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ABSTRACT

Cardiac output (CO) is a vital hemodynamic parameter that
reflects the blood volume pumped by the heart per minute.
A less-invasive way to estimate CO is by analyzing arterial
blood pressure (ABP) waveforms. However, the relation-
ship between CO and blood pressure is unknown. This study
uses machine learning and feature engineering techniques to
discover the relationship between CO and ABP. We apply
the sparse identification non-linear dynamics (SINDy) algo-
rithm to discover features. Additionally, we investigate the
optimum number of cardiac cycles required for feature ex-
traction to achieve the best performance. The proposed ap-
proach achieves clinically acceptable performance regarding
radial limits of agreement (RLOA) and bias (RBias). Further,
the proposed approach is validated on an external dataset.
Finally, similarities to the Navier-Stokes equations are pre-
sented.

Index Terms— Cardiac output, feature discovery, machine
learning, Arterial blood pressure, SINDy algorithm

1. INTRODUCTION

Cardiac output (CO) is crucial for determining tissue oxygen
delivery and indicates the heart’s ability to meet the body’s
demands. Researchers have developed various methods to
measure CO, including the invasive thermodilution tech-
nique, also known as the Swan-Ganz catheter [1]. Although
the Swan-Ganz catheter technique is considered the gold
standard for CO measurements, it only provides an approx-
imation since measuring the actual CO is extremely hard in
clinical practices. Alternatively, a less-invasive way to esti-
mate CO is by analyzing the arterial blood pressure (ABP)
waveform. Many models were developed over the years
trying to relate CO with ABP via less invasive procedures.
These models can be categorized into models derived from
physical principles called hereafter classical models [2, 3, 4]
and models obtained from data-driven techniques such as
convolutional neural networks [5] and machine learning [6].
This study exploits machine learning techniques and feature
engineering to develop an explainable algorithm for estimat-
ing CO from the ABP waveform. To achieve this goal, we
combine the core idea of the classical approach, which sug-
gests the presence of a differential equation governing the
system’s behavior, with the power of advanced techniques to
discover these equations. We apply the SINDy [7] algorithm
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Fig. 1: Summary of the idea behind the project.

to discover a novel set of features and use these features as
input to the algorithm. Furthermore, we examine the optimal
duration of the ABP waveform used for feature extraction.
Figure 1 summarizes the main ideas behind this study. The
rest of the paper is organized as follows: the next section ex-
plains the methods , followed by the results and conclusion
in section 3 and 4, respectively.

2. METHODS

The methodology pipeline starts with a signal abnormality
index to examine the quality of the waveform. After that,
we extract hemodynamic and waveform features for the next
step (experiment 1: feature discovery). In experiment 2, we
investigate the optimum number of cardiac cycles. We calcu-
late clinically accepted metrics to evaluate the accuracy and
precision using the gold standard for CO measurements as
a reference. We apply leave-one-patient-out cross-validation
to validate the model. Additionally, we investigate the per-
formance of six machine learning models, including linear
(linear, ridge, and lasso) and tree-based (decision-tree, XG-
Boost, and random-forest) models [8]. Figure 2 shows the
methodology pipeline.

2.1. Feature extraction
We extract hemodynamic and waveform features along-

side demographic information. Figure 3 summarizes the
extracted hemodynamic and waveform features.
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Fig. 2: Methodology pipeline.

1- Systolic Blood Pressure
/ 2- Diastolic Blood Pressure

\

/ 3- Mean arterial blood pressure
4- Pulse pressure
/ 5- Duration of the systole period
6- Duration from systolic pressure to dicrotic notch
Systolic pressure One cardiac cycie . point,

7- Duration of diastole period
1\ 8- Duration of a cardiac cycle
| | \pulse pressure 9- Heart rate estimated per cardiac cycle
[ ~ 10- classical models
/| 11- Highest absolute value
/" | 12- Mean value of aggregation function over the

\
\\/Dictotic notc
g N auto-correlation of max lag 40

- 13- Mean of trend function

I 14- Standard deviation of trend function

Diastolic pressure 15- Mean of seasonal function

16- Standard deviation of seasonal function
abs-sum-changes.
- N\ 17- Absolute value of consecutive changes,
Demographic: \ 18- Absolute energ
Age and \ 19- The sum over the ABP waveform
gender "\ | 20- median, mean, autocorrelation function,

.| partial autocorrelation
"\ 21- Binned entropy

Fig. 3: Summary of the extracted features (Hemodynamic, wave-
form, and demographic).

Age and gender features were used as demographic informa-
tion.

2.2. The SINDy algorithm

The SINDy [7] algorithm operates by constructing a library
of potential candidate functions. Sparse regression tech-
niques are applied to identify the active terms within the
library matrix that characterize the system’s dynamics. To
this end, the SINDy algorithm solves the following optimiza-
tion problem:

arg min

dx
5 Hdt - ¢o(x)B

+ 718l - ()
2

In this equation, (3 represents the coefficient vector obtained
from solving the constrained regression problem. The term
‘fi—’t‘ denotes the derivative of the features with respect to time,
capturing the system’s dynamics. The matrix ¢(x) represents
the library of possible functions applied to the feature set.
Finally, ~ is the hyper-parameter. We apply the sequentially
thresholded least squares algorithm (STLSQ) [9] method to
solve the optimization problem with 0.005 as a threshold. We
adopt a recursive approach to address the curse of dimension-
ality problem. Each iteration focuses on three features, and
CO is always one of them. The augmentation of the fea-
tures (the proposed library function) is based on the classical
models. The procedure of feature discovery is described in
Algorithm 1.

2.3. The number of cardiac cycles

We investigate the optimal time window or the number of
cardiac cycles required for feature extraction to estimate CO
accurately, explicitly addressing how far back in time we
need to go to estimate CO accurately. To estimate cardiac

Algorithm 1 Feature discovery

(b(x) = [¢(X)L0garithmi05 ¢(X)exponential7 (Z)(X)polynominal}
for #patients > patient iterator do
for #feature index > feature iterator do
for #feature index — feature
feature iterator2 do

iterator >

X = [CO, ffeature iterator s ffeature iteralorZ]

1) arggnin 15 — ()8l + 18]

2) store the names of non-zero ¢(x)
3) feature iterator2 = feature iterator2 + 1

end for
feature iterator = feature iterator + 1
end for
patient iterator = patient iterator + 1
end for

Select overlapped features in ¢(x)

output, we consider different numbers of cardiac cycles,
ranging from one to eight.

2.4. Clinically acceptable algorithm
The precision level of the reference method is £+ 20% [10].

Therefore, measuring the correlation could be misleading,
and the agreement between the two methods should be eval-
uated. A new algorithm should be accurate and precise com-
pared to the reference method. To assess these two con-
cepts, Bland-Altman analysis and Trending ability analyses
are used [10]. Metrics such as Radial limits of agreements
(RLOA), Radial bias (RBias), Concordance rate (CR), and
Percentage error (PE) should be evaluated. Table 1 summa-
rizes the requirements of these analyses such that the devel-
oped model is clinically accepted [10, 11, 12].

Table 1: Summary of the clinically accepted algorithm require-

ments.
PE [10] CR[11] RBias [12] RLOA [12]
< 30% > 90—-95% < 5° < 30°
3. RESULTS

3.1. Data preparation

We obtain the data from the Vital Data Bank [13]. 47 pa-
tients were selected from the Vital Recorder data based on
the availability of the ABP waveforms and the correspond-
ing Swan-Ganz catheter CO measurements. The waveform
was sampled at a rate of 500 Hz. For further processing,
this was down-sampled to 100 Hz. CO measurements ap-
peared at 2-second intervals. 350 samples were extracted
from each patient. 18900 samples were collected from all pa-
tients before any pre-processing or signal quality check. Af-
ter pre-processing and signal quality check, the number be-
comes 15460 samples with 43 cases. CO values range from
1.6 to 11.8 with a mean of 6.45 and a standard deviation of
2.01 mLm' The dataset comprised 27 females and 16 males
with the following demographic characteristics: a height of
161.59 & 7.54 cm, a weight of 60.45 + 12.6 kg, BMI (Body
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Mass Index) of 20.07 4= 4.04, and an age of 54.58 &+ 14.75
years.

3.2. The discovered features

Following the procedure described in Algorithm 1, 33 fea-
tures were discovered and summarized in Table 2. The fea-
tures are categorized into six types: hemodynamic, deriva-
tives (representing changes between cardiac cycles), loga-
rithmic, non-linear, waveform, and demographic features.
Upon closer examination of these features, it can be inferred
that they describe five physical phenomena: velocity, pres-
sure, power, energy, and randomness. Features related to
velocity are indicated with (u) in Table 2. The features that
capture pressure-related characteristics are denoted with (p).
Features that describe the power and energy are denoted by
(w) and (e). Lastly, features that describe the randomness
are denoted by ().

Table 2: Summary of the discovered features (hemodynamics,
waveform, and demographic).

Function library Features

Hemodynamic Heart rate (u), Systolic duration (u), Systolic notch duration (u), Di-
astolic duration (u), Cardiac cycles duration (u), systolic area model,
Liljestrand-Zander model (p), RMS pressure (w), Area with correc-

tion (W)

Derivatives Heart rate (u), Systolic duration (u), Systolic notch duration (u), Di-

astolic duration (u), Cardiac cycles duration (u), Systolic pressure (p)

Logarithmic Heart rate (u), Cardiac cycles duration (u), Pulse pressure (p), Abso-

lute energy (e)

Non-linear 1/systolic pressure (p), 1/diastolic pressure (p), 1/mean pressure(p),
1/systolic duration (u), systolic*pulse (pressure) (p), systolic/diastolic
(pressure) (p), systolic/pulse (pressure) (p), systolic/diastolic (dura-

tion) (u), systolic/cardiac cycle (duration) (u)

Waveform Absolute energy (e), Fourier entropy 5 (r), Fourier entropy 10 (r),

Fourier entropy 100 (r)

Gender

Demographic

3.3. The optimum number of cardiac cycles
Experimenting with different cardiac cycles revealed that
three cardiac cycles yielded the most accurate results, while
six cardiac cycles provided the highest precision. Further
analysis indicated that five cardiac cycles struck the best bal-
ance between accuracy and precision. This finding suggests
that the model utilizes the data from the last two seconds,
equivalent to the previous three cardiac cycles that were
used to measure the ground truth for the most accurate re-
sults. Additionally, to provide the most precise results, the
model considers the average of the last two CO measure-
ments, equivalent to the previous six cardiac cycles. Finally,
five cardiac cycles aim to strike the best balance between
accuracy and precision by relying more on the last CO mea-
surement than the one before. Ridge regression was the
best-performing model among other linear and tree-based
models. The results of different cardiac cycles can be seen
in Table 3, and the comparison between models can be seen
in Table 4.

Table 3: Ridge regression performance for different numbers of
cardiac cycles (CC).

RMS| MAE | R R2 | Bias | LOA PE% | CR% | RLOA® | RBias®
2CC 1.13 ] 0.96 | 0.80 | 0.63 | -0.06 | 2.22,-2.35 35.38| 52.30| 28.54 -0.88
3CC 1.03 ] 092 | 0.82 | 0.68 | -0.05 | 2.08,-2.18 32.77| 71.61| 27.23 1.00
4CC 1.04 | 093 | 0.82 | 0.68 | -0.07 | 2.07,-2.21 32.98| 79.10| 28.83 5.13
5CC 1.04 | 0.94 | 0.81 | 0.67 | -0.07 | 2.10,-2.23 33.34| 79.10| 25.49 323
6CC 1.05 | 095 | 0.81 | 0.66 | -0.07 | 2.12,-2.27 33.84| 82.08| 29.15 4.44

Table 4: Comparison of the performance of six regression models
using discovered features and five cardiac cycles.

RMS MAE | R R2 | Bias | LOA PE% | CR% | RLOA®°| RBias®

(L/min)| (L/min)
Linear 1.05 0.95 0.82| 0.67| -0.07 | 2.11,-2.25 | 33.50| 79.10| 25.57 | 3.14
Lasso 1.25 1.09 0.72 | 0.51| 0.03 | 2.68,-2.62 | 40.81| 67.16| 41.28 8.31
Ridge 1.04 0.94 0.82| 0.67| -0.07 | 2.10,-2.23 | 33.34| 79.10| 2549 | 3 .23
DecisionTree| 1.45 1.27 0.59 | 0.28| -0.05 | 3.16,-3.26 | 49.43| 63.76| 29.29 | 0.05
RandForrest | 1.30 1.10 0.70 | 0.48| -0.06 | 2.66,-2.78 | 41.84| 55.07| 34.99 1.47
XGBoost 1.27 1.11 0.70 | 0.49| -0.13 | 2.56,-2.82 | 41.40| 62.68| 36.26 | 0.75

3.4. Feature contribution
The contribution of four feature sets, namely hemodynamic

(H), waveform (W), demographic, and SINDy features, is
summarized in Table 5. It can be seen from Table 5 that
the discovered features using the SINDy algorithm have a
significant impact as the results were improved.

Table 5: Feature contribution analysis.

RMS| MAE| R R2 | Bias | LOA PE% | CR% | RLOA®| RBias®
H 123 | 1.05 | 0.72| 0.52| 0.02 | 2.67,-2.64 | 40.31| 64.17| 37.67 | 3.29
H+W 1.22 | 1.02 | 0.73] 0.54] 0.02 | 2.61,-2.58 | 39.71| 71.64| 42.44 | 6.02
H+W+SINDy | 1.04 | 0.94 | 0.82| 0.67| -0.03 | 2.25,-2.31 | 33.35| 77.61| 29.15 | 5.50
All + gender | 1.04 | 0.94 | 0.82| 0.67| -0.07 | 2.10,-2.23 | 33.34| 79.10| 2549 | 3.23

3.5. Model evaluation using MIMIC
To validate the model on an external dataset, we obtain data

from MIMIC-II version 2 [14] dataset. ABP waveforms,
corresponding CO measurements, and the gender of the pa-
tients are extracted. The ABP was sampled at 125 Hz in
the MIMIC dataset, and the CO measurements appeared at
irregular intervals. After the quality assessment check, 737
samples were left for further testing. These samples are from
87 patients, 56 male and 31 female. Additionally, the wave-
form was down-sampled to 100 Hz, and features were stan-
dardized using the mean and variance obtained from the Vi-
taldb. The validation test results are summarized in Table
6. The model achieved good results regarding MSE, MAE,
and RLOA. The model achieved a clinically acceptable level
regarding radial bias. This means that the results are accu-
rate and precise when the model can track the changes in the
reference values.

Table 6: Validation results: the model was trained on Vitaldb and
tested on MIMIC dataset.

\ [RMS[ MAE[R [R2 [Bias | LOA [ PE% | CR% | RLOA®[ RBias’|
[ MIMIC | 1.39 | 1.09 [ 0.29] -0.15 | -021 | 2.49,-2.91 | 45.41] 54.74] 3007 [3.15 |

4. DISCUSSION

4.1. Explanation and interpretation

To write the learned model in a symbolic equation, a vector
u is defined that contains velocity-related features. Another
vector X is also defined to include logarithm-related features.
Finally, R and v vectors are defined to include randomness-
related features and all other non-linear features. Using the
defined vectors, the learned model can be written in short
notation as a linear combination of these vectors:

CO=(u+Au+p+Ap+x+log(x) +R+v)W. (2)

Here W are the learned weights from training the model.
Upon closer look at the learned equation, similarity to the
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Navier-Stokes equation is observed. The term u + Au+ p +
Ap holds information about the velocity and pressure terms
with their derivatives similar to the Navier-stokes equations
that describe the flow of a fluid. The Navier-Stokes equations
also have other terms related to the density and deviatoric
stress tensor. These terms describe turbulence and viscos-
ity in the flow of a fluid. This study suggests that the other
terms in the learned model x + log(x) + R + v are related to
turbulence and viscosity phenomenons similar to the Navier-
Stokes equations, leaving the CO as an external force (input)
to the system. Modeling the problem as a fluid flow prob-
lem with CO as input strongly connects with the classical
approach and the physiological nature of the problem.

4.2. Limitation

Although the model achieved clinically acceptable perfor-
mance, it should be noted that the study was conducted
within specific clinical settings where a limited range of
hemodynamic situations was captured. Furthermore, it was
unexpected that demographic information such as age and
BMI would play no role in the model. Finally, the connection
to Navier-Stokes equations is still not fully clear.

5. CONCLUSION

The proposed approach achieved a clinically acceptable
level of performance regarding radial limits of agreement
and bias. The learned model was validated on two different
datasets and achieved comparable performance. Finally, an
interpretation of the learned model was provided. For future
research, we will benchmark MIMIC performance against
other published methods. Additionally, we will explore the
time-delay embedding coordinates to model blood flow dy-
namics with CO and demographic information as input to
the system and explore more advanced techniques, such as
auto-encoders, for dynamics discovery.
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