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Optimal Collision Avoidance in Unconfined
Waters

C. de WIT and J. OPPE

ABSTRACT

COLLISION AVOIDANCE manoeuvring has been
subject to studies for many years, especially
since the introduction of radar and automated
data handling. Most of these studies were
done on a rather practical basis, meaning that
practical maritime habits in this field were
adopted without much criticism.

This paper presents a somewhat unconven-
tional solution to collision avoidance prob-
lems, in which a quantitative knowledge of the
own ship's dynamics can be fruitfully applied.
As a slight premise, we only consider situa-
tions in which two ships are involved. More-
over the evading ship is assumed to have full
navigational freedom, meaning that there are
no positional restrictions, caused by shoals or
bounds of depth channels.

The resulting evading manoeuvre is a ioop
with continuously changing course and speed.
It is less time consuming than former designs
with piecewise constant courses. Thus the
evader's intentions become more clear to the
other vessel, which is initially obliged to main-
tain course and speed.

In order to avoid "last-moment-hazardous"
situations, the evading manoeuvre is proposed
to be started at the earliest possible time.

INITIAL CONDITIONS FOR A COLLISION
AVOIDING MANOEUVRE

In this study, a collision avoiding manoeuvre
(cam.) for a ship under way at sea will be
understood to be a rudder manoeuvre with the
engines running constantly full ahead.

Prior to the c.a.m. the own ship A and the
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observed ship B are assumed to have constant
courses tp,, and s!,, and constant speeds u5 and L9.
The time origin is set at the moment when A
has detected an approaching vessel B on the
radar screen and A has been able to make a fair
estimate of B's relative and true motion. In
addition to B's course and speed, A has also
determined B's distance of closest approach r,..

The closest approach of B is assumed to be
less than a preset value r0to be determined by
A's shipmasterso there is a danger of collision.
We further assume that A is obliged to evade.
A's first object is now to carry out an evading
manoeuvre, resulting in an increased value of r,.,
that has to be at least equal to r0. B will be
assumed to maintain course and speed.

SHIPS MOVEMENT AS A RESULT OF A
RUDDER ANGLE

We shall now briefly describe and explain how
the ship's position, velocity and course change
with time, if a certain rudder angle is intro-
duced.

Figure 2 explains that a starboard rudder an-
gle , introduced on a full speed sailing ship,
results in a lifting force L on the rudder plane.
This force L has three effects, being

an angular acceleration, caused by the
moment of L about the ship's gravity
center G,
a port directed acceleration, caused by L2
and
a backward acceleration, caused by L1.

These accelerations affect the ship's forward and
beam velocities u and u2, as well as the ship's
rate of turn w and the ship's course ti.
With respect to a rigid system of co-ordinate
axes 0X1X2 we can now evaluate the ship's
velocity components ii and i2 as functions of u1,
u2 and ii'. (See figure 3.).

Th&change with time of the variables x1, x2,
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Fig. 1A0, Bo: initial positions of A and B. The
dashed line 1 is the relative path of B with respect to
A, if both vessels would maintain their course and
speed. The distance r from A,, to 1 is the closest
approach 0fB toA.

L1
Fig. 2A rudder angle b generates a lifting force L
with longships and thwartships components L1 and
L2 and a moment Lod about a vertical axis through
the ship 's gravity centre G.

u1, u2, ./i and w can be described by the following
set of equations.

il = UICOS - u2sin i (3.1)

j2 = UISifl + U2COS (3.2)

(3.3)

= - bw3 + câ (3.4)

= fui - W,,2 + S (3.5)

U2 = r1w - r3w2 (3.6)

Fig. 3

Figure 3 serves to explain (3.1) and (3.2). Equa-
tion (3.3) is merely a definition; (3.4 is the
simplified Nomoto-model, expressing that the
ship's course is accelerated by the rudder angle
b, while the ship's reaction is described by the
terms - aw - bw3. For a stable ship, a and b are
both positive, so the ship's rate of turn always
counteracts the rudder action. For an unstable
ship a is negative and b is positive. For a small
rate of turn the ship "helps" the rudder action,
but for larger values of w the entire rate-of-turn
reaction damps the angular acceleration. Equa-
tion (3.5) indicates how the propeller's thrust,
resulting in a forward acceleration S, is counter-
acted by the ship's velocity as well as by the
turning rate.

The relation between the beam velocity u2
and the rate of turn, determined and affirmed
by full scale and laboratory experiments, is given
by equation (3.6). We finally remark, that the
rudder angle is always bounded:

181 8,,,, (8,,, = O.6rad 350)
(37)

For the purpose of this study, this set of equa-
tions gives a good description of what really
happens for a large class of vessels, from well
manoeuvrable coasters to large oil carriers.

Introducing the somewhat more systematic
notations x3 = 4, x4 = w, x5 = u1, u = b, the ship's
manoeuvre can be described by the following set
of differential equations:

i1 = x5cos(x3) - (rx4 + r3x)sin(x.3) (3.8.1)

i2 = x5sin(x3) + (r1x4 + r3x)cos(x3) (3.8.2)

13 = x4 (3.8.3)

14 = ax4 - bx + cu (3.8.4)

i5 = fx5 - Wx + S (3.8.5)
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This set can be written formally as

x = F(x, u). (3.9)

THE COLLISION AVOIDANCE PROBLEM AS A
TIME OPTIMAL CONTROL PROBLEM

The initial conditions of the state vector x(t)
are:

x1(0) = x2(0) = x:i(0) = x4(0) = O, x0(0) = S/f. (4.1)

The last condition means that the ship starts
the c.a.m. in a steady state of full speed ahead.
The viscous friction fx5 then neutralizes the pro-
pelling force S. Furthermore, the control u(t) =
6 (t) is taken to be zero right before the start.
The c.a.m. now comes down to determinating a
rudder angle control

u* = (alt), O t< t1, u(t) I 6,,,) (4.2)

that takes the vessel from the initial state to a
final state x1 at some, unknown final time tf. In
this final state we want x2 = = x4 = O, i.e. the
ship must be back on her former track (x2 = O)
and we want her to be steady on her old course
(x:i = = O, x4 = w = O). The final time is
specified as the time at which the ship has
regained 95% of her initial speed:

x5(t1) 0.95 x5(0). (4.3)

During this manoeuvre we want the ship's dis-
tance to the other vessel B to be not less than
r0:

r(t) = ( (x(t) - y,(tfl2) /2 r0. (4.4)

In this expression yi(t) and y2(t) are B's co-
ordinates. With the adopted co-ordinate system
we have y(0) = xo, so with B's course /ìo and
speed V assumed constant, we have

y1(t) = y(0) ± vòt cos(4o - (4.5.1)

y2(t) = y2(0) + v0t sin(4o - 4(0)). (4.5.2)
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Fig. 4

At the time of closest approach t. the distance
r(t) is minimal, meaning that i(t) = O and r(t6)
> O. Naturally, t. should not be later than tf.
This means that t1, beside satisfying condition
(4.3), also has to satisfy the condition

0. (4.6)

Having thus defined the conditions that have to
he satisfied during the c.a.m., we can now pose
a criterion for optimization by demanding that
the manoeuvre must be carried out in the least
possible time. This means that t1 must be mini-
mized. This least time manoeuvre will also have
the advantage of being very clear to the navi-
gator of the other vessel B, who will observe a
clear and fast change of bearing of the evader A.

SOLUTION OF THE TIME OPTIMAL CONTROL
PROBLEM

From the theory on optimal control, it can be
derived, that for the case under consideration,
the control u is one of the bang-bang type. (See
lit. ref. 1). In connection with the Rules of the
Road at Sea, stating that the evading ship has
to avoid to come to the port side of her original
track, the cam. will consist of the following
sequence of rudder angle signals:

The first switching time ti may coincide with
the starting time t = 0. The graphs of 6(t), w(t)
and (t) and the corresponding ship's track are
shown in Figures 4 and 5.

If t1 = O, the c.a.m. is carried out at the earliest

t- _x

6(t) = O for 0t<t, (5.1.1)

6(t) = ±8,,, for t1t<t2, (5.1.2)

6(t) = 8,,, for tt<t:I, (5.1.3)

6(t) = ±6,,, for tt<t4, (5.1.4)

6(t) = 6,. for t4t<t,, (5.1.5)

8(t) = O for t5t<t1. (5.1.6)
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stern. In that event the moment of closest ap-
proach is earlier than t5.

NUMERICAL SOLUTION OF THE CONTROL
PROBLEM

(ti)

Fig. 5Track of ship 's gravity centre during a least
time cam.: O t < t1: Midships helm, t1 t < t2:
Helm full astarboard, t2 t < t3: Helm full aport, t3

t < t4: Helm full astarboard, t4 t < t5: Helm full
aport, t, t < s Course control by autopilot or
helmsman.

possible moment. In that case the closest ap-
proach of A and B usually takes place at a
moment te, which is later than t5. In some cases
it pays to postpone the c.a.m. until A has the
possibility to make a turning loop around B's

With the object of obtaining a solution within
some 10 seconds' computing time, the problem
was somewhat simplified.
To start with, the set of simultaneous differential
equations (3.8) was solved with Euler's predictor
method with time steps zt of 6 seconds.
Denoting the points of the trajectory at times
Ti = t, r2 = 2 t etc. as x(1), x(2) etc., the Euler
integration comes down to

x(0) = Xo,
for k = 1, 2 etc.
x(k + 1) = x(k) + F(x(k), u(k)) t.

As to the evaluations of the switching times t1,
t2 etc. we can make the following preconsidera-
tions,

Once ti and t2 have been selected, the values
for t3, t4 and t5 are determined implicitly by the
three final conditions

x2(t5) = x3(t5) x4(t5) = O.

t3, t4 and ts can be determined numerically by
minimization of the object function

J(t3, t4, t5) = (x(t5))2. (6.1)

This minimization was done with Hooke &
Jeeve's method of Direct Search. We thus obtain
good approximations of t3, t4 and t5.

This minimization for each selection of t1 and
t2 could lead to an unwanted accumalation of
computing time. Therefore we first selected pro-
visional values t and t , while introducing some
simplifying modifications of the original dy-
namic system model (3.8).

The control ((t)) is replaced by (&(t)}:

The third switching time t3 is estimated by the
expression

t = t2 + 2(t - t1)(l + ii). (6.3)

The last switching moment t is determined by
the criterion that the course is back to zero
again. In numerical language this means that, if

= ±,,, for ti t <t2, (6.2.1)

= -iS, for t2 t < t, (6.2.2)

&(t) = for t3 t < t:, (6.2.3)

&(t) = O for t: t <tp. (6.2.4)
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for a certain value of k we have
4(kAt) <0 and /((k + 1)t) O

we taket = (k + l)&.
For times later than t the ship's rate of turn is
set back to zero, as well as the rudder angle. The
dynamics then become

i =x.
(6.4)

= fx' + S.

(tr)

With these modifications we get an approxi-
mated track {x*(t)}, shown in Figure 6. For
values of t t this track can deviate from the
original tract at the amount of x (tfl . For
the ship under consideration and using the linear
estimation (6.3) for t, this final off-track-error
was found to be minimal for i = 0.15.

For modified final time t7 can now be deter-
mined. For that purpose we proceed until time
t,,: x(t,,) = 0.95 x5(0). If the mutual distance is
found to be non-decreasing, i.e. if

O,

then we can take t7 = t,,. In the other case we
have to proceed until r*(t) has passed its mini-
mal value.

We are now able to determine the optimal
values of ti and t2 for the modified system.

For a certain selected value of ti the corre-
sponding value of t2 can be determined. We do
this by considering the minimal distance rmj,, of
A and B as a function of t1 and t2

,,1+
AL

Fig. 7a Time optimal collision avoiding manoeuvre of A: (Xk), by keeping B: (yo) at a desired minimal
distance.

r,,,, = R(t1, t2). (6.9)

The conditions to determine t2 are:

R(t1, t2) r0 and R(t1, t2 - t) <ro. (6.10. 1&2)

With these conditions we designed a searching
procedure to determine t2 for a given value of ti.
Once t2 is known, the provisional final time t7
can be evaluated. Using this (t1, t2, t7) proce-
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dure we can minimize t by varying ti. After nautical mile and one radian, the parameters in
having thus determined t1 and t2 for the provi- (3.4), (3.6), (3.7) and (3.8) were selected as fol-
sional system, we can find the proper switching lows:
times t1, t. and t5 by minimizing (6.1). (3.4): a = 1.084/mm, b = 0.62 mm, e = 3.553/

00M PUTATIONAL RESULTS AND
rad/min.

CONCLUSIONS (3.6): 5,,, = 35 = 0.61 rad,

The program described above was run for a
few encountering situations, in which the own
ship was compelled to evade, while the other
ship was primarily obliged to maintain course
and speed.

For the own ship, the dynamic manoeuvring
parameters of the ms. Compass Island (See lit.
ref. 2) were used. Adopting as units of time,
length and angle respectively one minute, one

t

+
xl

Fig. 8aCollision avoiding manoeuvre for two ships
with 700 initial heading difference. Evading ship A:
xk, evaded ship B: YA.

+
X2

Fig. 7bRelative motion of the evader A, seen from Fig. 8bA 's evading manoeuvre, as seen from the
the evaded ship B. other ship B.
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(3.7): r1 = 0.0375 nrn/rad, r3 = 0,
(3.8): 1 = 0.86/mm, W = 0.067 nm/rad2, S =

0.215 nm/mm2.
With these parameters, the ship has a maximum
speed of 0.25 nm/mm = 15 knots. For a maximal
rudder angle of 35°, the stationary rate of turn
Ls 1°/sec.

Figures 7a and 7b show the fastest possible
c.a.m. of this ship, when encountering a ship B
with a speed of 30 knots and a course 1h = -
90°. For this case the starting time t1 of the
cam. (See (5.1.2)) is zero. A later time would
not have generated a smaller fmal time t1, so
there is no point in postponing the instant of
turning the wheel hard astarboard.

The same argument for selecting ti = O holds
in the case, depicted in figures 8a and 8b. Here
the other ship has a course i/lb = i/l,, - 70° and a
speed of 15 knots.
Figures 8b and 9b show what the other ship B
would see on its radar, when put in the relative
motion mode. In both cases B observes a clear

change of bearing of A at an early stage.
In Figures 9a and 9b we come closer to the

case of almost opposite courses. Here we have
= - 123° and tb = 22 knots.

The time-optimal c.a.m. has a rather late start.
Yet it is the best one, as the total manoeuvring
time t1 decreases, as ti increases from zero up-
wards. A hazardous situation could be avoided
in this case by setting a lower bound to the
length of the time interval [t1, t,' ). (t is the
time of closest approach or possibly the time of
collision, if both ships would have proceeded in
their old courses and speeds. See also (2.7))

In an attempt to promote the applicability of
this time optimal collision avoidance man-
oeuvre, we should like to make the following
remarks.

1. In order to reduce computing times to at
most 10 seconds, it is recommended to work
with a realistic, but not too sophisticated,
model for the ship's dynamics. A simplified

Fig. 9aCollision avoidance for two ships, sailing at courses and /l with a difference A = 123°. The
evading manoeuvre ¿s time optimal, but seems a bit hazardous with the rather large relative velocity.
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Fig. 9bRelative motion of the evading ship A, as
seen from the evaded ship B.

model, like the one adopted by Mioh and
Sharma, seems too far from reality. One
cannot do with a model that assumes a
constant speed, regardless of the rudder

angle and the ship's rate of turn. On the
other hand, a complicated 9th order nonlin-
ear model for the ship's course and speed
dynamics would clearly be too much in
view of the object.
We have no intention of introducing a rig-
orous set of prescriptions as to how to com-
plete the cam. In particular after time t2-
the moment of full port helmit is left to
the navigator's skill and judgment to bring
the ship quietly back to its old course. A
few cables off the original track won't hurt.
Beside setting a lower bou.nd tot' - ti with
the intention to avoid nerve affecting situ-
ations, it seems practical to set an upper
bound to the time interval t1, t2). This is
done to keep the ship from getting a course

t(0) + 900.
If the total manoeuvring time t1 turns out
to be practically constant for ti increasing
from O on upwards, ti should be selected as
early as possible. In fact it seems worth-
while to take t1 = O except for the case of
almost opposite courses, where taking ti =
O would merely postpone the moment of
dangerous encounter, without producing a
significant increase of the distance of clos-
est approach.
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