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and statistics. Different existing techniques and models are reviewed and a particle filtering
algorithm is developed. A case study based on the data and phenomenological relations
of "Unfolding the Early Fatigue Damage Process for CFRP Cross-Ply Laminates" from Li
et al. (2020), a colleague of mine from the Pythia team at Delft University of Technology, is
presented as a proof of concept.

I would like to extend my greatest gratitude to my supervisor Dimitrios Zarouchas for guiding
me through this thesis in pursuit of a successful result. Furthermore, a distinct acknowledgment
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parents for offering the opportunities that shaped me to who I am. Last but not least, I am
very grateful to my family and close friends for always being there for me through thick and
thin.

Thomas De Jonghe
Delft, 17 December 2020
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Abstract

High performance continuous fiber-reinforced composites are becoming increasingly important
in the aerospace industry. In these structures, internal damage is often created and propagated
throughout the lifetime, having a negative impact on the structural properties. In order to
allow for condition-based maintenance, there is a need for reliable prognostics to predict future
damage states. Therefore, a model-based machine learning approach is developed in this thesis
to perform prognostics of the remaining useful life (RUL) and remaining useful properties
(RUP) of cross-ply composites to end-of-early-fatigue-life (EOEFL). In-situ transverse matrix
crack density and dynamic stiffness data are available, as well as offline delamination ratio and
damage induced stiffness degradation data. To account for the multicausality and non-linearity
in stiffness degradation, the evolution of cracks and delaminations is modeled using separate
phenomenological relations that are pre-trained with high variance using non-linear least
squares (NLS) on a separate training set. These damage properties are then combined into a
normalized stiffness prediction using NLS pre-trained phenomenological relations that express
the induced stiffness degradation for each of the aforementioned properties. A particle filter
(PF) trains the model parameters, initialized in a high variance uniform distribution, for the
phenomenological models in real-time (i.e. online). This is done with the in-situ crack density
and normalized stiffness measurements of the testing specimen only. A random walk on the
model parameters, which declines towards EOEFL with a given rate of convergence, is added
to allow for continuous adaptivity. By propagating each particle to future states beyond the
online time step in the PF, the prognostics are obtained. This encompasses the RUP and
RUL to EOEFL using a weighted sum of the particles. After applying this methodology to
the case study data, it is concluded that the potential of PF to offer adaptivity required for
RUP prognostics of composites is identified, definitely for damage properties showing early
characteristic behavior. However, reliable RUL estimation to EOEFL with the methodology set
out in this thesis remains difficult. Especially the stiffness degradation model and the failure
criterion for EOEFL generate difficulties. Therefore, a promising recommendation would be to
combine similar phenomenological relations to end-of-life for crack and delamination growth
with an alternative stiffness model. A feasible approach would be to train a surrogate model
on synthetic data generated with finite element modeling simulations. Finally, a sensitivity
analysis is done on three PF hyperparameters: sample size, threshold effective sample size,
and rate of convergence. The first shows that a minimum sample size can be distinguished
after which no improvement occurs when the sample size increases. The second indicates a
’sweet spot’ that balances the sample impoverishment and weight degeneracy drawbacks. The
latter makes it plausible that a moderate rate of convergence is preferable.
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ŵ Un-normalized weight
w Weight vector
x Damage state vector

[
ρ, dr,

EN
E0

]
y Measurement vector

[
ρ̄, ĒNE0
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Chapter 1

Introduction

High performance fiber-reinforced composites are becoming increasingly important in the
aerospace industry. These lightweight structures offer the potential to reduce airframe weight,
which in turn leads to fuel savings. Next to this, manufacturing costs decrease with new
composite manufacturing technologies being developed over the years (Mangalgiri, 1999; Knab
et al., 2018). Apart from fuel economy, composites offer advantages with superior corrosion
resistance compared to metals (Shufeng et al., 2015). However, there are downsides to the use
of composites. Most importantly, internal damage can be created and propagated throughout
the lifetime, which has a negative impact on the structural properties (Khan et al., 2019).

Different maintenance strategies exist to guarantee airworthiness of the structural component,
thus to overcome the downside of internal damage. Traditionally, corrective maintenance
is planned with fixed time intervals based on the experience of technicians (Marseguerra
et al., 2002). In contrast to corrective maintenance, condition-based maintenance facilitates
dynamic planning of maintenance using structural health monitoring measurements. Because
condition-based maintenance needs real-time information on the damage state and expected
damage evolution, prognostic modeling is required to estimate future damage states along with
the remaining useful life up to a pre-defined critical damage level (Farrar and Lieven, 2006).
For this purpose, Elattar et al. (2016) distinguish four types of prognostics: a reliability-based,
physics-based, data-driven, and hybrid approach. While these approaches have been used in
numerous industrial applications, research in the field of prognostics for composites is still
rather limited (Eleftheroglou et al., 2018).

Lately, Chiachío et al. (2015a), Chiachío et al. (2015b) and Corbetta et al. (2018) made use
of particle filtering (model-based approach) to update model parameters of physics-based
damage models with structural health monitoring measurements to predict the end-of-life of
composites. These models express damage evolution between states by a modified Paris law
for composites and shear lag models. On the other hand, purely data-driven methodologies
use information from observed data, on which model training is performed to predict the
future states by identifying degradation patterns. Data-driven methodologies can be classified
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into two major groups: the artificial intelligence approaches (i.a. neural networks and fuzzy
logic) and statistical approaches (i.a. gaussian process regression, least squares regression,
support vector machines and hidden Markov models). As a downside, these methods require a
larger number of observed training data to provide sufficient accuracy (Kim et al., 2016).

Next to the model-based and data-driven approaches, a third hybrid category exists to
combine the advantages and to alleviate the drawbacks of both. Recently, Cadini et al. (2019)
developed a neural network (data-driven approach) embedded within a particle filter (model-
based approach), which was showcased on aeronautical metallic stiffened skin panels. This
allows sequential updating of the remaining useful life prediction model every time structural
health monitoring data become available. While this approach eliminates the need for a
large set of training data and a reliable physics-based model, it suffers from volatile behavior
and divergence of confidence intervals close to end-of-life. However, as Eleftheroglou (2020)
identifies, the proposed methodology in Cadini et al. (2019) can be valuable for prognostics of
composites once more reliable phenomenological models become available.

With the very recent introduction of phenomenological relations based on experimental
observations by Li et al. (2020) describing fatigue damage accumulation in the early fatigue life
of cross-ply carbon fiber-reinforced polymers, new opportunities arise. These phenomenological
relations also describe how both transverse matrix cracking and delaminations contribute to
the damage accumulation process. Where one first believed that damage in the early fatigue
life of composites, often referred to as stage I, is dominated by matrix crack formation and
propagation (Jollivet et al., 2013), the recent observations show that in fact delamination
is responsible for a larger stiffness degradation than transverse matrix cracks in this stage.
Considering the significant stiffness degradation in early fatigue life, it is of great interest to
emphasize at first on the prognostics of remaining useful properties in early fatigue life, paving
the way for future extensions to predict the actual remaining useful life up to failure using
model-based methodologies that encapsulate the damage accumulation process. Therefore,
this thesis aims at developing a model-based machine learning algorithm for remaining useful
life prognostics of cross-ply continuous fiber-reinforced composites in early fatigue life.

1.1 Research Objective and Research Questions

Given the research gaps and opportunities identified in the introduction, the objectives and
research questions of this thesis can be specified. The research objective is formulated as such:

Research Objective
The research objective of this thesis is to develop a model-based machine learning model
for prognostics of the remaining useful life and properties of cross-ply composites in
early fatigue life. This model-based approach shall allow the construction of a reliable
model without the availability of a large dataset nor a reliable physics-based model.
Doing so, the machine learning model shall be able to predict future states, keeping
in mind multicausality of stiffness degradation, while offering real-time adaptivity of
the model parameters based on information from multiple structural health monitoring
measurements. Throughout the project, special attention shall be paid to introducing,
propagating and monitoring uncertainties to improve validity of the model.
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A dataset collected and analyzed by Li et al. (2020), a colleague from the Pythia team at Delft
University of Technology, is available as case study data for this research. This dataset consists
of seven cross-ply [02/904]s carbon-fiber reinforced polymer specimens. Tests were ended at
105 cycles, which is well beyond early fatigue life. Every 500 cycles, the specimen was unloaded
and information on the crack density, the delamination ratio and the dynamic stiffness was
extracted. Using this dataset, and keeping in mind the research objective statement, research
questions can be formulated. The novel machine learning model shall be constructed and
assessed using the available case study data and the following identified research question and
sub-questions:

Research Question
To what extent can the remaining useful life and properties of cross-ply composites
in early fatigue life be predicted using online sequential training of phenomenological
model(s) embedded into a particle filter?

This research question encompasses the following sub-questions:

• Which measurable damage properties can be used to construct phenomenological
relations for damage evolution of composites in early fatigue life?

• How can the multicausality of stiffness degradation in early fatigue life be accounted
for in a particle filtering algorithm?

• How well does the model behave on case study data to predict the remaining useful
life in terms of prognostic evaluation metrics (precision, root mean squared error,
mean absolute percent error, cumulative relative accuracy and convergence)?

• Which influence do the input parameters of the particle filtering algorithm have
on the model performance?

The ’to what extent’ in the research question is not an absolute measure, but it encompasses
a qualitative analysis for each of the sub-questions. The qualitative answers to the research
questions are supported by quantitative results of the case study presented in this thesis.
Therefore, in the case study methodology and the case study results, the sub-questions are
dealt with along the way. In the conclusions, each question is reflected on including the most
relevant details.



4 Introduction

1.2 Report Structure

This report elaborates on the research objective, and answers the research (sub-)questions
using the following report structure:

• Chapter 2 introduces the general background of this thesis, along with key findings
and recent developments in the field of composites and machine learning. First, the
properties and damage evolution of continuous fiber-reinforced composites are discussed.
After this, the principles behind usage monitoring and structural health monitoring are
elaborated upon. Finally, background is provided on the fundamentals and applications
of model-based machine learning.

• Chapter 3 familiarizes the reader with the case study data from Li et al. (2020) used
throughout the next chapters. The properties and manufacturing processes are elaborated
upon for these specific specimens. Additionally, the methods used for gathering structural
health monitoring data as well as the damage properties recorded in the dataset are
introduced.

• Chapter 4 establishes the methodology to construct the model-based machine learning
model for this research. First, the phenomenological relations and pre-training of model
parameters are focused on to develop a state transition model for the particle filter.
Following on this, the three major building blocks of the particle filtering algorithm
for adaptive prognostics are discussed: initialization, filtering and prognostics. A last
section in this chapter focuses on the evaluation of performance of these models when
applied to a case study.

• Chapter 5 details the results of the case study showcasing the model on the case study
data. Additionally, the results of the remaining useful life and properties prognostics of
cross-ply continuous fiber-reinforced composites in early fatigue life are discussed. Here,
the results for the strong performing specimen 1-4 and the weak performing specimen 2-2
are detailed extensively. Lastly, the sensitivity of input parameters on model performance
is investigated.

• Chapter 6 concludes this thesis by pointing out the most significant findings as well as
restating answers to the research questions. Additionally, recommendations for future
research are formulated.



Chapter 2

Literature

This chapter introduces background information for this thesis, along with recent developments
in the field of continuous fiber-reinforced composites and machine learning. First, the properties
and damage evolution of composites are discussed in section 2.1. After this, section 2.2 focuses
on usage monitoring and structural health monitoring (SHM) for prognostics. It is important to
know that SHM techniques do not measure damage directly. Finally, in section 2.3, background
is provided on fundamentals of model-based machine learning.

2.1 Continuous Fiber-Reinforced Composites

Continuous fiber-reinforced composites, as considered in this thesis for high-performance
applications, consist of two or more phases, for which the combined performance and prop-
erties can be superior to the characteristics of each of the constituents individually. Their
backbone exists of fibers having a high length-to-diameter ratio (Daniel and Ishai, 2006). First,
the properties of these composites are discussed with their constituents and imperfections
(subsection 2.1.1). A key take-away of this subsection is that the complexity and high number
of interactions make composite failure a stochastic process. Subsequently, fatigue damage
accumulation is elaborated upon in subsection 2.1.2, in which it becomes clear that fatigue
damage accumulation is a multi-scale phenomenon.

2.1.1 Structural Properties

Continuous fiber-reinforced composites consist of two separate phases on the microscale level:
a dispersed phase with continuous fibers and a polymer matrix phase. As Figure 2.1 shows,
both phases are combined to a composite ply (mesoscale level). Within the composite, the
main purpose of the matrix phase is to bind the fibers together, and to distribute applied
stresses among the fibers (Callister and Rethwisch, 2014). However, a single composite ply
barely offers sufficient strength for high-end applications. Therefore, multiple composite plies
are combined into a laminate (macroscale level). The number of plies and their orientation
makes it possible to tailor laminate properties based on the structural requirements.
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Figure 2.1: Schematic representation of a continuous fiber-reinforced composite and its con-
stituents from micro- to macroscale level (Ageyeva et al., 2019).

Dispersed Phase: Fibers

The fibers in continuous fiber-reinforced composites are the load-carrying elements. In
high-performance composites, glass fibers and carbon fibers are commonly used. The glass
fibers have a relatively low cost and still offer considerable strength. However, their low
specific stiffness and susceptibility to surface flaws makes them less suitable as structural
components for advanced applications. Therefore, carbon fibers are commonly preferred as
they retain excellent mechanical properties such as a high specific stiffness and strength at
higher temperatures, along with good chemical resistance. One should note that a wide
variety of carbon fibers with differing mechanical and physical characteristics exists, which
gives the possibility to tailor properties to the needs for a specific application (Callister and
Rethwisch, 2014; Pusch and Wohlmann, 2018). It is clear that a stiffer fiber prevents damage
from initiating prematurely. This is the direct effect of a smaller allowed deformation of the
matrix. However, fatigue behavior is not only dependent on the type of fiber, and must be
assessed on different levels (Wicaksono and Chai, 2013).

Matrix Phase: Polymers

The matrix phase in continuous fiber-reinforced composites binds the fibers together and
distributes applied stresses among the fibers. This means that little load is carried by the
matrix phase itself, but that its function is essential to activate the load-bearing fibers. Aside
from transferring loads, the matrix is essential to prevent the occurrence of surface damage
on the fibers, which could lead to crack formation. Additionally, the matrix phase is very
ductile compared to the dispersed phase, serving as a barrier for propagation of cracks between
fibers until a cluster of adjacent fibers fails. The choice of matrix depends partly on the
aforementioned stiffness considerations, but also on the properties of the interface when
combined with a select fiber (Callister and Rethwisch, 2014). As mentioned previously, a
higher resin ductility acts as a barrier for crack propagation between fibers. On the other hand,
Wicaksono and Chai (2013) mentions that a higher resin toughness results in an increased
inter-laminar fracture toughness to resist delamination.

Composite Laminate: Stacking Sequences

Composite plies consisting of the selected matrix and fiber type occur frequently as unidi-
rectional (UD) plies, with fibers aligned in one direction. Given the ply properties and the
required laminate properties, the composite laminate is constructed by stacking in a sequence
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of ply orientations relative to a reference axis (Kassapoglou, 2013). Four categories, illustrated
in Figure 2.2, are commonly used laminates: UD, cross-ply, angle-ply and multi-directional.

(a) Unidirectional laminate (b) Cross-ply laminate

(c) Angle-ply laminate (d) Multi-directional laminate

Figure 2.2: Illustration of composite laminate stacking sequences (Callister and Rethwisch, 2014).

In this research, the focus is on cross-ply composites as displayed in Figure 2.2b. These
laminates are composed of plies oriented at 0◦ and 90◦. Symmetric cross-ply laminates have
decoupling between in-plane loading and out-of-plane deformation, while anti-symmetric
cross-ply laminates have coupling between in-plane loading and out-of-plane deformation
(Daniel and Ishai, 2006). For both cases, extension-shear, bending-twist and extension-twist
coupling is not existent (Kollár and Springer, 2003). Specific effects of this lay-up on damage
initiation and accumulation are discussed in more detail in subsection 2.1.2.

Imperfections

While classical laminate theory can predict mechanical properties of composite, and while
fatigue life diagrams can be used as a baseline to assess properties of a composite based on its
constituents, uncertainty in the exact constituent properties causes significant scatter. Talreja
(2003) describes composite failure as a rather stochastic process in comparison to metal failure
due to its complexity and the number of interactions. Scatter can be broken down into intrinsic
sources and extrinsic sources.

Extrinsic scatter partly deals with the uncertainty of measurements. SHM measurements
also have an uncertainty associated, which is discussed in more detail with explanatory
axioms in section 2.2 and specifically for machine learning for prognostics in subsection 2.3.3.
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Additionally, environmental conditions such as temperature, moisture and corrosion have an
impact on the fatigue life of composites (Wicaksono and Chai, 2013). On the other hand,
intrinsic scatter arises due to the variability and uncertainty in micro-, meso- and macroscale
properties of continuous fiber-reinforced composites. This type of variability is unavoidable
and is dependent on the manufacturing of the laminate as well as processing and shaping of
the test specimen. Commonly encountered intrinsic defects include porosity, in-homogeneous
fiber volume fractions, fiber misalignment and fiber-matrix debonding. Additionally, residual
stresses can be present after the manufacturing process influencing delamination behavior due
to interference with global stresses while testing (Brunner, 2018).

Both sources of uncertainty in composites are often mitigated by adopting safety factors.
While this avoids unexpected failures, it also results in costly and unnecessary conservatism as
Chiachío Ruano and Rus Carlborg (2014) stress. Therefore, adaptive prognostics are required
to account for the inherent level of variability in the damage and failure behavior of composites.

2.1.2 Fatigue Damage Initiation and Accumulation

Despite the favorable mechanical properties for high-end applications, composites are prone to
internal damage on ply and intra-ply level. Therefore, it is important to predict the evolution
and/or accumulation of common damage parameters on the fatigue life of composites to
prevent macroscopic failure (McCarthy and Vaughan, 2015). Tension-tension fatigue loading is
the most studied phenomenon for composites, for which buckling does not occur. The general
degradation of cross-ply composites under tension-tension loading is therefore elaborated upon
first, after which the major differences with tension-compression loading are introduced. Due to
the complexity introduced by non-linear and brittle behavior under compression-compression
loading, this is considered out of scope for this thesis (Ribeiro et al., 2011).

Figure 2.3: Multi-scale nature of delamination as a result of intra-ply failure mechanisms
(McCarthy and Vaughan, 2015).

Tension-Tension Fatigue Loading

Considering tension-tension loading in cross-ply composites, fiber-matrix debonding and
matrix micro-cracking are commonly studied. As shown on the right in Figure 2.3, fiber-
matrix debonding and matrix micro-cracking are initiated on the intra-ply level. Under
persistent loading, the created intra-ply damage evolves to transverse ply cracks on ply level.
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Eventually, McCarthy and Vaughan (2015) describe the occurrence of delamination as a result
of stress concentrations at the transverse crack tips on ply level. However, damage evolution
in composites is highly dependent on the exact lay-up, mechanical properties and loading
conditions (Loutas et al., 2017). The following load levels are distinguished by Giurgiutiu
(2020), each showing different damage accumulation to failure:

• Low cyclic loading: In case of sufficiently low cyclic loading, matrix cracking occurs,
but does not propagate once reaching the fiber-matrix interface. Therefore, no additional
fracture surfaces appear and the lifetime is determined by the fatigue life of the fibers.

• Average cyclic loading: At higher cyclic loading, if a matrix crack reaches the fiber-
matrix interface, damage is propagated to other interfaces with two mechanisms. The
first involves a high stress concentration at the matrix crack tip reaching the fiber,
which leads to fiber breakage and a larger crack. The second involves a lower stress
concentration, where interfacial (fiber-matrix) debonding occurs along the interface.
As a result of the propagated intra-ply damage, stress concentrations between plies
increase significantly in areas with a large degree of matrix cracking, leading to local
delaminations. After the presence of delaminations, damage grows to macroscopic failure.

• High cyclic loading: For high cyclic loading, meaning close to ultimate strength, fiber
breakage will happen early in the lifetime due to statistical spread in fiber strength.
Once fibers fail, load redistribution among fibers propagates damage to other fibers until
large cracks are present leading to macroscopic failure.

Figure 2.4: Damage accumulation of a cross-ply composite subjected to cyclic loading (Li et al.,
2020).

When a composite is subjected to average cyclic loading with the aforementioned damage
mechanics, three stages are distinguished. These are observable in Figure 2.4 with the
accompanying longitudinal stiffness degradation. The different stages are defined below along
with their corresponding damage accumulation behavior:

• Stage I: This stage is often referred to as early fatigue life, which is very recently studied
by Li et al. (2020) on CFRP cross-ply composites. Keeping in mind the new insights and
considerable stiffness degradation (about 8-11%), the focus of this thesis on prognostics



10 Literature

in stage I. Where one first believed that damage in the early fatigue life of composites
is dominated by matrix crack formation and propagation (Jollivet et al., 2013), recent
observations by Li et al. (2020) show that in fact delamination is responsible for a
larger stiffness degradation than transverse matrix cracking. This is attributed to the
observed linear increase in stiffness degradation due to matrix cracking, compared to
a growing trend up to a threshold in stiffness degradation due to delamination. The
findings are quantified in more detail in chapter 3 and are used as phenomenological
model throughout the case study to perform prognostics in early fatigue life.

The characteristic damage state (CDS) defines the end of stage I (Giurgiutiu, 2020).
Ideally, in case of damage models without interaction, CDS would be exactly at matrix
crack saturation. At this point, the crack spacing becomes small enough to eliminate
load transfer from fibers to matrix through shear, meaning no additional cracks are
created. However, given the introduced interaction between off-axis matrix cracks and
delamination, CDS can either belong to stage I or stage II as shown in Figure 2.4.
Therefore, stage I to stage II transition is defined as the plateau region in EN/E0(N).

• Stage II: The majority of the composite life is described by stage II, which can be
identified as a plateau region in the longitudinal stiffness degradation as visible in
Figure 2.4. In this stage of the composite fatigue life, debondings and matrix cracks line
up causing delaminations along the inferfaces between plies (Eleftheroglou, 2020).

• Stage III: Apart from delaminations, fiber bundles fail more often in stage III and
accelerate the induced damage. This is visible in a sudden drop in longitudinal stiffness
in Figure 2.4, which eventually leads to macroscopic failure (Eleftheroglou, 2020).

Tension-Compression Fatigue loading

The aforementioned damage behavior is valid for tension-tension loading. However, in-service
composites also deal with tension-compression loading. This type of loading is known to be
deteriorate more than tension-tension fatigue with rapid degradation and a shorter fatigue
life. This is explained by the compressive load cycle that is more prone to cause delamination
due to out-of-plane buckling once a transverse crack occurs in the composite (Figure 2.5b).
Additionally, similar to tension-tension loading, adjacent plies suffer from fiber breakage when
subjected to tensile load cycles (Figure 2.5a) (Gamstedt and Sjögren, 1999).

(a) Tensile fiber breakage (b) Compressive delamination

Figure 2.5: Illustration of composite damage under tension-compression loading (Gamstedt and
Sjögren, 1999).
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2.2 Damage Prognostics for Composites

As Farrar and Lieven (2006) identify, SHM will be integrated increasingly into damage
prognostics. This means that, apart from assessing the current state of a system, prognostics
of the remaining useful life (RUL) in view of condition-based maintenance (CBM) can be done.
Such online RUL predictions are directly associated to future damage states, also referred to
as remaining useful properties (RUP) in this thesis. Given the complex damage evolution of
continuous fiber-reinforced composites due to multi-scale influences (section 2.1), a reliable
model for online RUL and RUP prognostics of composites is still nonexistent. It is the scope
of this thesis project to investigate a machine learning approach, for which the damage state
of the composite is used as an input. The damage prognostics process consists of three main
pillars: usage monitoring, SHM and the prognostics itself (Farrar and Lieven, 2006). These
parts are dealt with in the upcoming subsections respectively.

2.2.1 Usage Monitoring

Usage monitoring comprises the process of obtaining operational data about the system or
structure. This includes observations such as environmental conditions, and observations
of operational variables (Farrar and Lieven, 2006). The latter could include, in case of
aircraft, take-off/landing weights etc. On a laboratory scale, this process remains limited to
capturing environmental conditions (i.a. temperature) and the pre-defined loading conditions
(i.a. frequency, stress ratio etc.) during fatigue testing. Specifically in this thesis, constant
amplitude loading is applied as explained in chapter 3. This means that the focus will rather
be on integrating SHM information in prognostics than on usage monitoring.

2.2.2 Structural Health Monitoring

SHM is defined by Derriso et al. (2016) as automated methods for determining adverse changes
in the integrity of mechanical systems. The purpose of an SHM system is to automatically
assess the capability of a composite structure to serve its function in real-time. SHM techniques
allow to capture the damage state at different levels in real-time, ranging from laminate to
intra-ply level, making it possible to detect, localize, and assess damage (Hamdan et al., 2019;
Ghoshal et al., 2000). However, no matter which SHM technique is used, uncertainties remain
in the measurements as well as the structure. Therefore, one shall be aware of the following
selected axioms of SHM proposed by Worden et al. (2007):

• Axiom 1: "All structures have inherent flaws or defects."

• Axiom 2: "The assessment of damage requires a comparison between two system states."

• Axiom 3: "Identifying the existence and location of damage can be done in an unsu-
pervised learning mode, but identifying the type of damage present and the damage
severity can generally only be done in a supervised learning mode."

• Axiom 4a: "Sensors cannot measure damage. Feature extraction through signal
processing and statistical classification is necessary to convert sensor data into damage
information."
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• Axiom 4b: "Without intelligent feature extraction, the more sensitive a measurement is
to damage, the more sensitive it is to changing operational and environmental conditions."

• Axiom 6: "There is a trade-off between sensitivity to damage of an algorithm and its
noise rejection capability."

Axiom 1 indicates the need for SHM techniques to capture inherent flaws and defects, which
have been discussed in subsection 2.1.1. This could include voids on macroscale level, down to
impurities on the microscale level. Without reliable online SHM techniques in combination
with prognostics to perform CBM, a safety factor, which depends on the manufacturing process,
is applied to include potential defects for certification purposes (EASA, 2017). Where inherent
flaws cause intrinsic scatter, axiom 4 and 6 stress the presence of noise on sensor measurements
(extrinsic scatter). When doing prognostics, it is important to be able to quantify these
uncertainties for the SHM technique used in specific operational conditions. Four different
damage features can be extracted: damage detection and localization, and damage type and
severity. From these categories, the first two can be done using unsupervised learning, while
the others shall be done with a supervised learning approach as suggested by axiom 3. In case
of composites, the focus would be to detect delaminations and transverse matrix cracks in
order to predict damage accumulation (Tibaduiza et al., 2018). On a macrosale level, the
stiffness of a composite structure can be measured indirectly using for instance digital image
correlation (DIC). In subsection 2.3.3, it is discussed how the aforementioned measurement
uncertainties and additional uncertainties can be accounted for when doing RUL prognostics.

2.2.3 Prognostics

With the usage monitoring data and SHM data, one can move to prognostics of the RUP and
RUL of composite structures. However, a critical piece of information is future operational
and/or loading conditions, which are often unknown. These future loading conditions can
therefore be estimated using future loading modeling tools. In that respect, Farrar and
Lieven (2006) mention that state-space representations are a feasible option to track previous
loading and to predict future loading. In this thesis, constant amplitude loading will be
assumed, eliminating the need for a dedicated model for future loading conditions. This
means the focus is rather on the use of online SHM measurements to adapt underlying
phenomenological model parameters that describe damage evolution in composite structures.
However, it is important to support state-space usage monitoring information and forecasting
in the presented framework. In that respect, particle filtering (PF) shows great potential to
capture aforementioned uncertainties, related to composite damage evolution, in a state-space
model. More background information on model-based machine learning is therefore provided
in section 2.3.
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2.3 Machine Learning for Prognostics

As mentioned in section 2.2, it is not sufficient to assess only the present capability of a
composite structure to serve its function, but it is also required to make prognostics of the
RUL in view of CBM. For that purpose, PF has recently been used by Chiachío et al. (2015a),
Chiachío et al. (2015b) and Corbetta et al. (2018) to ensure adaptivity of model parameters for
physics-based damage models based on SHM measurements to estimate end-of-life (EOL) of
composites. Via an updated Paris law for composites and shear lag models, these approaches
express damage evolution between states. On the other hand, solely data-driven methodologies
use data from model training carried out on observed data through detection of deterioration
trends to forecast future states. However, a drawback of these methods is that they require a
greater number of observed data (Kim et al., 2016).

A hybrid model that exists of a neural network (data-driven approach) embedded inside a PF
(model-based approach) was recently developed by Cadini et al. (2019), which was displayed
on aeronautical metallic stiffened skin panels. This approach combines the adaptivity of model
parameters from PF with the predictive capabilities of a neural network. Each time SHM
data become available, sequential updating of the RUL prognostics model is done. Although
the need for a large collection of training data and a reliable physics-based model is removed
by this method, it suffers from unpredictable behavior and confidence interval divergence
close to EOL. However, as Eleftheroglou (2020) describes, more reliable phenomenological
models would make the suggested approach by Cadini et al. (2019) useful for prognostics of
composites.

With the very recent introduction of phenomenological relationships based on experimental
observations by Li et al. (2020) that explain the early fatigue life of cross-ply carbon fiber-
reinforced polymers, new opportunities exist. More details on damage mechanics behind these
findings are incorporated in section 2.1. Most importantly, it is observed that delamination
in stage I is responsible for a greater stiffness degradation than matrix cracks. This directly
introduces multicausality in stiffness degradation, which should be accounted for in the machine
learning model. Additionally, it is important to be aware of the size of the case study dataset
available. This dataset, which will be introduced in chapter 3 consists of seven specimens.
In general, it is also desirable to limit the required size of a dataset to a minimum due to
the considerable time and cost associated to testing campaigns. This makes model-based
approaches, which require less data, a feasible option.

Therefore, the prognostics elaborated upon in this section focus on model-based approaches.
The principle of non-linear least squares (NLS) in view of fitting a phenomenological model
to observed data is discussed in subsection 2.3.1. As stated in the research objective, the
machine learning model shall be able to offer real-time adaptivity of the model parameters
based on information from SHM measurements. Therefore, the principles and theory behind
PF are treated in subsection 2.3.2. Along with this, special attention is paid to introducing,
propagating and monitoring uncertainties where required to improve validity of the model.
For this purpose, uncertainties inherent to prognostics of composites are summarized in
subsection 2.3.3.
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2.3.1 Non-Linear Least Squares

NLS is a degradation model in which model parameters relate non-linearly to the predicted
property. In NLS, parameter fitting is a deterministic optimization process, resulting in a single
set of parameters with the lowest weighted sum of squared errors as given by Equation 2.1. In
this equation, yk represents the k’th measurement point, and zk the k’th simulation output of
ny measurement points. Each of those has a weight wk (Kim et al., 2016).

SSEW =
ny∑
k=1

(yk − zk)2

w2
k

(2.1)

To minimize SSEW , several methods can be used. These all start from an initial value as a
function argument and calculate the next ’more optimal’ value using an optimization algorithm.
Once an optimum is reached, the algorithm stops and the last used arguments are the NLS
fit. However, one should note that very often an algorithm stops at only a local minimum as
many functions are not globally concave. While methods like simulated annealing exist to
prevent this, they are still computationally expensive and hard to implement (Kuan, 2004).
Therefore, this is out of the scope of this thesis, and a suitable local optimization shall be used
for the specific application. For unconstrained search, Levenberg-Marquardt is a well known
and studied method with reliable results. The Levenberg-Marquardt is a hybrid method
that updates variables adaptively. This means that for small values of a damping parameter,
Gauss-Newton updating is used, while for larger values of the same damping parameter,
gradient descent is used. Once the solution improves, Levenberg-Marquardt approaches a
Gauss-Newton method, which makes the solution accelerate to a local minimum (Gavin, 2019).

Despite the dependency of NLS on training data and the lack of uncertainty propagation, it is
investigated how the result is when embedded in a PF algorithm. This means that a damage
(evolution) model could be fit using NLS, and that a feasible range of model parameters can be
updated using PF. Therefore, the PF algorithm is elaborated upon below and opportunities
of the NLS model embedded in the PF are explored in the remainder of this report.

2.3.2 Particle Filtering

In order to give the NLS model the ability to adapt, it can be used within a Bayesian model.
A Bayesian model makes use of the principle of Bayesian inference. An example of such
technique is Markov chain Monte Carlo (MCMC) sampling. In this method, initial samples
are generated from a proposal distribution. Each of the particles is then propagated to a
posterior distribution as visualized in Figure 2.6. However, in this case, online prediction is not
possible as particles are not updated throughout the degradation process. Therefore, several
papers suggest to use MCMC sequentially as a state-space model. This is often referred to
as sequential Monte Carlo (SMC), or PF (Kim et al., 2016; Hu et al., 2019; Andrieu et al.,
2010). The big advantage of using the PF is that the state-space model can be non-linear and
non-Gaussian, while keeping computational cost limited according to Chiachío et al. (2015a).

A PF is a method for prognostics in which the probability density function (pdf) of parameters
is represented by samples/particles. At each time step, three adjustments are performed on
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Figure 2.6: Visualization of Markov chain Monte Carlo process (Kim et al., 2016).

the posterior set of particles of the previous time step. First, a prior distribution at time step
tn is predicted through state transition of the damage properties of the posterior distribution
at time step tn−1. After this, the weights of each particle are updated by judging how close the
prior degradation property at step tn is to the measurement (likelihood) at step tn. Finally,
depending on the PF architecture, resampling can be performed to normalize the weights and
obtain a posterior distribution at time step tn. All of these steps are illustrated in Figure 2.7
(Kim et al., 2016).

Figure 2.7: Visualization of particle filtering process (Kim et al., 2016).

Particle Filtering Algorithms

In case resampling is used, the PF approach is often called systematic importance resampling
(SIR), while PF without resampling is referred to as systematic importance sampling (SIS).
The major reason that SIR is often preferred over SIS is because after some time only a few
samples would dominate the estimate as only those have a significant weight compared to the
others. This problem of SIS is called weight degeneracy. While SIR (with resampling every
time step) mitigates the weight degeneracy problem, it introduces sample impoverishment.
Sample impoverishment indicates the issue that samples with high weights are likely to be
drawn multiple times during resampling, and that samples with small weights are not likely to
be drawn at all. This means that the diversity of samples decreases and collapses eventually to
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a single sample or a set of unique samples. Therefore, a regularization is used, the regularized
PF, that only resamples whenever the effective sample size falls below a pre-defined threshold
(Orhan, 2012).

Particle Filtering Resampling Techniques

Different resampling techniques exist, of which multinomial resampling, systematic resampling
and residual resampling are the most common. The first uses resampling with replacement,
which selects particles in the posterior distribution based on a multinomial distribution for
parameters in the vector containing the corresponding probability of success in the weight
vector. This process is presented visually in Figure 2.8, where the length of the rectangles
represents the weight of a particle represented by letters. N iterations are performed, for
which each particle with a higher weight has a higher probability to be picked. This means
N random variables are required for each pick, resulting in low computational efficiency of
this method. On the other hand, in systematic resampling, Ns ordered variates are uniformly
distributed. In each sub-interval, the same position is picked randomly from each of the
boundaries. Therefore, in systematic resampling, only a single random variable is required,
adding computational efficiency compared to multinomial resampling (Li et al., 2015; Candy,
2016).

Figure 2.8: Visualization of multinomial and systematic resampling process (Li et al., 2015).

Finally, residual resampling is an alternative for standard resampling methods. In this
approach, each particle with a weight larger than the integer value 1

Ns
is replicated. All

residuals with the remainder of the weights are subjected to a resampling approach, being
multinomial resampling for traditional residual resampling. However, if a constant sample size
is preferred, residual resampling proves not suitable according to Li et al. (2013). This is the
case as branch kill procedures, required to provide sufficient computational efficiency, cannot
be used without a decrease in sample size. As it is preferred in this thesis to keep the sample
size constant, systematic resampling can be considered the most suitable strategy.
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2.3.3 Uncertainty in Remaining Useful Life Prognostics

While making RUL prognosis of continuous fiber-reinforced composites, uncertainties are
present. The subjective uncertainty of the RUL prognostics arises due to variability across
different specimens as well as specimen-specific variability. It is therefore important to represent,
quantify, propagate and manage uncertainties adequately. However, before this is possible,
the challenging step of identifying inherent uncertainties must be taken. Sankararaman and
Goebel (2013) identify the following types of uncertainty:

• Present uncertainty: This involves uncertainty on the condition of the continuous
fiber-reinforced composite at the time step at which the RUL is estimated. Specifically
applied to PF, as considered in this thesis, this is directly related to state uncertainty
at time step n. Reducing the present uncertainty is therefore possible by using more
accurate sensors and improving filtering approaches. While it is impossible to get rid of
this type of uncertainty, it is important to be quantified and visualized using prediction
intervals (Kim et al., 2016).

• Future uncertainty: This type of uncertainty is inherent to prognostics, for which the
future conditions are unknown at time step n. Therefore, this is dependent on future
loading conditions, environmental conditions, operating conditions etc. Throughout
this thesis, the focus is on constant amplitude loading. Additionally, future states
are predicted using a prediction model, which directly introduces the third type of
uncertainty discussed below.

• Modeling uncertainty: Future states are predicted using an underlying, in this case
model-based, state transition model. However, as a perfect damage model does not exist
for composites, the predicted states will differ from the actual states. More specifically,
modeling uncertainties are introduced by uncertain model parameters, noise etc. It is
therefore important to add a random walk to the PF algorithm to allow model parameters
to remain dynamic throughout the lifetime (Chiachío et al., 2015a).

• Prediction method uncertainty: Even in case that a perfect model would be available
and that future/present states can be predicted perfectly, uncertainty remains in the
inability to quantify all sources of uncertainty. This is referred to as the prediction
method uncertainty, which can be taken along in the PF prediction step for each damage
state.

Apart from the aforementioned uncertainties, Eleftheroglou (2020) rightly identifies a fifth
source: the Past uncertainty. This type of uncertainty is associated to the intrinsic scatter,
elaborated upon in subsection 2.1.1. This type of uncertainty mostly depends on the quality
of the material used, and on the manufacturing process.

Given the aforementioned sources of uncertainty, it is essential to interpret them appropriately.
Apart from the uncertainties above, Talreja (2003) and Eleftheroglou (2020) describe composite
damage evolution as a stochastic process. In order to represent, quantify, propagate and
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manage the uncertainties adequately, it is irrelevant to provide deterministic solutions to RUP
and RUL predictions. This means that it is more appropriate to use a subjective, Bayesian
approach to obtain a pdf of the RUP and RUL prediction. PF belongs to Bayesian approaches
in which the concept of likelihood and sampling is used as approximations to reduce the
complexity (Sankararaman, 2012). In the PF algorithm itself, no assumptions are made with
regards to the shape of the pdf of RUP and RUL predictions. This is favorable according to
Sankararaman and Goebel (2013). Only for the purpose of visualizing the results, a mean and
standard deviation will be used to represent the particle population (as a normal distribution)
as elaborated upon in chapter 4. However, a true distribution of the particle population can
still be represented with histograms. Finally, it is important to note that the selection of
PF is favorable as this algorithm is not limited to a Gaussian distribution of parameters and
because it is able to deal with non-linear prediction models. This makes the PF algorithm
very flexible in terms of model type and noise distribution (Srini, 2019).



Chapter 3

Case study Tests and Data

This chapter introduces the case study dataset used to construct the NLS-PF machine learning
model. This dataset was constructed by Li et al. (2020), a colleague from the Pythia team at
Delft University of Technology. The most important characteristics are elaborated upon in this
chapter including the specimens and test set-up section 3.1, loading conditions (section 3.2),
DIC measurements (section 3.3) and the definition of stage I to stage II transition (section 3.4).

3.1 Specimens and Test Set-up

The specimens utilized for these tests were created with UD prepreg. The Hexply® F6376C-
HTS(12 K)- 5-35%, with mechanical properties as shown in Table 3.1, has high stiffness carbon
fibers (Tenax®-E-HTS45) combined with a tough epoxy (Hexply® 6376). The nominal thickness
of a UD ply is 0.125 mm and the fiber volume of the prepreg is 58%.

Table 3.1: Mechanical Properties of Hexply® F6376C-HTS(12K)-5-35% (Kupski et al., 2019)

Longitudinal tensile strength XT 2, 274MPa
Longitudinal compressive strength XC 1, 849MPa
Transverse tensile strength YT 102MPa
Transverse compressive strength YC 255MPa
Longitudinal tensile modulus E11T 142, 000MPa
Transverse tensile modulus E22T = E33T 9, 100MPa
In-plane shear modulus G12 = G13 5, 200MPa
Transverse shear modulus G23 = E33T/ (2 (1 + ν23)) 3, 500MPa
In-plane shear strength S12 = S13 63MPa
Transverse shear strength S23 35MPa
In-plane Poisson ratio ν12 = ν13 0.27
Transverse Poisson ratio ν23 0.30

The UD prepreg has been used to construct laminates with dimensions 300 mm x 300 mm
and with stacking sequence [02/904]s. The specimens were cured in the autoclave and cut to
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dimensions 250 mm x 25 mm using a water-cooled diamond saw. In order to ensure sufficient
clamping in the test set-up, paper grips were glued with cyanoacrylate glue on both ends with
a length of 50 mm. A schematic representation of a single specimen with relevant dimensions
is displayed in Figure 3.1.

Figure 3.1: Schematic representation of case study specimen dimensions and loading direction
(Li et al., 2020).

Seven specimens with the aforementioned specifications were tested in the laboratory of the
Aerospace Engineering faculty at Delft University of Technology. Tests were conducted at
room temperature using a 60 kN hydraulic fatigue machine. An overview of the test set-up is
provided in Figure 3.2. One 9 megapixel camera was added on either side facing the specimen
edge to collect information on transverse cracks. Additionally, two 5 megapixel cameras were
mounted next to each other facing the specimen for DIC. All cameras were focused on the
gauge region indicated in Figure 3.1. This is the area of interest with a length of 80 mm.

Figure 3.2: Overview of the case study test set-up for early fatigue life testing (Li et al., 2020).

3.2 Loading Conditions

During the experiments, seven symmetric cross-ply specimens were subjected to tension-tension
fatigue loading with a stress ratio of 0.1 and a frequency of 5 Hz. The maximum stress level
was set to 70% of the ultimate tensile strength (UTS), which corresponds to 507 MPa obtained
from static tensile tests for the given prepreg, stacking sequence and geometry. In order to
obtain camera recordings, loading and unloading ramps are applied every 500 cycles with a
rate of 19 kN/s. The testing scheme is summarized in Figure 3.3. The DIC measurements
and data are elaborated upon in section 3.3. Tests were stopped at 105 cycles, well beyond
reaching stage I to stage II transition.
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Figure 3.3: Testing scheme of case study specimens with loading-unloading every 500 cycles (Li
et al., 2020).

3.3 Digital Image Correlation Measurements

During the experiments of the seven specimens, DIC information was captured using 4 cameras
as touched upon before and shown in Figure 3.2. During each loading and unloading ramp, the
cameras capture images simultaneously every 50 ms. The two 5 megapixel cameras mounted
in front of the specimen measure the in-plane strain using DIC. For that purpose, the cameras
are focused on the 80 mm length gauge region indicated in Figure 3.1 on which a speckle
pattern was applied with dot size 0.18 mm. The other two 9 megapixel cameras face the edge
of the specimen on either side and are also focused on the gauge region. At these positions,
they are capable to monitor the damage on both edges that were painted white to guarantee
contrast between regions with and without cracks.

In subsection 3.3.1, 3.3.2 and 3.3.3, it is explained which and how data was captured for
the crack density, delamination ratio and stiffness respectively. Special attention is paid to
the method of data extraction as will be required in chapter 4 to define the suitability of
measurements in the online algorithm, and if included to quantify the measurement uncertainty.

3.3.1 Transverse Crack Density

Li et al. (2020) developed a MATLAB analysis tool to count the number of transverse cracks
in the 90◦ plies using the cameras focused at both edges of the gauge region. In order to
quantify the transverse crack density ρ, the average of the amount of transverse cracks on both
edges was divided by the gauge length. The case study data for the transverse matrix crack
evolution is provided in Figure 3.4. Based on the observed data of the seven specimens, a delay
in matrix crack density evolution was noticed for a group of specimens. The terminology and
specimen names in this thesis are kept identical to the original research. Group 1 is therefore
the group of four specimens without a delay in crack density evolution, while group 2 is the
group of three specimens showing delay.

3.3.2 Delamination Ratio

Li et al. (2020) managed to construct a model to obtain the delamination ratio. This model
uses the observation that the in-situ Poisson ratio ν of the outer ply (which can be obtained
through DIC measurements) shows a linear relationship with the normalized area of transverse
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strain concentration. However, the latter, which is measured indirectly via the Poisson ratio
ν, did not completely represent early delamination propagation close to the edges. For that
purpose, the inter-laminar crack ratio Ir was introduced, which is the mean of max(Lr,1,
Lr,2) and max(Ll,1,Ll,1) divided by the gauge length. The parameters Lr,1 and Lr,2 are the
total length of inter-laminar cracks on the interface on the right-hand side of the specimen.
The same principle holds on the left-hand side for Ll,1 and Ll,2. Therefore, these four could
be collected using the two cameras facing both specimen edges. In order to combine the
in-situ Poisson ratio ν and the inter-laminar crack ratio Ir measurements, it is established
that dr = ν · Ir. Doing so, measurements for the delamination ratio are provided in Figure 3.5.

While the measurements of the delamination ratio provide useful information on phenomenolog-
ical relations for delamination damage progression, these will not be used in the PF algorithm
to update model parameters of the testing specimen in real-time. This is because the in-situ
measured Poisson ratio ν alone does not provide sufficient information to obtain the delamina-
tion ratio, making it difficult measure the actual delamination ratio in-situ. However, in the
offline pre-training step of the PF, the measurements can be used to establish relations for
damage evolution. More information on the use of delamination data is provided in chapter 4.

3.3.3 Stiffness

A dynamic axial stiffness measurement was collected every 500 cycles during hysteresis loops
at the loading ramps. This was done by combining the axial stress σxx and the average axial
strain ε̄xx obtained through VIC-3D DIC software and the cameras facing the specimen 0◦ ply.
The axial stiffness Einitial and stiffness En are stiffnesses measured by the loading ramp at
time step 0 and n respectively. Dividing En by Einitial yields the normalized longitudinal
stiffness EN

E0
as provided in the dataset (Figure 3.6).

Additionally, Li et al. (2020) managed to decouple the stiffness degradation in stage I into
transverse crack induced stiffness degradation and delamination induced stiffness degradation.
These two are provided in the dataset as Dtc (as a function of crack density ρ in Figure 3.7)
and Ddel (as a function of delamination ratio dr in Figure 3.8) respectively. It should be noted
that D gives stiffness degradation in stage I, thus Dtc + Ddel = 1 at stage transition. This
in turn means that D is related to En as shown in Equation 3.1. Here, EI is the dynamic
stiffness at the end of stage I. Both Dtc and Ddel are not used in-situ, which means they
are not included in the PF algorithm for updating. However, in the pre-training step of the
PF, the measurements can be used to map the crack density and delamination ratio to the
normalized stiffness En

E0
.

D =
(
Einitial − EN

)(
Einitial − EI

) (3.1)
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3.4 Stage Transition Definition

For later use in the PF algorithm, it is important to define a failure criterion. While the
stage I to stage II transition is not the same as macroscopic failure, it will be treated as the
end-of-early-fatigue-life (EOEFL) condition to determine the RUL in this case study. The
transition was defined during the testing campaign as less than 0.001 decrease in normalized
stiffness EN

E0
over 2500 cycles. The same definition will be used in the PF method in chapter 4.

Figure 3.4: Case study data for transverse matrix crack density evolution in early fatigue life.

Figure 3.5: Case study data for delamination ratio evolution in early fatigue life.
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Figure 3.6: Case study data for normalized dynamic stiffness evolution in early fatigue life.

Figure 3.7: Case study data for transverse matrix crack induced stiffness degradation as a function
of the transverse matrix crack density.

Figure 3.8: Case study data for delamination induced stiffness degradation as a function of the
delamination ratio.



Chapter 4

Case Study Methodology

This chapter establishes the methodology used to construct the model-based machine learning
model for this research on case study data. Throughout this chapter, the flowchart shown in
Figure 4.1 serves as a guideline through all steps required to successfully implement the model.
The case study is based on the data in chapter 3. In section 4.1, the phenomenological relations
are established based on the case study data. These will serve as input to the pre-training
process (section 4.2), in which the pdf of the model parameters is estimated based on training
specimens. The pdf for each of the model parameters is subsequently used in the initialization
step (section 4.3). After this, the online process is started. The filtering step (section 4.4)
is built-up of four components: prediction of damage evolution (when combined referred
to as state transition), updating particle weights based on incoming online measurements,
resampling when required, and adding a random walk on the model parameters. Before moving
to the failure criterion, the particles and weights of the current filtering step are used (only
at time steps for which a measurement was available) to perform prognostics. As a result of
the prognostics (section 4.5), the RUP for future states and the RUL to EOEFL are stored.
Finally, section 4.6 focuses on the performance evaluation of the RUL prognostics to EOEFL.
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Figure 4.1: Flowchart of the entire algorithm with inputs (yellow), outputs (orange) and other
sub-algorithms (black).
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4.1 Phenomenological Models and Parameters

As previously mentioned, the first step is to construct phenomenological relations based on the
observations as elaborated upon in chapter 3. Using the data provided, five phenomenological
models are constructed in subsection 4.1.1 to 4.1.5. In this section, only the functions are given,
more details on NLS fitting and the filtering of model parameters are given in section 4.2 and
section 4.4 respectively. The first describes the evolution of transverse matrix crack density
given a time step ∆N . Similarly, a second model describes the delamination ratio evolution
given a time step ∆N . Finally, separate models for stiffness degradation induced by matrix
cracks and delamination ratio are constructed. When combined, the normalized stiffness is
obtained as a function of the induced stiffness degradation components. The phenomenological
models each have their corresponding model parameters that will be either static or adaptive
in the PF algorithm.

4.1.1 Crack Density vs. Cycles

Looking at the case study data (Figure 3.4), an exponential behavior in crack density with
respect to cycles is observed. In order to perform NLS fitting in section 4.2, a pre-defined
phenomenological relation is required. For this purpose, Equation 4.1 is a suitable function
based on the observed trend. In this equation, the parameters a, b and c are model parameters
that will be adaptive in the PF model parameter vector. A condition is present on the
parameter c to ensure the crack density ρ cannot be negative. Additionally, vρ,total accounts
for uncertainties in the prediction method. It is assumed that vρ,total is normally distributed
as N (0, σv,ρ,total).

ρ(N) =
{

0 for N ≤ c
a · [1− exp (b · (N − c))] + vρ,total for N > c

(4.1)

As a PF requires an evolution model to perform state transition, an evolution model is
established in Equation 4.2. The evolution model is obtained by differentiation of Equation 4.1
with respect to the cycles N. In order to ensure evolution of crack density over ∆N cycles, the
right-hand side of the equation is multiplied by ∆N . It is observable that after differentiation,
the same model parameters a, b and c remain.

∆ρ(N,∆N) =
{

0 for N ≤ c
[−a · b · exp (b · (N − c)) ·∆N ] + vρ for N > c

(4.2)

It should be noted that the normally distributed error in Equation 4.1 changes when differen-
tiating. Therefore, the standard deviation after differentiation is transformed to obtain σv,ρ
using Equation 4.3. This equation uses the assumption that the uncertainties are independent
random variables (Taylor and Thompson, 1998). This means the prediction method error
term of the evolution function becomes vρ with normal distribution N (0, σv,ρ). However, as
no exact value is known for the prediction method uncertainty, the standard deviation σv,ρ is
adaptive in the model parameter vector of the PF.

σv,ρ =
√

2 · σv,ρ,total
∆N (4.3)
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4.1.2 Delamination Ratio vs. Cycles

A similar methodology as for the crack density vs. cycles is followed to obtain the phenomeno-
logical relation between delamination ratio and cycles based on the case study data (Figure 3.5).
For this purpose, Equation 4.4 is a suitable function showing logistic characteristics. It is
observed from the case study data that a maximum growth in delamination ratio is present
at the time of crack saturation, after which the rate of delamination decreases again. In this
phenomenological relation, the parameters d, e, f and g exist. Additionally, vdr,total accounts
for uncertainties in the prediction method. It is assumed that vdr,total is normally distributed
around zero as N (0, σv,dr,total).

dr(N) =
[

d

1 + exp (−e · (N − f)) + g

]
+ vdr,total (4.4)

In order to account for the multicausality of stiffness degradation, a second evolution model is
established Equation 4.5, now for the delamination ratio. This evolution model is obtained by
differentiation of Equation 4.4 with respect to the cycles N. To ensure evolution of delamination
over ∆N cycles, the right-hand side of the equation is multiplied by ∆N . It is observable that
after differentiation, only the model parameters d, e and f remain and will be included in the
adaptive model parameter vector of the PF algorithm.

∆dr(N,∆N) =
[
d · e · exp (−e · (N − f))
[1 + exp (−e · (N − f))]2

·∆N
]

+ vdr (4.5)

Equivalent to the methodology for the crack density, the normally distributed error in Equa-
tion 4.4 changes when differentiating. Therefore, the standard deviation after differentiation is
transformed to obtain σv,dr using Equation 4.6. Doing so, the prediction method error term
of the evolution function becomes vdr having a zero-mean normal distribution N (0, σv,dr).
However, as again no exact value is known for the prediction method uncertainty, the standard
deviation σv,dr is adaptive in the model parameter vector of the PF.

σv,dr =
√

2 · σv,dr,total
∆N (4.6)

4.1.3 Crack Induced Stiffness Degradation vs. Crack Density

As discussed in the case study data in chapter 3, the stiffness degradation was decoupled into
crack induced stiffness degradation and delamination induced stiffness degradation. While
these measurements are not used in-situ, they allow to map the effect of transverse cracks on
the stiffness degradation in stage I. The data in Figure 3.7 shows a linear behavior between
crack density ρ and crack induced stiffness degradation Dtc. Therefore, h and i are introduced
as model parameters in Equation 4.7. The condition on -i/h is present to prevent crack induced
stiffness degradation to be smaller than 0. Additionally, the prediction method uncertainty is
added by assuming 0-mean normally distributed noise N (0, σv,Dtc).

Dtc(ρ) =
{

0 for ρ ≤ −i/h
[h · ρ+ i] + vDtc for ρ > −i/h (4.7)
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As differences in behavior per specimen are less expressive, the h and i parameters can be
generalized for all specimens. Therefore, the parameters h, i and vDtc are static in the PF
algorithm, and thus the same for all particles. How the fitting parameters are determined, is
elaborated upon in more detail in section 4.2.

4.1.4 Delamination Induced Stiffness Degradation vs. Delamination Ratio

Apart from the crack induced stiffness degradation, delamination induced stiffness degradation
is required to describe total stiffness degradation. For this purpose, the phenomenological
fitting function is defined in Equation 4.8. A Linear relation is observed in Figure 3.8 between
the crack density ρ and the crack induced stiffness degradation Dtc. Therefore, j and k are
introduced as model parameters. To this prediction model, a prediction method uncertainty is
added by assuming 0-mean normally distributed noise N (0, σv,Ddel).

Ddel(dr) = j [exp (k · dr)− 1] + vDdel (4.8)

Due to the lack of data for some specimens for higher delamination ratios, it is decided to
generalize the model parameters j and k for all specimens. This means that j, k and vDdel are
static in the PF algorithm, and thus the same for all particles. How the fitting parameters are
determined, is elaborated upon in more detail in section 4.2.

4.1.5 Normalized Stiffness vs. Cycles

As mentioned in section 3.4, the stage I to stage II transition, of EOEFL of a specimen is
reached when the stiffness degrades less than 0.001 over 2500 cycles. Therefore, as now only the
induced stiffness degradation terms Dtc and Ddel are described by phenomenological relations,
an additional relation is required to obtain the normalized stiffness EN

E0
. This relation is derived

from Equation 3.1. However, in an online process, the stiffness at the end of stage I EI is still
unknown and a fixed EOEFL condition on the stiffness property is not desirable due to the
large variation between specimens (ranges between 0.89 and 0.92 for the specimens in the case
study). Therefore, an additional adaptive model parameter m is added in the PF which is
equivalent to EI

Einitial
. Using this property, and given that D = Dtc +Ddel, Equation 4.9 is

obtained.

EN
E0

(Dtc, Ddel) = (m− 1) · (Dtc +Ddel) + 1 (4.9)

4.1.6 Overview of Damage Properties and Model Parameters

In the previous subsections, multiple phenomenological relations are defined. In order to
summarize the damage properties contained as variables in the relations, Table 4.1 is presented.
∆ρ and ∆dr have ∆N as independent variable, and thus predict damage evolution between
states. Dtc and Ddel are only used as relations to obtain EN

E0
, as it is required for the EOEFL

condition. For later reference in section 4.4, it is summarized from chapter 3 that only ρ and
EN
E0

can be measured in-situ with reasonable accuracy and are thus only suitable for updating
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in the PF algorithm. However, the phenomenological relations in this section are pre-trained
(section 4.2) with in-situ and ex-situ measurements.

Table 4.1: Overview of PF Damage Properties

Growth Function In-Situ Measurement
Damage Property Independent Variables yes no yes no
ρ N, ∆N x x
dr N, ∆N x x
Dtc ρ x x
Ddel dr x x
EN
E0

Dtc, Ddel x x

The model parameters describing the phenomenological relations between damage properties
are summarized in Table 4.2. More information on pre-training of the model parameters
using NLS is given in section 4.2. For future purposes, it is important to note the difference
between static parameters in the PF and adaptive parameters. Where static parameters will
be initialized to the same value for all particles and cannot change throughout the process,
adaptive parameters are initialized to a range of values in section 4.3 and can change in the
PF algorithm filtering step (section 4.4). The latter is desirable for relations that involve large
variability per specimen such as ∆ρ(N,∆N), ∆dr(N,∆N) and EN

E0
(Dtc, Ddel).

Table 4.2: Overview of PF Model Parameters

Usage in PF Phenomenological Relation
Model Parameter Static Adaptive Dependent Variable Independent Variables
a x ρ N, ∆N
b x ρ N, ∆N
c x ρ N, ∆N
d x dr N, ∆N
e x dr N, ∆N
f x dr N, ∆N
h x Dtc ρ
i x Dtc ρ
j x Ddel dr
k x Ddel dr
m x EN

E0
Dtc, Ddel

σv,ρ x ρ N, ∆N
σv,dr x dr N, ∆N
σv,Dtc x Dtc ρ
σv,Ddel x Ddel dr
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4.2 Pre-Training

In this section, the first black block in the flowchart (Figure 4.1), being pre-training, is focused
on. A more detailed separate flowchart of the pre-training step is shown in Figure 4.2. The
outputs of the pre-training process are required in the initialization process (section 4.3) of
the particles.

Figure 4.2: Flowchart of the pre-training algorithm with inputs (yellow) and outputs (orange).

4.2.1 Train-Test Split

Before starting the pre-training process, train-test split is performed to eliminate bias. This
means that pre-training is done on the six training specimens. The seventh specimen, the test
specimen, is only used in the online process. Additionally, the training data are split into two
sets for pre-training purposes. One set contains the training data combined for all specimens
for crack induced stiffness loss Dtc as a function of the crack density ρ, and for delamination
induced stiffness loss Ddel as a function of the delamination ratio dr (static model parameters).
The second set contains training data split per specimen for crack density ρ, delamination
ratio dr and normalized stiffness EN

E0
as a function of cycles (adaptive model parameters).

4.2.2 Fitting of Model Parameters

Using the splits in the training data, model parameters for the phenomenological relations
presented in section 4.1 can be obtained. This is done by fitting each function to the data using
the NLS method curve_fit in SciPy (SciPy). As minimization algorithm, Levenberg-Marquardt
is used. This is proven to be a reliable method for an unconstrained search as discussed in
subsection 2.3.1 (Gavin, 2019). The main difference between the determination of static and
adaptive model parameters is explained below.
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Static Model Parameters

As mentioned before, static model parameters in the PF algorithm will be the same value for
all particles. Therefore, the first set of training data (combined for all specimens) is used to
fit the phenomenological relations of Dtc(ρ) (Equation 4.7) and Ddel(dr) (Equation 4.8). Once
the best set of model parameters h, i, j and k is obtained using NLS fitting, the standard
deviations of the prediction method uncertainty σv,Dtc and σv,Ddel shall be estimated. As
touched upon in section 4.1, the error term in both is assumed to follow a 0-mean normal
distribution.

To obtain the error at each measurement point, the dependent variable estimated using the
fit is subtracted from the real (measured) value. Assuming the sample is representative for
the population, Equation 4.10 is used to obtain the standard deviation of the errors σ. In
this equation, x is the error at a measurement point and x̄ is assumed to be 0 with 0-mean
normally distributed errors. The variable S is the total number of observations in the sample.
As a result, a single value for σv,Dtc and σv,Ddel is obtained.

σ ≈ sd =

√∑
(x− x̄)2

S − 1 (4.10)

Adaptive Model Parameters

As opposed to the static model parameters, adaptive model parameters in the PF algorithm
will have different values for different particles. For that reason, the required output of
the pre-training step in the pre-training flowchart (Figure 4.2) encompasses a pdf for the
adaptive model parameters of the phenomenological relations to initialize particles with later
in section 4.3. Therefore, the second set of training data (separated per specimen) is used
to fit the relations for ρ(N) (Equation 4.1) and dr(N) (Equation 4.4). It should be noted
that model parameters in the aforementioned relations directly correspond to the evolution
phenomenological relations used in the PF algorithm: ∆ρ(N,∆N) and ∆dr(N,∆N). Once
the best sets of model parameters a, b, c, d, e, f are obtained using NLS fitting for each
specimen separately, it is desirable to learn the pdf of model parameters.

To learn the pdf of the distribution of a single adaptive model parameter, a histogram is made
first with the number of bins determined by Sturges’ rule (Equation 4.11). The derivation
of Sturges’ rule, which is widely used in statistics nowadays, is explained in more detail in
Scott (2009). As a major disadvantage, Sturges’ rule tends to make the histogram too smooth
for larger sample sizes. However, it is in this case less relevant due to the generally limited
number of specimens tested. Once this is done, a pdf is fit to the histogram. The best of four
distributions is chosen (uniform, normal, Weibull, gamma) by minimizing the sum of squared
errors (SSE).

number of bins = 1 + log2(sample size) (4.11)

The standard deviations of the prediction method uncertainty σv,ρ,total and σv,dr,total are
estimated in a similar way as the static parameters by assuming 0-mean normally distributed
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noise. However, this time, the standard deviations are considered on the training dataset and
NLS phenomenological fits for each specimen separately. Both uncertainties for the ρ(N) and
dr(N) are transformed to the prediction method uncertainty of the crack density evolution
σv,ρ and delamination evolution σv,dr using Equation 4.3 and Equation 4.6 respectively. As a
last step, the pdf of the distribution of prediction uncertainties is once more chosen (uniform,
normal, Weibull, gamma) by minimizing the SSE after fitting the statistical distributions to
the histograms (bin size using Sturges’ rule).

Finally, the last adaptive model parameter m needs pre-training. As mentioned previously
in section 4.1, the parameter m is not depending on an observed phenomenological relation.
It is rather an additional adaptive model parameter that is added in the PF algorithm to
relate the percentage of total stiffness degradation in stage I to the normalized stiffness. For
that purpose, the model parameter m is equivalent to EI

E0
. This means it cannot be fit using

NLS as done previously for the other model parameters. However, for each of the training
specimens separately, one can observe a specific normalized stiffness at which the transition
from stage I to stage II occurs using the EN

E0
data vs. cycles. Stage transition is previously

defined in section 3.4 as a normalized stiffness degradation EN
E0

of less than 0.001 over 2500
cycles. However, as the measurement data are rather noisy to evaluate the failure definition, a
running mean is applied with a pre-defined window size WSsmoothener as user input. After
this, the transition definition can be applied on the smooth data to obtain m = EI

E0
for each

specimen. The final pdf for the model parameter m is then obtained following the same
analogy as for the other adaptive model parameters by using the results of model parameter
m for each specimen.

4.3 Initialization

The PF algorithm is a state-space dynamic model that consists of a state transition function
and a measurement function. For this purpose, several vectors shall be defined and initialized
for time step tn = 0 before starting the online process. In this section, the definition of vectors
and each their corresponding initialization is elaborated upon.

Damage State Vector

The damage state vector contains information on the damage state at time step tn. As
previously discussed in chapter 3, the damage properties of interest that reliably describe the
damage process are: crack density ρ, delamination ratio dr and the normalized stiffness EN

E0
.

Therefore, these are included in the damage state vector x with dimension R3 shown below.

x =
[
ρ, dr,

EN
E0

]
∈ R3

It can be assumed that initially, the structure is free of defects, which initializes the state
vector to x0 = [0, 0, 1] for all Ns particles. While it is mentioned in Axiom 1 in section 2.2
that all structures have inherent flaws or defects, the initialization is only a starting point
after which the adaptivity of the PF algorithm can deal with these uncertainties.
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Model Parameter Vector

Apart from the damage states, all Ns particles that are initialized must contain information
on the underlying phenomenological models. An overview of all model parameters of the
phenomenological relations is given in Table 4.2. Using those (for now excluding the prediction
method uncertainties), the model parameter vector θ is defined below with dimension R11.
In this PF framework, it is preferred to store both static and adaptive model parameters in
the model parameter vector for flexibility purposes if one would desire that specific static
parameters are transformed to adaptive parameters.

θ = [a, b, c, d, e, f, h, i, j, k,m] ∈ R11

In order to initialize the model parameter vector θ0 for each of the Ns particles, the output
of the pre-training process (section 4.2) is required. The static model parameters h, i, j and
k are initialized to the same constant for each particle. On the other hand, Ns samples of
each adaptive model parameter are drawn from distribution defined by the pdf output of the
pre-training process. The samples for all model parameters are combined randomly to obtain
Ns model parameter vectors.

In subsection 4.4.4, a random walk is added to the model parameters to allow θ to continuously
adapt. While this section does not deal with the details of the artificial dynamics, it is important
to note that a matrix shall be initialized for the artificial noise Σξ0 with dimensions Rnθxnθ
(Chiachío et al., 2015a).

Model Error Vector

Along with the model parameters, the phenomenological relations involve static prediction
method errors σv,Dtc and σv,Ddel , and adaptive prediction method errors σv,ρ and σv,dr . All
prediction errors combined are referred to as the model error vector v with dimension R4 as
shown below. In this PF framework, it is preferred to store both static and adaptive model
errors in the model error vector for flexibility purposes.

v = [σv,ρ, σv,dr , σv,Dtc , σv,Ddel ] ∈ R4

Initialization of the model error vector v0 for Ns particles is done by using the output of the
pre-training process (section 4.2). The static model errors σv,Dtc and σv,Ddel are initialized to
the same value for each particle. On the other hand, Ns samples of are drawn from the pdf
for the adaptive model errors σv,Dtc and σv,Ddel . By randomly combining each of the obtained
model errors, Ns model error vectors are obtained.

Particles

The particles used in the PF algorithm each contain the state vector z. As shown below, the
state vector is the combination of the damage state vector x, the model parameter vector
θ and the model error vector v. It should be noted that at initialization, only the adaptive
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model parameters and model errors differ. However, once transitioning and updating states in
the PF algorithm, also the damage states of particles will differ. For the purpose of filtering
(section 4.4), the weight vector is introduced next.

z = [x,θ,v] ∈ R18

Weights and Failure Vector

To facilitate the PF algorithm filtering step, each particle is assigned a weight. This results in
a weight vector w that contains Ns weights. Initially, no information is present at time step t0,
which means that it cannot be deduced whether a particle is more or less likely. Therefore, the
weight vector is initialized as equally weighted particles as w0 =

[
1
Ns
, 1
Ns
, ..., 1

Ns
, 1
Ns

]
. Similarly,

at time step t0, no degradation is present on the damage properties, which means that the
failure vector F0 = [False, False, ..., False, False] with length Ns.

4.4 Filtering

Using the initialized vectors, the online process in the PF algorithm can be started. This is
indicated by the black ’filtering’ box in the flowchart in Figure 4.1. The complete sub-algorithm
is displayed in Figure 4.3. A few building blocks are distinguished in PF. First, state transition
of all particles is done in the prediction step (subsection 4.4.1) for each of the damage properties.
Subsequently, the predictions are compared to the likelihood function based on incoming DIC
measurements to update particle weights in subsection 4.4.2. In subsection 4.4.3, the condition
for resampling of the regularized PF is elaborated upon along with the resampling algorithm.
Finally, the artificial dynamics of model parameters is treated in subsection 4.4.4 to ensure
the model parameters remain dynamic throughout the component’s life.

4.4.1 Prediction

The posterior distribution at step tn−1 stored in the particles is propagated to the prior
distribution at step tn using the state transition function t(·) given in Equation 4.12. During
the prediction process, only the damage state vector x is propagated, meaning that no
transition is present in the model parameters and model errors. Therefore, θ = θn−1 and
vn = vn−1. Using the properties of independence in Markov models, the prediction of xn is
conditionally independent of states prior to xn−1 given its Markov blanket (Barber, 2012).

θ = θn−1
vn = vn−1
xn = t(xn−1,θ,vn)

(4.12)

The transition function t(·) is broken down into the three damage states: crack density ρ,
delamination ratio dr and normalized stiffness EN

E0
. The state transition for each damage state

is shown in Equation 4.13. The damage evolution for ρ and dr, given in Equation 4.2 and
Equation 4.5 respectively, is added to the damage state at tn−1. The model parameters a, b, c,
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Figure 4.3: Flowchart of the filtering algorithm with inputs (yellow) and outputs (orange).
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d, e and f depend on each particle separately and are therefore variables in the state transition
equation. On the other hand, the state transition equation for the normalized stiffness of
a particle obtained by combining Equation 4.7, Equation 4.8 and Equation 4.9. Here, the
model parameters h, i, j, k and m are involved. One should note that all prediction method
errors have previously been defined as 0-mean normally distributed variables. By making the
assumption that each measurement noise is independent of one another, the damage state
variables are decoupled (Chiachío et al., 2015a). This results in the factorization shown in
Equation 4.14.

ρn = ρn−1 + ∆ρ (N,∆N, a, b, c) + vρ,n
dr,n = dr,n−1 + ∆dr (N,∆N, d, e, f) + vdr,n(
EN
E0

)
n

= (m− 1) ·
[
Dtc (ρn, h, i) + vDtc,n +Ddel (dr,n, j, k) + vDdel,n

]
+ 1

(4.13)

P (xn |xn−1,θ,vn) =P
((

EN
E0

)
n

∣∣∣∣ ρn, dr,n,θ,vn) ·
P (dr,n | dr,n−1,θ,vn) ·
P (ρn | ρn−1,θ,vn)

(4.14)

4.4.2 Updating

While the model parameters remain unchanged in the prediction step, they are now updated
using a likelihood function and the incoming DIC measurement at the current time step
tn. In the online process of this thesis, it is decided to only use the crack density ρ and
normalized stiffness EN

E0
for updating in the PF algorithm. This can be observed in Table 4.1.

Equation 4.15 describes the state-space response to incoming measurements. Therefore, they
are both contained in the measurement vector y =

[
ρ̄, ĒNE0

]
with dimension R2. For clarity

purposes, the bar indicates a measurement of a damage property. First, the measurement
uncertainties contained in the measurement error vector q for this specific case study are
quantified. Using this, the likelihood function can be defined and used to update the importance
weights afterwards.

yn = xn + qn (4.15)

Measurement Uncertainties

Both measurements contained in the measurement vector y have inherent uncertainties. In
this case, it is assumed that measurement errors are 0-mean normally distributed, which
makes it possible to quantify them as standard deviations σq,ρ and σ

q,
EN
E0

. In chapter 3, the
measurement techniques were explained on which this analysis is based.

Cameras capture the number of cracks on both edges of the cross-ply composite laminate
during testing. The number of cracks, which is required to calculate the crack density, was
determined as the average of crack number at both edges in the dataset. Only a single crack
density is the result, which means that the deviation in the number of cracks between both
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edges can be considered to estimate the measurement error. Additionally, the gauge length
(which slightly differs for each specimen) influences the crack density measurement as only
cracks within the viewing window are counted. However, compared to the deviation in cracks
between the two edges, the DIC measurement error along the y-axis obtained from Vic-3D
is negligibly small. Therefore, it is assumed that the only contributor to the measurement
uncertainty in the crack density ρ is comes from the deviation between two edges.

In Table 4.3, the required information is shown to estimate the measurement uncertainty
of the crack density. This includes the number of cracks at both edges at CDS (n1 and
n2), the gauge length measured by DIC, and the crack density as a result of both. The
standard deviation of the crack density σ is calculated using Equation 4.16, in which the
assumption is made that the gauge length measurement does not contribute to the uncertainty
to cancel out the part depending on the gauge length. Additionally, nc = mean(n1, n2)
and σnc = std(n1 − n2) = 2.035 cracks. As a result, the average σ is concluded to be the
measurement uncertainty of the crack density σq,ρ = 0.0257.

σ

ρ
=

√√√√(σnc
nc

)2
+

�
�

�
��(

σGL
GL

)2

⇐⇒ σ = ρ · σnc
nc

(4.16)

Table 4.3: Crack Density Measurement Uncertainty Determination

Spec. Transverse Cracks CDS [−] DIC CDS [mm] Crack Density CDS [ 1
mm ]

n1 n2 mean(n1, n2) n1 − n2 Gauge Length (GL) mean(n1,n2)
GL σ

1-1 22 20 21 2 79 0.266 0.0258
1-2 17 16 16.5 1 77 0.214 0.0264
1-3 28 29 28.5 -1 81.5 0.350 0.0250
1-4 22 24 23 -2 79 0.291 0.0258
2-1 16 18 17 -2 78.5 0.217 0.0259
2-2 28 28 28 0 80.59 0.347 0.0253
2-3 19 23 21 -4 79.07 0.266 0.0257

The stiffness measurement is independent of the crack density measurement. While one could
estimate the uncertainty of the DIC displacement measurement in the y-direction σy from
Vic-3D (σy ≈ 0.00112 mm), this only encompasses a small amount of the total uncertainty in
the stiffness measurement. It is therefore assumed to estimate σ

q,
EN
E0

= 0.02. It is reasoned
that the stiffness measurement shall have a certain degree of uncertainty to ensure effective
sampling. This phenomenon has been observed during small-scale test runs with a very small
measurement uncertainty (steep bell-curve around the measurement), resulting in random
behavior as essentially all particles have the same inconsiderable likelihood. A visualization of
this behavior is shown in Figure 4.4.
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Figure 4.4: Visualization of a very small measurement uncertainty (steep bell-curve) around the
measured property, resulting in equally small likelihoods for all particles and thus random behavior.

Likelihood Function and Weight Updating

On each sample with the propagated degradation property in xn after the prediction step,
the probability of obtaining measurement yn is calculated. The likelihood is expressed by
Equation 4.17 in which both measurements are combined. It shall be noted that this is only
possible as the measurements, as previously discussed, are assumed to be independent.

P (yn | xn,θ,vn) = P (ρ̄n | ρn)P
((

ĒN
E0

)
n

∣∣∣∣∣
(
EN
E0

)
n

)
(4.17)

Revisiting the assumption of 0-mean normally distributed noise functions for both measure-
ments, one can express both terms in the factorization as displayed in Equation 4.18. However,
it is important to note that a PF can deal with any other type of noise as well as a non-linear
model, as long as the likelihood function of the measurement is known beforehand. Therefore,
the technique also provides a feasible solution for problems where linearization and the Gaus-
sian noise distribution assumption would result in a lack of performance (Gordon et al., 1993;
Srini, 2019).

P (ρ̄n | ρn) = 1√
2πσqρ

exp
(
−(ρ̄n − ρn)2

2σ2
qρ

)

P

((
ĒN
E0

)
n

∣∣∣∣∣
(
EN
E0

)
n

)
= 1√

2πσqEN
E0

exp

−
((

ĒN
E0

)
n
−
(
EN
E0

)
n

)2

2σ2
qEN
E0


(4.18)

The un-normalized weight of a particle ŵin is determined in the updating step based on the
likelihood of the particle by using Equation 4.19. Here, win−1 is the weight of the previous
particle, which incorporates information of prior states into the current state.

ŵin ∝ win−1 · P
(
yn | xin,θi,vin

)
where i = 1, . . . , Ns (4.19)

Subsequently, the weights are normalized to win such that the sum of all Ns weights equals 1
(Equation 4.20).
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win = ŵin∑Ns
i=1 ŵ

i
n

where i = 1, . . . , Ns (4.20)

The process so far in the filtering step reflects a SIS PF strategy as discussed in subsection 2.3.2.
However, the risk of weight degeneracy exists, which is dealt with in the resampling step.

4.4.3 Resampling

After assigning normalized weights to particles, the weight degeneracy can occur when no
resampling (SIS) is done. This phenomenon means that low-weighted particles remain present.
Therefore, the predictions are dependent on only a few particles with higher weights, which
decreases the accuracy of the predictions and increases the variance of the posterior distribution
(Li et al., 2015). Ideally, all particles have equal weights so that the model parameters and
degradation properties can be derived from the posterior distribution only (Kim et al., 2016).
While a PF algorithm with resampling (SIR) reduces the problem of weight degeneracy, it
introduces sample impoverishment. Sample impoverishment indicates the problem that high
weight samples are likely to be extracted multiple times during resampling, while low weight
samples are unlikely to be drawn. This means that the variety of samples decreases and
eventually collapses into a set of unique samples. Therefore, in this thesis, a regularization is
added to combine SIS and SIR by only resampling if the effective sample size drops below a
pre-determined threshold. When resampling has occurred, all importance weights are reset to
the initial weight vector w =

[
1
Ns
, 1
Ns
, ..., 1

Ns
, 1
Ns

]
.

Resampling is required once degeneracy is encountered, which means that this does not need
to happen at every time step in the regularized PF algorithm. Therefore, the effective sample
size Neff is introduced as a trigger for the resampling algorithm. This estimated effective
sample size is calculated using Equation 4.21 (Li et al., 2015). Following this analogy, when
Neff (t) ≤ Nthreshold, resampling is required. Additionally, resampling occurs at every time
step (SIR) when Nthreshold = 1, and resampling never occurs (SIS) when Nthreshold = 0.

Neff (t) = 1∑Ns
i=1w

2
i (t)

(4.21)

As clarified in the literature review on resampling techniques (subsection 2.3.2), systematic
resampling proves most suitable due to the constant sample size and its computational efficiency.
The principle of this algorithm is visualized in Figure 2.8. In systematic resampling, constant
steps are defined between two particles to be resampled. Therefore, a random number is
selected in the first sub-interval u1

n as shown in Equation 4.22, after which a constant step
is added to obtain the selection from subsequent sub-intervals uin. The mth particle is then
selected to resample based on the condition in Equation 4.23 (Li et al., 2015).

u1
n ∼ U

(
0, 1

Ns

]
uin = u1

n + i−1
Ns

where i = 2, . . . , Ns

(4.22)

Qm−1
n < uin ≤ Qmn where Qmn =

m∑
i=1

win (4.23)
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4.4.4 Random Walk

A commonly occurring problem after updating the states up to time step tn is related to
the inability of the model parameter vector θ to adapt. Therefore, Chiachío et al. (2015a)
presents a technique to explore the parameter space of θ by adding an independent random
perturbation ξ to transition the model parameter vector as P (θn | θn−1). This is described in
Equation 4.24.

θn = θn−1 + ξn (4.24)

By assuming a 0-mean normal distribution to transition model parameters to a next state, the
model parameters after adding the random walk are obtained by Equation 4.25. The random
walk vector ξn has dimension R11.

P (θn | θn−1) = N (θn−1,σξn) (4.25)

Daigle and Goebel (2013) stress the importance of tuning the random walk parameter, which
in this case encompasses the random walk for each model parameter j: σξn,j . A large random
walk variance causes rapid convergence, while a too small random walk variance causes very
slow convergence, if any. To use the random walk in the best possible way, methods in
literature focus on a shrinkage of σξn,j over time. Such method has been proposed by Daigle
and Goebel (2013) and is shown in Equation 4.26. Here, the random walk of the previous
time step is multiplied with a shrinkage term under the square root. In the shrinkage term,
P ∗
j determines the rate of convergence (larger means faster convergence) to the target relative

median absolute deviation (RMAD) RMAD∗
j (Chiachío et al., 2015a). Both are user inputs

and their sensitivity on the PF algorithm results are discussed in more detail in chapter 5.

σξn,j = σξn−1,j

√
1− P ∗

j

RMAD (θn,j)− RMAD∗
j

RMAD (θn,j)
(4.26)

The RMAD is used as a relative measure of spread (or variance) as shown in Equation 4.27.
Therefore, it can be calculated for each model parameter θn,j taking into account the model
parameter value in each of the Ns samples. One should note that for static model parameters,
the RMAD will always be equal to zero, which means that no artificial noise is added.

RMAD (θn,j) =
median

({∣∣∣θin,j −median
(
θ̃n,j

)∣∣∣}Ns
i=1

)
median

(
θ̃n,j

)
where θ̃n,j =

{
θ1
n,j , . . . , θ

i
n,j , . . . , θ

Ns
n,j

} (4.27)

Initially, the random walk of the particles at time step t0 is defined as a percentage of the
inter-percentile range (IPR) for a model parameter between 0.05 and 0.95 IPRj,0(0.05, 0.95).
From this point on, the previously mentioned equations and the pre-set value P ∗

j are used to
decrease the variance of the random walk. However, it is not desirable to have no random walk
at all towards the end. Therefore, the target RMAD∗

j is required as user input as a percentage
of the initial RMAD at time step t0.
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4.5 Prognostics

As a last step in the flowchart before moving to a next iteration, prognostics of future RUP
(ρ, dr and EN

E0
) and prognostics of the RUL up to EOEFL is performed. The flowchart for

this purpose is shown in Figure 4.5. As a starting point, the updated and resampled particles
with additional random walk in the state vector zn at time step tn are copied. Along with
this, a copy of the weight vector and the failure vector is made. Doing so, the original vectors
will directly move to the next filtering iteration, while the copies of the vectors serve for the
prognostics performed at time step tn. In order to progress damage to tn+l, state transition
is elaborated upon first. Once future damage states are known, the pdf of the RUP can be
determined using all Ns particles. Finally, the EOEFL failure criterion and associated RUL
estimation are treated. One should note that progression of particles and assessment of failure
is done for each particle separately in the PF algorithm.

Figure 4.5: Flowchart of the prognostics algorithm with inputs (yellow) and outputs (orange).

4.5.1 State Transition

The state transition equations for prognostics are identical to those used in the filtering step
of the online PF algorithm. Therefore, in prognostics, one starts at time step tn, and calculate
future states to time step tn+l. This is illustrated by Equation 4.28, in which the damage
state of each particle is propagated to future states using the state transition function t(·).
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More details on the governing phenomenological relations supporting the state transition can
be obtained in subsection 4.4.1.

xi
n+l = t

(
xi

n+l−1,θ
i
n,v

i
n

)
where i = 1, . . . , Ns (4.28)

4.5.2 Remaining Useful Properties Estimation

The RUP estimation refers to combining the damage states of all particles at time step tn+l
to a single estimate. However, it is assumed for the RUP estimation here that the damage
states follow a normal distribution, which means a weighted mean and standard deviation (or
variance) can be obtained. For that purpose, the weight vector at tn, wn is still considered to
weight the importance of each particle. The mean of each RUP prediction can be obtained
using Equation 4.29.

ρn+l =
Ns∑
i=1

ρin+l · win

drn+l =
Ns∑
i=1

dirn+l · w
i
n

(
EN
E0

)
n+l

=
Ns∑
i=1

(
EN
E0

)i
n+l
· win

(4.29)

Similarly, the weighted variance of each RUP prediction is obtained using Equation 4.30. The
variances are used later in the results (chapter 5) to generate prediction intervals.

σ2
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(
ρin+l − ρn+l

)2
· win

σ2
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E0

)
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)i
n+l
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(
EN
E0

)
n+l

)2

· win

(4.30)

4.5.3 End-Of-Early-Fatigue-Life Criterion and Remaining Useful Life Estimation

The failure vector F from the filtering process has been passed at tn for prognostics purposes.
The failure criterion in the filtering process and prognostics process is identical, and will
therefore be explained only once here for both. Initially, at t0, all Ns entries in the failure
vector are False, which means no particle has reached EOEFL. As mentioned previously,
the definition for EOEFL is less than 0.001 normalized stiffness degradation over 2500 cycles.
Therefore, in the filtering process as well as prognostics process, the datapoints of the last
2500 cycles are stored in a temporary dataframe to track the stiffness degradation. In case a
particle reaches EOEFL, the entry for that particle is set to True in the failure vector.
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In Equation 4.31, the RUL of the ith particle at time step n in the filtering process is shown
as a function of the number of cycles at which the particle reaches EOEFL. If a particle
from the filtering process is copied to the prognostics process with True (already failed), this
automatically means the RUL is 0 for the prognostics. In any other case, state transition is
done for that particle up to EOEFL.

RULin = max
(
0,EOEFLin − tn

)
where i = 1, . . . , Ns (4.31)

In a similar way as the RUP estimation, the RUL can be estimated at tn using the weighted
mean and standard deviation of the RUL of all particles RULin. For that purpose, the weight
vector at tn, wn is considered to weight the importance of each particle. The mean of each
RUL prediction is obtained with Equation 4.32, while Equation 4.33 yields the variance.

RULn =
Ns∑
i=1

RULin · win (4.32)

σ2
RULn =

Ns∑
i=1

(
RULin − ˜RULn

i
)2
· win (4.33)

4.6 Performance Evaluation

Once the EOEFL threshold is reached in the PF algorithm, the performance of a specific
algorithm for the test specimen is evaluated with evaluation metrics and the complete set
of test data. For this purpose, at each discrete time step ti ε [1, k] an DIC measurement is
recorded. For the current case study data, this means every 500 cycles. As this thesis deals
with prognostics and RUL estimation, it is decided to evaluate performance based on the RUL
to EOEFL.

At each time step ti, the error Em between the actual value and the observed value can be
calculated using Equation 4.34. This involves RULactual, which is the absolute value of the
difference between the number of cycles at stage transition (the EOEFL) and the number of
cycles at time step ti. Additionally, as a result of the prognostics step, the mean of the RUL for
all particles at time step ti is known and can be used to obtain the error Em. As performance
metrics, the precision, root mean squared error (RMSE), mean absolute percentage error
(MAPE), cumulative relative accuracy (CRA) and convergence are adopted from Eleftheroglou
et al. (2018).

Em (ti) = RULactual (ti)−mean [RUL (ti)] (4.34)

In forecasting applications, the precision is used to give a measure of spread. In this work, the
precision of the PF algorithm is calculated with Equation 4.35. It is desirable to minimize
precision, indicating that predictions are close to each other (Eleftheroglou et al., 2018).
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Precision =

√√√√∑k
i=1

(
Em (ti)− Em (ti)

)2

k − 1 where Em =
∑k
i=1Em
k

(4.35)

While precision gives a measure of spread, the RMSE evaluates the accuracy (or correctness)of
the model. More specifically, one can interpret the RMSE as the average error of the predictions
which is independent of the direction of the error. It is desirable to minimize the RMSE
(Persson and Ståhl, 2020).

RMSE =

√∑k
i=1 (Em (ti))2

k
(4.36)

The MAPE is a commonly used evaluation metric for forecasting purposes that gives an
intuitive interpretation of the relative error. It should be noted that the MAPE can only be
calculated when RULactual > 0 to avoid division by zero. This means the MAPE can be
computed for all measurement points up to the time step before EOEFL. To obtain a model
with high accuracy, it is desirable to minimize the MAPE (de Myttenaere et al., 2016).

MAPE = 1
k

k∑
i=1

∣∣∣∣ 100 · Em (ti)
RULactual (ti)

∣∣∣∣ (4.37)

The CRA metric evaluates the Relative Accuracy (RA) multiple times to obtain and aggregate
accuracy level. This reflects the algorithm’s behavior more generally than the RA, which only
discloses information about a single time instance. The CRA is calculated using Equation 4.38,
in which the condition RULactual > 0 should again be satisfied to avoid division by 0. This
means the CRA can be computed for all measurements points up to the time step before
reaching EOEFL. It is desirable to maximize the CRA (Goebel et al., 2012).

CRA =
∑k

i=1 RA (ti)
k

where RA (ti) = 1−
∣∣∣∣ Em (ti)
RULactual (ti)

∣∣∣∣ (4.38)

Finally, the convergence expresses at which rate the error Em improves over time. In order
to do so, the variables xc and yc are introduced as the center of mass of the area under the
curve describing the absolute value of the error |Em(i)| over time. The convergence metric is
then defined as the distance between the origin and the centroid (xc, yc). When this distance
is smaller, and thus the convergence metric is smaller, convergence happens faster in time.
Therefore, it is desirable to minimize the convergence metric (Goebel et al., 2012).

Convergence =
√

(xc − ti)2 + y2
c

where xc =
∑k−1

i=1
(
t2i+1 − t2i

)
· |Em(i)|

2 ·
∑k−1

i=1 (ti+1 − ti) · |Em(i)|

and yc =
∑k−1

i=1 (ti+1 − ti) · Em(i)2

2 ·
∑k−1

i=1 (ti+1 − ti) · |Em(i)|

(4.39)
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Chapter 5

Case Study Results and Discussion

This chapter details the results of the PF methodology established in chapter 4 on the case
study data (chapter 3). First, the virtual test set-up (soft- and hardware) is set out in
section 5.1. After this, the results of the RUL prognostics of all specimens are discussed
in section 5.2. In order to identify strengths and weaknesses of the PF algorithm, a strong
performer (specimen 1-4 in section 5.3) and a weak performer (specimen 2-2 in section 5.4)
are focused on in a more detailed discussion. For these specimens, additional information on
RUP and evolution of model parameters is added. This chapter concludes with a sensitivity
analysis (section 5.5) of the PF hyperparameters.

5.1 Available Hardware and Software

As the prognostics step of the PF requires significant computational effort, it was important to
know which software and hardware was available. As hardware, a personal HP ZBook Studio
G5 laptop was continuously present to generate the results presented in this chapter. The
laptop has the following specifications:

• Operating System: Microsoft Windows 10 Home
• Processor: Intel Core i7-8750H CPU @ 2.2GHz, 6 cores
• Disk Space: 256GB
• RAM: 16GB

These system specifications have proven to meet the requirements for this thesis project. As
software tool, Python 3.8 is used with several libraries that are designed for machine learning
(Python). These libraries include Numpy 1.18.1, SciPy 1.4.1, Matplotlib 3.1.3 and Pandas 1.0.3
(Numpy; SciPy; Matplotlib; Pandas). Other more general Python libraries are available, and
additional libraries can be downloaded if required. Throughout the thesis, for transparency
and analysis purposes, RUP, RUL and model parameter data are saved for each iteration by
pickling all stored variables after the PF algorithm has stopped.
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5.2 Remaining Useful Life Prognostics Results

In this section, the results of the RUL prognostics of all specimens in the case study dataset,
as given in chapter 3, are presented. The observed phenomena will be discussed here, after
which a more in-depth analysis later in the report will help to understand this behavior. The
methodology established in chapter 4 is used for that purpose. All user inputs for the PF
algorithm are shown in Table 5.1. Among these input parameters, RMAD∗

j and ξj,0 are design
choices that depend on the allowed spread in EOEFL predictions and on the allowed initial
spread. Furthermore, ∆N influences the accuracy of the evolution model as it is approximated
as a linear growth from tn−1 to tn with the derivative of the observed relations in Equation 4.1
and Equation 4.4 as slope. The other inputs Ns, Nthreshold and P∗ are hyperparameters of the
PF algorithm that can be tuned to improve predictions.

Additionally, it is worth mentioning that a maximum number of iterations is introduced on
both the filtering and prognostics algorithms to prevent infinite looping. This is supported by
observations made in the PF behavior for specimen 2-2 (section 5.4). In this case study, it is
decided to limit iterations to 100,000 cycles. This means that, if a particle has not failed at
this point, the RUL is set to 100,000 cycles and future states are no longer explored. Another
adjustment made to prevent early stopping of the PF algorithm in this specific case is that
the failure criterion is only activated when the normalized stiffness EN

E0
≤ 0.96. Otherwise, a

very small slope could be detected on the upper plateau as clearly observable for specimen 2-1
(Figure 5.4c).

Table 5.1: PF User Inputs for RUL Prognostics to EOEFL

User Input Parameter Value
Training Spec. {Spec. : Spec. 6= Testing Spec.}
WSsmoothener 20
Ns 1,500
∆N 250
Nthreshold 0.95
P∗ 1E-3
RMAD∗

j 0.2 ·RMADj,0
ξj,0 0.00025 ·IPRj,0(0.05, 0.95)

In the PF algorithm, the weighted mean and standard deviation of the RUL predictions and
damage properties are stored at every filtering and prognostics time step (Equation 4.29 - 4.33).
This means that it is always assumed that particles are normally distributed. As a result, the
95 % prediction interval (PI) can be constructed in this chapter around the weighted mean
using Equation 5.1, in which X̄ and σX denote the weighted mean and standard deviation of
property X respectively. It is important to mention that the PI lower bound in some cases
has a small negative value for damage properties and/or RUL predictions, which is highly
unlikely. This does not necessarily mean that some particles have an actual negative value for
that property, but it rather shows the shortcomings of estimating properties by assuming a
normal distribution. In some cases, a normal-like distribution is observed, while in other cases
it is not. However, this assumption is made to compactly capture and report information on
the spread of particles for a particular property.
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95% PI = X̄ ±
√(

1 + 1
Ns

)
· σ2

X (5.1)

(a) Specimen 1-1 (b) Specimen 1-2

(c) Specimen 1-3 (d) Specimen 1-4

Figure 5.1: Results of remaining useful life (RUL) prognostics (specimen group 1) for stage I to
II transition with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.

The results of the RUL predictions to EOEFL (or stage I to stage II transition) with the
aforementioned PF user inputs are shown in Figure 5.1 and Figure 5.2 for specimen group 1
and 2 respectively. The aforementioned weighted mean of the RULn prediction at tn cycles is
indicated in blue, while the 95% PI is plotted in red including a lower and upper bound. The
actual RUL to EOEFL of each specimen, obtained using measurements, is shown in green at
each time step at which a measurement is present. This actual RUL is obtained by subtracting
the number of cycles at which transition occurs by the number of cycles at the time step
of interest. The number of cycles at transition is obtained using a similar methodology as
was used for the model parameter m (section 4.2). This means that a running mean is first
applied to the normalized stiffness of the testing specimen with window size WSsmoothener,
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after which EOEFL is identified as the first time step at which less than 0.001 normalized
stiffness degradation occurs over 2500 cycles. However, while the normalized stiffness was
previously of interest for model parameter m, now the number of cycles at transition is used
in the calculation to obtain the actual RUL.

First, the RUL predictions to EOEFL for specimen group 1 are presented (Figure 5.1). One
can observe that for all group 1 specimens, the RUL is constant or increasing in approximately
the first 12,000 cycles. After this point, a distinct sudden drop in RUL is observed for specimen
1-1 (Figure 5.1a) and 1-2 (Figure 5.1b). In specimen 1-3 (Figure 5.1c) and 1-4 (Figure 5.1d),
this behavior is less explicit. Additionally, it is apparent that for all specimens, the prediction
intervals shrink over the lifetime. This indicates less spread appears in the RUL predictions
when moving towards EOEFL.

(a) Specimen 2-1 (b) Specimen 2-2

(c) Specimen 2-3

Figure 5.2: Results of remaining useful life (RUL) prognostics (specimen group 2) for stage I to
II transition with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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Secondly, the RUL predictions to EOEFL for specimen group 2 are presented (Figure 5.2). One
can observe that for all group 2 specimens, the RUL is constant or increasing in approximately
the first 20,000 cycles. After this point, a distinct drop in RUL can be seen for specimen
2-2 (Figure 5.2b) in which the RUL decreases with approximately 55,000 cycles between
tn ≈ 25, 000 cycles and tn ≈ 40, 000 cycles. In specimen 2-1 (Figure 5.2a) and 2-3 (Figure 5.2c),
this behavior is less expressive. Additionally, it is apparent that the PI for all specimens reduce
in the last 20,000 cycles of a specimen’s lifetime. This is consistent with a plateau region in
the phenomenological relation ρ(N) (meaning no crack growth) and with a plateau region in
Ddel(dr) (meaning no additional delamination induced stiffness degradation) towards EOEFL.

Apart from the previously shown plots of the RUL to transition (EOEFL), the performance
metrics are applied based on the error Em as calculated in Equation 4.34. Therefore, only
the weighted mean is required, meaning it is not dependent on the normality assumption
in contrast to the prediction interval visualizations. The precision, RMSE, MAPE, CRA
and convergence are obtained using the RUL prognostics of each specimen following the
methodology in section 4.6. The results are shown in Table 5.2.

Table 5.2: Performance Metrics Results per Specimen of RUL prognostics to EOEFL

Specimen Precision RMSE MAPE CRA Convergence
1-1 11,507.17 11,739.77 63.632 0.364 15,621.336
1-2 10,098.93 11,571.23 58.327 0.417 26,785.481
1-3 5,555.73 11,509.04 57.447 0.426 24,673.576
1-4 6,646.292 6,685.92 39.185 0.608 19,941.175
2-1 14,934.92 15,090.6 47.006 0.53 31,556.781
2-2 17,107.87 18,426.19 59.924 0.401 27,338.085
2-3 8,978.045 11,385.06 44.584 0.554 23,740.206

Among the results presented in Table 5.2, it is apparent that specimen 1-4 scores particularly
good in terms of the accuracy metrics RMSE, MAPE and CRA. On the other hand, specimen
2-2 scores particularly weak in terms of all metrics. Therefore, those are indicated in bold and
will be treated extensively in section 5.3 and section 5.4 respectively. This will provide more
insight in the applied methodology, and it will uncover apparent strengths and weaknesses of
the methodology. For the other specimens, visualizations of the RUP prognostics are added in
Appendix A.
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5.3 Extensive Results of Specimen 1-4

In this section, the results of specimen 1-4 are presented in extensive detail. This specimen
is a particularly good performer of the PF as mentioned in section 5.2. The results of RUL
prognostics for stage I to II transition with indicative weighted mean and 95% PI of the Ns
particles has been presented in Figure 5.1d. The RUL results are dependent on all preceding
steps, being pre-training, filtering and RUP prognostics. Therefore, the results for each of
these steps is discussed in the following subsections.

5.3.1 Pre-Training

In the pre-training step, the training specimens, being the set of all specimens except for
the testing specimen, are used to serve as input for the initialization of particles in the PF
algorithm. A flowchart of this step has been shown in Figure 4.2. A distinction is once more
made between static and adaptive model parameters.

Static Model Parameters

First, the focus is on the static model parameters h, i, j and k. These are pre-trained using NLS
on the combined dataset of the training specimens all together to obtain a single value for each.
Those will serve in the PF algorithm to describe the crack induced stiffness degradation relation
Dtc(ρ) (Equation 4.7) and the delamination induced stiffness degradation relation Ddel(dr)
(Equation 4.8). The results of the NLS fits using scipy.curve_fit are shown in Figure 5.3.

The crack induced stiffness degradation model parameters (Figure 5.3a) are h = 1.016 and
i = −0.004. Following the methodology, a single uncertainty is obtained as standard deviation
of the 0-mean normal distribution σv,Dtc = 0.0416. Similarly, the delamination induced
stiffness degradation model parameters (Figure 5.3b) are j = −0.711 and k = −69.086 and
the uncertainty is again obtained as the standard deviation σv,Ddel = 0.0578.

Adaptive Model Parameters

After the static model parameters, the focus moves to the adaptive model parameters a, b, c,
d, e, f and m. It is noted once more that these will serve to initialize the PF with different
values for the same model parameter for each particle. The first six model parameters are
pre-trained using NLS (scipy.curve_fit) on each training specimen separately to describe the
crack growth ∆ρ(N,∆N) (Equation 4.2) and delamination growth ∆dr(N,∆N) (Equation 4.5).
Additionally, the model parameter m required for the phenomenological relation EN

E0
(Dtc, Ddel)

(Equation 4.9) is obtained by smoothing the normalized stiffness and applying the EOEFL
criterion. As a result, the NLS fits and state transition model parameter m are shown in
Figure 5.4. The corresponding values for each specimen are listed in Table 5.3.
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Table 5.3: NLS Fits of Adaptive Model Parameters per Training Specimen (Pre-Training 1-4)

Crack Growth Delamination Growth Stiffness
Spec. a b c d e f m
1-1 0.272 -0.106E-3 610 0.084 0.932E-4 23,929 0.916
1-2 0.222 -0.924E-4 1,011 0.198 0.144E-3 33,323 0.894
1-3 0.354 -0.125E-3 1,213 0.092 0.377E-4 77,001 0.907
2-1 0.235 -0.509E-4 10,689 0.140 0.114E-3 58,826 0.899
2-2 0.357 -0.834E-4 9,364 0.041 0.144E-3 46,549 0.899
2-3 0.285 -0.463E-4 2,067 0.049 0.137E-3 50,754 0.919

The standard deviations σv,ρ,total and σv,dr,total are obtained as the NLS error distribution for
ρ(N) and dr(N) of each specimen separately. However, in the PF algorithm, the prediction
method error standard deviations of the growth relations σv,ρ and σv,dr are required. To do
so, Equation 4.3 and Equation 4.6 are used with all parameters presented in Table 5.4.

Table 5.4: NLS Adaptive Model Parameter Errors per Training Specimen (Pre-Training 1-4)

Crack Growth Delamination Growth
Spec. σv,ρ,total σv,ρ σv,dr,total σv,dr
1-1 7.01E-3 3.97E-5 2.15E-3 1.22E-5
1-2 8.79E-3 4.98E-5 2.87E-3 1.63E-5
1-3 1.16E-2 6.59E-5 2.32E-3 1.31E-5
2-1 1.12E-2 6.32E-5 1.89E-3 1.07E-5
2-2 9.37E-3 5.30E-5 9.55E-4 5.40E-6
2-3 1.13E-2 6.41E-5 1.19E-3 6.76E-6

While multiple statistical distributions are defined in the methodology and in the algorithm,
all model parameters and prediction method errors are initialized as a uniform distribution
as this gives the lowest SSE on the histograms with the bin size defined by Sturges’ rule.
This is due to the small size of the training set (six specimens). However, the framework
to support multiple distribution is present for future applications to maximize information
retrieval (specific statistical distribution) once the training dataset is larger.
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(a) Crack induced stiffness degradation model parameters: h and i

(b) Delamination induced stiffness degradation model parameters: j and k

Figure 5.3: Non-linear least squares fits of static stiffness degradation model parameters on full
set of training specimens to serve as input for the machine learning model of specimen 1-4.
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(a) Transverse matrix crack density growth model parameters: a, b and c

(b) Delamination ratio growth model parameters: d, e and f

(c) Normalized stiffness model parameter: m

Figure 5.4: Non-linear least squares fits of adaptive model parameters for each training specimen
serving as initialization for the machine learning model of specimen 1-4.
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5.3.2 Filtering

Keeping in mind the pre-training and initialization results, the results for the subsequent
filtering loop of the PF are presented here. In Figure 5.5, the results are displayed for the
filtering process damage properties of specimen 1-4 with indicative weighted mean and 95%
PI. One should note that no prognostics is involved yet, only damage properties contained in
the particles at time step tn are shown.

(a) Transverse matrix crack density ρ (b) Delamination ratio dr

(c) Normalized stiffness EN
E0

Figure 5.5: Results of the filtering process for damage properties of specimen 1-4 with indicative
weighted mean and 95% prediction interval (PI) of the Ns particles.

It is apparent in Figure 5.5a that the particles are a good representation of the crack density
ρ at each filtering time step compared to the measurements (green). The delamination ratio
dr proves to be more difficult to be represented reliably in the filtering process as visible in
Figure 5.5b. This is expected as the delamination ratio measurement is not used to update
the particle filter model parameters. A likelihood estimate of these model parameters is only
made via the normalized stiffness EN

E0
likelihood (which also depends on crack growth model

parameters and model parameter m). While the run-out of delamination ratio higher than
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0.05 does not cause problems as Ddel(dr) reaches a plateau region for dr ≥ 0.05 (Figure 5.3b),
the delay in delamination growth is a more difficult problem to deal with. This is elaborated
upon later. For the normalized stiffness EN

E0
(Figure 5.5c), the delay in delamination growth

is observed in a higher normalized stiffness between 20,000 and 35,000 cycles compared to
the measurements. Apart from the delamination growth, this is also dependent on adaptive
model parameter m, on which is elaborated later, used to map Dtc and Ddel to EN

E0
.

The model parameters are evolving from one time step to another in the PF by updating
based on the likelihood function. First, the model parameters describing ∆ρ(N,∆N) are
elaborated upon. Figure 5.6 displays the results of the updating process of the crack growth
model parameters (a, b, c and σv,ρ) for specimen 1-4 with weighted mean and 95% PI. The
green line indicates the ’actual’ model parameter when performing NLS fitting on the testing
specimen only for the relation ρ(N).

(a) Model parameter a (b) Model parameter b

(c) Model parameter c (d) Model parameter σv,ρ

Figure 5.6: Results of the updating process of transverse matrix crack growth model parameters
for specimen 1-4 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.

The crack growth relation is the first showing characteristic behavior (steep increase of
exponential function) compared to the delamination ratio. Therefore, very early in the lifetime
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(≈ 20,000 cycles and less), both the likelihood of the crack density and normalized stiffness
do not contain much information on delamination (nearly no growth for all particles), which
means that particles are mostly judged on crack growth model parameters a, b and c to assign
the importance weights. This is reflected in model parameter c (Figure 5.6c), which quickly
converges to its actual value. This parameter indicates when exponential behavior starts in
ρ(N), which is usually below 10,000 cycles. This means characteristic behavior happens early
in the lifetime. The model parameter b (Figure 5.6b) becomes remarkably smaller in early life.
This parameter describes the steepness of the exponential curve. The other model parameters
a (Figure 5.6a) and σv,ρ (Figure 5.6d) show nearly constant behavior, which is expected as
specimen 1-4 shows standard crack growth compared to the training set.

Secondly, the model parameters describing ∆dr(N,∆N) are elaborated upon. Figure 5.7
displays the results of the updating process of the delamination model parameters (d, e, f and
σv,dr) for specimen 1-4 with weighted mean and 95% PI. The green line indicates the ’actual’
model parameter from NLS fitting on the testing specimen only for the relation dr(N).

(a) Model parameter d (b) Model parameter e

(c) Model parameter f (d) Model parameter σv,dr

Figure 5.7: Results of the PF updating process of delamination ratio growth model parameters for
specimen 1-4 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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The delamination growth relation shows only very late characteristic behavior (upward kink
in the logistic function) compared to the crack density. As explained previously, this means
that during early lifetime (≈ 20,000 cycles and less), little information can be obtained on the
delamination model parameters because the delamination growth for nearly each set of model
parameters is close to zero at that time. Therefore, the available model parameters for the
delamination growth are those associated to particles that have been assigned high importance
weights based on the crack growth. However, after early lifetime, the characteristic curvature
starts (Figure 5.10c). The number of cycles at which this occurs is reflected in model parameter
f (Figure 5.7c). This parameter indicates where the kink is present in dr(n), or equivalently
were ∆dr(N,∆N) is maximal. The model parameter e (Figure 5.7b) becomes remarkably
larger in early life. Given the lack of decrease in model parameter f over the lifetime, it is
consistent that model parameter e compensates for this by increasing the steepness in dr(n)
to quickly obtain higher dr for a given model parameter f. The other model parameters d
(Figure 5.7a) and σv,dr (Figure 5.7d) show nearly constant behavior, which is expected as
specimen 1-4 shows standard delamination growth compared to the training set. While the
model parameter d remains too high, it is found in this thesis that the upper logistic curve
matters less to determine the RUL due to the asymptotic behavior in Ddel(dr) (Figure 5.3b).
Keeping in mind that the delamination ratio measurement is not used to update the model
parameters (only the stiffness measurement is indirectly used), this indicates why model
parameter f converges in neither of the specimens (even for strong performing specimens as
specimen 1-4) because an excessive value for dr does not necessarily relate to an excessively
low EN

E0
given the aforementioned asymptote in Ddel.

Figure 5.8: Results of the updating of the normalized stiffness adaptive model parameter m for
specimen 1-4 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.

Lastly, the model parameter m, describing EN
E0

(Dtc, Ddel), is elaborated upon. For that
purpose, Figure 5.8 displays the results of the updating process of the normalized stiffness
model parameter m for specimen 1-4 with weighted mean and 95% PI. The green line indicates
the ’actual’ model parameter by applying the 0.001 stiffness degradation over 2500 cycles
threshold to the smooth normalized stiffness curve of specimen 1-4 only. It is important to
note that the model parameter m has a significant influence on the stiffness predictions. In this
case variation in m is limited, but for specimen 2-2, the negative influence of model parameter
m on the predictions is more expressive and explained in more detail.
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5.3.3 Prognostics

As the flowchart Figure 4.1 indicates, the aforementioned filtering step is followed by the
prognostics sub-algorithm, for which the results are elaborated upon here with the RUP of
specimen 1-4. One should keep in mind that the results for the model parameters (Figure 5.6
to 5.8) at time step tn serve as direct input to explore future damage states of the damage
property at time step tn (Figure 5.5). While the figures with results for the filtering step
contain a mean, it is important to keep in mind that the prognostics are performed for each of
the Ns particles separately. Once the normalized stiffness degrades less than 0.001 over 2,500
cycles for a single particle, its failure boolean at time step tn+l in the vector F becomes True.
This means the RUL of that particle is tn+l − tn. The RUL to EOEFL results of specimen 1-4
have been presented previously in Figure 5.1d.

At filtering time step tn (a) 500, (b) 10,000, (c) 20,000, (d) 30,000, (e) 40,000 and (f) 45,000
cycles, the results for the prognostics of the transverse matrix crack density ρ (Figure 5.9),
delamination ratio dr (Figure 5.10) and normalized stiffness EN

E0
(Figure 5.11) are shown.

For this purpose, the weighted mean and 95% PI of the Ns particles are displayed at each
prognostics time step tn+l. The green data points up to tn are the measurements that have
been used previously in the PF algorithm to update model parameters.

It is observed that the prognostics for the crack density perform particularly well. From
20,000 cycles on (Figure 5.9c), the PF quickly identifies the plateau region just below ρ = 0.3
mm−1. Additionally, the confidence intervals decrease when tn increases. This is partially
caused by the decreasing spread of the model parameters, which was dealt with in the filtering
step, but also because the zero-mean normally distributed prediction method error is added
at every time step. Compared to the crack density, the PF algorithm manages to reliably
predict the delamination ratio from 30,000 cycles on (Figure 5.10d), which is slightly later. As
explained in the filtering step, this is partially caused by later characteristic damage behavior
for the delamination ratio, with in this case dr different from zero only after tn = 15, 000
cycles. Additionally, as this measurement is not used, a likelihood cannot be assigned to a
particle based on dr. This is a second reason for the delay in the increase of dr. However, it is
identified that this discrepancy between the measured and predicted dr is smaller than for
specimen 2-2, for which the most important reason is a smaller variation in model parameter
m. The influence of this model parameter on the prognostics is treated in more detail in
section 5.4. Finally, one should note that with the asymptote in the current Ddel(dr) relation,
the upper plateau of dr(N) cannot be reliably predicted. This is also visible in Figure 5.10f.

Using the two aforementioned damage properties at tn+l (ρ and dr), the static model parameters
(h, i, j and k), and the model parameter m, the prognostics of the normalized stiffness is
obtained. The stiffness degradation serves as direct input to the EOEFL failure criterion.
In Figure 5.12, histograms at the same time steps tn present the distribution of the RUL
predictions of all particles. These histograms with the distribution of particles directly relate
to the indicated mean and PI in Figure 5.1d. At tn = 45, 000 cycles (Figure 5.12f), one can see
that many particles have failed already (large peak at RUL ≈ 0). This indicates the difficulty
of using this degradation rate failure criterion, for which the failed vector F is passed from
filtering to prognostics loop at each tn. This can cause ambiguity as a failed particle’s model
parameters could evolve, but the RUL is immediately zero with the failed condition.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 45,000 cycles

Figure 5.9: Results of the prognostics at distinct cycles of the transverse matrix crack density
ρ for specimen 1-4 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 45,000 cycles

Figure 5.10: Results of the prognostics at distinct cycles of the delamination ratio dr for specimen
1-4 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 45,000 cycles

Figure 5.11: Results of the prognostics at distinct cycles of the normalized stiffness EN

E0
for

specimen 1-4 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 45,000 cycles

Figure 5.12: Results of the prognostics at distinct cycles of the remaining useful life (RUL) for
stage I to II transition for specimen 1-4 with a histogram presenting the distribution of the Ns

particles.
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5.4 Extensive Results of Specimen 2-2

In this section, the results of specimen 2-2 are presented in extensive detail. This specimen
is a particularly weak performer of the PF as mentioned in section 5.2. The results of RUL
prognostics for stage I to II transition with indicative weighted mean and 95% PI of the Ns
particles has been presented in Figure 5.2b. The results for each of the PF steps is discussed in
the following subsections in a similar way as was done for specimen 1-4 previously. Additionally,
remarkable differences with the good performing specimen 1-4 are highlighted.

5.4.1 Pre-Training

In the pre-training step, the training specimens, being the set of all specimens except for
the testing specimen, are used to serve as input for the initialization of particles in the PF
algorithm. A flowchart of this step has been shown in Figure 4.2. A distinction is once more
made between static and adaptive model parameters.

Static Model Parameters

First, the focus is on the static model parameters h, i, j and k. These are pre-trained using
NLS on the combined dataset of the training specimens all together to obtain a single value for
each. The results of the NLS fits are shown in Figure 5.13. Because the entire set of training
specimens is used in the NLS fits, and because the training set consists of all specimens except
for the testing specimen, the result of this process is different for specimen 2-2 compared to
specimen 1-4. This is mostly observable when comparing Figure 5.3b (pre-training Ddel(dr)
for specimen 1-4) with Figure 5.13b (pre-training Ddel(dr) for specimen 2-2). The higher value
for the model parameter j in specimen 1-4, which is associated with a higher Ddel plateau
region, is present because specimen 2-2 is used in the pre-training process of specimen 1-4.
The data points for specimen 2-2 are associated with a higher plateau region when compared
to those for specimen 1-4.

The crack induced stiffness degradation model parameters (Figure 5.13a) are h = 1.095 and
i = −0.002. Following the methodology, a single uncertainty is obtained as standard deviation
of the 0-mean normal distribution σv,Dtc = 0.0426. Similarly, the delamination induced
stiffness degradation model parameters (Figure 5.13b) are j = −0.725 and k = −60.873 and
the uncertainty is again obtained as the standard deviation σv,Ddel = 0.0537.

Adaptive Model Parameters

After the static model parameters, the focus moves to the adaptive model parameters a,
b, c, d, e, f and m. As the adaptive model parameters are pre-trained using NLS on each
training specimen separately, little differences are present compared to specimen 1-4. The
only remarkable difference is that specimen 1-4 is now in the training set, while specimen 2-2
is the testing specimen and thus not in the training set. As a result, the NLS fits and state
transition model parameter m for pre-training of specimen 2-2 are shown in Figure 5.14. The
corresponding model parameters and prediction method errors (standard deviation of 0-mean
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normally distributed error) for each specimen that will be used for initialization are listed in
Table 5.5 and 5.6 respectively.

Table 5.5: NLS Fits of Adaptive Model Parameters per Training Specimen (Pre-Training 2-2)

Crack Growth Delamination Growth Stiffness
Spec. a b c d e f m
1-1 0.272 -0.106E-3 610 0.084 0.932E-4 23,929 0.916
1-2 0.222 -0.924E-4 1,011 0.198 0.144E-3 33,323 0.894
1-3 0.354 -0.125E-3 1,213 0.092 0.377E-4 77,001 0.907
1-4 0.304 -0.900E-4 545 0.045 0.163E-3 26,185 0.915
2-1 0.235 -0.509E-4 10,689 0.140 0.114E-3 58,826 0.899
2-3 0.285 -0.463E-4 2,067 0.049 0.137E-3 50,754 0.919

Table 5.6: NLS Adaptive Model Parameter Errors per Training Specimen (Pre-Training 2-2)

Crack Growth Delamination Growth
Spec. σv,ρ,total σv,ρ σv,dr,total σv,dr
1-1 7.01E-3 3.97E-5 2.15E-3 1.22E-5
1-2 8.79E-3 4.98E-5 2.87E-3 1.63E-5
1-3 1.16E-2 6.59E-5 2.32E-3 1.31E-5
1-4 1.05E-2 5.95E-5 1.11E-3 6.28E-6
2-1 1.12E-2 6.32E-5 1.89E-3 1.07E-5
2-3 1.13E-2 6.41E-5 1.19E-3 6.76E-6

The same reasoning as for specimen 1-4 is valid in the initialization step, which means that
all parameters and prediction method errors are initialized to a uniform distribution. This is
because the size of the training set is small with six specimens. Therefore, only the minima
and maxima of the initialization can differ, but the underlying distribution cannot change.
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(a) Crack induced stiffness degradation model parameters: h and i

(b) Delamination induced stiffness degradation model parameters: j and k

Figure 5.13: Non-linear least squares fits of static stiffness degradation model parameters on full
set of training specimens to serve as input for the machine learning model of specimen 2-2.
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(a) Transverse matrix crack density growth model parameters: a, b and c

(b) Delamination ratio growth model parameters: d, e and f

(c) Normalized stiffness model parameter: m

Figure 5.14: Non-linear least squares fits of adaptive model parameters for each training specimen
serving as initialization for the machine learning model of specimen 2-2.



5.4 Extensive Results of Specimen 2-2 69

5.4.2 Filtering

The filtering results of the PF algorithm for specimen 2-2 are presented here. In Figure 5.15,
the results are displayed for the filtering process damage properties of specimen 2-2 with
indicative weighted mean and 95% PI. One should note that no prognostics is involved yet,
only damage properties contained in the particles at time step tn are shown.

(a) Transverse matrix crack density ρ (b) Delamination ratio dr

(c) Normalized stiffness EN
E0

Figure 5.15: Results of the filtering process for damage properties of specimen 2-2 with indicative
weighted mean and 95% prediction interval (PI) of the Ns particles.

One can observe in Figure 5.15a that the particles are a good representation of the crack
density ρ at each filtering time step compared to the measurements (green). This includes
the offset of the exponential relation that makes the crack density up to 10,000 cycles equal
to zero. The delamination ratio dr proves again more difficult to reliably represent in the
filtering process of specimen 2-2 as displayed in Figure 5.15b. It is important to mention
that no in-situ (online) delamination measurements are used in the methodology, making it
harder to update those model parameters in the filter. The only evidence used to weigh the
importance of particles for dr is the normalized stiffness measurement EN

E0
. However, this
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measurement depends also on the crack growth and model parameter m. The delamination
ratio contained in the particles of the PF are persistently lower than (offline) measurements
added for comparative purposes here. The normalized stiffness EN

E0
(Figure 5.15c) is highly

dependent on adaptive model parameter m, on which is elaborated later, used to map Dtc

and Ddel to EN
E0

.

The model parameters are evolving from one time step to another in the PF by updating
based on the likelihood function. First, the model parameters describing ∆ρ(N,∆N) are
elaborated upon. Figure 5.16 displays the results of the updating process of the crack growth
model parameters (a, b, c and σv,ρ) for specimen 2-2 with weighted mean and 95% PI. The
green line indicates the ’actual’ model parameter when performing NLS fitting on the testing
specimen only for the relation ρ(N).

(a) Model parameter a (b) Model parameter b

(c) Model parameter c (d) Model parameter σv,ρ

Figure 5.16: Results of the updating process of transverse matrix crack growth model parameters
for specimen 2-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.

Although the crack density shows a characteristic exponential behavior later in specimen
2-2 than in specimen 1-4 due to the offset, it is still the first damage property to show
characteristic behavior (steep increase of exponential function) compared to the delamination
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ratio. Therefore, very early in the lifetime (≈ 25,000 cycles and less), both the likelihood of
the crack density and normalized stiffness do not contain much information on delamination
(nearly no growth for all particles). This means that particles are mostly judged on crack
growth model parameters a, b and c to assign the importance weights. This is reflected in
model parameter c (Figure 5.16c), which quickly converges to its actual value as was the case
for specimen 1-4 as well. This parameter indicates the offset for when exponential behavior
starts in ρ(N). The model parameter b (Figure 5.16b) gradually decreases in early life. It
is used to describe the steepness of the exponential curve. The other model parameters σv,ρ
(Figure 5.16d) shows nearly constant behavior. The value of model parameter a (Figure 5.16a)
indicates the asymptote in the ρ(N) relation. The fact that model parameter a does not
converge to the actual value can be explained by keeping in mind the difference between the
actual relation and the growth function. When the filter increases model parameter a, it does
not necessarily mean the plateau should be higher, but it rather looks at the growth in crack
density that is required to obtain a likely crack density matching the upcoming measurement.

(a) Model parameter d (b) Model parameter e

(c) Model parameter f (d) Model parameter σv,dr

Figure 5.17: Results of the updating process of delamination ratio growth model parameters for
specimen 2-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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Secondly, the model parameters describing ∆dr(N,∆N) are elaborated upon. Figure 5.17
displays the results of the updating process of the delamination model parameters (d, e, f and
σv,dr) for specimen 2-2 with weighted mean and 95% PI. The green line indicates the ’actual’
model parameter from NLS fitting on the testing specimen only for the relation dr(N).

The delamination growth relation once more shows very late characteristic behavior (upward
curve of the logistic function) compared to the crack density. As explained previously, this
means that during early lifetime (≈ 30,000 cycles and less), little information is obtained on
the delamination model parameters because the delamination growth for nearly each set of
model parameters is close to zero at that time. Therefore, the available model parameters
for the delamination growth are those associated to particles that have been assigned high
importance weights based on the crack growth. However, after early lifetime, the characteristic
curvature starts. The number of cycles at which this occurs is reflected in model parameter
f (Figure 5.17c). Before characteristic behavior up to 30,000 cycles, it is visible that model
parameter f has increased. However, once delamination information is reflected in the stiffness
measurement, the delamination growth should increase with decreasing crack growth (thus
crack induced stiffness loss). This explains the decrease in model parameter f after 30,000
cycles. More specifically, model parameter f indicates where the kink is present in dr(n), or
equivalently were ∆dr(N,∆N) is maximal. The model parameter e (Figure 5.7b) becomes
remarkably larger in early life. However, most of the increase happens at the time little
information exists on dr(n) from measurements, thus it is most probable that such model
parameter e belonged to a particle with likely crack density in early life. The other model
parameters d (Figure 5.7a) and σv,dr (Figure 5.7d) show converging behavior to the actual
value and nearly constant behavior respectively.

Figure 5.18: Results of the updating process of the normalized stiffness adaptive model parameter
m for specimen 2-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.

Lastly, the model parameter m, describing EN
E0

(Dtc, Ddel), is elaborated upon in extensive
detail. As previously mentioned in the results of specimen 1-4 because its influence is clearly
visible here. For that purpose, Figure 5.18 displays the results of the updating process of the
normalized stiffness model parameter m for specimen 2-2 with weighted mean and 95% PI. The
green line indicates the ’actual’ model parameter by applying the 0.001 stiffness degradation
over 2500 cycles threshold to the smooth normalized stiffness curve of specimen 2-2 only.
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It is apparent that model parameter m has a significant influences as it controls the combined
normalized stiffness based on both crack density and delamination ratio. A lower value of m
quickly decreases the normalized stiffness. For specimen 1-4, the range over which parameter
m changes is smaller (≈ 0.03) compared to specimen 2-2 (≈ 0.1). It is observed that when
the delamination ratio is larger than expected, it is compensated by the parameter m to
’match’ the incoming stiffness measurement in the filtering process. This is clearly visible when
comparing Figure 5.15b with Figure 5.18. Below 30,000 cycles, the delamination ratio is higher
than the actual offline measured delamination ratio (not used in the updating step). This
causes the model parameter m to be larger below these 30,000 cycles in order to increase the
normalized stiffness to match the online in-situ stiffness measurement. After this point, model
parameter m decreases even below the actual value because dr is underestimated. In that case,
model parameter m compensates the lower dr by decreasing model parameter m to artificially
increase the normalized stiffness. This indicates the difficulty of using the normalized stiffness
combination model with the crack density and delamination ratio in the PF without using a
measured in-situ delamination in the online process.

5.4.3 Prognostics

In a similar way as for the strong performer, specimen 1-4, the results for the RUP prognostics
of specimen 2-2 are treated here in extensive detail. This goes hand in hand with identifying
the most prominent differences between the two in performance. As the flowchart Figure 4.1
indicates, the aforementioned filtering step if followed by the prognostics sub-algorithm. The
results for the model parameters of specimen 2-2 that have been shown in (Figure 5.16 to
5.18) serve as direct input to explore future damage states of the damage property at time
step tn (Figure 5.15). It is important to note that prognostics are performed separately for
each particle. The RUL to EOEFL results of specimen 2-2 have been presented previously in
Figure 5.2b.

At filtering time step tn (a) 500, (b) 10,000, (c) 20,000, (d) 30,000, (e) 42,500 and (f) 55,000
cycles, the results for the prognostics of the transverse matrix crack density ρ (Figure 5.19),
delamination ratio dr (Figure 5.20) and normalized stiffness EN

E0
(Figure 5.21) are shown.

For this purpose, the weighted mean and 95% PI of the Ns particles are displayed at each
prognostics time step tn+l. The green data points up to tn are the measurements that have
been used previously in the PF algorithm to update model parameters.

The results for the crack density prognostics show reliable results, even with the offset, for
which the crack density remains zero first. At tn = 10,000 cycles (Figure 5.19b), the exonential
behavior of the for the crack density is modeled well in the prognostics. From 30,000 cycles
on (Figure 5.9c), the PF successfully identifies the plateau region just below ρ = 0.35 mm−1,
which is visible when taking tn+l = 60,000 cycles as a reference to compare Figure 5.19d, 5.19e
and 5.19f. Additionally, as was the case for specimen 1-4, the confidence intervals decrease
when tn increases. Aside from the crack density, the PF algorithm has more difficulty with
performing reliable prognostics of the delamination ratio dr. As previously mentioned in the
filtering step, dr of specimen 2-2 is continuously underestimated. This is also reflected in
Figure 5.20d, in which the delamination onset is not yet reflected in the particles. At tn =
42,500 cycles (Figure 5.20e) and tn = 55,000 cycles (Figure 5.20f), the delamination ratio is
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still underestimated at very low values (≈ 0.01 and 0.02 respectively). Two reasons for this
discrepancy are identified: the absence of in-situ dr measurements and a volatile behavior of
model parameter m. The first has also been observed for specimen 1-4, which resulted in a
delay in the increase of dr. However, the second reason is more dominant for specimen 2-2 and
it explains the difficulty in the RUL prediction. Looking at Figure 5.18, it can be observed
that model parameter m fluctuates between ≈ 0.95 at tn = 15,000 cycles and ≈ 0.85 at tn =
45,000 cycles. Such an unreliable model parameter m causes the model parameters of the dr
phenomenological model to not be updated. This means that the particles with ’extremes’ of
m can show likely stiffness behavior for updating in the PF. This behavior is also visible in
the normalized stiffness prognostics.

Using the two aforementioned damage properties at tn+l (ρ and dr), the static model parameters
(h, i, j and k), and the model parameter m, the prognostics of the normalized stiffness is
obtained. The stiffness degradation serves as direct input to the EOEFL failure criterion. It
is clear in Figure 5.21b Figure 5.21c and Figure 5.21d that the prognostics of the stiffness
degradation go slower than actually is the case for specimen 2-2. Additionally, a higher
plateau region is predicted in the same figures. This is consistent with an excessively high
value of model parameter m at those cycles. Later, in Figure 5.21e and Figure 5.21f, model
parameter m is close to its minimum and is stabilizing towards the actual model parameter m
for specimen 2-2 (Figure 5.18). This causes the plateau region to be present, and causes the
delamination ratio prognostics in Figure 5.20e and Figure 5.20f to become more reliable. It
is therefore identified that the phenomenological relation with model parameter introduces
difficulties, for which a recommendation is stated in chapter 6.

Finally, in Figure 5.22, histograms at the same time steps tn present the distribution of the
RUL predictions of all particles. These histograms with the distribution of particles directly
relate to the indicated mean and PI in Figure 5.2b. The high peak for RUL estimations at
100,000 cycles in Figure 5.22b and Figure 5.22c is present because the maximum number of
iterations is set to 100,000 cycles. This means that, if a particle did not fail yet at that point,
its RUL is set to zero and the algorithm moves on to the next filtering iteration tn+1. The
reason for high RUL predictions at tn = 10,000 cycles, tn = 20,000 cycles and tn = 30,000
cycles is directly related to the aforementioned slow stiffness degradation prognostics due
to model parameter m at the same filtering steps. After this point, at tn = 42,000 cycles
(Figure 5.22e), predictions quickly decrease to very low RUL estimations, while the specimen
actually still has ≈ 20, 000 cycles left to EOEFL. This is difficult to explain in extensive
detail due to the lack of transparency in the EOEFL failure criterion. In this criterion, the
failed vector F is passed from filtering to prognostics loop at each tn. This causes ambiguity
as a failed particle’s model parameters could evolve, but the RUL is immediately zero with
the failed condition. Additionally, this failure criterion decreases computational efficiency
because stiffness results should be stored for multiple filtering and prognostics steps to track
degradation. Therefore, from these findings, a recommendation is formulated in chapter 6 to
avoid such RUL failure criterion. This problem is not present if one would only be interested
in the RUP up to tn+l, or if degradation to EOL (macroscopic) failure would be modeled.
However, this is not possible with the phenomenological relations and case study data in this
thesis.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 42,500 cycles (f) 55,000 cycles

Figure 5.19: Results of the prognostics at distinct cycles of the transverse matrix crack density
ρ for specimen 2-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 42,500 cycles (f) 55,000 cycles

Figure 5.20: Results of the prognostics at distinct cycles of the delamination ratio dr for specimen
2-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 42,500 cycles (f) 55,000 cycles

Figure 5.21: Results of the prognostics at distinct cycles of the normalized stiffness EN

E0
for

specimen 2-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 42,500 cycles (f) 55,000 cycles

Figure 5.22: Results of the prognostics at distinct cycles of the remaining useful life (RUL) for
stage I to II transition for specimen 2-2 with a histogram presenting the distribution of the Ns

particles.
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5.5 Sensitivity Analysis

To answer the last sub-question of the research question, the influence of the PF input
parameters on the PF algorithm performance is investigated for specimen 1-4 and 2-2. As
a baseline, the input parameters are identical to those presented in Table 5.1. However, to
perform a sensitivity analysis, the identified hyperparameters in section 5.2 are altered one by
one. First, the effect of increasing or decreasing the sample size Ns is demonstrated. After
this, the effect of changing the threshold effective sample size Neff and the random walk rate
of convergence P∗ are elaborated upon.

5.5.1 Sample Size

The effect of the sample size Ns is investigated for sample sizes of 75, 150, 300, 600, 1,000,
1,500, 2,000 and 4,000. For these sample sizes, the results for the RUL estimations of the PF
algorithm are generated to quantify the performance metrics. In Table 5.7 and 5.8, the results
are shown for specimen 1-4 and 2-2 respectively.

Table 5.7: Performance Metrics Results for Specimen 1-4 with Varying Ns

Ns Precision RMSE MAPE CRA Convergence
75 11,359.297 15,359.66 76.16 0.238 22,821.942
150 12,250.473 15,710.47 82.031 0.18 23,091
300 10,661.861 11,730.299 53.665 0.463 19,967.788
600 10,466.481 11,022.072 57.844 0.422 19,977.507
1,000 7,408.518 7,806.619 38.661 0.613 17,973.822
1,500 6,646.292 6,685.92 39.185 0.608 19,941.175
2,000 6,665.319 6,670.143 39.237 0.608 20,849.974
4,000 7,338.914 7,361.915 42.613 0.574 20,915.41

Table 5.8: Performance Metrics Results for Specimen 2-2 with Varying Ns

Ns Precision RMSE MAPE CRA Convergence
75 26,063.126 29,577.205 89.125 0.109 33,142.372
150 25,649.756 30,069.538 84.596 0.154 30,883.334
300 24,655.117 28,729.466 84.394 0.156 30,774.064
600 18,791.784 19,739.124 62.215 0.379 27546.633
1,000 17,304.741 17430.158 58.985 0.410 27,571.061
1,500 17,107.874 18,426.185 59.924 0.401 27,338.085
2,000 17,910.443 18,959.143 59.757 0.402 27,250.999
4,000 18,784.820 19,590.064 59.208 0.408 27,195.296

One can observe that the PF performance metrics score worse for both specimens when the
sample size is low (≤ 600). This is clearly visible for the measure of spread, the precision.
Additionally, the accuracy metrics RMSE, MAPE and CRA support this observation. In
the convergence metric, this trend is observed, though less explicit. However, for sample
sizes Ns =≥ 1, 000, the improvements in performance metrics become less expressive when
increasing the sample size. While the specific sample size at which this plateau is reached is
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dependent on the application, this behavior is consistent with observations in other articles
utilizing PF (Wang and Chaib-Draa, 2012; Elvira et al., 2017).

The asymptotic behavior that is observed when increasing the sample size can be well explained
by the basic concepts of PF. The PF has a certain associated degree of randomness. That
means, each adaptive model parameter for each particle is initialized to a value drawn from
a uniform distribution in this case. However, many different adaptive model parameters
are present, and one aims to find the most feasible combination of those (the most feasible
particle) using the updating step. One can imagine that, if the sample size is very small, the
probability of having a reasonably likely set is smaller than when a large sample size is used.
It is important to note that this is a generalization, for instance, Ns = 150 for specimen 1-4 in
Table 5.7 still scores weaker in terms of the prognostics metrics than when Ns = 75.

5.5.2 Threshold Effective Sample Size

The effect of the threshold effective sample size Nthreshold is investigated for values of 0.5, 0.7,
0.85, 0.95 and 1. For these thresholds, the results for the RUL estimations of the PF algorithm
are generated to quantify the performance metrics. In Table 5.9 and 5.10, the results are
shown for specimen 1-4 and 2-2 respectively.

Table 5.9: Performance Metrics Results for Specimen 1-4 with Varying Nthreshold

Nthreshold Precision RMSE MAPE CRA Convergence
0.5 8,541.237 8,655.258 48.057 0.519 19,749.721
0.7 5,901.922 6,054.172 41.409 0.586 23,272.541
0.85 7,373.912 7,420.334 42.119 0.579 20,415.333
0.95 6,646.292 6,685.92 39.185 0.608 19,941.175
1 9,212.491 9,594.895 50.172 0.498 19,899.463

Table 5.10: Performance Metrics Results for Specimen 2-2 with Varying Nthreshold

Nthreshold Precision RMSE MAPE CRA Convergence
0.5 18,112.525 18,668.508 60.178 0.398 27,507.89
0.7 18,313.609 18,800.422 61.329 0.387 27,441.657
0.85 18,154.996 19,085.941 60.262 0.397 27,203.267
0.95 17,107.874 18,426.185 59.924 0.401 27,338.085
1 18,009.439 18,817.91 58.983 0.41 27,263.577

One can observe that the PF precision, RMSE and MAPE performance metrics (minimizing is
desirable) show a convex behavior for specimen 1-4. On the other hand, the CRA performance
metric (maximizing is desirable) shows a clear concave behavior. This is expected due to
the trade-off between weight degeneracy and sample impoverishment as mentioned in the
resampling methodology (subsection 4.4.3). Therefore, both very high and low Nthreshold
perform weaker than the other predictions. When Nthreshold = 0.85, a higher precision and
RMSE is observed compared to those of Nthreshold = 0.7 and Nthreshold = 0.95. However, one
should keep in mind the inherent randomness of a PF algorithm depending on the initialization,
and the fact that the CRA and MAPE of Nthreshold = 0.85 have similar results as the other
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two, which makes it a modestly sensitive RUL prognostics result. For specimen 2-2, this
behavior is less expressive when changing Nthreshold, indicating a lower sensitivity for a weaker
performing specimen.

5.5.3 Random Walk Rate of Convergence

Lastly, the effect of the random walk rate of convergence P∗ is investigated for convergence
rates of 1E-2, 1E-3 and 1E-4. For these convergence rates, the results for the RUL estimations
of the PF algorithm are generated to quantify the performance metrics. In Table 5.11 and
5.12, the results are shown for specimen 1-4 and 2-2 respectively.

Table 5.11: Performance Metrics Results for Specimen 1-4 with Varying P

P∗ Precision RMSE MAPE CRA Convergence
1.00E-02 8,134.179 8,251.222 40.526 0.59 18,157.693
1.00E-03 6,646.292 6,685.92 39.185 0.608 19,941.175
1.00E-04 7,539.002 7,539.002 39.257 0.6074 19,465.52

Table 5.12: Performance Metrics Results for Specimen 2-2 with Varying P

P∗ Precision RMSE MAPE CRA Convergence
1.00E-02 19,964.56 22,208.09 70.26 0.2974 29,010.658
1.00E-03 17,107.87 18,426.19 59.924 0.401 27,338.085
1.00E-04 18,664.98 20,652.99 67.147 0.329 27,992.165

One can observe that considerable sensitivity is present based on the CRA, MAPE, RMSE and
precision metrics of specimen 2-2. According to those, P∗ = 1E − 3 is preferable to maximize
the first mentioned metric and minimize the other three. Additionally, for specimen 1-4, a
similar observation can be made, most explicitly in the RMSE results. In order to explain
the sensitivity caused by the rate of convergence of the random walk, Equation 4.26 is used.
Here, it is observed that a smaller value for P∗ causes slower shrinkage of the random walk
standard deviation σξn,j , while for a larger P∗ the standard deviation shrinks faster. In this
case, a larger P∗ = 1E− 2 is consistent with converging too soon. This means that not enough
variability is allowed for the model parameters when characteristic damage patterns occur at a
larger amount of cycles. This mostly applies to the growth in delamination ratio, which often
remains at a value close to 0 up to 20,000 cycles or more in this case study. On the other
hand, the P∗ = 1E − 4 is consistent with insufficient convergence. This means that too much
variability is still allowed when approaching EOEFL. In this case study for specimen 1-4 and
2-2, P∗ = 1E − 3 comes out as most suitable to balance the two aforementioned consequences.
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Chapter 6

Conclusions and Recommendations

This last chapter concludes the thesis by pointing out the most significant findings that are
related to the research (sub-)questions. Additionally, recommendations for future research in
the field of prognostics of the remaining useful life and properties for composites are formulated
based on these findings.

6.1 Conclusions

Due to the ever-increasing need to make aviation more sustainable, the focus is moving rapidly
to high performance lightweight structures. While the answer for this weight reduction is often
found in continuous fiber-reinforced composites, challenges remain for the online prognostics
of the remaining useful life (RUL) and remaining useful properties (RUP) in order to facilitate
condition-based maintenance of these damage-sensitive structures. As significant stiffness
degradation manifests itself in early fatigue life, it was decided in this thesis to predict the
RUP and RUL to end-of-early-fatigue life (EOEFL), defined as stage I to stage II transition.
Recent observations have shown that not only matrix cracking is present in early fatigue life,
but that both delamination and matrix cracking occur simultaneously. Keeping in mind the
identified potential of particle filtering (PF) to deal with inherent uncertainties and variability
in composite degradation, it was decided to combine the PF with phenomenological relations
that predict both crack growth and delamination growth. Therefore, the main research
question that is addressed, with several sub-questions along the way, is formulated as such:

To what extent can the remaining useful life and properties of cross-ply composites in
early fatigue life be predicted using online sequential training of phenomenological

model(s) embedded into a particle filter?

Using the case study data at hand, the PF framework is set up. It is recognized that the PF
can be used to perform online training of non-linear least squares pre-trained phenomeno-
logical relations with high variance. Such pre-trained relations can be obtained with only
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a small training dataset, immediately indicating the considerable benefit of a model-based
approach compared to a data-driven approach. Along the way, sub-questions dealing with the
implementation and model performance are re-iterated here.

• Which measurable damage properties can be used to construct phenomeno-
logical relations for damage evolution of composites in early fatigue life?

Recent observations in literature identify transverse matrix cracking and delamination
as dominant damage properties in damage evolution. These are both provided in the
case study dataset and used to define phenomenological growth relations. For ρ(N),
which after differentiation yields ∆ρ(N,∆N) in the PF algorithm, exponential behavior
is identified. For dr(N) on the other hand, which after differentiation yields ∆dr(N,∆N),
a logistic behavior is observed. Aforementioned relations are fit using non-linear least
squares and describe the trend well for each specimen separately. However, they do not
generalize for all specimens, which means these model parameters are adaptive in PF.

• How can the multicausality of stiffness degradation in early fatigue life be
accounted for in a PF algorithm?

Composite degradation is described in terms of a normalized stiffness degradation. It is
found that the crack- and delamination growth relations can be combined in the PF using
the data provided on crack- and delamination induced stiffness degradation. For that
purpose, Dtc(ρ) and Ddel(dr) are introduced as linear and exponential phenomenological
relations respectively. However, due to the low variability observed between specimens,
these are static model parameters in the PF. A single additional adaptive model parameter
m is required in the relation EN

E0
(Dtc, Ddel) to relate stiffness degradation as a percentage

of stage I stiffness degradation from the dataset to a total normalized stiffness.

• How well does the model behave on case study data to predict the RUL in
terms of prognostic evaluation metrics?

The RUL prognostics in terms of the performance metrics show significant differences
between specimens. As such, a considerably good specimen (1-4) and weak specimen
(2-2) are treated in extensive detail. It is apparent that model parameter m has a
significant influence as it controls the combined normalized stiffness based on the crack
density and delamination ratio. A lower value of m quickly decreases the normalized
stiffness. For specimen 1-4, the range over which parameter m changes is smaller (≈
0.03) compared to specimen 2-2 (≈ 0.1). It is observed that when the delamination ratio
is larger than expected, it is compensated by the parameter m to match the incoming
stiffness measurement in the filtering step. Therefore, recommendations are formulated
below to get rid of model parameter m using another stiffness relation.

The aforementioned delamination ratio is harder to predict than the crack density
as observed from the comparison with actual offline data. This is expected as the
delamination ratio measurement is not used to update the PF model parameters. A
likelihood estimate of these model parameters is only made via the normalized stiffness ENE0
likelihood, which also depends on crack growth model parameters and model parameter
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m. However, it is promising to see in specimen 1-4 (with small variation in model
parameter m) that even without using an in-situ delamination measurement, the RUP
for the delamination damage property at future states is quite reliable. One should note
that with the asymptote in the current Ddel(dr) relation, the upper plateau of dr(N)
cannot be reliably predicted (increase in dr no longer reflected in the stiffness).

Aside from the discussion focusing on delaminations above, the PF algorithm manages
to adapt based on characteristic damage behavior early in the lifetime when encountered
in the crack measurements. This is clearly visible in the crack growth filtering results,
for which model parameter c quickly adapts to a sudden exponential behavior.

Apart from the conclusions on the RUP prognostics, it is important to stress that an
atypical type of failure criterion is used for RUL prognostics to EOEFL. Due to the
large variability observed in stage transition stiffness EI

E0
, a fixed threshold cannot be

identified to define EOEFL. However, an asymptotic region characterizes stage II, which
makes it possible to detect EOEFL in the PF when the normalized stiffness degrades
less than 0.001 over 2500 cycles. This type of failure criterion on the degradation rate
is rather atypical in PF and added by using a failure vector that is passed between
subsequent filtering iterations, each particle with its corresponding prognostics. However,
it is observed that the asymptotic type of failure criterion for RUL prognostics to
EOEFL has disadvantages in terms of transparency and computational efficiency. The
need for such failure criterion can be circumvented using strategies stated below as
recommendations. It is also observed that 95% prediction intervals of RUP and RUL
predictions are sometimes negative. This does not necessarily mean that particles have an
actual negative value for that property, but it rather shows the limitations of estimating
properties by assuming a normal distribution.

• Which influence do the input parameters of the PF algorithm have on the
model performance?

The influence of PF input parameters is evaluated using a sensitivity analysis on specimen
1-4 and 2-2. First, an asymptotic behavior is observed when increasing the sample size
Ns, which is well explained. This is the case as for a small sample size, the probability
of having an initially reasonably likely set is smaller than when a larger sample size is
used. Secondly, a sensitivity analysis on the threshold effective sample size Nthreshold
shows convex behavior of metrics for which minimization is desirable and concave for
the opposite case. This indicates a ’sweet spot’ (very clear for specimen 1-4) in which
weight degeneracy and sample impoverishment are balanced. Finally, it is found that a
moderate rate of convergence of the random walk P∗ is desirable. This is consistent with
extremely low and high values of P∗ that cause convergence to happen too soon (before
characteristic damage behavior of delamination growth) and too late respectively.

It is concluded in this thesis that the potential of PF to offer adaptivity required for RUP
prognostics of composites is identified, definitely for damage properties showing characteristic
behavior in the early lifetime. However, reliable RUL estimation to EOEFL with the method-
ology set out in this thesis remains difficult. Especially the stiffness degradation model and
the failure criterion for EOEFL generate difficulties. These are addressed in the subsequent
recommendations to build towards robust and reliable RUL prognostics for composites.
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6.2 Recommendations

Although all research questions have been answered in this thesis, other thoughts emerged in the
process. Besides, due to the rather limited experience in industry with these models, it is likely
that performance enhancements can be achieved based on this methodology. Unfortunately,
due to the finite time resources allocated to this thesis, these ideas and observations are stated
as recommendations for future work.

• When building future phenomenological models for properties with very small growth
(crack growth and delamination growth in this case), it is recommended to use a log-scale
to improve readability and reduce the risk of encountering overflow in computer software.

• Using the existing methodology, one could improve the initialization of particles when
a larger dataset becomes available. This would give the option to use the established
framework in which initialization can be done based on the best fit pre-training statistical
distribution of a certain adaptive model parameter.

• It is observed that the asymptotic type of failure criterion for RUL prognostics to EOEFL
has disadvantages in lacking transparency and decreasing computational efficiency
(stiffness results stored for multiple filtering steps). Another corresponding difficulty is
that, when resampling occurs, a resampled particle is passing the boolean for failure of
the previous filtering step, while in fact the model parameters can evolve. Therefore,
it is suggested as a recommendation that a fixed threshold is preferable in future PF
algorithms, if the specific application allows this. If one would only be interested in the
RUP, a feasible approach would be to always predict a pre-defined number of states
ahead.

• For now, RUP and RUL prognostics are performed up to EOEFL. Therefore, a suitable
next step would be to extend the methodology (with additional/different phenomenolog-
ical relations) towards stage II, III or macroscopic failure. The latter would also allow
for a fixed stiffness threshold for end-of-life as desirable according to the aforementioned
recommendation.

• The reliability of the RUP and RUL prognostics is compromised by the dependency on
model parameter m. Therefore, it would be desirable to combine the existing or similar
phenomenological relations for crack and delamination growth using an alternative model
to obtain the normalized stiffness. A feasible approach would be to train a surrogate
model on synthetic data, generated with finite element modeling simulations. Model
parameters of such surrogate model can serve as adaptive model parameters in the PF
framework presented in this thesis.
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A.1 Specimen 1-1

(a) 500 cycles (b) 7,500 cycles

(c) 15,000 cycles (d) 22,500 cycles

(e) 30,000 cycles (f) 37,500 cycles

Figure A.1: Results of the prognostics at distinct cycles of the transverse matrix crack density
ρ for specimen 1-1 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.
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(a) 500 cycles (b) 7,500 cycles

(c) 15,000 cycles (d) 22,500 cycles

(e) 30,000 cycles (f) 37,500 cycles

Figure A.2: Results of the prognostics at distinct cycles of the delamination ratio dr for specimen
1-1 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 7,500 cycles

(c) 15,000 cycles (d) 22,500 cycles

(e) 30,000 cycles (f) 37,500 cycles

Figure A.3: Results of the prognostics at distinct cycles of the normalized stiffness EN

E0
for

specimen 1-1 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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A.2 Specimen 1-2

(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 45,000 cycles

Figure A.4: Results of the prognostics at distinct cycles of the transverse matrix crack density
ρ for specimen 1-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 45,000 cycles

Figure A.5: Results of the prognostics at distinct cycles of the delamination ratio dr for specimen
1-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 45,000 cycles

Figure A.6: Results of the prognostics at distinct cycles of the normalized stiffness EN

E0
for

specimen 1-2 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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A.3 Specimen 1-3

(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 50,000 cycles

Figure A.7: Results of the prognostics at distinct cycles of the transverse matrix crack density
ρ for specimen 1-3 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 50,000 cycles

Figure A.8: Results of the prognostics at distinct cycles of the delamination ratio dr for specimen
1-3 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 50,000 cycles

Figure A.9: Results of the prognostics at distinct cycles of the normalized stiffness EN

E0
for

specimen 1-3 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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A.4 Specimen 2-1

(a) 500 cycles (b) 15,000 cycles

(c) 25,000 cycles (d) 45,000 cycles

(e) 60,000 cycles (f) 70,000 cycles

Figure A.10: Results of the prognostics at distinct cycles of the transverse matrix crack density
ρ for specimen 2-1 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.
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(a) 500 cycles (b) 15,000 cycles

(c) 25,000 cycles (d) 45,000 cycles

(e) 60,000 cycles (f) 70,000 cycles

Figure A.11: Results of the prognostics at distinct cycles of the delamination ratio dr for specimen
2-1 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 15,000 cycles

(c) 25,000 cycles (d) 45,000 cycles

(e) 60,000 cycles (f) 70,000 cycles

Figure A.12: Results of the prognostics at distinct cycles of the normalized stiffness EN

E0
for

specimen 2-1 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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A.5 Specimen 2-3

(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 55,000 cycles

Figure A.13: Results of the prognostics at distinct cycles of the transverse matrix crack density
ρ for specimen 2-3 with indicative weighted mean and 95% prediction interval (PI) of the Ns

particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 55,000 cycles

Figure A.14: Results of the prognostics at distinct cycles of the delamination ratio dr for specimen
2-3 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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(a) 500 cycles (b) 10,000 cycles

(c) 20,000 cycles (d) 30,000 cycles

(e) 40,000 cycles (f) 55,000 cycles

Figure A.15: Results of the prognostics at distinct cycles of the normalized stiffness EN

E0
for

specimen 2-3 with indicative weighted mean and 95% prediction interval (PI) of the Ns particles.
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