
D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

Device Type Classification
Device Type Classification of Internet of Things Devices
on Low­End Dedicated Hardware Devices

MSc Thesis Cyber Security
J.M. Thiessen

Device Type Classification
Device Type Classification of Internet of Things

Devices on Low­End Dedicated Hardware Devices

by

J.M. Thiessen

at the Delft University of Technology,
to be defended publicly on the 12th of July at 15:00 CEST.

Student Number: 5350506
Project Duration: November 8, 2021 ­ July 12, 2022
Thesis Committee: Prof. George Smaragdakis TU Delft, Advisor

Dr. Apostolis Zarras TU Delft, Supervisor
Dr. Ranga Rao Venkatesha Prasad TU Delft

Supervisor: Dr. Elmer Lastdrager SIDN

This research was conducted together with SIDN Labs.

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Preface

After many years of studying, my journey toward a master’s degree has ended. I am proud to say that
I can deliver my thesis about ’Device Type Classification of Internet of Things Devices on Low­End
Dedicated Hardware Devices’ as my final contribution to obtaining my master’s degree. Along the way,
there were many obstacles, as the pandemic was very much alive. Nevertheless, it was a journey I
was allowed to take with the support of a great set of people.

First, I would like to thank Dr. Elmer Lastdrager for his support during my thesis. He was always there
to answer questions, proofread my work, and provide moral support. Furthermore, I would like to thank
Dr. Apostolis Zarras for his advice and guidance during my thesis. Further, I would like to thank my
thesis committee, Prof. George Smaragdakis, and Dr. Ranga Rao Venkatesha Prasad.

Next, I would like to thank SIDN and SIDN Labs for the fun times, the great opportunity to do my thesis
there, and for including me as one of the team from the beginning. I have learned a lot from everyone
there, from technical knowledge to the basics of brewing beer.

Finally, I would like to thank Armin, Aslı, Charlie, Linus, and Luke for all the support and fun (online)
games we played. Furthermore, I would like to thank my friends and family for their support during my
studies. I especially want to thank Angelica for her continuous support and patience during my studies.

J.M. Thiessen
Arnhem, July 2022

i

Abstract

The uprise of the Internet of Things (IoT) has been a hot topic for several years. While many see
these devices and think they bring ease to their lives, it is far from reality. Researchers found many
privacy and security problems within these devices in the last years. The popularity of these devices
causes many users to bring a device into their home that could potentially infringe on privacy if not
configured correctly. The first step to helping these home users secure their network starts by being
able to autonomously detect the type of IoT devices connected to their network. With this information,
firewall rules could enforce specific device behavior or provide the user with extra information on the
type of the device and the risks it brings. It could inspire a new generation of home security devices
focussing on securing IoT devices from a network perspective.

This thesis will introduce a new machine learning model to detect the type of unseen IoT device. Our
work aims to classify devices into five categories, one more than the current state­of­the­art. Further­
more, we verify the model extensively on a large set of devices, with 74 measurements using Leave­
One­Group­Out (LOGO) cross­validation. LOGO increases our testing set significantly in comparison
with other works. Finally, LOGO will ensure that the training and test set was not handcrafted to obtain
the highest possible accuracy, introducing fairness into our model design. The accuracy reached by
our model is 73%, showing that Device Type Classification on unseen devices is feasible.

ii

Contents

Preface i

Abstract ii

Nomenclature v

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Research Question . 2
1.2 Main Contributions . 2
1.3 Outline . 3

2 Background 4
2.1 PageRank Algorithm . 4

2.1.1 Example. 5
2.2 Random Forest Classifier . 6

2.2.1 Decision Tree Classifier . 6
2.2.2 Constructing the Forest . 8
2.2.3 Majority Vote . 8

2.3 Neural Networks . 8
2.3.1 Long­Term­Short­Term Memory . 8
2.3.2 Convolutional Neural Network . 8
2.3.3 Cascading . 9

2.4 Leave­One­Group­Out Cross­Validation . 9

3 Literature Review 10
3.1 Device Type Re­identification . 10

3.1.1 Deep Learning . 11
3.1.2 Unsupervised Learning. 11
3.1.3 Federated Learning . 12

3.2 Device Type Detection . 12
3.3 Device Type Classification . 12
3.4 Current Challenges. 13

4 Reference Implementations 14
4.1 Performance Metrics . 14
4.2 Random Forest Classifier . 15

4.2.1 Feature Extraction . 16
4.2.2 Performance . 17

4.3 LSTM­CNN Model . 19
4.3.1 Feature Extraction . 20
4.3.2 Performance . 20
4.3.3 Technical Difficulties . 22

4.4 Conclusion . 22

5 Design & Implementation 24
5.1 The Challenges . 24
5.2 Hypotheses . 25

5.2.1 Audio . 25
5.2.2 Camera . 25

iii

Contents iv

5.2.3 TV . 25
5.2.4 Hub . 26
5.2.5 Automation . 28

5.3 Dataset . 28
5.4 Features . 29
5.5 Evaluation. 30
5.6 Parameters . 30

5.6.1 Dataset Split . 31
5.6.2 Metrics . 31

6 Experiment Results 32
6.1 Accuracy . 32
6.2 Accuracy Spread . 33
6.3 Predictions . 33

6.3.1 Misclassifications . 34
6.3.2 Prediction Distribution . 35

6.4 Traditional Models . 38
6.5 Resource Usage . 38

6.5.1 Storage . 38
6.5.2 Prediction Times . 38
6.5.3 Memory . 40

6.6 Comparison . 40
6.6.1 Resource Usage . 40
6.6.2 Accuracy . 41

7 Discussion & Future Work 43
7.1 Limitations . 43
7.2 Future Work. 43

8 Conclusion 45

References 51

A Device Categorization RFC Model 52
A.1 Train Dataset . 52
A.2 Test Dataset . 53

B Device Categorization for Implementation 55

C Default Settings ­ Random Forest Classifier 58

D Prediction Results ­ Random Forest Classifier 59

Nomenclature

Abbreviations
Abbreviation Definition

CART Classification And Regression Trees
CNN Convolutional Neural Network
DTC Decision Tree Classifier
HMM Hidden Markov Model
IANA Internet Assigned Numbers Authority
IoT Internet of Things
ISP Internet Service Provider
LIME Local Interpretable Model­agnostic Explanations
LOGO Leave­One­Group­Out
LSTM Long Short­Term Memory
MAC Media Access Control
RFC Random Forest Classifier
RNN Recurrent Neural Network
SHAP SHapley Additive exPlanations
SVM Support Vector Machine

v

List of Figures

2.1 The graph of the example network. 5
2.2 A fictional example of a Decision Tree Classifier (DTC). 6
2.3 An illustrative example of the average Gini impurity of a fictional split. 7
2.4 An example illustration of the max pooling layer. 9
2.5 Illustration of how Leave­One­Group­Out (LOGO) cross­validation splits work. 9

4.1 The Raspberry Pi 4 used with heatsink placement. 15
4.2 The test accuracy spread of the Random Forest Classifier (RFC) proposed by Melnyk,

Haleta, and Golphamid. 17
4.3 The memory usage of the two RFC models by Melnyk, Haleta, and Golphamid. 19
4.4 The average prediction time of the two RFC models by Melnyk, Haleta, and Golphamid. 19
4.5 The experiment results of the Long Short­Term Memory (LSTM)­Convolutional Neural

Network (CNN) model. 21
4.6 The memory usage of the LSTM­CNN model by Bai et al. 22
4.7 The average prediction time of the LSTM­CNN model by Bai et al. 23

5.1 24 hours of IP traffic from a Google Home smart speaker grouped by hour. 25
5.2 Two examples showing the hypothesis for camera detection. 26
5.3 24 hours of IP traffic from a Samsung Smart TV grouped by hour. 26
5.4 Number of internal connections over a period of an hour. 27
5.5 24 hours of IP traffic from a Wink Hub 2 grouped by hour. 27
5.6 24 hours of IP traffic from a TP­Link Smart Plug grouped by hour. 28

6.1 The experimental results of the RFC with different number of estimators and sub­capture
lengths. 33

6.2 The test accuracy spread of our 4h­250 RFC model. 34
6.3 The confusion matrices with various seeds of our 4h­250 RFC model that reached 73%

accuracy. 34
6.4 The prediction strength of the majority vote. 36
6.5 The 4h­250 RFC model sizes created during LOGO cross­validation (lower is better). . 39
6.6 The prediction times of the RFC models created during LOGO cross­validation. 39
6.7 The maximum and minimum memory usage of our RFC model. 40
6.8 The memory usage of the models explored in our thesis. 41

vi

List of Tables

2.1 The connection matrix of the PageRank example. 5
2.2 The PageRank values of the first iteration. 5
2.3 The PageRank values after the algorithm converges (104 iterations). 6

4.1 The accuracy of the RFC proposed by Melnyk, Haleta, and Golphamid based on 21,000
packets. 18

4.2 The accuracy of the RFC proposed byMelnyk, Haleta, and Golphamid based on 560,000
packets. 18

4.3 The accuracy of the traditional models on bidirectional traffic. 21
4.4 The accuracy of the traditional models on unidirectional traffic. 21

6.1 The mean accuracy of the RFC models with a highest accuracy of 73%. 32
6.2 The devices misclassified by the RFC model with 250 estimators and a sub­capture

length of 4 hours. 35
6.3 The IoT devices that had a prediction accuracy of more than 90%. 37
6.4 The prediction accuracy of other traditional models on our feature set. 38
6.5 Comparison between the methodologies discussed in this work. 42

A.1 The train dataset for the RFC model by Melnyk, Haleta, and Golphamid. 53
A.2 The test dataset for the RFC model by Melnyk, Haleta, and Golphamid. 54

B.1 The dataset categorization for our model. 57

C.1 The default settings of the Scikit Learn RFC model. 58

D.1 The classification results by the RFCmodel with 250 estimators and a sub­capture length
of 4 hours. 61

vii

1
Introduction

Ever been frustrated that your favorite website is down? While it might come as a surprise, it could be
that the smart devices in your home are attacking it. In the last couple of years, the Internet of Things
(IoT) concept gained popularity quickly; new devices are introduced constantly, from smart lights to egg
trays. As a result, the number of connected IoT devices has increased rapidly since the introduction of,
arguably, the first IoT device by Romkey in 1990 [48]. In 2021, the total number of internet­connected
IoT devices has reached 14.6 billion, according to Ericsson [11]. Furthermore, predictions show that
this rapid growth will continue, as Ericsson predicts there will be 30.2 billion connected IoT devices by
2027 [11].

The growing popularity has the effect that IoT devices have become a part of many people’s daily lives,
from controlling their lights to adjusting the temperature at home. However, they also introduced a
new set of security challenges. The Open Web Application Security Project (OWASP) mapped the
most common security problems in IoT [38], with the most common one having weak, guessable, or
hardcoded passwords by the manufacturer. While a hacked device can impact someone personally, it
also impacts corporations and other people’s lives. For example, Mirai [3] is a famous botnet primarily
focused on IoT devices. It used a table with default usernames and passwords to infiltrate the IoT
devices and install itself. In 2016, the Mirai infected IoT devices performed a Distributed Denial of
Service attack on Dyn that caused popular websites such as GitHub, Twitter, and Netflix, to go offline
[40].

While the security problems of IoT devices can disrupt the daily lives of internet users, the security
problems can also impact the users’ privacy. For example, My Friend Cayla [19] is a smart toy for chil­
dren with voice recognition functionality. The toy allows children to ask it questions, which it will reply to
using the internet via a Bluetooth­connected companion application. Unfortunately, the toy had several
vulnerabilities that allowed strangers to talk directly to children and even eavesdrop on someone play­
ing with the toy through several walls [60]. The German Federal Network Agency (Bundesnetzagentur)
even classified the device as a concealed surveillance device and requested parents to destroy the toy
[9]. All attacks on the doll were only possible if the attackers had a Bluetooth device within 10 meters
of it due to the Bluetooth connection range. If a device directly connects to the internet, it could give
anyone with an internet connection access to it. For example, a vulnerable internet­connected baby
monitor with a camera could potentially stream people’s daily lives to anyone. Several sites try to index
insecure cameras, such as Shodan1 [55] and Insecam [17, 25]. These sites give people across the
globe easy access to these vulnerable devices and their live streaming feed.

Preserving users’ privacy and the security of IoT devices is a complex challenge. New IoT devices
are constantly being released, behaving relatively different in terms of features and network activity.
To solve the problems related to IoT devices, companies and organizations released several solutions
to secure IoT devices. For example, Splunk [57] released plugins to enable monitoring of Industrial
IoT devices, and Microsoft released a version of Microsoft Defender for IoT [37]. While most of the

1Shodan requires a member subscription to access their image service.

1

1.1. Research Question 2

solutions focus on corporate network infrastructures, some projects also focus on home networks. For
instance, SIDN Labs released a software package with a user­operated privacy manager and a reverse
firewall to automatically block suspiciously outgoing network traffic pro­actively [30].

The downside of the existing solutions is that much expertise or interaction is required to use the soft­
ware correctly. An ideal system would automatically enforce policies based on the type of devices
connected to the network. For example, by default, the control panel of a smart candle should only
be available via an internal network. Device or category­specific policies enable fine­grained access
control for the devices in a home network, limiting access to authorized parties only and allowing vulner­
able parts to be automatically blocked until patches are released and installed. In addition, automatic
policies would remove most interaction requirements and allow people with less technical expertise to
benefit from the system.

The first step of building an automated system relies on detecting the IoT device types within the net­
work, also called Device Type Identification. After such types are reliably detected, one could build
security policies around them to properly control what devices could and could not do. However, to
allow deployment in the homes of many users, one should keep in mind the hardware already avail­
able or within the price range of a general household. An example of the hardware already available in
many homes is a router provided by their Internet Service Provider (ISP). Unfortunately, many of these
routers run on low­end hardware with minimal resources. Designing such a system would be the first
step of returning privacy and security to the homes of many IoT users.

Researchers have proposed several automated systems for device type identification and complete
systems for policy enforcement. However, to the best of our knowledge, the systems detect the IoT
device’s make and model [39] or behavioral clusters [33]. Moreover, it would be infeasible for the
proposed systems to train a model for deployment in home networks as it would be impossible to gain
network traffic from all devices present in all households. Furthermore, most home users would not
have the expertise to train a model themselves. Hence, our approach will categorize IoT devices into
a descriptive class. Moreover, to the best of our knowledge, the proposed classification models in this
subfield focus on a small set of classes [4, 14, 35] or limited devices per class [32], and none focus on
low­end hardware applications.

1.1. Research Question
In this thesis, we attempts to create a machine learning model to classify IoT devices into a set of
descriptive classes. Furthermore, it attempts to do this by only using limited resources. Hence, the
main research question is:

How can we perform Device Type Classification of IoT devices
on low­end dedicated hardware devices?

To answer the main research question, we define five sub­questions. The sub­questions are:

1. How do existing models perform on low­end dedicated hardware devices?
2. What are the difficulties when classifying IoT devices not present in the training set?
3. How do we categorize appliances with the same functionality from different brands?
4. How well does this new model perform on low­end dedicated hardware devices?
5. How well does this new model perform in terms of accuracy?

1.2. Main Contributions
Our work leads to three main contributions in the field. To summarize:

1. Our work re­implements two models and share our source code. The re­implementations verify
whether the papers are reproducible and similar results can be produced with the information
given in their work. Additionally, by sharing the source code, we allow it to be verified by other
researchers.

2. We show the resource usage of existing models, verifying whether deployment on low­end hard­
ware would be feasible.

1.3. Outline 3

3. Our work implements a new model for Device Type Classification into five categories, one more
than the current state­of­the­art. Furthermore, we extensively tested our solution on 74 unseen
devices taken from multiple datasets, which is the most extensive test performed in this field to
date, to the best of our knowledge. The extensive testing of our model shows that we can reliably
predict the type of IoT device on a network with features that are easy to extract. Additionally, we
show that the model’s resource usage is low enough to be deployed on low­end hardware.

1.3. Outline
The rest of our thesis is structured as follows. Chapter 2 will explain all the necessary background
knowledge. Chapter 3 will go over the existing models in the field, exploring various machine learning
methods used in the field of Device Type Classification. Chapter 4 re­implements and re­evaluates
two papers published in the field, both handling unseen devices. Additionally, this chapter shows the
resource usage of the models. Chapter 5 explains the approach taken for the implementation and
evaluation of the model designed. Chapter 6 explores the performance of our model, including an in­
depth analysis of the predictions made. Chapter 7 discusses the limitations of our research and future
work. At last, in Chapter 8 we conclude our research.

2
Background

This chapter will go in­depth into the background knowledge required for this thesis. Moreover, we
will explain several machine learning concepts and feature extraction algorithms used by the models
discussed in this work.

Firstly, we will explain the idea behind the PageRank algorithm. Secondly, we go in­depth into how the
RFC works. Furthermore, the PageRank algorithm and RFC cover the concepts used to re­implement
the model proposed by Melnyk, Haleta, and Golphamid [35]. Additionally, we use the RFC as a building
block for our implementation. Thirdly, we explain the basic idea of the CNN and LSTM used by our
re­implementation of the model proposed by Bai et al. [5]. At last, we will go in­depth into the cross­
validation technique used in our research.

2.1. PageRank Algorithm
Initially, the PageRank algorithm originated from the web page ranking system of Google. Later, it found
use in several other fields where link analysis is required, such as ranking social media users [62] or
rating systems [21]. For example, the work of Melnyk, Haleta, and Golphamid [35] uses PageRank to
classify internal communications. The PageRank for this model gives information about the connectivity
strength within the network. The idea behind it is that the connectivity strength of a single­purpose
device is lower than that of a multi­purpose device, which is an essential detail in the model proposed
by Melnyk, Haleta, and Golphamid [35].

Furthermore, the PageRank considers the number of outgoing and incoming links for the score, which
are connections in our case. It is important to note that the connections are flows, not packets. If it
were packets, then the number of links would equalize, as in many cases, as connections are often
bidirectional.

Equation 2.1 [8] shows the formula of the PageRank algorithm. The formula contains a single parameter
d, also known as the damping factor. The damping factor originally was defined as a probability of
a person continuing to click on links randomly. Often this value is set to 0.85 [8], which is also the
case for our implementation. Furthermore, the formula requires a set of devices, let’s call this set
X = {x1, xi, . . . , xN}, where the set contains a total of N devices. We then have three functions, PR,
C, and L, where PR is the PageRank algorithm, as defined by the formula. C is the connectivity matrix.
The connectivity matrix is defined as follows, let x, y ∈ X, then if and only if y ∈ C[x], there is an
outgoing link from y to x. Lastly, the function L(x) returns the number of outgoing links from device
x ∈ X, e.g., L(x) = |{y ∈ X|y ∈ C[x]}|.

PR(x) = (1− d) + d
∑

y∈C[x]

PR(y)

L(y)
(2.1)

As Equation 2.1 displays, the PageRank algorithm depends on itself. Moreover, this means that it is an

4

2.1. PageRank Algorithm 5

Hub Speaker

Light Bulb

Motion Sensor

Figure 2.1: The graph of the example network.

iterative algorithm. We loop until the algorithm converges, which was after 500 iterations for our use
case. Initially, all devices have a PageRank value of 1.

2.1.1. Example
To better illustrate the idea behind the PageRank algorithm, we will give a concrete example. For this
purpose, we created a small graph representing a home network. The network consists of a light bulb
and a motion sensor directly connected to a smart hub, which is unidirectional. Additionally, the network
has a speaker with a bidirectional connection with the hub. Figure 2.1 shows the network graph of the
example, and Table 2.1 shows the connectivity matrix.

From/To Motion Sensor Light Bulb Hub Speaker

Motion Sensor 0 0 1 0
Light Bulb 0 0 1 0
Hub 0 0 0 1
Speaker 0 0 1 0

Table 2.1: The connection matrix of the PageRank example.

As mentioned before, all page rank values contain the value 1 after initialization. Table 2.2 displays the
outcome of the first iteration.

Device Computation

Motion Sensor 0.15 + 0.85 ∗ 0 = 0.15

Light Bulb 0.15 + 0.85 ∗ 0 = 0.15

Hub 0.15 + 0.85 ∗ (0.151 + 0.15
1 + 1

1) = 1.255

Speaker 0.15 + 0.85 ∗ 1.255
1 = 1.21675

Table 2.2: The PageRank values of the first iteration.

Table 2.3 shows the final results of the computation, which converges after 104 iterations. As illustrated
in Figure 2.1, the hub node has the most incoming connections, which directly translates to the highest
PageRank. In comparison, the devices with no incoming connections have the lowest PageRank.

2.2. Random Forest Classifier 6

No Yes
High bandwidth?

YesSends periodic
traffic?

No Yes
Receives a lot of

data?

Camera TVSensor

No YesInternal connection
count > 2

No

Light Bulb Smart Hub

Figure 2.2: A fictional example of a DTC.

Device Computation

Motion Sensor 0.15

Light Bulb 0.15

Hub 0.15 + 0.85 ∗ (0.151 + 0.15
1 + 1

1) = 1.919

Speaker 0.15 + 0.85 ∗ 1.255
1 = 1.781

Table 2.3: The PageRank values after the algorithm converges (104 iterations).

2.2. Random Forest Classifier
The RFC is an ensemble learning method, using multiple DTCs at its core, allowing it to correct the
overfitting problems the DTC has on the training set [24]. In this section, we will explain in­depth how the
RFC works. Firstly, we will explain the inner workings of the DTC. Next, we will explain the construction
of an RFC by using the knowledge gained from the DTC section.

2.2.1. Decision Tree Classifier
The DTC works by asking questions about specific features in the data. These questions are the non­
leaf nodes in the tree. Based on the outcome of the question, it will go down in the tree following the path
with the answer on one of the node’s edges. After traversing the tree, it will reach a leaf node. A leaf
node represents the outcome of our classification task based on the answers given while traversing the
tree. In our case, the leaf nodes contain the predicted class of the IoT device we are trying to classify.
It is also possible that a probability is present in the leaf nodes, as some splits might not have a perfect
outcome. Figure 2.2 shows a small fictional example of a DTC. The tree tries to classify what kind of
IoT device the data represents. Furthermore, the squares represent the questions on the data, and the
triangles represent the leaf nodes with the final answer.

2.2. Random Forest Classifier 7

Split Criteria
To build a tree, we need criteria to measure the performance of a specific split, also known as the
’criterion.’ We will focus on the two implemented in the sci­kit library used in this thesis [52], the Gini
impurity [45], and Entropy [45]. The Gini impurity measures the probability of misclassifying a random
element of our set. Equation 2.2 [45] displays the formula of the Gini impurity, which we try to minimize.
Furthermore, in the formula, P is the probability that an element has a specific class, and N is the
number of classes in our classifier.

GINI = 1−
N∑
i=1

P (i)2 (2.2)

Equation 2.3 [45] [54] shows the formula behind the Entropy criteria. In general, Entropy is a measure
of information in an event. The more certain an event is, the less information it will contain [54]. The
tree split is on points where we are most certain, with low Entropy, of the outcome of a class label.
However, due to the log in the formula, it is computationally slower than the Gini impurity. The symbols
in Equation 2.3 have the same meaning as in Equation 2.2.

Entropy = −
N∑
i=1

P (i) logP (i) (2.3)

Building a Tree
The criteria in the previous section introduced the basic theory behind building a tree. This section
will explain how to construct a tree with these criteria. We will focus on the Gini impurity in all of our
examples. However, the steps for the Entropy criteria are equivalent. The only difference is the formula
used for evaluation.

No Yes
High Bandwidth

Y=12
N=7

Average Gini: 0.379

Y = 5
N = 6

Gini = 0.496

Y = 7
N = 1

Gini = 0.219

Figure 2.3: An illustrative example of the average Gini impurity of a fictional split.

The first step is to find the root node of our tree, which is the node split with the lowest average Gini
impurity. The idea behind the average Gini impurity is to take the average between the nodes created
by the split. The average considers the number of samples a specific child node still represents after
a split. To illustrate, Figure 2.3, a small split is displayed. The split nodes have a Gini impurity of 0.496
and 0.219, respectively, with 11 and 8 elements. The Gini impurity of the split is then the average of
these two nodes, resulting in the following equation:

5 + 6

19
· 0.496 + 1 + 7

19
· 0.219 = 0.379 (2.4)

For both branches of the new root node, we repeat the evaluation of all possible splits at that position.
We only consider the elements of our dataset related to this particular path. We repeat this split creation
process until we reach one of the three ending conditions:

1. The average Gini impurity of the split is higher than the original node.
2. We used all possible questions.

2.3. Neural Networks 8

3. We reached a user­defined max­depth.

2.2.2. Constructing the Forest
The basis of a RFC is the DTC. The idea behind the RFC is to use multiple DTCs to remove bias
[24]. However, the construction algorithm of the trees requires to be different to ensure that the trees
build are not equivalent. If we use the same data, the tree’s construction would be similar. Hence, the
RFC algorithm changes what data every tree has available for its construction, called bootstrapping
[45]. Bootstrapping takes random rows from our dataset. However, it does sampling with replacement,
allowing us to have duplicate entries for a single tree.

Additionally, the algorithm of the RFC adjusts the algorithm used to split a node. The original DTC
algorithm considers all available features for the split, while the RFC protocol only considers a random
subset of features [45]. The bootstrapping and random subset of features generate trees differently,
removing bias toward particular features or data points.

2.2.3. Majority Vote
Internally, the RFC has multiple trees, each giving a prediction of the input data. In the end, the RFC
needs to settle which prediction class to take as the final one. A common way is to select the class
with the majority of the predictions, also called the majority vote.

The scikit­learn [52] library used in this thesis does not use the majority vote principle but takes the
probabilities into account. It chooses the class with the highest mean probability over all the trees. As
explained before, the leaf nodes that contain the prediction process outcome can contain probabilities
based on the impurity of the node.

2.3. Neural Networks
This section gives a brief overview of the idea behind the CNN and LSTM model as proposed by Bai
et al. [5]. The model is later re­implemented. Furthermore, it aims to give a high­level overview of its
idea and advantages.

2.3.1. Long­Term­Short­Term Memory
LSTM is a variant of recurrent neural networks capable of learning from data that depends on order,
for example, time­series data [45]. In the case of device classification, it finds the relationship between
consecutive network flows of the same device. It allows us to not only learn from a single record but
also keep previous records into account. The LSTM aims to solve the vanishing gradient problem of
traditional recurrent neural networks [45], which causes ”short­term memory.” The vanishing gradient
problem causes earlier layers not to learn as efficiently, as the update gradient for the parameters gets
smaller as it converges through the network. To conclude, the LSTM allows us to consider the previous
network flows to create a more complex relationship, something we cannot do by simply looking at a
single flow.

2.3.2. Convolutional Neural Network
A CNN can take spatial and temporal information into account. For example, it can model 2D and 3D
objects without losing information. In comparison, a traditional feed­forward network expects a single
dimensional vector and hence loses the information that the dimensions might carry. Instead, CNNs
often use operations based on kernels and filters that slide over the input data [36]. An example of such
a layer with a sliding operation is the max pooling layer, which takes the maximum value from a region
within the input data. Figure 2.4 shows a simplified illustrative example of this. The input of the max
pooling function is a 2D matrix, where there are four regions. The network then takes the maximum
from these regions. Handling 2D data in such a way is something a traditional feed­forward network
cannot achieve, as it only has a single dimension. Due to this, CNNs got popular in various fields, such
as image and video recognition [36].

2.4. Leave­One­Group­Out Cross­Validation 9

Output

Max Pool Layer

8

55

96

38

62

9

5

57

55

64

49

70

77

28

39

8

Take maximum of region 96 62

70 77

Figure 2.4: An example illustration of the max pooling layer.

2.3.3. Cascading
The idea behind the cascade is that the LSTM feeds the output directly into the CNN. The cascade com­
bines the time­series and memory functionality of the LSTM with the spatial and temporal awareness
of the CNN. Bai et al. [5] designed the model to capture the data’s global and local temporal relations.

2.4. Leave­One­Group­Out Cross­Validation
In machine learning, cross­validation measures how well a model performs on different sets of unseen
data. It finds its use in measuring the stability of a machine learning model. The idea behind cross­
validation is to use a different chunk for testing in every step. The other chunks will be included in the
training set to train the machine learning model. The accuracy of a step gets measured by running our
model on the left­out chunk. We repeat this process until we have used all possible chunks for testing.
In the end, we can argue about the average accuracy of our model on different sets of unseen data. It
is important to note that a new model gets trained for every new data split.

While there are many variants of cross­validation, we will only focus on one in this work. Furthermore,
we will use the LOGO [43] [50] cross­validation technique for our thesis. In our work, a group means an
IoT device. Hence, the idea is to leave one IoT device out of the training set at every cross­validation
step. We can validate our model’s performance by taking the average results obtained during the cross­
validation steps. Figure 2.5 shows an illustrative example of what this would look like in practice. The
benefit of using LOGO is that it does not introduce a bias when splitting the training and testing set, as
we test on all possible devices.

Smart Bulb 1 Smart Bulb 2 Camera 1 Camera 2

Smart Bulb 1 Smart Bulb 2 Camera 1 Camera 2

Smart Bulb 1 Smart Bulb 2 Camera 1 Camera 2

Smart Bulb 1 Smart Bulb 2 Camera 1 Camera 2

60%

70%

75%

90%

Average: 73.75%

Split 1

Split 2

Split 3

Split 4

Test

Train

Legend

Figure 2.5: Illustration of how LOGO cross­validation splits work.

3
Literature Review

Device type identification of IoT devices has evolved significantly in the last years. Several machine
learning models got proposed, all using different techniques and methodologies. This chapter aims to
present a background on the research of device type identification. We split the related work into three
categories:

1. Device type re­identification focuses on re­identifying the make and model of the device.
2. Device type detection classifies whether the device is an IoT device.
3. Device type classification aims to classify into a set of pre­defined categories—for example,

kitchen appliances or smart speakers.

At the end of the chapter, we determine the current challenges still open in the field.

3.1. Device Type Re­identification
Device type re­identification aims to re­identify the make and model of the device. Re­identification is
essential in computer networks, as relying on information broadcasted by the device is not guaranteed
to be correct. For example, an attacker can easily modify the Media Access Control (MAC) address that
comes with the devices [10]. Unfortunately, detecting modified MAC addresses is a challenging task,
which requires complex techniques [58] or adjustments in packet frames [12]. Hence, MAC addresses
are not suitable to detect which device is currently communicating. Re­identification allows us to detect
the device by its behavior which is more challenging for an attacker to modify without being detected.

In 2018, Shahid et al. [53] compared six machine learning models, with the RFC having the best accu­
racy of 99.9%. However, the downside of the proposed solution is that the dataset created during the
research only contains four devices, so the accuracy and scalability in more extensive networks are
unclear.

Ammar, Noirie, and Tixeuil [1] proposed a model that trains a single classifier per class based on 28 de­
vices. Additionally, the model can detect whether a device is unseen. Unseen devices are recognized
when all classifiers indicate that they are not part of their class. Overall, the model’s accuracy reaches
97% when based on the DTC using the one­vs­all method. The training set for the models contains
textual features extracted from the payloads and flow features of the network traffic. The downside
of the model is that the textual features will become harder to analyze as using encrypted channels
is standard these days. Additionally, it is unclear what the influence of the textual features is on the
model. If the influence is significant, an adversary can spoof the textual features and influence the
classification outcome.

In comparison, Hamad et al. [22] proposed another one­vs­all approach based on the RFC. It does
not use textual features but only bases the training on the network flow. The dataset is created by
generating fingerprints of the network flows. Moreover, we can see that a similar method’s accuracy
without textual features has a slightly worse accuracy of only 90.3%.

10

3.1. Device Type Re­identification 11

Miettinen et al. [39] proposed a complete architecture for rule enforcement based on device type re­
identification. The presented architecture has a set of binary RFCs at its core, one per device type.
Moreover, none of the binary classifiers would match if a new device is detected. Hence, the architec­
ture also informs the users of newly connected devices. The system allows for security rule enforcement
for vulnerable IoT devices.

All the models in this section use traditional machine learning methods. The models show promising
results in terms of accuracy. However, the downside of traditional machine learning methods is that
complex feature engineering and data analysis is often required to get high accuracy.

3.1.1. Deep Learning
Deep learning automatically extracts features from the data fed to the neural network, simplifying the
process. Hence, it tackles the problems with complex feature engineering as introduced by traditional
machine learning models.

Greis et al. [20] compared two deep learning methods, a CNN and a LSTM Recurrent Neural Network
(RNN). The paper shows that the automatic extraction of essential features achieves a high accuracy
of at least 97% for both methods. Additionally, the paper compares itself with the IoT sentinel model,
which reached an accuracy of 82%. In comparison, Yin et al. [61] proposed another deep learning
model, named IoT ETEI (End­To­End IoT). The model consists of a CNN that supplies the results to
a bidirectional LSTM. The model reached an accuracy of 99%, classifying two datasets of 18 and 17
devices. The model’s primary focus was to introduce a method for identifying IoT devices in a scalable
way. Lastly, Najari et al. [41] researched the performance differences between a Hidden Markov Model
(HMM) and an LSTM RNN. The research showed that the HMM outperformed the experimental setup
of the LSTM RNN. The HMM reached an accuracy of 93.1%, while the LSTM RNN only reached an
accuracy of 60.7%.

While the deep learningmodels show high accuracy without complex feature engineering, it also has the
downside of becoming a black box. Moreover, the features used for classification and their importance
are unknown. While algorithms can help explain such black­box models, such as SHapley Additive
exPlanations (SHAP) [31] and Local Interpretable Model­agnostic Explanations (LIME) [47], it is still
the question of whether algorithms explaining algorithms increases transparency enough.

To conclude, the downside of the supervised models is that they are generally not trained to classify
unseen devices, as they only identify the make and model. Furthermore, creating a model for all
possible IoT devices is impossible. It would require information on all IoT devices currently being used,
and the model would require constant updates.

3.1.2. Unsupervised Learning
To tackle the problem of supervised learning, researchers started to look at unsupervised learning.
Anantharaman et al. [2] proposed an unsupervised learning scheme based on clustering. Furthermore,
their model does not require any prior knowledge of the devices. The primary task of the model is to
create a cluster per device and detect when the device would start deviating from the cluster. If the
device differs from the cluster, an anomaly is detected. Overall, the model reaches an accuracy of over
95%. The downside of the approach is that it only detects anomalies; the model can apply no additional
security policies to the device.

In comparison, Marchal et al. [33] introduced a system that distributes fingerprints via a cloud service
named AuDI. The cloud service contains a policy database, linking specific policies for each device type
it detects. These policies enforce specific security rules onto IoT devices. Furthermore, the detection
task uses a clustering algorithm based on fingerprinting the periodic traffic of the IoT devices. Overall,
the system achieves an accuracy of 98.2% and allows systems to learn about devices they do not have
in their current network.

While unsupervised learning solves some of the problems supervised learning has, it limits specific
classification tasks. For example, the supervised algorithms showed that the approaches accurately
differentiate between make and model. However, unsupervised learning will not have the information
about the naming of the actual device or category, making it difficult for a person to interpret. One
could name the clusters by hand, requiring no overlap in said clusters. However, AuDI [33] shows

3.2. Device Type Detection 12

clear overlap in the clusters making this approach more difficult. For example, the algorithm clustered
a smart speaker with a weather station and a hue switch.

3.1.3. Federated Learning
The downside of the aforementioned deep learning and machine learning approaches is that they only
consider local data. As a result, new devices that get added to the network will be unknown and,
therefore, undetected. While the AuDI model tackles some of these problems, it contains some privacy
concerns. The fingerprints sent to the server allow it to learn what type of IoT devices each network has.
Moreover, He et al. [23] proposed a Federated Learning comparison of a federated CNN and LSTM.
The idea of the federated learning model is that the devices on the network edge extend a model locally
and then share the model’s parameters to a server that will aggregate the results. The server will adjust
the model based on the aggregation and transfer this model back to the client, repeating the process.
The goal of the model is that every client participating gains information about more than the devices
locally. If a new device gets connected in the future to at least two networks, it will know about the
device beforehand and successfully classify the device. Hence, solving the unseen device problem
non­federated learning supervised model suffers from, as introduced in the previous chapter. Overall,
the accuracy declines compared to other methods due to the federated aspects. Moreover, the model
reaches 87.2% and 88.2% accuracy for the CNN and LSTM models, respectively.

3.2. Device Type Detection
Device type detection aims to detect whether a device is an IoT device. The models discussed in this
chapter also can classify IoT devices. However, our focus will be on identifying whether a device is an
IoT device. Meidan et al. [34] proposed ProfilIoT, a multi­stage classifier. The classification techniques
used are different for each device type. Furthermore, testing and training used the same 13 devices.
First, a binary classifier performs device type detection. Then, the other binary classifiers determine
the IoT class. ProfilIoT has two non­IoT binary classifiers for a computer and a smartphone. The
smartphone model reached an accuracy of 100%, while the computer got a near­perfect performance,
with a false­positive and false­negative rate of 0.003. In comparison, Sivanathan et al. [56] proposed
another multi­stage classifier using the Naive Bayes Multinomial in combination with an RFC. The
average accuracy of the model is 97.32% and detects non­IoT devices with an accuracy of 99.7%.

Fan et al. [18] proposed a CNN model with two fully connected layers. One layer contains two nodes,
determining whether the device under analysis is an IoT device. The other layer will determine the
device type identity. The model requires only 5% of the labeled data per device from their public
dataset to get an average accuracy of 99.8%. The accuracy of detecting whether a device is an IoT
device is 99.5%. The model performance got evaluated on a dataset with 24 devices.

3.3. Device Type Classification
Device type classification aims to classify a device into a specific category; for example, a Samsung
Smart Fridge would get the label kitchen appliance. The problem with device type re­identification is
that it suffers from an explosion problem, as we require to model every device. Modeling every device
would mean either a cluster or a label gets created. Therefore, the model would become large in
space and computational requirements, making it unable to run on a lower­end device. Furthermore,
hundreds of devices release each year which would mean constantly retraining the model. Moreover,
device type classification tries to cover the middle ground between device type detection, and device
type re­identification, by providing several classes that devices are classified within.

Melnyk, Haleta, and Golphamid [35] proposed a machine learning model that can differentiate between
two types of devices. Namely, a single­purpose device like a lightbulb and a multi­purpose device like a
smartphone. Furthermore, an RFC performs the classification task. The model achieves an accuracy
of 94%, tested on a dataset with 50 devices.

In comparison, Maiti et al. [32] proposed a model to classify devices within ten categories. Further­
more, it compares an RFC, Support Vector Machine (SVM), and a Classification And Regression Trees
(CART). The RFC showed the most promising results for all the tests performed, with an accuracy of
90%. The training and test data got extracted from the WiFi frames present in the link­layer of the OSI

3.4. Current Challenges 13

model. While the model has excellent accuracy, it misclassifies almost all access points as cameras.

While most models use pre­defined classes based on device function, it is also possible to define
classes based on network traffic behavior. For example,Cvitić et al. [14] proposed a model that clas­
sifies devices based on behavior in four categories. The model reaches an accuracy of 99.79% while
using the boosting algorithm LogitBoost.

Besides focussing on the network flows as most research does, one could also look into other protocols
used by IoT devices. For example, Babun et al. [4] proposed a model based on the Z­Wave and ZigBee
protocols. It compared different models for each protocol. Bayes net showed the best performance
for the ZigBee protocol and the RFC for the Z­Wave protocol. The average accuracy for ZigBee and
Z­Wave was 91% and 93.25%, respectively.

The models discussed all focus on traditional machine learning models. Furthermore, one could also
use deep learning models for device type classification. For example, Bai et al. [5] proposed an LSTM­
CNN cascademodel, where the input sequence first goes through an LSTM layer before being analyzed
by the CNN. The model focuses on four categories and achieves an average accuracy of 74.8%.

A hybrid deep learning approach got proposed by Bao, Hamdaoui, and Wong [7]. It uses a combination
of deep learning and clustering to classify and detect unknown devices. It tries to classify known devices
into a specific category while giving a number to unknown devices. The goal of the model is to detect
anomalies that might occur in the network, which could indicate security­related incidents. To reduce
the dimensionality of the dataset, it employs an autoencoder. The average accuracy is between 81.1%
and 91.2%, depending on the number of features chosen.

3.4. Current Challenges
Having evaluated the current state of device type identification of IoT devices, we can define the re­
search gap as follows:

1. To the best of our knowledge, no model focuses on resource usage. Hence, they may be costly
and challenging to deploy in a real­world scenario.

2. Many works focus on detecting the make and model of a device using supervised learning, re­
sulting in scaling difficulties.

3. For most of the papers, the categorization of IoT devices only consisted of a limited number of
categories.

4. Many works do not consider unseen devices, making it unclear how themodels behave on unseen
devices.

4
Reference Implementations

In this chapter, we discuss the re­implementation of two existing models. The first model is a RFC
proposed by Melnyk, Haleta, and Golphamid [35]. The model’s primary task is to identify whether
a device is a single purpose or a multi­purpose device. Secondly, we implemented the LSTM­CNN
cascade model Bai et al. [5] proposed, which has the primary task of classifying a device into four
categories. Both models focus on classifying devices not present in the training set, also known as
unseen devices.

It is important to note that the RFC­based model got implemented from scratch. We reached out to
the authors several times without success, so we could not rely on their implementation. Moreover,
our re­implementation shows similar performance as the model described in the paper. However, we
made several assumptions during our re­implementation about the definitions of features. Moreover,
we were also required to re­classify the devices used for training and testing, as the paper did not
describe which class every device has.

Furthermore, for the LSTM­CNN cascade model, we received the model’s code. The feature extraction
got re­implemented from scratch, based on several assumptions led by experiments. For example, the
paper did not describe the traffic direction and the features used for the traditional models. However,
we could not reach a similar accuracy as described in the paper.

The main goal of the re­implementations is to get a baseline of how these types of models perform on
low­end hardware. Furthermore, we will look into the resource usage of the models. It is important
to note that accuracy is only a secondary concern for our re­implementations, as the original papers
explore it in detail. However, while it is a secondary concern, we will explore it in detail in the next
chapter for two reasons. Firstly, the accuracy indicates if the re­implementation is equivalent to that of
the paper. Hence, it indirectly confirms that the resource analysis uses a model close to the original.
Secondly, it shows whether reproducing the paper is possible with the provided information, which is
an essential factor in scientific research.

4.1. Performance Metrics
We investigate the model’s performance by exploring the results of several metrics. The results of
these metrics will be a baseline for later comparison with our own designed model. These metrics are:

Average Prediction Times For this feature, we call the predict function of the models with the test
set array. We then take the time it takes, divided by the number of elements in the test set.

Memory usage during predictions The memory usage will be analyzed using the memory_profiler
package created by Pedregosa [42]. The analysis executes a single prediction at a time and reads
them one by one from a file. The reading process ensures a fair comparison between models with
different input sizes.

14

4.2. Random Forest Classifier 15

Figure 4.1: The Raspberry Pi 4 used with heatsink placement.

Disk space requirements This feature counts the bytes needed to store the model. Furthermore, the
storage method used for the RFC model is joblib [28], as recommended by the scikit­learn [51] library.
For the LSTM­CNN model, we use the build­in functionality of TensorFlow that the implementation of
Bai et al. already utilized.

We selected these metrics because they represent the limitations of our hardware well. For example, if
the model is too big, we cannot store it. The average prediction time shows if the method can classify a
certain number of devices within a reasonable time. Lastly, due to the limited memory of these devices,
it is essential to see how many resources a prediction takes.

We run all tests on a Raspberry Pi 4 with 4GB of ram and a BCM2711 SoC. The storage used is an
Ultra MicroSDHC Class 10 UHS­I A1 manufactured by Sandisk. Moreover, the Raspberry Pi uses a
few heatsinks to ensure it stays at a relatively low temperature. Figure 4.1 displays the testing setup,
including the heatsink placement. Furthermore, we repeat the average prediction time experiment 50
times, and the median of these experiments is the final result. The repeated experiments ensure that
external factors did not influence the result, such as the operating system taking up some CPU for
kernel­related tasks.

Furthermore, we increase the test sample set for the RFC memory experiment by concatenating the
file 50 times. The more extensive test set gives us a better overview of peak memory usage, as the
original set is significantly smaller than the one of the LSTM­CNN set. At last, all measurements of the
experiments are performed on the test dataset as described in the original paper.

4.2. Random Forest Classifier
The RFC model’s primary task is to classify devices into single­purpose and multi­purpose devices.
According to Melnyk, Haleta, and Golphamid [35], a single­purpose device is a resource­limited device,
such as cameras and sensors. Multi­purpose devices include high­tech devices like smartphones and
laptops. Our re­implementation of the 21,000 packet experiment reaches an accuracy of 97%, higher
than the described accuracy of 94%. However, the accuracy of the 560,000 packet experiment did not

4.2. Random Forest Classifier 16

reach the described accuracy: we reached 94% rather than the paper’s described accuracy of 97%.
The accuracy difference is that a single device is classified differently. Hence, we suspect that our
manual classification incorrectly predicted a single device.

The paper uses two independent datasets for the implementation of the model. The dataset by Perdisci
et al. [44] provides the training data, and the dataset by Sivanathan et al. [56] provides the testing data.
Furthermore, the original paper does not mention which devices are single­purpose or multi­purpose.
Hence, the classification was done manually with the description provided in the paper. Appendix A
provides an overview of our manual classification.

The first step of our re­implementation was creating the feature extraction. However, as mentioned
before, no code or resources were provided. Hence, we re­implemented it from scratch using several
scripts and wrappers around readily available tools. The tools used by our scripts are Joy by Cisco [15],
which provides us with network flows, and TShark by Wireshark [13] for general analysis. Secondly,
we used the scikit­learn [43] library in Python to train and test the RFC. The complete source code can
be found on our GitLab1.

4.2.1. Feature Extraction
For the feature extraction, our files must be in a specific format. Moreover, the re­implementation
expects PCAPs as input, grouped by MAC address. Furthermore, the definition of grouped by is that
the PCAP only contains packets where either the ethernet source or destination is equal to the device’s
MAC address. The original analysis requires the PCAPs to be limited to a certain number of packets,
either 21,000 or 560,000. In the rest of this section, we will go more in­depth into the description of
each feature used.

Number of DNS queries This feature counts the number of DNS queries done by the device. It is
important to note that the DNS queries do not have to be unique. Hence, N DNS queries for sidnlabs.nl
will count as N, not as 1.

Number of unique protocols The feature counts the number of uniquely used protocols. We only
register one protocol per packet, which is the protocol of the highest layer identified by TShark; for
example, we take the HTTP protocol for a web request and not TCP.

Device type from the User­Agent field The User­Agent field is only present for devices that perform
HTTP requests over an unencrypted channel. However, a device can use different User­Agents for the
HTTP requests it performs. Hence, we select the first User­Agent we encounter. Furthermore, it is also
possible that the PCAP does not contain any User­Agent. In this case, we return an empty string.

Number of communications in the local network The paper does not describe what ”communi­
cation” means in their setting. Hence, we assumed the definition. We defined ”communication” as
a bi­directional flow. Moreover, the feature counts the number of flows that contain an IP (v4 or v6)
source and destination address in the private range. For both IPv4 and IPv6, we use the standard as
defined by the Internet Assigned Numbers Authority (IANA) [26] [27].

Connectivity strength of the devices The connectivity strength is measured using the Google page
rank algorithm, as explained in Section 2.1. The page rank calculations require a network graph, and
the computation relies on the graph’s edges. The graph created contains all devices that communicated
with a device under analysis. Furthermore, the edges indicate a connection between two devices in
the internal network.

Number of domain names with which the device has a TCP connection This feature counts the
number of unique domain names to which the device made a TCP connection. Moreover, it is essential
to reconstruct which domain names used which IP addresses. To get this list, we can go through the
traffic of a single device and combine the DNS request and response. The requests will give us the

1https://gitlab.sidnlabs.nl/device­type­classification/melnik

4.2. Random Forest Classifier 17

domain names, while the responses will give us the IP addresses. After this map got created, we can
go over all TCP connections and compare the source and destination addresses against the map of
domain names.

Number of unknown communications Unknown communications are network flows from a device
under analysis towards internal devices that are not under analysis. The construction of the feature is
the same as the number of communications in the local network. However, we add an extra filter that
removes all devices under analysis.

Average session time The average time a network flow is active, measured in seconds.

Average session volume This feature measures the average volume of a bi­directional flow in bytes.
We add the incoming and outgoing bytes to get the volume of the bidirectional flow.

Number of communications This feature counts the number of bidirectional flows of a device. The
device’s IP address should either match the source or destination address of the flow.

4.2.2. Performance
As mentioned before, the performance of our implementation is comparable to that of the paper. Fur­
thermore, it is essential to note that the RFC contains a random state, influencing the accuracy slightly.
Therefore, we ran the implementation 50 times with a random chosen state from 0 to 100,000 to better
understand the performance. The random implementation of NumPy was used, with a seed of 42. As
a result, the RFC on 21,000 packets reached an accuracy of 97%, with an average of 91% and a low
of 84%. Furthermore, for the 560,000 packet configuration, we reached an accuracy of 94%, with an
average of 86% and a low of 74%. Additionally, we plotted the accuracy spread for both configurations
using a box plot in Figure 4.2.

21,000 560,000

Number of packets

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

Test Accuracy - Random Forest Classifier

Figure 4.2: The test accuracy spread of the RFC proposed by Melnyk, Haleta, and Golphamid.

The paper briefly mentions the accuracies of other traditional machine learning models, such as K­
Nearest Neighbors and a Decision Tree. However, it does not provide parameters for these models
or how the accuracy is computed for the cluster algorithms. Furthermore, we could not reproduce the
mentioned accuracies with the default parameters provided by the scikit­learn library. Table 4.1 and
Table 4.2 summarizes the lowest, highest and average accuracy of these models. We assume that the
label most common in a cluster represents the label for the clustering methods, such as DBScan and
Local Outlier Factor.

4.2. Random Forest Classifier 18

Model Low High Average

Random Forest Classifier 84% 97% 91%
Decision Tree 42% 65% 53%
K­Nearest Neighbors 65% 65% 65%
Local Outlier Factor 71% 71% 71%
Gaussian NB 84% 84% 84%
K­Means 68% 74% 70%
Support Vector Machine 48% 68% 56%
DBSCAN 71% 71% 71%

Table 4.1: The accuracy of the RFC proposed by Melnyk, Haleta, and Golphamid based on 21,000 packets.

Model Low High Average

Random Forest Classifier 74% 94% 86%
Decision Tree 58% 77% 64%
K­Nearest Neighbors 52% 52% 52%
Local Outlier Factor 71% 71% 71%
Gaussian NB 77% 77% 77%
K­Means 55% 58% 56%
Support Vector Machine 42% 81% 66%
DBSCAN 71% 71% 71%

Table 4.2: The accuracy of the RFC proposed by Melnyk, Haleta, and Golphamid based on 560,000 packets.

Storage
The storage requirements of both the 21,000 and the 560,000 models are minimal. Furthermore, the
21,000 packet based model is 155,816 bytes, while the 560,000 packet based model is 159,706 bytes,
both around 160 kilobytes. These are well within the resource requirements of low­end hardware.

Memory
The memory usage of the 21,000 and 560,000 packet models is around 95 MiB. The memory usage
increases rapidly at the beginning when the model and libraries are loaded. Furthermore, after the
model and libraries are loaded, the memory usage stays stable. Figure 4.3 gives a detailed overview
of the memory usage of the two models over time.

Average Prediction Times
Figure 4.4 shows the average prediction times of the RFC models. Both models show very similar
prediction times. However, the 560,000 packet model shows a narrower spread but a higher median
than the model based on 21,000 packets. Overall, the differences between the two models are minimal.

The analysis shows that the difference between the 21,000 and 560,000 packets model is minimal.
Hence, the focus will be on the model based on 21,000 packets for the rest of our research. Moreover,
the model shows slightly higher accuracies in the spread and lower median times for the runtime.

4.3. LSTM­CNN Model 19

0 10 20 30 40 50

Time (in seconds)

0

20

40

60

80

M
em

o
ry

u
se

d
(i

n
M

iB
)

Memory Usage - Random Forest Classifier

21,000 packets

560,000 packets

Figure 4.3: The memory usage of the two RFC models by Melnyk, Haleta, and Golphamid.

21,000 560,000

Number of packets

1.16

1.17

1.18

1.19

1.20

1.21

1.22

M
il

li
se

co
n

d
s

Prediction Time - Random Forest Classifier

Figure 4.4: The average prediction time of the two RFC models by Melnyk, Haleta, and Golphamid.

4.3. LSTM­CNN Model
The original author of the LSTM­CNN model provided us with a base implementation of the model.
Unfortunately, the author could only provide us with the code of the machine learning model. Moreover,
the paper uses a single dataset to implement the model. The dataset by Sivanathan et al. [56] provides
both the training and test data. It contains 60 days of network traffic, with 20 days highlighted on the
main page. However, the paper only uses 19 days of data but does not describe the dates used. Hence,
we decided to take the first 19 days provided on the webpage. Moreover, the number of packets in
those 19 days is equivalent to the numbers presented in the paper. Therefore, the dataset range used
is from the 23rd of September 2016 until the 11th of October 2016.

The paper describes that the six most discriminating features were selected. Unfortunately, it does not

4.3. LSTM­CNN Model 20

provide details on the traffic direction used. We tried taking both bidirectional packets as only packets
sent from the IoT devices (unidirectional). Both approaches did not yield the accuracy described in the
paper. The following section will go further in­depth into the feature extraction process. At last, we will
cover the performance of the model.

4.3.1. Feature Extraction
The feature extraction process requires a specific format; the re­implementation expects PCAPs grouped
by MAC address, the same as the Random Forest Classifier. From the grouped PCAPs, we extract
flows of a max length of 300 seconds between the first and last packet. We can use the timestamps
of the packets within the PCAP to calculate the split points. After the flows got created, we can extract
the features using PyShark PyShark [16]. The paper describes two types of categories for feature ex­
traction, namely: user packets and control packets. User packets include user data and device­service
communication, while control packets mainly support functional protocol packets, such as setting up
the network or resolving domains [5]. Example protocols for user packets are TCP, UDP, and HTTP.
In contrast, control packet protocols include NTP, DNS, ARP, and ICMP.

While extracting the features, we encountered several misclassified protocols byWireshark. To prevent
misclassification, we were required to disable multiple protocols. The disabled protocols used a port­
based heuristic; for example, the heuristic of the World of Warcraft protocol only looks if the TCP port
is 3724. The profile created for our analysis is shared via GitLab2.

We extracted three features for both the user packets and the control packets: (1) the number of
packets, (2) the maximum size of the packets, and (3) the average size of a packet. We extract these
features for every flow. It is crucial to keep the flows sorted by time, as we need to combine six flows to
create the final feature. The paper describes an overlap of three between every flow, meaning that we
have a sliding window of size six with a step size of three flows. However, the paper does not explain
how the features are normalized. Hence, we ran a few tests with the implementations available within
the sci­kit learn library. Moreover, we decided to use Z­Score normalization, known as StandardScalar
in the scikit­learn library, based on the experiment’s outcome. Equation 4.1 gives the formula of the
normalization, where x̄ is the mean of the feature, and σ is the standard deviation of the feature.

x̂ =
x− x̄

σ
(4.1)

The next section will go in­depth into the model’s performance. The accuracies described will be based
on our two experiments.

4.3.2. Performance
The accuracy of our re­implementation did not match the one described in the paper. Additionally, the
traditional machine learning models did not show the same accuracy as the paper. For example, the
RFC model showed higher accuracy than the paper claimed. Furthermore, Table 4.3 and Table 4.4
show the accuracies of the traditional machine learning models. It is important to note that the pa­
per does not describe which features the traditional models used for training and testing. Hence, we
assume it is the same data as the LSTM­CNN model, including the sliding window, with 36 features.
Again, we repeat all experiments of the traditional models 50 times and show the average, the lowest,
and highest accuracy. For the models with a random state, we use the same strategy as explained in
Section 4.2.2. It is important to note that the LSTM and CNN comparison models did not get evaluated,
as there was no explanation of their configuration.

The LSTM­CNN model experiments are repeated 50 times, with an epoch count of 2,000. The paper
does not mention any epoch count, so the variable declared in the code was used. Figure 4.5a displays
the correlation between the train and the test accuracy for both the bidirectional and unidirectional flows.

Furthermore, the bidirectional traffic shows the highest accuracy on the test set. Additionally, Fig­
ure 4.5b displays the spread of the test accuracies. The figure shows that the spread of the bidirectional
model is narrow with overall higher accuracy. Hence, we will use the bidirectional model for the rest of
our experiments as it is closest to the paper.

2https://gitlab.com/device­type­classification/wireshark­profile

4.3. LSTM­CNN Model 21

Model Low High Average

Support Vector Machine 37% 50% 43%
Random Forest Classifier 36% 44% 39%
K­Nearest Neighbors 39% 39% 39%
Decision Tree 28% 50% 41%
Adaboost 56% 58% 57%
Linear Discriminant Analysis 41% 41% 41%
Quadratic Discriminant Analysis 50% 50% 50%
Multi­layer Perceptron 26% 66% 43%

Table 4.3: The accuracy of the traditional models on bidirectional traffic.

Model Low High Average

Support Vector Machine 17% 39% 28%
Random Forest Classifier 19% 30% 24%
K­Nearest Neighbors 27% 27% 27%
Decision Tree 16% 24% 18%
Adaboost 31% 42% 36%
Linear Discriminant Analysis 36% 36% 36%
Quadratic Discriminant Analysis 45% 45% 45%
Multi­layer Perceptron 24% 40% 32%

Table 4.4: The accuracy of the traditional models on unidirectional traffic.

0.5 0.6 0.7 0.8 0.9 1.0

Train accuracy

0.4

0.5

0.6

0.7

T
es

t
ac

cu
ra

cy

Accuracy Distribution - LSTM-CNN

Bidirectional

Unidirectional

(a) The test­train accuracy correlation.

Bidirectional Unidirectional

Traffic direction

0.4

0.5

0.6

0.7

T
es

t
ac

cu
ra

cy

Accuracy - LSTM-CNN

(b) The test accuracy spread.

Figure 4.5: The experiment results of the LSTM­CNN model.

4.4. Conclusion 22

0 10 20 30 40

Time (in seconds)

0

50

100

150

200

250

300

M
em

o
ry

u
se

d
(i

n
M

iB
)

Memory Usage - LSTM-CNN

LSTM-CNN

Figure 4.6: The memory usage of the LSTM­CNN model by Bai et al.

Storage
The model requires several files to be loaded, namely an index, metadata, and a data file. The model
was 546,634 bytes, which is around half a megabyte.

Memory
Figure 4.6 shows the memory usage of the LSTM­CNN model. The peak usage is around 320 MiB.
Overall, the memory usage is stable over the prediction’s entire runtime, without outliers.

Average Prediction Times
Figure 4.7 shows that the model has low prediction times. Overall, predictions take less than 0.05
milliseconds. The median is around 0.036 milliseconds, with an overall narrow spread, as displayed
by the boxplot.

4.3.3. Technical Difficulties
During the experiments run on the LSTM­CNN model, we encountered several problems with Ten­
sorFlow on the Raspberry Pi 4. Unfortunately, new TensorFlow releases do not officially support the
Raspberry Pi and only release a lite version of the framework. Hence, we were required to seek un­
official community­supported packages to complete our experiments. Firstly, the unofficial community
distribution, provided by Bitsy AI Labs [29], only supports Python 3.7. Hence this is the first requirement
for the LSTM­CNN implementation. We tested the unofficial community distribution on newer Python
versions without success. Hence, we used Python 3.7.13 for our LSTM­CNN tests.

4.4. Conclusion
The re­implementations will set the baseline for comparison for our model that we will cover in the next
chapter. We see that the memory usage of the LSTM­CNN model is significantly higher than the RFC
model. A possible explanation is that the LSTM­CNN model uses more complex libraries than the RFC
model. However, the average prediction time decreases with higher memory usage. The prediction
time is 100 times shorter, while the memory is less than five times the size. However, because we aim
to deploy on low­end hardware, the system’s memory usage is an essential factor, likely more important
than the prediction times.

4.4. Conclusion 23

0.034

0.036

0.038

0.040

M
il

is
ec

on
d

s

Prediction Time - LSTM-CNN

Figure 4.7: The average prediction time of the LSTM­CNN model by Bai et al.

Moreover, the prediction times of the RFC are still around a millisecond, which would be fast enough
for our approach. Our system, in the end, only needs to identify a limited set of devices in a home
network. Hence, millisecond prediction times are more than sufficient. However, when the device has
sufficient memory that enables the deployment of the LSTM­CNN model, it would speed up prediction
times significantly.

5
Design & Implementation

Our work describes the construction of a new model to classify unseen IoT devices into five categories:
audio, TV, automation, hub, and camera. To achieve this, we introduce several features that describe
the characteristics of these devices.

Firstly, we will discuss the challenges in detecting unseen IoT devices. Secondly, we go in­depth into
how we overcome these challenges. Thirdly, we explain the datasets we use to train and test our
model. Next, we go over the extracted features and how we classify a device. Lastly, we explain how
we evaluate the performance of our model.

The implementation of our work is open­source and is available on GitLab1.

5.1. The Challenges
Every device vendor can implement or buy the firmware with the features and behavior they see fit
for their ideal device. Unfortunately, this means that there is no standard for the behavior of devices
within the same category. The different behavior can influence the network profile of such a device.
However, while the devices can have additional features and might communicate in different patterns,
they are designed to perform similar primary tasks. For example, a camera should transmit more data
than it receives because it streams a video or snapshot towards a device or cloud. We can design
a hypothesis for general behavior per device category based on such observations. The hypotheses
will set a basis for our feature selection and guide us on what is important to model. We expect that
the primary task outweighs the secondary tasks introduced by the device vendor, causing similarities
between the devices even when the implementations are different.

Another challenge is that the devices in our datasets do not always simulate a real­world scenario.
With devices in offices and home networks, we expect that there are some behavioral patterns. For
example, someone might watch TV after dinner on a workday within a home network, causing a certain
traffic pattern. Out of the three datasets used, we only have a single dataset that actively automated
the use of the devices to ensure some usage pattern. Unfortunately, some behavior could not easily
be automated, causing some functionality to be not included in the dataset. Furthermore, the other two
datasets have used the devices in an irregular and undocumented manner.

An example is the event logs of our TV did not show any sign of the TV streaming a video or movie.
Instead, the event logs only show the usage of volume controls and the voice assistant. Hence, we
could expect misclassifications due to devices being used similarly to that of another class. Further­
more, other datasets might not have any event logs, which makes us unable to verify whether a device
was adequately simulating that of a household and an active user.

1https://gitlab.sidnlabs.nl/device­type­classification/rfc­model

24

5.2. Hypotheses 25

5.2. Hypotheses
Next, we will present one or more hypotheses per device type that define the network behavior of the
primary tasks of the device category. Furthermore, we needed to adjust the initial hypotheses for some
devices. The adjustments were needed because some devices were not fully used, such as limited TV
usage, as explained before.

5.2.1. Audio
The audio class contains devices that act like smart speakers, for example, a Google Home Mini. A
smart speaker is a speaker with a built­in virtual assistant. We expect the data of a smart speaker to
show peaks when a command is requested because most devices still transmit the voice query to the
cloud, even if it is processed locally. Moreover, the command will trigger the transmission of an audio
stream to the cloud. The cloud then interprets the speech and constructs a reply. This reply is then sent
back to the device and played on the speaker. However, we expect a clear indication when a user uses
voice command, as audio consumes more bandwidth than idle usage. Figure 5.1 shows an example
of an audio device. We expect that the user sent a voice command to the smart speaker during the
peaks, but we could not verify this.

0 5 10 15 20
Capture duration (Hours)

0

2

4

6

8

Su
m

 o
f p

ac
ke

ts
 (M

iB
)

Network Traffic - Google Home
Transmitted
Received

Figure 5.1: 24 hours of IP traffic from a Google Home smart speaker grouped by hour.

5.2.2. Camera
The camera class contains all internet­connected video doorbells and general IP cameras. We com­
bined both devices into one category because they capture video and generally share it with their user.
Hence, because their primary task is similar, we included them in the same category.

As mentioned before, we expect more outgoing traffic than income traffic. The camera most likely
streams snapshots of movement or the complete video to a device or cloud. The camera may have
an onboard memory chip to store video content locally, which can cause the device not to transmit
as much as other cameras. However, if the user views the stream, the same principles apply. The
video would be streamed from the local memory chip towards the users’ device, causing snapshots
or video to be transmitted again. To illustrate the idea behind the hypothesis, we show two examples.
Figure 5.2a shows an example of a device we expect to have constant streaming towards the cloud due
to the continuous high bandwidth. The cause of the sudden drop at the 16th hour is due to incomplete
data. Figure 5.2b shows a device we suspect to have uploads during motion detection, as we see clear
peaks in the traffic with an overall steady low bandwidth.

5.2.3. TV
The TV class consists of televisions and set­top boxes, like an Apple TV. These devices are popular for
watching content on streaming services, such as Netflix or Amazon Prime. The video streams result in
a packet stream of a large size. Furthermore, the received streams result in the TV having significantly
more incoming bytes than outgoing bytes. In general, the idea is that the TV shows the opposite
behavior as that of a camera. Unfortunately, we could not detect day­to­day usage of the TVs in our
dataset, as the traffic was relatively low across all datasets. After inspecting the traffic and datasets
where possible, we saw that only a few events happened: idle, changing power state, changing volume,

5.2. Hypotheses 26

0 2 4 6 8 10 12 14 16
Capture duration (Hours)

0

25

50

75

100

125

150

175
Su

m
 o

f p
ac

ke
ts

 (M
iB

)
Network Traffic - Google Nest Cam IQ

Transmitted
Received

(a) Google Nest Cam IQ showing regular high traffic.

0 5 10 15 20
Capture duration (Hours)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Su
m

 o
f p

ac
ke

ts
 (M

iB
)

Network Traffic - Chinese Webcam
Transmitted
Received

(b) Chinese webcam showing irregular high traffic.

Figure 5.2: Two examples showing the hypothesis for camera detection.

and using voice commands.

Furthermore, we expect the device to show some baseline behavior. The baseline will be related to
the general TV operations and events. For example, the TV refreshes the recommendation page.
We expect a constant stream of traffic without interruptions, which is relatively low, but the received
bandwidth is higher than the transmitted. Figure 5.3 shows an example of the traffic of a TV. Overall,
you see stable traffic with a peak in the middle.

0 5 10 15 20
Capture duration (Hours)

0

5

10

15

20

25

30

35

40

Su
m

 o
f p

ac
ke

ts
 (M

iB
)

Network Traffic - Samsung Smart TV
Transmitted
Received

Figure 5.3: 24 hours of IP traffic from a Samsung Smart TV grouped by hour.

5.2.4. Hub
The hub is a device that controls and communicates with several devices on the internal network. The
hub either pulls data from devices, or the devices push data towards the hub. Hubs are generally seen
as the center point of IoT, controlling and managing data. Moreover, if the hub uses WiFi, we expect a
hub to have more connections to internal IP addresses than other devices. Additionally, because the
dataset contains multiple hubs and does not control all devices, we cannot only rely on this hypothesis.
Figure 5.4 displays the number of internal connections for various devices over an hour. The figure
shows that some devices have a similar internal connection count to a hub, especially TVs controlled
via a smartphone. Additionally, we expect the hubs to have a small footprint on the network, showing
irregular traffic, as the devices might react to user behavior. Figure 5.5 shows an example of such a
footprint from a Hub.

5.2. Hypotheses 27

”Chinese Webcam”

Logitech Harmony Hub

W
ink Hub 2

Samsung TV

Device

0

1

2

3

4

5

6

7

N
u

m
b

er
of

co
n

n
ec

ti
on

s

Internal Connections - 1 Hour Period

Figure 5.4: Number of internal connections over a period of an hour.

0 5 10 15 20
Capture duration (Hours)

0

1

2

3

4

5

Su
m

 o
f p

ac
ke

ts
 (M

iB
)

Network Traffic - Wink Hub2
Transmitted
Received

Figure 5.5: 24 hours of IP traffic from a Wink Hub 2 grouped by hour.

5.3. Dataset 28

5.2.5. Automation
Automation is a category consisting of lights, electrical plugs, and sensors. These devices often have a
regular network pattern. The device often pushes data to a hub periodically, or the hub pulls periodically.
We hypothesize that these devices show aminimal network footprint, with a similar packet size captured
in a reasonably periodic pattern. Figure 5.6 shows an example of a device in the automation category.
It shows very minimal traffic with periodic peaks.

0 5 10 15 20
Capture duration (Hours)

0.003

0.004

0.005

0.006

0.007

0.008

Su
m

 o
f p

ac
ke

ts
 (M

iB
)

Network Traffic - TP-Link Smart Plug
Transmitted
Received

Figure 5.6: 24 hours of IP traffic from a TP­Link Smart Plug grouped by hour.

5.3. Dataset
To train and test our model, we use three datasets: (1) IoT Information Exposure (IMC ’19) 2 [46], (2)
UNSW IoT Traces 3 [56], and (3) Your Things 4 [44]. In total, we collected 74 devices split into the
beforementioned five categories. Appendix B shows an overview of the devices used, the class, and
from which dataset we included data. We pre­processed the data to have a single PCAP file per device,
grouped by MAC address. Furthermore, the IMC dataset contains two sets, namely ’iot­data’ and ’iot­
idle.’ We concatenated all PCAPs of a single device, identified by device name, location, and whether
a VPN was active. The sorting was done based on timestamp, using a utility provided by Wireshark
named Mergecap [59]. Finally, we used DPKT [6] to group the UNSW and Your Things dataset by
checking whether the source or destination MAC address was equal to that of an IoT device. We wrote
the packet to the devices’ PCAP file if it was identical, leaving the timestamp and data intact.

The network captures in our dataset are of various lengths. Hence, to include similar lengths of capture
data for every device, we decided to cap all PCAPs to the first 24 hours. We did this to ensure that we
have equal amounts of data available for all devices, allowing us to better reason about what kind of
capture duration is required to perform device type classification. Additionally, it also limit the number
of events observed, as they need to happen within the first 24 hours of the capture. The downside of
using only 24 hours is that we might not capture events that do not occur daily. An example of such an
event is updating the firmware.

Most IoT devices are present multiple times in our dataset. Additionally, the IMC dataset observed
several devices at more than a single location or even with or without a VPN. Because we wanted to
avoid picking data by hand, which could introduce bias, we decided to include the first 24 hours of all
device versions, which causes devices to have multiple captures of the first 24 hours. However, they
are still handled as a single device to ensure they are kept unseen.

To finalize our dataset, we can extract sub­captures from the grouped PCAPs to be able to generate
features. A sub­capture is a chunk of the overall capture limited to a maximum duration δ, a parameter
we will explore later. A sub­capture is then formally defined as follows: Let P = {P1, ..., PN} be a set

2https://moniotrlab.ccis.neu.edu/imc19/
3https://iotanalytics.unsw.edu.au/iottraces.html
4https://yourthings.info/data/

5.4. Features 29

of packets of length N from a specific IoT device. Let TIME be a function that extracts the timestamp
for a packet p ∈ P . A sub­capture is then defined as a set C = {Pi, ..., Pj} where N ≥ j ≥ i such that
TIME(Pj) − TIME(Pi) <= δ and |C| is maximized. We extract as many sub­captures as possible,
starting at i = 1, the first packet of a device. It is important to note that no sub­captures should have
overlapping packets.

Next, we will investigate the features that we extract from these sub­captures.

5.4. Features
This section will go in­depth into our selected features and the parameters we will explore during our
experiments. The basis for the feature selection is to pick the features that best describe the hypotheses.
We have chosen to use hypotheses for our feature selection due to the scientific basis it gives us. It
also makes the model more explainable, as we know why we have chosen those features. The idea for
hypotheses based selection came from the early stages of our design. During this phase, we opted to
include as many features as possible. However, this yielded no significant results and made the model
relatively slow and hard to deploy on low­end hardware. Additionally, we focused on only including
features that do not use significant computational power to extract.

The features selected for our design focus on the packet itself and the data within it. We use the packet
data to extract IP layer information and the protocol. The list of features extracted is as follows:

The transmitted packet features: We extract the maximum, minimum, mean, and median size of a
packet transmitted by the IoT device within the sub­capture. We included this feature because several
hypotheses include transmitted packet statistics.

The received packet features: We extract the maximum, minimum, mean, and median size of a
packet received by the IoT device within the sub­capture. We included this feature for the same reason
as the transmitted packet statistics.

Internal Connections: The number of unique internal IP addresses the IoT device communicated
with within the sub­capture. The feature is related to the hypotheses set for the Hub category. As
mentioned before, we expect the Hub to have more internal connections than other categories.

Connection count: The number of unique IP addresses the IoT device communicated with within the
sub­capture. We added this feature with a similar goal as the internal connections. It is mainly linked
to the Hub and Automation class, as we expect these to communicate more on the internal network.
Hence, we included the feature to see whether this is the case.

Protocol length: The number of unique protocols the IoT device used within the sub­capture. We use
the protocol detection mechanisms from Wireshark [13]. The paper by Melnyk, Haleta, and Golphamid
[35] showed that it was one of the more important features in differentiating between single and multi­
purpose devices. Hence, because we have some multi­purpose categories, we also included this
feature. This feature is not directly linked to a hypothesis but based on a more overall observation that
combines all hypotheses.

Internal Packets: The number of packets with a source and destination address within the private
range. Additionally, either the source or destination needs to match the IoT device’s IP address. As
mentioned before, we expect the Hub to communicate with internal devices more than others. Hence,
we included this feature.

Packet count: The number of packets the IoT device sent or received within the sub­capture. The
feature shows us how active a device is. We expect certain classes to only communicate sensor
information, for example, the automation class.

5.5. Evaluation 30

The interpacket time features: We extract the maximum, minimum, mean, and median interpacket
time. The interpacket time is the difference between the timestamp of packet Pi and Pi−1 with i > 1.
We extract the feature to see if the values are similar. The maximum, minimum, mean, and median
should all be reasonably close for a periodic device.

The internal packet ratio: The internal packet ratio is the ratio of the internal and total packet counts
within a sub­capture. Equation 5.1 shows the formula used for the computation. The feature’s goal
is to show us whether the device mostly communicates with external sources or internal sources. As
mentioned before, we expect the Hub and Automation category to communicate more on the internal
network.

ratio =
internal_packets
total_packets

(5.1)

In total, our feature vector contains 18 features extracted per sub­capture. Features get extracted from
every device in a dataset.

5.5. Evaluation
In this work, we will primarily focus on the accuracy and resource usage of the RFC. The RFC will base
its predictions on a single sub­capture as introduced before. The main reason for going with an RFC
is the resource usage as shown in Chapter 4 and the ability to remove bias. Additionally, the model is
still explainable, and the features are manually selected. Overall, we expect improved accuracy with
these properties but still have explainability.

However, we will briefly compare the results of other traditional machine learning models. The machine
learning models we will show the accuracy of are:

• Decision Tree
• Adaboost
• K­Nearest Neighbors
• Linear Discriminant Analysis
• Quadratic Discriminant Analysis
• Multi­Layer Perceptron
• Support Vector Machine

We selected these models as they match the ones proposed in the comparison of the LSTM­CNN
model proposed by Bai et al. [5]. The purpose is to see whether our feature extraction methodology
reaches an overall higher accuracy on simpler models. In addition, we want to see whether deploying
our approach to a more or less explainable model might lead to significant performance differences.
For example, a decision tree classifier follows a single path, leading to a more explainable model than
an RFC with significantly more paths to evaluate. However, the RFC is still more explainable than the
Multi­Layer Perceptron, which deploys multiple layers of neurons. The settings used will be the same
as explained in the paper by Bai et al. [5].

For every device in our datasets, we have multiple sub­captures, and from each, we get a prediction.
Furthermore, in the end, we want a single prediction that tells us which class the device has. For this,
we use a majority vote on the prediction of the sub­captures. If two or more classes have the same
number of predictions, we pick the first observed class.

5.6. Parameters
The RFC contains several parameters that control the behavior of the construction algorithm. The
parameters we are exploring in this thesis are the influence of the random state on our accuracy and the
number of estimators (trees). Furthermore, our dataset construction contains a parameter delta δ that
controls the sub­capture’ length. Exploring the random state is performed by repeating our experiments
50 times with a different random state, using the same procedure as described in Chapter 4. We believe

5.6. Parameters 31

that repeating the experiments 50 times gives us good insights into the model’s behavior while also
keeping the running time manageable.

For the number of estimators, we use 50, 100, and 250. Furthermore, for the sub­capture length
δ, we use 600, 900, 1800, 3600, 7200, 14400, and 21600 (seconds). Finally, we run all possible
combinations between the number of estimators and the length of the sub­capture. To summarize, we
run 21 configurations and repeat these 50 times. We believe that exploring these configurations will
give us insights into the best possible sub­capture length and model size. All other parameters use
the default value as defined by the scikit­learn [52] library (version 1.0.2). Appendix C summarizes the
default settings.

5.6.1. Dataset Split
In this work, we use a supervised learning approach. In general terms, we require a separate training
and testing set. The training dataset trains the supervised model, while the test set validates the per­
formance of our model. A common approach is to randomly take a certain percentage of the rows for
training and the rest for testing, for example, 75 percent for training and 25 percent for testing. The
downside of this approach is that we would mix the data and cannot guarantee that we would have
unseen devices in our set. To solve this, we would be able to take a certain percentage of our devices
for testing and training, but it would result in some of the device categories having almost no devices
left over for testing. Furthermore, if we would randomly select devices, it could be that the devices in
our train set would not correctly explain the devices in our test set. For example, it could be that the
devices we would pick for our train set do not fully explain the characteristics of the category. Addition­
ally, it is important not to manually craft a dataset that would gain the highest accuracy, as in theory, it
would be ”cheating.”

To solve both issues, we use the cross­validation technique LOGO. LOGOallows us to test our accuracy
on every device in our dataset, giving us enough samples to test the stability and accuracy of our model.
Furthermore, because we constantly train on all devices not being tested, we can argue that we have
the best possible split for explaining the characteristics of a specific category.

5.6.2. Metrics
To evaluate our model, we will use the same metrics as in Chapter 4. However, because we use
the LOGO cross­validation technique, we have for every device a different model. Furthermore, the
prediction time can be performed as usual, as we measure the time the prediction takes on the model
for that specific device. Unfortunately, the disk space analysis is more complex as we have 74 models.
We will show the spread of the disk size in a boxplot to investigate the storage requirements. We will
use two metrics for the memory consumption, namely the maximum and minimum memory usage.

Additionally, we will explore the predictions made by our model. Furthermore, we investigate the pre­
diction strength by looking into the number of correctly predicted sub­captures per device. Finally, we
investigate whether prediction accuracy might be influenced by having different device versions in the
dataset. While these are different devices, they might come with very similar firmware. Additionally, it
could be that some of our devices use the same firmware, as these are often readily sold.

6
Experiment Results

In this chapter, we will explore the performance of our model. First, we go over the accuracy of the
RFC when using different parameters. Then, based on the results of the RFC, we determine the best
possible sub­capture length. Finally, from the results of our experiments, we can determine which RFC
gained the highest accuracy.

The model that reached the highest accuracy gets evaluated further, by exploring the predictions made.
We do this by going in­depth into the misclassifications, and discuss devices with a high number of sub­
captures predicted correctly. Next, the best­performing RFC model gets compared against several
traditional machine learning models.

At last, we measure the resource usage of the best­performing RFC model.

For the rest of the chapter, we will use a naming scheme to indicate which model we are currently
discussing. The format is the sub­capture length followed by the number of trees in the RFC. For
example, 4h­250 is the RFC model based on a 4­hour sub­capture length and 250 estimator trees.

6.1. Accuracy
This section explores which parameters reach the highest accuracy for our model design. We will look
at the influence of the sub­capture length and the number of estimators. We do this by looking at the
highest accuracy reached in the 50 runs we performed per configuration. Figure 6.1a, Figure 6.1b, and
Figure 6.1c show the results of the experiment.

From the figures, it is clear that the length of the sub capture influences the accuracy. The accuracy
increases steadily up until the 2­hour mark. Afterward, it stays stable. All three estimator experiments
reached the highest accuracy of 73%, meaning that 54 out of 74 devices were classified correctly
using the LOGO cross­validation technique. The number of estimators does not influence the accuracy
significantly, as the differences are only a few percent.

Sub­capture Length Estimators Mean Accuracy

6h 50 66%
4h 100 69%
4h 250 70%
6h 250 68%

Table 6.1: The mean accuracy of the RFC models with a highest accuracy of 73%.

32

6.2. Accuracy Spread 33

10m 15m 30m 1h 2h 4h 6h

Sub-capture length

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
u

ra
cy

0.57
0.61

0.69 0.7 0.72 0.72 0.73

Our Model Accuracy - 50 estimators

(a) The results of an RFC with 50 estimators

10m 15m 30m 1h 2h 4h 6h

Sub-capture length

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0.57
0.61

0.69 0.7 0.72 0.73 0.72

Our Model Accuracy - 100 estimators

(b) The results of an RFC with 100 estimators

10m 15m 30m 1h 2h 4h 6h

Sub-capture length

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0.55
0.61

0.68
0.7 0.72 0.73 0.73

Our Model Accuracy - 250 estimators

(c) The results of an RFC with 250 estimators

Figure 6.1: The experimental results of the RFC with different number of estimators and sub­capture lengths.

For the rest of our experiments, we focus on a single configuration. Furthermore, we only take the
models with the highest accuracy into account and select the model with the highest mean accuracy.
Table 6.1 shows the mean accuracy of the configurations that reached 73%. We use the measurement
of mean accuracy to determine the most stable model. The higher mean accuracy indicated that the
random state has less influence. Hence, we will focus on the 4h­250 configuration for the rest of our
analysis, as it is the model with the highest mean accuracy, and therefore likely to be the most stable
model.

6.2. Accuracy Spread
The random element in the RFCmodel influences the prediction accuracy. Figure 6.2 shows the spread
of the accuracy reached by our 4h­250 model over 50 runs. The boxplot shows that the median of
our 4h­250 model is around 71%, marginally lower than the highest point reached. Additionally, the
interquartile range has a total spread of about 2%. The difference between the minimum and maximum
accuracy reached is around 7%. Overall, the accuracy spread is rather narrow, displaying that our 4h­
250 models’ accuracy is stable.

6.3. Predictions
The model has the highest accuracy of 73% but still misclassifies some devices. In this section, we
will explore misclassified and correctly classified devices. We do this by looking at the number of sub­

6.3. Predictions 34

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

A
cc

u
ra

cy

Accuracy - 4h-250 RFC Model

Figure 6.2: The test accuracy spread of our 4h­250 RFC model.

captures predicted correctly and the predicted categories for the misclassified sub­captures.

6.3.1. Misclassifications
The misclassifications differ depending on the random seed used. However, the number of correct
predictions per class is equal over all three runs. Figure 6.3 displays the actual and predicted labels
in a confusion matrix. The three results show that all TVs were classified correctly in all three runs. In
addition, we can see that most of the cameras were classified correctly. The camera category is the
largest in our dataset, containing almost half of the available devices.

automation hub tv camera audio
Predicted label

automation

hub

tv

camera

audio

Tr
ue

 la
be

l

12 2 0 3 0

3 6 0 2 0

0 0 7 0 0

6 0 1 23 0

1 0 1 1 6

Confusion Matrix - 4h-250 RFC Model

0

5

10

15

20

automation hub tv camera audio
Predicted label

automation

hub

tv

camera

audio

Tr
ue

 la
be

l

12 2 0 3 0

2 6 0 3 0

0 0 7 0 0

4 1 1 23 1

1 0 1 1 6

Confusion Matrix - 4h-250 RFC Model

0

5

10

15

20

automation hub tv camera audio
Predicted label

automation

hub

tv

camera

audio

Tr
ue

 la
be

l

12 2 0 3 0

2 6 0 3 0

0 0 7 0 0

2 3 1 23 1

0 1 1 1 6

Confusion Matrix - 4h-250 RFC Model

0

5

10

15

20

Figure 6.3: The confusion matrices with various seeds of our 4h­250 RFC model that reached 73% accuracy.

6.3. Predictions 35

Most devices get misclassified as automation, hub, or camera. Depending on the run, the largest
misclassification category changes. Additionally, the number of devices misclassified as a TV stays
stable over all three runs. The hub and audio classes have the most misclassifications, with almost
50% of the devices not being predicted correctly.

Because we use a majority vote, it is essential to look at the distribution of the predictions of a device.
In Table 6.2, we have highlighted the misclassified devices. The table includes the name of the device,
the truth label, and the predictions made per class. The numbers on the right side of the table indicate
the actual predictions made, with the number being the number of sub­captures classified under that
class for that device.

Furthermore, we picked the first run of the 50 that reached an accuracy of 73% for this analysis. Ad­
ditionally, we added the distribution for all devices of this run in Appendix D. The table shows us that
of the 20 devices, only nine had some sub­captures predicted correctly. Furthermore, for the other 11,
the misclassification is significant, as they do not have a link back to their original class.

Device Truth Automation Camera Hub Audio TV

Bulb1 Automation 0 7 5 0 0
Charger Camera Camera 5 3 4 0 0
D­Link Camera Camera 3 0 3 0 0
Insteon Camera Camera 6 0 0 0 0
Light Bulbs LiFX Smart Bulb Automation 0 9 3 0 0
Lightify Hub Hub 20 2 2 0 0
Netamo Welcome Camera 2 2 1 1 0
Philips Hub Hub 0 23 0 0 1
Samsung SmartCam Camera 4 0 0 2 0
TP­Link Day Night Cloud Camera Camera 6 0 0 0 0
Triby Speaker Audio 4 0 2 0 0
Wemo Plug Automation 7 10 0 7 0
Xiaomi Hub Hub 22 0 2 0 0
Xiaomi Strip Automation 4 0 8 0 0
Wink Hub Hub 6 0 0 0 0
Belkin Wemo Link Automation 0 2 4 0 0
August Doorbell Camera Camera 0 2 0 0 4
Caseta Wireless Hub Hub 1 2 1 1 1
Harmon Kardon Invoke Audio 0 11 0 5 2
Apple Home Pod Audio 0 0 0 0 6

Table 6.2: The devices misclassified by the RFC model with 250 estimators and a sub­capture length of 4 hours.

6.3.2. Prediction Distribution
While the majority vote resulted in many correct classifications, it is essential to know the distribution of
the sub­capture prediction. The question is whether the devices were correctly classified because most
of the sub­captures had the correct class or if it came down to a slight difference. Figure 6.4 shows
different boundaries of the percentages of correct guesses. To generate the graph, we again used the

6.3. Predictions 36

model that reached the accuracy of 73% first. The idea behind the graph is to illustrate the number of
devices with at least a certain percentage of correct predictions. For example, the left bar shows the
number of devices with at least 40% of the sub­captures with the correct class. We then increase the
counter by 10% per bar when approaching the right side of the graph.

≥ 40% ≥ 50% ≥ 60% ≥ 70% ≥ 80% ≥ 90% ≥ 100%

Lower bound correctly predicted flows

0

10

20

30

40

50

N
u

m
b

er
of

d
ev

ic
es

Prediction Strength of Majority Vote

Figure 6.4: The prediction strength of the majority vote.

The graph shows that all devices have at least 40% of the sub­captures correctly predicted. In theory,
because we have five classes, the minimum required is at least 20% if the share between the classes
is all equal. However, up to 50%, we do not see a significant drop. There are still 52 out of 54 correctly
classified devices at this level. After 50%, it quickly goes down at each step until we reach 100%. At
this level, there are still 18 devices. Overall, the prediction strength indicates that our 4h­250 model is
confident in its predictions per device, as we classify at least half correctly for 52 devices even when
using five classes.

A significant portion of our devices have at least 90% of the sub­captures predicted correctly. In Ta­
ble 6.3, we display the devices and the accuracy obtained. There are several Amazon Echo devices
with high prediction accuracy. These devices likely run similar firmware, causing their network profile
to be equivalent. The same applies to the Nest Cameras and the Dropcam, as Google’s Nest Labs
acquired DropCam in 2014. Hence, they likely use similar firmware as the original company.

For the other devices, something similar could apply. Within the IoT market, vendors are delivering
readily available IoT solutions [49]. These readily available solutions get sold under different brand
names with minimal adjustments. For example, the ’Chinese Webcam,’ an unbranded Webcam found
in the dataset, has reached an accuracy of 100%. One or more devices likely share the same firmware
with this device.

6.3. Predictions 37

Device Class Accuracy

Echodot Audio 0.97
Echoplus Audio 0.97
Echospot Audio 1.0
Google Home Audio 1.0
Nest Protect Smoke Alarm Automation 1.0
Netatmo Weather Station Automation 1.0
Withings Smart Scale Automation 1.0
Koogeek Light Bulb Automation 1.0
Yi Camera Camera 0.92
Nest Camera Camera 1.0
Nest Dropcam Camera 1.0
Nest Camera IQ Camera 1.0
Dropcam Camera 1.0
Netgear Arlo Camera Camera 1.0
Logitech Logi Circle Camera 1.0
Canary Camera 1.0
PiperNV Camera 1.0
Chinese Webcam Camera 1.0
Luohe Spycam Camera 0.92
Wansview Cam Wired Camera 1.0
Withings Smart Baby Monitor Camera 1.0
Appletv TV 0.93
Roku 4 TV 1.0

Table 6.3: The IoT devices that had a prediction accuracy of more than 90%.

6.5. Resource Usage 38

6.4. Traditional Models
This section discusses the performance reached by other traditional machine learning models. Ta­
ble 6.4 shows the results of the 50 runs performed. Besides the number of neighbors for the K­Nearest­
Neighbors model, all model parameters use the default as defined by the scikit­learn library (version
1.0.2). The number of neighbors was set to 10, as described in the paper by Bai et al. [5].

Model High Low Average

Our 4h­250 Model (RFC) 73% 66% 70%
Decision Tree Classifier 59% 45% 54%
Adaboost 45% 45% 45%
K­Nearest Neighbors 59% 59% 59%
Linear Discriminant Analysis 36% 36% 36%
Quadratic Discriminant Analysis 46% 46% 46%
Multi­Layer Perceptron 58% 36% 46%
Support Vector Machine 38% 38% 38%

Table 6.4: The prediction accuracy of other traditional models on our feature set.

Table 6.4 shows that our 4h­250 model reaches the highest accuracy of the traditional models tested.
The choice of the model influences the accuracy. The best performing traditional models are the K­
Nearest­Neighbors and the Multi­Layer Perceptron. In short, the K­Nearest­Neighbors perform a ma­
jority vote on the classes of k of its nearby neighboring data points. The Multi­Layer­Perceptron is a
feed­forward neural network with several layers of neurons.

The RFC reaches the highest accuracy of the models that we evaluated. The RFC consists of multiple
decision trees to remove bias. The single decision tree reaches an accuracy of 59%, 14% lower than
the RFC. Overall, it could indicate that some features introduced bias and that the RFC was able to
(partially) remove this.

6.5. Resource Usage
We will explore the same metrics as introduced in Chapter 4, with slight adjustments because of the
LOGO methodology used.

6.5.1. Storage
In Figure 6.5, we display the storage size required. All models are between 6 and 7 MiB, making them
easily storable on low­end hardware. Next, we will look into the prediction times of our 4h­250 model.

6.5.2. Prediction Times
In Figure 6.6a, we plotted the spread of all predictions made during the classification. As mentioned
before, we measured 74 models, one per device. The graph shows several outliers that are above
100ms per prediction. The outliers are from a single model, namely the ’Nest Dropcam.’ We filtered
out these times to get a better overview of the spread.

Figure 6.6b displays the times without the ’Nest Dropcam’ model. The graph shows that the predictions
are all below 40ms. The median is around 9ms, while the interquartile spread is around 10ms.

6.5. Resource Usage 39

6.40

6.45

6.50

6.55

6.60

6.65

6.70

Si
ze

 in
 M

iB

Model Sizes - 4h-250 RFC Model

Figure 6.5: The 4h­250 RFC model sizes created during LOGO cross­validation (lower is better).

0

20

40

60

80

100

120

140

160

Ti
m

e
in

 m
s

Prediction Times - 4h-250 RFC Model

(a) The results of all devices.

5

10

15

20

25

30

Ti
m

e
in

 m
s

Prediction Times - 4h-250 RFC Model (no dropcam)

(b) The results without ’Nest Dropcam’.

Figure 6.6: The prediction times of the RFC models created during LOGO cross­validation.

6.6. Comparison 40

6.5.3. Memory
As mentioned before, we will use the RFC models with the minimum and maximum memory usage.
Figure 6.7 shows both these runs. As displayed, the runs are not significantly different in memory usage.
Furthermore, both runs climb to 100 MiB and stay around this value for the rest of the evaluation. The
sudden increase in memory is caused by loading the model and the data.

0 1 2 3 4 5 6 7 8

Time (in seconds)

0

20

40

60

80

100

M
em

o
ry

u
se

d
(i

n
M

iB
)

Memory Usage - 4h-250 RFC Model

Maximum

Minimum

Figure 6.7: The maximum and minimum memory usage of our RFC model.

6.6. Comparison
This section will go in­depth into the comparison with the current state of the art. Furthermore, we
compare the resource usage and the performance of our 4h­250 model with the models proposed by
Melnyk, Haleta, and Golphamid [35] and Bai et al. [5]. that we investigated in Chapter 4.

6.6.1. Resource Usage
The prediction times of our 4h­250 model is higher than the model proposed by Melnyk, Haleta, and
Golphamid [35]. The main reason for this is that the depth of the trees is significantly higher, and hence,
the model is more complex. A larger tree depth causes a higher runtime, as more computations are
necessary to reach a leaf node. The depth reached by our 4h­250 model was 20 on average. In
comparison, the Melnyk, Haleta, and Golphamid [35] model had a depth of 9.

Even with the slower prediction times of, in the worst case, 160ms, it is still a solution we can deploy on
low­end hardware. Our solution uses a 24­hour capture, with sub­captures of a length of 4 hours, which
gives us six predictions per device—leading to a total prediction time of below 1­second per device.

The higher depth of the RFC also comes at a storage cost. Our 4h­250 model, on average, required
around 6.7 MiB of storage. While the model by Melnyk, Haleta, and Golphamid [35] required 160 KiB.
The model proposed by Bai et al. [5] required 0.5 MiB. Some low­end hardware devices might have
limited storage, which would cause deployment problems because the operating system might take a
significant part of the available storage.

If compression libraries are available on the device, one could compress the model. For example, the
GunZip compression lowered the model size to 1.1 MiB. The model can then be loaded into memory,
decompressed, and used to predict devices, which reduces the amount of storage space required—
making it again able to be loaded onto low­end hardware with limited storage available. However, using

6.6. Comparison 41

compression will increase the CPU usage when loading the model into memory.

At last, we compare memory usage. Figure 6.8 displays the memory usage of all the models. It has
been capped at 15 seconds, as the memory does not increase afterward. Our model uses slightly more
memory than the RFC model proposed by Melnyk, Haleta, and Golphamid [35], which uses 90 MiB.
However, as mentioned before, the depth of our tree is 20, which is more than twice the depth of the
model proposed by Melnyk, Haleta, and Golphamid [35], likely causing a slight increase in memory
as the model holds more information. The total memory difference between the two models is 10 MiB.
Furthermore, we use a third of thememory compared to themodel proposed by Bai et al. [5]. The neural
network likely uses more complex libraries, causing higher memory usage, as explained in Chapter 4.

0 2 4 6 8 10 12 14

Time (in seconds)

0

50

100

150

200

250

300

M
em

o
ry

u
se

d
(i

n
M

iB
)

Model Memory Comparison

Melnyk et al. (21K packets)

Melnyk et al. (560K packets)

Bai et al. LSTM-CNN

Our 4h-250 Model

Figure 6.8: The memory usage of the models explored in our thesis.

To conclude, this section shows that our 4h­250 model is overall slower due to the increased complexity
of the trees within the RFC. Furthermore, the storage requirements also increased due to the complexity,
but these are solvable by using compression. At last, we showed that the memory usage of our 4h­
250 model is between that of the model proposed by Melnyk, Haleta, and Golphamid [35] and the one
proposed by Bai et al. [5].

6.6.2. Accuracy
This section will compare our accuracy and misclassifications with both models introduced in Chapter 4.
First, we compare it against the model proposed by Melnyk, Haleta, and Golphamid [35], as it is closest
to our primary task. Both models try to classify the class of the device rather than the flow of the devices.

The model proposed by Melnyk, Haleta, and Golphamid [35] reaches the highest accuracy of 94%, with
two classes. Our 4h­250 model reached a high accuracy of 73%, with five classes, which means that
adding three extra classes decreases the accuracy by 21%. Additionally, we used features that require
less computational power. The features proposed in the model of Melnyk, Haleta, and Golphamid [35]
requires many iterations for the Page Ranking algorithm.

Next, we compare our 4h­250 model against the one proposed by Bai et al. [5]. The idea behind their
model was to predict flows rather than devices. The accuracy of their model reached a high of 80.1%,
with a mean of 74.9%. Furthermore, adding a single class would only include a slight penalty, with a
7.1% difference on the highest accuracy and 1.9% on the median. However, we could not verify the
model of Bai et al. [5]., and our measurements only reached the highest accuracy of around 75%.

6.6. Comparison 42

Additionally, the model verification only included a limited amount of devices. For example, the hub
category only contained a single device for testing. In comparison, our 4h­250 model contained 11
hubs. Because of the LOGO technique, we could also use the 11 hub samples for testing. Table 6.5
summarizes the methods used. The table shows that our approach uses the most categories and
almost twice the number of unseen devices, which only slightly affects the accuracy.

Model Number of Classes Unseen Devices Accuracy

Melnyk, Haleta, and Golphamid 2 31 97%
Bai et al. 4 8 80% 1

Our 4h­250 Model 5 74 73%

Table 6.5: Comparison between the methodologies discussed in this work.

1Accuracy could not be verified.

7
Discussion & Future Work

In this chapter, we will go over the limitations of our approach. Then, we propose several ways to
extend the research in the future work section.

7.1. Limitations
While our approach sets a good scientific foundation for the research, it also has several limitations.
Firstly, we only focussed on five categories, while in theory, there are many more categories to be
explored, such as kitchen appliances or smart gardening equipment.

Secondly, we manually selected the features based on the hypotheses defined per device. The down­
side of the approach is that it does not guarantee that the model has the highest accuracy possible. It
could be possible that another set of features would gain a higher accuracy.

Thirdly, we only used the first 24 hours of the capture, which causes not all events to be captured. For
example, an update event is unlikely to occur in that short period. The downside of this is that some
information is missing, leaving a certain level of uncertainty. The extra data could improve accuracy
due to the increased amount of information.

Lastly, our datasets do not include any real­world household traffic. The real­world household data
allows us to create more complex usage patterns, likely leading to better accuracy. As mentioned
before, certain environments likely show traffic patterns linked to certain devices.

7.2. Future Work
There are several ways to extend our research, or interesting areas for future research. These are:

Extension of Data In the field, there is a lot of data available for a single set of devices, namely
cameras. It is important to diversify the data available to allow more extensive models. Additionally, it
is essential to include data from actual households to measure performance. As mentioned before, a
household could show patterns that could link back to the device categories.

Extension of Categories Future research should focus on extending the number of categories and
making them less general. For example, rather than ’automation,’ differentiate between lights, plugs,
and sensors. For the extension of categories, we first need an extension of data, as there is not enough
public data available for creating an extensive list of categories.

Automatic Feature Selection As mentioned in the limitations, our approach relies on the hypothesis
to select the features. Future research could automatically select the features to see how it compares
against the manual selection performed in this work. The automatic selection could result in higher
accuracy. However, the approach would remove the transparency that the hypotheses introduced.
Future research could compare both options and try to improve transparency of automated models.

43

7.2. Future Work 44

System Creation The results of this research can be the backbone to creating a system that auto­
matically blocks or allows traffic of IoT devices based on their type. Most device types could have
a basic set of firewall rules that helps users secure their households. Additionally, the low resource
usage allows deployment on the router provided by most ISPs, reducing the cost for the end user.

8
Conclusion

This work showed that low­end dedicated hardware devices could classify IoT devices into five cat­
egories. Furthermore, the classification got constructed around a set of introduced hypotheses that
focused on the devices’ network characteristics, which led to a scientific foundation for selecting the
features of our model. Finally, using the LOGO cross­validation technique, we evaluated the perfor­
mance of our model by only testing on unseen devices.

This chapter will conclude our research by answering the sub­research questions and main research
question introduced in Chapter 1. The research questions are as follows:

1. How do existing models perform on low­end dedicated hardware devices? Chapter 4 ex­
plored two types of models—an RFC proposed by Melnyk, Haleta, and Golphamid [35] and an LSTM­
CNN proposed by Bai et al. [5]. Both models would be able to be deployed on low­end hardware as
their resource usage was minimal. However, the LSTM­CNN model used significantly more memory
than the RFC model, but the prediction times were significantly lower.

2. What are the difficulties when classifying IoT devices not present in the training set? We
introduced the two main difficulties in Chapter 5. Firstly, the vendor has the freedom to implement the
device in any way they see fit. The freedom of implementation allows vendors to design a device to
their liking with the required features, which influences the network traffic patterns as these features
are likely also internet­connected.

Secondly, the datasets used did not always use the device as intended. Furthermore, one dataset auto­
mated the events to trigger them at specific times, but they could not automate all events. Additionally,
the other two datasets did not keep an event log and used the devices in an unscheduled random way.

3. How do we categorize appliances with the same functionality from different brands? We de­
cided to take a scientific approach to feature selection to tackle the challenges found. For every device
category, we created hypotheses. These hypotheses give us a foundation for our feature selection
and help us to focus on what is essential. Additionally, it clarifies what the model uses and why it uses
these features, improving transparency.

The hypotheses focused on the primary task of the device, with the idea that every device with the
same primary task would show these characteristics in its network traffic.

4. How well does this new model perform on low­end dedicated hardware devices? In Chap­
ter 6, we explored the results of our model on a low­end dedicated hardware device. It shows that the
memory usage is around 100 MiB, comparable to that of the RFC model proposed by Melnyk, Haleta,
and Golphamid [35]. The storage requirements and prediction times were significantly higher than the
other two models. However, a complete device classification would take less than a second, even with
the higher prediction times. When using compression, the model size would decrease significantly.

45

46

The additional resource usage was not a unexpected, as the model becomes more complex when
differentiating between more classes. We saw this back when comparing the tree depth of the model
proposed by Melnyk, Haleta, and Golphamid [35] and ours. Our model was at least twice the depth,
resulting in more information to be stored and considered when making a prediction.

5. How well does this new model perform in terms of accuracy? The accuracy of our model is
73% on 74 devices. Compared with the other two models, we have performed the most extensive test
to date. We added significantly more unseen devices and an extra category. The extensive testing and
complexity added by the extra category decreased the accuracy only by 7% compared to the model
proposed by Bai et al. [5].

Next, we answer the main research question of this work.

How can we perform Device Type Classification of IoT devices on low­end dedicated hardware
devices? We need to examine the two parts this question contains to answer it. First, how would
we perform device type classification? As answered before, we have based our classification on the
hypotheses set and try to focus on detecting the primary task of the devices. This approach showed
that we could classify devices into five categories with an accuracy of 73%.

Secondly, how would this work on low­end hardware? To answer this, we looked into the existing
research in this area. After which, we decided to continue with the RFC because it showed good
performance with low memory usage. Additionally, it aims to reduce bias against certain features,
something we saw was necessary when using trees for this dataset.

Overall, we have shown that it is possible to run device type classification of IoT devices with reasonable
accuracy on low­end hardware devices.

References

[1] Nesrine Ammar, Ludovic Noirie, and Sebastien Tixeuil. “Autonomous Identification of IoT Device
Types based on a Supervised Classification”. In: 2020 IEEE International Conference on Com­
munications (ICC). IEEE, 2020, pp. 1–6. ISBN: 978­1­72815­089­5. DOI: 10.1109/icc40277.
2020.9148821.

[2] Prashant Anantharaman, Liwei Song, Ioannis Agadakos, Gabriela Ciocarlie, Bogdan Copos, Ulf
Lindqvist, and Michael E. Locasto. “IoTHound: environment­agnostic device identification and
monitoring”. In: Proceedings of the 10th International Conference on the Internet of Things. ACM,
2020, pp. 1–9. ISBN: 978­1­4503­8758­3. DOI: 10.1145/3410992.3410993.

[3] Manos Antonakakis, Tim April, Michael Bailey, Matthew Bernhard, Elie Bursztein, Jaime Cochran,
Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz
Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas,
and Yi Zhou. “Understanding the Mirai Botnet”. In: Proceedings of the 26th USENIX Conference
on Security Symposium. SEC’17. Vancouver, BC, Canada: USENIX Association, 2017, pp. 1093–
1110. ISBN: 9781931971409.

[4] Leonardo Babun, Hidayet Aksu, Lucas Ryan, Kemal Akkaya, Elizabeth S. Bentley, and A. Selcuk
Uluagac. “Z­IoT: Passive Device­class Fingerprinting of ZigBee and Z­Wave IoT Devices”. In:
2020 IEEE International Conference on Communications (ICC) (2020), pp. 1–7. DOI: 10.1109/
icc40277.2020.9149285.

[5] Lei Bai, Lina Yao, Salil S. Kanhere, Xianzhi Wang, and Zheng Yang. “Automatic Device Classi­
fication from Network Traffic Streams of Internet of Things”. In: 2018 IEEE 43rd Conference on
Local Computer Networks (LCN) (2018), pp. 1–9. DOI: 10.1109/lcn.2018.8638232.

[6] Kiran Bandla. DPKT: fast, simple packet creation / parsing, with definitions for the basic TCP/IP
protocols. URL: https://github.com/kbandla/dpkt (visited on 05/09/2022).

[7] Jiaqi Bao, Bechir Hamdaoui, andWeng­KeenWong. “IoT Device Type Identification Using Hybrid
Deep Learning Approach for Increased IoT Security”. In: 2020 International Wireless Communi­
cations and Mobile Computing (IWCMC). IEEE, 2020, pp. 565–570. ISBN: 978­1­72813­129­0.
DOI: 10.1109/iwcmc48107.2020.9148110.

[8] Sergey Brin and Lawrence Page. “The Anatomy of a Large­Scale Hypertextual Web Search
Engine”. In: Comput. Networks 30.1­7 (1998), pp. 107–117. DOI: 10.1016/S0169- 7552(98)
00110-X.

[9] Bundesnetzagentur. Bundesnetzagentur removes children’s doll ”Cayla” from the market. URL:
https://www.bundesnetzagentur.de/SharedDocs/Pressemitteilungen/EN/2017/17022017_
cayla.html (visited on 01/03/2021).

[10] Edgar D Cardenas. “MAC Spoofing – An Introduction”. In: GIAC Certifications (Aug. 23, 2003).
URL: https://www.giac.org/paper/gsec/3199/mac-spoofing-an-introduction/105315
(visited on 12/10/2021).

[11] Patrik Cerwall, Richard Moller, Anette Lundvall, Peter Jonsson, Stephen Carson, Rachit Saksena,
Dave Lu, Ilyas Celik, Peter Jonsson, Stephen Carson, Steven Davies, Per Lindberg, Greger
Blennerud, Karena Fu, Bilal Bezri, Jawad Manssour, Shi Theng Khoo, Fredrik Burstedt, Jennifer
Walker, Ove Persson, Jens Malmodin, Olivia Thell, Alejandro Ferrer, Anders Carlsson P, Kevin
Hume, Luciana Leite, and Adriana Margarita Mahecha Segura. Ericsson Mobility Report. Tech.
rep. Ericsson, 2021, p. 40. URL: https://www.ericsson.com/4ad7e9/assets/local/reports-
papers/mobility- report/documents/2021/ericsson- mobility- report- november- 2021.
pdf (visited on 01/03/2022).

47

https://doi.org/10.1109/icc40277.2020.9148821
https://doi.org/10.1109/icc40277.2020.9148821
https://doi.org/10.1145/3410992.3410993
https://doi.org/10.1109/icc40277.2020.9149285
https://doi.org/10.1109/icc40277.2020.9149285
https://doi.org/10.1109/lcn.2018.8638232
https://github.com/kbandla/dpkt
https://doi.org/10.1109/iwcmc48107.2020.9148110
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.bundesnetzagentur.de/SharedDocs/Pressemitteilungen/EN/2017/17022017_cayla.html
https://www.bundesnetzagentur.de/SharedDocs/Pressemitteilungen/EN/2017/17022017_cayla.html
https://www.giac.org/paper/gsec/3199/mac-spoofing-an-introduction/105315
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf

References 48

[12] Prawit Chumchu, Tanatal Saelim, and Chunyamon Sriklauy. “A new MAC address spoofing de­
tection algorithm using PLCP header”. In: 2011 International Conference on Information Network­
ing, ICOIN 2011, Kuala Lumpur, Malaysia, January 26­28, 2011. Ed. by Cheeha Kim and Yongtae
Shin. IEEE Computer Society, 2011, pp. 48–53. DOI: 10.1109/ICOIN.2011.5723112.

[13] Gerald Combs and TheWireshark team.Wireshark. URL: https://www.wireshark.org/ (visited
on 03/08/2022).

[14] Ivan Cvitić, Dragan Peraković, Marko Periša, and Brij Gupta. “Ensemble machine learning ap­
proach for classification of IoT devices in smart home”. In: International Journal of Machine Learn­
ing and Cybernetics 12.11 (2021), pp. 3179–3202. ISSN: 1868­8071. DOI: 10.1007/s13042-020-
01241-0.

[15] David McGrew and Blake Anderson and Philip Perricone and Bill Hudson. Joy. URL: https :
//github.com/cisco/joy (visited on 03/08/2022).

[16] Dor Green. PyShark. URL: https://github.com/KimiNewt/pyshark (visited on 03/08/2022).
[17] Paul Ducklin. “Has your sleeping baby been indexed by this search engine?” In: (Jan. 25, 2016).

URL: https://nakedsecurity.sophos.com/2016/01/25/has-your-sleeping-baby-been-
indexed-by-this-search-engine/ (visited on 01/03/2022).

[18] Linna Fan, Shize Zhang, Yichao Wu, Zhiliang Wang, Chenxin Duan, Jia Li, and Jiahai Yang. “An
IoT Device IdentificationMethod based on Semi­supervised Learning”. In: 2020 16th International
Conference on Network and Service Management (CNSM). IEEE, 2020, pp. 1–7. ISBN: 978­3­
903176­31­7. DOI: 10.23919/cnsm50824.2020.9269044.

[19] Genesis Toys. My Friend Cayla. URL: https://myfriendcayla.co.uk/ (visited on 01/21/2021).
[20] Jakob Greis, Artem Yushchenko, Daniel Vogel, Michael Meier, and Volker Steinhage. “Automated

Identification of Vulnerable Devices in Networks using Traffic Data and Deep Learning”. In: Com­
puting Research Repository (CoRR) (2021). arXiv: 2102.08199 [cs].

[21] Ke Gu, Ying Fan, and Zengru Di. “Signed PageRank on Online Rating Systems”. In: J. Syst. Sci.
Complex. 35.1 (2022), pp. 58–80. DOI: 10.1007/s11424-021-0124-2.

[22] Salma Abdalla Hamad, Wei Emma Zhang, Quan Z. Sheng, and Surya Nepal. “IoT Device Iden­
tification via Network­Flow Based Fingerprinting and Learning”. In: 2019 18th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE In­
ternational Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (2019),
pp. 103–111. DOI: 10.1109/trustcom/bigdatase.2019.00023.

[23] Zhimin He, Jie Yin, Yu Wang, Guan Gui, Bamidele Adebisi, Tomoaki Ohtsuki, Haris Gacanin, and
Hikmet Sari. “Edge Device Identification Based on Federated Learning and Network Traffic Fea­
ture Engineering”. In: IEEE Transactions on Cognitive Communications and Networking PP.99
(2021), pp. 1–1. DOI: 10.1109/tccn.2021.3101239.

[24] Tin Kam Ho. “Random decision forests”. In: Third International Conference on Document Anal­
ysis and Recognition, ICDAR 1995, August 14 ­ 15, 1995, Montreal, Canada. Volume I. IEEE
Computer Society, 1995, pp. 278–282. DOI: 10.1109/ICDAR.1995.598994.

[25] Insecam. Live cameras directory. URL: http://www.insecam.org/ (visited on 01/03/2021).
[26] Internet Assigned Numbers Authority (IANA). IANA IPv4 Special­Purpose Address Registry. URL:

https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-
registry.xhtml.

[27] Internet Assigned Numbers Authority (IANA). IANA IPv6 Special­Purpose Address Registry. URL:
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-
registry.xhtml.

[28] Jobib. Joblib. URL: https://joblib.readthedocs.io/en/latest/ (visited on 03/08/2022).
[29] Leigh Johnson and Chad Schultz. Community­built TensorFlow binaries. URL: https://github.

com/bitsy-ai/tensorflow-arm-bin (visited on 03/22/2022).
[30] Elmer Lastdrager, Cristian Hesselman, Jelte Jansen, and Marco Davids. “Protecting Home Net­

works From Insecure IoT Devices”. In: 2020 IEEE/IFIP Network Operations and Management
Symposium (NOMS). Budapest, Hungary: IEEE, 2020.

https://doi.org/10.1109/ICOIN.2011.5723112
https://www.wireshark.org/
https://doi.org/10.1007/s13042-020-01241-0
https://doi.org/10.1007/s13042-020-01241-0
https://github.com/cisco/joy
https://github.com/cisco/joy
https://github.com/KimiNewt/pyshark
https://nakedsecurity.sophos.com/2016/01/25/has-your-sleeping-baby-been-indexed-by-this-search-engine/
https://nakedsecurity.sophos.com/2016/01/25/has-your-sleeping-baby-been-indexed-by-this-search-engine/
https://doi.org/10.23919/cnsm50824.2020.9269044
https://myfriendcayla.co.uk/
https://arxiv.org/abs/2102.08199
https://doi.org/10.1007/s11424-021-0124-2
https://doi.org/10.1109/trustcom/bigdatase.2019.00023
https://doi.org/10.1109/tccn.2021.3101239
https://doi.org/10.1109/ICDAR.1995.598994
http://www.insecam.org/
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://joblib.readthedocs.io/en/latest/
https://github.com/bitsy-ai/tensorflow-arm-bin
https://github.com/bitsy-ai/tensorflow-arm-bin

References 49

[31] Scott M. Lundberg and Su­In Lee. “A Unified Approach to Interpreting Model Predictions”. In: Ad­
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4­9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett. 2017, pp. 4765–4774. URL: https://proceedings.neurips.cc/paper/2017/
hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.

[32] Rajib Ranjan Maiti, Sandra Siby, Ragav Sridharan, and Nils Ole Tippenhauer. “Link­Layer Device
Type Classification on Encrypted Wireless Traffic with COTS Radios”. In: Computer Security –
ESORICS 2017. Ed. by Simon N. Foley, Dieter Gollmann, and Einar Snekkenes. Vol. 10493.
Lecture Notes in Computer Science. Springer International Publishing, 2017, pp. 247–264. ISBN:
978­3­319­66398­2 978­3­319­66399­9. DOI: 10.1007/978- 3- 319- 66399- 9_14. (Visited on
11/09/2021).

[33] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad­Reza Sadeghi, and N. Asokan.
“AuDI: Toward Autonomous IoT Device­Type Identification Using Periodic Communication”. In:
IEEE Journal on Selected Areas in Communications 37.6 (2019), pp. 1402–1412. ISSN: 0733­
8716. DOI: 10.1109/jsac.2019.2904364.

[34] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo, Martín Ochoa, Nils Ole
Tippenhauer, and Yuval Elovici. “ProfilIoT: a machine learning approach for IoT device identifica­
tion based on network traffic analysis”. In: Proceedings of the Symposium on Applied Computing.
ACM, 2017, pp. 506–509. ISBN: 978­1­4503­4486­9. DOI: 10.1145/3019612.3019878.

[35] Vadym Melnyk, Pavlo Haleta, and Nazar Golphamid. “Machine learning based network traffic
classification approach for Internet of Things devices”. In: Theoretical and Applied Cybersecurity
2.1 (2020). ISSN: 2708­1397. DOI: 10.20535/tacs.2664-29132020.1.209472.

[36] Umberto Michelucci. Applied Deep Learning with TensorFlow 2: Learn to Implement Advanced
Deep Learning Techniques with Python. Apress, 2022. ISBN: 9781484280195.

[37] Microsoft. Microsoft Defender for IoT. URL: https://azure.microsoft.com/en-us/services/
iot-defender/ (visited on 01/04/2021).

[38] Daniel Miessler, Guzman Aaron, Vishruta Rudresh, and Craig Smith. “OWASP Internet of Things
Top 10”. In: (2018). URL: https://owasp.org/www-project-internet-of-things/.

[39] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan, Ahmad­Reza Sadeghi, and Sasu
Tarkoma. “IoT Sentinel: Automated Device­Type Identification for Security Enforcement in IoT”.
In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS) (2017),
pp. 2177–2184. DOI: 10.1109/icdcs.2017.283.

[40] SebastianMoss. “Major DDoS attack onDyn disrupts AWS, Twitter, Spotify andmore”. In: (Oct. 21,
2016). URL: https://www.datacenterdynamics.com/en/news/major-ddos-attack-on-dyn-
disrupts-aws-twitter-spotify-and-more/ (visited on 01/03/2022).

[41] Naji Najari, Samuel Berlemont, Gregoire Lefebvre, Stefan Duffner, and Christophe Garcia. “Net­
work Traffic Modeling For IoT­device Re­identification”. In: 2020 International Conference on
Omni­layer Intelligent Systems (COINS). IEEE, 2020, pp. 1–6. ISBN: 978­1­72816­371­0. DOI:
10.1109/coins49042.2020.9191376.

[42] Fabian Pedregosa. Memory Profiler. URL: https://github.com/pythonprofilers/memory_
profiler (visited on 03/22/2022).

[43] Fabian Pedregosa, Gaël Varoquaux, AlexandreGramfort, VincentMichel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duches­
nay. “Scikit­learn: Machine Learning in Python”. In: Journal of Machine Learning Research 12.85
(2011), pp. 2825–2830. DOI: 10.5555/1953048.2078195.

[44] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Antonakakis. “IoTFinder: Effi­
cient Large­Scale Identification of IoT Devices via Passive DNS Traffic Analysis”. In: IEEE Euro­
pean Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7­11, 2020.
IEEE, 2020, pp. 474–489. DOI: 10.1109/EuroSP48549.2020.00037.

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1007/978-3-319-66399-9_14
https://doi.org/10.1109/jsac.2019.2904364
https://doi.org/10.1145/3019612.3019878
https://doi.org/10.20535/tacs.2664-29132020.1.209472
https://azure.microsoft.com/en-us/services/iot-defender/
https://azure.microsoft.com/en-us/services/iot-defender/
https://owasp.org/www-project-internet-of-things/
https://doi.org/10.1109/icdcs.2017.283
https://www.datacenterdynamics.com/en/news/major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-more/
https://www.datacenterdynamics.com/en/news/major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-more/
https://doi.org/10.1109/coins49042.2020.9191376
https://github.com/pythonprofilers/memory_profiler
https://github.com/pythonprofilers/memory_profiler
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1109/EuroSP48549.2020.00037

References 50

[45] Gopinath Rebala, Ajay Ravi, and Sanjay Churiwala. An Introduction to Machine Learning. Jan.
2019, p. 263. ISBN: 978­3­030­15728­9. DOI: 10.1007/978-3-030-15729-6.

[46] Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari, Roman Kolcun, and
Hamed Haddadi. “Information Exposure for Consumer IoT Devices: A Multidimensional, Network­
Informed Measurement Approach”. In: Proc. of the Internet Measurement Conference (IMC).
2019.

[47] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust You?”: Explain­
ing the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13­17,
2016. Ed. by Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou
Shen, and Rajeev Rastogi. ACM, 2016, pp. 1135–1144. DOI: 10.1145/2939672.2939778.

[48] John Romkey. “The Toast of the IoT”. In: IEEE Consumer Electronics Magazine 6.1 (2017),
pp. 116–119. ISSN: 2162­2248. DOI: 10.1109/mce.2016.2614740.

[49] Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun, Hamed Haddadi, Daniel J. Dubois,
David R. Choffnes, Georgios Smaragdakis, and Anja Feldmann. “A Haystack Full of Needles:
Scalable Detection of IoT Devices in the Wild”. In: IMC ’20: ACM Internet Measurement Confer­
ence, Virtual Event, USA, October 27­29, 2020. ACM, 2020, pp. 87–100. DOI: 10.1145/3419394.
3423650.

[50] Scikit Learn. Leave One Group Out cross­validator. URL: https://scikit- learn.org/sta
ble/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html (visited on
03/22/2022).

[51] Scikit Learn. Model Persistence. URL: https://scikit-learn.org/stable/modules/model_
persistence.html.

[52] Scikit Learn. Random Forest Classifier. URL: https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html.

[53] Mustafizur R. Shahid, Gregory Blanc, Zonghua Zhang, and Herve Debar. “IoT Devices Recogni­
tion Through Network Traffic Analysis”. In: 2018 IEEE International Conference on Big Data (Big
Data). IEEE, 2018, pp. 5187–5192. ISBN: 978­1­5386­5035­6. DOI: 10.1109/bigdata.2018.
8622243.

[54] Claude E. Shannon. “Amathematical theory of communication”. In:Bell Syst. Tech. J. 27.3 (1948),
pp. 379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.

[55] Shodan. Shodan Images. URL: https://images.shodan.io/ (visited on 01/03/2021).
[56] Arunan Sivanathan, HassanHabibi Gharakheili, Franco Loi, AdamRadford, ChamithWijenayake,

Arun Vishwanath, and Vijay Sivaraman. “Classifying IoT Devices in Smart Environments Us­
ing Network Traffic Characteristics”. In: IEEE Transactions on Mobile Computing 18.8 (2019),
pp. 1745–1759. ISSN: 1536­1233. DOI: 10.1109/tmc.2018.2866249.

[57] Splunk. Industrial Data and the Internet of Things. URL: https://www.splunk.com/en_us/iot.
html (visited on 01/04/2021).

[58] Kai Tao, Jing Li, and Srinivas Sampalli. “Detection of Spoofed MAC Addresses in 802.11Wireless
Networks”. In: E­business and Telecommunications ­ 4th International Conference, ICETE 2007,
Barcelona, Spain, July 28­31, 2007, Revised Selected Papers. Ed. by Joaquim Filipe and Mo­
hammad S. Obaidat. Vol. 23. Communications in Computer and Information Science. Springer,
2007, pp. 201–213. DOI: 10.1007/978-3-540-88653-2_15.

[59] Wireshark. Mergecap. URL: https://www.wireshark.org/docs/man-pages/mergecap.html
(visited on 05/09/2022).

[60] BBC World. “German parents told to destroy Cayla dolls over hacking fears”. In: (Feb. 17, 2017).
URL: https://www.bbc.com/news/world-europe-39002142 (visited on 01/03/2022).

[61] Feihong Yin, Li Yang, Yuchen Wang, and Jiahao Dai. “IoT ETEI: End­to­End IoT Device Identifi­
cation Method”. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC). IEEE,
2021, pp. 1–8. ISBN: 978­1­72817­534­8. DOI: 10.1109/dsc49826.2021.9346251.

https://doi.org/10.1007/978-3-030-15729-6
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/mce.2016.2614740
https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3419394.3423650
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html
https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://doi.org/10.1109/bigdata.2018.8622243
https://doi.org/10.1109/bigdata.2018.8622243
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://images.shodan.io/
https://doi.org/10.1109/tmc.2018.2866249
https://www.splunk.com/en_us/iot.html
https://www.splunk.com/en_us/iot.html
https://doi.org/10.1007/978-3-540-88653-2_15
https://www.wireshark.org/docs/man-pages/mergecap.html
https://www.bbc.com/news/world-europe-39002142
https://doi.org/10.1109/dsc49826.2021.9346251

References 51

[62] Huan Zhao, Xiaogang Xu, Yangqiu Song, Dik Lun Lee, Zhao Chen, and HanGao. “Ranking Users
in Social Networks with Motif­Based PageRank”. In: IEEE Trans. Knowl. Data Eng. 33.5 (2021),
pp. 2179–2192. DOI: 10.1109/TKDE.2019.2953264.

https://doi.org/10.1109/TKDE.2019.2953264

A
Device Categorization RFC Model

A.1. Train Dataset

MAC Address Category

Sonos 5c:aa:fd:6c:e0:d4 single
Securify Almond e4:71:85:25:ce:ec single
Nest Camera 18:b4:30:58:3d:6c single
LIFX Virtual Bulb d0:73:d5:12:84:d1 single
Belkin Wemo Switch 08:86:3b:70:d7:39 single
Belkin Netcam c0:56:27:53:09:6d single
Ring Doorbell 00:1d:c9:23:f6:00 single
Roku 4 08:05:81:ee:06:46 single
Belkin Wemo Link 94:10:3e:cc:67:95 single
Netgear Arlo Camera b0:7f:b9:a6:47:4d single
D­Link DCS­5009L Camera b0:c5:54:03:c7:09 single
Logitech Logi Circle 44:73:d6:01:3d:fd single
Canary 7c:70:bc:5d:09:d1 single
Piper NV ac:3f:a4:70:4a:d6 single
Withings Home 00:24:e4:2b:a5:34 single
Belkin WeMo Crockpot 94:10:3e:5c:2e:31 single
Mi Casa Verde Vera Lite 94:4a:0c:08:7e:72 single
Chinese Webcam 00:12:16:ab:c0:22 single
Augustus Doorbell Cam cc:b8:a8:ad:4d:04 single
Chamberlain myQ Garage Opener 64:52:99:97:f8:40 single
Google Home Mini 20:df:b9:20:87:39 single
Google Home 48:d6:d5:98:53:84 single
Bose Sound Touch 10 10:ce:a9:eb:5a:8a single
Harmon Kardon Invoke d8:f7:10:c2:29:be single
Apple Home Pod d4:90:9c:cc:62:42 single

52

A.2. Test Dataset 53

MAC Address Category

Roomba 40:9f:38:92:40:13 single
Koogeek Light Bulb 00:7e:56:77:35:4d single
TP­Link Smart WiFi LED Bulb 50:c7:bf:92:a6:4a single
Nest Cam IQ 18:b4:30:8c:03:e4 single
Nest Guard 18:b4:30:40:1e:c5 single
Google On Hub f4:f2:6d:ce:9a:5d multi
Philips Hue Hub 00:17:88:21:f7:e4 multi
Insteon Hub 54:4a:16:f9:54:18 multi
Wink Hub b4:79:a7:22:f9:fc multi
Roku TV 30:52:cb:a3:4f:5f multi
Amazon Fire TV 0c:47:c9:4e:fe:5b multi
nVidia Shield 00:04:4b:55:f6:4f multi
AppleTV d0:03:4b:39:12:e3 multi
Logitech Harmony Hub c8:db:26:02:bb:bb multi
Caseta Wireless Hub f4:5e:ab:5e:c0:23 multi
Samsung Smart TV 7c:64:56:60:71:74 multi
Wink 2 Hub 00:21:cc:4d:59:35 multi
Android Tablet a4:f1:e8:8d:b0:9e multi
iPad e8:b2:ac:af:62:0f multi

Table A.1: The train dataset for the RFC model by Melnyk, Haleta, and Golphamid.

A.2. Test Dataset

MAC Address Category

Smart Things d0:52:a8:00:67:5e single
Amazon Echo 44:65:0d:56:cc:d3 single
Netatmo Welcome 70:ee:50:18:34:43 single
TP­Link Day Night Cloud Camera f4:f2:6d:93:51:f1 single
Samsung Smart Cam 00:16:6c:ab:6b:88 single
Dropcam 30:8c:fb:2f:e4:b2 single
Insteon Camera 00:62:6e:51:27:2e single
Shenzhen Reecam IP Cam e8:ab:fa:19:de:4f single
Withings Smart Baby Monitor 00:24:e4:11:18:a8 single
Belkon WeMo Switch ec:1a:59:79:f4:89 single
TP­Link Smart Plug 50:c7:bf:00:56:39 single
iHome 74:c6:3b:29:d7:1d single
Belkin WeMo Motion Sensor ec:1a:59:83:28:11 single

A.2. Test Dataset 54

MAC Address Category

NEST Protect Smoke Alarm 18:b4:30:25:be:e4 single
Netatmo Weather Station 70:ee:50:03:b8:ac single
Withings Smart Scale 00:24:e4:1b:6f:96 single
Blipcare Blood Pressure Meter 74:6a:89:00:2e:25 single
Withings Aura Smart Sleep Sensor 00:24:e4:20:28:c6 single
Light Bulbs LiFX Smart Bulb d0:73:d5:01:83:08 single
Triby Speaker 18:b7:9e:02:20:44 single
PIX­Star Photo­Frame e0:76:d0:33:bb:85 single
Nest Dropcam 30:8c:fb:b6:ea:45 single
HP Printer 70:5a:0f:e4:9b:c0 multi
Samsung Galaxy Tab 08:21:ef:3b:fc:e3 multi
Android Phone 40:f3:08:ff:1e:da multi
Laptop 74:2f:68:81:69:42 multi
Macbook ac:bc:32:d4:6f:2f multi
Android Phone b4:ce:f6:a7:a3:c2 multi
iPhone d0:a6:37:df:a1:e1 multi
Macbook / iPhone f4:5c:89:93:cc:85 multi
TPLink Router Bridge LAN 14:cc:20:51:33:ea multi

Table A.2: The test dataset for the RFC model by Melnyk, Haleta, and Golphamid.

B
Device Categorization for

Implementation

Name Category Datasets

Allure Speaker Audio IMC
Amcrest Cam Wired Camera IMC
Appletv Tv IMC, Your Things
Belkin Wemo Motion Sensor Sensor UNSW
Belkin Wemo Switch Sensor Your Things, UNSW
Blink Camera Camera IMC
Blink Security Hub Hub IMC
Bulb1 Light IMC
Charger Camera Camera IMC
Cloudcam Camera IMC
D­Link Camera Camera Your Things
Dropcam Camera UNSW
Echodot Audio IMC
Echoplus Audio IMC, UNSW
Echospot Audio IMC
Firetv Tv IMC, Your Things
Google Home Audio IMC, Your Things
Google Home Mini Audio IMC, Your Things
iHome Sensor UNSW
Insteon Camera Camera UNSW
Insteon Hub Hub IMC
Lefun Cam Wired Camera IMC
Lgtv Wired Tv IMC
Light Bulbs LiFX Smart Bulb Light Your Things, UNSW

55

56

Name Category Datasets

Lightify Hub Hub IMC
Luohe Spycam Camera IMC
Magichome Strip Light IMC
Microseven Camera Camera IMC
Nest Dropcam Camera UNSW
Nest Protect Smoke Alarm Sensor UNSW
Netamo Welcome Camera UNSW
Netatmo Weather Station Sensor IMC, UNSW
Philips Bulb Light IMC
Philips Hub Hub IMC
Ring Doorbell Camera IMC, Your Things
Roku Tv Tv IMC, Your Things
Samsung SmartCam Camera UNSW
Samsungtv Wired Tv IMC, Your Things
Sengled Hub Hub IMC
Smartthings Hub Hub IMC, UNSW
TP­Link Bulb Light IMC, Your Things
TP­Link Day Night Cloud Camera Camera UNSW
TP­Link Smart Plug Sensor IMC, UNSW
Triby Speaker Audio UNSW
Wansview Cam Wired Camera IMC
Wemo Plug Sensor IMC
Wink Hub2 Hub IMC, Your Things
Withings Aura Smart Sleep Sensor Sensor UNSW
Withings Smart Baby Monitor Camera UNSW
Withings Smart Scale Sensor UNSW
Xiaomi Cam2 Camera IMC
Xiaomi Hub Hub IMC
Xiaomi Strip Light IMC
Yi Camera Camera IMC
Zmodo Doorbell Camera IMC
Nest Camera Camera Your Things
Wink Hub Hub Your Things
Belkin Netcam Camera Your Things
Roku 4 Tv Your Things
Nvidia Shield Tv Your Things
Belkin Wemo Link Light Your Things
Netgear Arlo Camera Camera Your Things
Logitech Logi Circle Camera Your Things

57

Name Category Datasets

Canary Camera Your Things
PiperNV Camera Your Things
Withings Home Camera Your Things
Chinese Webcam Camera Your Things
August Doorbell Camera Camera Your Things
Logitech Harmony Hub Hub Your Things
Caseta Wireless Hub Hub Your Things
Harmon Kardon Invoke Audio IMC, Your Things
Apple Home Pod Audio Your Things
Koogeek Light Bulb Light Your Things
Nest Camera IQ Camera Your Things

Table B.1: The dataset categorization for our model.

C
Default Settings ­ Random Forest

Classifier

Parameter Value

max_depth None
min_sample_split 2
min_samples_leaf 2
min_weight_fraction_leaf 0.0
max_features Square root
max_leaf_nodes None
min_impurity_decrease 0.0
bootstrap True
oob_score False
n_jobs None
verbose 0
warm_start False
class_weight None
ccp_alpha 0.0
max_samples None

Table C.1: The default settings of the Scikit Learn RFC model.

58

D
Prediction Results ­ Random Forest

Classifier

Device Class Automation Camera Hub Audio TV

Allure Speaker Audio 0 3 1 8 0
Amcrest Cam Wired Camera 0 9 2 1 0
Appletv Tv 2 0 0 0 28
Belkin Wemo Motion Sensor Automation 5 1 0 0 0
Belkin Wemo Switch Automation 6 5 0 0 1
Blink Camera Camera 3 18 0 0 0
Blink Security Hub Hub 3 2 17 0 0
Bulb1 Automation 0 7 5 0 0
Charger Camera Camera 5 3 4 0 0
Cloudcam Camera 0 8 0 4 0
D­Link Camera Camera 3 0 3 0 0
Dropcam Camera 0 6 0 0 0
Echodot Audio 1 0 0 35 0
Echoplus Audio 0 0 0 29 1
Echospot Audio 0 0 0 24 0
Firetv Tv 0 0 0 11 19
Google Home Audio 0 0 0 18 0
Google Home Mini Audio 0 4 0 36 2
iHome Automation 4 2 0 0 0
Insteon Camera Camera 6 0 0 0 0
Insteon Hub Hub 1 1 12 0 0
Lefun Cam Wired Camera 0 9 3 0 0
Lgtv Wired Tv 0 5 1 0 6
Light Bulbs LiFX Smart Bulb Automation 0 9 3 0 0

59

60

Device Class Automation Camera Hub Audio TV

Lightify Hub Hub 20 2 2 0 0
Luohe Spycam Camera 1 11 0 0 0
Magichome Strip Automation 13 7 4 0 0
Microseven Camera Camera 0 6 6 0 0
Nest Dropcam Camera 0 1 0 0 0
Nest Protect Smoke Alarm Automation 6 0 0 0 0
Netamo Welcome Camera 2 2 1 1 0
Netatmo Weather Station Automation 18 0 0 0 0
Philips Bulb Automation 8 0 4 0 0
Philips Hub Hub 0 23 0 0 1
Ring Doorbell Camera 7 19 0 4 0
Roku Tv Tv 2 1 0 5 22
Samsung SmartCam Camera 4 0 0 2 0
Samsungtv Wired Tv 3 6 0 5 16
Sengled Hub Hub 11 1 18 0 0
Smartthings Hub Hub 6 15 19 2 0
TP­Link Bulb Automation 14 2 5 2 7
TP­Link Day Night Cloud Camera Camera 6 0 0 0 0
TP­Link Smart Plug Automation 33 0 2 0 7
Triby Speaker Audio 4 0 2 0 0
Wansview Cam Wired Camera 0 24 0 0 0
Wemo Plug Automation 7 10 0 7 0
Wink Hub2 Hub 5 0 13 0 0
Withings Aura Smart Sleep Sensor Automation 5 1 0 0 0
Withings Smart Baby Monitor Camera 0 6 0 0 0
Withings Smart Scale Automation 6 0 0 0 0
Xiaomi Cam2 Camera 0 10 1 1 0
Xiaomi Hub Hub 22 0 2 0 0
Xiaomi Strip Automation 4 0 8 0 0
Yi Camera Camera 2 22 0 0 0
Zmodo Doorbell Camera 0 9 1 2 0
Nest Camera Camera 0 6 0 0 0
Wink Hub Hub 6 0 0 0 0
Belkin Netcam Camera 0 4 1 0 1
Roku 4 Tv 0 0 0 0 6
Nvidia Shield Tv 0 1 0 2 3
Belkin Wemo Link Automation 0 2 4 0 0
Netgear Arlo Camera Camera 0 6 0 0 0
Logitech Logi Circle Camera 0 6 0 0 0

61

Device Class Automation Camera Hub Audio TV

Canary Camera 0 6 0 0 0
PiperNV Camera 0 6 0 0 0
Withings Home Camera 0 4 0 1 1
Chinese Webcam Camera 0 6 0 0 0
August Doorbell Camera Camera 0 2 0 0 4
Logitech Harmony Hub Hub 0 2 4 0 0
Caseta Wireless Hub Hub 1 2 1 1 1
Harmon Kardon Invoke Audio 0 11 0 5 2
Apple Home Pod Audio 0 0 0 0 6
Koogeek Light Bulb Automation 6 0 0 0 0
Nest Camera IQ Camera 0 5 0 0 0

Table D.1: The classification results by the RFC model with 250 estimators and a sub­capture length of 4 hours.

	Preface
	Abstract
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Research Question
	Main Contributions
	Outline

	Background
	PageRank Algorithm
	Example

	Random Forest Classifier
	Decision Tree Classifier
	Constructing the Forest
	Majority Vote

	Neural Networks
	Long-Term-Short-Term Memory
	Convolutional Neural Network
	Cascading

	Leave-One-Group-Out Cross-Validation

	Literature Review
	Device Type Re-identification
	Deep Learning
	Unsupervised Learning
	Federated Learning

	Device Type Detection
	Device Type Classification
	Current Challenges

	Reference Implementations
	Performance Metrics
	Random Forest Classifier
	Feature Extraction
	Performance

	LSTM-CNN Model
	Feature Extraction
	Performance
	Technical Difficulties

	Conclusion

	Design & Implementation
	The Challenges
	Hypotheses
	Audio
	Camera
	TV
	Hub
	Automation

	Dataset
	Features
	Evaluation
	Parameters
	Dataset Split
	Metrics

	Experiment Results
	Accuracy
	Accuracy Spread
	Predictions
	Misclassifications
	Prediction Distribution

	Traditional Models
	Resource Usage
	Storage
	Prediction Times
	Memory

	Comparison
	Resource Usage
	Accuracy

	Discussion & Future Work
	Limitations
	Future Work

	Conclusion
	References
	Device Categorization RFC Model
	Train Dataset
	Test Dataset

	Device Categorization for Implementation
	Default Settings - Random Forest Classifier
	Prediction Results - Random Forest Classifier

