3D chromatin loops measured with Hi-C bring
together SNP-SNP pairs engaging in epistatic
interactions in GWAS data
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A. Statistical Appendix: Logistic Regression and Likelihood Ratio Test

A1l. Regression models

Regressions are statistical models that aim tonasti the relation between variables. Linear regyessare regression that model the
relationship between a scalar varialglewhich is the dependent variable, and one or modegandent variables;, which are called
predictors. With a linear regression we aim to axpy as a linear combination of a numimesf x;’s:

n
y= B0+Z. 1ﬁixi+5
i=

The coefficientss;’s weigh the predictors, indicating the size af thfluence that each predictor hasyom is the error, which follows a
Gaussian distribution. Thus, the conditional pralitstby | x follows a Gaussian distribution.

Linear regressions are widely used in biological aacial sciences, as well as in finance and ecmsoffihere exist many extensions of the
linear regression models that are for example &blenodel non-linear relations between the variabe refer to these models as
generalized linear models (GLM). One type of GLMcaled logistic regression. If linear regressiomsdel a scalar continuous variable,
logistic regressions model a binary dependent brip The conditional probability | x therefore follows a Bernoulli distribution. A
logistic regression model can be written similadya linear one:

n
v = Bo +Zl Bix;
i=1
However,y* is not directly the outcome y, but rather a transftion (g) of it:

y
1-y

y =g) =In( )

Therefore, to explicitly derive the dependent Viaigay:

nGE) = faty pix

Y oBotS B
1-y
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The last formula, with y as a function 68, + X.i-, B;x;) is the definition of the logistic function, thulset name logistic regression. A
property of this function is that the outcome istrieted to be between 0 and 1, and can thereferaterpreted as the probability of the
dependent variable being 1.

A.2 Regression in GWAS

Among other applications, linear and logistic regien models are used in genome-wide associatimliest(GWAS) to model the state of
individuals, in relation to a genetic disease aittas a function of genetic variables. To be namecific, GWAS aim to find an association
between having common genetic variants, typicalthie form of single nucleotide polymorphisms (SN&wd presenting a certain trait or
disease. In a regression model, therefore, we mbéephenotypic state using the SNPs as predidfdesshall now distinguish between
traits and diseases. Traits are often continudiirs for example of somebody’s weight, height odpmnass index (BMI). Such traits can be
modelled using a linear regression, where simgly the value for a given trait (height in cm, weighkg and so on). For diseases, on the
other hand, we typically distinguish between hadrdjsease or not having it. Thus, a logistic regjmmn is better suited. In a GWAS setting,
we definitely refer toy as to the outcome (affected/unaffected). We mduaebutcome of every individual as a combinatiothefgenotypes

of that same individual at the same given locaf®NP).

Logistic regression models are not the only associaneasures used in GWAS experiments. The maditivnal approaches are based on a
contingency table: those are tjgé test and the Fisher's exact test. A standard GVéRSeriment is performed in a case-control setup.
Individuals with the disease of interest (cases)ampared with healthy individuals (controls) be basis of the respective genotypes at
specific positions. For each locus, the contingeable is:

AA | Aa | aa

cases

controls




WhereA anda are the two possible alleles at that positionicaify classified as minor and major allele (mordess frequent in the studied
population). Recently, studies have preferred tagiegression models over the contingency tablthaus, for mainly two reasons (Clarke
et al, 2011):

1. Regression models are naturally well-suited to ripomte many variables. By adding as covariatesnpiatly confounding
factors (age, sex, ethnicity..) it is possible dorect for intrinsic variation in the population aee studying.

2. The interpretation of the contribution of each StdRhe outcome prediction is straight forward sitsufficient to look at the
estimated coefficients

There are several ways of measuring the goodnefitsobfa logistic regression model. Those inclutle Wald statistic, which assesses the
contribution of each individual predictor and tilelihood ratio test, which assesses the goodridiisad a given model, when compared to

the null model (model with no predictors). HoweMeRTs go beyond that, and are able to compareaoyegression models, when one is
a special case of the other. LRT is discussedrthdu detail in the next paragraph.

A.3 Likelihood-ratio test (LRT) and Wilks’ theorem

The likelihood ratio test is a statistical test mteto compare the goodness of fit of two model® being a special case of the other. For a
linear model (or a generalized linear model, ewy.logistic regression), the common practice isdmpare the model of interest with either
the null model (only intercept, no predictors) artbe other extreme to the full or saturated méalepredictors available).

For example, in formulas, if | have 10 predictardatal, and | want to measure how well the filsee predictors alone perform, | want to
compare the model:

Vi = Bo+ Bix1 + Boxy + B3xs
With the null model: y;, = B,
Or the full model:  y; = B, + XX Bix;

In the first case, | am measuring how much thoseeticharacteristics are able to predict, comparatbt having any information on the
samples. In the second, | measure how much those thctors weigh in determining the outcome, datlidhe available information.

However, one does not necessarily need to compgireea model to the full model, or to the null oes long as they are nested, any two
models can be compared using LRT. One might bedsited to see how much adding a fourth factor ingsdhe prediction: an LRT could
answer that, when comparing the models with 3 apckdictors.

For every two models having as set of paramétgendo, with 6, c 6, the likelihood ratio statistic is:

_ sup{L(6]x),0 € 6,}
~ sup{L(8]x),0 € 6}

To obtain a significance measure of the improvemeasically a p-value out of the likelihood ratwe can use the Wilk’s theorem. For a
very large number of samples,—» o

—2InA ~yx2(k) 1)
Where the number of degrees of freedom|@fs- |6, |

H LTe uce:
(#) can also be erttBH%Zln# = _z[ln(l‘reduced) - ln(Lcomplete)] = Z[LLcomplete - LLreduced]

Lcomplete

The only values to fill in in the formula are thiene the log-likelihoods of the two model. For dagistic regression model

n
logit(p) = fo+ ). fi
i=
Its log-likelihood is computed as follows:
LL=%¥Lyin(p)+ (A -ydIn(l-p) (2
Wherey; € {0,1} are the true binary labels (sick/healthy)

And p; € [0,1] are the predicted values, which can be interpraseal probability of positive outcome (1=sick)

ePotLiz Bixi 1

= 1 + ePotZiiBixi 1 4+ g—Bo—TiiBixi
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It is therefore sufficient to compute the log-likelod (2) of both models, insert them in (1), arelabtain g¢? value and therefore a p-value
indicating how confident we are in refusing thellnlypothesis that the two models provide the séewel of information, in other words
are an equally good fit of the data.

A.4 In this work

In this work, we use a GWAS case-control datasettype 2 diabetes (T2D). We use logistic regressiodels to model the outcome of the
individuals tested based on a number of SNPs afighwes. To correct for population structure, welide in the models the first ten
principal components (PCs). We also add the inftionaabout the sex of all individuals. Moreover, are interested in the performance of
pairs of SNPs, rather than individuals. The logistigression setup allows to include those in alitigd manner:
y*~covar + SNP; + SNP,
It is equally straight forward to include a termattimeasures the interaction between variants:
y*~covar + SNP; + SNP, + SNP,SNP,

To assess the goodness of fit of these models &va likelihood-ratio test.
To assess whether a pair of SNPs performs betiarttte two individual SNPs in predicting the outegmve measure (with LRT) both:

y*~covar + SNP; + SNP, + SNP,SNP, vs y*~covar + SNP;

y*~covar + SNP; + SNP, + SNP,SNP, vs y*~covar + SNP,
To measure if the interaction model is good ovexalicompare (with LRT):

y*~covar + SNP; + SNP, + SNP,SNP, vs y*~covar

Finally, to assess whether the improvement is dulee interaction of the variants, rather than fhsir sum, we calculate (with LRT):

y*~covar + SNP; + SNP, + SNP,SNP, vs y*~covar + SNP; + SNP,



B. GWAS preparation: Sample and Site quality control (QC)

Raw genotypes were data generated for Burton édalre 2007. Only one set of controls (NBS) waailable (1500 samples). For the
disease of choice, T2D, genotypes were availabl@®00 samples. Several steps were taken to diearatv data. Samples are tested for
500k SNPs, sitting on chromosomes 1-22 and X. Adllgses described in the following paragraphs aréopmed using plink version 1.9
(Purcell et al 2006).

B.1 Sample QC

For sample QC (quality control), a ‘white list’ sites is selected. Those are variants with extretogl missingness (missing<0.01), high
minor allele frequency (MAF>0.5), not in LD (for ey 50-SNP window, sliding by 5, all pairwisé are computed, and i? < 0.5 the
SNP with higher missingness is filtered out). SNRguld not be of the form AT or CG. Such SNPs arthérmore not on chromosome X,
and not on known variable regions (the lactase ,g&@, 2:129883530-140283530; the major histocoibpdy complex, MHC,
6:24092021-38892022, inversions on chromosomesd81d@n 8:6612592-13455629 and 17:40546474-44644@8%r such filtering, the
white list consists of 57,852 SNPs. These SNPswait-behaved’ SNPs, for which we have enough dbt& missingness), which are not
rare (the allele that appears less often, is ptéset least 5% of the samples), which are raitieependent from each other (not in LD) and
are not on regions that are extremely variabléépopulation. Moreover, SNPs on chromosome X aruaeYhot included here, since they
might introduce gender-related biases. This isthetset of SNPs we are going to analyse later onphly an intermediate step for the
sample quality control (QC). It is a precaution,that the sample QC can truly be only about thepsesn as we are only looking at
extremely stable sites.

Based on this selection of variants, samples #exdd out when they have missingness higher tBarafd mismatched sex (genetic sex
does not correspond to reported sex). As for refetss, we remove all samples that are related mithe than 100 other samples
(coefficient of relationship or identical by dest&D>0.125). After sample QC 3,343 samples are(#5.5%).

B.2 Site QC

Site QC is then performed only for the remainingngkes, but reintroducing all variants from the stdihe steps of site QC are the
following: first, Hardy-Weinberg Equilibrium (HWEwith P<le-13, either in controls only or overdlhe Hardy-Weinberg Equilibrium is
the notion for which, given a minor allele frequegrt p, the probabilities of the three possible unordeyedotypesd/a, Ala, A/A) at a bi-
allelic locus with minor allelé and major allele a, agd - p)?, 2p (1 - p) andp?, respectively. In a large, randomly mating, honmages
population, these probabilities should be staldenfgeneration to generation (Clarke et al, 201&yiants for which this is not the case are
filtered out. Secondly, we filter on missingnesteréf < 0.05), both overall and differentiate beem cases and controls. Finally, we only
keep non-rare variants (MAF <0.05). All other sites kept. After site QC 450,242 sites are lefe490

B.3 Association

The association with the phenotype is measured avitigistic regression, using as covariates tts¢ i@ principal components, and sex. No
information about the age of the samples was aMailaor batches information (or any other detailsiow the data was collected).

The results of a GWAS analysis are typically digpthas a Manhattan plot, along with a QQ plot. fitet represents the SNPs as the p-
values of their association with the phenotype,gheomosome. Every dot is the —log10(P) of a SN fiigher up the dots, the higher the
association of those variants with the diseasatefést. Here, the only SNPs that are over thefigignce threshold sit on chromosome 10,
which agrees with the results obtained in the nagpaper. A QQ plot compares, on the two axespbiserved (-log10) p-values, with the

expected ones. In the figure we can see that thertastly agree (most dots are on the diagonal} &man a few ones that deviate from it,

which are the highly associated ones.
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Fig S1. Results of the GWAS analyses on the WTCCC T2[athset The dataset is built with data for type two diabetes (T2B)peved to the controls (NBS). Theft

plot is a Manhattan plot. On the x axis are the chromosamegernate colours. 23 indicates chromosome X. On tesy the negative log 10 of the p-values. Every dot is
a SNP. In blue and red, significance thresholds. The ®NFs over the threshold are on chromosome 10. Thesksragree with those of the original paper. figkt plot

is a qg-plot, where the same negative log10 of the p-véduehe observed data is compared to the same as it Weubdpected, if there was no association. Most sites
(dots) are on the diagonal, with a few deviating from it shgwimme association which was not expected by chance.

B.4 PCA (Principal Component Analysis)

Principal component analysis is performed using BENGTRAT (eigensoft package eig4.2, converf, smartgggenstrat), where the

principal components (first 10) are computed onr#ference downloaded froms HapMap, and then tangpkes are overlayed on it. No

actual cleaning is performed based on the prin@paiponent analyses. However, the first 10 PCénateded as covariates in the logistic
regression, which is the association measured tosealculate the pvalues in the Manhattan plotttfermore, by performing sample QC we
eliminate inbred, related and other ‘unreliablehgdes, and this is visible in the PCA plot, whendyadhe samples that fall in the European
cluster are kept. This is to be expected as dictad samples are (supposably) of UK origins.
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Fig S2: PCA plots On the axis, the first principal component PC1, on the y théssecond principal component PC2. In colours, the refsulteference samples, from
HapMap. Clearly, the two principal components capture thelptpu structure of the samples. Four clusters are clearlgeadtie: the elongated green one on the left
represents the African samples, the circular purple onettarb right represents the south Asian individuals, the orepgeght the Europeans, the red elongated one on the
right mostly mixed races. On top of the reference we oyeia WTCCC samples, in dark gregft plot). Although officially all collected samplese of British origins, we
observe same samples away from the Caucasian clustéme@ght, we highlight the samples that passed sample QC, in lighegr This clearly shows the importance of
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this step, as the remaining samples nicely cluster to the tupaitd the other ones have been filtered out.

B.5 Imputation and Dosage Convertor

Imputation is done uploading the (clean) data ® RKhichigan Imputation Servethitp://imputationserver.sph.umich.gdWe imputed
109,126,218 new sites. We filter out on imputatiprality ¢> > 0.3). This filtering is done per chromosome and leftwith 47,073,880

imputed sites (~40%).

8M
4M
0

B all SNPs
I II II B good quality SNPs
I IIIIIII..II

1 3 5 7 9 11 13 16 17 19 21

# imputed SNPs

chromosomes

Fig S3. Percentage of imputed SNPs after quality filte(r? > 0.3). On the x axis, the chromosomes’ numbers. On the y tidscount of SNPs. In red is depicted the
total number of imputed variants, per chromosome. Fasnebsome 1, for example, 8,740,001 variants were impurtediue, the number of SNPs we keep for further
analyses, after filtering on imputation quality. The imputatioaliis measured as a correlation measuf¢ hetween imputed and true genotypes. We chose the rather
lenient threshold of 0.3. For example, for chromosonwveelkept 3,338,284 sites.

Genotypes are provided as dosages. Dosages aiauows numbers between 0 and 2, calculatedpddA) + p(4a), where A is the
alternate allele, a is the reference allele. Thiicates somehow the quality of the imputatiorthéf imputed genotype was certainly AA,
p(AA) would be 1, p(Aa) and p(aa) would be 0, anel tlosage would be exactly 2. Similarly, whenever probability is 1 and therefore
the other two are 0, the dosage and the imputedtges (0,1,2) coincide. However, in some casesntipaiting server is not as sure, and the
dosages are not integers.

However, since we already filtered on imputatiomldy, those dosages are all quite close to theutetbresults. Therefore, for simplicity,
we convert dosages into discrete genotypes 0,1 f2finer analyses. First however we make surettfeatlifference is never larger than 0.1,
and filter out SNPs for which this is not the case.



C. Supplementary figures

GWAS QC: intermediate Steps

Figure S4 shows some intermediate GWAS results [idtan and qq plots) at different stages of quatitytrol (QC). Essentially, we show
some of the steps between Fig 4A and Fig 4B (agSH).
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Fig S4. GWAS QC steps: Manhattan and qq plot Figures are paired up. At every step of gc we genefladgil a Manhattan plot and qq plot. Manhattan plots: x axis,
chromosomes, in alternating colours, y axis, negative logf e p-value of every SNP in association with the ph@eot@Q plot, expected —log10 of the same p-values versus
observed —log10 (p-values). When QC is performed diyethe Manhattan plot should show only a limited number oPSassing the p-value threshold, and the QQ olot
should be almost a diagonal line, with only a few dots devidtorg it (the same significant SNPs that pass the threshafetiManhattan plot). See Fig S1 for reference.

A: dataset after sample QC.At this stage, we have eliminated samples that do not belesyevell: essentially individuals that are related and duplicates.results are still
pretty bad, not much improvement is observed comparétetéirst experiment8: dataset after sample QC and preliminary site QCThe results look slightly better when we
start filtering out bad SNPs. Here we eliminated missing Shif$ rare one<C: dataset after sample QC and more advanced site Q@pecifically after HWE step.Another
important step is eliminating variants that do not satisfy thelyd&/einberg Equilibrium (HWE) assumptions describe in tlisutnent, section BD: dataset at one step from

the end. Results of sex check. Only inclusion of PCstine logistic regression model is missingdrinally, we found that eliminating sex mismatches improvedesults a great
deal, especially since we were including sex as a covaridte ilogistic regression. However, the biggest jump in qualion(fS4D to S1) occurred with the last step, where we
included the first 10 principal components as covariates imtdul, which corrected for the population structure bias.



HiCCUPS (Hi-C Computational Unbiased Peak Search)

We have defined loops to be pairs of genomic regihat form a peak in the Hi-C map. A peak in theCHnap indicates that the two
indicated regions are found co-localized in the gdhome context more often than expected. We deeaits using HICCUPS (Hi-C
Computational Unbiased Peak Search), as impleményté&thoet al(Rao et al, 2014). The contacts count of very sgjirathe matrix, at a
given resolution, is compared to that of neighbmyiriegions, namely the horizontal neighbours (hlthe) vertical closest rectangles (green),
the surrounding ‘doughnut’ (black) and finally thettom left corner (yellow). If the count in thentee is at least 50% more than that of
each of the surrounding regions, then it is caledeak. The bottom left corner deserves perhapeeiad explanation. As the matrix is
symmetric, the peak search is only performed ifi bfathe matrix, namely the upper triangle (rowéxd< column index). The search is
furthermore performed more than once, at differemblutions, starting from the highest resolutismgllest squares). Thus, if the centre of
the currently investigated square has more cobats all surrounding regions but the bottom left,anis most likely only part of a peak of
larger size, which will consequently be detectedoater resolution. Before performing the peak seatbe Hi-C map is normalized, to
correct for the ‘linear genome bias’. Linearly @ogenomic regions are naturally also close in 3 &xpected distribution of contacts
decreases exponentially as a function of the limkstance. To observe counts that are not expeetednust correct for this expected
background distribution. In Raet al. the maps are normalized according to a matrix leagnalgorithm described in Knight and Ruiz
(Knight and Ruiz, 2012).

Fig S5. HICCUPs. Taken from Raet al. Figure 3A. We identify peaks by
& - Chr 8 T 3 Chré Y detecting pixels that are enriched with respect to four localhiichoods
. e - il = (blowout): horizontal (blue), vertical (green), lower-left (yel)lo and donut

rm———— (black). These “peak” pixels indicate the presence of a kg are marked
" w307 13457 with blue circles (radius = 20 kb) in the lower-left of each heginiThe
E number of raw contacts at each peak is indicated. Left: in&M12878

map; Right: replicate; annotations are completely independéRao et al,
2014).
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Loops are enriched for enhancers and common SNPs, especially when
highly associated with the phenotype. P-values.
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Fig S6. Loops are enriched for enhancer activity (A) anccommon variants (B), particularly when highly associatedwith the phenotype (C). P-values per
chromosome. A:loops are enriched for enhancers. P-values obtaineddrBmomial test, as described in 3.1.1. X axis: chromosoynasis: -log10(P). As indicated, th
two lines represent the significance threshold after multipléntesorrection. Red line indicates threshold using Bonferroglipy using Benjamini-Hochberg. Th
enrichment is highly significant for all chromosomes. Thessta Fig 5A were determined based on this rediltloops are enriched for common SNPs. Similar to
significance is determined with a Binomial test. The enrichmemstisignificant only for chromosomes 4,8, 14 and X. $taes in Fig 5B were determined based on t
result. C: loops are especially enriched for SNPs that are highlycided with the phenotype, when we only look at SNPs thathde some association with th
phenotype. We select only SNPs whose association meadex@.5. For those variants, we performed a one-$\d&dxon rank-sum test between the p-values of SNP
loops and the p-values of SNPs not in loops. The reselindicated in the bar-plot. The axes are the same as imdBawith the only exception that the p-values a
obtained with a different test: not Binomial, but rank-sum, asrifesl.
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Fig S7. SNPs sitting on the same looping region have very similassociation with the phenotype, even when not inrsing LD. In order to show that SNPs sitting on
the same looping region show similar association with thegilipe, we selected three regions on chromosome 1, 2 gegpectively that had exactly four SNPs sitting on
them (from our original dataset, before imputation). Meezpwe chose three sets that have different levesssdciation, from very bad to quite good, to show that this
factor does not influence the result. On the y axis, is thgl8l@f the p-values calculated as an LRT of the logistic ssgne models containing the different variants
compared to the null model. As you can notice, the scailesviarthe three plots. On the x axis, are the IDs of thantar Clearly, most of these behaviours are explained by
linkage. Those SNPs sit on the same region, thus quitetdl@seh other, thus in the same LD block. Naturally, thew, lthee very similar association measure. However,
looping regions can be up to 25kb long, which is largen tha typical LD block. Rs109291322 and rs757801 in thesgaat, for example, are highly correlated & 0.4).

We have performed these checks extensively if not estivaly, and believe it is a good approximation to assumes@MRhe same looping region have similar association
with the phenotype.
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Epistasis occurs with great diversity from chromosome to chromosome
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Fig S8. Histogram: distribution of the number of shufled pairs showing epistatic effects, compared to theame number for ‘true’ pairs, for all chromosomes.
Extension of Fig 6 from the main text. X axis, count dfpahowing significant epistatic interaction (LRT, p<0.05),1000 permutations. The red dot represents the same
number for the ‘true’ pairs. On the y axis the freqyewith which the different counts occur. In the majority of ttases the red dot is far to the right compared to the
distribution of the shuffled pairs. Over all chromosomesntiaber of significant epistatic interactions for the ‘truerpas significantly larger than that of ‘artificial’ pairs
(empirical estimated p-value = 0.01). However, we obsamezzling opposite behaviour for four chromosomes. Bbsomes 9, 11, 17 and 18 show a completely opposite
trend than the rest of the chromosomes. Not only the reid dot far to the right compared to the distribution of thefdipairs: instead it is far to the left, as if the ‘true’
pairs were engaging in epistatic interactions particularly ratéhjortunately, we do not have an explanation for this radthpugh it is definitely worth investigating it in
the future.
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Percentages of pairs passing the different tests
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Fig S9. Steps of pairs selectiorAfter selecting all pairs for which the interaction model penfobetter (LRT) than the two single-loci models (A), we peatto find how
many of those are also significant (better than null modeT)L(B). Of those, to capture interaction only, we find fowhmany pairs the interaction model is also better
(LRT) than the additive one (C). Finally, we calculate how ynafithese pairs also perform better than their counterfaatificial’ pairs (D). A. X axis, chromosomes. Y
axis, percentage of synergistic pairs, out of total pas.eBich chromosome, we counted how many pairs steymexgistic interaction, meaning that the SNP interaction
improves association over the single SNPs. Generally, titertage of success is between 1 and B% axis, chromosomes. Y axis, count of total pairs (redmfhich
there is a synergistic effect. In blue, out of the total, nurobgairs that are also significantly improving the associatiith the phenotype, when compared to the null
model. On average, those are >7@aox axis, chromosomes. Y axis, percentage of synergistiat additive pairs, out of ‘good’ pairs so far. We ciele pairs for which
the interaction is better than the individuals, and out of thasedlrs that are also better than the null model. We hesechbck that the interaction model 1+2+1*2
performs better than the additive only 1+2. It does, in rtieae 90% of the cases, over all chromosorBesSimilarly to A and C, we check those pairs that on top of all
previous requirements also are better than the artificial cqamtgrairs, at similar linear distance. X axis, chromosoiesis, percentage of ‘true’ pairs performing better
than both ‘artificial’ counterparts. Again, this is the casenfearly all pairs in all chromosomes.
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KEGG Pathways: we found epistatic pairs between SNPs sitting on or in the

vicinity of genes involved in these pathways
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Fig S10. KEGG pathways: we found epistatic pairs between 3$ sitting on or in the vicinity of genes involved inlese pathwaysPRKCE in the Type 2 diabetes

mellitus pathway an&HOQ in the insulin signalling pathway.
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Future direction: from SNP pairs to SNP groups

| Network of loops |
Assuming for simplicity A
there is one SNP per region *
B
step1 LRT

| y~cov+ A
ly~cov + B Vs y~cov b
y~cov + C Cye i

step2 \ LRT

y~cov+B+ A+ AB] vs y~cov + B Hi-C map
y~cov+B+C+ (B

A nodes are genomic

regions, connected b
step3 ? ~ LRT . g y

: an edge if looping
y~cov+B+A+AB+ C+ AC (+BC) Vs y~cov+B+A + AB B

Fig S11. Extension of method from SNP pairs to SNP groupsising network of loops: an ideaThe network of loops is an idea introduced by Sankeoral. It is an
innovative manner of looking at Hi-C maps, to try andbgyond its intrinsic pairwise limitation. The technique Hi-@gkhthroughput 3C) extends 3C (chromosorne
conformation capture) from counting how many contacts taerdetween two selected genomic regiame{to-onefo counting how many contacts there are between all
pairs of genomic regionsi{-to-all). Yet, it is only able to measure the co-occurrence of twinmegat a time. However, a more realistic scenario is oreaumany regions
are found in contact together at the same time, in sohagfalls’ de Laat,not yet published Those structures are not found with Hi-C, thus it is imipésso tell whether
region A and B looping, and A and C looping, implies thaBAnd C are all found together. It is possible howevérypothesize that it is so, and one way of detecting and
visualizing clusters of genomic portions that are found iysjglal 3D contact, directly or indirectly, is the network of logglsetch, bottom right). In a network of loops
every node represents a genomic region, and two revdesonnected by an edge if those regions are foube kmoping, as measured with Hi-C (sketch, top right). in ou
data, we identified clusters containing up to 11 nodes (gen@gions) searching connected components in the graghp@ssible extension of our method starting from
the network of loops is shown on the left. First, we shobttbse one ‘representative’ SNP per region. For evester in the network, we could start with identifying the
best performing SNP (thus, node). We can do that, aal,usy comparing the model including the SNP with the null rhedth an LRT. Subsequently, we could
progressively add to the model new SNPs if they are onemted nodes, and if they improve the overall associateasure. This would terminate when all the nodes in the
clusters have been examined.
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D. Boxes: main concepts illustrated

This section is meant as an illustration of themwaincepts, a schematic overview of the key maateisnotions in this work.

D.1 Genome-wide association studies (GWAS)

GWAS A single-nucleotide polymorphism (SNP), is defined as a single-nucleotide variation at one specific
. Pposition on the genome. SNPs are ‘common variants, occurring in at least 1% of the population. In
" the highlighted example, some individuals havea ‘T, and some others a ‘C’, at the same locus.

~  Cases: Genotype-phenotype association
sick samples Genome-wide association studies (GWAS) aim to

—

ATCGTLGATGATGCCTG LLGACAICGAGILITAIGCGIALG identify an association between a genotype (typically
ATCGICGAIGATGCCIGACAATIIGACATICGUGCEITATGCGIAICG ‘/ in the form of a SNP ) and a phenotype, which can bea
ATCGICGATGATGCCIGACTATIIGACAICG STTATGCGTATCG disease, or a trait.
ATCGTCCATGATGCCTGACAATITGACATCGUGT G TIATGCGTATCG | Controls: Case-control setup
ATCGTCCATGATGCCTGACT ATTIGACATCGCETGTTATGCGTAICG ‘\ healthy A GWAS experiment typically has a case-control setup:
/~ samples both diseased and healthy people are genotyped for

/‘ the same sites, and the results are compared
Association measures: Contingency Table methods Association measures: Regression models
The Fisher exact test and the x? test are both based on a contingency Logistic regression models use genotypes as
table, basically counting, per individual site the number of each allele predictors for binary outcomes (diseased/healthy).
in the cases and in the controls Linear regressions are used for continuous traits.

yi= Bot ]N=1Bjxij

Allelel | Allele2 Contingency table. The

distinction between alleles pi

Cases can be major/minor or y; =1In 1-p p; = outcome of sample i
reference/alternate b

Controls

x;j = genotype at site j for sample i

D.2 Linkage disequilibrium (LD)

Linkage Disequilibrium (LD)  [fecombinaton
There are many factors contributing to this non-random
association, but mostly, LD is due to recombination.
Linkage Disequilibrium is the non-random association between alleles at — —
two different loci. This basically means that the presence of one specific i
allele at one position is not independent from the simultaneous presence of
another allele at another position. If at one locus one can have an A or a G,

7 ? and at another one can havea Cora T, |
then if the two loci are in LD one is more /_Aﬂ‘bk“k
G c likely to have an A at locus 1 when they T — A —
G T have a C atlocus 2, for example. The two
‘ A C ‘ sample i sites are in a way correlated, and their

G T genotypes not independent from one LD plot and TAG SNPs
- o another. An LD plot represents the LD blocks, based on the 72
locus 1 locus 2

LD formal definition and calculation

In formulas: D =p(AB) — p(A)p(B)

Where A is one allele (typically the minor allele) at the first locus,
and Bis one allele at the second. If the two sites were completely
independent, then p(AB) = p(A)p(B), and D=0

Two derived measures, more frequently used are D’ and 7%:

' min(papp, (1=pa)(1-pp) if D <0

D= D/ Dz WRETE Dinax = i, (1= py), py(1 =) if D >0
DZ

2

"e pa(1 = pa)pp(1—ps)

measure. Triangles in blue represnts block where all SNPs
are highly correlated (in LD).

For most genomic
analyses is
enough to look

at one proxy,

or TAG SNP, per
block, as the
genotypes of all
other SNPs are

easily LD Map Type: r-square
1 4

imputed — Tag SNP
0 02040608 1

Wikipedia, the free encyclopedia
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D.3 Epistasis

Epistatic Interactions

Genetic interactions SNP-SNP epistatic interactions
Perhaps the most well-known example of epistasis is Similar phenomena can also occur among mutations or
the interaction that goes on between two genes variants. Many experiments have been performed on yeast
responsible for human hair. One gene decides on the showing different effects resulting from different
hair colour, the other determines whether you will or combinations of presence/absence of mutations.

not get bald. Naturally, the effect on the first
disappears, if the second is in action. The same
happens for the ‘albino gene’ in animals. If albino, the
dog’s fur cannot be brown nor black, no matter what
the ‘fur-colour gene’ says.

This is what we call an epistatic interaction, when the
effect of one (gene, in these examples) has an

influence on the Blond hair | Red hair ion wh
effect (on the , Bt de)“ ne

ol enhancer is mutated).
pher;lOtY?e) of | ’E\:Olt:l I o IV However, when both enhancers
a.l'IOt ?1‘, or example| Ba — © are disabled, almost no
silencing or transcription happens. This

enhancing it. A situation (C) shows an epistatic
Bald effect of the two SNPs on the two

-= enhancers, on one another.

In this scenario two enhancers
(yellow and green) loop over to
help the transcription of their
target gene (red). When only one
of the two enhancers is mutated
(A),(B), the other is enough to
maintain gene expression at an
almost normal level (in pink,

D.4 The three-dimensional genome organization

The 3D genome

The DNA is traditionally regarded as a straight line, a sequence of over 3 billion A’s, C’s, G’'s and T’s. If we were to strecht it, we would
reach a length of almost 2 metres. To fit in the ~10pm-diameter nucleus of a cell, the DNA is wrapped around proteins called
histones to form the chromatin fibre and then even further compacted. This generates extensive contact between genomic regions
that are very far apart in the linearized unfolded sequence. The mechanisms leading to the final 3D structure of our genome are not
random, and play a role in several cellular functions.

Enhancer-promoterloops TADs and LADs Measuring the 3D genome

The three-dimensional organization || The 3D genome organization is The 3D genome is now measurable thanks to the
of the genome plays a role in gene || hierarchichal, non-random and well Chromosome Conformation Capture techniques.
regulation. One example of that are || conserved at different scales. The technology used here is Hi-C, which measures
enhancer-promoter loops. Enhancers || Topological associated domains(TADs) genome-wide, pairwise 3D contact. The resultof a
are regulatory elements that aid the || are defined as regions with many Hi-C experiment is a contact (heat)map, a
transcription of the genes they target. || jnteractions within and hardly any symmetric matrix where at position (i) the

They sit several bp away from their || jpteraction between. brightness of the colour indicates the number of

target, but upon transcription loop || Equally well conserved across cell-typeg | contacts between genomic regions i and j.
over, and directly contact their || yreADs (lamina associated domains).

promoter

enhancers
DNA
poly IT

promoter



D. 5 Chromosome Conformation Capture (3C)

Chromosome Conformation Capture

In this technique, the chromatin s fixated in
.54‘,(2) its effective, in vivo, organization by
£
rd

/ / crosslinking DNA-DNA contacts with

/

(0) (1)
i

/\
J

N‘ﬂ chromatin-associated proteins (1). In the
next step, this configuration is cut with a
y restriction enzyme (2), and allowed to re-
+ ligate (3). In this way, two genomic regions

that are close in the 3D conformation are
glued together. Finally the ligation products

are de-crosslinked (4), and with PCRitis
\/x’ 3) (4) Q) possible to quantify the amount of contacts
\ —_— between those two specific regions.
X
/ — There exist many techniques deriving from
3 v e the original 3C (2002). The most common

and used are 4C (2006), 5C (2006), ChIA-
PET (2009), and Hi-C (2009).
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