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ABSTRACT
In this paper, we explore audio and kinetic sensing on earable de-
vices with the commercial on-the-shelf form factor. For the study,
we prototyped earbud devices with a 6-axis inertial measurement
unit and a microphone. We systematically investigate the differen-
tial characteristics of the audio and inertial signals to assess their
feasibility in human activity recognition. Our results demonstrate
that earable devices have a superior signal-to-noise ratio under the
influence of motion artefacts and are less susceptible to acoustic
environment noise. We then present a set of activity primitives and
corresponding signal processing pipelines to showcase the capabili-
ties of earbud devices in converting accelerometer, gyroscope, and
audio signals into the targeted human activities with a mean accuracy
reaching up to 88% in varying environmental conditions.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools;

KEYWORDS
Earable, Earbud, Audio sensing, Kinetic sensing

1 INTRODUCTION
The era of earables has arrived. Apple fundamentally changed the
dynamics of the markets for wireless headphones after it removed the
3.5mm audio jack from iPhone 7. With the explosive growth of the
markets, wireless earbuds are also becoming smarter by adopting
context monitoring capabilities and conversational interface. Re-
cently, sensor-equipped smart earbuds have been actively released
into the market, e.g., Apple AirPods, Google Pixel Buds, and Sony
Mobile Xperia Ear. Beyond high-quality audio, they are expected
to reshape our everyday experiences with new, useful, and exciting
services. However, their monitoring capabilities are still limited to
the narrow set of exercise-related physical activities.

One of the barriers for modern earables in modelling richer and
wider human activities is limited understanding of audio and kinetic
sensing on COTS-formed earable devices. Over the last decade, there
have been active research efforts to leverage earable sensing, e.g. for
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eating detection [2], sleep monitoring [14], and energy expenditure
monitoring [8]. However, they aimed at detecting specific activities
and were mostly evaluated with bulky hardware prototypes. Recently,
sensor-equipped earbuds are commercially released, but the research
on such COTS-formed devices is limited due to their inaccessible
application programming interfaces (APIs).

In this paper, we explore audio and kinetic sensing on COTS-
formed earbud devices for a range of human-sensing tasks in the wild.
To this end, we prototyped an in-ear wearable instrumented with a
microphone, a 6-axis inertial measurement unit (IMU), and dual-
mode Bluetooth and Bluetooth Low Energy (BLE). We designed the
hardware prototype in an aesthetically pleasing, and ergonomically
comfortable form factor (See Figure 1).

With this pre-production and a working prototype, we system-
atically explore the differential characteristics of the inertial and
audio signals in various experimental settings. We looked at how
earables compare against a smartphone and a smartwatch concerning
some key factors that impact activity recognition pipelines, includ-
ing signal to noise ratio, placement invariance, and sensitivity to
motion artefacts. Analysis of these experimental results suggests
that earable sensing is robust in modelling these signals and in most
conditions demonstrates superior performance concerning signal
stability and noise sensitivities. Inspired by these characteristics, we
then design a set of human activity primitives. Activity classifiers
are then trained to model these activities with audio and motion data.
Early experimental results show that earable sensing can reach up to
88% detection accuracy of targeted human activities.

2 RELATED WORK
Earbuds have been primarily used for a variety of health monitoring
applications. LeBoeuf et al. [8] developed a miniaturised optome-
chanical earbud sensor to estimate oxygen consumption and measure
blood flow information during daily life activities. In a recent work,
Bedri et al. [2] presented EarBit, a multisensory system for detecting
eating episodes in unconstrained environments. The EarBit proto-
type consisted of two IMUs, a proximity sensor, and a microphone,
and it detected chewing events in-the-wild. The authors also pre-
sented an insightful analysis on the choice and placement of sensors
inside the prototype device. Amft et al. [1] placed a microphone
inside the ear canal to detect eating activities and to classify them
into four food types. While these works have looked at using ear-
worn devices for detecting specific activities with bulky hardware
prototypes, the goal of this work is to provide a broad understanding
of audio and kinetic sensing on COTS-formed in-ear earbuds for a
range of human activities.

Audio and kinetic sensing has been used extensively for detecting
human activities and context. Dong et al. [3] used wrist-worn 6-axis
IMU to detect eating episodes. Thomaz et al. [17] used a smartwatch
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Figure 1: Prototype design of earbuds.

accelerometer to detect the motion of bringing food to the mouth.
Hammerla et al. [5] proposed several deep learning models to detect
physical activities using wearables. Acoustic sensing approaches
have been used to infer human activities and states such as eating [1]
and coughing [7]. In this work, we aim at systematically exploring
these activities using COTS-formed earbud devices. To this end, we
conducted a comparative study of the signal characteristics and de-
tection performance on earable devices and commodity smartphones
and smartwatches.

3 HARDWARE PROTOTYPE
For the study, we prototyped earbud devices with multiple sensing
modalities. One of the key design goals is to leverage an established
form while uncovering opportunities for multi-sensory experience
design. As such, we have chosen to augment an emerging True Wire-
less Stereo earpiece primarily used for hands-free audio experiences
- music playback, seamless conversation, etc. This design choice
demands that the critical functional attributes are kept as original as
possible without compromising their operational behaviour. Our ear-
bud prototype first and foremost is a comfortable earpiece capable of
producing high definition wireless audio experience in a compelling
form. The earbud is instrumented with a microphone, a 6-axis iner-
tial measurement unit, Bluetooth, and BLE and powered by a CSR
processor. Figure 1 shows its final form. Each earbud equips 40mAh
battery capacity, weights 20 gram, and has the physical dimension
of 18mm × 18mm × 20mm including the enclosure.

4 UNDERSTANDING SIGNAL BEHAVIOUR
We investigate the opportunities and challenges in human sensing
using our earbud prototype. Over the last decade, there have been
extensive research efforts on activity monitoring using wearable
devices. However, real-world trials of these research efforts have
mainly focused on commodity smartphones or smartwatches. The
existing approaches may not work well for earable devices as they
have different characteristics regarding sensor hardware, position
and orientation, and most importantly, the signal patterns.

In this section, we profile the sensing characteristics and discuss
the similarities and differences in the audio data and inertial sensor
data, across earbuds, a smartphone, and a smartwatch. Based on
the analysis, we provide data-driven insights for researchers and
developers working on earable sensing.

For the analysis, we used Nexus 5X and LG Watch Urbane for
the smartphone and smartwatch, respectively, both which were re-
leased in 2015. It is important to note that we do not generalise the
values obtained from the study because the performance varies even
between smartphones or smartwatches due to their heterogeneity
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Figure 2: SNR of inertial data across multiple devices.

[13, 15]. Instead, we primarily aim at uncovering the differential
characteristics in sensor signals induced by different devices and
their positions and orientations on the human body.

4.1 Characterising Inertial Signals
We start by looking at the behaviour of the inertial signals of the
earbud and in particular, we study the signal-to-noise ratio and signal
sensitivity as a function of placement in two controlled experiments.

4.1.1 Understanding Signal-to-Noise Ratio.
Objective: Inertial sensor data obtained from earbuds, a smart-

phone, and a smartwatch are directly influenced by the movement
of corresponding body parts. The objective of this experiment is to
understand how IMU signals behave as it is placed at a different part
of our body, e.g., in an ear, on a wrist, etc.

Experimental setup: To quantify the impact of the placement
on activity monitoring, we collected the inertial sensor data from
earbuds, a smartphone, and a smartwatch, simultaneously. We re-
cruited ten users, and they performed each activity (sitting, standing,
and walking) for one minute. Then, we compared the signal-to-noise
ratio (SNR) values across the devices.

Results and implications: As shown in Figure 2, earbuds and a
smartwatch have higher SNR compared to a smartphone, 20-30dB
higher; higher SNR represents less noisy signals, i.e., higher varia-
tion compared to the stationary situation. It is reasonable considering
that the arms and head have a relatively higher level of freedom of
movement, compared to the thigh. For example, the arm will move
more than the whole body when a user is walking as people usu-
ally swing their arms at the same time. Also, even in the stationary
situations, users can move their head and arm to gaze nearby col-
leagues and type the keyboard, respectively. We omit the result of
the gyroscope data as it shows similar patterns.

We further investigate the characteristics of raw data from inertial
sensors. Figure 3 shows accelerometer and gyroscope data over time
while a user is walking. We can observe that the inertial sensor
data on all devices show repetitive patterns to some extent, which
are made by walking steps. However, it is also clearly illustrated
that the unusual patterns are intermittently observed on an earbud
and a smartwatch, e.g., from 10 to 15 seconds. Interestingly, the
acceleration data from X-axis (facing direction) on the earbud shows
less noise, compared to other axes. We can leverage the benefit of
the fixed position of earbuds to remove the noise patterns. While
the smartphone shows the least unusual pattern, it does not mean
that the smartphone outperforms other devices for physical activity
monitoring. In real-life situations, the position and orientation of the
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Figure 3: Inertial sensor data on walking (Top: earbud, middle:
smartphone, bottom: smartwatch).

smartphone are quite diverse, e.g., in a pocket of a shirt, in a bag, or
on a desk.

4.1.2 Understanding Signal Robustness.
Objective: In this experiment, we investigate the signal robust-

ness of the devices with respect to their placements.
Experimental setup: We measure the inertial sensor data from

five users with three iterations. Each iteration, the users took off and
naturally wore the devices as they usually did. Then, they stood up
for 30 seconds without moving. For the smartphone, we asked the
users to put in a pocket of pants in the same direction.

Results and implications: To quantify the similarity, we mea-
sured the Euclidean distance of signals between two iterations of
a single user and calculated the average distance for three cases,
3C2. The results show that the average distance between users of
the earbud, smartphone, and smartwatch is 0.54, 4.84, and 0.74,
respectively; higher distance means more different signals between
iterations. Although the smartphone was put in the same direction,
its distance was much higher than other devices. This is because
the pocket size is relatively larger than the smartphone and thus the
smartphone can be placed in an arbitrary direction. On the contrary,
we can see that the earbud and smartwatch were placed in a relatively
fixed position. The results imply that those devices are more robust
to wearing positions, and can be expected to produce consistent
accuracy over time and to utilise their absolute direction.

4.2 Characterising Audio Signals
The built-in microphone in earbuds enables a variety of audio sensing
tasks such as speech recognition, keyword spotting, and acoustic
scene detection. Moreover, its in-ear placement ensures that there
is a nearly constant distance between the audio source (speaker’s
mouth) and audio sensing device (earbud). It reduces the variability
in audio data and potentially makes it an ideal device for audio
sensing tasks, compared to smartphones and smartwatches.

We explore two key questions about audio sensing capabilities of
earbuds with two controlled experiments: 1) how do motion artefacts
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Figure 4: (a) Effect of artefacts. (b) Effect of distance.

impact the audio signal characteristics of the earbud, 2) how does
the distance of audio source affect the acoustic signal recorded by
the earbud.

4.2.1 Understanding Sensitivity to Motion Artefacts.
Objective: We profile the effect of motion artefacts on the audio

data recorded from the earbud and compare it against data from
smartphones and smartwatches. More specifically, we hypothesise
that motion artefacts, e.g., walking and running, will induce noise in
audio signals at a different scale for different types of devices. As
such, we compare and report SNR of the audio data collected from
multiple smart devices.

Experimental setup: Five users were recruited, and audio SNR
was computed in four different physical activities, namely sitting,
standing, walking, stepping down. To compute the noise induced
by physical activities, we first asked the users to perform the target
physical activity for ten seconds without providing any speech input.
Then, users read a paragraph of text for 30 seconds while performing
the same activity. The noise and signal profiles from each activity
condition are used to calculate the audio SNR.

Results and implications: Figure 4 (a) shows the average SNR
for different devices under multiple activities. We observe that, when
users are sitting, all the devices report the best SNR. This is expected
as the distance between the audio source and the devices, is the
lowest in this condition. Interestingly, in the walking condition, the
SNR for smartphones and smartwatches falls drastically because
of the acoustic noise induced by the movement of user’s feet and
hands. The earbud has a significantly better SNR in walking than
other devices, suggesting that noise induced by walking does not
impact eaerbud's audio signal significantly. Finally, in the stepping
down activity, the SNR for earbud is the lowest across all conditions,
primarily because of lower impact on acoustic noise induced by this
activity. While the SNRs for both smartphone and smartwatch are
still lower than the earbud, they show considerable improvement
over the walking activity.

4.2.2 Understanding Impact of Distance to Source.
Objective: We study the impact of the distance from the audio

source on the audio signal captured by an earbud.
Experimental setup: We placed a laptop (an audio source) at

a fixed position in a room and varied the distance of the earbud
from the laptop. In each distance condition, we played five different
audios on the laptop and measured peak amplitude of the audios
recorded from the earbud.
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Results and implications: Figure 4 (b) shows the averaged peak
amplitude in decibel at different distances from the audio source.
At a distance of 10cm, the mean peak amplitude was -2.98 dB.
As the distance increases to 1m, the peak amplitude falls by 1.8x,
and at a distance of 5m, it falls by 13x. This finding has three key
implications for audio sensing tasks on the earbud:

• Earbud is primarily suited for speech and short-range audio
sensing activities, but may not be suitable for long-range
audio sensing, e.g., acoustic scene detection.

• As the signal amplitude falls heavily at a distance of just 5m,
this suggests that audio sensing on earbud is less likely to be
affected by acoustic noise in the ambient environment.

• Earbud is less susceptible to false acoustic triggers. For ex-
ample, speech from a passerby would be less likely to be
accepted by the earbud.

5 UNDERSTANDING HUMAN SENSING ON
EARBUD

In this section, we present the capability of the earbud in recognis-
ing primitive human activities that are extensively studied in the
literature. Our objective here is to provide an early indication of
the applicability of the earbud as a sensor host in recognising these
activities. We have chosen to look at the following activities due to
their simplicity and wide applications.

• Physical activity: stationary, walking, stepping up, stepping
down

• Head gesture: nodding, shaking
• Conversation: speaking, no speaking

We mainly aim at understanding the prospect of earable sensing,
not at optimising the recognition accuracy. As such we adopted the
following methodology in our study: i) for physical activities, we
compare the recognition characteristics across the devices, ii) for
head gestures we only look at earbale sensing and iii) for modelling,
we borrowed well-established features and classifiers from the liter-
ature. We expect that the findings and lessons from this study will
be the base of future research about context monitoring on earable
devices.

5.1 Modelling Inertial Signals
We investigate human-centric sensing using inertial sensors on the
earbud platform. Here, we target two context types, physical activity
and head gesture.

5.1.1 Data and Model.
We briefly describe here the dataset and models used to assess the

performance of the earbud in modelling physical activity and head
gestures.

Data: We recruited ten participants and collected the accelerome-
ter and gyroscope data for a set of activities performed by them from
three devices - earbuds, a smartphone (Nexus 5X) and a smartwatch
(LG Watch Urbane). In particular, Each participant performed a se-
ries of activities mentioned above. For physical activities, they were
asked to perform each activity for two minutes. For head gestures,
they freely conducted several times within one-minute session for
each gesture.
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Figure 5: Effect of sensor and model on physical activity detec-
tion.

Model: The sampling rates were set to the maximum for each
device, 100 Hz for the earbud and SENSOR_DELAY_FASTEST
for the rest. We adopt different segmentation approaches for each
activity type. For physical activities, we used a time-based sliding
window, commonly used for physical activity monitoring. We used
5-second window frame with 95% overlap, i.e., sliding 0.5 seconds.
For head gestures, we adopt dynamic segmentation as head gestures
are often conducted intermittently in a short time. First, we take
two-second window frame with 90% overlap (i.e., sliding 0.2 sec-
onds). Then, we divide each frame into three segments [0.5, 1.0,
0.5 seconds] and compute the variance of the magnitude of the ac-
celerometer data for each segment. We chose the frames only when
the variance of the second segment exceeds a threshold, and the vari-
ance of the first and last segments does not, i.e., intuitively indicating
[stationary, event, stationary].

Various features have been proposed for inertial sensor data, but
can be mainly classified into two categories, time-domain (mean,
median, percentile, RMS, and so on) and frequency-domain (spectral
energy, information entropy, and so on) features. Here, we used
the features reported in [4]. Except for correlation-related features,
we take the magnitude of 3-axis sensor values as input. We further
applied PCA to reduce the dimensionality of the dataset. We omit
the details of feature extraction and PCA methods as their use is
not our contribution and already well reported in many works of
literature.

We compared the recognition accuracy of 8 popular classifiers,
nearest neighbours, linear SVM, RBF SVM, decision tree, random
forest, multi-layer perceptron, AdaBoost, and naive Bayes. From
our evaluation, the nearest neighbour outperformed the rest of the
classifiers. Thus, we report the experimental results using the nearest
neighbour. For the analysis, we conducted 10-fold cross-validation
by default.

5.1.2 Results.
We first look at the results concerning physical activity monitor-

ing and then report our observation with respect to head gesture
detection.

On physical activity: To examine the accuracy dependency on
the individual, we compare the F-score with leave-user-out valida-
tion. Leave-user-out trains the model with all the data except for a
specific user and tested the model with the very user. Figure 5 (b)
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Figure 6: Performance of head gesture detection.

shows the F-score of two validation methods. The F-score of all
devices decreases when the leave-user-out validation is used because
the model cannot reflect the individual’s specific data. However,
we can observe that the performance decrease on earbuds is much
smaller than that on the smartphone and smartwatch. This is mainly
because the wearing position of the earbuds is relatively fixed and
stable more than other devices as discussed earlier.

We also investigate the impact of accelerometer and gyroscope on
physical activity monitoring. Figure 5 (a) shows the result; both rep-
resents the case when both accelerometer and gyroscope are used for
the feature extraction. While ’both’ shows the best F-score regardless
of the device, using the accelerometer only also shows comparable
accuracy (around 95% on earbuds). It gives the opportunity for en-
ergy saving on the earbud platform because the accelerometer is
much more energy-efficient than the gyroscope. Interestingly, the
gyroscope on earbuds does not contribute to the F-score much, com-
pared to the smartphone and smartwatch. This is mainly because the
rotational motion of a head is limited compared to that of an arm
and a thigh.

On head gesture: For the evaluation, we collected the ground
truth information by manually segmenting the stream of the iner-
tial sensor data. For a fair comparison, we gather all non-gesture
data, (non-selected segments in gesture datasets and all segments in
activity dataset) and label them to null class. Figure 6 shows the F-
score while using different sensors and classifiers. The results show
that, even with features and classifiers designed for physical activity
monitoring, earbuds achieve reasonable accuracy for head gestures.
The F-score of the nearest neighbour is 80% when the accelerometer
and gyroscope are both used. Even with the accelerometer only,
earbuds show 79% of accuracy. We believe we can further optimise
the accuracy if we design and use dedicate features and classifiers
that well reflect the unique, subtle pattern of head gestures.

To investigate the feasibility of real-time monitoring, we observe
the signal patterns made by head gestures. Figure 7 shows the raw
data of accelerometer and gyroscope on earbuds when a user was
nodding and shaking his head. Each gesture was conducted at the
interval of five seconds. We figure out two characteristics. First, the
movement of a head when nodding is smaller than the movement
when shaking. Second, the different rotational direction of a head
is well observed, e.g., there is no much movement in Z-axis direc-
tion when nodding, but noticeable movement when shaking. These
characteristics enable earbuds to detect head gestures using inertial
sensors only.
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Figure 7: IMU signal behaviour for head gestures.

5.2 Modelling Audio Signals
Detecting with smartphones whether a user is involved in a conversa-
tion has been widely studied in the research community [9, 10, 16].
This information provides applications with useful contexts, e.g.,
smartphone notification delivery could be deferred when a user
is involved in a conversation. Here, we focus on the conversation
detection using earbuds. As highlighted earlier, our goal is not to
demonstrate the state-of-the-art accuracy, but rather to analyse the
capabilities of the earbud and explore the possibilities that it creates
for future research. We also examine the effect of motion artefacts
on the accuracy of the conversation detection. As discussed earlier,
motion artefacts add varying amounts of acoustic noise to different
devices – as such, we seek to compare the accuracy of conversation
detection across multiple devices under different motion conditions.

5.2.1 Data and Model.
We present the dataset and models that we have used to detect the

conversational activity with the earbud.
Data: We collected five minutes of data from ten users. Each

of them was involved in a separate one-to-one conversation. This
process was repeated with three different motion activities: still,
walking, descending stairs. Also, we collected the data correspond-
ing to the no conversation class by gathering two hours of audio data
in an office such that no conversation happened within 1m proximity
of the sensing devices. Conversations outside this proximate range
and other ambient activities were however allowed and were duly
recorded by the devices.

Model: We extract 13 MFCC features from the audio data fol-
lowing a sliding window approach (25 ms-long window and overlap
of 10 ms). MFCC features from ten consecutive windows are con-
catenated and used as the feature set for various classifiers. We
experimented with four shallow classifiers, namely Random Forests,
RBF SVM, naive Bayes, and GMM.

5.2.2 Results.
Figure 8 shows the average F-score of conversation detection

using Random Forest; we only report the findings from Random
Forest classifier as it outperformed all other classifiers. We observe
that the earbud outperforms the smartphone and the smartwatch in
the walking and descending stairs conditions, while its performance
(F = 0.88) is close to the smartphone (F = 0.9) in the still condition.
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Figure 8: Accuracy of conversation detection.

Particularly in walking, the performance of both smartphone and
smartwatch shows a drastic drop (F < 0.5), while the earbud’s F-
score remains 0.7. This finding is in line with our insights from
Section 4, i.e., motion artefacts have a severe impact on smartphones
and smartwatches, but a moderate effect on earbuds.

6 APPLICATIONS
Multi-sensory earable devices have the prospect to uncover a variety
of applications due to its compelling form, a primary established
purpose, and universal acceptability. We briefly discuss a few such
applications areas.

Personalised health monitoring: Earables with audio-kinetic
models can be effectively used for monitoring a variety of physiolog-
ical and psychological attributes, e.g., physical activity, diet, head
movements, emotion, stress, etc [1–3]. This will help us profoundly
achieve medical-grade diagnosis and personalised medicine services
with consumer-grade appliances.

Contextual notification: Many recent research works have fo-
cused on understanding the receptivity of mobile notifications and
predicting opportune moments to deliver notifications in order to
optimise metrics such as response time, engagement and emotion.
We believe that sensory earables’ capabilities in understanding situa-
tional context can be incorporated in designing effective notification
delivery mechanisms in the future.

Lifelogging: Today’s lifelogging applications are primarily vision
based. We argue that audio and motion can collectively capture users’
moments emphatically and can help them intuitively experience their
past.

Social computing: A rich body of literature has focused on track-
ing face-to-face interactions [6, 9] and the impact of the space on
enabling them [11, 12], however often in a constrained setting. Sen-
sory earables will uncover avenues for conducting such studies at
scale for new insights.

7 CONCLUSION
We explored audio and kinetic sensing on COTS-formed earbud
devices. We systematically explored the differential characteristics
of the audio and inertial signals across earbuds, a smartphone, and
a smartwatch and showed the capability of earbud devices as a
robust platform for human sensing. We showed that earable device
achieves a mean accuracy up to 88% in varying conditions. Our

results highlight the enormous opportunities for designing multi-
sensory applications with earbles.
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