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A B S T R A C T

Measured trends and variability in shoreline position are used by coastal managers, scientists and engineers to
understand and monitor coastal systems. This paper presents a new and generic method for automated shoreline
detection from the largely unexplored collection of publicly available satellite imagery. The position of the ob-
tained Satellite Derived Shoreline (SDS) is tested for accuracy for 143 images against high resolution in-situ data
along a coastal stretch near the Sand Motor, a well-documented mega-scale nourishment along the Dutch coast. In
this assessment, we quantify the effects of potential inaccuracy drivers such as the presence of clouds and wave-
induced foam. The overall aim of this study is to verify whether the SDS is suitable to study structural coastline
trends for coastal engineering practice.

In the ideal case of a cloud free satellite image without the presence of waves, with limited morphological
changes between the time of image acquisition and the date of the in-situ measurement, the accuracy of the SDS is
with subpixel precision (smaller than 10–30m, depending on the satellite mission) and depends on intertidal
beach slope and image pixel resolution. For the highest resolution images we find an average offset of 1m be-
tween the SDS position and the in-situ shoreline in the considered domain. The accuracy deteriorates in the
presence of clouds and/or waves on the image, satellite sensor corrections and georeferencing errors. The case
study showed that especially the presence of clouds can lead to a considerable seaward offset of the SDS of
multiple pixels (e.g. order 200m). Wave-induced foam results in seaward offsets in the order of 40m.

These effects can largely be overcome by creating composite images, which results in a continuous dataset with
subpixel precision (10–30m, depending on the satellite mission). This implies that structural trends can be
detected for coastlines that have changed with at least the pixel resolution within the considered timespan.

Given the accuracy of composite images along the Sand Motor in combination with the worldwide availability
of public satellite imagery covering the last decades, this technique can potentially be applied at other locations
with large (structural) coastline trends.
1. Introduction

The position and evolution of the shoreline along a coastal stretch is
important to coastal managers, communities, scientists and engineers.
Information obtained from trends and variability in the shoreline posi-
tion, reveals information on beach variations and is used in coastal zone
monitoring, policy making and the design of human interventions.
Traditionally, the location of the shoreline is derived from aerial
photography or video imagery (such as for instance used in Pianca et al.
(2015)) or from in-situ measurements of the beach topography, such as
enaars).

mber 2017; Accepted 16 December 2
used by Ruggiero et al. (2005), de Schipper et al. (2016) and Turner et al.
(2016). According to the two main categories of shoreline definitions by
Boak and Turner (2005), the shoreline from aerial photography or video
imagery is based on a line that is visible to the human eye and the
shoreline from in-situ measurements is based on a common datum or
beach volume.

Whereas the collection of traditional shoreline datasets is often
expensive and constrained in time and/or space, publicly available sat-
ellite imagery provides information on shorelines worldwide for the past
33 years. Potentially this data source is a valuable addition to traditional
017
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Table 1
Overview of the amount of satellite images per satellite mission available for the Sand
Motor study area in the period of 2011-08-01 to 2016-07-01.

Satellite
mission

Sensor Number of
images

Pixel resolution
[m]

Temporal
extent

Sentinel 2 (A) 40 10� 10 >2015-07
Landsat 8 OLI 99 30� 30 >2013-04
Landsat 7 ETMþ 112 30� 30 >2011-08
Landsat 5 TM 4 30� 30 1984-01 - 2011-

10
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shoreline datasets, especially at locations where limited measurements
are available. Until recently, obtaining shorelines from satellite imagery
used to be laborious, which limited the use of this dataset to its full spatial
and temporal extent. Moreover, a comprehensive study on the accuracy
of satellite derived shorelines in relation to obtaining structural coastline
trends is not yet available, which hampers the use in practice.

Recently Google launched the Earth Engine platform (GEE) that
overcomes the traditional limitations in the usage of satellite imagery.
Having both a petabyte satellite image collection and parallel computa-
tion facilities combined on the server side of the platform reduces image
processing time to only several minutes per image (Gorelick et al., 2017).
This increase in processing performance makes it possible to use the full
collection of satellite images and allows for the opportunity to perform
state-of-the-art image processing techniques such as image compositing
(Hansen et al., 2013).

Image processing techniques are available to automatically derive a
so called Satellite Derived Shoreline (SDS) position from satellite imagery
(García-Rubio et al., 2015). The quality of this position may be prone to
disturbances such as cloud cover, foam caused by surf and atmospheric
interactions. The positional accuracy of a SDS position may therefore
deteriorate by these disturbances, which may hamper retrieving coast-
line trends. Understanding and quantifying the positional accuracy of
SDS positions is essential, and is assessed in for instance Bayram et al.
(2008), Kuleli et al. (2011), Pardo-Pascual et al. (2012), García-Rubio
et al. (2015), Almonacid-Caballer et al. (2016) and Liu et al. (2017).
However, these studies are often limited by the amount of images used,
the quality of the in-situ data or the limited range of changes in coastline
locations along the coastal stretch. A comprehensive study on the accu-
racy of SDS positions and coastline trends using a large amount of sat-
ellite images is lacking.

To investigate the application range of SDS, we quantify the posi-
tional accuracy of an automatically derived SDS for an unprecedented
143 publicly available satellite images. Furthermore, we quantify the
offsets in the SDS caused by clouds and waves. We do this by comparing
the SDS position to in-situ data for the Sand Motor mega-nourishment.
This case study is selected because of its dynamic behavior, which
shows significant coastline changes over time and the availability of
unique high resolution in-situ measurements to be able to validate the
obtained shoreline position and trend.

2. Study site and data availability

The study site is the coastal stretch directly near the Sand Motor
nourishment, comprising about 4.5 km of coastline length (Fig. 1). This
coastal stretch has an erosive character, which resulted in an extensive
nourishment program to maintain a stable coastline. In 2011, a pilot
mega-scale nourishment called the SandMotor was put into place in front
of the city of Kijkduin, which provides the adjacent coast with sediments
for the coming 20 years (Stive et al., 2013).
Fig. 1. Overview of the Dutch Delfland coastal cell bordered by Hoek van Holland (left) and Sch
and þ2 m NAP iso-contours are indicated in grey. The underlying satellite image (SPOT mission
and Scheveningen are indicated by means of a red dot. A nearshore location at the �10m NAP
interpretation of the references to colour in this figure legend, the reader is referred to the We
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An average tidal range of 1.7 m and a mean significant wave height of
1.3 m (Wijnberg, 2002) are observed along the Sand Motor. After 18
months, a landward shift of 150m was observed near the tip of the sand
motor, accompanied with an alongshore spreading of about 4 km (de
Schipper et al., 2016). Focusing of wave energy is observed near the tip of
the peninsula, leading to a local steepening of the beach profile. After the
first storm season, a tidal lagoon developed with a tidal channel
extending in the northern direction that shifts course over time.

High resolution and frequently measured in-situ data on the dynamic
development of the topography and hydrodynamics is amply available
for the Sand Motor. Validating the position along such a dynamic study
site against high resolution in-situ data provides new insight into the
applicability of the SDS detection method to study equally or less dy-
namic coastal areas. The Sand Motor case is studied for the period 2011-
08-01 (just after completion of the nourishment) to 2016-07-01.

The SDS position is compared to concurrent in-situ measurements of
the shoreline, obtained from topographic surveys and water level mea-
surements. The topographic survey of the Sand Motor has been con-
ducted on a monthly basis for the first year after completion and on a bi-
monthly basis until present, resulting in a total of 36 topographic surveys.
The topography of the Sand Motor study site is measured along transects
spaced alongshore by 30–60m (de Schipper et al., 2016). All available
Landsat 5 (Thematic Mapper, TM), Landsat 8 (Operational Land Imager,
OLI), Landsat 7 (Enhanced Thematic Mapper, ETMþ) and Sentinel 2
images for the Sand Motor study site are listed in Table 1. The Landsat 7
Scan Line Corrector (SLC) failed in May 2003, resulting in large data
distortions of the image (Wijedasa et al., 2012). Since the analysis period
is after the SLC failure, the Landsat 7 images are left out of the analysis.

Water level measurements that include both tide and surges are ob-
tained from the measurement stations at Hoek van Holland and the port
of Scheveningen. These stations are located adjacent to the coast by
about 10 km south and 7 km north with respect to the tip of the penin-
sula. Offshore wave data (wave height, period and direction) are ob-
tained from the IJmuiden (located 56 km offshore) and Europlatform
(located 62 km offshore) measurement stations. A nearshore significant
wave height is found using a Simulating WAves Nearshore (SWAN)
model (Booij et al., 1999), which transforms wave characteristics from
eveningen (right). The Sand Motor study site is indicated in red. Depths at the �8m, �5 m
) was acquired on 18-05-2014. The water level measurement stations of Hoek van Holland
depth contour, on which nearshore wave data are available, is indicated in yellow. (For
b version of this article.)
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the offshore measurement stations to the tip of the Sand Motor peninsula
at the - 10m NAP depth contour (Fig. 1). Offshore wave records that are
directed between 30 and 200� North (indicating offshore directed waves)
are not considered by the model and result in an absence of nearshore
wave characteristics at the - 10m NAP depth contour.

3. Methodology

The methodology to study the SDS positional accuracy and applica-
tion in coastline monitoring practice can be subdivided into five steps: 1)
automatic and unsupervised detection of the SDS position and calcula-
tion of its position relative to in-situ data; 2) definition of a benchmark
case, in which all drivers that can cause inaccuracies are absent; 3)
quantification of the drivers of inaccuracy in relation to the positional
accuracy, 4) effect of an image composite processing technique on the
mitigation of these drivers and 5) comparison between the long term
coastline trend based on the SDS and in-situ shoreline data.

3.1. Calculating the SDS positional accuracy

3.1.1. Image processing
The individual satellite images are processed into SDS vectors in an

unsupervised, automated way on the GEE servers. The approach used by
Kuleli et al. (2011) is adopted and adjusted for this routine (Fig. 2).

Firstly, the pixel values recorded by the satellite sensors for a
particular optical satellite image are transformed to spectral radiance
values using calibration coefficients made available by the satellite
operator in the metadata. Secondly, the pixel radiance values are trans-
formed to Top-Of-Atmosphere (TOA) reflectance values. The satellite
image is orthorectified, resulting in a L1T TOA satellite image. These
steps are preprocessed and made available as image products by the GEE.

Per pixel the Normalized Difference Water Index (NDWI) (Mcfeeters,
1996) value is calculated according to:

NDWI ¼ λNIR � λGreen
λNIR þ λGreen

(1)

in which λNIR ½nm� indicates the TOA reflectance value in the Near Infra-
Red (NIR) band (band B4 in case of Landsat 5, band B5 in case of Landsat
8 and band B8 in case of Sentinel 2) and λGreen ½nm� indicates the TOA
reflectance value of the green band (bands B2, B3 and B3).

Calculating the NDWI value per pixel results in a greyscale image with
NDWI values ranging from�1 to 1. This greyscale image is classified into
a binary water-land image using the unsupervised greyscale classification
method proposed in Otsu (1979). This method finds the optimal
threshold value based on the statistical properties of the NDWI histo-
gram. An example of such a NDWI histogram and the optimal threshold
for a particular satellite image is displayed in Fig. 3. In this example, a
threshold value of �0.16 is found to separate the NDWI values into two
distinct regions in the most optimal manner. All NDWI values smaller
than this threshold value are classified as water and all NDWI values
larger than this value are classified as land.

To cluster all pixels identified as water into a coherent water mask, a
region growing algorithm is applied (Kamdi and Krishna, 2011). This
algorithm starts at a random pixel identified as water and searches for
neighboring pixels with the same classification. The outer edge of the
obtained water mask is defined as the location of the SDS. This vector
follows a saw tooth pattern since it is defined at the image pixel edges.
Fig. 2. Satellite image processing steps in order to obtain a SDS position from an optical satel
indicated in green are performed per satellite image by the routine used in this study. (For inter
version of this article.)
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The SDS coordinates are smoothed using a 1D Gaussian smoothing
operation to obtain a gradual shoreline. The region growing method
results in several SDS vectors since also lakes and small channels are
detected as the SDS. In this analysis, only the most seaward SDS position
is analyzed per satellite image. An example of the resulting SDS for a
Sentinel 2 image is displayed in Fig. 4.

The satellite images available on the GEE are georeferenced with
respect to the first available image in the satellite mission. This allows for
the study of changes, but since this first image is not necessarily posi-
tioned accurately with respect to the earth's surface, deviations are ex-
pected in case the position of the satellite image is compared to in-situ
data. Manual georeferencing is therefore applied per satellite mission by
means of six ground control points on a georeferenced aerial photo. Both
horizontal translations and a rotation are applied based on the manual
identification of these control points on a single cloud free satellite image
per mission.

3.1.2. In-situ (survey) shoreline
The survey shoreline provides information on the actual waterline

that was present during image acquisition and is reconstructed from in-
situ topographic measurements. The reconstruction of the waterline is
based on determining the intersection between the elevation of the Sand
Motor's bed level with the water level elevation. The recorded Sand
Motor elevations (as described in Section 2) are linearly interpolated on a
rectangular grid with grid points spaced by 10m (along shore) and 1m
(cross-shore) to obtain a continuous beach topography. The local water
level near the Sand Motor is obtained using the water levels provided by
the measurement stations of Hoek van Holland and Scheveningen. The
water levels recorded during satellite image acquisition at both locations
are linearly interpolated to the location of the Sand Motor. The iso-
contour elevation that matches the water level is obtained using the
Marching Squares Interpolation algorithm (MSI) (Mantz et al., 2008)).
The survey shoreline is smoothed using a 1D Gaussian smoothing with
the same properties as applied on the SDS. Fig. 5 displays the interpolated
topography and the resulting survey shoreline that matches the image
acquisition date of the example Sentinel 2 image.

A nearshore significant wave height per image is found using the
simulated nearshore wave climate at the tip of the Sand Motor peninsula
at the - 10mNAP depth contour (Fig. 1), which is assumed representative
for the wave climate in the study domain. This wave height in combi-
nation with a peak over threshold routine, is used to identify storm
events. A storm wave height threshold value of 2.8m, that coincides with
a 99% exceedence probability, results in a total of 22 storm events in the
studied period. Per satellite image a representative survey is found by
means of nearest neighbor selection in time. In the case a storm event is
identified based on the nearshore significant wave height in the period
between the satellite image and the survey, the closest survey before the
storm event is chosen. Because the survey measurement is conducted on
a bi-monthly basis, the maximum number of days between a satellite
image and the concurrent survey is 40 days.

3.1.3. Offset calculation
The buffer overlay method (Goodchild and Hunter, 1996) provides a

robust routine to calculate the horizontal distance between two vectors.
Since we assess both a continuous, curved SDS and survey shoreline, this
method provides detailed and accurate information on the spatial offset.
The method starts by defining a buffer with a certain width around the
lite image. The steps indicated in grey are end-user products provided by GEE. The steps
pretation of the references to colour in this figure legend, the reader is referred to the Web



Fig. 3. NDWI greyscale image (left), NDWI histogram (middle) and resulting binary image (right) for a Sentinel 2 image acquired on 12-03-2015 10:33:27 (GMT). An optimal threshold
value of �0.16 classifies the NDWI values into water (blue) and land (green) pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. Satellite image acquired by the Sentinel 2 satellite acquired on 12-03-2015 10:33:27 (GMT) for the Sand Motor study site. The derived SDS is plotted in black.

Fig. 5. Interpolated topographic elevations and reconstructed survey shoreline for the 16-07-2015 Sentinel 2 satellite image. The measurement campaign to obtain the topography was
conducted between 15-07-2016 and 17-07-2016. The transect system is indicated in grey and the JarKus transects are indicated in red. Every 10th transect origin is indicated with a grey
dot. Elevations are with respect to NAP, the national datum, which is about MSL. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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survey shoreline. The length of this buffer polygon intersected with the
SDS is calculated. By increasing the buffer width, an increasing portion of
the SDS position becomes enclosed by the buffer. The offset between the
survey shoreline and the SDS is defined as the buffer that encloses 95% of
the SDS (Fig. 6). The method distinguishes between a landward and
seaward offset, of which the largest value is stored.

3.1.4. System of transects
The study site is subdivided into smaller areas by means of a system of
116
cross shore transects to obtain information on the spatial distribution of
the offset. The buffer overlay offset calculation is performed for the area
in between two transects. Along the Dutch coast, an official system of
transects spaced alongshore by approximately 200m is defined for the
yearly coastal measurement campaign (JarKus, Jaarlijkse Kustlijnmet-
ing) (Minneboo, 1995). Based on the orientation of these transects, a
local system of transects is defined with an alongshore spacing of 40m
and a cross shore length of 2 km, resulting in a total of 113 transects for
the study site (Fig. 5). The alongshore spacing is in the range of the



Fig. 6. Buffer overlay offset routine to calculate the offset between the survey shoreline (blue) and the SDS (grey) using a buffer polygon (dashed line). The offset between the survey
shoreline and the SDS is defined as the buffer that encloses 95% of the SDS. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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Landsat image pixel resolution and the acquisition of the survey
topography.

3.2. Benchmark accuracy

The benchmark accuracy provides information on the best possible
accuracy for the satellite sensors, the in-situ data and the applied offset
calculation methodology. It is defined as the offset between the SDS of a
cloud free image with calm wave conditions (e.g. a nearshore Hm0 <

0.5m) and a survey shoreline measured close to the time instance of the
satellite image (e.g. within 10 days). This prevents surges and wave-
induced foam from causing deviations in the linearly interpolated
water level and morphological changes from deviations in the topog-
raphy that was present during satellite image acquisition. The identified
benchmark cases per satellite mission are listed in Table 2.

3.3. Drivers of inaccuracy

Often the benchmark accuracy cannot be obtained due to the pres-
ence of drivers of inaccuracy. 6 drivers are identified that cause the SDS
position to deviate from the actual shoreline and hence increase the
quantified offset. Drivers related to the environmental conditions on the
image are: 1) cloud cover, 2) waves (surface roughness and foam) and 3)
soil moisture and grain size (D50). Drivers related to the satellite instru-
ment are: 1) sensor corrections, 2) georeferencing and 3) image pixel
resolution.

Optical satellite images are not able to acquire information of the
earth under clouds, and hence contain no realistic information on the
position of the SDS. Clouds have NDWI values in the range of land,
Table 2
Identified benchmark case characteristics per satellite mission. The Sentinel 2 imagery is
provided by the European Space Agency (ESA). The Landsat imagery is provided by the
National Aeronautics and Space Administration (NASA). Note that although the Landsat 5
benchmark has a 40% detected cloud cover near the shoreline, these are all thin, high
altitude clouds that do not influence the shoreline position.

Mission Image Survey Cloud
Cover

Wave
height

Water level
(surge)

Sentinel
2

2015-07-16
10:50:24

(15-17)-
07-2015

0% 0.47m �0.48m
(0.2 m)

Landsat
8

2015-03-19
10:39:36

(11-13)-
03-2015

3% 1m �0.53m
(0.16m)

Landsat
5

2011-09-25
10:22:10

(03-05)-
09-2011

40% 0.18m 0.12m (0m)
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resulting in a seaward offset of the SDS in case a cloud is present near the
shoreline. Since foam caused by breaking waves has identical NDWI
values as land, this also results in a seaward offset of the SDS beyond the
breaker line in case foam is present close to the shoreline. Wet soils in
combination with fine grains, as can be found in inter tidal zones along
the Delfland coast, have NDWI values close to either land or water,
making the unsupervised threshold based on the entire image less ac-
curate. This can cause a landward offset in case wet intertidal zones are
present (for instance during falling tide conditions).

Instrument related inaccuracies are caused by sensor corrections
required to transform the observed sensor radiance to TOA reflectance
values and to align the pixel locations. Errors caused in these procedures
can be identified based on visual inspection. Georeferencing of the image
is necessary since the projection of a 3D surface on a 2D image results in
incorrectly aligned pixel locations. This is mitigated by means of
orthorectification, in which the Global Land Survey Digital Elevation
Model (GLS-DEM) (USGS, 2008) is used. However, since the used dataset
on the EE server comprises a global dataset with a spatial resolution of
90m and acquisition in 2005, local deviations are likely to be present.
Georeferencing remains necessary when comparing satellite positions to
in-situ data, and is performed in this study by means of ground control
points. The image pixel resolution averages all reflectance values within
a pixel to a single value. This means that the pixel resolution determines
the level of detail present on the image, and hence contributes to the
found offset value.

The effect of the drivers of inaccuracy on the offset values is quanti-
fied. Cloud cover is investigated by comparing the offsets of SDS posi-
tions obtained from images with a local cloud cover� 5% to images with
a local cloud cover > 5%. The effect of wave height is investigated by
comparing SDS positions from cloud free images with calm wave con-
ditions with a nearshore Hm0 � 0:5m to cloud free images with a near-
shore Hm0 > 0:5m. The effect of georeferencing is quantified using the
satellite images processed by the GEE and shorelines obtained after
applying the local georeferencing procedure. Sensor corrections are
assessed by means of visual inspection. The effect of pixel resolution is
quantified by comparison of Landsat (30m pixel resolution) and Sentinel
2 images (10m pixel resolution).

To detect clouds near the shoreline, the Fmask algorithm (Zhu et al.,
2015) is used. This algorithm provides per pixel information on the
presence of clouds for the Landsat 5, 7 and 8 images. A buffer polygon
extending 400m along a transect and 40m alongshore is defined around
the center of a transect. Within this buffer, the amount of pixels indicated
as cloudy is used to obtain a cloud cover percentage per transect. Since
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information from the Fmask algorithm is absent in GEE in case of the
Sentinel 2 images, pixels are set to cloudy values based on visual in-
spection and cloud cover values provided by the metadata. Information
on the nearshore significant wave height obtained from the SWANmodel
output is used to identify calm and mild wave conditions. Because data
on soil moisture and grain size are absent for the study site, these drivers
are left out of the analysis.

3.4. Image composite technique

To reduce the satellite related drivers of inaccuracy such as cloud
cover, waves, soil moisture and sensor corrections, Donchyts et al. (2016)
used an image composite processing technique. This technique uses a
sequence of satellite images to obtain a single composite image. Each
pixel in the composite image is obtained from the 15th percentile value of
the TOA green and NIR reflectance values of the concurrent pixels within
a sequence of individual images. This approach is based on the idea that
clouds cause high reflection values and choosing the 15th percentile value
results in clear pixels (Fig. 7).

The downside of the image composite technique is that multiple
images over time are aggregated. Therefore, information on shoreline
variability within the time sequence is lost to some extent. In order to find
an optimal balance between the positional accuracy and the temporal
variability, composite images using a moving average time sequence
window of 90, 180, 360 and 720 days are used. To quantify the positional
accuracy of the image composites, a composite survey shoreline is ob-
tained by calculating an average topographic survey and water level from
the time instances of the individual images within the time window.

3.5. Coastline trends

In order to monitor coastal evolutions characterized by a time series
of SDS positions, the SDS vector is projected along the system of tran-
sects. This way the distance between the transect origin (as defined in
Section 3.1) and the intersection point of the SDS with a transect is ob-
tained. This distance is proposed to serve as a coastal indicator and
changes in this distance over time reveal information on the dynamics at
the shoreline. This is in line with the analysis used in the sectional
calculation application on coastal monitoring (Thieler et al., 2009). To
quantify trends, a fit through the data is made by means of Ordinary Least
Squares (OLS) of the linear equation:

yðtÞ ¼ at þ b (2)

in which yðtÞ ½m� is the distance between the transect origin and the SDS
intersection at time instance t, a ½m=y� is an indicator for the structural
Fig. 7. Principle of the image composite technique based on the distribution of all TOA
reflectance values within the image composite time window per pixel. The 15th percentile
value is used throughout this study to obtain a composite image. Adjusted from: Donchyts
et al. (2016).
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rate of change and b ½m� is the distance between the transect origin and
the first SDS. a may be identified as an indicator for structural erosion or
accretion and is quantitatively compared to the structural trend obtained
in the same manner from the MSL (0m NAP) contour retrieved from the
topographic surveys.

4. Results

4.1. Benchmark accuracy

The calculated offset values for the benchmark case per satellite
mission are displayed in Fig. 8. An average offset of 1.3m, 8.5m and 1m
is found for the Sentinel 2, Landsat 8 and Landsat 5 benchmarks. This
indicates subpixel precision and the absence of large offset values in case
of Sentinel 2 and Landsat 5. The Landsat 8 benchmark has an average
offset of about 1/3 of the pixel size, indicating a larger offset. The stan-
dard deviations of 5.1m, 13.2m and 13.9m all indicate offset variations
within a pixel and relate to half the image pixel resolution.

The inter tidal beach slope (Fig. 8) ranges from 1:24m to 1:200m,
indicating large alongshore variabilities. Similarities in the alongshore
pattern of the inter tidal beach slope and the offset value can be observed,
in which steep slopes are accompanied by small offset values and mild
slopes are accompanied by larger offset values. This is clearly present in
both the Sentinel 2 and Landsat 8 benchmark cases. This relation is less
pronounced in case of Landsat 5, which might be due to the very rapid
initial morphologic evolution in combination with the longer time dif-
ference between the topographic survey and satellite image acquisition
(21 days).

The Landsat 5 benchmark case shows an average offset over all
transects of 1m with a standard deviation of 13.9m. These values are
obtained after removal of 5 evident outliers near transects 21 and 75
(Fig. 9). The topography near transect 21 has a complex geometry,
resulting in a survey shoreline that is not correctly extracted by means of
the MSI method. Besides, this location of the Sand Motor had a different
topography than present during satellite image acquisition, indicating
that morphological changes contributing to the offset have occurred in
the 21 days between conducting the survey and satellite image acquisi-
tion. This results in a large offset value of 64m. The situation near
transect 75 indicates that the survey shoreline does not include the tidal
lagoon, whilst this is the case for the SDS. This is due to the survey
shoreline extraction method, where only a single, most seaward inter-
section per transect is obtained.

4.2. Drivers of inaccuracy

All 143 satellite images are analyzed to quantify the drivers of inac-
curacy related to the satellite environmental conditions. On the GEE
platform, the analysis of all 143 images requires a total processing time of
about 24 h. Based on the 113 transects defined for the study area, this
results in a total of 16,159 offset values (Fig. 10). In this analysis, images
with evident sensor errors (apart from Landsat 7 that is already omitted
from the analysis) are neglected.

The first row indicates the offset values for all transects. When
filtering the transects on local cloud cover (with a cloud free image
defined based on a local cloud cover of � 5%), the average offset (μ)
reduces from 56.5m to 21.9m, which is below the pixel resolution of the
Landsat missions. Besides, the standard deviation (σ) decreases, indi-
cating a more constant offset. When the transects are filtered on both
cloud cover and significant wave height (where calmwave conditions are
defined based on a nearshore Hm0 � 0:5m), the average and standard
deviation reduce to 8.9m and 17m, respectively. The histogram remains
positively skewed, indicating that more often the SDS is located seaward
of the survey shoreline. This is in line with findings in for instance Par-
do-Pascual et al. (2012). In case the transects are subdivided based on
satellite mission, the same pattern in offset reduction occurs when
filtered on environmental conditions (Fig. 10). This indicates that the



Fig. 8. The top panel indicates the MSL elevation contour of the survey conducted on 03-08-2011. Offset result per transect for the Sentinel 2 (second panel), Landsat 8 (third panel) and
Landsat 5 (bottom panel) benchmark cases. The image pixel resolution is indicated in green, the inter tidal beach slope per transect is plotted in grey. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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environmental sources of cloud cover and wave height cause the same
effects on the offset values, despite the sensor. All missions combined
reveal a positive skewed histogram, indicating a seaward bias of the SDS.

Cloud cover affects the detectability of the SDS position. 24% of the
transects that are marked as cloudy have a non-calculated offset value,
meaning that an SDS position was absent. These values are not included
in the offset distributions of Fig. 10.

Sensor errors are identified manually. In case of seven Sentinel 2
images, a data gap covering about half the image domain was present.
The locations of these gaps are identified as the location of the SDS by the
region growing algorithm, and hence result in large offset values. In case
of three Landsat 5 images, scattered sunlight reflections were present in
all bands at some locations. Since these reflections are calculated as
positive NDWI values, seaward offsets of the SDS are found.
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The image pixel resolution hardly affects the average offset when
comparing Sentinel 2 to Landsat 8. In both cases an average offset of 9.5
and 10.5m is found. The standard deviation reduces from 16m in case of
Landsat 8–12m in case of Sentinel 2, indicating that the distribution of
offset values relates to the image pixel resolution.

The effect of shifting the benchmark SDS positions as a result of the
georeferencing procedure with respect to the standard georeferencing as
applied on the GEE platform results in an offset reduction in case of
Sentinel 2 and Landsat 5 (Fig. 11). Because the translation shifts the SDS
both alongshore and cross shore, the shape of the histogram also changes.
In case of Landsat 8 the offset value increases after georeferencing. This
indicates that the applied translation based on six control points is not
sufficient to correctly align Landsat 8 and local deformations might be
present.



Fig. 9. Zoom-in on the Landsat 5 benchmark case with the topography, the SDS (green) and the survey shoreline (blue). The left panel indicates the location near transect 21, the right
panel indicates the location near transect 75. Please note that the scales of both panels are different. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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4.3. Image composites

The effect of the moving average image composite technique with
time windows of 90, 180, 360 and 720 days on the offset values is shown
in Fig. 12. Compared to the unfiltered individual images (top left panel of
Fig. 10) the average offset reduces from 56.5m in case of individual
images to 14.9m in case of a 90 days image composite window. The
tendency towards lower average offset values continues for larger win-
dows. The offset standard deviation reduces from 36m in case of a 90
days window to 18m in case of a 720 days window. This indicates that
the offset is on a subpixel level (e.g. 10–30m, depending on the satellite
mission) for all considered images in case of a longer averaging time
window. This implies that the image composite technique has an accu-
racy in the order of one pixel, which makes the method suitable for the
study of structural, yearly trends as long as these trends are larger than
the pixel resolution. A drawback of aggregating multiple satellite images
into yearly composites is that it reduces the detection of smaller scale
variability, making longer windows less suitable for the detection of
intra-annual trends. A seaward offset remains present in the offset values,
indicating that the actual shoreline is positioned more landward than the
SDS.
4.4. Coastline trends

In order to assess the suitability of the technique to identify structural
trends in the shoreline position, the trends obtained from the SDS are
compared to trends obtained from shorelines at MSL obtained from the
topographic surveys. For this analysis the Landsat 8 and Sentinel 2 im-
ages are used. Landsat 5 is not considered since this would introduce a
large gap of SDS positions in the period after the stop of Landsat 5 and the
launch of Landsat 8, which hampers the OLS fit. The 360 days moving
average time window provides offset values within a pixel and therefore
still contains annual information. The subsequent SDS positions obtained
from a 360 days moving average time window and MSL contour eleva-
tions obtained from the topographic surveys are projected along the
system of transects. A monotonous eroding trend is visible for both data
sources when using the thus obtained distance with respect to the tran-
sect origin for transect 54 (Fig. 13). When OLS is applied for the period
starting at 01-04-2013, which is after the start of Landsat 8, a landward
(erosive) rate of change of 52.0m/y is found in case of the survey MSL
contour and 54.2m/y in case of the SDS. This indicates that the same
trends can be extracted from both data sources, and that a rate of change
deviation of 2.2m/y is found.
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Performing OLS and recording the rate of change value for all tran-
sects results in a spatial overview of erosion and accretion (Fig. 14). All
fits are based on the SDS period between 01 and 04-2013 and 01-07-
2016. A landward trend is observed from transect 16 up to transect 80.
Shoreline rates of change ranging between �57.0m/y and 60.0m/y are
found along this study site. The maximum landward directed shoreline
rate of change of �57.0m/y is observed at the tip of the peninsula,
indicating erosive behavior. Adjacent to the Sand Motor, seaward trends
are visible, indicating that the adjacent coast is accreting.

In 110 of the 113 transects the direction of the trend is equal, indi-
cating that landward and seaward trends are observed in both data
sources even though the rate of change value shows deviations.
Comparing the rate of change values obtained from the SDS and survey
MSL contour shows an average difference of 6.1m/y. This is predomi-
nantly caused by the positions located around transect 5 and at the tidal
channel mouth near transect 90. Near transect 5 a strong periodic
behavior is present, resulting in a less distinct rate of change based on
OLS and hence a higher importance towards the exact timing of the
survey topography in relation to the satellite imagery. When these
transects are left out of the analysis, an average rate of change difference
of 5.3m/y is found. At first sight this difference may seem large, but,
given the considered timespan of 5 years, this rate of change corresponds
to a total deviation of 26.5 m. This deviation is within the pixel resolu-
tion, in line with findings in Section 4.3. Aminimum deviation of 2.2 m/y
is found at transect 54, where a monotonous shoreline change is present
and the OLS fit performs well.

5. Discussion

The survey shoreline is used in this study as the ground truth position
to validate the positional accuracy of the SDS. Since the survey shoreline
is reconstructed using measured elevations and the interpolated water
level, inaccuracies in this representation of the shoreline contribute to
the found offset value. These effects are reduced by using high resolution
and frequent in-situ data. The water level is interpolated from the nearest
measurement stations, which measure both the tidal elevation and local
surge. However, local deviations in the water level are not accounted for
and contribute to the found offset. These depressions can be due to for
instance wave set-up and run-up or tidal dispersion (Radermacher et al.,
2017), of which the large scale eddy may lead to local water level de-
pressions. The survey that was conducted closest to the satellite image is
used, taking into account the timing of storm events. The survey topog-
raphy is interpolated to a rectangular grid that is finer than the satellite



Fig. 10. Overview of the offset calculation between all SDS positions and their concurrent survey shorelines. The first row contains the offset values for all satellite missions, the other rows
contain the offset values per satellite mission. The second column indicates the result after filtering transects on local cloud cover, the third column indicates filtering on cloud cover and
nearshore wave height. Please note the different x-axis limits per filter, which are the same for all missions.
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image pixel resolution. This ensures that the survey shoreline provides an
accurate resemblance of the actual waterline. Since an alluvial, dynamic
sandy beach is studied, morphological changes can be substantial, indi-
cating the relevance of frequent survey campaigns in this accuracy
assessment. To demonstrate the sensitivity of the offset on the local water
level, we reconstruct the survey shoreline at the MSL (0m NAP) contour
rather than at the actual water level measured at the measurement sta-
tions. When this survey shoreline is compared to the SDS of the Sentinel 2
benchmark case, an average offset of 24m with a standard deviation of
16m is found, indicating offsets of multiple pixels.

The panchromatic band 8 of the Landsat 8 and Landsat 7 mission
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allows for the method of pansharping. This method uses both the high
spectral resolution of the optical bands and the high spatial resolution of
the panchromatic band to obtain multispectral information with a pixel
resolution of 15� 15m. In this study the original Landsat 8 images are
considered. To study the effect of pansharping on the offset of the Landsat
8 images, all SDS position from cloud free Landsat 8 satellite images are
compared to their concurrent SDS positions obtained after pansharping.
The average offset over all selected transects increases from 20m to
41m, which indicates that pansharping increases the offset to more than
a pixel. This is counterintuitive since pansharping was introduced to
increase the pixel resolution and hence to reduce the offset values.



Fig. 11. Overview of the offset calculation related to georeferencing before (GEE) and after georeferencing (GEOR.) for Sentinel 2 (first panel), Landsat 8 (second panel) and Landsat 5
(third panel).

Fig. 12. Overview of the offset values for all transects per image composite window of 90, 180, 360 and 720 days.

Fig. 13. Timeseries of SDS positions the MSL contour lines obtained from the survey projected along transect 54. An OLS fit is made based on the information between 01 and 04-2013 and
01-07-2016.
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Fig. 14. Alongshore rate of shoreline change ðaÞ based on the SDS position (green) and the survey MSL contour (blue). The black line indicates the difference between aSDS and aSurvey . The
MSL contour line from the survey conducted on 03-08-2011 is plotted in grey as a reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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Fig. 15 shows the obtained shorelines for both the original and pan-
sharped benchmark Landsat 8 image. As can be observed, pansharping
adds additional NDWI information to the pixel values. A non-coherent
portion of information is added near the shoreline, resulting in small
portions of land detected as water and vice versa. This non coherent
portion results in additional offsets when compared to the survey
shoreline. This might have to do with the effect of pansharping on the
NIR band and the absence of multispectral contrast near a sand-water
transition.

The increasingmoving average time window reduces the offset values
(Fig. 12). The survey shoreline that is used to compare the SDS position is
based on the average water level and topography of all underlying sat-
ellite image time instances. However, some of these satellite images are
cloudy, and therefore have TOA reflectance values above the 15th

percentile value, hence they do not cause changes in the binary image.
This indicates that the survey shoreline might be constructed based on an
average water level that does not match the actual water level of the
composite satellite image, which introduces an additional offset. Fig. 16
shows the difference between the water level observed at the time in-
stances of the underlying cloud free images within a time window and
the water level observed on all underlying images (on which the com-
posite survey shoreline is based in this study). These results indicate that
in case a large water level difference is present, the offset is larger
compared to small water level differences for a specific image composite.
The difference between both water levels decreases with an increasing
time window. A longer time window results in more cloud free under-
lying satellite images. Since a semi-diurnal tidal signal with a spring-neap
tidal cycle is present along the Holland coast, more tidal constituents
Fig. 15. Effect of pansharping on the obtained SDS position. Top left shows the greyscale NDWI
The right panel indicates the situation after pansharping. (For interpretation of the references
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become included in the SDS when more cloud free images are included.
The difference between the average water level of all underlying cloud
free images and all underlying images therefore reduces, and the addi-
tional offset introduced by selecting a different water level for con-
structing the survey shoreline becomes less pronounced. To correctly
average out tidal variations in the SDS position, and to end up with a
representation of the SDS at theMSL contour, the time averaging window
should be related to the cloud cover near the shoreline, the number of
tidal constituents, the timescale of morphological changes and the
intertidal beach slope. The intertidal beach slope measured near the first
transect is rather mild with an inclination of 1:106m. The effect of tidal
averaging is less pronounced for transects with steeper slopes, for
instance along transect 73 with an inter tidal beach slope 1:24m.

As accuracy seems to be especially limited by the image pixel reso-
lution, a tendency towards higher spatial resolutions, such as the recently
launched Sentinel 2 mission or new commercial missions such as the
Triplesat with a spatial resolution of 3.2m indicates a wider application
range of satellite imagery in the near future. Besides, better sensor
specifications are introduced with the launch of newmissions, such as the
recently launched geostationary GOES-16 mission with a temporal res-
olution of 15min or the Landsat 8 mission with additional multispectral
information. The applicability of the accuracy estimation method
described in this study will change with these increasing satellite per-
formances. The reconstruction of the survey shoreline based on a bi-
monthly topographic survey that is acquired within 3 days might
hamper the offset calculation since for instance local water level de-
viations or individual wave run-up and run-down becomes more pro-
nounced in the SDS for higher pixel resolutions. This requires even more
image and the obtained smoothed SDS position in blue on the Landsat 8 benchmark image.
to colour in this figure legend, the reader is referred to the Web version of this article.)



Fig. 16. Effect of the image composite moving average time windows on the difference between the water level observed on the underlying cloud free images (WLCloudcover�5%) and on all
underlying images (WLall) within a time window in relation to the offset value. All values are based on the values found at the first transect. The Landsat pixel resolution is indicated in
green. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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accurate information on the instantaneous shoreline present during
image acquisition. Other methods such as for instance high frequency
Argus imagery (Holman and Stanley, 2007) might replace the current
method to validate the positional accuracy in case the positional accuracy
of new satellite sensors is validated.

Multiple missions of, amongst others, NASA and ESA are currently
operational, including missions with active sensors radar sensors such as
the Terrasar-X satellite (Vandebroek et al., 2017). Since combing these
missions results in more cloud free images near the shoreline, this allows
for the opportunity to study coastal evolutions on intra-annual time
scales. This also relates to a decreasing moving average time window to
obtain cloud free image composites.

6. Conclusions

This paper presents an automated method to extract shorelines from
satellite imagery. The accuracy of this method is assessed for the Sand
Motor mega-scale nourishment by comparing the Satellite Derived
Shorelines (SDS) to topographic surveys. The obtained SDS performs well
compared to in-situ measurements of the shoreline. The average accuracy
of the SDS for the ideal case of cloud and wave free images for the Sand
Motor is 1 m, which is well within the pixel resolution. The accuracy
depends on intertidal beach slope and the image pixel resolution.

We have shown that the accuracy decreases in the presence of clouds,
waves, sensor corrections and georeferencing errors. This study shows
that the most important driver of inaccuracy is cloud cover, which
hampers the detection of a SDS and cause large seaward deviations in the
order of 200m, followed by the presence of waves, which cause de-
viations of about 40m. A seaward bias of the SDS is always present
because all drivers of inaccuracy introduce a seaward shift. Surprisingly
the pansharping method, which is intended to increase the image pixel
resolution, and hence is expected to increase the accuracy, reduces the
accuracy with about a pixel at a sandy shoreline. This indicates that the
pansharping technique is not considered suitable for coastal areas.
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The found drivers of inaccuracy hamper the application of the SDS in
coastal engineering practice because they introduce offsets which makes
it impossible to accurately derive trends. Nevertheless, inaccuracies can
be overcome by using a moving average image composite window.
Although this technique implies a reduction in temporal resolution, it
increases the spatial accuracy to subpixel precision (e.g. smaller than
10–30m, depending on the satellite mission), which becomes similar to
the benchmark accuracy. This implies that the image composite tech-
nique is capable of detecting coastline changes which are at least larger
than the pixel resolution.

Given the accuracy of composite images along the Sand Motor in
combination with the worldwide availability of public satellite imagery
over the past decades and the computational facilities of the Google Earth
Engine platform, potentially allows for the application to other coastal
areas in the world with large, structural coastline trends as long as the
changes are at least in the order of a pixel. Technological progress in-
dicates that the spatial, temporal and spectral resolution of satellite im-
agery will further increase in the coming years, allowing for potentially
even higher accuracies on smaller timescales in the future.
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