
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Segmenting actions by
aligning video frames
to learned prototypes
Douwe Hoonhout

Segmenting
actions by

aligning video
frames to
learned

prototypes
by

Douwe Hoonhout

Thesis Defense Date: 19th July 2023, 10:30
Faculty: Faculty of Electrical Engineering, Mathematics & Computer Science, Delft

Student number: 43393155
Thesis committee: Jan van Gemert TU Delft Supervisor

Silvia Pintea Leiden University Medical Center Daily Supervisor
Cynthia Liem TU Delft External Supervisor

Preface

This report contains the work of my master thesis: ”Segmenting actions by aligning video frames to
learned prototypes”. Hereby, I want to show my appreciation to all my supervisors that helped me
during my master’s thesis. I would like to thank Silvia for her time every week for our daily meetings
and for her patience when progress was hindered. I would like to thank Jan for his advice and his
guidance to steer the project in the right direction. I would like to thank Cynthia for being an external
supervisor during the thesis defense to give unbiased feedback on the work that has been done. Lastly,
I would like to thank Jouke for making it possible to cooperate with Leiden University Medical Center
and for making it possible to work at the LUMC location.

Douwe Hoonhout
Delft, July 2023

i

Contents

Preface i

1 Introduction 1

2 Scientific Article 2

3 Supplementary Material 13
3.1 Dynamic time warping . 13
3.2 Video descriptors . 14

3.2.1 Dense sampling . 15
3.2.2 Histograms of Oriented Gradients (HOG) . 16
3.2.3 Histogram of Optical Flow (HOF) . 16
3.2.4 Motion Boundary Histograms (MBH) . 17

3.3 Dimensionality reduction . 17
3.4 Dataset description . 20

3.4.1 Synthetic Data . 20
3.4.2 Breakfast . 20
3.4.3 Cholec80 . 21

3.5 Additional results and visualizations . 21
3.5.1 Training on individual videos versus over all videos 21
3.5.2 Impact of diversifying the prototypes . 22
3.5.3 Data visualization using t-SNE . 22

References 24

ii

1
Introduction

The increase in video data has caused a growing interest in video understanding, lead-
ing to more research in tasks like localizing actions in long untrimmed videos. This
task is also known as Temporal Action Segmentation and involves predicting the exact
start and end boundaries of actions within videos. It requires framewise annotations
for supervised models which is very labor-intensive. Therefore in this work, we focus
on unsupervised methods. Current unsupervised methods focus on self-supervised
and clustering methods that use the temporal structure in videos. The original features
can be very noisy due to occlusions or lighting changes or because actions consist of
a combination of motions. Combining them with temporal information can therefore
result in better action segments. In this work, we propose the first alignment-based
unsupervised model. Our goal is to learn informative action frames which we call pro-
totypes. These prototypes will be used together with the original video in an alignment
algorithm to obtain predicted segments of the actions within the video.

In chapter 2, a scientific article can be found that will explain most of the research
that has been done. Furthermore, supplementary material can be found in chapter 3.
This chapter includes some more background knowledge for the reader that are no
experts on this topic and also provides some additional visualizations that did not fit
in the scientific article.

1

2
Scientific Article

2

Segmenting actions by aligning video frames to learned prototypes

Douwe Hoonhout
Computer Vision Lab,

Delft University of Technology

Silvia L. Pintea
Division of Image Processing (LKEB),

Leiden University Medical Center

Jouke Dijkstra
Division of Image Processing (LKEB),

Leiden University Medical Center

Jan C. van Gemert
Computer Vision Lab,

Delft University of Technology

Abstract

Video temporal action localization is the task of iden-
tifying and localizing specific actions or activities within
a video stream. Instead of only classifying which actions
occur in the video stream, we aim to detect when an ac-
tion begins and ends. In this work, we focus on solving this
task without any supervision. Existing unsupervised meth-
ods solve this task by exploiting a combination of spatial
and temporal information. We propose a new model that
uses a MLP (multilayer perceptron to learn to sample pro-
totype frames from a video. We use the distance between
prototypes and video frames given by DTW (dynamic time
warping) as a loss function to update the MLP. The sampled
prototypes allow us to find the start and end boundaries of
actions, when combined with DTW. Additionally, the proto-
type frames can be used for video summarization. We ana-
lyze our model in a controlled synthetic data setup, to show
the weaknesses and strengths of our models. Additionally,
we use the Breakfast dataset, and Cholec80 surgery dataset
to compare our model to the state-of-the-art models in a
real scenario.

1. Introduction
The increase in video data has caused an increasing inter-

est in video understanding. One of the tasks in video under-
standing that is becoming more popular is localizing actions
in long untrimmed videos. Videos are composed of multi-
ple unitary tasks. For example, a video of a surgery con-
sists of administering an anaesthetic, opening the patient,
performing surgery, closing up and cleaning the operation
room. Understanding duration and ordering of actions can
have a wide range of applications from video retrieval to
surveillance analysis [7, 18, 23, 31]. This task is referred

Prototypes

Video

Figure 1. Our model learns to sample prototype frames. These
prototypes can be used to align to the video and to label the video
frames. The video-frames are from our synthetic dataset Dig-
itVideos where moving digits represent actions.

to as “temporal action segmentation” and requires predict-
ing exact start and end boundaries of actions in videos. In a
supervised setting this means that we would require frame-
wise action labels. Creating these framewise annotations is
very labour intensive and therefore we focus on unsuper-
vised methods.

Current unsupervised methods rely on auxiliary self-
supervision task [1], and clustering methods [17, 27]. The
original features can be very noisy due to occlusions, cam-
era motion or lighting changes. Therefore, combining
the features over time can result in better action segments
[3, 17, 27]. Existing work finds temporal action boundaries
by looking at rapid changes in features space [1, 11]. Other
prior works [17, 27] assume that actions have a fixed order
and therefore cannot deal with different action orderings or
when actions reoccur in the videos.

In this work, we do not make any assumptions about
the action ordering. We use the framewise features to learn
to sample the most likely action prototypes via a simple
MLP and a Gumbel softmax. The sampled prototypes and

1

the input video are aligned using DTW (dynamic time
warping) to obtain framewise prediction labels. Figure 1
shows an example of such an alignment. The prototype
frames represent distinct actions and therefore align to
different segments of the input video.

We make the following main contributions: (i) We
propose an unsupervised video segmentation method that
is trained over multiple videos and fine-tuned on each in-
dividual test video; (ii) Our model learns to sample infor-
mative and distinct video frames as task prototypes and
then aligns the each input video frame to the prototypes
via DTW; (iii) We perform extensive analysis and conclude
that our method is competitive to the state-of-the-art on both
synthetic video datasets, as well as the Breakfast [15], and
Cholec80 [29] surgery video dataset.

2. Related work
Video embedding for video segmentation. Video em-
beddings refer to numerical features that are extracted
from deep learning architectures or other feature extraction
methods. Common datasets on which unsupervised action
localization is performed, already have pre-computed
features [16]. This makes comparisons fair and consistent.
Most of these features are obtained using video descrip-
tors (HOG, HOF, MBH). In this work, synthetic data is
used and therefore pre-computed features still need to be
obtained. We follow [16] to obtain a reduced fisher vector
representation of the improved dense trajectories [33],
which builds on the method of dense trajectories [32].
We follow this framework because [17] showed that these
feature representations perform better than pre-trained
models [4, 14] in an unsupervised setting.

Weakly-supervised temporal action localization. There
are primarily two distinct approaches to offer weak super-
vision for action segmentation: set-based [19, 21, 25, 22]
and transcript-based [5, 6]. The main difference being that
set-based methods do not know the action orderings within
videos. Most set-based methods focus on generating action
transcripts or pseudo-labels [19, 21, 25] to solve this task.
A key recent observation for set-based labels is that videos
with the same task follow a common action ordering which
can be leveraged for effective learning [22].

In transcript-based supervision, orderings are already
known and therefore most research leverage this informa-
tion by using alignment methods. In [5] these transcripts
are used in combination with DTW to learn distances
between a video sequence and a transcript. More recently
[6] used transcripts to learn prototypes for each action. It
uses discriminative modeling by using positive and negative
transcripts combined with DTW for training. Using the
hinge-loss on the discrepancy values outputted by DTW,

optimal prototypes can be learned. We use DTW in our
loss function to align video frames to prototypes. However,
our focus is on learning the prototypes in an unsupervised
manner.

Unsupervised action segmentation. Unsupervised meth-
ods either rely on some form of self-supervision, some form
of clustering using a combination of the framewise features
with some temporal information or boundary change de-
tection techniques. Traditional clustering algorithms suffer
from noisy features and do not model any temporal struc-
ture of the videos. These problems can be solved by us-
ing a combination of feature space proximity and their re-
spective positions in time. This was done in [27] which is
an extension of First Integer Neighbor Clustering Hierarchy
(FINCH) Algorithm [28]. Two main limitations of this al-
gorithm are that it cannot deal with (1) alternating actions
that have similar temporal positions and (2) equivalent re-
peated actions that have large temporal differences. Kuk-
leva et al. [17] used an MLP to predict the timestamp of
frames. The learned embedding of the last layer is clus-
tered using K-Means. The average temporal location of the
frames in the clusters are used together with Viterbi encod-
ing to make a final prediction. This assumes a fixed tran-
script. Instead, a maximum a posteriori probability (MAP)
estimate can remove this assumption as done by [20]. This
method learns a action-level temporal feature embedding by
using a new self-supervised method that detects whether ac-
tion orderings are shuffled or not. Another approach that
does not exploit temporal information, is looking at abrupt
changes in feature space [1, 11]. LSTM + AL [1] is a self-
supervised model that learns to predict the features of the
next timestep. If the difference between the predicted fea-
tures and the observed features is large then this might in-
dicate a change of actions. A key observation is that abrupt
changes in feature space can both indicate a change of ac-
tion and also be a noisy outlier. However, noise and outliers
can be mitigated by using smoothing filters on the features
[11]. Using the smoothened features, similarity between
frame t and t + 1 is calculated. If the frames are dissimilar
this indicates a change of action. The most recent unsu-
pervised method [3] learns a better feature representation of
the videos by training a MLP that is optimised using a triplet
loss. The positive anchors are established by the same ob-
servation from [27], which states that the similarity should
be calculated by a combination of feature space similarity
and temporal distance. In contrast to the above methods,
our method is the only unsupervised method that uses an
alignment based solution to solve the temporal structure in
videos.

2

Video input MLP Gumbel softmax Prototypes

PredictorSampler

64

128
48

16

NxA

A X

Linear layer

ReLU

Gumbell softmax

N

Temporal positions
DTW-loss

Video

Prototypes

Div-loss

Figure 2. Overview of the model where prototypes are learned by sampling from the video. The network consists of a sampler network
and a predictor network. The sampler samples prototypes by processing the video features via a MLP, and selecting informative prototype
frames using Gumbel softmax. The prototypes are then used by the predictor to calculate the DTW optimal alignment between the input
video. The distance between the aligned prototype and input video are used as a loss that propagates back to the MLP.

Dynamic time warping (DTW). DTW computes the dis-
crepancy value between two sequences based on their op-
timal alignment from dynamic programming [26] and has
many different applications. One way of applying it in
the domain of machine learning is by using DTW between
the test set and the training set combined with one nearest
neighbor (1-NN) to find the right class label [10]. Or, if
no labels are provided, DTW can be used as a time-series
variant of k-means (Dynamic Time Warping Barycenter Av-
eraging) [24]. DTW is also found in tasks such as video
synchronization [12] and video retrieval. One problem with
DTW is that it can result in degenerated results that align
multiple actions to a single frame in the video. Therefore,
in our work we use a modified version of DTW that is used
to align action prototypes with videos.

3. Unsupervised prototype learning with DTW
An overview of the proposed model can be found in fig-

ure 2. The main components of the network are the sampler
and the predictor. The sampler selects frames that could act
as a prototype for a certain action. The predictor takes the
prototypes that are selected by the sampler and uses these
prototypes to align to specific regions of the video which
results in a framewise prediction.

Figure 3. Heatmap of the logits after the MLP. The vertical axis
represent the number of actions. The horizontal axis represent the
number of frames. Heatmap shows learned regions for each action.

3.1. Sampler network

The sampler is responsible for finding frames that could
potentially be a good prototype for an action. The input for

the sampler are framewise features that are based on im-
proved dense trajectories following the procedure in [16].
The sampler consists of an MLP with three linear layers
followed by Gumbel softmax to do the sampling. The
first layer takes as input features of 64 dimensions and the
last layer of the network outputs the number of dimensions
equal to the number of prototypes A the sampler needs to
learn. The output of the MLP are the logits that indicate for
each prototype which frames are most likely good candi-
dates. Figure 3 shows a heatmap visualization of the logits
after some iterations of learning. Each row reflect regions of
interest for a single action prototype. The next step is to do
the sampling of the prototype frames based on this heatmap.
Using an argmax does not work here as argmax is not dif-
ferentiable. Therefore, we use Gumbel softmax which is
a differentiable approximation for sampling discrete data.
The Gumbel softmax [13] takes logits from the MLP and
uses these to sample a frame for each prototype.

The Gumbel softmax function starts from unnormalized
logits πi, and samples gi from Gumbel distribution, and
uses τ as the temperature hyperparameter. And it predicts
sample probabilities yi that approximate a one hot encoding
for the sampled data:

yi(π) =
exp

(
log(πi)+gi

τ

)
∑k

j=1 exp
(

log(πj)+gj
τ

) ,
gi → Gumbel(0, 1)

(1)

When τ→∞ the logits will be uniformly distributed
whereas τ→0 the output will output approximately one-hot
encodings. Equation 2 shows an example of the Gumbel
softmax. Here the first entry of the input logits π is sam-
pled. Therefore the output approximates the one-hot encod-
ing 1000.

3

We can now formulate the whole pipeline. We input
video vi ∈ RTi×M as a batched input to the MLP. The video
vi has temporal length T and dimensionality M . The num-
ber of prototypes that need to be learned is A and there-
fore the number of nodes of the first layer of the MLP is
M and the number of nodes in the last layer should be A.
Let L ∈ RA×Ti be the output logits of the MLP. Here each
row represent the probability logits to sample some frame
for one prototype. Now we can apply the Gumbel softmax
over each row to obtain the one-hot encoded indices of the
frames that are sampled.

π =

∥∥∥∥∥∥∥∥
0.5
0.35
0.15
0.1

∥∥∥∥∥∥∥∥
Gumbel Softmax
=========⇒ y(π) =

∥∥∥∥∥∥∥∥
0.880
0.059
0.030
0.031

∥∥∥∥∥∥∥∥ (2)

3.2. Predictor network

The predictor takes an input video v={vi}i∈{1,..T} to-
gether with the prototypes P={pj}j∈{1,..A}. It considers
all permutations of prototypes and chooses the permutation
that best aligns to the video. This makes sure that the ac-
tions that are swapped do not impact the performance of
our model. Then we will use DTW that gives an align-
ment, which can be used to find the different segments in
the video.

DTW takes two temporal sequences as input and finds
an optimal alignment that minimizes the distance by tak-
ing into account temporal shifts of the inputs. Furthermore,
DTW is capable of computing distances even when the in-
puts have disparate temporal lengths. Figure 4 shows an ex-
ample of two inputs with different temporal lengths. Here
the distance is computed between the sampled prototypes
and the video. The resulting alignment can be used to la-
bel the video. DTW is known to be efficiently solved using
dynamic programming: it iteratively fills a distance table
which memorizes previously calculated results. For both
input sequences it starts at the first element and progresses
towards the last elements. There are many different paths
to get from the first elements to the last elements as DTW
allows for temporal corrections by either stretching or com-
pressing. Equation 3 shows the basic formula for filling
the distance matrix. Here the minimum value is taken from
three distinct cases. Either we temporally match, or we
stretch or compress the time dimension. The current cost
for aligning frame vi with prototype pj is the current dis-
tance cost at location (i, j) plus the minimum of previous
points in the table.

DTW [i, j] = distance(i, j) + min(DTW [i− 1, j − 1],

DTW [i, j − 1], DTW [i− 1, j]) (3)

One problem with this original formulation is that one video
frame vi can be aligned with multiple prototypes. The align-
ment path in figure 4 should be able to go diagonally, hori-
zontally but not vertically. Thus, we remove DTW [i−1, j]

Video

Pr
ot
ot
yp
es

Figure 4. Optimal alignment path that is given by dynamic time
warping using the prototypes as one input and the video as the
second input. The original dtw algorithm is modified such that
one video frame cannot align to multiple prototypes.

from equation 3 to arrive at our modified DTW function.
This removes cases where it is unclear how to label a cer-
tain frame vi, but also reduces the search space and there-
fore makes it computationally more efficient.

DTW [i, j] = distance(i, j)+ (4)

min(DTW [i− 1, j − 1], DTW [i, j − 1])

3.3. Loss function

To optimise the sampler MLP, we need to define a loss
function. We want a large loss when frames are sampled
that are uninformative, and a small loss when the sampled
frames are good prototype candidates. The loss function
should be based on the distance between the video and the
prototypes, and therefore we use DTW for this as well. The
MLP does not know a priori the ordering of the prototypes,
and multiple tasks orderings can be present across videos.
Therefore, for a given video v, we consider all possible
permutations of prototype orderings perm(P) and evaluate
DTW across these:

Ldtw(v,P(θ)) = min
P′∈perm(P(θ))

fDTW (P′,v), (5)

where θ are the parameters of the MLP and fDTW is the
function implementing DTW as described in equation 4.
We use the action ordering that in the end minimizes the
DTW distance.

3.4. Diversity loss
During training one possible outcome is that the model

will try to learn very average but adequate prototypes. We
will evaluate the use of a diversity loss that will steer the
model into learning more distinct prototypes. We follow the
procedure of [2]. Essentially, we calculate the dot product
Ωmn between each pair of prototypes (pm,pn) to evalu-
ate how similar they are 7. Then the total diversity loss is

4

calculated by simply summing the square of the dot prod-
uct values 6, where we mask all dot-product values smaller
than 0.5, using Mmn:

Ldiv(P(θ)) =
A∑

m=1

A∑
n=1

(
Ω2

mnMmn

)
, (6)

Ω ∈ (P(θ)T×P(θ)), and Ωmn = pT
mpn (7)

Mmn =


1, ω ≤ Ωmn ≤ 1

0, i = j

0, otherwise

(8)

where ω is set to 0.5. We now formulate the total loss as 9:

Ltotal(v,P(θ)) = Ldtw(v,P(θ)) + βLdiv(P(θ)), (9)

where β is a hyperparameter that needs to be tuned.

3.5. Temporal encoding

Some previous methods [17, 27] use temporal assump-
tions to improve the performance of the model. Therefore,
we aim to evaluate whether adding normalized temporal po-
sitions of the frame features is beneficial. We follow the
procedure of [30]:

PE(t, 2i) = sin(t/100002i/16), (10)

PE(t, 2i+ 1) = cos(t/100002i/16), (11)

where t∈[0, 1] is the normalized temporal position of the
frames, and i indexes the dimension of the embedding. The
temporal information and the frame-wise features each go
through an independent linear layer after which the two are
concatenated. The first layer is replaced with a single 64
linear layer in experiments where no temporal positions are
used.

3.6. Loss function with windowed videoclips

The permutation loss function 5 works well when the
action ordering is swapped. However, it does not solve the
problem when videos contain repeated tasks, because proto-
types cannot be reused to align to a second video segment:
i.e. each prototype aligns with one video segment. There-
fore, we consider a second loss function that can handle
repetitions of actions.

Instead of aligning the prototypes to the complete video,
we use smaller video segments. The length of these seg-
ments is a hyperparameter that has to be tuned. Initially,
the clip length can be set in such a way that clips include at
most two different actions as the model is only able to use
two prototypes per clip. Instead of using permutations of all
prototypes as in equation 5, we use the Cartesian product of
prototypes P(θ). This gives us a set with all the different
ordered pairs (pn,pm) where pn ∈ P(θ) and pm ∈ P(θ).
We will divide the video v into K clips where each clip has

Figure 5. Some example frames of the synthetic dataset. The syn-
thetic setup allows us to analyse our model in a full-controlled
environment.

the same temporal length. Clip cl, l ∈ {1, ..K} is the l-th
clip of video v. The DTW loss function becomes:

Ldtw(v,P(θ)) =
K∑
l=1

(
min

(pm,pn)∈(P(θ)×P(θ))

fDTW ((pm,pn), cl)

)
, (12)

where θ are the MLP parameters.

4. Experimental analysis
Datasets description. We created a synthetic dataset Dig-
itVideos to have control over the number of actions and the
ordering. It consists of moving MNIST [9] digits that rep-
resent action motions. Each digit is associated with a dif-
ferent specific motion. We only consider the digits 1, 3, 5,
7, 9 which correspond to horizontal, inverse diagonal, in-
verse horizontal, diagonal and vertical respectively. We put
the moving digits on top of background frames taken from
EPIC-KITCHEN [8] to bring the data closer to a real action
segmentation dataset . This generates roughly five times as
many trajectories and thus makes the features more noisy
and realistic.

We consider three variations of this dataset to research
whether models perform differently in different scenarios:
one set of videos contains consistent action orderings —
DigitVideos-order; one set contains videos where occa-
sionally actions are swapped DigitVideos-swap; and one
set contains videos where actions can be repeated multiple
times – DigitVideos-repeat. Furthermore we do an ablation
study on a normal action ordering with (DigitVideos-bg)
and without (DigitVideos-no-bg) background frames to see
the effect of the model enhancements in different setups.
All variations of the dataset contain 200 videos with a reso-
lution of 70x70. Figure 5 show some example frames.

Next to the DigitVideo dataset, we evaluate on Break-
fast [15] which is a popular action segmentation dataset. In
this dataset 52 participant are asked to execute 10 different
cooking tasks: ‘cereals’, ‘coffee’, ‘friedegg’, ‘juice’, ‘milk’,
‘pancake’, ‘salat’, ‘sandwich’, ‘scrambledegg’, ‘tea’. For
each cooking activity a separate model is trained as the ac-
tion motions across cooking activities is not consistent.

5

DigitVideos-no-bg

Method MoF F1 IoU

Our 0.793 0.769 0.660
Our + Ldiv 0.738 0.680 0.571
Our + temp. embed. 0.822 0.802 0.697
Our + Ldiv + temp. embed. 0.792 0.773 0.666

Our-window 0.743 0.731 0.615
Our-window + Ldiv 0.692 0.664 0.545
Our-window + temp. embed. 0.762 0.751 0.634
Our-window + Ldiv + temp. embed. 0.759 0.744 0.624

Table 1. Results of various model implementations on the syn-
thetic dataset DigitVideos-no-bg. Since the videos do not con-
tain background noise, the learned prototypes are already distinct.
Therefor the diversity loss does not increase the performance of
the model.

DigitVideos-bg

Method MoF F1 IoU

Our 0.683 0.639 0.524
Our + Ldiv 0.693 0.639 0.528
Our + temp. embed. 0.722 0.698 0.580
4 Our + Ldiv + temp. embed. 0.727 0.693 0.582

Our-window 0.674 0.651 0.530
Our-window + Ldiv 0.667 0.641 0.517
Our-window + temp. embed. 0.702 0.685 0.563
Our-window + Ldiv + temp. embed. 0.707 0.692 0.568

Table 2. Results of various model implementations on the syn-
thetic dataset DigitVideos-bg with added background. Adding
temporal information can significantly improve performance
whereas diversifying the prototypes only increases the perfor-
mance by a small margin.

The last dataset we evaluate on is Cholec80 [29].
Cholec80 is a endoscopic video dataset. It contains 80
videos of cholecystectomy surgeries performed by 13
different surgeons. For this dataset we use I3D [4] features
with a dimensionality of 1024. Therefore the layers in
the MLP are replaced with layers of size 1024, 256, 128.
Furthermore the frames are downsampled to 0.5 frames per
second to make it computationally feasible.

Evaluation metrics. Our model only segments the video
into segments without any specific labelling. We follow
[1, 27] and use Hungarian matching to obtain the optimal
one to one mapping from prediction to ground truth labels.
Using the matched labels we then follow [3, 17, 20, 27] and
evaluate based on the three metrics that are used for this
task: (1) Mean over frames (MOF) percentage of correctly
predicted frames also referred to as accuracy; (2) F1 score
computed over the predicted and ground truth frames; (3)
Intersection over Union (IoU) also known as the Jaccard
score.

Training procedure. We use all videos for training and

DigitVideos-order

Method MoF F1 IoU

K-means 0.651 0.620 0.500
Uniform 0.689 0.646 0.524

CTE [17] 0.670 0.569 0.462
TW-FINCH [27] 0.707 0.669 0.552

Our 0.727 0.693 0.582
Our-window 0.707 0.692 0.568

Table 3. Results of all models on the synthetic dataset DigitVideos-
order with background noise. Actions always occur once and in
the same order. Our model is slightly better compared to SOTA in
this setup. Clip length is set to 70.

DigitVideos-swap

Method MoF F1 IoU

K-means 0.636 0.603 0.484
Uniform 0.686 0.640 0.518

CTE [17] 0.651 0.533 0.424
TW-FINCH [27] 0.695 0.652 0.533

Our 0.689 0.660 0.547
Our-window 0.673 0.660 0.531

Table 4. Results of all models on the synthetic DigitVideos-swap
dataset. Actions always occur once and are swapped with a chance
of 30%. Our model is on par with SOTA models. Clip length is
set to 70.

update the model weights after having seen a video. A batch
therefore contains all frames of a single video. If a video
contains a large amount of frames we downsample the video
by uniformly selecting frames. We train the model over 500
epochs using an ADAM optimizer with a learning rate of
10−3 and a weight decay of 10−4. For the Gumbel-Softmax
we use a temperature τ of 10−1. The hyperparameter β for
the diversity loss is set to 0.1. A low value for the diversity
loss seemed to work better empirically.

4.1. Ablation study

We evaluate the different components of our model.
Mainly we want to conclude whether using temporal fea-
tures and diversifying the prototypes can increase the per-
formance of the model. Table 1 shows the results on
DigitVideos-no-bg. As actions have a consistent order in
these videos using the temporal embedding increases the
performance of the model. Diversifying the prototypes in
this case does not seem to help. This is probably due to the
features not being noisy and therefore there is no need to
enforce that the prototype features should be far apart. Ta-
ble 2 show the results on DigitVideos-bg. Here, the main
improvement comes from the temporal embeddings. The
diversity loss only slightly increases performance. This is
the case with and without window-clips.

6

DigitVideos-repeat

Method MoF F1 IoU

K-means 0.569 0.545 0.400
Uniform 0.545 0.535 0.383

CTE [17] 0.510 0.468 0.327
TW-FINCH [27] 0.545 0.535 0.383

Our 0.540 0.519 0.373
Our-window 0.553 0.529 0.384

Table 5. Results of all models on the synthetic DigitVideos-repeat
dataset. First and last action are identical. In the middle three
actions are alternated and can occur one to three times. K-means
is the best performing model in this setup. Action orderings are
random and therefore models that make temporal assumptions do
not perform optimally. Our-window clips is able to mitigate some
temporal assumptions and therefore is the best performing model
after K-means. Here the clip length is set to 60.

Breakfast

Method MoF F1 IoU

K-means 0.450 0.390 0.269
Uniform 0.628 0.478 0.378

CTE* [17] 0.443 0.217 0.125
TW-FINCH [27] 0.624 0.466 0.371

Our-window 0.627 0.409 0.325
Table 6. Results of all models on the Breakfast dataset. An asterisk
means that performance is calculated over all videos instead of on
single videos. Uniform sampling is a strong baseline. The data is
noisy and contains different camera angels, thus our model is less
likely to extract global information from videos. The model with-
out windowed-clips is too computationally expensive, because of
the large number of permutations. All obtained numbers are from
own experiments.

Cholec80

Method MoF F1 IoU

K-means 0.430 0.374 0.258
Uniform 0.600 0.438 0.342

CTE [17] 0.588 0.424 0.323
TW-FINCH [27] 0.584 0.487 0.384

Our 0.608 0.399 0.321
Table 7. Results of all models on the Cholec80 dataset. CTE per-
forms well on this dataset because action orderings are fixed. Uni-
form is is the best on this data.

4.2. Comparison with the State-of-the-art

We benchmark our model on variants of the DigitVideos
dataset and on the Breakfast dataset [15], and Cholec80
[29] surgery videos. We compare with two state-of-the-art
models: CTE [17] and TW-FINCH [27]. Additionally,
we consider two simple baselines: K-means which simple

Figure 6. Predictions on P06 juice from Breakfast. The video con-
tains repeated actions, whereas we train our model without clips.
The model cannot learn repeated segments but instead finds a more
coarse segmentation that does not contain repetitions.

Figure 7. Our windowed model is not able to segment the video
correctly. Our hypothesis is that the features of equivalent actions
are not similar enough because of the background noise.

Figure 8. The repeated action is not recognised by the model. The
clip length might be too small. However a smaller clip-length
could also result in more incorrect segmentations as noise becomes
more present.

selects the protoypes as cluster centres in the image domain,
and Uniform which samples prototypes uniformly from the
video and aligns them using DTW.

Comparisons on synthetic data. Tables 3, 4 and 5 show
the results on different action orderings, swapped actions
and repeated actions. On DigitVideos-order our model
slightly outperforms the baselines and SOTA models.
This could be because the action ordering is consistent
and therefore the additional temporal information could
be useful. Important is outperforming Uniform as this
justifies that the model is indeed learning to sample better
prototypes. On DigitVideos-swap our model is on par
with the SOTA. The actions are sometimes swapped and
therefore exploiting temporal information is less useful.
In DigitVideos-repeat the action ordering is even more
random. Therefore, the temporal embedding is also not
used here. K-means is the best performing model as it
does not make any temporal assumptions. Our windowed
version of our model is able to outperform all other models.
Interesting is that Uniform is actually a strong baseline.
This suggests that DTW is able to take care of the alignment
even when frames are sampled uniformly.

7

4

0 25 50 75 100 125 150 175

GT

0 25 50 75 100 125 150 175

KMEANS

0 25 50 75 100 125 150 175

UNIFORM

0 25 50 75 100 125 150 175

CTE

0 25 50 75 100 125 150 175

TW-FINCH

0 25 50 75 100 125 150 175

OUR

0 25 50 75 100 125 150 175

OUR-WINDOW

Figure 9. Predictions on a video from DigitVideos-repeat. Our windowed model has a good balance between temporal assumptions and
being able to handle the repetitions of actions. Therefore it performs the best for this specific video.

video22

0 100 200 300 400 500 600 700 800

GT

0 100 200 300 400 500 600 700 800

KMEANS

0 100 200 300 400 500 600 700 800

UNIFORM

0 100 200 300 400 500 600 700 800

CTE

0 100 200 300 400 500 600 700 800

TW-FINCH

0 100 200 300 400 500 600 700 800

OUR

Figure 10. Predictions on a video from Cholec80. Our model over-segments the green part as this part is quite noisy. Our model best
predicts the final part of the video but struggles in the other part of the video.

Comparisons on Breakfast video benchmark. Results
on the Breakfast dataset are shown in table 6. Our model
is difficult to train on this dataset because the number of
unique actions within a set of cooking activity videos is
inconsistent. Therefore we need to train a single model
per video. Some videos also consist of many frames and
therefore we uniformly sub-sample frames to ensure that
the number of frames never exceeds 500 frames during
training. The Uniform method outperforms the SOTA
models by a small margin. This indicates that DTW can
take care of the alignments by just uniformly sampling
from the video. Because the Uniform baseline cannot deal
with repeated actions, it seems that existing models also
fail to recognize the repetitions of actions. Our model is
on par with SOTA models. However, it does not learn

any better prototypes than Uniform sampling based on the
performance scores. This is partially because the large
number of unique actions made the model computationally
inefficient.

Comparisons on the medical Cholec80 dataset. Table 7
shows the results on the Cholec80 dataset. Uniform is on
par with SOTA models and also achieves the highest MoF
score. CTE also performs well as actions in this dataset fol-
low a fixed ordering. Our model underperforms. The main
limitation of our model is that training for long videos be-
came computationally infeasible, so we could not properly
train our model.

8

5. Limitations and discussion
Firstly, the number of nodes in the last layer of the model

is dependent on the number of prototype frames that need
to be learned. Therefore, the model cannot handle video
datasets that contain a varying number of unique actions
per video. Secondly, our model is quite computationally
expensive. This is mainly because the model needs to be
able to handle different orderings of the actions. There-
fore it needs to run DTW for all permutations of prototypes.
Lastly, the clip length is static and therefore it cannot deal
with cases where the variance in action duration is large.
Figure 8 shows an example where a segment is missed be-
cause of varying action lengths. In the future, the model
could perhaps be extended by generating pseudo-action or-
derings. Then there would be no need to consider all per-
mutations in the DTW loss. In addition, the model could
be improved by finding a way to incorporate a dynamic clip
length.

6. Conclusion
This paper proposed a new approach to temporal action

localization where a network learns to sample prototype
frames of actions that are contained within a video. We
introduced an unsupervised model that uses DTW to align
prototypes to video segments and that uses DTW as a loss
function to update the model. The model is on par with
other SOTA models. However, it also has its limitations:
(1) when introduced with a dataset that has an inconsistent
number of action; (2) when actions have extreme variance
in duration and (3) is computationally expensive. Therefore
the model mainly performs well in cases where the number
of actions is consistent and the variance in action duration
is not too extreme.

References
[1] S. N. Aakur and S. Sarkar. A perceptual prediction frame-

work for self supervised event segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1197–1206, 2019.

[2] B. O. Ayinde, K. Nishihama, and J. M. Zurada. Di-
versity regularized adversarial learning. arXiv preprint
arXiv:1901.10824, 2019.

[3] E. Bueno-Benito, B. Tura, and M. Dimiccoli. Leverag-
ing triplet loss for unsupervised action segmentation. arXiv
preprint arXiv:2304.06403, 2023.

[4] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6299–6308, 2017.

[5] C.-Y. Chang, D.-A. Huang, Y. Sui, L. Fei-Fei, and J. C.
Niebles. D3tw: Discriminative differentiable dynamic time
warping for weakly supervised action alignment and seg-
mentation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3546–
3555, 2019.

[6] X. Chang, F. Tung, and G. Mori. Learning discriminative
prototypes with dynamic time warping. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8395–8404, 2021.

[7] R. T. Collins, A. J. Lipton, and T. Kanade. Introduction to the
special section on video surveillance. IEEE Transactions on
pattern analysis and machine intelligence, 22(8):745–746,
2000.

[8] D. Damen, H. Doughty, G. M. Farinella, A. Furnari, E. Kaza-
kos, J. Ma, D. Moltisanti, J. Munro, T. Perrett, W. Price, et al.
Rescaling egocentric vision: Collection, pipeline and chal-
lenges for epic-kitchens-100. International Journal of Com-
puter Vision, pages 1–23, 2022.

[9] L. Deng. The mnist database of handwritten digit images for
machine learning research [best of the web]. IEEE signal
processing magazine, 29(6):141–142, 2012.

[10] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh. Querying and mining of time series data: ex-
perimental comparison of representations and distance mea-
sures. Proceedings of the VLDB Endowment, 1(2):1542–
1552, 2008.

[11] Z. Du, X. Wang, G. Zhou, and Q. Wang. Fast and unsu-
pervised action boundary detection for action segmentation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3323–3332, 2022.

[12] I. Hadji, K. G. Derpanis, and A. D. Jepson. Represen-
tation learning via global temporal alignment and cycle-
consistency. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11068–
11077, 2021.

[13] E. Jang, S. Gu, and B. Poole. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144,
2016.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. Commu-
nications of the ACM, 60(6):84–90, 2017.

[15] H. Kuehne, A. Arslan, and T. Serre. The language of actions:
Recovering the syntax and semantics of goal-directed human
activities. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 780–787, 2014.

[16] H. Kuehne, J. Gall, and T. Serre. An end-to-end generative
framework for video segmentation and recognition. In 2016
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1–8. IEEE, 2016.

[17] A. Kukleva, H. Kuehne, F. Sener, and J. Gall. Unsupervised
learning of action classes with continuous temporal embed-
ding. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12066–12074,
2019.

[18] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering impor-
tant people and objects for egocentric video summarization.
In 2012 IEEE conference on computer vision and pattern
recognition, pages 1346–1353. IEEE, 2012.

[19] J. Li and S. Todorovic. Set-constrained viterbi for set-
supervised action segmentation. In Proceedings of the

9

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10820–10829, 2020.

[20] J. Li and S. Todorovic. Action shuffle alternating learning
for unsupervised action segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12628–12636, 2021.

[21] J. Li and S. Todorovic. Anchor-constrained viterbi for
set-supervised action segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9806–9815, 2021.

[22] Z. Lu and E. Elhamifar. Set-supervised action learning in
procedural task videos via pairwise order consistency. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 19903–19913, 2022.

[23] Y.-F. Ma, X.-S. Hua, L. Lu, and H.-J. Zhang. A generic
framework of user attention model and its application in
video summarization. IEEE transactions on multimedia,
7(5):907–919, 2005.

[24] F. Petitjean, A. Ketterlin, and P. Gançarski. A global averag-
ing method for dynamic time warping, with applications to
clustering. Pattern recognition, 44(3):678–693, 2011.

[25] A. Richard, H. Kuehne, and J. Gall. Action sets: Weakly
supervised action segmentation without ordering constraints.
In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 5987–5996, 2018.

[26] H. Sakoe and S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition. IEEE transac-
tions on acoustics, speech, and signal processing, 26(1):43–
49, 1978.

[27] S. Sarfraz, N. Murray, V. Sharma, A. Diba, L. Van Gool, and
R. Stiefelhagen. Temporally-weighted hierarchical cluster-
ing for unsupervised action segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11225–11234, 2021.

[28] S. Sarfraz, V. Sharma, and R. Stiefelhagen. Efficient
parameter-free clustering using first neighbor relations. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8934–8943, 2019.

[29] A. P. Twinanda, S. Shehata, D. Mutter, J. Marescaux,
M. De Mathelin, and N. Padoy. Endonet: a deep architecture
for recognition tasks on laparoscopic videos. IEEE transac-
tions on medical imaging, 36(1):86–97, 2016.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. Advances in neural information processing sys-
tems, 30, 2017.

[31] S. Vishwakarma and A. Agrawal. A survey on activity recog-
nition and behavior understanding in video surveillance. The
Visual Computer, 29:983–1009, 2013.

[32] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-
jectories and motion boundary descriptors for action recog-
nition. International journal of computer vision, 103(1):60–
79, 2013.

[33] H. Wang and C. Schmid. Action recognition with improved
trajectories. In Proceedings of the IEEE international con-
ference on computer vision, pages 3551–3558, 2013.

10

3
Supplementary Material

3.1. Dynamic time warping
Dynamic time warping is an algorithm that is used to measure the similarity between
two time series. It was originally used for spoken word recognition where it solved
problems of different speaking rates[11]. Now it is used in various research fields.
Different speaking rates create temporal shifts in the data which makes Euclidean
distance inadequate for measuring similarities. An example of this problem can be
found in Figure 3.1. The Euclidean distance in this example is quite large whereas
the two sequences in reality are very similar beside a temporally shift. Calculating
the distance using dynamic time warping gives us a small distance instead. The idea
behind dynamic time warping is to find an optimal alignment between the two time
series such that the distance is minimal. Calculating the Euclidean distance using this
alignment gives us the dynamic time warping distance.

Figure 3.1: Visualization of a problem when calculating Euclidean distance of time series where one
series is temporally shifted. Dynamic time warping solves this problem by finding the optimal

alignment between the two series. Note that the two series are vertically shifted away from each other
just to visualize the alignment. The two sequences are actually on top of each other. [13]

The algorithm of dynamic time warping iteratively computes a distance matrix D
where each index Di,j represents the minimal cost of aligning i with j at that point as
shown in figure 3.2. This process is done using dynamic programming which reuses
computed values. This makes it computationally more efficient. The last entry of the
distance matrix is the total cost of the optimal alignment. The optimal alignment can

13

3.2. Video descriptors 14

Figure 3.2: The distance table created by dynamic time warping to align two time series. The green line
indicates the optimal alignment that gives the minimal distance between the two input time series.

be found by back-tracing back to the first entry. This is indicated by the green arrow in
the figure. We start from the top right value and then the next entry is found by taking
the minimal values of the surrounding entries. This is formulated as:
min(D[i− 1, j − 1], D[i, j − 1], D[i− 1, j])

3.2. Video descriptors
Unsupervised methods for temporal action segmentation do not work well on raw pixel
values. Pixel values will constantly change as time progresses while the underlying
action may be consistent. Instead, there will be a need to extract features from the
videos. These feature extraction methods, also often referred to as video descriptors,
are more traditional and were already researched before the era when deep learning
became popular. One essential property that videos have which do not exist in plain
images is that videos have a temporal structure. Therefore additional information
can be exploited by tracking pixels over time which essentially is capturing motion
information. This phenomenon is referred to as optical flow and is a concept that has
already been around since the 1980s [10].

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (3.1)
The formula shown in equation 3.1 is the main formula of optical flow and is the

basis of all optical flow algorithms. It states that some pixel value at time t with posi-
tion (x, y) is equal to some pixel value at dt with a different location. Note that for this
equation to hold several conditions have to be met. Firstly, the brightness of the pixel

3.2. Video descriptors 15

needs to be consistent. Lighting can change the brightness of a pixel and therefore
could cause problems. Secondly, occlusions might occur. Objects can move in front
of each other which causes a pixel to be existing in the current frame but be occluded
in the next frame. Lastly, also camera artifacts can play a role in altering pixel values.

Figure 3.3: Two types of visualization of the motion field transforming I1 in I2. [4]

There are various implementations of optical flow algorithms and there are many
ways to use the optical flow for various applications. The following subsections will
describe some key applications of using optical flow.

3.2.1. Dense sampling
Optical flow tracks pixels over time in a video. This results in a large amount of data as
frames can have a large resolution and the video can contain many frames. Therefore,
research proposed to use Interest Points detectors which can detect points of interest.
By only using optical flow information from these regions, the number of features can
be reduced. In [16], many of these interest point detectors are compared to dense
sampling on various datasets. It was concluded that dense sampling proves to be
better performing and therefore all experiments that are found in this report use dense
sampling [15].

3.2. Video descriptors 16

Figure 3.4: Visualization of the implementation of the dense trajectories from [15]

3.2.2. Histograms of Oriented Gradients (HOG)
The Histogram of Oriented Gradients is a video descriptor that represents gradient
orientation in a localized portion of an image [2]. The key idea behind HOG is that the
objects in localized regions can be represented by a distribution of intensity gradients.
It is implemented by first dividing the image into smaller patches or cells. For each
patch, we then calculate a local 1-D histogram of gradient directions. The calculation
of the gradients is usually done using Sobel operations. Various filters give an approx-
imation to the gradients but in our implementation, we use simple ones as shown in
equation 3.2. Both filters are applied in a sliding window across the patch to obtain
horizontal and vertical gradients for each pixel. It was shown that these simple filters
performed better than more complex filters [2].

[
−1 0 1

] −1
0
1

 (3.2)

Now that both the horizontal and vertical gradients are calculated, we can calculate
the magnitude and angle of the gradients. These are shown in equations 3.3 and 3.4
respectively. For the angle of the gradients, we create 8 bins ranging from 0 to 360
degrees. These bins are used to create a histogram. The magnitude represents how
much weight is added to the bin. Therefore, sharper edges that have more extreme
gradients, add more weight to a bin than small gradients.

m =
√

g2x + g2y (3.3)

θ = arctan(
gy
gx

) (3.4)

As a last step, we need to normalize the values of the bins. We calculate L2 normal-
ization on the obtained values for each image patch. Figure 3.5 show a visualization
of the calculated hog descriptor for each image patch. For our work we calculate HOG
on the dense trajectories instead of on image patches [15].

3.2.3. Histogram of Optical Flow (HOF)
Histogram of Optical Flow is another video descriptor that also uses histograms as
a feature descriptor. However, HOG focuses on the local shape and appearance of
objects within an image. HOF focuses on motion patterns using optical flow [8]. It
represents the optical flow orientations of the motion between consecutive frames.

3.3. Dimensionality reduction 17

Figure 3.5: Left side: Grayscale test image. Right side: Hog visualization of the test image. [5]

The procedure is the same as for HOG. First, we will calculate the gradients of the
optical flow to obtain an angle and a magnitude. This represents the direction of
motion as well as the significance of the motion. For HOF we will have one additional
bin which brings the total of bins to 9. The additional bin represents pixels for which
the optical flow magnitudes are lower than a threshold. Also here L2 normalization is
used to obtain the final values.

3.2.4. Motion Boundary Histograms (MBH)
Optical flow captures all existing motion between consecutive frames. Therefore, it
might also capture background motion that is not considered part of the action that
we are trying to localize. We want to mitigate the disruptions of these background
motions and therefore we can use motion boundary histograms. Motion Boundary
Histograms are similar to HOG as it detects edges. HOG does this by looking at
changes in pixel intensity but MBH does this by looking at relative motion. First, we
calculate the horizontal and vertical optical flow gradients separately. These optical
flow fields can be visualized in two new images. Using the procedure of HOG on top
of these images gives us the boundaries that are present in the optical flow fields.
These boundaries represent the relative motion between consecutive frames. Figure
3.6 shows a visualization of MBHx and MBHy together with optical flow and image
gradient for comparison. Both the visualization of optical flow and image gradients
captures a lot of background information. This background noise is less present in
the visualization of the MBH. For our work, each trajectory contains 96 features for
both MBHx and MBHy.

3.3. Dimensionality reduction
All of the described video descriptors are used as features to do action segmentation
on a video. Concatenating all features of the video descriptors gives us 426 features in
total for each trajectory: dense trajectories (30); Histogram of Oriented Gradients (96);
Histograms of Optical Flow (108); Motion Boundary Histograms horizontal (96) and
vertical (96). The obtained video information cannot be used directly because of two
problems. Firstly, the synthetic dataset already produced around 250,000 trajectories

3.3. Dimensionality reduction 18

Figure 3.6: Left side: Two consecutive frames from a video. Middle: Visualizations of optical flow and
image gradients which contain loads of background noise. Right: Visualizations of horizontal and

vertical motion boundaries where background noise is mitigated [15].

for 200 videos which is a lot of data. As the number of features grow, the performance
and effectiveness of algorithms might deteriorate. This phenomenon is referred to as
the ”curse of dimensionality” [1]. Higher dimensional space grows exponentially as
the number of features increase. To cover all that space a lot of data is needed and
therefore data might become sparse. We will use dimensionality reduction techniques
to reduce the number of dimensions while preserving the underlying information. The
second problem is that we want frame-wise feature vectors that all have a constant
dimensionality whereas now we only obtained trajectories that span fifteen frames
by default. Figure 3.7 shows an overview of the procedure to resolve the problems
[7]. First the dimensionality of the trajectory features are reduced from 426 to 64 using
Principle Component Analysis (PCA). Then we randomly take 200,000 samples which
we fit on a Gaussian mixture model (GMM). Using this GMM we can obtain a fisher
vector representations of the data.

Figure 3.7: Pipeline of the dimensionality reduction process taken from [7].

3.3. Dimensionality reduction 19

Fisher vectors showed to achieved good performance on Action Recognition [9].
The main idea behind Fisher Vectors is to get a representation of how much a feature
deviates from a fitted probability distribution. In our case we have fitted a GMM with
K components that gives us mean vectors µk and variances σk. These values will be
used to calculate how much a feature set x deviates from the probability distribution
by calculating derivatives to obtain Gx

µk
and Gx

σk
. It represents for each component of

the GMM how the parameters of the model need to be changed to fit the given feature
set x [12]. The dimensionality of Gx

µk
and Gx

σk
depend on the number of components

(K) used for the GMM and the dimensionality (D) of the features . In our experiments
K and D are both set to 64 and therefore we will obtain a vector of 2× 64× 64 = 8192.
The feature sets are obtained per frame by applying a sliding window over the video
trajectories. If a trajectory overlaps with the sliding window it is included in the feature
set. By sliding the window across temporal space we now obtain 8192 feature values
for each frame. The length of the sliding window is set to 20. As a last step we will
again apply PCA to reduce the dimensionality to 64 and to mitigate the effect of the
curse of dimensionality.

(a) DigitVideos-order

(b) DigitVideos-swap (c) DigitVideos-repeat

Figure 3.8: Example videos of the three different set of synthetic videos.

3.4. Dataset description 20

3.4. Dataset description
3.4.1. Synthetic Data
We created a synthetic dataset to test the models in a controlled environment. It
consists of three different versions: DigitVideos-order, DigitVideos-swap, DigitVideos-
repeat. Each set of videos has a different complexity of action ordering ranging from
less complex to more complex. The videos consist of moving digits that represent
unique actions. Furthermore, the moving digits are put on top of video frames from
EPIC-KITCHEN [3]. There are a total of five unique actions that are represented by
moving digits: 1, 3, 5, 7, 9. These digits are moving horizontally, inverse diagonally,
inverse horizontally, diagonally, and vertically respectively. In DigitVideos-order all
videos have a consistent action ordering and therefore models that use temporal as-
sumptions can perform well. The length of the actions within the video are not con-
sistent and range between 15 and 90 frames. In DigitVideos-swap the first and last
actions are consistent. The actions in between have a chance of 30% to be swapped
and therefore action orderings are less consistent. In DigitVideos-repeat, the main
challenge is the repetition of actions within one video. The first and last actions are
always identical. Furthermore, actions in between are alternated and are allowed to
reoccur at most three times. This set of videos is the most challenging as there is no
pattern in terms of the temporal positions of the actions. Figure 3.8 shows ten example
videos for each set of videos.

3.4.2. Breakfast
The Breakfast dataset [6] is a collection of video with 52 participants that perform ten
different cooking activities in the kitchen: cereals, coffee, friedegg, juice, milk, pan-
cake, salat, sandwich, scrambledegg, tea. There are a total of 48 subactions some
of which span multiple actions. Figure 3.9 shows all the subactions together with the
sample distribution. This dataset is very challenging as videos within a cooking activity
do not have a consistent number of unique actions.

Figure 3.9: Distribution of the subactions from Breakfast taken from [6].

3.5. Additional results and visualizations 21

3.4.3. Cholec80
The Cholec80 [14] dataset consists of 80 endoscopic videos from cholecystectomy
surgeries performed by 13 different surgeons. All videos contain similar actions and
follow a fixed order. These include: preperation, calot triangle dissection, clipping
cutting, gallbladder dissection, gallbladder packaging, cleaning coagulation and gall-
bladder retraction. Out of the 80 videos 15 of them do not include a preparation phase.
Therefore we train a model on the set of video that do not contain a preparation phase
and a model on the set of videos that do include a preparation phase. Figure 3.10
shows the duration of actions of ten different random videos.

0 10000 20000 30000 40000 50000 60000 70000

video0

video1

video2

video3

video4

video5

video6

video7

video8

video9
0
1
2
3
4
5
6

Figure 3.10: Visualization 10 random videos from cholec80. Action ordering is fixed but does not
always include a preparation phase. Videos are recorded in 25 fps but are resampled to 0.5 for the

experiments.

DigitVideos-normal

Method MoF F1 IoU

One model 0.727 0.693 0.582
Multiple models 0.553 0.391 0.310

Table 3.1: Results of training a single model over all videos versus training a model for each video.

3.5. Additional results and visualizations
3.5.1. Training on individual videos versus over all videos
There are several reasons why we train the model over all videos. It is more efficient
to train a single model instead of a model for each video. Also we have the hypothesis
that additional global information can be exploited. This is under the assumption that
videos contain similar features and therefore have shared global information. We run
experiments on the synthetic dataset to verify whether the hypothesis holds. Table 3.1
shows the results of these experiments. Training a single model over all the videos
performs a lot better as training a single model on each video. The single model gets
to see a lot more videos and therefore has more information. A single video can still be
a bit noisy and therefore training over all videos might act as some form of denoising.

3.5. Additional results and visualizations 22

Beta = 10

Beta = 0.1

Beta = 0

MOF F1 IoU

Loss DTW distance

Figure 3.11: Visualization of training three models with different values of β to diversify the prototypes.
Only optimizing using DTW distance does not guarantee to lead to the best possible results.

Diversifying the prototypes also could help in generating better segments of the video. In this case a
balance between DTW distance and diversifying gives us the best performance.

3.5.2. Impact of diversifying the prototypes
For the ablation study we evaluated the model with an additional diversity loss. For
experiments three different values of β were used. One model is trained without di-
versity loss, one with a balance value and one with an extreme weight to diversifying
the prototypes. This corresponds to the values: 0, 0.1, 10 respectively. Figure 3.11
shows a visualization of the training stage of the experiments. When β is set too high,
the model will only optimize for diversifying the prototypes. This can be seen in the
DTW distance graph. The green line initially decreases a little bit but does not con-
tinue to decrease just like the other lines. A sensible balance between the diversity
loss and the DTW loss, gives us the best performance. This justifies that diversifying
the prototypes helps the learning process.

3.5.3. Data visualization using t-SNE
Data visualization is important as it makes it easier to understand the complex data
we are working with. One method that is widely used is t-SNE. It is an algorithm that
can efficiently solve nonlinear data and can preserve the local and global structure of
the data. One interesting visualization is the impact of background noise on the data.
Figure 3.12 shows two t-SNE plots of the synthetic data with and without background
noise respectively. Here, the colors represent the ground-truth action labels of the
features. This helps us to understand whether features of similar action classes can
be easily grouped. The visualization of the synthetic data without background noise
shows that this is the case. However, when noise is added, the grouped clusters
fuse more together and therefore are less easy to separate. This shows that the
introduction of background noise was effective. However, it could also be the case that
t-SNE is not able to visually group similar actions together because of the limitations
by t-SNE.

3.5. Additional results and visualizations 23

Figure 3.12: Data visualization of the synthetic data with and without background noise. The colors
represent the ground-truth action labels. Left: Videos do not contain background noise and therefore

the features are much easier to visually cluster. Right: Background noise is added which makes
features harder to separate according to the ground-truth labels.

Another interesting visualization is to see whether equivalent reoccurring actions
group well together. Figure 3.13 shows a t-SNE plot of a video fromDigitVideos-repeat.
Action 3 occurs twice and the two corresponding segments are close to each other.
Action 5 occurs thrice but the corresponding segments are far away from each other.
This indicates that repeated actions do not necessarily share the same features and
therefore repeated actions might be hard to recognize.

Figure 3.13: t-SNE visualization of the features of a video from DigitVideos-repeat. Colors represent
different actions. Equivalent repeated actions do not group together and this might indicate that

recognizing repeated actions is difficult.

References

[1] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.
[2] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detection”. In: 2005

IEEE computer society conference on computer vision and pattern recognition (CVPR’05). Vol. 1.
Ieee. 2005, pp. 886–893.

[3] Dima Damen et al. “Rescaling egocentric vision: Collection, pipeline and challenges for epic-
kitchens-100”. In: International Journal of Computer Vision (2022), pp. 1–23.

[4] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. “Optical flow modeling and computation:
A survey”. In: Computer Vision and Image Understanding 134 (2015), pp. 1–21.

[5] Efstathios P Fotiadis, Mario Garzón, and Antonio Barrientos. “Human detection from a mobile
robot using fusion of laser and vision information”. In: Sensors 13.9 (2013), pp. 11603–11635.

[6] Hilde Kuehne, Ali Arslan, and Thomas Serre. “The language of actions: Recovering the syntax
and semantics of goal-directed human activities”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, pp. 780–787.

[7] Hilde Kuehne, Juergen Gall, and Thomas Serre. “An end-to-end generative framework for video
segmentation and recognition”. In: 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE. 2016, pp. 1–8.

[8] Ivan Laptev et al. “Learning realistic human actions from movies”. In: 2008 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE. 2008, pp. 1–8.

[9] Xiaojiang Peng et al. “Action recognition with stacked fisher vectors”. In: Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13. Springer. 2014, pp. 581–595.

[10] K. Prazdny. “Motion and Structure from Optical Flow”. In: Proceedings of the 6th International
Joint Conference on Artificial Intelligence - Volume 2. IJCAI’79. Tokyo, Japan: Morgan Kaufmann
Publishers Inc., 1979, pp. 702–704. ISBN: 0934613478.

[11] Hiroaki Sakoe and Seibi Chiba. “Dynamic programming algorithm optimization for spoken word
recognition”. In: IEEE transactions on acoustics, speech, and signal processing 26.1 (1978),
pp. 43–49.

[12] Jorge Sánchez et al. “Image classification with the fisher vector: Theory and practice”. In: Inter-
national journal of computer vision 105 (2013), pp. 222–245.

[13] Romain Tavenard. An introduction to Dynamic Time Warping. https://rtavenar.github.io/
blog/dtw.html. 2021.

[14] Andru P Twinanda et al. “Endonet: a deep architecture for recognition tasks on laparoscopic
videos”. In: IEEE transactions on medical imaging 36.1 (2016), pp. 86–97.

[15] HengWang andCordelia Schmid. “Action recognition with improved trajectories”. In:Proceedings
of the IEEE international conference on computer vision. 2013, pp. 3551–3558.

[16] Heng Wang et al. “Evaluation of local spatio-temporal features for action recognition”. In: Bmvc
2009-british machine vision conference. BMVA Press. 2009, pp. 124–1.

24

https://rtavenar.github.io/blog/dtw.html
https://rtavenar.github.io/blog/dtw.html

	Preface
	Introduction
	Scientific Article
	Supplementary Material
	Dynamic time warping
	Video descriptors
	Dense sampling
	Histograms of Oriented Gradients (HOG)
	Histogram of Optical Flow (HOF)
	Motion Boundary Histograms (MBH)

	Dimensionality reduction
	Dataset description
	Synthetic Data
	Breakfast
	Cholec80

	Additional results and visualizations
	Training on individual videos versus over all videos
	Impact of diversifying the prototypes
	Data visualization using t-SNE

	References

