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A. Statistical Appendix: Logistic Regression and Likelihood Ratio Test 

A1. Regression models 

Regressions are statistical models that aim to estimate the relation between variables. Linear regressions are regression that model the 
relationship between a scalar variable y, which is the dependent variable, and one or more independent variables ��, which are called 
predictors. With a linear regression we aim to explain y as a linear combination of a number n of  ��’s: 

� = 	�� +	 ����



���
+ 
 

The coefficients ��’s weigh the  predictors, indicating the size of the influence that each predictor has on y. 
 is the error, which follows a 
Gaussian distribution. Thus, the conditional probability 	�	|	�  follows a Gaussian distribution. 

Linear regressions are widely used in biological and social sciences, as well as in finance and economics. There exist many extensions of the 
linear regression models that are for example able to model non-linear relations between the variables. We refer to these models as  
generalized linear models (GLM). One type of GLM is called logistic regression. If linear regressions model a scalar continuous variable, 
logistic regressions model a binary dependent variable y. The conditional probability �	|	� therefore follows a Bernoulli distribution. A 
logistic regression model can be written similarly to a linear one: 

�∗ =	�� +	 ����



���
 

However, �∗ is not directly the outcome y, but rather a transformation (g) of it: 

�∗ = ���� = ln� �
1 − �� 

Therefore, to explicitly derive the dependent variable y: 

ln� �
1 − �� = 	�� +	 ����




���
 

�
1 − � = ����∑ �������  

� = ����∑ ������� 

����∑ ������� + 1 =
1

1 + �!����∑ �������� 
 

The last formula, with y as a function of ��� +∑ �����
���  is the definition of the logistic function, thus the name logistic regression. A 
property of this function is that the outcome is restricted to be between 0 and 1, and can therefore be interpreted as the probability of the 
dependent variable being 1.  

A.2 Regression in GWAS 

Among other applications, linear and logistic regression models are used in genome-wide association studies (GWAS) to model the state of 
individuals, in relation to a genetic disease or trait, as a function of genetic variables. To be more specific, GWAS aim to find an association 
between having common genetic variants, typically in the form of single nucleotide polymorphisms (SNPs) and presenting a certain trait or 
disease. In a regression model, therefore, we model the phenotypic state using the SNPs as predictors. We shall now distinguish between 
traits and diseases. Traits are often continuous, think for example of somebody’s weight, height or body mass index (BMI). Such traits can be 
modelled using a linear regression, where simply y is the value for a given trait (height in cm, weight in kg and so on). For diseases, on the 
other hand, we typically distinguish between having a disease or not having it. Thus, a logistic regression is better suited. In a GWAS setting, 
we definitely refer to y as to the outcome (affected/unaffected). We model the outcome of every individual as a combination of the genotypes 
of that same individual at the same given location (SNP).  

Logistic regression models are not the only association measures used in GWAS experiments. The most traditional approaches are based on a 
contingency table: those are the "# test and the Fisher’s exact test. A standard GWAS experiment is performed in a case-control setup. 
Individuals with the disease of interest (cases) are compared with healthy individuals (controls) on the basis of the respective genotypes at 
specific positions. For each locus, the contingency table is: 

 AA Aa aa 

cases    

controls    
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Where A and a are the two possible alleles at that position, typically classified as minor and major allele (more or less frequent in the studied 
population). Recently, studies have preferred logistic regression models over the contingency table methods, for mainly two reasons (Clarke 
et al, 2011): 

1. Regression models are naturally well-suited to incorporate many variables. By adding as covariates potentially confounding 
factors (age, sex, ethnicity..) it is possible to correct for intrinsic variation in the population we are studying. 
 

2. The interpretation of the contribution of each SNP to the outcome prediction is straight forward, it is sufficient to look at the 
estimated coefficients 

There are several ways of measuring the goodness of fit of a logistic regression model. Those include the Wald statistic, which assesses the 
contribution of each individual predictor and the likelihood ratio test, which assesses the goodness of fit of a given model, when compared to 
the null model (model with no predictors). However, LRTs go beyond that, and are able to compare any two regression models, when one is 
a special case of the other. LRT is discussed in further detail in the next paragraph. 

A.3 Likelihood-ratio test (LRT) and Wilks’ theorem 

The likelihood ratio test is a statistical test meant to compare the goodness of fit of two models, one being a special case of the other. For a 
linear model (or a generalized linear model, e.g. our logistic regression), the common practice is to compare the model of interest with either 
the null model (only intercept, no predictors) or on the other extreme to the full or saturated model (all predictors available). 

For example, in formulas, if I have 10 predictors in total, and I want to measure how well the first three predictors alone perform, I want to 
compare the model: 

�� =	�� + ���� + �#�# + �$�$ 

With the null model: 				�� =	�� 

Or the full model:        �� =	�� + ∑ ���������  

In the first case, I am measuring how much those three characteristics are able to predict, compared to not having any information on the 
samples. In the second, I measure how much those three factors weigh in determining the outcome, out of all the available information. 

However, one does not necessarily need to compare a given model to the full model, or to the null one. As long as they are nested, any two 
models can be compared using LRT. One might be interested to see how much adding a fourth factor improves the prediction: an LRT could 
answer that, when comparing the models with 3 and 4 predictors. 

For every two models having as set of parameters %� and θ, with %� ⊂ θ, the likelihood ratio statistic is: 

' = 	sup	{,�%|��, % ∈ %�}
sup	{,�%|��, % ∈ %}  

To obtain a significance measure of the improvement, basically a p-value out of the likelihood ratio, we can use the Wilk’s theorem. For a 
very large number of samples, 0 → ∞ 

−2 ln'	~"#�5�                  (1) 

Where the number of degrees of freedom k is |%| − |%�| 

(#) can also be written: −260 789:;<9:
7<=>?@9A9

=	−2[ln�,CDEFGDE� − ln	�,GHIJKDLD�] = 	2[,,GHIJKDLD − ,,CDEFGDE] 

The only values to fill in in the formula are therefore the log-likelihoods of the two model. For one logistic regression model  

6N�OP�Q� = 	�� +	 ����



���
 

Its log-likelihood is computed as follows: 

,, = ∑ �� ln�Q�� + �1 − ��� ln�1 − Q��					
���     (2) 

Where �� ∈ {0,1} are the true binary labels (sick/healthy) 

And Q� ∈ [0,1] are the predicted values, which can be interpreted as a probability of positive outcome (1=sick) 

Q� =	
����∑ ������� 

1 + ����∑ ������� 
=	 1

1 + �!��!∑ ������� 
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It is therefore sufficient to compute the log-likelihood (2) of both models, insert them in (1), and we obtain a "#	value and therefore a p-value 
indicating how confident we are in refusing the (null) hypothesis that the two models provide the same level of information, in other words 
are an equally good fit of the data. 

A.4 In this work 

In this work, we use a GWAS case-control dataset, for type 2 diabetes (T2D). We use logistic regression models to model the outcome of the 
individuals tested based on a number of SNPs as predictors. To correct for population structure, we include in the models the first ten 
principal components (PCs). We also add the information about the sex of all individuals. Moreover, we are interested in the performance of 
pairs of SNPs, rather than individuals. The logistic regression setup allows to include those in an additive manner: 

�∗~SNTUV +	WXY� +	WXY# 

It is equally straight forward to include a term that measures the interaction between variants: 

�∗~SNTUV +	WXY� +	WXY# +	WXY�WXY# 

To assess the goodness of fit of these models we use a likelihood-ratio test. 

To assess whether a pair of SNPs performs better than the two individual SNPs in predicting the outcome, we measure (with LRT) both: 

�∗~SNTUV +	WXY� +	WXY# +	WXY�WXY#																					TZ																	�∗~SNTUV +	WXY� 

�∗~SNTUV +	WXY� +	WXY# +	WXY�WXY#																					TZ																	�∗~SNTUV +	WXY# 

To measure if the interaction model is good overall we compare (with LRT): 

�∗~SNTUV +	WXY� +	WXY# +	WXY�WXY#																					TZ																	�∗~SNTUV 

Finally, to assess whether the improvement is due to the interaction of the variants, rather than just their sum, we calculate (with LRT): 

�∗~SNTUV +	WXY� +	WXY# +	WXY�WXY#																					TZ																	�∗~SNTUV +	WXY� + WXY# 
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B. GWAS preparation: Sample and Site quality control (QC) 

Raw genotypes were data generated for Burton et al. Nature 2007. Only one set of controls (NBS) was available (1500 samples). For the 
disease of choice, T2D, genotypes were available for 2000 samples. Several steps were taken to clean the raw data. Samples are tested for 
500k SNPs, sitting on chromosomes 1-22 and X. All analyses described in the following paragraphs are performed using plink version 1.9 
(Purcell et al 2006).  

B.1 Sample QC 

For sample QC (quality control), a ‘white list’ of sites is selected. Those are variants with extremely low missingness (missing<0.01), high 
minor allele frequency (MAF>0.5), not in LD (for every 50-SNP window, sliding by 5, all pairwise V# are computed, and if V# < 0.5 the 
SNP with higher missingness is filtered out). SNPs should not be of the form AT or CG. Such SNPs are furthermore not on chromosome X, 
and not on known variable regions (the lactase gene, LCT, 2:129883530-140283530; the major histocompatibility complex, MHC, 
6:24092021-38892022, inversions on chromosomes 8 and 17, 8:6612592-13455629 and 17:40546474-44644684). After such filtering, the 
white list consists of 57,852 SNPs. These SNPs are ‘well-behaved’ SNPs, for which we have enough data (low missingness), which are not 
rare (the allele that appears less often, is present in at least 5% of the samples), which are rather independent from each other (not in LD) and 
are not on regions that are extremely variable in the population. Moreover, SNPs on chromosome X and Y are not included here, since they 
might introduce gender-related biases. This is not the set of SNPs we are going to analyse later on, but only an intermediate step for the 
sample quality control (QC). It is a precaution, so that the sample QC can truly be only about the samples, as we are only looking at 
extremely stable sites. 

Based on this selection of variants, samples are filtered out when they have missingness higher than 5% and mismatched sex (genetic sex 
does not correspond to reported sex). As for relatedness, we remove all samples that are related with more than 100 other samples 
(coefficient of relationship or identical by descent IBD>0.125). After sample QC 3,343 samples are left (95.5%). 

B.2 Site QC 

Site QC is then performed only for the remaining samples, but reintroducing all variants from the start. The steps of site QC are the 
following: first, Hardy-Weinberg Equilibrium (HWE), with P<1e-13, either in controls only or overall. The Hardy-Weinberg Equilibrium is 
the notion for which, given a minor allele frequency of p, the probabilities of the three possible unordered genotypes (a/a, A/a, A/A) at a bi-

allelic locus with minor allele A and major allele a, are �1	– 	Q�#,  2Q	_1	– 	Q` and Q#, respectively. In a large, randomly mating, homogenous 

population, these probabilities should be stable from generation to generation (Clarke et al, 2011). Variants for which this is not the case are 
filtered out. Secondly, we filter on missingness rate (if < 0.05), both overall and differentiate between cases and controls. Finally, we only 
keep non-rare variants (MAF <0.05). All other sites are kept. After site QC 450,242 sites are left (90%). 

B.3 Association 

The association with the phenotype is measured with a logistic regression, using as covariates the first 10 principal components, and sex. No 
information about the age of the samples was available, nor batches information (or any other details on how the data was collected). 

The results of a GWAS analysis are typically displayed as a Manhattan plot, along with a QQ plot. The first represents the SNPs as the p-
values of their association with the phenotype, per chromosome. Every dot is the –log10(P) of a SNP. The higher up the dots, the higher the 
association of those variants with the disease of interest. Here, the only SNPs that are over the significance threshold sit on chromosome 10, 
which agrees with the results obtained in the original paper. A QQ plot compares, on the two axes, the observed (-log10) p-values, with the 
expected ones. In the figure we can see that the two mostly agree (most dots are on the diagonal) apart from a few ones that deviate from it, 
which are the highly associated ones. 
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Fig S1. Results of the GWAS analyses on the WTCCC T2D dataset. The dataset is built with  data for type two diabetes (T2D) compared to the controls (NBS). The left 
plot is a Manhattan plot. On the x axis are the chromosomes, in alternate colours. 23 indicates chromosome X. On the y axis, the negative log 10 of the p-values. Every dot is 
a SNP. In blue and red, significance thresholds. The only SNPs over the threshold are on chromosome 10. These results agree with those of the original paper. The righ t plot 
is a qq-plot, where the same negative log10 of the p-values for the observed data is compared to the same as it would be expected, if there was no association. Most sites 
(dots) are on the diagonal, with a few deviating from it showing some association which was not expected by chance. 

B.4 PCA (Principal Component Analysis) 

Principal component analysis is performed using EIGENSTRAT (eigensoft package eig4.2, converf, smartpca, eigenstrat), where the 
principal components (first 10) are computed on the reference downloaded froms HapMap, and then true samples are overlayed on it. No 
actual cleaning is performed based on the principal component analyses. However, the first 10 PCs are included as covariates in the logistic 
regression, which is the association measured used to calculate the pvalues in the Manhattan plot. Furthermore, by performing sample QC we 
eliminate inbred, related and other ‘unreliable’ samples, and this is visible in the PCA plot, where only the samples that fall in the European 
cluster are kept. This is to be expected as all collected samples are (supposably) of UK origins. 

  
 

 
Fig S2: PCA plots. On the axis, the first principal component PC1, on the y axis, the second principal component PC2. In colours, the results for reference samples, from 
HapMap. Clearly, the two principal components capture the population structure of the samples. Four clusters are clearly noticeable: the elongated green one on the left 
represents the African samples, the circular purple one in bottom right represents the south Asian individuals, the orange top right the Europeans, the red elongated one on the 
right mostly mixed races. On top of the reference we overlay our WTCCC samples, in dark grey (left plot). Although officially all collected samples are of British origins, we 
observe same samples away from the Caucasian cluster. On the right , we highlight the samples that passed sample QC, in lighter grey. This clearly shows the importance of 

        1             2            3          4         5         6         7        8      9     10    11    12           14        16     18        21       X                                            0                             2                               4       6      8                            10 
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this step, as the remaining samples nicely cluster to the top right, and the other ones have been filtered out. 

 

B.5 Imputation and Dosage Convertor 

Imputation is done uploading the (clean) data to the Michigan Imputation Server (http://imputationserver.sph.umich.edu). We imputed 
109,126,218 new sites. We filter out on imputation quality (V# > 0.3). This filtering is done per chromosome and left us with 47,073,880 
imputed sites (~40%).  

 
Fig S3. Percentage of imputed SNPs after quality filter (cd > e. f). On the x axis, the chromosomes’ numbers. On the y axis, the count of SNPs. In red is depicted the 
total number of imputed variants, per chromosome. For chromosome 1, for example, 8,740,001 variants were imputed. In blue, the number of SNPs we keep for further 
analyses, after filtering on imputation quality. The imputation quality is measured as a correlation measure (V#) between imputed and true genotypes. We chose the rather 
lenient threshold of 0.3. For example, for chromosome 1, we kept 3,338,284 sites. 
 

Genotypes are provided as dosages. Dosages are continuous numbers between 0 and 2, calculated as 2Q�gg� + Q�gU�, where A is the 
alternate allele, a is the reference allele. This indicates somehow the quality of the imputation. If the imputed genotype was certainly AA, 
p(AA) would be 1, p(Aa) and p(aa) would be 0, and the dosage would be exactly 2. Similarly, whenever one probability is 1 and therefore 
the other two are 0, the dosage and the imputed genotype (0,1,2) coincide. However, in some cases the imputing server is not as sure, and the 
dosages are not integers. 

However, since we already filtered on imputation quality, those dosages are all quite close to the imputed results. Therefore, for simplicity, 
we convert dosages into discrete genotypes 0,1,2 for further analyses. First however we make sure that the difference is never larger than 0.1, 
and filter out SNPs for which this is not the case. 
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C. Supplementary figures 

GWAS QC: intermediate Steps 
Figure S4 shows some intermediate GWAS results (Manhattan and qq plots) at different stages of quality control (QC). Essentially, we show 
some of the steps between Fig 4A and Fig 4B (and Fig S1). 

  

  

  

 
 

Fig S4. GWAS QC steps: Manhattan and qq plots. Figures are paired up. At every step of qc we generated both a Manhattan plot and qq plot. Manhattan plots: x axis, 
chromosomes, in alternating colours, y axis, negative log 10 of the p-value of every SNP in association with the phenotype. QQ plot, expected –log10 of the same p-values versus 
observed –log10 (p-values). When QC is performed carefully, the Manhattan plot should show only a limited number of SNPs passing the p-value threshold, and the QQ plot 
should be almost a diagonal line, with only a few dots deviating from it (the same significant SNPs that pass the threshold in the Manhattan plot). See Fig S1 for reference. 
A: dataset after sample QC. At this stage, we have eliminated samples that do not behave very well: essentially individuals that are related and duplicates. The results are still 
pretty bad, not much improvement is observed compared to the first experiment. B: dataset after sample QC and preliminary site QC. The results look slightly better when we 
start filtering out bad SNPs. Here we eliminated missing SNPs, and rare ones. C: dataset after sample QC and more advanced site QC, specifically after HWE step. Another 
important step is eliminating variants that do not satisfy the Hardy-Weinberg Equilibrium (HWE) assumptions describe in this document, section B2. D: dataset at one step from 
the end. Results of sex check. Only inclusion of PCs in the logistic regression model is missing. Finally, we found that eliminating sex mismatches improved our results a great 
deal, especially since we were including sex as a covariate in the logistic regression. However, the biggest jump in quality (from S4D to S1) occurred with the last step, where we 
included the first 10 principal components as covariates in the model, which corrected for the population structure bias. 

 

 

A1               A2 

B1                B2 

C1                C2 

D1               D2 
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HiCCUPS (Hi-C Computational Unbiased Peak Search) 
We have defined loops to be pairs of genomic regions that form a peak in the Hi-C map. A peak in the Hi-C map indicates that the two 
indicated regions are found co-localized in the 3D genome context more often than expected. We detect peaks using HiCCUPS (Hi-C 
Computational Unbiased Peak Search), as implemented by Rao et al.(Rao et al, 2014). The contacts count of very square in the matrix, at a 
given resolution, is compared to that of neighbouring regions, namely the horizontal neighbours (blue), the vertical closest rectangles (green), 
the surrounding ‘doughnut’ (black) and finally the bottom left corner (yellow). If the count in the centre is at least 50% more than that of 
each of the surrounding regions, then it is called a peak. The bottom left corner deserves perhaps a special explanation. As the matrix is 
symmetric, the peak search is only performed in half of the matrix, namely the upper triangle (row index ≤ column index). The search is 
furthermore performed more than once, at different resolutions, starting from the highest resolution (smallest squares). Thus, if the centre of 
the currently investigated square has more counts than all surrounding regions but the bottom left one, it is most likely only part of a peak of 
larger size, which will consequently be detected at lower resolution. Before performing the peak search, the Hi-C map is normalized, to 
correct for the ‘linear genome bias’. Linearly close genomic regions are naturally also close in 3D. The expected distribution of contacts 
decreases exponentially as a function of the linear distance. To observe counts that are not expected, we must correct for this expected 
background distribution. In Rao et al. the maps are normalized according to a matrix balancing algorithm described in Knight and Ruiz 
(Knight and Ruiz, 2012). 

 

Fig S5. HiCCUPs. Taken from Rao et al. Figure 3A. ‘We identify peaks by 
detecting pixels that are enriched with respect to four local neighborhoods 
(blowout): horizontal (blue), vertical (green), lower-left (yellow), and donut 
(black). These “peak” pixels indicate the presence of a loop and are marked 
with blue circles (radius = 20 kb) in the lower-left of each heatmap. The 
number of raw contacts at each peak is indicated. Left: primary GM12878 
map; Right: replicate; annotations are completely independent.’ (Rao et al, 
2014). 
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Loops are enriched for enhancers and common SNPs, especially when 

highly associated with the phenotype. P-values. 

 

 

Fig S6. Loops are enriched for enhancer activity (A) and common variants (B), particularly when highly associated with the phenotype (C). P-values per 
chromosome. A: loops are enriched for enhancers. P-values obtained from a Binomial test, as described in 3.1.1. X axis: chromosomes, y axis: -log10(P). As indicated, the 
two lines represent the significance threshold after multiple testing correction. Red line indicates threshold using Bonferroni, yellow using Benjamini-Hochberg. The 
enrichment is highly significant for all chromosomes. The stars in Fig 5A were determined based on this result. B: loops are enriched for common SNPs. Similar to A, 
significance is determined with a Binomial test. The enrichment is not significant only for chromosomes 4,8, 14 and X. The stars in Fig 5B were determined based on this 
result. C: loops are especially enriched for SNPs that are highly associated with the phenotype, when we only look at SNPs that do show some association with the 
phenotype. We select only SNPs whose association measure is P<0.5. For those variants, we performed a one-sided Wilcoxon rank-sum test between the p-values of SNPs in 
loops and the p-values of SNPs not in loops. The result are indicated in the bar-plot. The axes are the same as in A and B, with the only exception that the p-values are 
obtained with a different test: not Binomial, but rank-sum, as described. 

 

SNPs sitting on the same looping region show similar association with the 

phenotype 
 
 
 
 
 

 
 

 
 

Fig S7. SNPs sitting on the same looping region have very similar association with the phenotype, even when not in strong LD. In order to show that SNPs sitting on 
the same looping region show similar association with the phenotype, we selected three regions on chromosome 1, 2 and 3 respectively that had exactly four SNPs sitting on 
them (from our original dataset, before imputation). Moreover, we chose three sets that have different levels of association, from very bad to quite good, to show that this 
factor does not influence the result. On the y axis, is the –log10 of the p-values calculated as an LRT of the logistic regression models containing the different variants 
compared to the null model. As you can notice, the scale varies in the three plots. On the x axis, are the IDs of the variants. Clearly, most of these behaviours are explained by 
linkage. Those SNPs sit on the same region, thus quite close to each other, thus in the same LD block. Naturally, then, they have very similar association measure. However, 
looping regions can be up to 25kb long, which is larger than the typical LD block. Rs109291322 and rs757801 in the same plot, for example, are highly correlated (V# = 0.4). 
We have performed these checks extensively if not exhaustively, and believe it is a good approximation to assume SNPs on the same looping region have similar association 
with the phenotype. 
 

1    2    3    4    5    6     7    8    9  10  11  12  13 14 15  16 17  18  19  20  21 22  X 

chromosomes 

   1   2   3    4   5  6   7   8   9  10      12      14     16      18      20            X 

chromosomes 

  1    2  3   4   5   6  7   8   9 10      12     14      16     18      20            X 

chromosomes 

A

B              C 

    rs6413830     rs12118034     rs1883431     rs2294494           rs10929132       rs6732716        rs7355273          rs757801                                       rs10934313    rs10804520    rs10511350   rs16824208      



11 

 

Epistasis occurs with great diversity from chromosome to chromosome 

 

 

 

 
  

 

 

 

  

 

 

Fig S8. Histogram: distribution of the number of shuffled pairs showing epistatic effects, compared to the same number for ‘true’ pairs, for all chromosomes. 
Extension of Fig 6 from the main text. X axis, count of pairs showing significant epistatic interaction (LRT, p<0.05), for 1000 permutations. The red dot represents the same 
number for the ‘true’ pairs. On the y axis the frequency with which the different counts occur. In the majority of the cases the red dot is far to the right compared to the 
distribution of the shuffled pairs. Over all chromosomes, the number of significant epistatic interactions for the ‘true’ pairs is significantly larger than that of ‘artificial’ pairs 
(empirical estimated p-value = 0.01). However, we observe a puzzling opposite behaviour for four chromosomes. Chromosomes 9, 11, 17 and 18 show a completely opposite 
trend than the rest of the chromosomes. Not only the red dot is not far to the right compared to the distribution of the shuffled pairs: instead it is far to the left, as if the ‘true’ 
pairs were engaging in epistatic interactions particularly rarely. Unfortunately, we do not have an explanation for this now, although it is definitely worth investigating it in 
the future. 
 

Yi=0.055    Yi=0.001    Yi=0.09 

Yi=0.069    Yi=0.001    Yi=0.082

Yi=0.045    Yi=0.001      Yi=0.99 

Yi=0.001    Yi=0.98      Yi=0.0015 

Yi=0.063      Yi=0.002         Yi=0.065 

Yi=0.071    Yi=0.93             Yi=0.98 

Yi=0.007    Yi=0.023               Yi=0.051 

Yi=0.099    Yi=0.001 
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Percentages of pairs passing the different tests 

 

 

Fig S9. Steps of pairs selection. After selecting all pairs for which the interaction model performs better (LRT) than the two single-loci models (A), we proceed to find how 
many of those are also significant (better than null model, LRT) (B). Of those, to capture interaction only, we find for how many pairs the interaction model is also better 
(LRT) than the additive one (C). Finally, we calculate how many of these pairs also perform better than their counterparts ‘artificial’ pairs (D). A. X axis, chromosomes. Y 
axis, percentage of synergistic pairs, out of total pairs. For each chromosome, we counted how many pairs show a synergistic interaction, meaning that the SNP interaction 
improves association over the single SNPs. Generally, the percentage of success is between 1 and 4%. B. X axis, chromosomes. Y axis, count of total pairs (red) for which 
there is a synergistic effect. In blue, out of the total, number of pairs that are also significantly improving the association with the phenotype, when compared to the null 
model. On average, those are >70%. C. x axis, chromosomes. Y axis, percentage of synergistic and not additive pairs, out of ‘good’ pairs so far. We selected pairs for which 
the interaction is better than the individuals, and out of those the pairs that are also better than the null model. We here also check that the interaction model 1+2+1*2 
performs better than the additive only 1+2. It does, in more than 90% of the cases, over all chromosomes. D. Similarly to A and C, we check those pairs that on top of all 
previous requirements also are better than the artificial counterpart pairs, at similar linear distance. X axis, chromosomes, Y axis, percentage of ‘true’ pairs performing better 
than both ‘artificial’ counterparts. Again, this is the case for nearly all pairs in all chromosomes.  
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C        D 
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KEGG Pathways: we found epistatic pairs between SNPs sitting on or in the 

vicinity of genes involved in these pathways 

 

 
 

 

Fig S10. KEGG pathways: we found epistatic pairs between SNPs sitting on or in the vicinity of genes involved in these pathways: PRKCE in the Type 2 diabetes 
mellitus pathway and RHOQ in the insulin signalling pathway.  
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Future direction: from SNP pairs to SNP groups 

 

Fig S11. Extension of method from SNP pairs to SNP groups, using network of loops: an idea. The network of loops is an idea introduced by Sanborn et al. It is an 
innovative manner of looking at Hi-C maps, to try and go beyond its intrinsic pairwise limitation. The technique Hi-C (high-throughput 3C) extends 3C (chromosome 
conformation capture) from counting how many contacts there are between two selected genomic regions (one-to-one) to counting how many contacts there are between all 
pairs of genomic regions (all-to-all). Yet, it is only able to measure the co-occurrence of two regions at a time. However, a more realistic scenario is one where many regions 
are found in contact together at the same time, in sort of ‘hairballs’ (de Laat, not yet published). Those structures are not found with Hi-C, thus it is impossible to tell whether 
region A and B looping, and A and C looping, implies that A, B and C are all found together. It is possible however to hypothesize that it is so, and one way of detecting and 
visualizing clusters of genomic portions that are found in physical 3D contact, directly or indirectly, is the network of loops (sketch, bottom right). In a network of loops 
every node represents a genomic region, and two nodes are connected by an edge if those regions are found to be looping, as measured with Hi-C (sketch, top right). In our 
data, we identified clusters containing up to 11 nodes (genomic regions) searching connected components in the graph. One possible extension of our method starting from 
the network of loops is shown on the left. First, we should choose one ‘representative’ SNP per region. For every cluster in the network, we could start with identifying the 
best performing SNP (thus, node). We can do that, as usual, by comparing the model including the SNP with the null model with an LRT. Subsequently, we could 
progressively add to the model new SNPs if they are on connected nodes, and if they improve the overall association measure. This would terminate when all the nodes in the 
clusters have been examined. 
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D.  Boxes:  main concepts illustrated 
This section is meant as an illustration of the main concepts, a schematic overview of the key models and notions in this work. 

D.1 Genome-wide association studies (GWAS) 

 

D.2 Linkage disequilibrium (LD) 
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D.3 Epistasis 

 

D.4 The three-dimensional genome organization 
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D. 5 Chromosome Conformation Capture (3C) 
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