

...
. . .

...
...

...
...

...

...

...

...

...

...

(7)
As the entries of are given by the Taylor coefficients of

, the entries of depend only on the choice of . In
other words, the choice of is determined by the restrictions
on . Note that the desirable value of is defined by two
constraints: i) should be as large as possible, since this gives
the most accurate approximation; ii) should have the de-
sired order for a causal filter.

From these constraints it can be concluded that the coeffi-
cients to should be zero. Let denote the sub-
matrix of , containing rows to of . Then can
be expressed as

... (8)

which yields

...
...

(9)

with for normalization. Finally, the coefficients of
are defined by

...

...
...

. . .
...

...
. . .

...
...

...
...

...

...
(10)

with for . Then, if the approximating rational func-
tion has a numerator of order and a denominator of order ,
the original function can be approximated up to order .
For instance, one can apply the Padé function to approximate
the first or the second derivative of a Gaussian as seen in Fig. 2.
We apply a [6/10] Padé approximation, i.e., and

, which yields an approximation of order of the
Taylor series expansion, resulting in an MSE of and

for the first and the second derivative, respectively.
In Table I one can see the Taylor and Padé coefficients of both
functions.

However, the Padé approximation has some convergence
problems when one tries to approximate a function with many

Fig. 2. Impulse response approximation using Padé [6/10]. (a) First derivative
of Gaussian. (b) Second derivative of Gaussian.

oscillations, such as the Morlet wavelet. Therefore, the next
section will describe an implementation of the procedure to
obtain a stable transfer function for these kinds of wavelet
bases. In this way, it presents a generalized procedure for
implementing analog filters of various types of wavelet bases.

B. Wavelet Filter Approach

The proposed procedure that generates a transfer function
of a wavelet base can be seen in the flowchart in Fig. 3. The
procedure is based on the Padé approximation described in the
previous section. The starting point is the definition of an ex-
pression in the time domain which represents the wavelet under
investigation. If the wavelet base does not have an explicit ex-
pression (e.g., Daubechies wavelets), then the splines interpola-
tion method [8] is used. Subsequently, one determines the ap-
propriate envelope to set the width of the wavelet. Once again,
if the envelope does not have an explicit expression, the splines
interpolation is applied. In this paper, the Gaussian pulse was
chosen as the envelope, which is perfectly local in both the
time and frequency domain. Once the envelope has been de-
fined, the Padé approximation is executed to find a stable and
rational transfer function that is suitable for implementation as
an analog filter. As the main advantage of the Padé method is its
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TABLE I
TAYLOR AND PADÉ COEFFICIENTS OF THE FIRST AND THE SECOND DERIVATIVE OF GAUSSIAN

Fig. 3. Flowchart of the wavelet filter approach.

Fig. 4. Impulse response of the wavelet filters, the ideal impulse (dashed line)
and the approximated impulse (solid line). (a) Gaussian envelope, (b) Morlet.
(c) db6 wavelet base.
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TABLE II
MORLET WAVELET BASE APPROACH PARAMETERS

Fig. 5. DR optimization based on the similarity transformation ofK andW and capacitance distribution. The coordinate axes represent the state variables and
the cuboid represents the maximum signal amplitude (M ) that the integrators are able to handle. (a) The initial state space representation (ellipsoid) is usually not
well adapted to the integrator’s representations capacity bounds (cuboid). (b) The (rotated) ellipsoid’s principal axes are now aligned to the coordinate axes, as a
result of the diagonalization procedure to the matrices K andW . (c) Finally, the optimized state representation is obtained by scaling the states variables. Note that
the sphere represents the maximum possible mean square radius which can be fitted into the integrator’s capacity cuboid.

computational simplicity and its general applicability [10], it can
easily be applied to other envelopes as well. The Padé approxima-
tion is preceded by a two-step procedure. First, a Laplace trans-
form is executed, and then a Taylor expansion is performed on
the expression of the envelope in the Laplace domain. Finally,
the wavelet is decomposed into a Fourier series to find the dom-
inant term (the term with the largest coefficient) such that when
multiplied with the envelope in the time domain, it results in the
approximated wavelet base. The results obtained from the use
of this method are illustrated in Fig. 4, where the Morlet and
the Daubechies (db6) wavelet bases have been approximated, re-
spectively. Other wavelet bases can also be approximated in a
similar manner. The rest of this paper will describe the design
of a Morlet wavelet filter. The related expression of the Morlet
wavelet base approach, the Padé expression of the envelope func-
tion and, the transfer function of the Morlet wavelet filter are
given in Table II. and represent the Laplace transform and
the inverse Laplace transform, respectively.

In the next section, we will map the transfer function
onto a state space description that is suitable for low-power
implementation.

IV. FILTER DESIGN

There are many possible state space descriptions for a circuit
that implements a certain transfer function. The same holds for
practical realizations. This allows the designer to find a circuit
that fits his specific requirements. In the context of low-power,
low-voltage analogue integrated circuits, the most important
requirements are the DR, the sensitivity, and the sparsity, all
of which will be treated in the subsections that follow. We will
focus on a synthesis technique that is exclusively based on
integrators.

A. DR

A system’s DR is essentially determined by the maximum
processable signal magnitude and the internally generated
noise. It is well known that the system’s controllability and
observability gramians play a key role in the determination
and optimization of the DR [11], [12]. The controllability
and observability gramians are derived from the state
space description and are computed by solving the equivalent
Lyapunov equations

(11)

(12)

where , , and are the state, input, and output matrices of
the state-space description, respectively. The entries of , ,
and are derived directly from the coefficients of the transfer
function.

As the DR of a circuit is defined as the ratio of the maximum
and the minimum signal level that it can process, optimization
of the DR is equivalent to the simultaneous maximization of
the (distortionless) output swing and the minimization of the
overall noise contribution. In [13], Rocha gives a geometric in-
terpretation of the optimization of the DR. A visualization of the
optimization procedure can be seen in Fig. 5, for a system with
three state variables. The output swing is related via the control-
lability gramian to the space of “occurring” state-space vectors.
Under the assumption of a random input signal, the shape of this
space is generally a multidimensional ellipsoid. The constraint
that each integrator has a maximum representation capacity ( )
defines a multidimensional cuboid, which, for a distortionless
transfer, should contain the former mentioned ellipsoid com-
pletely. As the mean square radius of the ellipsoid is equiva-
lent to the maximum output swing, the output swing is maximal
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when the mean square radius is. This can occur if and only if
the ellipsoid becomes a spheroid. In that case, the controllability
gramian is a diagonal matrix with equal diagonal entries, which
means that all axes of the ellipsoid have equal length. Thus, the
first optimization step boils down to a similarity transform, such
that the controllability gramian of the new system becomes a di-
agonal matrix with equal diagonal entries. In the second step of
the optimization procedure, the system is optimized with respect
to its noise contribution. Rocha defines another ellipsoid, which
describes the noise that is added to the state vector in each direc-
tion. While preserving the result of the first optimization step, it
is possible to rotate the state space, such that the observability
gramian becomes a diagonal matrix as well. In that case, the
axes of the noise ellipsoid are aligned with the “system axes.”

In [13] it is shown that, in order to maximize the DR of the
system, one should minimize the objective functional, which
represents the relative improvement of the DR and contains all
parameters which are subject to manipulation by the designer.
The objective functional is given by

(13)

where and are the main diagonal elements of and ,
respectively, is the absolute sum of the elements
on the i-th row of , and is the capacitance in integrator .

Finally, profiting from the well-known fact that the relative
noise contribution of an integrator decreases when the capaci-
tance and bias current increase, we match the optimal capaci-
tance distribution to the noise contributions of each individual
integrator (noise scaling), i.e, the diagonal entries of , com-
bined with the coefficients in matrix , which is defined by [13],
resulting in

(14)

Applying the optimization method described in [13] for the
transfer function given in Section III, we find that equals
96.98, which is the absolute minimum value of the objective
functional associated with this transfer function.

B. Sparsity

The drawback of a DR optimal system is that its state-space
matrices are generally fully dense, i.e., all the entries of the ,

, matrices are filled with nonzero elements. These coeffi-
cients will have to be mapped onto circuit components, and will
result in a complex circuit with a large number of interconnec-
tions. For high-order filters it is therefore necessary to investi-
gate how a realization of the desired transfer function having
sparser state-space matrices would compare to the one having
maximal DR. For a less complex circuit, it is possible, for in-
stance, to reduce to upper triangular by a Schur decompo-
sition and by this reducing the number of nonzero coefficients
in [13]. However, this transformation leads to an increase in
the system noise and consequently to an increase in the objec-
tive functional in (13). Another possibility is the Orthonormal
Ladder structure [14], which is significantly sparser than the

Fig. 6. Block diagram of an orthonormal ladder filter. (a) Leapfrog structure.
(b) Output summing stage.

fully dense matrix of the DR optimal system and the Schur
decomposition. The advantage of using this structure is its low
sensitivity to coefficient mismatch; it will be described in the
next section.

C. Orthonormal Ladder Structure

When designing high-order filters, it is very desirable to con-
centrate on circuits that are less sensitive to component vari-
ations. It is known that an optimal DR system will also have
optimal sensitivity [15]. Nevertheless, in order to improve the
state-space matrices’ sparsity, an orthonormal ladder structure
will be implemented, which still presents a good behavior with
respect to sensitivity. Fig. 6 shows a block diagram of a general
orthonormal ladder filter [14]. As shown in the block diagram,
the filter output is obtained from a linear combination of the out-
puts of all integrators.

The , , and matrices of this structure for the defined
transfer function are given by (15), shown at bottom of the next
page.

The matrix is tridiagonal and is very nearly skew-sym-
metric except for a single nonzero diagonal element. The
vector consists of all zeros except for the Nth element. An-
other property of orthonormal ladder filters is the fact that the
resulting circuits are inherently state scaled, i.e., the controlla-
bility gramian is already an identity matrix. The drawback of
this structure is that the system is not optimized with respect to
its noise contribution. However, if an optimal capacitance dis-
tribution is applied to this suboptimal system, it can still yield
some extra gain compared to the case of equal capacitances.
In this case, the objective functional becomes ,
which is not so far from the optimum case. The DR has de-
creased by only 1.83 dB. Finally, the normalized capacitance
distribution is given by

where represents the unit-less value of the total capacitance
when expressed in F. The next section will present the log-do-
main integrator, which is the basic building block of the filter.
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Fig. 7. (a) The multiple-input low power log-domain integrator and (b) its
symbol [16].

D. Low-Power Log-Domain Integrator

The trend toward lower power consumption, lower supply
voltage and higher frequency operation has increased the in-
terest in new design techniques for analogue integrated filters.
The class of translinear (TL) filters, also known as log-domain
filters, has emerged in recent years as a promising approach
to face these challenges. The TL approach is inherently com-
panding and exploits the exponential large-signal transfer func-
tion of the semiconductor devices to implement a desired linear
or nonlinear differential equation.

A simple bipolar multiple-input low-power log-domain in-
tegrator [16] will be used as the basic building block for the
implementation of the state space equation of the wavelet filter
described in the previous section. This log-domain integrator
is shown in Fig. 7 [16]. A pair of log-domain cells with op-
posite polarities and an integrating capacitor form the core of
the integrator. and are the noninverting and inverting
input voltages, respectively, and the input currents are and

, which are superimposed on the dc bias currents. The output
voltage is given by the voltage across the capacitor. The cir-
cuit is composed of two identical log-domains cells, a voltage
buffer, and a current mirror. The log-domain cells - and

- generate the log-domain currents and , respec-
tively. A voltage buffer realized by - is inserted between
them. Therefore, the output log-domain voltage at the emitter
of also appears at the emitter of . Finally, to obtain a
log-domain integrator equation, we used a current mirror -
to realize the difference between the two log-domain currents
on the capacitor node. The connection from the bases of tran-
sistors and to the collector of closes the feedback
loop around and . This connection is convenient because
it ensures that the overall voltage headroom is minimized. The
equation that relates the input and output voltages to the current
flowing in the integrating capacitor becomes

(16)

Notice that the input and output voltages of the integrator are
at the same dc level. Therefore, log-domain filter synthesis can
easily be achieved by direct coupling of these integrators.

E. Synthesis of the Log-Domain State-Space Filter

By applying a simple mapping to the linear state-space (15),
we can obtain the corresponding log-domain circuit realization
which employs the log-domain integrator cell introduced in the
previous section [17].

The block diagram of the log-domain implementation of
(15) is illustrated in Fig. 8, using the universal log-domain cell
symbol described in [17] and shown in Fig. 7(b). Note that
each column of the filter structure corresponds to a row in the
state-space formulation. The parameter is implemented by

(15)
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Fig. 8. Complete state-space filter structure.

Fig. 9. Simulated impulse response.

the corresponding log-domain integrator with bias current ,
defined by a current matrix

(17)

The input section, as governed by the state-space vector ,
can be defined as the input operator and is realized by the
first row from the top of Fig. 8. The parameter is related to
the current by

(18)

Consequently, the coefficients are not individually control-
lable by bias currents, and they have to be set equal to each other
(or to zero). Fortunately, this is the case in (15), where only one

Fig. 10. Monte Carlo analysis. (a) Process variation. (b) Mismatch variation.

nonzero parameter of the vector is present, as then it is not
necessary to transpose the state-space system. Finally, in order
to restore the overall system linearity one should realize the
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Fig. 11. Simulated impulse responses of a wavelet system with 5 scales. The scales are obtained by varying the current (from 0.125 to 2 nA) or the capacitance
(from 100 to 6.25 pF).

weighted summation state with the corresponding opera-
tors. Then the bias current vector , which controls the vector

, is defined as

(19)

V. SIMULATION RESULTS

To validate the circuit principle, we have simulated the
log-domain state-space filter using models of IBM’s 0.18- m
BiCMOS IC technology. The circuit has been designed to
operate from a 1.2-V supply. Fig. 9 shows the impulse response
of the wavelet filter. The excellent approximation of the Morlet
wavelet can be compared with the ideal Morlet function to
confirm the performance of the log-domain filter. Fig. 10 shows
the Monte Carlo analysis for process and mismatch variation
of the technology in use. As evident from the Monte Carlo
simulation (i.e., after 100 runs), the system characteristics show
insensitivity toward both absolute and relative variations in the
process parameters. Even though the impulse response may be
slightly affected, the wavelet analysis remains intact.

The total filter’s current consumption is 1.5 A with a 100-pF
total capacitance. The output current presents an offset of ap-
proximately 46.61 pA. The rms output current noise is 66.97 pA,
resulting in a DR at the 1-dB compression point of approxi-
mately 30 dB. The power efficiency of any bandpass contin-
uous-time filter is a figure of merit to be able to compare various

filter topologies and can be estimated by means of the power dis-
sipation per pole, center frequency , and quality factor
defined as [18]

(20)

where is the total power dissipation and is the order of
the filter. The power efficiency of this filter is equal to 11.83 pJ.

In addition, in order to verify the performance of the whole
wavelet system, one needs to scale and shift the wavelet base
function. By changing the values of the bias currents accordingly,
one can obtain a dyadic scale system, as illustrated in Fig. 11.
Alternatively, one also may change the capacitance values, .
To implement a wavelet system, which usually consists of five
dyadic scales, one needs to implement a filter bank (a parallel
structure) with a total capacitance of 193.75 pF (capacitance
value scaled by a factor of two, i.e., 100 pF for the first scale,
50 pF for the second, 25 pF for the third, 12.5 pF for the fourth,
and 6.25 pF for the last scale), preserving the same bias current.
This result indicates that the system shown in Fig. 1 is feasible.

Finally, in order to show that the same procedure can be ap-
plied for high-frequency applications, we tuned the frequency re-
sponse of the filter by varying the bias current over about four
decadeswith center frequencies rangingfrom5.8kHz to58MHz,
while preserving the impulse response waveform. Again, one can
obtain the wavelet scales around this frequency (i.e., 58 MHz) by
either scaling the current or the capacitance value, accordingly.
The performance of the filter is summarized in Table III.
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TABLE III
PERFORMANCE PER SCALE FOR TWO DIFFERENT OPERATING FREQUENCIES

VI. CONCLUSION

A novel procedure to approximate wavelet bases using analog
circuitry was presented. Simulations demonstrated an excellent
approximation of the Morlet wavelet base. The filter was op-
timized with respect to DR. Moreover, sensitivity and sparsity
were also taken into account in the design of the filter. Hence, the
filter was able to meet the requirements imposed by a low-power
environment. The circuit operates from a 1.2-V supply and a
bias current of 1.2 A. From the results obtained, we deduced
that this procedure could very well be used to approximate other
wavelet bases as well and to implement them on chip in an
analog fashion using little power.

ACKNOWLEDGMENT

The authors would like to thank R. Westra, R. Peeters, and
J. Karel from the University of Maastricht for the useful discus-
sions; and D. Harame and IBM Microelectronics for fabrication
access.

REFERENCES

[1] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

[2] S. Mallat, A Wavelet Tour of Signal Processing. New York: Academic,
2001.

[3] O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal
Process. Mag., vol. 8, no. 4, pp. 14–38, Oct. 1991.

[4] S. A. P. Haddad, R. Houben, and W. A. Serdijn, “Analog wavelet trans-
form employing dynamic translinear circuits for cardiac signal charac-
terization,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, May
2003, pp. 121–124.

[5] J. S. Sahambi, S. N. Tandon, and R. K. P. Bhatt, “Using wavelet transform
for ecg characterization,” IEEE Eng. Med. Biol., pp. 77–83, Feb. 1997.

[6] M. Unser and A. Aldroubi, “A review of wavelets in biomedical appli-
cations,” Proc. IEEE, vol. 84, no. 4, pp. 626–638, Apr. 1996.

[7] S. A. P. Haddad and W. A. Serdijn, “Mapping the wavelet transform
onto silicon: the dynamic translinear approach,” in Proc. IEEE Int. Symp.
Circuits and Systems, vol. 5, May 2002, pp. 621–624.

[8] D. Zwillinger, Standard Mathematical Tables and Formulae, 30th ed.
Boca Raton: CRC, 1996.

[9] K. L. Su, Time Domain Synthesis of Linear Networks. Englewood
Cliffs, NJ: Prentice-Hall, 1971.

[10] G. A. Baker Jr., Essentials of Pade Approximants. New York: Aca-
demic, 1975.

[11] L. Thiele, “On the sensitivity of linear state-space systems,” IEEE Trans.
Circuits Syst., vol. CAS-33, no. 5, pp. 502–510, May 1986.

[12] W. M. Snelgrove and A. S. Sedra, “Synthesis and analysis of state-space
active filters using intermediate transfer function,” IEEE Trans. Circuits
Syst., vol. CAS-33, no. 3, pp. 287–301, Mar. 1986.

[13] D. P. W. M. Rocha, “Optimal design of analogue low-power systems, a
strongly directional hearing-aid adapter,” Ph.D. thesis, Delft University
of Technology, Delft, The Netherlands, Apr. 2003.

[14] D. A. Johns, W. M. Snelgrove, and A. S. Sedra, “Orthonormal ladder fil-
ters,” IEEE Trans. Circuits Syst., vol. 36, no. 3, pp. 337–343, Mar. 1989.

[15] G. Groenewold, “Optimal dynamic range integrators,” IEEE Trans. Cir-
cuits Syst. I, Fundam. Theory Appl., vol. 39, no. 8, pp. 614–627, Aug.
1992.

[16] M. N. El-Gamal and G. W. Roberts, “A 1.2 v npn-only integrator for
log-domain filtering,” IEEE Trans. Circuits Syst. II, Anal. Digit. Signal
Process., vol. 49, no. 4, pp. 257–265, Apr. 2002.

[17] G. W. Roberts and V. W. Leung, Design and Analysis of Integrator-
Based Log-Domain Filter Circuits. Dordrecht, The Netherlands:
Kluwer, 2000.

[18] C. Toumazou, G. Moschytz, and B. Gilbert, Trade-Offs in Analog Circuit
Design. Dordrecht, The Netherlands: Kluwer, 2002.

Sandro A. P. Haddad (S’99) was born in Anápolis,
Brazil, in 1977. He received the B.Eng. degree from
the University of Brasília (UnB), Brasília, Brazil, in
2000, with honors. He is working toward the Ph.D.
degree at the Electronics Research Laboratory, Delft
University of Technology, Delft, The Netherlands,
since 2001

His research is a part of the Biomedical Signal
Processing Platform for Low-Power Real-Time
Sensing of Cardiac Signals (BioSens). His research
interests include low-voltage, ultra low-power analog

electronics and biomedical systems, and high-frequency analog integrated
circuits for ultra-wide band communications.

Sumit Bagga (S’03) was born in New Delhi, India, in
1977. He received the B.S. and M.E. degrees in elec-
trical engineering from Shivaji University, Kolhapur,
India, and University of Brasília, Brasília, Brazil in
1999 and 2002, respectively.

In November 2002, he joined the Electronics
Research Laboratory (EEMCS), Delft University
of Technology, Delft, The Netherlands, where he is
involved with designing transceiver architectures and
circuits for ultra-wide band communications in the
AIRLINK project under the FREEBAND initiative.

His research interests include high-speed, low-power analog circuit design.
Mr. Bagga received the Best Paper Award from UWBST and IWUWBS 2004.

Wouter A. Serdijn (M’98) was born in Zoetermeer
The Netherlands, in 1966. He received the “inge-
nieurs” (M.Sc.) degree in electrical engineering
and the Ph.D. degree in elctronics from the Delft
University of Technology, Delft, The Netherlands,
in 1989 and 1994, respectively.

Since 1997, he is a Project Leader in the multi-dis-
ciplinary Ubiquitous Communications (UbiCom)
research program of the Delft University of Tech-
nology. In 2002, he became a workpackage leader
in the Freeband Impulse project AIR-LINK, aiming

at high-quality, wireless short-distance communication, employing ultra-wide
band (UWB) radio. His research interests include low-voltage, ultra-low-power,
high-frequency and dynamic-translinear analog integrated circuits along with
circuits for RF and UWB wireless communications, hearing instruments and
pacemakers. He is co-editor and coauthor of the books Research Perspectives
on Dynamic Translinear and Log-Domain Circuits (Norwell, MA: Kluwer,
2000), Low-Voltage Low-Power Analog Integrated Circuits (Norwell, MA:
Kluwer, 1995) and Dynamic Translinear and Log-Domain Circuits (Norwell,
MA: Kluwer, 1998). He authored and coauthored more than 150 publications
and presentations. He teaches analog electronics for electrical engineers,
micropower analog ic design and electronic design techniques.

Dr. Serdijn received the EE Best Teacher Award in 2001 and 2004. He
has served as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—II: ANALOG DIGITAL SIGNAL PROCESSING, and currently
serves as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS. He served as
Tutorial Session Co-chair (with A. Andreou) for the International Symposium
on Circuits and Systems (ISCAS) 2003, as Analog Signal Processing Track
Co-Chair (with T. Tarim and I. Filanovsky) for ISCAS 2004, as Chair of the
Analog Signal Processing Technical Chapter of the IEEE CAS society, as
Analog Signal Processing Track Co-Chair for the International Conference
Electronics Circuits and Systems (ICECS) 2004, as Technical Program Com-
mittee member for the 2004 International Workshop on Biomedical Circuits
and Systems, and is currently serving as Analog Signal Processing Track
Co-Chair (with U. K. Moon and I. Filanovsky) for ISCAS 2005.


	toc
	Log-Domain Wavelet Bases
	Sandro A. P. Haddad, Student Member, IEEE, Sumit Bagga, Student 
	I. I NTRODUCTION
	II. W AVELET T RANSFORM

	Fig.€1. WT system. (a) Time-frequency plane. (b) Morlet WT syste
	III. W AVELET B ASES A PPROXIMATION
	A. Padé Approximation in Laplace Domain


	Fig.€2. Impulse response approximation using Padé [6/10]. (a) Fi
	B. Wavelet Filter Approach
	TABLE€I T AYLOR AND P ADÉ C OEFFICIENTS OF THE F IRST AND THE S
	Fig.€3. Flowchart of the wavelet filter approach.
	Fig.€4. Impulse response of the wavelet filters, the ideal impul


	TABLE€II M ORLET W AVELET B ASE A PPROACH P ARAMETERS
	Fig.€5. DR optimization based on the similarity transformation o
	IV. F ILTER D ESIGN
	A. DR
	B. Sparsity


	Fig.€6. Block diagram of an orthonormal ladder filter. (a) Leapf
	C. Orthonormal Ladder Structure

	Fig.€7. (a) The multiple-input low power log-domain integrator a
	D. Low-Power Log-Domain Integrator
	E. Synthesis of the Log-Domain State-Space Filter

	Fig.€8. Complete state-space filter structure.
	Fig.€9. Simulated impulse response.
	Fig.€10. Monte Carlo analysis. (a) Process variation. (b) Mismat
	Fig.€11. Simulated impulse responses of a wavelet system with 5 
	V. S IMULATION R ESULTS

	TABLE€III P ERFORMANCE PER S CALE FOR T WO D IFFERENT O PERATIN
	VI. C ONCLUSION
	I. Daubechies, Ten Lectures on Wavelets . Philadelphia, PA: SIAM
	S. Mallat, A Wavelet Tour of Signal Processing . New York: Acade
	O. Rioul and M. Vetterli, Wavelets and signal processing, IEEE S
	S. A. P. Haddad, R. Houben, and W. A. Serdijn, Analog wavelet tr
	J. S. Sahambi, S. N. Tandon, and R. K. P. Bhatt, Using wavelet t
	M. Unser and A. Aldroubi, A review of wavelets in biomedical app
	S. A. P. Haddad and W. A. Serdijn, Mapping the wavelet transform
	D. Zwillinger, Standard Mathematical Tables and Formulae, 30th e
	K. L. Su, Time Domain Synthesis of Linear Networks . Englewood C
	G. A. Baker Jr., Essentials of Pade Approximants . New York: Aca
	L. Thiele, On the sensitivity of linear state-space systems, IEE
	W. M. Snelgrove and A. S. Sedra, Synthesis and analysis of state
	D. P. W. M. Rocha, Optimal design of analogue low-power systems,
	D. A. Johns, W. M. Snelgrove, and A. S. Sedra, Orthonormal ladde
	G. Groenewold, Optimal dynamic range integrators, IEEE Trans. Ci
	M. N. El-Gamal and G. W. Roberts, A 1.2 v npn-only integrator fo
	G. W. Roberts and V. W. Leung, Design and Analysis of Integrator
	C. Toumazou, G. Moschytz, and B. Gilbert, Trade-Offs in Analog C



