
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

Supervised by
Dr. Mitra Nasri

Pourya Gohari Nazari

Fine-grained Scheduling of Real-Time
Recurrent DAG Tasks upon Multipro-
cessor Platforms
Master of Science Thesis in Embedded Systems

Shixun Wu

Fine-grained Scheduling of
Real-Time Recurrent DAG
Tasks upon Multiprocessor

Platforms

by

Shixun Wu
Master of Science Thesis in Embedded Systems

Algorithmics Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

Shixun Wu

Supervised by
Dr. Mitra Nasri

Pourya Gohari Nazari
Wednesday 17th August, 2022

mailto:S.Wu-11@student.tudelft.nl

Author
Shixun Wu

Title
Fine-grained Scheduling of Real-Time Recurrent DAG Tasks upon Multi-

processor Platforms

Supervisors
Dr. Mitra Nasri, Eindhoven University of Technology
Pourya Gohari Nazari, Eindhoven University of Technology

Graduation Committee
Dr. Neil Yorke-Smith, Delft University of Technology
Dr. George Iosifidis, Delft University of Technology
Dr. Mitra Nasri, Eindhoven University of Technology

Project duration
October 1, 2021 – July 20, 2022

MSc Presentation Date
August 22, 2022

An electronic version of this thesis is available at http://repository.
tudelft.nl/.

http://repository.tudelft.nl/
http://repository.tudelft.nl/

Preface
More than two thousand years ago the Chinese philosopher Lao Tzu said
in the Tao Te Ching that a journey of a thousand miles begins with the first
step. Even the longest and most difficult journeys have a starting point, and a
brave attempt to take the first step is necessary to solve problems no matter
how big or small.

Mymaster thesis started with the analysis of an anomaly in the scheduling
of a task set. In the process, I kept encountering difficulties. When I could
not see the problem, I tried to analyse it from the simplest example, starting
from the first step and finding the key to the solution in the details. This
thesis was also the starting point for my lifelong learning, which gave me the
methodology to solve and analyse problems and the conviction and courage
to take the first step.

I would like to especially thankMitra Nasri for overseeingmy thesis. Thank
you for answering my various queries and for communicating with me and in-
spiring me when I was at a standstill. Thank you Pourya Nazari for taking
the time to check my work and give me advice. I would also like to thank my
family, who have always supported me in my studies and life, and I am glad
that you are behind me. And to my friends and classmates who have been
with me during this time, thank you for sharing my stress and bringing me
happiness.

Shixun Wu
Delft, 12th August 2022

i

Abstract
With the strong demand for computing capacity in industrial applications and
the rapid development of the hardware industry in recent years, multipro-
cessor platforms have been widely used in real-time embedded systems.
The quest for performance has led to existing multiprocessor platforms often
featuring complex interconnected hardware components and multiple levels
of cache. This brings negative interference to the execution of tasks and
challenges the predictability of real-time systems. However, existing non-
preemptive execution models are an effective solution to eliminate these neg-
ative effects. In addition to this, the tasks that modern real-time systems pro-
cess are becoming increasingly complex. Traditional sequential task models
cannot cope with this situation and a stronger expressive model is required. A
directed acyclic graph (DAG) that can express the complexity and parallelism
of these tasks is a suitable model.

In this thesis, we focus on priority-based scheduling algorithms for multi-
ple parallel DAG tasks on non-preemptive multiprocessor platforms, investi-
gating, analysing, and improving existing global and partitioned scheduling
algorithms.

We propose the concept of stacks to simulate a multi-processor platform
and apply release-time tuning techniques based on its simulation of a task
set in a hyperperiod. This allows us to impose tighter constraints on the ex-
ecution of each job released from a task set in a fine-grained manner. We
improved the existing priority-based global scheduling algorithm through the
release-time tuning technique mentioned above. We also tried to construct
a partitioned scheduling algorithm using the simulation results of stacks, i.e.
so that all jobs are restricted to run on only one processor, consistent with the
simulation results. Furthermore, to compare different scheduling algorithms
more efficiently and to facilitate future researchers, we have developed the
evaluation framework, a customisable experimental platform that includes
DAG generation, application of scheduling algorithms, generation and anal-
ysis of the test results, allowing users to specify their experiments according
to their goals.

Experiments with randomly generated workloads show that our improved
algorithm consistently outperforms the state-of-the-art priority-based schedul-
ing algorithm for different task graph structures and parameter configurations.

ii

Contents

Preface i

Abstract ii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Objectives. 1
1.2 Research Questions . 2
1.3 Contributions . 3
1.4 Organization . 3

2 Background 4
2.1 Concepts . 4
2.2 Schedulability Tests . 4
2.3 Recurrent Task . 5
2.4 Deadline Type . 5
2.5 Multiprocessor Platforms. 5
2.6 Multiprocessor Scheduler . 6
2.7 Execution Models. 6
2.8 Work-conserving and Non-work-conserving Scheduling Poli-

cies . 7
2.9 Bin Packing . 7
2.10 Directed Acyclic Graph . 8

3 System Model and Problem Definition 10
3.1 Parallel DAG Task Model. 10

3.1.1 Task . 10
3.1.2 Instance and Job . 12

3.2 Multiprocessor Model. 14
3.3 Scheduling Model . 15
3.4 Execution Model . 15
3.5 Problem Definition . 15

4 Related Work 16
4.1 DAG Scheduling . 16

4.1.1 Fixed-task Priority . 17
4.1.2 Fixed-job Priority . 17
4.1.3 Fixed-node priority . 19
4.1.4 Add Directed Edges 21

4.2 Schedulability Analysis . 22
4.3 Summary . 22

iii

Contents iv

5 Our solutions 25
5.1 Motivational Examples . 25

5.1.1 Scheduling Anomaly 25
5.1.2 Case Analysis . 27

5.2 Our Solution: Reassembly Stacking. 28
5.2.1 Operational Processes 28
5.2.2 Stacks . 31
5.2.3 Illustrated Example . 40

5.3 Our Solution: Partitioned Reassembly Stacking 45

6 Evaluation Framework 47
6.1 Evaluating Scheduling Algorithms 47

6.1.1 Performance Metric 47
6.1.2 Parameters . 48
6.1.3 Functionalities . 48

6.2 Software Architecture . 48
6.2.1 Task Generator . 49

6.3 Task Parser . 50
6.4 Schedulability Tester . 50
6.5 Results Analyser . 51

7 Empirical evaluation 53
7.1 Experiment setup . 53
7.2 Empirical Results . 54

7.2.1 Impact of the Number of Tasks 54
7.2.2 Impact of the Utilisation 55
7.2.3 Summary and Discussions. 59

8 Conclusion 61
8.1 Summary of Contributions . 61
8.2 Research Questions . 62
8.3 Future Work. 63

References 68

List of Figures

2.1 An example of Directed Acyclic Graph 8

3.1 An example of a recurrent parallel DAG task model 11
3.2 An example of instance . 13
3.3 An example of jobs . 14

4.1 DAG scheduling algorithms . 16
4.2 Ideal schedule of a DAG [16] 18
4.3 Ideal schedule with sections and their assigned slack [16] . . . 19
4.4 GoSu model [27] . 21
4.5 An example of improving DAG scheduling by adding edges [22] 22

5.1 An example DAG task: the number inside each node is the
index and also its priority, the top-left blue number is the worst-
case execution time . 26

5.2 Schedule of first instance . 26
5.3 Schedule of first instance for anomaly case 26
5.4 An example DAG task set Γ: the T and D of task 1 is 500, the

T and D of task 2 is 1000, the index is the number in the node,
orange number on the top-right of the node is its priority, the
WCET is the blue number on the bottom of each node 27

5.5 Schedule of I11 and I12 of Γ with ALAP 28
5.6 Operational processes of reassembly stacking 29
5.7 An example Stacks . 31
5.8 Different cases to be addressed by the block stacking policy . . 32
5.9 An example Stacks for case 1.1 33
5.10 An example Stacks after place the target job for case 1.1 . . . 33
5.11 An example Stacks for case 1.2 34
5.12 An example Stacks after place the target job for case 1.2 . . . 34
5.13 An example Stacks for case 2.1 35
5.14 An example Stacks after place the target job for case 2.1 . . . 35
5.15 An example Stacks for case 2.2.1 36
5.16 An example Stacks after place the target job for case 2.2.1 . . 37
5.17 An example Stacks for case 2.2.2 37
5.18 An example Stacks after place the target job for case 2.2.2 . . 38
5.19 The state of Stacks . 43
5.20 Schedule of I11 and I12 of Γ with RS+ALAP 45

6.1 Evaluation framework software architecture 49
6.2 Tester for portioned scheduling 52

v

List of Figures vi

7.1 Schedulability between the number of DAG tasks and the num-
ber of cores . 56

7.2 Schedulability between different utilisation rates and the num-
ber of cores (the number of tasks is 5) 57

7.3 Schedulability between different utilisation rates and the num-
ber of cores ((the number of tasks is 10)) 58

List of Tables

4.1 Related work summary . 24

5.1 Job list of Γ . 40
5.2 Edge list of Γ . 41
5.3 Sorted job batch 1 of Γ . 42
5.4 Sorted job batch 2 of Γ . 43
5.5 Updated job list of Γ . 44

6.1 Configurable DAG parameters 50
6.2 Supported scheduling algorithm 51

7.1 Evaluated scheduling algorithm 54

vii

1
Introduction

The increased calculating capacity demand in industrial applications is driv-
ing the need for multiprocessor platforms in real-time systems [25, 8]. There’s
no denying that multiprocessor platforms have the potential to improve per-
formance. Nevertheless, sufficient parallelisation of the software is required
to effectively use the potential of the multiprocessor platform [38]. The rapid
development of artificial intelligence in the twenty-first century has sparked
widespread attention and significant investment in both the research and in-
dustrial communities, and it is undeniable that these applications have high
computational demands, are highly parallelised, and handle large amounts of
data obtained from one or more sensors [41]. Therefore, the performance op-
timisation of the multiprocessor platform has also become an important and
practically valuable research direction when designing AI-enabled real-time
systems [17, 3].

1.1. Objectives
Multiprocessor platforms are widely used in real-time systems [2]. However,
driven by complex functionality requirements, real-time system functionality
is no longer implemented as a single cyclic event. The directed acyclic graph
(DAG) task is used to model system functionality dependencies, which is
used to represent the relationships between a number of system functionali-
ties (subtasks) [41]. For example, the functionality implementation from sens-
ing the environment to controlling a car can be abstracted and transformed
into a periodic DAG task [42]. In addition to this, non-preemptive DAG task
scheduling is often deployed to avoid the preemption overhead costs asso-
ciated with task migration and caching within multiprocessor [10, 37]. This
means that sub-tasks of a DAG task are not allowed to be preempted during
execution.

One of the key techniques for meeting the needs of real-time systems is
to exploit parallelism on multiprocessor systems. In the case of DAG tasks,
this means solving the problem of parallel scheduling of subtasks with inter-
dependencies. This problem has been solved by investigating priority-based

1

1.2. Research Questions 2

scheduling algorithms [26, 21, 46, 27]. This technique generates a priority
order for each subtask in a DAG task to restrict the order of their execution. Al-
though existing research has developed several heuristic priority assignment
algorithms using the temporal and structural characteristics of DAG tasks, we
note that these algorithms do not respond well to systems with multiple DAG
tasks.

In this work, we focus on the problem of scheduling multiple parallel DAG
tasks on a non-preemptive multiprocessor platform. In the next subsection,
we describe some of the open questions in existing scheduling algorithms.

1.2. Research Questions
The currently proposed priority-based scheduling algorithms are dedicated
to analysing the structure of the DAG task based on nodes and using the
information extracted from it to formulate the priority of each node [26, 21,
46, 27]. We note a trend in priority-based scheduling algorithms, that they all
attempt to extract more information from the DAG structure as a reference
for scheduling. From ALAP (As-Late-As-Possible) and ASAP (As-Soon-As-
Possible) [26], which develop a priority based on only one metric, to EOPA
(Execution Order Priority Assignment) [46], which classifies nodes and con-
siders their dependencies. Even GoSu (graph convolutional task scheduler)
[27] utilises powerful tools such as deep reinforcement learning to extract
information about the nodes and structure of the DAG.

Moreover, it is worth noticing that the methods listed above are only about
one DAG task, they cannot associate multiple DAG tasks. We want to con-
sider all DAG tasks and the instance they release during an observation
window (hyperperiod). We thought that a more fine-grained approach to
analysing tasks would have a high potential to develop a more successful
scheduling algorithm. This leads to the following research questions:

RQ1: Can a more granular level analysis compare with only one DAG struc-
ture analysis for recurrent DAG tasks assist priority-based scheduling
policy to improve schedulability?

The priority-based scheduling algorithm only assigns a priority to each
node, but we believe there is more scope for manipulating the execution of
jobs released by each node. For example, we can adjust the offset and con-
trol the release time of the tasks. For recurrent DAG tasks, we can configure
the offset for each node, which is the intra-DAG offset. To achieve this aim
we ask the following question:

RQ2: How to improve schedulability of priority-based scheduling policies for
recurrent DAG tasks by using intra-DAG offset?

Several studies have now proposed alternative solutions for scheduling
recurrent DAG tasks [39, 23, 16]. With those approaches, a DAG is decom-
posed into a set of periodic tasks, each of which is composed of a node
from the DAG. The time constraints of deconstructed tasks, particularly their
offsets and deadlines, maintain the precedence restrictions. One of the meth-
ods [16] uses a partitioning algorithm to assign tasks to processors, so that

1.3. Contributions 3

tasks cannot be migrated between processors. We thought about the po-
tential of combining the partitioning method with a priority-based scheduling
algorithm. This leads to the following question:

RQ3: Does the partitioning method will improve schedulability of our priority-
based scheduling policy?

1.3. Contributions
To address the first research question (RQ1). We propose the concept of
stacks, which is a container for jobs that follow a non-work-conserving pol-
icy. Furthermore, we propose a suitable job batch placing algorithm to
place the jobs released by tasks in the appropriate places in the stacks. This
process analyses the instances released by tasks and allows us to extract
the job-level information from the stacks.

We apply the intra-DAG offset and propose the reassembly stacking al-
gorithm, a new scheduling algorithm for parallel DAG tasks. For answering
the second research question (RQ2) we evaluate existing scheduling algo-
rithms against our algorithm.

To answer the research question (RQ3), we propose the partitioned re-
assembly stacking algorithm, a new partitioned scheduling algorithm for
parallel DAG tasks. we evaluate the performance of this algorithm through
empirical experiments.

In addition to this, we have developed an evaluation framework to facil-
itate the evaluation of the performance of different scheduling algorithms.

1.4. Organization
The remaining part of this thesis proceeds as follows: Chapter 2 will con-
sider both the sources and methods of research which will include important
concepts and definitions, as well as primary algorithms. Chapter 3 contextu-
alises the research by providing a precisely defined model and proposing our
research question. Chapter 4 gives a summary and critique of the state of
the art. Chapter 5 present our solutions. Chapter 6 establishes a quantitative
framework to evaluate multiple scheduling algorithms. Chapter 7 gives the
evaluation results and the discussion of this, while conclusions and further
research recommendation are discussed in Chapter 8.

2
Background

Chapter 2 will consider both the sources and methods of research which will
include important concepts and definitions, as will as primary algorithms.

2.1. Concepts
We provide the necessary background information to help understand the
rest of the paper.

Feasibility A task system is considered feasible if there exists a schedules
meeting all timing constraints [6].

Scheduling Algorithm The scheduling algorithm of a real-time system is
responsible for dispatching jobs for execution on an available processor [11].

Assume a processor can be assigned a job a a time, i.e., no two jobs run
at same time on the same processor. During this period of execution of a
task or set of tasks, at each time unit, the algorithm selects one or several
of the ready jobs to be executed on the processors according to a particular
priority assignment.

Schedulability Let A denote a scheduling algorithm. A task system T is said
to be A-schedulable, if A meets all deadlines when scheduling each of the
potentially infinite different collections of jobs that could be generated by the
task system, upon the specified platform [5].

2.2. Schedulability Tests
A schedulability test is required to be applied to check whether a task is
schedulable using a special scheduling algorithm. A schedulability test ac-
cepts a task set, specified multiprocessor platform, and scheduling algorithm
as input, then determines whether such task set is schedulable or not.

4

2.3. Recurrent Task 5

To compare scheduling algorithms, the schedulability test can be utilized.
If all sets of tasks that are schedulable by algorithm B are also schedulable
by algorithm A, but not vice versa, then scheduling algorithm A is dominants
scheduling algorithm B. Schedulability tests are classified as follows:

Necessary tests If the task set does not pass the test, then it is certainly not
schedulable by the given algorithm.
Sufficient tests If the task set passes the test, then it is certainly schedulable
by the given algorithm.
Exact tests If the task set passes the test, then it is certainly schedulable by
the given algorithm, if the task set does not pass the test, then it is certainly
not schedulable.

2.3. Recurrent Task
A recurrent task is said to be periodic if successive jobs of the task are re-
quired to be generated a period T unit times apart. The recurrent tasks can
be classified into the following categories:

Periodic task A recurrent task is said to be periodic if consecutive jobs of
the task are required to be generated exactly a period apart.

Sporadic task A task is said sporadic if minimum interval between the gen-
eration of consecutive jobs of the task is period.

Aperiodic task An aperiodic task is one that occurs with no repetitions and
does not have a specified period.

2.4. Deadline Type
The period and the deadline are typically the least two elements that define
a recurrent real-time task. The relationship between these two can be cate-
gorised as follows.

Implicit deadline The relative deadline of the task is equal to the period of
the task.

Constrained deadline The relative deadline of the task is small than or
equal to the period of the task.

Arbitrary deadline The relative deadline does not subject to any constraint
with regards to the period.

2.5. Multiprocessor Platforms
Multiprocessor platforms can be categorized depending on the relationship
between the computing capabilities of the different processors as follows [4,
41].

2.6. Multiprocessor Scheduler 6

Homogeneous architecture These are multiprocessor platforms with iden-
tical processors, in the sense that each processor in the platform has the
same computing capability as the others.

Heterogeneous architecture These are multiprocessor platforms with dis-
tinct processors. The multiprocessor consists of a dedicated application pro-
cessor, specialized for specific purpose, which is characterised by its own
computing capabilities.

2.6. Multiprocessor Scheduler
Real-time scheduling techniques for multiprocessors are mainly classified
into global scheduling, partitioned scheduling, and semi-partitioned schedul-
ing.

Global scheduling In global scheduling, all tasks are stored in a global
queue, and the same number of the highest priority tasks as processors are
selected for execution.

Partitioned scheduling In partitioned scheduling, tasks are first assigned
to specific processors, and the tasks are then executed on those processors
without a migration. Using such an approach, a multiprocessor task schedul-
ing is reduced into a set of uni-processor task scheduling after the tasks have
been partitioned.

Semi-partitioned scheduling In semi-partitioned scheduling, most tasks
are fixed to a specific processor as partitioned scheduling to reduce the num-
ber of migrations. A few tasks, on the other hand, are not restricted and
may be migrated across processors to maximise the utilisation of available
processors.

2.7. Execution Models
Depending on whether a process can be interrupted by another job, execu-
tion can be preemptive, non-preemptive, or limited-preemptive.

Preemptive execution Allows jobs executing on the processor to be poten-
tially interrupted by the scheduler, which needs to execute other higher prior-
ity tasks and resume their execution at a later point in time.

Non-preemptive execution Such preemption is forbidden, once a job be-
gins execution, it continues to execute until it has been completed.

Limited preemptive execution Preemption is allowed but various kinds of
restrictions are placed upon the occurrence of preemption during scheduling.

2.8. Work-conserving and Non-work-conserving Scheduling Policies 7

2.8. Work-conserving andNon-work-conserving Schedul-
ing Policies

Real-time scheduling algorithms can be categorized based on the insertion
of idle time.

Work-conserving scheduling This scheduling method keeps the proces-
sor busy if there are jobs that have been submitted that have not been exe-
cuted.

Non-work conserving scheduling This scheduling method allows the pro-
cessor to be idle, even though there are jobs being submitted that have not
been executed.

2.9. Bin Packing
The scheduling problem for real-time systems is to schedule the jobs re-
leased from a task set to the processor so that each job meets its time con-
straints as much as possible within the constraints of limited processor re-
sources.

The bin packing problem, which is not the same but has similarities, has
been extensively studied to find the minimum number of bins needed for a set
of different volumes of items [24, 13]. Some heuristic bin packing algorithms
can be referred to and derived for the study of real-time system scheduling
problems.

Next-fit (NF) The NF keeps track of the bin containing the last item to be
packed. After an item has been packed, the NF continues to pack its succes-
sive items. If it fits that bin then it is allocated to that bin, if not, it traverses
from that bin until it finds the next one to fit.

First-fit (FF) FF traverses the bins in index order, packs the current item in
the first non-empty bin in which it fits. If no such bin exists, FF packs the
current item in an empty bin.

Worst-fit (WF) WF will pack the current item into an open bin with the small-
est contents in which it fits. WF packs the item into an empty bin if there isn’t
an open bin that fits the current item. If more than one of these bins exist,
WF chooses the one with the lowest index.

Best-fit (BF) BF will pack the current item into an open bin with the largest
contents in which it fits. BF packs the item into an empty bin if there isn’t an
open bin that fits the current item. If more than one of these bins exist, BF
chooses the one with the lowest index.

First-fit Decreasing (FFD) Under the FFD, the items are first sorted in order
of non-increasing volumes, and then the FF algorithm is applied.

2.10. Directed Acyclic Graph 8

Best-fit Decreasing (FFD) Under the BFD, the items are first sorted in order
of non-increasing volumes, and then the BF algorithm is applied.

2.10. Directed Acyclic Graph
This thesis focuses on the scheduling of directed acyclic graph (DAG) task
models, therefore some basic DAG concepts will be presented here.

Definition 2.10.1 A Graph is a pair of two sets G = (V, E), which V denotes
a set of vertices (also called nodes) and E ⊆ V × V denotes a set of edges,
each edge connects two vertices in such graph.

Definition 2.10.2 A directed graph is a graph in which edges have an ori-
entation.

Definition 2.10.3 A graph is an acyclic graph if it does not contain any cy-
cles.

By the above definition, we can clearly express the concept of a DAG, a
graph whose edges have orientation and which does not contain any cycles.
The figure2.1 presents an example directed acyclic graph, the number in
vertices is the index.

Figure 2.1: An example of Directed Acyclic Graph

There are also a few concepts that deserve to be mentioned to help us
better summarise the properties and characteristics of a DAG.

Definition 2.10.4 A vertex with no incoming edges is called a source vertex
(node), a vertex with no outgoing edges is called a sink vertex (node).

The v1 in figure 2.1 is a source vertex and the v6 is a sink vertex. We
assume that a DAG has exactly one source vertex (denoted vsrc) and one
sink vertex (denoted as vsink).

Definition 2.10.5 In a DAG, if there exists edge from vi to vj , denote (vi, vj) ∈
E, then vi is a predecessor of vj , and vj is a successor of vi.

Definition 2.10.6 If there exists a path from vi to vj , then vi is an ancestor
of vj , and vj is a descendant of vi.

2.10. Directed Acyclic Graph 9

In this thesis we use pred(v), succ(v), ance(v), and desc(v) to denote pre-
decessors, successors, ancestors, and descendants of vertex v respectively.

Definition 2.10.7 A path in a DAG starting from vertex v0 and ending at ver-
tex vk is a sequence of vertices (v0, v1, v2..., vk), such that ∀i ∈ [0, k) , (vi, vi+1) ∈
E.

Definition 2.10.8 A complete path is a path starting from the source vertex
and ending at the sink vertex.

Definition 2.10.9 The topological ordering of a DAG is a linear ordering of
all its vertices such that if G contains an edge from vi to vj , vi comes before
vj in this ordering [14].

3
System Model and Problem

Definition
This chapter introduces our task model and defines the scope of this work.
We start in section 3.1 with a description of the parallel DAG tasks model with
some essential concepts. The following sections from 3.2 to 3.4 elaborate
other properties of the system model. In section 3.5 we present the research
problem of this work.

3.1. Parallel DAG Task Model
The directed acyclic graph task models have been proposed by Baruah et al.
[6]. This task model uses a DAG to abstract the parallel tasks of a real-time
system, therefore all the concepts introduced in the previous section 2.10 will
be inherited in this task model.

3.1.1. Task
A finite set of recurrent tasks generates the workload in the real-time system.
There are multiple ways to represent a recurrent DAG task but we give a clear
definition in this thesis as follows.

A set of tasks is denoted as Γ, it contains a collection of n tasks, indicate
as

Γ = {τ1, τ2, ..., τi} , i ∈ [1, n].

A recurrent parallel DAG task, hereafter called a task in this report, gen-
erates a potentially unbounded sequence of workload.

We use three the following format to specify a task, as a tuple,

τi = (Gi, Ti, Di), i ∈ [1, n],

where i is the index of a task, n is the number of tasks in that set, Gi is
a directed acyclic graph, and Ti is the period, Di is the relative deadline of

10

3.1. Parallel DAG Task Model 11

this task. A recurrent task is said to be periodic if the successive workloads
of the task are required to be generated a T times units apart. Tasks in a
task set usually have non-identical periods, which invokes the concept of
hyperperiod.

The hyperperiod is the minimum time interval after which the release
pattern repeats itself when applying offline scheduling algorithms.

The hyperperiod denoted by H, the release pattern in [0,H] is the same
as that in [kH, (K+1)H] for any integer k > 0. The hyperperiod is determined
as such least common multiple of the periods for a set of periodic tasks, that
are synchronously activated at time t = 0. Hyperperiod of task set Γ:

H(Γ) = lcmτx∈Γ {Tx} .

Figure 3.1: An example of a recurrent parallel DAG task model

Figure 2.1 gives an example of DAG tasks model. Graph G specifies the
attributes and relationships of the internal vertices of this task. The form of
G is G = (V,E) and each v ∈ V represent a sequential program (typical
example is to run a piece of code). Each v ∈ V is can be characterized by
execution time and priority. In most cases we cannot accurately predict the
execution time of each job. The job may run on different data, following dif-
ferent decision paths, having different system states, etc [11]. We bound this
time using worst-case execution time (WCET) and best-case execution time
(BCET). The edges denote dependencies between vertices, if there exists an
edge (vi, vj) ∈ E, means vertex vj depends on vi, that vi must be complete
before vj starts execution.

All vertices in a DAG can be represented as

3.1. Parallel DAG Task Model 12

vik = (βk, ωk, pk, Ti, Di), k ∈ [1, q], i ∈ [1, n],

which q is the number of vertices, βk is BCET, ωk is WCET, and pk is the
priority of this vertex respectively.

In section 2.10 we introduced path and complete path, now we can cal-
culate the length of a path, with execution time. The length of a path is the
sum of the execution time of all vertices along the path. Such execution time
refers to WCET in this report. Here, we can describe an important attribute
of a DAG, a critical path is the longest complete path in DAG, we denote as
CP (τ).

3.1.2. Instance and Job
Instance and job are important concepts when we go on to discuss how tasks
generate a series of workloads for processors.

Each release of a DAG task is called an instance. A DAG consists of
several vertices, and an instance does not contain just one workload. We
call a workload corresponding to a vertex a job .

An instance consists of jobs belonging to the same task. Figure 3.2 repre-
sents two consecutive instances of example tasks. The task τ1 = (G1, T1, D1),
its DAG has four vertices, therefore its instance 1 and 2 both contain four jobs.

Job denotes as J i
j,k which k is the corresponding vertex index. The width

of the blue rectangle in the diagram indicates the WCET of a job. All WCETs
within an instance may be different, but the corresponding jobs in two in-
stances belonging to the one task, e.g. J1

1,4 and J1
2,4, are the same.

We denote the j-times released instance of tasks i as

Iji =
{
Jj
i,1, J

j
i,2, ..., J

j
i,k

}
, i ∈ [1, n], j ∈ [1,H(Γ)/Ti], k ∈ [1, q].

3.1. Parallel DAG Task Model 13

Figure 3.2: An example of instance

Here figure 3.3 gives a detailed description of the jobs. The period and
deadline are attributes of the task, but they are directly related to the instance
and job. The period T denote the amount of time between two consecutive
instances of a task τ , which means all vertices v ∈ V are released. If a task
is released at time-instant t, then the next release of it is at time-instant t+T .
The relative deadline D denotes the time constrains of a task. If all vertices
v ∈ V of a task τ are released at time-instance t, then all of those jobs must
complete execution before time-instance t+D.

3.2. Multiprocessor Model 14

Figure 3.3: An example of jobs

Inheriting the previous representation we subscripts the job as Jj
i,k, the

index j denotes this job belongs to j-times release instant Iji , i indicate which
task this job belong to, and k is the corresponding vertex index. Unless oth-
erwise stated, thereafter the meaning of j, i, k will be followed. It is easy to
understand that, the vertex vik corresponds to this job, its next released job
is denoted as Jj+1

i,k .
The absolute deadline dji,k is a time-instant that is equal to the correspond-

ing release time rji plus relative deadline Di. The BCET βi,k and WCET ωi,k

are used to bound the execution time of a job. Here we can give the format
of job.

Jj
i,k = (rji,k, βi,k, ωi,k, d

j
i,k, pi,k)

The priority affects the choice of eligible jobs for execution, which brings
priority-based scheduling [21].

We say a job is eligible at a certain time instant is all its predecessors
in the instance it belongs to have finished and thus this job can immediately
execute if there are available processors.

Within an instance, there are also dependencies between jobs. We as-
sume that this inherently follows the relationship between vertices within the
DAG. If vil ∈ pred(vik), then J i

j,l ∈ pred(J i
j,k).

Formally, we assign priority pk to vk of the DAG, the respective job also
inherits the priority. We say job Jj,k has higher priority than job Jj,l if pk < pl.
In other words, smaller numbers representing higher priority.

3.2. Multiprocessor Model
The systemmodel assumes themultiprocessor platform to be homogeneous
architecture described in section 2.5, constructed bym identical processors,
denoted as P1, ..., Pm.

3.3. Scheduling Model 15

3.3. Scheduling Model
The scheduling model in this thesis is priority-based scheduling. Such
scheduling gives a complete priority order to all vertices of a DAG task, a job
released by a vertex still inherits the priority. At any time instant at run time,
the scheduler always chooses the highest-priority eligible job for execution.

3.4. Execution Model
The execution model in this thesis is non-preemptive execution described
in section 2.8.

3.5. Problem Definition
Here we can formulate the problem founded on the clear model definition
above. We will make some assumptions to further clarify the scope of the
research with the problem definition.

Given a recurrent parallel DAG task set Γ, defined in section 3.1, such
task set contains n tasks with implicit deadline, assign priority and release
times to each job in a hyperperiod upon multiprocessor platform defined in
3.2 which complies with the executive model defined in 3.4, that a priority-
based scheduling algorithm can successfully schedule this task set Γ, which
means every task respects its time constrain over an observation window as
large as a hyperperiod while all jobs have execution time variation defined in
3.1.2.

4
Related Work

Existing scheduling methods and solutions that are consistent or relevant to
this research direction are presented in this chapter. Based on the idea of
algorithm development, we categorize them into groups and describe their
basic methodology as well as their characteristics in section 4.1. Then in
section 4.2, we introduce the real-time analysis method, which is relevant to
how we evaluate a scheduling algorithm.

4.1. DAG Scheduling

DAG Scheduling

Fixed-task priority

DM [11]
RM [11]

Fixed-job priority

Simple scheduling

EDF [11]

RTS

DE-Eigbe [16] +CW-EDF [34]
DE-Jing [39]+EDF
DE-Jiang [23] +EDF

Fixed-node priority

Structure-based

ALAP [26]
ASAP [26]
ITPA [21]
EOPA [46]

DRL-based

GoSu [27]

Extra edges

LAE+SJF/CP [22]

Figure 4.1: DAG scheduling algorithms

Here in figure 4.1 we propose a different classification from section 2.6.

16

4.1. DAG Scheduling 17

We take the perspective of the fineness of the assignment of priors rather than
that of a multiprocessor platform, which is in line with our research thinking.

4.1.1. Fixed-task Priority
The fixed-task priority scheduling algorithm assigns a priority to each DAG
task. The Rate Monotonic (RM) priority assignment is a simple and famous
rule that assigns priorities to each task according to their request rates [11].
Specifically, tasks with higher request rates, that is, with shorter periods, will
have higher priorities.

The Deadline Monotonic (DM) assigns a priority to each DAG task ac-
cording to the relative deadline of tasks [11]. The task with a lower relative
deadline will be assigned higher priorities. This algorithm is an extension of
RM, where tasks can have relative deadlines less than or equal to their pe-
riod. In the implicit deadline case where the deadline of a task is equal to its
period, , the DM and RM are the same.

4.1.2. Fixed-job Priority

Simple Scheduling

The fixed-job priority scheduling algorithm assigns a priority to each job of
the task. The most widely used is the earliest deadline first (EDF) [11], which
assigns priority to each job according to its absolute deadline, with the earlier
the job needs to be completed the higher the priority.

Reconstruct Task and Scheduling

The Reconstruct task and scheduling (RTS) refers to the decomposition-base
scheduling. This method decomposes a DAG into a collection of periodic
tasks, each of which is made up of a node from the DAG. Precedence con-
straints are maintained by the time constraints of decomposed tasks, espe-
cially their offsets and deadlines, as a consequence the decomposition is
done.

Several studies [39, 23, 16] have explored and validated the potential of
decomposition-base scheduling. The general approach of decomposition is
to first assume the existence of an infinite number of processors and then
build the ideal scheduling, i.e. the timing diagram, as shown in figure 4.2.
Such ideal scheduling indicates the earliest start time and the earliest end
time of each node (considering WCET). Based on this, the tasks are decom-
posed in various ways.

Jing et al. [39] propose a decomposition method DE-Jing, drawing a
vertical line at every time instant where a node starts or ends. The task may
have different degrees of parallelism in various node segments. The deadline
of a node is then determined by allocating time to each segment, followed by
the addition of all the times allocated to segments. After decomposition, the
non-preemptive global EDF is applied to schedule the task set.

Jiang et al. [23] propose a similar solution DE-Jiang, dividing segments
in a different way than the previous one, where tasks are divided into several
segments by the earliest start timer of each node. The pioneering feature is

4.1. DAG Scheduling 18

Figure 4.2: Ideal schedule of a DAG [16]

distinguishing segments into light and heavy segments, the heavy segments
should have more laxity. The non-preemptive global EDF is still applied to
schedule the decomposed task set.

Eigbe et al. [16] give a method that introduces a new concept section,
dividing the ideal schedule into multiple sections, the splitting point is where
each node ends its execution. For each section, a relative deadline is as-
signed that is greater than or equal to the execution time of the section. This
means that several slacks are created between sections, as shown in figure
4.3. This decomposition method DE-Eigbe also inherits the concept of light
and heavy sections, on the base of which each decomposed task is assigned
offset and deadline. In addition to this, they have applied a new extension
called FIFO with offset tuning (FIFO-OT) [33]. The key of this technique is to
use a FIFO policy but adjust the offset of the work, i.e. change the release
time. The FIFO-OT itself is not used to create a schedule, but rather to assist
the scheduling algorithm to recreate an offline schedule at its runtime. For the
scheduler, they have chosen to adopt CW-EDF [34], a non-work conserving
conserving schedulers, which has been proven to be superior to EDF. They
have also implemented CW-EDF to schedule the DE-Jing decomposed task
set to compare the two decomposition methods.

4.1. DAG Scheduling 19

Figure 4.3: Ideal schedule with sections and their assigned slack [16]

4.1.3. Fixed-node priority
While scheduling DAG tasks, it is possible that at some time point many jobs
are eligible for execution, and the number of eligible vertices is more than the
number of available cores. The fixed-node priority scheduling algorithms are
intended to overcome this uncertainty by utilising a special execution order.

Structure-based

The structure-based scheduling algorithms assign priority to each node by
extracting and analysing the holistic structural information of the graph and
the attributes of the nodes.

Two frequently used attributes for assigning priority are top-level (t-level)
and bottom-level (b-level) [1]. The t-level of a node v is the length of the
longest path (there can be more than one longest path) from the source node
to node v. Here the length of a path is the sum of the execution of all nodes
along the path. As such, the t-level highly correlates with node v’s earliest
start time. A scheduling algorithm called ASAP (As-Soon-As-Possible) em-
ploys the t-level [26]. It assigns priority to each node by calculating the t-level.
The node with the smallest earliest start time obtains the highest priority.

The b-level of a node vi is the length of the longest path from v to sink
node, denote as bi. The b-level is bounded from above by the length of a
critical path (TCP). The scheduling algorithm ALAP (As-Late-As-Possible)
employs the b-level [26]. The priority of a node v is calculated by CP (τ)− bi,
which gives higher priority to nodes with larger b-level.

He et al. proposed a scheduling heuristic ITPA (Intra-Task Priority Assign-
ment) [21]. Such heuristic calculates the length of the longest path through
each node, called l-level, which can be obtained by adding t-level to b-level.
The node with the larger l-value is assigned a higher priority. Another neces-
sary constraint is that priorities are assigned according to topological order.
ITPA expects nodes in the critical path to be scheduled first and then other
nodes.

Zhao et al. presented a scheduling heuristic EOPA (Execution Order Pri-
ority Assignment) [46]. EOPA is a non-preemptive DAG scheduling frame-
work that partitions nodes in a DAG into providers (i.e., nodes in the critical

4.1. DAG Scheduling 20

path) and consumers (nodes not in the critical path), intending to exploit both
parallelism and dependency conditions. Given the partitioned nodes, the
highest priorities are assigned to the providers, the second-highest priorities
to nodes that might block the providers, and the lowest priorities to the other
nodes.

DRL-based

Over the past few years, deep learning, or deep neural networks, have been
increasingly popular in reinforcement learning throughout a variety of indus-
tries, including gaming, robotics, natural language processing, etc [30]. The
combination of these techniques can be referred to as deep reinforcement
learning (DRL). One area of application of DRL is performance optimisation,
searching directly within the solution space of a combinatorial optimisation
problem [18]. For instance, pointer networks [43] offer an organized method
for using neural networks to solve combinatorial problems such as the Travel-
ling merchant problem (TSP). There exists some research that applies DRL
to scheduling tasks [28, 27, 44, 31].

Lee et al. [27] have seen that DRL found to be an effective solution to a
variety of combinatorial optimization problems, and they have adopted this
technique for scheduling DAG tasks. They propose a learning-based prior-
ity allocation model GoSu (graph convolutional task scheduler) for schedul-
ing individual DAG tasks on multiprocessor systems with a non-preemptive
mechanism.

Figure 4.4 illustrates the GoSu model structure with the working process.
The GoSu model contains both a decoder and an encoder. The GoSu model
contains a decoder and an encoder. The encoder takes as input a DAG that
demands to be scheduled and converts it into a graph convolution network
(GCN). The encoder then extracts temporal (e.g., execution times) and struc-
tural (e.g., precedence conditions) features from such graph representations.
Utilising the features of all nodes extracted by the encoder, the decoder se-
quentially selects nodes to generate priority order.

The modules are end-to-end trained using DRL to provide a priority or-
der for a DAG task input, with the learning objective being to reduce the
makespan. Through the reinforce algorithm [45], the estimated makespan is
employed as the reward signal for updating the model.

4.1. DAG Scheduling 21

Figure 4.4: GoSu model [27]

4.1.4. Add Directed Edges
Hua et al. [22] proposed a DRL model LAE (Learning to add directed edges)
for scheduling a DAG task. They are inspired by the finding that while the
majority of work nodes are close to optimal, unsatisfactory schedules are
frequently exclusively caused by the incorrect ordering of some of them. The
quality of scheduling would be significantly improved if these ”tricky” nodes
were correctly scheduled. The scheduling problem would be simplified and
even very basic heuristics, e.g. shortest-job-first (SJF) and critical path (CP),
may produce close to ideal solutions if the correct ordering of these nodes
could be predicted a priori by a predictive machine.

Although the ordering of nodes can be determined by priorities, fixed-
priority scheduling still cannot easily find the optimal solution. They propose
a very novel approach to breaking tricky ties between nodes by adding di-
rected edges, i.e. by explicitly requiring that one node be given priority over
another in terms of execution and resource allocation.

Both SJF and CP could thus find optimal schedules after adding directed
edges, shown in figure 4.5. Such an approach simplifies DAG scheduling by
providing more restrictions and changes the original problem into a simpler
proxy by including directed edges. In contrast to the DRL-based approach we
mentioned in subsection 4.1.3, the LAE also uses a similar DRL technique.
The LAE first uses a graph neural network to extract the features of the nodes,
and then it employs a neural policy network to calculate the likelihood of each
edge allowed to be added . Finally, the model is trained using reinforcement
learning techniques.

4.2. Schedulability Analysis 22

Figure 4.5: An example of improving DAG scheduling by adding edges [22]

4.2. Schedulability Analysis
Nasri et al. [36] provided a sufficient schedulability test for global limited
preemptive fixed-priority scheduling.

In order to obtain bounds on the best and worst-case response times
for each job, the analysis constructs a schedule abstraction graph (SAG)
that abstracts all possible orderings of job dispatch times deriving from the
underlying scheduling policy. Due to the offset and execution-time variance
that jobs suffer, there are exponentially many execution scenarios, making
it hard to estimate with certainty when each task will finish. For this reason,
they took into account the earliest start time (EFT) and the earliest finish time
as a result (LFT). A job J will be completed in the time period [EFT,LFT].

The expansion and merging phases alternate as the SAG is constructed
repeatedly. The expansion phase expands (one of) the shortest path(s) λ in
the graph, by taking into account all tasks that can be dispatched following
the job-dispatch sequence defined by λ. By combining the terminal vertices
of paths that have the same set of dispatched jobs whenever it is practical,
the merge phase reduces the graph’s rate of growth. When there are no
more vertices to expand, all pathways reflect a viable schedule for all occu-
pations taken into account, indicating that all potential schedules have been
investigated.

In conclusion, this analysis dominates existing analytical methods [40, 35,
7, 20, 29] and many other methods for sequential tasks. However, it does not
scale to highly parallel DAG tasks or systems with a large number of cores
(e.g., more than 64) [41].

4.3. Summary
A summary of related work presented in this chapter is presented in table
4.1. The results of these studies, from scheduling algorithms to schedulability
tests, are presented in the summary.

4.3. Summary 23

Let us now look back to figure 4.1. The development of DAG scheduling
algorithms can be summarised in two directions. One is to analyse the infor-
mation provided by the task set and exploit this information to add constraints
to the execution of the task set. The structure-based class of heuristics anal-
yses the DAG structure and temporal characteristics. The GoSu and LAE go
even further, extracting information with deep learning networks. They either
add restrictions to reduce uncertainty in scheduling by generating fixed-node
priorities or by adding additional directed edges. Another is to simplify the
DAG task. This is represented by the reconstruct task and scheduling class.
The task is decomposed by analysing the ideal scheduling of the DAG task
to convert the task into a periodic task, thus eliminating the precedence con-
straints within the DAG.

However, we also observe that the common denominator for their im-
provement is the increased exploitation of the DAG structure and temporal
characteristics, and the more comprehensive discussion and targeting of the
various situations in the scheduling process. All the algorithms mentioned
here take more information from the DAG task than the classical DM, RM,
and EDF. On the second point, EOPA, for example, is a unique approach to
classifying nodes as providers and consumers compared to the other three
algorithms in the same category. DE-Jiang and DE-Eigbe, for example, clas-
sify segments as light and heavy compared to DE-Jing. They all attempt to
classify the different situations that may be encountered and provide corre-
sponding measures to deal with them.

4.3. Summary 24

Authors Abbreviation Research topic
Saifullah, Ferry, Li,
Agrawal, Lu, and
Gill [39]

DE-Jing +
EDF

The decomposition-based global EDF
scheduling of parallel DAG tasks on
multiprocessors

Jiang, Long, Guan,
and Wan [23]

DE-Jiang +
EDF

The decomposition-based global EDF
scheduling of parallel DAG tasks on
multiprocessors

Eigbe, and Nasri
[16]

DE-Eigbe +
CW-EDF

The decomposition-based global CW-
EDF scheduling of real-time tasks
upon multiprocessor platforms

Kwok, and Ahmad
[26] ASAP

Static scheduling algorithms based on
t-level for allocating DAG to multipro-
cessors

Kwok, and Ahmad
[26] ALAP

Static priority assignment based on b-
level for allocating DAG to multipro-
cessors

He, Jiang, Guan,
and Guo [21] ITPA

Intra-Task priority assignment in real-
time scheduling of DAG tasks on mul-
tiprocessors

Zhao, Dai, Bate,
Burns, and Chang
[46]

EOPA
A non-preemptive DAG priority-based
scheduling framework of DAG tasks
on multiprocessors

Lee, Cho, Jang,
Lee, and Woo [27] GoSu

A DAG task scheduler using deep re-
inforcement learning and graph con-
volution network

Hua, Qi, Liu, and
Yang [22] LAE+SJF/CP Using machine learning to schedule

DAG tasks
Nasri, Nelissen,
and Brandenburg
[36]

SAG
Response-time analysis of limited-
preemptive parallel DAG tasks under
global scheduling

Table 4.1: Related work summary

5
Our solutions

In this chapter, we present our solutions for scheduling recurrent parallel DAG
task sets on multiprocessor platforms. First in section 5.1 we introduce a
scheduling anomaly. Then we show a case study that explores in depth how
an existing scheduling algorithm can be compromised by such an anomaly
that makes scheduling unsuccessful. We want to avoid this anomaly as well
as possible, and based on the results of our investigation of this case study,
we then present our solution in section 5.2.

5.1. Motivational Examples
In this section, we describe a particular example in subsection 5.1.1, which
clearly illustrates a counter-intuitive reality. In subsection 5.1.2, we present
and analyse how this anomaly affects scheduling.

5.1.1. Scheduling Anomaly
Faster computation does not always lead to an earlier completion of a DAG
task. If a task set is scheduled on a multiprocessor with a certain priority
assignment, a fixed number of processors, fixed execution times, and prece-
dence constraints, then reducing execution times can increase the schedule
length [19].

Let us consider a DAG task with ten nodes shown in figure 5.1. The
number inside each node in the diagram is the index and also the priority,
and we have marked each node’s WCET with a blue number in its top-left
corner. The node v0 and v1 obtain zero execution time, which are ”dummy”
nodes. Assume that this task set has only one periodic DAG task, namely,
there is only one instance of this task in the hyperperiod. We denote the
instance as I1 = {J1, J2, ..., J10}. All jobs of I1 are release at time instant
t = 0.

If such an instance is executed on a multiprocessor with three processors,
where the highest priority job is assigned to the first available processor, the
schedule is illustrated in figure 5.2. The total completion time of the first
instance is 12 unit times.

25

5.1. Motivational Examples 26

Figure 5.1: An example DAG task: the number inside each node is the
index and also its priority, the top-left blue number is the worst-case

execution time

Figure 5.2: Schedule of first instance

Let us consider the case where the execution time is reduced. If the exe-
cution time of J4 is reduced from 2 to 1, we see that the schedule length will
increase with respect to the original schedule, and the total completion time
will be 16, as shown in figure 5.3.

Figure 5.3: Schedule of first instance for anomaly case

5.1. Motivational Examples 27

The phenomenon is caused by the early completion of J4 at t = 0, allowing
J5, J6, and J7 to be executed. They take up all the processors, preventing
J9 being processed in time.

5.1.2. Case Analysis
We present here a case study to illustrate the impact of execution-time un-
certainty on scheduling. We first consider the situation where only WCET is
concerned, and then consider the case where there is execution-time varia-
tion.

Case 1: No Execution-time Variation

Let’s consider a task set with two tasks Γ = {τ1, τ2} this time, and a multi-
processor with two processors. These two tasks are given by τ1 = (G1, T =
500, D = 500), τ1 = (G2, T = 1000, D = 1000). Here we applying ALAP, in-
troduced in subsection 4.1.3, to produces the priorities for each node. There
we give the DAG of those tasks in figure 5.4. The priority for each node is the
orange number on the top-right of the node, the blue number at the bottom
of the node is the WCET.

Figure 5.4: An example DAG task set Γ: the T and D of task 1 is 500, the T
and D of task 2 is 1000, the index is the number in the node, orange

number on the top-right of the node is its priority, the WCET is the blue
number on the bottom of each node

The hyperperiod of Γ is H(Γ) = 1000, and there are total three instances
I11 , I

2
1 , and I12 in one hyperperiod. The I11 and I12 are released at t = 0, the

I21 is released at t = 500. Here we the two instances released at t = 0, and
give the schedule in figure 5.5. We can see that all jobs were successfully
scheduled and no deadlines has been missed.

Case 2: With Execution-time Variation

Now, we consider the variation in execution time per job, and assume that
BCET is 75 percent of WCET, which leads to a system that has more than
one schedule. Therefore, we use SAG for response time analysis. The SAG

5.2. Our Solution: Reassembly Stacking 28

Figure 5.5: Schedule of I11 and I12 of Γ with ALAP

not only gives the schedulability results but also the worst-case completion
time (WCCT) for each job.

We use SAG to analyze task set Γ within a hyperperiod. The result is not
schedulable. There is a deadline miss for the job J1

1,7, its deadline is 500. The
WCCT of J1

1,7 is 535. We observed that all the jobs in I12 have WCCTs below
500 unit times, but they all have a deadline of 1000.

We also observed that priorities assigned to τ1 are in a range from 1 to 6,
the range from 1 to 7 for τ2. The scheduler treats jobs with the same priority
fairly. The I11 and I12 are released simultaneously at time point t = 0, but with
very different deadlines.

As the ALAP only generates priority for each node of each task, this re-
sults in multiple instances released by a task being exactly the same except
for the release time and absolute deadline. This is reasonable for a set with
only one task, but multiple instances released at some time instant by mul-
tiple tasks can interfere with each other. In this example, the jobs of I11 are
severely interfered with by the jobs of I12 , causing many of the jobs of I11 to
fail to complete in time. Jobs with a deadline of 500 are not scheduled in time,
but there are many jobs with a deadline of 1000 that can be completed within
500 unit times.

This shows that ALAP does not take into account the relationship between
instances and hence has a poor perrformance when applied on recurrent
DAG tasks. As for this example, we think that the scheduling algorithm should
treat I11 and I12 differently. For example, give importance to the jobs of I11 and
scheduling them first. This case analysis leads us to consider an approach
that takes into account the relationship between instances, or even between
jobs.

5.2. Our Solution: Reassembly Stacking
In this section we will first introduce our solution, reassembly stacking (RS),
a method for release-time tuning. Then a formal formulation of this algorithm
is given. Finally we look back to Γ proposed in subsection 5.1.2 to see what
the results of our solution combined with ALAP turn out to be.

5.2.1. Operational Processes
Our solution takes a comprehensive view of all the jobs in the hyperperiod of
a task set. Instead of just considering priority, our solution takes into account
the relationship between all jobs and sets a new release time for each of them.

5.2. Our Solution: Reassembly Stacking 29

This approach is also in line with the idea we proposed in subsection 5.1.2,
to make certain jobs more important and to allow them to be scheduled first.

We show the overview of RS in figure 5.6. In the following we explain the
behaviour of each step:

Figure 5.6: Operational processes of reassembly stacking

1. Calculate priority: For a given set of DAG tasks, this step generates
priority for each node using the ALAP priorities.

2. Analyse hyperperiod: The hyperperiod of the DAG tasks set is calcu-
lated and a list of all jobs released within this hyperperiod is generated,
i.e. a job list. Each job is assigned a priority. Precedence constraints
between the jobs are also generated, i.e. the edge list.

3. Fetch a batch: This process is executed several times. Each time a job
batch is generated. All the jobs in the job list with the same release
time are packed into a batch, start with the early release time. For
example, Γ release I11 and I12 at t = 0, release I21 at t = 500, within a
hyperperiod. Then the first job batch contains all jobs of I11 and I12 . The
second batch contains all jobs of I21 .

4. Sort: For each generated job batch, a sort process is performed. Sort
all jobs in ascending order, first by deadline and second by priority.
This means first sorting by the deadline, and if the jobs have the same
deadline, then sorting by priority.

5. Stacks: Stack receives and stores the edge list, this is part of the initial-
ization. Then, each time the stack receives a job batch, it generates
a new release time for each of the jobs in it. It is then passed to the
job list to update the release times. The stacks are the key part and we
cover them in detail next subsection.

We summarize the reassembly stacking in algorithm 1. We will explain
this algorithm based on the example task set Γ which present in figure 5.4.
Here we take execution-time variation in to consideration. Lines from 1 to 5
correspond to the process (i) calculate priority in the figure 5.6, the produced
priorities are shown as numbers on the top-right of nodes in the figure 5.4.

Lines from 6 to 11 generate edge list and job list, which complete the
process (ii) analysis hyperperiod. For task set Γ, there are three instances

5.2. Our Solution: Reassembly Stacking 30

Algorithm 1 Reassembly Stacking Algorithm
Input: A task set Γ with n tasks, a multiprocessor model with m proces-

sors
Output: All jobs within a hyperperiod with precedence constrains

1: for τi ∈ Γ do
2: for vik ∈ τi do
3: pik ← ALAP priority
4: end for
5: end for
6: H ← lcmτx∈Γ {Tx}
7: initialise empty job list and edge list
8: for τi ∈ Γ do
9: job list← job list+ jobs released within H

10: edge list← edge list+ edges between jobs released within H
11: end for
12: initialize empty Stacks← {S1, S2, ..., Sm} where Si is empty stack
13: pass edge list to Stacks for future use
14: release time list← all unique release time in job list
15: sort release time list in ascending order
16: for r ∈ release time list do
17: job batch← jobs release at r
18: sort job batch in ascending order of deadline and priority
19: new release times← Stacks(jobs batch) according to Algorithm 2
20: replace release times of jobs of corresponding job batch in the job list

by new release times
21: end for
22: Return job list, edge list

I11 , I
2
1 , and I12 in one hyperperiod. We put all jobs of these instances to job list,

and also put the precedence constrains between these jobs to edge list. Here
we give the detailed edge list in table 5.2, also for the purpose of explaining
algorithm 2 used in line 19 later.

The initialisation of stacks is completed from lines 12. In line 13, we pass
the edge list to Stacks, make Stacks can access it. But not place it in Stacks.
We get all unique release time in job list in line 14, that are t = 0 and t = 500
in this example.

The remaining part is responsible for looping through processes (iii) fetch
a batch, (iv) sort, and (v) stack. Line 17 completes the steps to (iii) fetch a
batch. For task set Γ, two batches are generated in total. The job batch 1
contains all jobs of I11 and I12 since they all release at t = 0. The jobs batch
2 contains all jobs of I21 that they all release at t = 500.

As we obtain a job batch, the next step is (iv) sort these jobs in line 18.
Here we give the detailed sorted job batches in table 5.3 and 5.4, also for the
purpose of explaining algorithm 2 later.

We apply algorithm 2 to obtain a batch of new release times in line 19.
In line 20, after a batch of new release times of a job batch is generated, it
passed to job list. Then replace the release times of jobs of corresponding
job batch by such new release times.

5.2. Our Solution: Reassembly Stacking 31

5.2.2. Stacks
The stacks follow a non-work-conserving policy and have special rules to
place a new item. The idea of using stacks is to think of jobs as “blocks”
(one dimensional) and the WCET as the size of the ”blocks“, which we fit into
stacks. The goal is to place the jobs at stacks and make each jobs finish as
early as possible. The start time of each job in the stacks is the new release
time we want.

The above description looks like a bin packing problem, but we are not
using the concept of bin. The bin packing only considers the capacity of the
bin and the size of the item to be loaded, whereas stack is concerned with
the position and order of the bolcks.

Stacks Construction

Given a task set Γ with n tasks, and a multiprocessor model with m pro-
cessors, we build Stacks = {stack1, stack2, ..., stackm}. That each stack is
defined a sequence of jobs executed in a strict order. For example the stackp
with L + 1 blocks, denote as stackp = {Xp,0, Xp,1, Xp,2, ..., Xp,L}. The Xp,0

is ”dummy” block, it is placed at a stack when such stack is declared. Hence
there is no empty stack.

We assign a job Jj
i,k from a job batch to a block and then place it at stackp,

we denote this block in the stackp as Xp,l = (jp,l, ip,l, kp,l, Sp,l, Fp,l), the first
three numbers are used to indicate which job corresponds to this block, the
l represent its position in the stackp with Sp,l is the start time, Fp,l is the
finish time. In all stacks, the ”dummy” jobs Jp,0 mentioned in the previous
paragraph are always have Sp,0 = 0 and Fp,0 = 0.

We show an example of Stacks in figure 5.7, stack1 = {X1,0, X1,1, X1,2, X1,3},
and stack2 = {X2,0, X2,1, X2,2}, as we omit the ”dummy” jobs in figure. Dif-
ferent stacks within a Stacks may contain different numbers of blocks. For a
stackp, we denote its size as Lp + 1. This allows us to conveniently indicate
the last block of a stackp as Jp,Lp . For example, L1 = 3, the last block of
stack1 is X1,3.

Figure 5.7: An example Stacks

Block Location

When Stacks accepts a job J i
j,k as input, it construct the target block with

determine the start time and end time of this block:

X = (j, i, k, S, F), where S = rji,k, F = rji,k + ωi,k. (5.1)

5.2. Our Solution: Reassembly Stacking 32

We say rij,k is the original release time of such job. The block X here is
not subscripted because it is not placed at any stack.

For a certain stack at a time instant, there can only be one job. It means
that there should be no overlap between jobs. Suppose we are going to place
the target job J to a stackp, we need to check if it is feasible to place J at
the interval [S, F). Job is not necessarily placed at the end of the stackp,
therefore we consider all the jobs that already exist in the stackp:

It is feasible to place a job J at stackp = {Jp,0, Jp,1, ..., Jp,l} if

∀Xp,l ∈ stackp| [Sp,l, Fp,l) ∩ [S, F) = ∅. (5.2)

As for the not-feasible situation, we will discuss it in the next part.

Block Stacking Policy

Here we will describe how a Stacks that has been initialised handles a job
Jj
i,k from a job batch. We address this in a variety of situations as figure 5.8.

Figure 5.8: Different cases to be addressed by the block stacking policy

The yellow square is the final case, where the job handling is completed
and the block corresponding to the job is placed at a stack. The white squares
are the intermediate cases, where the block is constructed or the block pa-
rameters are updated. The conversion of cases is based on conditional de-
cisions, which we will explain in detail next. Finally we will summarise the
block stacking policy as algorithm 2 at the end of this subsection.

Please note that the following examples are not interrelated and are only
specifically designed to illustrate how the stacking policy deals with each
case.

Case 1 Job has no predecessor
For the case of a job without predecessors, we check if it is feasible to
place the corresponding block to any stack with start at its original re-
lease time.

5.2. Our Solution: Reassembly Stacking 33

Case 1.1 There is a stack that feasible to place the block
Place the block to this stack, start at its original release time. Here we
give a example to illustrate this case:

The handled job is J1
2,1 with no predecessor, here we satisfy the conditions

of case 1. The target block is X = (1, 2, 1, 0, 71). The Stacks as shown in
figure 5.9.

Figure 5.9: An example Stacks for case 1.1

We start with check stack1. The stack1 is not feasible to place X since
there is overlap between X1,1 and X according to equation 5.2. Then we
check stack2, this stack is feasible to place block X. Here we satisfy the
conditions of case 1.1, then place block X to stack2 as figure 5.10 shows.

Figure 5.10: An example Stacks after place the target job for case 1.1

Case1.2 There is no stack that feasible for the block
Place the job to earliest available stack, start at overall least finish
time. Here we give a example to illustrate this case:

The handled job is J1
3,1 with no predecessor, here we satisfy the conditions

of case 1. The target block is X = (1, 3, 1, 0, 33). The Stacks as shown in
figure 5.11. Both stack1 and stack2 are not feasible to place block X. Here
we satisfy the conditions of case 1.2, there is no stack feasible for the job.

Then we need to find the earliest available stack stackp, which is the
stack that the last job in it has overall least finish time in comparison to all
other stacks. The overall least finish time is given by:

F olft
p = min(F1,L1

, ..., Fm,Lm
). (5.3)

Since the Xp,Lp
is the last block in stackp, it is always feasible to place a

block X after Xp,Lp
. We place X to this stackp with update the X as:

5.2. Our Solution: Reassembly Stacking 34

Figure 5.11: An example Stacks for case 1.2

S = F olft
p , (5.4)

F = S + ωi,k. (5.5)

Back to the example in figure 5.11. We apply equation 5.3 to obtain
F olft
2 = min(145, 131) = 131. The earliest available stack is stack2. Then

we update the target blockX toX = (1, 3, 1, 131, 164) with equations 5.4 and
5.5. Here we place X to stack2 as figure 5.12

Figure 5.12: An example Stacks after place the target job for case 1.2

Case2 Job has predecessor
For the case of a job with predecessors, we iterate all its predecessors,
find its latest predecessor. It is a predecessor of the job that finishes the
last completes its execution time. We also record its finish time, namely,
predecessors latest finish time. Then check if it is feasible to place
the block to the stack where the latest predecessor is, starting from
predecessors latest finish time.

Considering the case with a precedence constraint, and there is no doubt
that each job should start after the finish of all its predecessors. To consider
this case we need to find the latest predecessor and the stackp where the
latest predecessor is. We first get the predecessors of the job. Then we
obtain the blocks in the Stacks that correspond to each of those jobs, which
form a set we denote as B.

Then find the predecessors latest finish time given by:

F plft
p = maxXp,l∈B(Fp,l). (5.6)

5.2. Our Solution: Reassembly Stacking 35

Each job batch is ordered according to the release time, and the jobs
within the job batch are already ordered according to priority. It is notable
that the ALAP priority is a topological ordering, so all predecessors of the
target job J are guaranteed to have been placed at stacks. That is, every
predecessor of the job is guaranteed to have the corresponding block that
already in Stacks when we apply equation 5.6.

We update the X according to the following and equation 5.5:

S = F plft
p . (5.7)

Case2.1 It is feasible to place the block to the stack
Place the job to this stack, start at the predecessors latest end time.
Here we give a example to illustrate this case:

The handled job is J1
1,5 with predecessors J1

1,3 and J1
1,4, here we satisfy

the condition of case 2. The target block is X = (1, 1, 5, 0, 35). The Stacks
as shown in figure 5.13.

Figure 5.13: An example Stacks for case 2.1

In this situation, the set B = {X1,3, X2,1}. We could obtain the predeces-
sors latest finish time F plft

1 = max(116, 135) = 135 by equation 5.6. The
block corresponding to the latest predecessor is the one with finish time
135, the X1,3 = (1, 1, 4, 79, 135) in stack1. We update the target block X to
X = (1, 1, 5, 135, 170) according to equation 5.7 and 5.5. According to equa-
tion 5.2, it is feasible to place X at stack1, which satisfies the condition of
case 2.1. Here we place X to stack1 as figure 5.14

Figure 5.14: An example Stacks after place the target job for case 2.1

Case2.2 It is not feasible to place the block to the stack

5.2. Our Solution: Reassembly Stacking 36

Case2.2.1 Iterate other stacks in ascending order, check if there is a stack
feasible for place this block which start at predecessors latest finish
time. Place the block to that stack if it exist. Here we give a example to
illustrate this case:

The handled job is J1
1,4 = (0, 50) with predecessor J1

1,2, here we satisfy
the condition of case 2. The target block is X = (1, 1, 4, 0, 50). The Stacks
as shown in figure 5.15.

Figure 5.15: An example Stacks for case 2.2.1

In this situation, the set B = {X1,2}. We could obtain the predecessors
latest finish time F plft

1 = 79 by equation 5.6. The block corresponding to
the latest finish predecessor is X1,2 = (1, 1, 2, 35, 79) in stack1. We update
the target block X to X = (1, 1, 4, 79, 129) according to equation 5.7 and
5.5. According to equation 5.2, it is not feasible to place X at stack1, which
satisfies the condition of case 2.2.

Then we iterate other stacks in ascending order, check if there is a stack
feasible for place this job. Found out that the stack2 is feasible to place X =
(1, 1, 4, 79, 129), which satisfies the condition of case 2.2.1. Here we place X
to stack1 as figure 5.16

5.2. Our Solution: Reassembly Stacking 37

Figure 5.16: An example Stacks after place the target job for case 2.2.1

Case2.2.2 Iterate other stacks in ascending order, check if there is a stack
feasible for place this block which start at predecessors latest finish
time. If there is not such stack. Place the block to earliest available
stack, start at overall least finish time. Here we give a example to
illustrate this case:

The handled job is J ≡ J1
2,3 = (0, 38) with predecessor J1

2,2, here we
satisfy the condition of case 2. The target block is X = (1, 2, 3, 0, 38). The
Stacks as shown in figure 5.17.

Figure 5.17: An example Stacks for case 2.2.2

In this situation, the set B = {X2,1}. We could obtain the predecessors
latest finish time F plft

2 = 79 by equation 5.6. The block corresponding to
the latest finish predecessor is X2,1 = (1, 2, 2, 43, 79) in stack2. We update
the target block X to X = (1, 2, 3, 79, 117) according to equation 5.7 and
5.5. According to equation 5.2, it is not feasible to place X at stack2, which
satisfies the condition of case 2.2.

Then we iterate other stacks in ascending order, check if there is a stack
feasible for place this job. Found out that the only left stack stack1 is not
feasible to place X = (1, 2, 3, 79, 117). There is no stack feasible for place X,
which satisfies the condition of case 2.2.2.

For such a case, we apply equation 5.3 to obtain F olft
2 = min(120, 135) =

120. The earliest available stack is stack2. Then we update the target block
to X = (1, 2, 3, 120, 158) with equations 5.4 and 5.5. Here we place X to
stack2 as figure 5.18

5.2. Our Solution: Reassembly Stacking 38

Figure 5.18: An example Stacks after place the target job for case 2.2.2

The following algorithm 2 corresponds to line 19 in algorithm 1. Receives
a batch of jobs as input and outputs the new release time for these jobs. Lines
4 to 18 correspond to the case 1 in subsection 5.2.2, where lines 5 to 12 look
for a suitable stack as case 1.1 and the remainder is devoted to the case 1.2
where no such stack is found. Line 20 to 42 correspond to case 2, where
lines 20 to 22 are used as a pre-processing when this situation occurs. The
remainder is devoted to finding a suitable stack.

5.2. Our Solution: Reassembly Stacking 39

Algorithm 2 Job Batch Placing Stacking
Input: A job batch
Output: New release times of jobs

1: for J i
j,k ∈ jobs batch do

2: declare J according to Equation 5.1
3: stack ← 1
4: if pred(J) = ∅ then ▷ Start of case 1
5: while stack ≤ m do
6: if feasible according to Equation 5.2 then ▷ Start of case 1.1
7: place J to stack
8: break
9: else

10: stack ← stack + 1
11: end if
12: end while
13: if stack > m then ▷ Start of case 1.2
14: find stackp and F olft

p according to Equation 5.3
15: stack ← p
16: update J according to Equation 5.4, 5.5
17: place J to stack
18: end if
19: else
20: find stackp and F plft

p according to Equation 5.6 ▷ Start of case 2
21: stack ← p
22: update J according to Equation 5.7, 5.5
23: if feasible then ▷ Start of case 2.1
24: place J to stack
25: else ▷ Start of case 2.2
26: stack ← 1
27: while stack < m do
28: stack ← stack + 1
29: if feasible then ▷ Start of case 2.2.1
30: place J to stack
31: break
32: end if
33: if stack = m then ▷ Start of case 2.2.2
34: find stackp and F olft

p

35: stack ← p
36: update J
37: place J to stack
38: end if
39: end while
40: end if
41: end if
42: end for
43: Return start time S of all jobs

5.2. Our Solution: Reassembly Stacking 40

5.2.3. Illustrated Example
Let us look back to the task set Γ presented in subsection 5.1.2. Here we illus-
trate how our solution deals with this task set and then displays the schedule
result.

Starting with algorithm 1, we first generate priorities for all nodes in task
set Γ. Then after obtaining the hyperperiod H = 1000. By the completion of
line 11, we have the following job list and edge list.

Job Release
time BCET WCET Deadline Priority

J1
1,1 0 50 65 500 1

J1
1,2 0 33 44 500 2

J1
1,3 0 5 7 500 4

J1
1,4 0 13 16 500 3

J1
1,5 0 47 61 500 5

J1
1,6 0 70 92 500 6

J1
1,7 0 87 116 500 7

J1
2,1 0 58 77 1000 1

J1
2,2 0 66 87 1000 2

J1
2,3 0 29 38 1000 4

J1
2,4 0 34 44 1000 3

J1
2,5 0 10 14 1000 6

J1
2,6 0 46 62 1000 5

J1
2,7 0 21 28 1000 8

J1
2,8 0 36 47 1000 7

J1
2,9 0 12 15 1000 9

J2
1,1 500 50 65 1000 1

J2
1,2 500 33 44 1000 2

J2
1,3 500 5 7 1000 4

J2
1,4 500 13 16 1000 3

J2
1,5 500 47 61 1000 5

J2
1,6 500 70 92 1000 6

J2
1,7 500 87 116 1000 7

Table 5.1: Job list of Γ

5.2. Our Solution: Reassembly Stacking 41

From Job To Job
J1
1,1 J1

1,2

J1
1,2 J1

1,3

J1
1,2 J1

1,4

J1
1,3 J1

1,5

J1
1,4 J1

1,5

J1
1,5 J1

1,6

J1
1,6 J1

1,7

J1
2,1 J1

2,2

J1
2,2 J1

2,3

J1
2,2 J1

2,4

J1
2,3 J1

2,5

J1
2,4 J1

2,5

J1
2,1 J1

2,6

J1
2,6 J1

2,7

J1
2,5 J1

2,8

J1
2,7 J1

2,9

J1
2,8 J1

2,9

J2
1,1 J2

1,2

J2
1,2 J2

1,3

J2
1,2 J2

1,4

J2
1,3 J2

1,5

J2
1,4 J2

1,5

J2
1,5 J2

1,6

J2
1,6 J2

1,7

Table 5.2: Edge list of Γ

5.2. Our Solution: Reassembly Stacking 42

Next, initialise Stacks = {stack1, stack2}. Then pass the edge list to
Stacks, make Stacks can access it. From the table 5.1 we can retrieve two
unique release times {0, 500}, which already in ascending order.

Then we prepare two job batches for algorithm 2. The jobs with a release
time of 0 and those with a release time of 500 are extracted from the job list
to form a job batch respectively, and sort them. Here we give the detailed
sorted job batches in table 5.3 and 5.4.

Job Release
time BCET WCET Deadline Priority

J1
1,1 0 50 65 500 1

J1
1,2 0 33 44 500 2

J1
1,4 0 13 16 500 3

J1
1,3 0 5 7 500 4

J1
1,5 0 47 61 500 5

J1
1,6 0 70 92 500 6

J1
1,7 0 87 116 500 7

J1
2,1 0 58 77 1000 1

J1
2,2 0 66 87 1000 2

J1
2,4 0 34 44 1000 3

J1
2,3 0 29 38 1000 4

J1
2,6 0 46 62 1000 5

J1
2,5 0 10 14 1000 6

J1
2,8 0 36 47 1000 7

J1
2,7 0 21 28 1000 8

J1
2,9 0 12 15 1000 9

Table 5.3: Sorted job batch 1 of Γ

5.2. Our Solution: Reassembly Stacking 43

Job Release
time BCET WCET Deadline Priority

J2
1,1 500 50 65 1000 1

J2
1,2 500 33 44 1000 2

J2
1,4 500 13 16 1000 3

J2
1,3 500 5 7 1000 4

J2
1,5 500 47 61 1000 5

J2
1,6 500 70 92 1000 6

J2
1,7 500 87 116 1000 7

Table 5.4: Sorted job batch 2 of Γ

We then apply algorithm 2 to each job batch to generate the new release
times. In the following we show the state of Stacks after processing all the
jobs from two job batches in figure 5.19.

Figure 5.19: The state of Stacks

From the stacks we extract the new release times, which are the start
times of each job in the graph. Then we update the job list, which means
replace the release time by new release times for each job. The following
table 5.5 shows the updated job list and we highlight the changes compared
to table 5.1.

5.2. Our Solution: Reassembly Stacking 44

Job Release
Time BCET WCET Deadline Priority

J1
1,1 0 50 65 500 1

J1
1,2 65 33 44 500 2

J1
1,3 109 5 7 500 4

J1
1,4 109 13 16 500 3

J1
1,5 125 47 61 500 5

J1
1,6 186 70 92 500 6

J1
1,7 278 87 116 500 7

J1
2,1 0 58 77 1000 1

J1
2,2 116 66 87 1000 2

J1
2,3 247 29 38 1000 4

J1
2,4 203 34 44 1000 3

J1
2,5 347 10 14 1000 6

J1
2,6 285 46 62 1000 5

J1
2,7 394 21 28 1000 8

J1
2,8 361 36 47 1000 7

J1
2,9 422 12 15 1000 9

J2
1,1 500 50 65 1000 1

J2
1,2 565 33 44 1000 2

J2
1,3 609 5 7 1000 4

J2
1,4 609 13 16 1000 3

J2
1,5 625 47 61 1000 5

J2
1,6 686 70 92 1000 6

J2
1,7 778 87 116 1000 7

Table 5.5: Updated job list of Γ

5.3. Our Solution: Partitioned Reassembly Stacking 45

Finally, we schedule the task set Γ with ALAP. For the situation without
execution-time variation, the schedule of I11 and I12 shows in figure 5.20. It
turns out to still no deadlines missing. Furthermore, in comparison to figure
5.5, our algorithm allows these jobs to end 2 unit times earlier.

Figure 5.20: Schedule of I11 and I12 of Γ with RS+ALAP

For the situation with execution-time variation, we also apply the SAG
for response time analysis. There are still no deadlines missing, and even
all I11 and I12 jobs can be completed within 500 unit times. This also brings
the additional benefit that I21 , the second release of τ1, is not interfered by
previously released jobs. These jobs will be more likely to be successfully
scheduled.

5.3. Our Solution: Partitioned Reassembly Stack-
ing

By reading this section we assume that you have already read and under-
stood the previous section. As the solution to be explained in this section
have overlapping parts with RS. We will not re-explain them in this section,
but rather explain where they differ.

The stacks we use are essentially simulations of multi-core processors,
and it is worth noting that the schedule in figure 5.20 is exactly the same
as our simulation in figure 5.19. This suggests that we can somehow con-
trol the running of jobs on multiple core processors by adjusting the release
times. Provided that we find a state of stacks where all jobs are completed
before deadline, then there is a high probability that the updated jobs list is
schedulable.

Thus we consider imposing tighter restrictions on these jobs. Not just tun-
ing release times, but limiting the processors they execute, i.e. constructing
a partitioned scheduling.

We propose partitioned reassembly stacking (P-RS). This solution is con-
sistent with RS in section 5.2, except for the following four aspects:

1. We place all jobs in stacks, which means that each job definitely has
a corresponding stack. We can extract the index of the stack where
each job is located from the stack information. Here Stacks return not
only the new release times after a job batch has been input, but also
the index of the stack where each job is located.

2. When updating the jobs list, besides updating the release time, a new
column would be added to the jobs list. This is used to store the stack
index for each job.

5.3. Our Solution: Partitioned Reassembly Stacking 46

3. After the jobs list is completely updated, the job list is divided into m
(number of processors) job lists according to the stack index, i.e., each
job is assigned to a certain processor.

4. For a completely updated and completed jobs list, RS has chosen to
use ALAP for schedule. Here we have already allocated a defined num-
ber of jobs to individual processor, therefore we apply the classic uni-
processor scheduling method namely first-come-first-serve (FCFS).

In order to achieve the first change mentioned above, we modify line 43
of algorithm 2 to ”Return start time S, stack indexes of all jobs”.

Correspondingly, to bring about the second and third modifications stated
above, we replace lines 16 to 22 of algorithm 1 with the following algorithm
3. Line 6 implements the second modification. Lines 8 and 9 correspond to
the third change.

Algorithm 3 Replacements of RS for Partitioned Reassembly Stacking
1: for r ∈ release time list do
2: job batch← jobs release at r
3: sort job batch in ascending order of deadline and priority
4: new release times, stack indexes← Stacks(jobs batch)
5: update job list by new release times
6: add a column in job list to record stack indexes of each job
7: end for
8: split job list by stack indexes to m job list
9: Return m job lists

6
Evaluation Framework

The evaluation framework provides a customisable experimental environment
and evaluation results. The goal of this evaluation framework is to compare
different scheduling algorithms. This chapter describes the evaluation frame-
work we have built for recurrent DAG tasks, starting with an introduction to
the framework in section 6.1, followed by an explanation of its components
in section 6.2.

6.1. Evaluating Scheduling Algorithms
We need to compare our solution with other scheduling algorithms to evalu-
ate its performance. We observed some scheduling algorithms evaluated by
conducting experiments on large sets of randomly generated tasks [27, 21,
28]. In addition, many parameters need to be taken into account when de-
signing experiments. We envisage that such an evaluation framework can be
used not only for the present research but also for future researchers. Repet-
itive experimental environment construction can be avoided and the focus
can be on algorithm design and experimental parameter design.

We are not the first to come up with this idea, an evaluation framework
”DAG Scheduling and Analysis on Multiprocessor Systems” [46] has already
been proposed. Such a framework supports various scheduling algorithms,
schedulability test methods, etc. However, there are still some limitations to
this framework, as it is designed for the priority-based scheduling algorithms
and only supports global scheduling. Some partitioned scheduling algorithms
cannot be evaluated here. Moreover, we would like to apply the state-of-the-
art schedulability test method [36], which is not supported by this framework.

6.1.1. Performance Metric
The state-of-the-art metric widely used is the schedulability ratio [16, 28, 21,
27, 15, 12]. Without exception, we compare the different algorithms in terms
of schedulability ratio as a metric, which is defined as the ratio of schedu-
lable task sets to all task sets generated.

47

6.2. Software Architecture 48

6.1.2. Parameters
In the following, we list the parameters that can influence the performance of
the algorithm.

• Number of tasks: The number of DAG tasks in a task set. Higher
quantities lead to more complex task systems.

• Utilisation: Utilisation reflects how busy a system is. We configure the
utilisation as percentages of the number of processors. The utilisation
of a task set would not be greater than m.

• Number of processors: We choose the multiprocessor platform with
homogeneous architecture. The only configuration is the number of
processors.

• DAG structure: The configuration of the DAG structure determines the
branching complexity of these DAG task nodes, the number of nodes,
the dependencies between them, etc.

6.1.3. Functionalities
We aim to make the evaluation framework as comprehensive as possible,
covering most of the experimental processes. After the user has set up all
the parameters and requirements for the experiment, the framework automat-
ically completes the rest of the process. After completing the whole process,
a graphical representation of the processed experimental data is given.

To elaborate, the evaluation framework should support the following func-
tionalities:

• Selectable number of generated task sets
• Selectable DAG task sets parameters
• Selectable processors number
• Selectable processors utilisation
• Selectable scheduling algorithm for evaluation
• Provide a built-in schedulability analysis tool
• Analysis and storage evaluation results in tables
• Analysis results and generate statistical graphs

6.2. Software Architecture
The evaluation framework consists of four main components, those are task
generator, task parser, schedulability tester, and results analyser. They form
a ”pipeline” style workflow as shown in figure 6.1. The user determines how
many DAG task sets need to be generated, the number of tasks in a set,
the structural limits of the DAG, the number of processors to be tested, the
utilisation, and the scheduling algorithm.

The task generator generates random DAG task sets and passes them
to the task parser. The task parser repeatedly configures all of the infor-
mation for all jobs released by one task set, within a hyperperiod, including
constraints, by given scheduling algorithm. The schedulability tester utilises

6.2. Software Architecture 49

Figure 6.1: Evaluation framework software architecture

the information to determine if those task sets are schedulable, each by each,
and stores the results. The final step is completed by the results analyser,
which combines those results with the selected experiment parameters to
produce the corresponding tables and charts.

6.2.1. Task Generator
The task generator generates a DAG task set by first calculating various
utilization of each task (DAG). We apply the UUniFast algorithm [9] which
first generates a utilization value by taking a random variable, uniformly dis-
tributed in [0, 1], and multiplying it by the total utilisation. Then replace total
utilisation with the difference between total utilisation and the generated. For
the period assignment of each task, we use the sum of theWCET of all nodes
of the task if utilization of it is 1, otherwise use that sum divided by utiliza-
tion. But to avoid the hyperperiod becoming impractically large, we scaled
the obtained periods in the interval [500, 100000] with values that in the set
{x ·10y|1 ≤ x ≤ 9, 3 ≤ y ≤ 5} [36]. After assigning periods, we proportionally
scale the WCET of the nodes so that tasks keep their intended utilization.

For the generation of the internal structure of the DAG, we keep expand-
ing each node by recursion [32] until the limits of the target DAG are reached.
Determined by the configurable probabilities, a node may either be an end
node or a node that allows more branches to be connected.

For the constraints of the target DAG, our generator supports configurable
parameters to achieve this, which we list and explain in the table 6.1. The
values in the last column are suggested values and we have reserved them
for the empirical evaluation in chapter 7.

6.3. Task Parser 50

Parameter Description Default
Value

Runs Number of task sets varied
Num N Number of tasks (DAGs) in a task set varied
Utilisations Percentages of the number of processors varied
Resource
Types Number of processors varied

Max Jobs Per
HP Maximum number of jobs in the hypterperiod 1000

MIN PAR
BRANCHES Minimum number of siblings of a node 1

MAX PAR
BRANCHES Maximum number of siblings of a node 3

Prob Terminal The probability of a node being end node 0.3
Prob Parallel The probability of a node having successor 0.7
Prob Add
Edge

The probability of having an edge between
two sibling nodes 0.1

Max Critical
Path Nodes Maximum number of nodes in critical path 50

Min Nodes Minimum number of nodes in a DAG 5
Max Nodes Maximum number of nodes in a DAG 50
Max Node
WCET Maximum WCET of node 100

Table 6.1: Configurable DAG parameters

6.3. Task Parser
We have inherited and modified the open-source tool provided by Nasri et
al [36]. The task parser receives the DAG task, parses all jobs released
by the task within a hyperperiod, and generates the following files: job sets
and corresponding precedence constraints. In addition, the parser prioritises
each job according to the chosen scheduling algorithm.

To support partitioned scheduling, for example, P-RS + FCFS, the task
parser generates job sets and corresponding precedence constraints for each
processor. Following we give a list of all the scheduling algorithms in the table
6.2 that are now supported. The author was unable to provide an implemen-
tation therefore we cannot involve GoSu [27] in our framework.

6.4. Schedulability Tester
We incorporate the schedule abstraction graph (SAG) [36], mentioned in
section 4.2, into the evaluation framework as our schedulability tester. The
SAG supports global multiprocessor analysis, which is suitable for evaluating
global scheduling algorithms. In such case, as figure 6.1 shows, the tester
accepts the job set and precedence constraints of one task set, as well as

6.5. Results Analyser 51

Abbreviation Description
RM Rate monotonic
DM Deadline monotonic
EDF Earliest deadline first

ASAP As-Soon-As-Possible, a fixed-node priority assign-
ment introduced in [26]

ALAP As-Late-As-Possible, a fixed-node priority assign-
ment introduced in [26]

ITPA Intra-Task Priority Assignment, a fixed-node priority
assignment proposed in [21]

EOPA Execution Order Priority Assignment, a fixed-node
priority assignment proposed in [46]

De-Eigbe +
FIFO-OT

Applying the decomposition method according to
[16]. Using first-fit partitioning, also adjust the re-
lease time by FIFO-OT [33].

De-Jing + EDF
Applying the decomposition method according to
[39]. Using the first-fit partitioning and schedule jobs
by EDF.

Reassembly
stacking + ALAP Our solution proposed in section 5.2

Partitioned RS +
FCFS Our solution proposed in section 5.3

Table 6.2: Supported scheduling algorithm

the number of processors. The output includes a variety of information, such
as input file name, number of jobs, amount of memory used, etc. The most
crucial output is the schedulability result, which produces a value of 1 if the
job set is schedulable and a value of 0 otherwise.

For portioned scheduling, the tasks are pinned to processors, preventing
any jobs associated with a particular task from running on more than one
processor. To adapt to this situation, we have extended the SAG as figure
6.2.

Consider a task set that runs on m processors, as shown on the left side
of the figure, with each processor assigned a job set and constraints. The
SAG processes each of these datasets in turn, treating them as there is only
one processor. In total, m schedulability results are generated. Finally, we
do a logical OR operation on these results to obtain the schedulability of the
task set.

6.5. Results Analyser
Tester generates a large number of scheduling results of randomly generated
task sets. The analyser receives these results, calculates the schedulability
ratio of each experimental situation and summarizes it as a table. It also gen-
erates various statistical charts to visually represent the experimental results,
some generated charts will be shown in Chapter 7.

6.5. Results Analyser 52

Figure 6.2: Tester for portioned scheduling

7
Empirical evaluation

In this chapter, we experimentally evaluate the solutions introduced in chapter
5. In section 7.1, the parameters of the experiments are presented. In section
7.2, we present and discuss the evaluation results of scheduling recurrent
parallel DAG task set where jobs have execution-time variation.

7.1. Experiment setup
In this chapter, we use shorter abbreviations for brevity and formatting con-
sistency. In table 7.1 we present the scheduling algorithms evaluated with a
detailed explanation. We did not evaluate the scheduling algorithm De-Jing
+ CW-EDF in table 6.2 since it was empirically verified to perform worse than
DeEigbe in most cases.

Our experiments are performed on the evaluation framework proposed in
chapter 6. We randomly generate 500 tasks sets for each parameter setup in
each experiment, i.e. a data point. Here we list the experimental parameters
as follows:

• Number of processors: Our research applies to homogeneous multi-
processor platforms, and the number of processors m in the experi-
ments can be tuned. Our experiments include platforms with 2, 4 and 8
processors.

• Number of tasks: The complexity of scheduling a task set increases
with the number of DAG tasks it contains. We evaluate the impact of
the number of tasks n on the behaviour of the scheduling algorithm.
The range that we choose for our experiments is from 2 to 10. This
guarantees the existence of experiments where the number of tasks is
slightly greater than the number of processors.

• Utilisation: We configure the utilisation U as percentages of the num-
ber of processors. The numerical range for percentages is between 0
and 1. Our experiments ranged from 10% to 90% with an interval of 0.1.

• DAG structure: These DAG task nodes’ branching complexity, num-
ber, inter-dependencies, etc. are all determined by the configuration

53

7.2. Empirical Results 54

Abbreviation Description

RM

Rate monotonic described in section 4.1.1. We only
evaluate RM since our task model obtains implicit
deadline that DM described in section 4.1.1 and RM
perform the same.

EDF Earliest deadline first priority assignment algorithm

ASAP
As-Soon-As-Possible, a fixed-node priority assign-
ment proposed in [26], described in subsection
4.1.3.

ALAP
As-Late-As-Possible, a fixed-node priority assign-
ment proposed in [26], described in subsection
4.1.3.

ITPA
Intra-Task Priority Assignment, a fixed-node priority
assignment proposed in [21], described in subsec-
tion 4.1.3.

EOPA
Execution Order Priority Assignment, a fixed-node
priority assignment proposed in [46], described in
subsection 4.1.3.

DeEigbe

Eigbe method described in 4.1.2. Applying task de-
composition method proposed in [16], then using
first-fit partitioning to assign tasks to processors, ad-
just the release time by FIFO-OT [33].

RS Our solution RS proposed in section 5.2, then sched-
ule all jobs of one hyperperiod with ALAP.

P-RS Our solution P-RS proposed in section 5.3, then
schedule jobs on each processor with FCFS.

Table 7.1: Evaluated scheduling algorithm

of the DAG structure. We follow the default DAG parameters of the
evaluation framework as shown in table 6.1.

7.2. Empirical Results
In this section we present some important and valuable experimental results
in the first two subsections. Then in subsection 7.2.3, we discuss why there
are such results.

7.2.1. Impact of the Number of Tasks
Figure 7.1 shows the behaviour of the scheduling algorithms with respect to
the number of tasks n, the utilisation U is 80%, including experiments with
different number of processors m. The data for some of the algorithms are
incomplete because the time consumed by these experiments is too large
(mainly due to the schedulability test) and these algorithms already exhibit a
very low schedulability ratio when the number of tasks is 6.

We observe that the schedulability ratio of the scheduling algorithms de-

7.2. Empirical Results 55

creases as the number of tasks increases. There is an exception at n = 6
and it only occurs at m = 2. We believe this is due to the random nature of
task generation and the DAG structure, and does not affect our judgement of
the overall trend. When m = 2, algorithms RS, P-RS perform outstandingly
relative to the other scheduling algorithms. They approach a schedulability
ratio of 0 at m = 2, but RS and P-RS still maintain a schedulability ratio of
around 0.3 until m = 10, when it decreases to around 0.1. The algorithms
RS, P-RS, and DeEigbe perform better at m = 4, and the schedulability
ratio is still greater than 0 for task numbers greater than 6. When m = 8,
three scheduling algorithms continue to outperform. DeEigbe performs best
at n = 7 and n = 8, but as n increases to 10, the schedulability ratio of
DeEigbe drops sharply to be completely not schedulable. However, RS still
achieves a schedulability ratio of around 0.45 and P-RS also performs above
0.2.

7.2.2. Impact of the Utilisation
Figure 7.2 shows the behaviour of the scheduling algorithms with respect to
U , including experiments with different m.

In the case of n = 5, we observe that the performance of all schedul-
ing algorithms decreases with increasing utilisation. At m = 2 RS performs
best, above all other scheduling algorithms. At U = 60% and U = 80%, it
still outperforms the other algorithms, although the result are worse than RS.
DeEigbe still performs remarkably well at m = 4. Also the results for RS and
P-RS are significantly higher than the other scheduling algorithms. However,
RS and DeEigbe show equal competitiveness in successfully scheduling all
the generated task sets when m = 8, regardless of the high or low U .

Figure 7.3 shows the behaviour of three scheduling algorithms with re-
spect to U , experiments are done on a higher number of tasks that n = 10
compare with figure 7.2.

RS performs best when m = 2 and m = 8. At most there is a schedula-
bility ratio difference of almost 0.5 compared to DeEigbe at 60% to 80% of U
with m = 8. However DeEigbe still performs remarkably well at m = 4.

7.2. Empirical Results 56

(a) m = 2

(b) m = 4

(c) m = 8

Figure 7.1: Schedulability between the number of DAG tasks and the
number of cores

7.2. Empirical Results 57

(a) m = 2

(b) m = 4

(c) m = 8

Figure 7.2: Schedulability between different utilisation rates and the
number of cores (the number of tasks is 5)

7.2. Empirical Results 58

(a) m = 2

(b) m = 4

(c) m = 8

Figure 7.3: Schedulability between different utilisation rates and the
number of cores ((the number of tasks is 10))

7.2. Empirical Results 59

7.2.3. Summary and Discussions
Here we conclude the evaluation results. We observe that in most cases
P-RS does not perform better than RS. RS and P-RS obtains higher schedu-
lability ratio than other global scheduling algorithms in all experiment setup.
Furthermore, DeEigbe shows great competitiveness when number of proces-
sors is 4, but performs worse than RS and P-RS in all other cases.

Why DeEigbe obtains higher schedulability ratio than other scheduling
algorithms when number of processors is 4?

It is worth noting that for DeEigbe, increasing the number of processors
does not always improve the schedulability ratio. In figure 7.1,the results are
better when m increases from 2 to 4, but the schedulability ratio decreases
at n = 10 when m increases from 4 to 8. We do not believe that this is due
to experimental error, as we observe the same results at [16] as well. We
examined some of the job lists generated by DeEigbe, and in the case of
m = 2, almost all jobs are assigned to the first processor. In the case of
m = 8, there are often latter processors that are not assigned any jobs.

DeEigbe uses first-fit partitioning to assign tasks to processors, place the
task in the first processors that can accommodate it. There is a phenomenon
where the algorithm may place all tasks in the first one when traversing the
processors. Then, when the algorithm traverses all processors, it may place
all tasks in the first processor or in the first few processors, so there are
processors that are not assigned any jobs.

In summary, we believe that DeEigbe performs better when m = 4, for
the range of n we evaluated, because the first-fit partitioning coincidentally
allows for a fairer allocation of tasks to different processors, thus making the
best use of processor resources. But not such case when m = 8 and m = 2.

Why RS and P-RS obtain higher schedulability ratios than other global
scheduling algorithms?

Regardless of the number of processors, RS and P-RS perform signifi-
cantly better than the other global algorithms, i.e. except for DeEigbe. Com-
pared to other priority assignment algorithms such as ALAP, the fine-grained
tuning of release-time makes it easier to successfully schedule a instance,
although we also use ALAP. As we demonstrate in subsection 5.2.3, our so-
lution allows more instances to be not be interrupted by instances generated
by other tasks. These instances then complete before their deadline, without
affecting the execution of the next generated instance.

Why P-RS performs no better than RS in most cases?
An interesting observation is that P-RS performs no better than RS inmost

cases. The difference between them is that P-RS incorporates a partitioning
process. This demonstrates that ’less is more’,it is not always advantageous
to add restrictions to reduce uncertainty. We believe there are two reasons
for this. RS tries to simulate the execution of jobs, and the method we use
allocates jobs to processors as fairly as possible. However, jobs have exe-
cution variation and we cannot fully predict the execution of jobs and find the
optimal solution for partitioning. The second and most critical point is that

7.2. Empirical Results 60

the restrictions provided by partitioning can lead to a waste of computation
resources. Suppose a processor is busy and there is a job waiting in its ready
queue, but another processor is free at the moment. The task that needs to
run cannot be migrated to that free processor.

8
Conclusion

In this chapter, we summarize our contributions in section 8.1, provide re-
sponses in section 8.2 to the research questions described in subsection 1.2,
and make recommendations for future research in section 8.3.

8.1. Summary of Contributions
In this thesis, we identify the limitations of current priority assignment schedul-
ing methods by exploring an anomaly case in subsection 5.1.2 and then pro-
pose our solutions. Furthermore, we develop a complete experimental envi-
ronment for evaluating various scheduling algorithms.

Stacks and Job batch placing algorithm We have designed stacks and
develop some special rules to define the valid placement of a job within the
stacks. In order to find a new release time for each job, we propose the
job batch placing algorithm, in subsection 5.2.2, which finds the appropri-
ate placement in stacks for all jobs in a job batch and is consistent with the
precedence constraints.

Reassembly stacking algorithm We propose a new scheduling algorithm
for parallel DAG tasks in subsection 5.2.1. We parse all the jobs in a hyper-
period and submit them to stacks in a special packing and ordering. The
new release times are obtained and then combined with the existing priority
assignment method ALAP for scheduling.

Partitioned reassembly stacking algorithm We propose a new partitioned
scheduling algorithm for parallel DAG tasks in subsection 5.3. While previous
partitioned scheduling algorithms have done partitioning at the task level, we
have innovated by applying partitioning to the job level. We still apply stack
to simulate the multiprocessor platform, and the job batch placing algorithm
allows for a fair distribution of all jobs to all processors. This approach allows
each processor to work as fully as possible.

61

8.2. Research Questions 62

Evaluation framework We have developed an evaluation framework for the
efficient and automated evaluation of various scheduling algorithms in chap-
ter 6. Our experimental environment supports the specification of parame-
ters and includes many of the scheduling algorithms mentioned in this thesis.
Furthermore, it supports the automatic analysis and summarizing of experi-
mental results to produce tables and graphs.

8.2. Research Questions
RQ1: Can a more granular level analysis compare with only one DAG struc-

ture analysis for recurrent DAG tasks assist priority-based scheduling
policy to improve schedulability?

We propose a new job-level analysis method for recurrent DAG tasks,
the job batch placing algorithm, based on which we propose the schedul-
ing algorithm reassembly stacking algorithm. From figure 7.1 and 7.2 we
observe that our algorithm has a higher schedulability ratio in all cases com-
pared to ALAP. There is no doubt that the reassembly stacking algorithm
benefits from such a job-level analysis method. A more granular level of anal-
ysis for recurrent DAG tasks is able to assist priority-based scheduling policy
to improve schedulability.

RQ2: How to improve schedulability of priority-based scheduling policies for
recurrent DAG tasks by using intra-DAG offset?

The reassembly stacking algorithmwe propose is essentially a release-
time tuning technique. Instead of just intra-DAG offsets, which are config-
ured for each node, we implement a fine-grained offset tuning technique,
where offsets are configured for each job. From the evaluation results, it
is clear that offset tuning indeed improves the schedulability of priority-based
scheduling algorithms.

RQ3: Does the partitioning method will improve schedulability of our priority-
based scheduling policy?

We combine the partitioning method with reassembly stacking to propose
the partitioned reassembly stacking algorithm, which adds the additional
restriction that all jobs can only run on the processor to which they belong.
The answer to the research question is that reducing uncertainty does not
improve the performance of the algorithm. We provide a discussion of this in
last paragraph in subsection 7.2.3.

In addition, our combination of the partitioning method with the priority-
based scheduling algorithm does not improve the schedulability ratio. This
suggests that not all cases of imposing more restrictions on jobs, such as
modifying the release time and specifying a processor for a job, will provide
a higher schedulability ratio.

8.3. Future Work 63

8.3. Future Work
In the following, we propose three future directions for research. So far,
with regard to Stacks, we have only considered WCET, but the tasks we
are scheduling have execution-time variations. So it would be a more fine-
grained solution to include the BCET of jobs in the Stacks analysis.

Moreover, in figure 5.19 we notice that there is a ”hole” between 77 and
109 in stack2 that has not been assigned a job. In our solution we did not
consider filling this ”hole” with a suitable job. If this could be done, it would
result in better processor optimisation and the completion of an instance’s
jobs sooner.

Finally, our solution is still a priority-based scheduling algorithm, and we
have only tried ALAP to generate priorities for all nodes, which means that
our solution can be extended to all priority generation algorithms. In the fu-
ture, it will be a mutually beneficial process to apply better priority generation
algorithms to our solution.

References
[1] Ishfaq Ahmad, Yu Kwong Kwok, andMin YouWu. “Analysis, evaluation,

and comparison of algorithms for scheduling task graphs on parallel
processors”. In: International Symposium on Parallel Architectures, Al-
gorithms and Networks, I-SPAN (1996), pp. 207–213. DOI: 10.1109/
ISPAN.1996.508983.

[2] Benny Akesson et al. “A comprehensive survey of industry practice
in real-time systems”. In: Real-Time Systems (2021). DOI: 10.1007/
s11241- 021- 09376- 1. URL: https://doi.org/10.1007/s11241-
021-09376-1.

[3] Abu Asaduzzaman, Manira Rani, and Fadi N. Sibai. “On the design of
low-power cache memories for homogeneous multi-core processors”.
In: Proceedings of the International Conference on Microelectronics,
ICM (2010), pp. 387–390. DOI: 10.1109/ICM.2010.5696168.

[4] Sanjoy Baruah. “Feasibility analysis of preemptive real-time systems
upon heterogeneousmultiprocessor platforms”. In:Real-TimeSystems
Symposium (2004), pp. 37–46. ISSN: 10528725. DOI: 10.1109/REAL.
2004.20.

[5] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo.Multiprocessor
scheduling for real-time systems. Springer, 2015.

[6] Sanjoy Baruah et al. “A generalized parallel task model for recurrent
real-time processes”. In:Real-TimeSystemsSymposium (2012), pp. 63–
72. ISSN: 10528725. DOI: 10.1109/RTSS.2012.59.

[7] Sanjoy K. Baruah. “The Non-Preemptive Scheduling of Periodic Tasks
upon Multiprocessors”. In: Real-Time Syst. 32.1–2 (2006), pp. 9–20.
ISSN: 0922-6443. DOI: 10.1007/s11241-006-4961-9. URL: https:
//doi.org/10.1007/s11241-006-4961-9.

[8] Niu Bin et al. “Asymmetric software architecture design of High per-
formance control chip applied in industrial control field”. In: Interna-
tional Conference on Advanced Electronic Materials, Computers and
Software Engineering (AEMCSE). 2021, pp. 916–920. DOI: 10.1109/
AEMCSE51986.2021.00186.

[9] Enrico Bini and Giorgio C Buttazzo. “Measuring the performance of
schedulability tests”. In: Real-Time Systems 30.1 (2005), pp. 129–154.
DOI: 10.1007/S11241-005-0507-9.

[10] Giorgio Buttazzo and AntonCervin. “Comparative assessment and eval-
uation of jitter control methods”. In: Conference on Real-Time and Net-
work Systems. 2007, pp. 163–172. DOI: 10.1109/TII.2011.2123902.

[11] Giorgio C Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd Edition (Real-Time Sys-
tems Series). 2011. URL: http://www.springer.com/series/6941.

64

https://doi.org/10.1109/ISPAN.1996.508983
https://doi.org/10.1109/ISPAN.1996.508983
https://doi.org/10.1007/s11241-021-09376-1
https://doi.org/10.1007/s11241-021-09376-1
https://doi.org/10.1007/s11241-021-09376-1
https://doi.org/10.1007/s11241-021-09376-1
https://doi.org/10.1109/ICM.2010.5696168
https://doi.org/10.1109/REAL.2004.20
https://doi.org/10.1109/REAL.2004.20
https://doi.org/10.1109/RTSS.2012.59
https://doi.org/10.1007/s11241-006-4961-9
https://doi.org/10.1007/s11241-006-4961-9
https://doi.org/10.1007/s11241-006-4961-9
https://doi.org/10.1109/AEMCSE51986.2021.00186
https://doi.org/10.1109/AEMCSE51986.2021.00186
https://doi.org/10.1007/S11241-005-0507-9
https://doi.org/10.1109/ TII.2011.2123902
http://www.springer.com/series/6941

References 65

[12] Daniel Casini et al. “Partitioned Fixed-Priority Scheduling of Parallel
TasksWithout Preemptions”. In:Proceedings - Real-TimeSystemsSym-
posium 2018-December (Jan. 2019), pp. 421–433. ISSN: 10528725.
DOI: 10.1109/RTSS.2018.00056.

[13] Edward G. Coffman et al. Bin packing approximation algorithms: Sur-
vey and classification. Vol. 1-5. 2013. DOI: 10.1007/978- 1- 4419-
7997-1_35.

[14] Thomas H. Cormen et al. Introduction to Algorithms. 3rd. The MIT
Press, 2009.

[15] ZhengDong andCong Liu. “An efficient utilization-based test for schedul-
ing hard real-time sporadic DAG task systems on multiprocessors”. In:
Real-Time Systems Symposium (2019), pp. 181–193. DOI: 10.1109/
RTSS46320.2019.00026.

[16] Eghonghon-aye Eigbe. Low-Overhead Non-Preemptive Scheduling of
Real-Time Tasks upon Multiprocessor Platforms | TU Delft Reposito-
ries. 2019. URL: https : / / repository . tudelft . nl / islandora /
object/uuid%5C%3A523dc2df-c8f2-4b97-b1fb-55b52522264d.

[17] Juan Fang et al. “Performance optimization by dynamically altering
cache replacement algorithm in CPU-GPU heterogeneous multi-core
architecture”. In: IEEE/ACM International Symposium onCluster, Cloud
and Grid Computing (2017), pp. 723–727. DOI: 10.1109/CCGRID.2017.
54.

[18] Vincent François-Lavet et al. “An Introduction to Deep Reinforcement
Learning”. In: Foundations and Trends in Machine Learning 11 (3-4
Dec. 2018), pp. 219–354. ISSN: 1935-8237. DOI: 10.1561/22000000
71. URL: http://dx.doi.org/10.1561/2200000071.

[19] R. L. Graham. “Bounds on the performance of scheduling algorithms”.
In: In Computer and Job Scheduling Theory (1976), pp. 165–227.

[20] NanGuan et al. “Schedulability analysis for non-preemptive fixed-priority
multiprocessor scheduling”. In: Journal of Systems Architecture 57 (5
May 2011), pp. 536–546. ISSN: 1383-7621. DOI: 10.1016/J.SYSARC.
2010.08.003.

[21] QingqiangHe et al. “Intra-Task Priority Assignment in Real-TimeSchedul-
ing of DAG Tasks on Multi-Cores”. In: IEEE Transactions on Paral-
lel and Distributed Systems 30 (10 Oct. 2019), pp. 2283–2295. ISSN:
15582183. DOI: 10.1109/TPDS.2019.2910525.

[22] Zhigang Hua et al. Learning to Schedule DAG Tasks. 2021. DOI: 10.
48550/ARXIV.2103.03412. URL: https://arxiv.org/abs/2103.
03412.

[23] Xu Jiang et al. “On the Decomposition-Based Global EDF Schedul-
ing of Parallel Real-Time Tasks”. In: Real-Time Systems Symposium 0
(July 2016), pp. 237–246. ISSN: 10528725. DOI: 10.1109/RTSS.2016.
031.

[24] EG Coman Jr, MRGarey, and DS Johnson. “Approximation algorithms
for bin packing: A survey”. In: Approximation algorithms for NP-hard
problems (1996), pp. 46–93.

https://doi.org/10.1109/RTSS.2018.00056
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1109/RTSS46320.2019.00026
https://doi.org/10.1109/RTSS46320.2019.00026
https://repository.tudelft.nl/islandora/object/uuid%5C%3A523dc2df-c8f2-4b97-b1fb-55b52522264d
https://repository.tudelft.nl/islandora/object/uuid%5C%3A523dc2df-c8f2-4b97-b1fb-55b52522264d
https://doi.org/10.1109/CCGRID.2017.54
https://doi.org/10.1109/CCGRID.2017.54
https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
http://dx.doi.org/10.1561/2200000071
https://doi.org/10.1016/J.SYSARC.2010.08.003
https://doi.org/10.1016/J.SYSARC.2010.08.003
https://doi.org/10.1109/TPDS.2019.2910525
https://doi.org/10.48550/ARXIV.2103.03412
https://doi.org/10.48550/ARXIV.2103.03412
https://arxiv.org/abs/2103.03412
https://arxiv.org/abs/2103.03412
https://doi.org/10.1109/RTSS.2016.031
https://doi.org/10.1109/RTSS.2016.031

References 66

[25] Navid Khoshavi, Hamid R. Zarandi, andMohammadMaghsoudloo. “Control-
flow error detection using combining basic and program-level check-
ing in commodity multi-core architectures”. In: IEEE International Sym-
posium on Industrial Embedded Systems (2011), pp. 103–106. DOI:
10.1109/SIES.2011.5953691.

[26] Yu Kwong Kwok and Ishfaq Ahmad. “Static scheduling algorithms for
allocating directed task graphs tomultiprocessors”. In:ACMComputing
Surveys (CSUR) 31 (4 Dec. 1999), pp. 406–471. ISSN: 03600300. DOI:
10.1145/344588.344618. URL: https://dl-acm-org.tudelft.idm.
oclc.org/doi/abs/10.1145/344588.344618.

[27] Hyunsung Lee et al. “A Global DAG Task Scheduler Using Deep Re-
inforcement Learning and Graph Convolution Network”. In: IEEE Ac-
cess 9 (2021), pp. 158548–158561. ISSN: 21693536. DOI: 10.1109/
ACCESS.2021.3130407.

[28] Hyunsung Lee et al. “Panda: Reinforcement Learning-Based Priority
Assignment for Multi-Processor Real-Time Scheduling”. In: IEEE Ac-
cess 8 (2020), pp. 185570–185583. ISSN: 21693536. DOI: 10.1109/
ACCESS.2020.3029040.

[29] Jinkyu Lee. “Improved schedulability analysis using carry-in limitation
for non-preemptive fixed-priority multiprocessor scheduling”. In: IEEE
Transactions on Computers 66 (10 Oct. 2017), pp. 1816–1823. ISSN:
00189340. DOI: 10.1109/TC.2017.2704083.

[30] Yuxi Li. Deep Reinforcement Learning: An Overview. 2017. DOI: 10.
48550/ARXIV.1701.07274. URL: https://arxiv.org/abs/1701.
07274.

[31] Hongzi Mao et al. “Learning Scheduling Algorithms for Data Processing
Clusters”. In: Conference of the ACM Special Interest Group on Data
Communication (Oct. 2018), pp. 270–288. DOI: 10.48550/arxiv.181
0.01963. URL: https://arxiv.org/abs/1810.01963v4.

[32] Alessandra Melani et al. “Response-Time Analysis of Conditional DAG
Tasks in Multiprocessor Systems”. In: Euromicro Conference on Real-
TimeSystems 2015-August (Aug. 2015), pp. 211–221. ISSN: 10683070.
DOI: 10.1109/ECRTS.2015.26.

[33] Mitra Nasri and Bjorn B. Brandenburg. “An Exact and Sustainable Anal-
ysis of Non-preemptive Scheduling”. In: Proceedings - Real-Time Sys-
temsSymposium 2018-January (Jan. 2018), pp. 12–23. ISSN: 10528725.
DOI: 10.1109/RTSS.2017.00009.

[34] Mitra Nasri andGerhard Fohler. “Non-work-conserving Non-preemptive
Scheduling: Motivations, Challenges, and Potential Solutions”. In: Eu-
romicro Conference on Real-Time Systems 2016-August (Aug. 2016),
pp. 165–175. ISSN: 10683070. DOI: 10.1109/ECRTS.2016.11.

[35] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. “A response-
time analysis for non-preemptive job sets under global scheduling”. En-
glish. In: Euromicro Conference on Real-Time Systems. June 2018.
DOI: 10.4230/LIPIcs.ECRTS.2018.9.

https://doi.org/10.1109/SIES.2011.5953691
https://doi.org/10.1145/344588.344618
https://dl-acm-org.tudelft.idm.oclc.org/doi/abs/10.1145/344588.344618
https://dl-acm-org.tudelft.idm.oclc.org/doi/abs/10.1145/344588.344618
https://doi.org/10.1109/ACCESS.2021.3130407
https://doi.org/10.1109/ACCESS.2021.3130407
https://doi.org/10.1109/ACCESS.2020.3029040
https://doi.org/10.1109/ACCESS.2020.3029040
https://doi.org/10.1109/TC.2017.2704083
https://doi.org/10.48550/ARXIV.1701.07274
https://doi.org/10.48550/ARXIV.1701.07274
https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1701.07274
https://doi.org/10.48550/arxiv.1810.01963
https://doi.org/10.48550/arxiv.1810.01963
https://arxiv.org/abs/1810.01963v4
https://doi.org/10.1109/ECRTS.2015.26
https://doi.org/10.1109/RTSS.2017.00009
https://doi.org/10.1109/ECRTS.2016.11
https://doi.org/10.4230/LIPIcs.ECRTS.2018.9

References 67

[36] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. “Response-
Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global
Scheduling”. In:Euromicro Conference onReal-TimeSystems. Vol. 133.
2019, 21:1–21:23. DOI: 10.4230/LIPIcs.ECRTS.2019.21. URL: http:
//drops.dagstuhl.de/opus/volltexte/2019/10758.

[37] Marco Di Natale et al. “Optimizing end-to-end latencies by adaptation of
the activation events in distributed automotive systems”. In: Proceed-
ings of the IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS (2007), pp. 293–302. ISSN: 15453421. DOI:
10.1109/RTAS.2007.24.

[38] Frank Reichenbach and Alexander Wold. “Multi-core technology - Next
evolution step in safety critical systems for industrial applications?” In:
Proceedings - 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, DSD 2010 (2010), pp. 339–346. DOI:
10.1109/DSD.2010.50.

[39] Abusayeed Saifullah et al. “Parallel Real-Time Scheduling of DAGs”. In:
IEEE Transactions on Parallel and Distributed Systems 25.12 (2014),
pp. 3242–3252. DOI: 10.1109/TPDS.2013.2297919.

[40] Maria A. Serrano et al. “Response-time analysis of DAG tasks under
fixed priority scheduling with limited preemptions”. In: Design, Automa-
tion Test in EuropeConference Exhibition (DATE). Mar. 2016, pp. 1066–
1071.

[41] Micaela Verucchi. A comprehensive analysis of DAG tasks: solutions
for modern real-time embedded systems. 2019.

[42] Micaela Verucchi et al. “Latency-AwareGeneration of Single-Rate DAGs
from Multi-Rate Task Sets”. In: IEEE Real-Time and Embedded Tech-
nology and Applications Symposium 2020-April (Apr. 2020), pp. 226–
238. ISSN: 15453421. DOI: 10.1109/RTAS48715.2020.000-4.

[43] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. “Pointer Networks”.
In: Advances in Neural Information Processing Systems 2015-January
(June 2015), pp. 2692–2700. ISSN: 10495258. DOI: 10.48550/arxiv.
1506.03134. URL: https://arxiv.org/abs/1506.03134v2.

[44] Luping Wang et al. “Metis: Learning to schedule long-running applica-
tions in shared container clusters at scale”. In: International Confer-
ence for High Performance Computing, Networking, Storage and Anal-
ysis, SC 2020-November (Nov. 2020). ISSN: 21674337. DOI: 10.1109/
SC41405.2020.00072.

[45] Ronald J. Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Machine Learning 1992 8:3
8 (3 May 1992), pp. 229–256. ISSN: 1573-0565. DOI: 10.1007/BF0
0992696. URL: https://link.springer.com/article/10.1007/
BF00992696.

https://doi.org/10.4230/LIPIcs.ECRTS.2019.21
http://drops.dagstuhl.de/opus/volltexte/2019/10758
http://drops.dagstuhl.de/opus/volltexte/2019/10758
https://doi.org/10.1109/RTAS.2007.24
https://doi.org/10.1109/DSD.2010.50
https://doi.org/10.1109/TPDS.2013.2297919
https://doi.org/10.1109/RTAS48715.2020.000-4
https://doi.org/10.48550/arxiv.1506.03134
https://doi.org/10.48550/arxiv.1506.03134
https://arxiv.org/abs/1506.03134v2
https://doi.org/10.1109/SC41405.2020.00072
https://doi.org/10.1109/SC41405.2020.00072
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696

References 68

[46] Shuai Zhao et al. “DAG Scheduling and Analysis on Multiprocessor
Systems: Exploitation of Parallelism and Dependency”. In: vol. 2020-
December. Institute of Electrical and Electronics Engineers Inc., Dec.
2020, pp. 128–140. ISBN: 9781728183244. DOI: 10.1109/RTSS49844.
2020.00022.

https://doi.org/10.1109/RTSS49844.2020.00022
https://doi.org/10.1109/RTSS49844.2020.00022

	Preface
	Abstract
	List of Figures
	List of Tables
	Introduction
	Objectives
	Research Questions
	Contributions
	Organization

	Background
	Concepts
	Schedulability Tests
	Recurrent Task
	Deadline Type
	Multiprocessor Platforms
	Multiprocessor Scheduler
	Execution Models
	Work-conserving and Non-work-conserving Scheduling Policies
	Bin Packing
	Directed Acyclic Graph

	System Model and Problem Definition
	Parallel DAG Task Model
	Task
	Instance and Job

	Multiprocessor Model
	Scheduling Model
	Execution Model
	Problem Definition

	Related Work
	DAG Scheduling
	Fixed-task Priority
	Fixed-job Priority
	Fixed-node priority
	Add Directed Edges

	Schedulability Analysis
	Summary

	Our solutions
	Motivational Examples
	Scheduling Anomaly
	Case Analysis

	Our Solution: Reassembly Stacking
	Operational Processes
	Stacks
	Illustrated Example

	Our Solution: Partitioned Reassembly Stacking

	Evaluation Framework
	Evaluating Scheduling Algorithms
	Performance Metric
	Parameters
	Functionalities

	Software Architecture
	Task Generator

	Task Parser
	Schedulability Tester
	Results Analyser

	Empirical evaluation
	Experiment setup
	Empirical Results
	Impact of the Number of Tasks
	Impact of the Utilisation
	Summary and Discussions

	Conclusion
	Summary of Contributions
	Research Questions
	Future Work

	References

