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Abstract

This study presents novel drag reduction active-flow-control (AFC) strategies for a three-
dimensional cylinder immersed in a flow at a Reynolds number based on freestream veloc-
ity and cylinder diameter of Re;, = 3900. The cylinder in this subcritical flow regime has
been extensively studied in the literature and is considered a classic case of turbulent flow
arising from a bluff body. The strategies presented are explored through the use of deep
reinforcement learning. The cylinder is equipped with 10 independent zero-net-mass-
flux jet pairs, distributed on the top and bottom surfaces, which define the AFC setup.
The method is based on the coupling between a computational-fluid-dynamics solver
and a multi-agent reinforcement-learning (MARL) framework using the proximal-policy-
optimization algorithm. This work introduces a multi-stage training approach to expand
the exploration space and enhance drag reduction stabilization. By accelerating training
through the exploitation of local invariants with MARL, a drag reduction of approximately
9% is achieved. The cooperative closed-loop strategy developed by the agents is sophisti-
cated, as it utilizes a wide bandwidth of mass-flow-rate frequencies, which classical control
methods are unable to match. Notably, the mass cost efficiency is demonstrated to be two
orders of magnitude lower than that of classical control methods reported in the literature.
These developments represent a significant advancement in active flow control in turbulent
regimes, critical for industrial applications.
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1 Introduction

Active-flow-control (AFC) devices are essential tools across diverse industries, aiming to
optimize fluid-flow processes, enhance performance, and improve overall efficiency (Choi
et al. 2008). Currently, the aeronautical sector needs more robust and sophisticated systems
to develop better control strategies. In this scenario, innovative solutions are required to
address the pressing environmental concerns linked to fossil-fuel dependence. Discovering
and understanding physical mechanisms to reduce air resistance are crucial for the sus-
tainable development of the transport industry. Passive-flow-control (PFC) solutions, while
simpler and easier to integrate, typically lack the adaptability and performance capabili-
ties of AFC methods. However, in critical sectors like aerospace, automotive, energy, and
maritime, AFC devices emerge as pivotal tools, effectively managing airflow around sur-
faces, minimizing drag, boosting lift, and controlling separation. For instance, some pas-
sive systems are protuberances or fixed flaps such as vortex generators or winglets. On the
other hand, active devices like slats and flaps placed along airplane wings enhance maneu-
verability and efficiency. Dynamically optimizing all these devices is challenging due to
the complex interactions between pressure and viscous effects across multiple flight condi-
tions. To design and converge on possible solutions, substantial experience and computa-
tional resources are required.

Recent advancements in flow control have been complemented by the integration of
machine-learning (ML) techniques, offering significant promise to the aeronautics sec-
tor. This includes the exploration of fundamental issues in fluid mechanics (Vinuesa et al.
2023) and the development of novel approaches for both active and passive flow control
(AFC and PFC) (Le Clainche et al. 2023). Deep reinforcement learning (DRL), particu-
larly, has emerged as a rapidly expanding field within ML, capturing substantial interest.
Following its success in domains like board games (Silver et al. 2016) and robotics (Ibarz
et al. 2021), DRL demonstrates effectiveness in systems where a controller interacts with
an environment to optimize a particular task; note that this is a characteristic highly rel-
evant to many AFC scenarios. In such instances, DRL can dynamically interact with the
flow, receiving feedback and refining actions iteratively over time. Designing AFC setups
involves working with complex, high-dimensional systems, requiring significant computa-
tional power to explore the vast parameter space and identify optimal global values. DRL
and neural networks streamline this process, facilitating the development of effective con-
trol strategies with a reduced computational burden.

The state-of-the-art on DRL for AFC applications is rapidly expanding, featur-
ing studies on flow control for two-dimensional (2D) cylinders across a range of Rej,
(Reynolds number based on inflow velocity U, and cylinder diameter D) from 100 to
8000, resulting in drag reductions of 17% and 33%, respectively (Tang et al. 2020; Li
and Zhang et al. 2022; Ren et al. 2021; Chatzimanolakis et al. 2024; Yan et al. 2023).
DRL has also been tested against Linear Genetic Programming Control (LGPC) in a
cylinder at Re;, = 100, highlighting DRL’s robustness against variable initial conditions
and sensor noise, while LGPC provided compact and interpretable control laws (Cas-
tellanos et al. 2022). In addition, it has been compared to other global optimization
techniques (Pino et al. 2023). Specific studies have also focused on the mitigation of
vortex-induced vibrations, e.g. Chen et al. (2023). Additionally, research on the applica-
tion of DRL has been conducted on aircraft wings (Vinuesa et al. 2022), fluid—structure
interaction (Chen et al. 2023), and controlling highly turbulent flows, as demonstrated
in Font et al. (2024), successfully reducing a turbulent separation bubble at a friction
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Reynolds number of Re, = 750. There are also studies on flow control in turbulent
channels (Guastoni et al. 2023) and Rayleigh—Bénard convection (Vignon et al. 2023).
Recent literature (Wang et al. 2023) suggests the possibility of transfer learning from 2D
cylinders to three-dimensional (3D) domains and higher Re;,. Recent research (Suédrez
et al. 2023) has contributed to advancing the state-of-the-art in the control of 3D cyl-
inders. This advancement involves DRL training directly in 3D, considering Reynolds
numbers Re;, = 100 to 400 that include the transition to three-dimensional wake insta-
bilities. The latter uses an AFC configuration comprising numerous zero-net-mass-flow
(ZNMF) actuators managed through a multi-agent reinforcement-learning (MARL)
framework.

Although it is expected that the differences in flow physics between 2D and 3D flows
would lead to even better results when training on full 3D physics, the increased complex-
ity and unique characteristics of 3D flows also introduce challenges and opportunities for
control that are are not encountered in simpler 2D configurations.

The present work builds on previous successful training in transitional regimes, advanc-
ing further to tackle the significant challenge of achieving a subcritical Reynolds number
of Re;, = 3900. This represents a more complex scenario, marking the first exploration of
such conditions in MARL state-of-the-art, with more intricate structures to analyze and
learn from. This classic case has been extensively investigated (Lehmkuhl et al. 2013; Nor-
berg 1994; Parnaudeau et al. 2008; Ma et al. 2000; Kravchenko and Moin 2000; Franke
and Frank 2002), serving as a reference for benchmarking and facilitating the study of
well-known physics. Such insights are very valuable for devising an appropriate closed-
loop control mechanism within a MARL framework. Despite the wealth of documenta-
tion available, consisting of numerous simulations and experiments, there remains a degree
of inconsistency when comparing the time-averaged statistics in the near-cylinder wake.
This inconsistency primarily stems from the high sensitivity to minor disturbances and
the unsteady behavior of vortex formation, which directly impacts the configuration of the
near wake. The primary point of discussion revolves around determining the number of
shedding cycles required to attain converged statistics. Recent studies demonstrate how the
presence of low-frequency fluctuation mechanisms, along with the well-established vortex-
shedding frequency and smaller Kelvin—Helmbholtz instabilities, contribute to the gradual
contraction and expansion of the recirculation region (Lehmkuhl et al. 2013).

We first considered a control periodic in time and uniform in the spanwise direction as
a controlled reference case. We identified the optimal frequency of actuation around the
vortex-shedding frequency f,,, and also adjusted the maximum amplitude. Although this
strategy led to drag reduction for Re;, between 100 and 400 (Suérez et al. 2023), at the
present Reynolds number of 3900 this approach actually increased the drag by 30 to 50%.

Kim and Choi (2005) studied flow-control strategies for the 3D cylinder at Re;, = 3900,
and reported successful drag reduction control by considering two types of control: in-
phase and out-of-phase. In their control strategies they consider sinusoidal profiles in the
spanwise direction of the cylinder, but fixed blowing and suction constant in time. The
velocity profile consists of a constant normal velocity of ¢,,,, = 0.1U_, over a jet width of
10°. They assess various possible configurations by analyzing the impact of the spanwise
wavelength 4, of their control. The difference between both control types is that, while the
out-of-phase has opposed blowing and suction on the top and bottom at the same spanwise
location, the in-phase has the same amount of blowing or suction for both surfaces. For a
wavelength of A,/D = z (hence, A,/D = L), they reported 25% and 18% drag reduction for
the in-phase and out-of-phase cases, respectively. Since in-phase does not comply with the
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ZNMF condition, in this study we will consider their out-of-phase case as the controlled
reference case and from now will be denoted as KCO5.

Developing flow-control strategies for fully turbulent 3D wakes around cylinders consti-
tutes a significant challenge for DRL. As the wake becomes three-dimensional, the MARL
setup must effectively utilize spanwise characteristic structures to devise efficient control
methods, which can have profound implications for drag reduction. Note that DRL can
discover new strategies by maximizing rewards r, for an agent interacting with the envi-
ronment through actions a, and partial observations s,. Through episodes of consecutive
actions, neural-network weights are updated, optimizing policies to maximize expected
rewards. For recent advances in flow control using MARL, interested readers are directed
to Belus et al. (2019), Brunton et al. (2015), Vignon et al. (2023), where significant pro-
gress and insights have been reported.

2 Methodology

This study involves a 3D cylinder subjected to a constant inflow in the streamwise direc-
tion, with all lengths non-dimensionalized using the cylinder diameter D. The computa-
tional domain, depicted in Fig. 1, has dimensions L, /D = 40, L, /D=25and L /D =g,
with the cylinder centered at (x/D, y/D) = (6.25, 12.5). Here x, y and z denote the stream-
wise, vertical and spanwise directions, respectively. Note that the coordinate-system origin
is located at the front face left-bottom corner. Periodic boundary conditions are used in the
cylinder spanwise direction. As discussed in the references presented in Table 1, there is a
consensus in the literature that a spanwise length of = is sufficient to statistically capture all
wavelengths of the relevant structures. At the inlet, a constant velocity U, is imposed with
a Dirichlet condition. The surfaces of the cylinder include the no-slip and no-penetration
conditions, while the top, bottom, and outflow surfaces of the domain box are set as zero-
stress outlet. The cylinder incorporates two sets of n;, = 10 synthetic jets positioned at the
top and bottom surfaces (6, = 90° or 270°, respectively). Here, L;, is defined as the span-
wise length of the jets. Hence, the jet length is Lje, /D =~ 0.314, which is 21.5% shorter than
what was employed in previous studies at lower Rej, (Suarez et al. 2023). This will allow

Table 1 The statistical values
for flow around a cylinder at
Re, = 3900 are presented, with

sk

Reference L./D St L./D* ¢,

pb

comparisons made between Present uncontrolled case T 0.22  1.30 1.08 0.95
the results of the present Lehmkuhl et al. (2013) T 0.215 1.36 1.015 0.935
uncontrolled case and results Parnaudeau et al. (2008) 23 0208 151 - -

reported in the existing literatre o0 (1998) (Re, =3000) 67 022 166 098 088

Lourenco and Shih (1993) 21 - - 098 0.9
Tremblay et al. (2002) z 022 13 1.03 093
Kravchenko and Moin (2000) = 021 135 1.04 0.94

“The recirculation bubble length (L,/D) is measured as the distance
from the rear point of the cylinder to the position where the centerline
velocity in the x-direction satisfies u = 0

The back pressure  coefficient (C,,) is  defined as
o= G =p)/ (402
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Fig.1 Schematic representation that illustrates the multi-agent reinforcement-learning framework applied
to a three-dimensional cylinder, showing communication channels between two main actors. In this case,
the direction of the information is clockwise. At the top, we show the agent architecture featuring a shared
neural network. At the bottom, the computational-fluid-dynamics (CFD) environment is depicted, with the
cylinder diameter D as the reference length. Moving rightward, emphasis is placed on the local MARL
environment, also known as the pseudo environment. Note that @ denotes the jet angle width, while 6,
represents the angular location of each jet center. Additionally, the green shading illustrates the sinusoidal
velocity profile, which remains uniform in the spanwise direction within a single jet length, Ljg,.

a more flexible strategy when controlling the spanwise structures in the wake, which are
finer in the present higher-Re, case where mode B of A_/D = 1is dominant—instead of the
mixed mode A (4,/D = 4) and B experienced during transition regimes. The current setup
provides at least two jets for each mode B structure, ensuring greater control authority. As
discussed in Sect. 1, this setup resembles the one reported in Kim and Choi (2005), with
two key differences. First, it will not be a prescribed control, as the DRL framework ena-
bles dynamic adjustments within a closed-loop system. Second, the control will vary both
in the spanwise direction and over time. In the current study, the jet velocity profile in the
direction normal to the surface is defined in terms of the angle 6 and the desired mass-flow
rate per unit length Q as follows:

1U(@.0)l1= 02— cos | Z(0 - 6y)]. M

)

where Q =m/L,, |6 — 6| € [-0/2,w/2], i is the mass flow rate and @ is the angular
opening of the jet as shown in Fig. 1. For every pseudo environment (also called MARL
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environment, as discussed later), we set opposite action values between the pair of top and
bottom jets, i.e. Qgqe = —Q570-, 10 guarantee an instantaneous global zero net mass flux, as
discussed in Suarez et al. (2023).

The numerical simulations are carried out by means of the numerical solver Alya, which
is described in detail in Vazquez et al. (2016). The spatial discretization is based on the
finite-element method (FEM) and the incompressible Navier—Stokes equations, which are
formulated below:

du+@-Vu—-V-Qve)+Vp=f, )

V-u=0, €))

are integrated numerically. Here u is the velocity vector, v is the fluid kinematic viscosity, €
is the strain-rate tensor € = 1/2(Vu + (Vu)T) and f represents external body forces. In Eq.
(2), the convective term (u - V)u is formulated to conserve energy, momentum, and angu-
lar momentum, as described in Charnyi et al. (2017, 2019). Time discretization employs
a semi-implicit method where the convective term follows a second-order Runge—Kutta
scheme, and a Crank—Nicholson scheme is utilized for the diffusive term (Crank and Nicol-
son 1947). Alya determines the suitable time step using an eigenvalue-based time-integra-
tion scheme (Trias and Lehmkuhl 2011). Subsequently, the numerical solution of these
equations is computed for each time step. Drag and lift forces (¥, and F), respectively) are
computed through integration over the cylinder surface s:

F = /(g . n)~ejds, 4)

where ¢ is the Cauchy stress tensor, n is the unit vector normal to the surface, and e is a
unit vector aligned with the direction of the main flow velocity for F, and the perpendicular
cross-flow direction for F,.

In order to define the uncontrolled case it is important to carefully study the conver-
gence of the cylinder at Re;, = 3900. In this study we use an unstructured mesh in the xy-
plane, which is then extruded in the z direction. Following a convergence study, an interval
of 300 convective time units, which are defined in terms of U, and D, tU_, /D, is consid-
ered to be sufficiently long to properly capture the pressure distribution around the cylin-
der, which in turn is associated with the computation of the aerodynamic forces, since the
drag of a cylinder in these regimes mostly comes from the pressure component. Following
the grid-independence study reported in Appendix, the simulations with the chosen mesh
show reasonable agreement with the results reported in the literature for this case, as shown
in Table 1. Note that there is a discrepancy in C_D (defined later in Eq. (7) in Sect. 2.1) com-
pared to the results of Lehmkuhl et al. (2013). This discrepancy may arise from the case
being particularly sensitive in the near-cylinder region, where very low-frequency modula-
tions associated with higher C_D have been also reported in the literature.

2.1 Multi-agent Reinforcement Learning (MARL)

We implement a deep-reinforcement-learning (DRL) framework using the Tensorforce Python
library (Schaarschmidt et al. 2017). DRL is very well suited for unsteady flow-control prob-
lems. It provides the possibility to dynamically interact with an environment in a closed-loop
approach, being able to set the actuation based on the varying flow state following a trained
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policy z(a,|s,-which describes the probability of selecting an action a, given the current state
s,. We use the proximal-policy-optimization (PPO) algorithm (Schulman et al. 2017), which
is a policy-gradient approach based on a surrogate loss function for policy updates to prevent
drastic drops in performance. This algorithm exhibits robustness, as it is forgiving with hyper-
parameter initializations and can perform adequately across a diverse range of RL tasks with-
out extensive tuning. While PPO was selected for its stability and ease of use in this context,
we acknowledge that other reinforcement learning algorithms, such as DDPG or SAC, could
also be viable options.

The neural-network architecture consists of two dense hidden layers of 512 neurons
each. The batch size M, i.e., the total number of streamed experiences that the PPO agent
utilizes for each gradient-descent iteration, is configured to 60, exceeding the values
employed in previous 2D cylinder experiments (Varela et al. 2022) and previous 3D train-
ing scenarios (Sudrez et al. 2023). The main constraint to set such a value lies in having
10 actuators per environment, requiring 10 streamed experiences which are synchronized.
Thus, we must operate with a total of 7, X 71, sets of experiences, similar to what has
been reported in Rabault and Kuhnle (2019). A streamed experience encompasses a collec-
tion of states, actions, rewards, and the predicted state that the agent anticipates achieving,
denoted as {s,,a,,R,s!} for each pseudo environment. Moreover, we encounter computa-
tional resource limitations. If the batch size, M, is excessively large, a single training ses-
sion might be interrupted before any batch update occurs, resulting in the loss of already
explored trajectories.

In previous studies on 2D cylinders, the different training stages are executed using a
single-agent reinforcement learning (SARL) setup. However, considering the effectiveness
of MARL in managing multiple actuators simultaneously, as demonstrated in recent litera-
ture (Sudrez et al. 2023; Vignon et al. 2023; Guastoni et al. 2023; Font et al. 2024), SARL
is not a feasible choice for the current 3D cylinder configuration with distributed input
forcing and distributed output reward (referred to as the DIDO scheme). As opposed to
SARL, the MARL framework mitigates the curse of dimensionality by exploiting invari-
ances and focuses on training local pseudo environments with the option for collaboration
among agents to achieve a global objective. This approach makes high-dimensional control
manageable, as the agents are trained in smaller domains to maximize local rewards. This
makes the problem more scalable as long as the size of stacked local invariants is main-
tained. All agents share the same neural-network weights, significantly accelerating train-
ing. Each pseudo environment is linked to a pair of jets that actuate independently. Obser-
vation states St comprise partial pressure values along the domain, focused on the wake
and near-cylinder regions to exploit the spanwise pressure gradients when controlling. As
detailed in Table 2, these pressure values form multiple slices in the xy plane, evenly
spaced in the spanwise direction by Azg;../D = x/30. Each set of three slices corresponds
to an individual pseudo environment. The total reward R(, ij,), as defined in Eq. (5), com-
prises the sum of local, 7y, and global, ryqp,, rewards corresponding to each jet ij,. The
scalar K adjusts the values approximately within the range [0, 1], while § balances the
local and global rewards; in this work, f = 0.8. The rewards r(z, ijet), defined in Eq. (6),

depend on aerodynamic force coefficients Cj, and C;, (C_Db represents the averaged value for
uncontrolled conditions). The user-defined parameter a serves as a lift penalty, and in our
study we set a = 0.6. This parameter is crucial for mitigating undesired asymmetric strate-
gies that favor a reduction of the component parallel to the incident velocity (drag) over the
perpendicular one (positive or negative lift), commonly known as the axis-switching
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Table 2 Main parameters of the

MARL architecture and the CFD - 22meter Valueftype
10-s2 cases L./D 40
L,/D 25
L, /D T
Li/D 0.314
s, size 183 (3 xy slices of 61)
s, variable Pressure
Ohmax 0.176
Ky 5
a 0.6
p 0.8
T, 0.25
Actions/episode 150
CPUs/environment 1800
Parallel CFD environments 7, 6
Actuators/CFD njeq 10
Batch size M 60
Neurons (hidden layers) 512 (2)
Time-smoothing function Exponential

phenomenon. Note that Table 2 summarizes the rest of MARL and computational-fluid-
dynamics (CFD) parameters that define the whole framework employed here.

R(t’ ijet) =KR [ﬂrlocal(t7 ijet) + (1 - ﬁ)rglobal(t)] ’ (5)
r(t, i) =Cp, — Cp(t i) — alCp(tife), 6)
h co— 2F, c - 2F,

where C), =AU L= oA UL (7N

The aerodynamic forces described in Eq. (7) incorporate the frontal area A, = DL,

jet>

derived from the local pseudo-environment surfaces for C, , and from the entire cylinder

for Cp,

elobal”

The interactions between the agent and the physical environment are represented by

actions a,, which influence the system over a time interval of T, time units. We update each
jet boundary condition using Eq. (1) with its corresponding Q, ;. To transition smoothly in
time between the actions at f and ¢ + li.e., Q,; = Q,,;, we employ exponential space-time
functions. This ensures a gradual shift in time, reducing the occurrence of sudden mass
discontinuities that could disrupt the training process. These functions exhibit better per-
formance than the linear slopes employed in Varela et al. (2022). Regarding the spatial dis-
tribution of the {Q,,Q,, ..., Qniels },» Heaviside functions are used to activate or deactivate
each jet depending on its location. Therefore, spatial smoothing has not been necessary for
the present work. The DRL Python library requires normalization of the output actions a,
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to the range [—1, 1]. To achieve this, the output actions are scaled by a factor Q,,,,, such
that Q = a,Q,,,- Accordingly, Q... = 0.176 was determined based on our experience with
DRL for flow control in Suérez et al. (2023), Varela et al. (2022).

A vortex-shedding period is T, = 1/St ~ 4.7 time units, based on our uncontrolled case
and validated with the existing literature results. Note that St = f,(D/U,, is the Strouhal
number, and f, denotes the vortex-shedding frequency. The episode duration is specifically
set to span at least seven vortex-shedding periods (7, = 1/f,,). We choose T, =~ 0.05T,
based on insights gained from previous studies (Rabault et al. 2019), i.e. T, = 0.25 time
units. This interval allows sufficient time between actions to produce an effect on the flow.
A shorter T, could introduce noise into the training process, complicating trajectory explo-
ration and correlation within the s, gradients. Conversely, an excessively long 7, may com-
promise the capability of the agent to control shorter characteristic time scales. Thus, a
total of 150 actuations i.e. 37.5 time units per episode, seemed adequate for evaluating
cumulative rewards, based on a preliminary estimation.

At the beginning of the training, each episode starts from an uncontrolled, converged
baseline state, with subsequent episodes beginning always from the last timestep of the
baseline. After this first stage of the training period, the process is paused to evaluate the
policy 7 in exploitation mode, labeled DRL-10-s1 (stage 1).

Previewing the results discussed in Sect. 3.2, we observed that the episode duration for
the DRL-10-s1 policy was more limiting than expected at this Re,, restricting its ability to
stabilize control performance. In short, the DRL-10-s1 case would lose and then recover
drag control once it exceeded the predefined episode duration, indicating that it could not
continue performing effective control beyond the episode duration. The reasoning behind
this conclusion will be explained in detail later in Sect. 3.2.

In this work, we introduce a novel multi-stage training approach to address these limi-
tations. The current training continues with a second stage, where a ratio é of episodes
begins from the last timestep of the previous episode, allowing for improved stabilization
beyond the transition from uncontrolled to controlled state. This model, trained with the
updated approach, is referred to as DRL-10-s2 (stage 2). Additionally, we compare our
DRL-based control strategies with those developed using the Kim & Choi out-of-phase
setup from 2005, here denoted as KCO5.

3 Results

In this section, we present the successful training at Re;, = 3900, which relies on a MARL
implementation. The proposed multi-stage training process, associated challenges, conver-
gence assessment through reward evaluation, and its contributions, among other aspects,
are described initially. Subsequently, both models trained, DRL-10-s1 and DRL-10-s2,
are evaluated in exploitation mode, also known as deterministic mode. The latter entails
choosing actions without exploration; the agent solely applies the action associated with
the highest probability of maximal reward given a particular state. Statistical results are
presented alongside the uncontrolled case and the controlled reference case KC05. The
purpose of conducting such a comparison is to clarify which novel drag-reduction physical
mechanisms the agent explores.
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3.1 Exploration

Setting up a good training configuration in advance is crucial for achieving a consistent
and efficient reward improvement. In fact, it is worth noting that to reach the configuration
already shown in Table 2, there has been an iterative process of assessing different values
of the main parameters. For instance, unsuccessful attempts were made with an observation
state s, of 181 X 3 slices (543 pressure values in total), or taking into account more slices
from neighbor actuators or even with n; = 15, hence shorter jets with L, /D ~ 0.21.
DRL requires methodical hyperparameter tuning in order to obtain the optimal setup for
the case under study.

The exploration is evaluated continuously by monitoring the final and cumulative
rewards in real wall-clock time. Based on our experience, the most helpful metrics to track
are the total reward R, its contribution due to lift-bias, —a|C, (%, ijet)|, and the pure drag
reduction, C_Db — Cp. Additional data from Tensorboard logs, including policy and base-
line losses, entropy, and episode returns, were analyzed to cross-validate our own metrics
from CFD. However, tracking these metrics proved challenging due to multiple restarts
from checkpoints and scattered data. The reward evolution shown in Fig. 2 highlights the
difficulties when assessing whether a particular training is converged or not. To explain
and interpret this plot, which plays a crucial role in deciding whether to stop training early
and thereby save computational resources, we observe two distinct trends corresponding to
the two stages of training. This observation is noteworthy: during the final episodes of the
initial stage, which lasts for 800 pseudo-environment episodes, exploration appeared stag-
nant, showing limited improvement-this posed a risk of overfitting, although such a risk is

1 1
1% Stage H 2nd St !

i Stage :

Uncontrolled - Uncontrolled - - !
R Episode n ! . Episode n Episode n+1 !
baseline ! baseline e o= (... 1
[t1,t2] H [ty, t2] [t2, t3] !

[to, t1] H [to, t1] 7 7 :

H 1-5 1-8 1-8 !

1 1

1 1

— -

1.00

0.50 1%

%0.00

-0.50

-1.00

00 400 600 800 1000 1200
Pseudo-environment episodes

—— Total reward Standard deviation Cp contribution C;. contribution

Fig.2 Evolution of all rewards collected at the end of pseudo-environment episodes, denoted as R, through-
out the multi-stage exploration phase, along with its contributions from lift-bias and pure drag-reduction
during the training session. The signals are smoothed using a moving average of 15 values window. Note
that the top part describes the training of two stages
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relatively low with PPO. However, with the workflow modifications introduced-outlined in
the scheme at the top of the figure-the agent is encouraged to improve its ability to stabilize
and achieve further improvements. As a result, the agent nearly doubled the total reward
and reduced lift penalties over an additional 550 episodes.

At this point, we decided to stop the training process for two reasons: first, the reward
had converged; second, the drag-reduction contribution approached our target value of
R =1, which was predefined based on the KCO5 results, indicating that the performance
can be already considered satisfactory.

If we examine the details of the reward fluctuations, we observe that, although the
reduction in C,, converges to an acceptable reward value, the maximum, minimum, and
standard deviation still contain significant levels of stochasticity, associated with the learn-
ing process and corresponding random exploration. To further assess the learning, inter-
mediate exploitation of the model is also needed to monitor the drag reduction and if the
control strategies are depicting any pattern. Based on our experience, this is very important
when tackling unsteady and chaotic environments — because such reward evolution can be
misleading when deploying z. For instance, in a previous case with the model at 500 epi-
sodes (not reported here), the performance was similar to that after 800 episodes (DRL-
10-s1). This suggests that training could have potentially been stopped earlier to allow for
further adjustments. However, there is always a risk that the agent may not explore enough
to reject poor trajectories. Rejecting poor trajectories is just as crucial as learning favorable
ones, as it prepares the agent for any disturbances it may encounter.

In terms of computational expense, training constitutes the dominant part. The pre-
sented training session required around 1350 trajectories, akin to executing 135 numerical
simulations with 10 pseudo environments each. All exploration sessions were conducted on
the Dardel machine at PDC, the high-performance-computing (HPC) center at KTH. These
sessions operate across 90 nodes concurrently, each 15 nodes executing a single numerical
simulation consisting of 10 simultaneous pseudo environments, totaling 60 pseudo envi-
ronments. Each node is equipped with two AMD EPYC™ Zen2 2.25 GHz 64-core proces-
sors and 512 GB of memory. With each batch of 6 CFD simulations optimally requiring
approximately 10 h in this specific setup, the process involves a minimum of two weeks of
continuous operation. This is equivalent to using 11,520 CPU cores running for ~ 3 million
CPU hours in total. It should be noted that making an accurate estimation for such training
sessions is difficult, considering synchronization times, the necessary restarts between epi-
sodes, and data movement in memory and on disk. After deciding to conclude the explora-
tion phase, we proceed to evaluate the deployment of the model and its performance during
exploitation.

3.2 Exploitation

When the agent operates without exploration, it always selects the best possible action
from the policy z. In Fig. 3, we show how drag and lift coefficients evolves during exploi-
tation for both models, DRL-10-s1 and DRL-10-s2, alongside the control law from KC05
and the uncontrolled case. The effectiveness of the KCO5 strategy is evident, but, as will
be discussed later, it requires significantly higher actuation cost. Focusing on DRL-based
strategies first, we observe a successful reduction of Cj,. Regarding the results after the
first stage, there is a reduction of AC;, = —9.44% with the DRL-10-s1 policy. Note that
the drag exhibits some low-frequency oscillations with a period of approximately 40 time
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Fig.3 Evolution in time of the (top) drag coefficient C;, and (bottom) lift coefficient C,. Note that dashed
horizontal lines are the averaged values and the transitional stages are included. When tU_, /D = 0 the con-
trol starts for all cases, DRL-10-s1, DRL-10-s2 and KC05

units—roughly the duration of the training episodes, spanning #; — f,, using nomenclature
in Fig. 2. Within these intervals, the C;, values transition quickly, in around 20 time units,
to a brief but significant reduction of AC,, & —14%. However, the strategy is unable to
sustain this reduction, and the drag forces revert to uncontrolled C;, values and then back
to the previous reduction again. This observation connects with the insights introduced ear-
lier in Sect. 2. Our hypothesis is that the training episode duration is insufficient to fully
capture the transition period and subsequently learn to stabilize this new flow state beyond
these 40 time units.

It is then that the idea of a second training phase emerges, in which the agent is forced
to explore beyond the episode duration, aiming to reduce the oscillations that negatively
impact average performance. After an additional 550 episodes of training, we run with the
DRL-10-s2 strategy in exploitation mode, and the results partially confirm our expecta-
tions. We observe that the agent is now able to sustain lower C;, values for a longer period,
once again reaching AC;, = —14% but now maintaining this reduction for over 40 time
units—as seen between U, /D = 60 to 100 in Fig. 3. However, it also appears to lose some
ability to transition as quickly as before. Perhaps the 20% rate of episodes starting from
the uncontrolled case causes the agent to “forget” the transition process, trading it for
improved stabilization of the reduction. Despite the improvement in low-frequency oscil-
lations, the average reduction slightly worsens to ACDS2 = —8.33%. Although DRL-based

control occasionally surpasses KC05’s drag reduction value of AC), = —15% (which is
lower than the 18% reported in the original study (Kim and Choi 2005)), the latter demon-
strates consistency in control with fewer oscillations. This is also visible in the root-mean-
squared values presented in Table 3, where the DRL-based RMS values are up to three
times higher than the uncontrolled case and five times higher than KCO05. This resembles
the behavior from the controlled cases studied in the transition regimes between Re,, = 100
to 400 (Suérez et al. 2023). On the other hand, a clear difference respect to the results in the
transition regime is observed in the lift signals. Although the averaged values are also very
close to zero, indicating no significant bias, the DRL-based strategies exhibit a minimal
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Table 3 Summary of the statistical quantities for both DRL based controlled cases (DRL-10-s1 and DRL-
10-s2) compared with the present uncontrolled case and KC05. All values are averaged over 150 time units
after discarding the initial transients resulting after applying the control

Uncontrolled DRL-10-s1 DRL-10-s2 KCO05
St 0.22 0.177 0.172 0.22
L, /D Bubble length 1.30 1.80 1.94 2.18
_C_pb 0.95 0.75 0.75 0.69
Oinax - 0.053 0.023 0.11
OrMs - 0.037 0.066 -
f. - 0.168-0.177 0.167-0.194 -
D 0.021 0.049 0.06 0.011
RMS
L 0.238 0.25 0.34 0.048
RMS
C_D 1.08 0.978 0.99 0.918
AC_D (%] - —-944 —8.33 —15
E:‘/AC_D - 0.0014 0.0015 0.22

increase in fluctuations. In contrast, KCO5 also yields good consistency with a low RMS.
This suggest that the drag—reduction mechanisms explored here do not focus on minimiz-
ing these fluctuations in the pressure distribution.

An important note to make at this point is that overfitting to a specific initial condi-
tion is discarded, as the DRL-based policies are tested with activation and deactiva-
tion at different timeframes. These tests show consistent performance with the results
reported in Table 3. However, these results are not reported in the present paper.

Table 3 also shows the rest of relevant physical quantities taking into account aerody-
namic forces. All values are averaged over the last 150 time units in the converged stage,
equivalent to 30 shedding periods approximately. We observe how the DRL-based cases
are able to influence Sz, while the KCO5 case has no influence. The drag-reduction mecha-
nism is very similar to those reported in Varela et al. (2022), Suérez et al. (2023), at least
statistically. Interestingly, the recirculation bubble is extended by 41% in DRL-10-s1, 49%
in DRL-10-s2 and by 67% in KCOS5 relative to the case without control. The pressure valley
at the most downstream point in the cylinder surface increases slightly, a fact that is directly
related to the integral necessary for computing the forces exerted on the surfaces. However,
although both DRL-based policies have the same value, it will be discussed below that the
pressure distributions are different.

The aspect in which DRL significantly outperforms classical AFC methods is in the
cost associated with the control. Only considering the maximum values of mass-flow rate
per unit length over time, it can be observed that it is an order of magnitude lower for both
DRL-based cases compared to KCO5. But if we also consider that KCO5 maintains a con-
stant value over time instead of fluctuating, we observe that E* /AC}, ratios are two orders
of magnitudes lower in the DRL case, compared with KCO05. Note that E is defined as:

E L, B3
E=_t= +/ 1Q,(n)] dt, 8
c E (t2 _ tl)QooLz " ; 1 ( )

[oo]

which represents the mass cost over time of any control system with n;,,, compared to the
corresponding mass intercepted by the cylinder E., where Q. = DU_. Note that low
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values of E* /AC, imply that control is much more efficient in terms of used mass per drag
reduction ACp,.

Such good performance indicates that the DRL-based control is much more fine-grained
than the fixed spanwise control by KCO05, and is able to adapt to the instantaneous state of
the wake, effectively exploiting the wake structures to achieve drag reduction. Note that
in Table 3 we also include the main frequency bandwidth of the mass-flow control signal,
denoted by f.. It is interesting to note that this frequency differs from both the uncontrolled
and the controlled Strouhal numbers.

To study how the wake topology changes in the various scenarios, we present the vorti-
cal motions in the instantaneous flow in Fig. 4. We note that similar patterns have been
observed at different time sequences, although only one snapshot per case is shown here.
The most remarkable aspect is the non-invasive nature of DRL-10-s1 and DRL-10-s2
compared to KCO5, where a distinct peak of suction z/D = x /4 and another of blowing

-0.5
-1
-1.5

(d)

Fig. 4 Instantaneous coherent structures identified with the A, criterion (Jeong and Hussain 1995), where
the isosurfaces 4,D?/ Ufo = —5 are coloured by the streamwise velocity. We show a uncontrolled, b DRL-
10-s1, ¢ DRL-10-s2 and d KCO5 cases, and all of them are chosen to show the flow in a statistically con-
verged stage. Note that for a the locations of P1 and P2 that will be referred later in Fig. 6a, b are shown
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at z/D = 3x /4 are clearly observed due to the wavelength covering the entire span of the
cylinder. This is particularly evident in the Kelvin—Helmholtz instabilities, represented by
the smaller tubular structures at the top, near the separation point, where the shear layer
becomes unstable with high values of streamwise velocity—very visible in the xz-view in
the right column. All controlled cases appear to extend these instabilities in the streamwise
direction, helping to increase the recirculation bubble.

However, there are some particularities: in the DRL-10-s1 case, a narrower shear layer
is observed, but it is more aligned with the streamwise direction. In contrast, in stage 2, the
shear layer is wider and forms a more open angle. In the case of KCO3, the shear layer is
notably more stable, maintaining the secondary tubular structures for a longer distance as
part of the main vortex shedding process, thereby enlarging the recirculation bubble a bit
more than the other cases. Additionally, all control strategies delay the emergence of the
main counter-rotating vortices that initiate vortex shedding.

Figure 5a and b illustrate the benefits offered by a system like MARL. In comparison to
what is observed at lower Reynolds numbers (Suéarez et al. 2023), where it was clear that
the control tries to synchronize all jets to act at the same frequency adapting to minimal
instabilities, here we have a much richer control. As shown by the power-spectral density
in Fig. 5c, Q evolution undergoing DRL-based control exhibits more features besides the
main frequency f,. In contrast, strategy reported for Re;, = 400 in Suérez et al. (2023) only
has a clear peak and a second harmonic compared to the rest of its spectrum in the figures.
It can be observed a control resolution where multiple actuators collaborate. Among them,
they form a distributed blowing/suction spanning a spanwise length of around D, which
aligns with the wavelengths experienced in this classic fluid case. When comparing both
DRL cases, it is interesting to observe how the bandwidth of the spectrum broadens after
the second training stage, thus containing more frequencies around the St.

As a general observation, building on the previous discussion about mass cost,
it is worth noting that in the DRL strategies, the values are mainly within the range of
0O /2 € [—0.01,0.01], which is an order of magnitude smaller than in KCO05, where the
equivalent mass-flow per unit length is Qg5 = 0.11. Despite this, there are occasional
peaks in QO that saturate the signal, reaching Q > 0.02. This indicates that the DRL-10-s1
actuators are able to fully exploit the mass flow rate when needed. However, it also sug-
gests that the system periodically loses track and effectively resets the flow state, repeat-
edly recovering a favorable reduction of Cj,. This behavior is also reflected in the low-
frequency fluctuations seen in the drag reduction signal already commented in Fig. 3. For
DRL-10-s2, the evolution of Q, is slightly different: the sudden peaks are diminished, and
the signal becomes more homogeneous in time, though more heterogeneous in the span-
wise direction.

Overall, it is important to highlight that despite the DRL agent being able to explore
beyond this range during training, it decides to limit the maximum control values to be
only 10% of Q,,,,, during exploitation. This suggests the algorithm is conservative, aiming
to use the minimum mass-flow rate for maximum impact. In our experience, poor learning
is often indicated by signal saturation, where the agent fails to adapt to the flow.

This sophisticated distribution is remarkable. If we focus on the standard deviations ¢
shown in Fig. 5d, these are orders of magnitude higher than the those in the reference case at
Rej, = 400 reported in Sudrez et al. (2023). The agents at Re;, = 3900 are capable of acting
precisely on the dominant structures in the wake. Again, after the second stage i.e. DRL-
10-s2, the ¢ the distribution over the span is richer than that in the DRL-10-s2 case too.

Next, we study the spectra of temporal signals of the streamwise and cross-flow
velocities for two locations in the wake of the cylinder, see Fig. 6. Inspired by the study
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Fig.5 Mass-flow rate per unit width Q as a function of time for all jets, showing spatial distribu-
tion over z/D (top) and Q for all jets overlapped (bottom) for a DRL-10-s1 and b DRL-10-s2. ¢
Power-spectral density of all actuators Q signals in time comparing (shifted by 10> between cases,
for visualization purposes). d Evolution in time of the variance of the mass-flow rate computed in z,

o2(f) = (l/njets) E?:‘l‘(Q,-(t) — Q(#)% and normalized by the squared peak Q values from each case. Note

that (¢) and (d) show DRL-10-s1 (blue), DRL-10-s2 (purple) at Re;, = 3900, and Re;, = 400 reported in
Suarez et al. (2023) (black)

conducted by Lehmkuhl et al. (2013), points P1 at (x/D,y/D,z/D) = (6.81, 13.25,1.26)
and P2 at (x/D,y/D, z/D) = (8.25,13.25, 1.26) were chosen to assess the main frequencies
and compare them with those reported in the literature.

In the uncontrolled case, the shedding frequency of vortices f,, =0.22 is clearly
captured at both locations. However, at the P1 location, it seems to be too close to the
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Fig.6 Power spectral density of the (left) streamwise velocity u and (right) cross-stream velocity v. The
points considered are located at the following coordinates: a P1, (x/D,y/D,z/D) = (6.81,13.25,1.26)
and b P2, (x/D,y/D,z/D) = (8.25,13.25,1.26). All studied cases are shown, with the main frequencies
denoted by fyg for vortex shedding and fyy; for Kelvin—-Helmholtz instabilities. A dashed line representing
the E(k) ~ k=/3 energy spectrum, characteristic of the inertial subrange in turbulent flows, is also included
for reference

cylinder surface to effectively capture the bubble instability, especially when consider-
ing the streamwise velocity. Additionally, at point P2, we can discern the emergence of a
higher frequency at fx; = 1.55, which according to literature, could be associated with the
Kelvin—Helmholtz instability in the separating shear layer. The observed value is slightly
higher than the estimate provided by Prasad and Williamson (1997), which is given as
fin = 0.0235Re%07f, = 1.31.

If we compare with the results of the controlled cases, we can observe the influence of
the actuators in both DRL-based and KC05. In DRL-10-s1, there is a shift to a lower shed-
ding frequency and lower intensity, f! =0.177. On the other hand, DRL-10-s2 turns to
decrease the intensity of those fluctuations on those locations—indicating that the recircula-
tion bubble is a bit larger than DRL-10-s1. Meanwhile, KC05 maintains the same shed-
ding frequency, %5 = f, = 0.22, but with a slight decrease in intensity. This is consist-
ent with the fact that the KCO5 control does not involve any temporal dependency, thus
not affecting the dominant frequency in the wake. At point P1 (Fig. 6), it is interesting
how the intensity of the energy cascade for KC05 is much lower compared with to the
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Fig.7 Time- and spanwise-averaged flow-field statistics comparison-averaged all over 150 time units after
transients. a Mean velocities, # and v, and mean pressure P fields for from top to bottom: uncontrolled,
DRL-10-s1, DRL-10-s2 and KCO5. Yellow regions denote wake-stagnation points where |u| < 0.03, which

is used to compute L, /D in Table 3. b Mean Reynolds stresses «’u/, u'v',v'v' and w'w’ for from top to bot-
tom: uncontrolled, DRL-10-s1, DRL-10-s2 and KC05. ¢ Maximum Reynolds-stress values and their cor-
responding x/D locations across all investigated cases, compared with values from the literature (Lehmkuhl
et al. 2013)

uncontrolled case, while DRL-10-s1/s2 exhibit a slight increase. It can be inferred that the
agent is enriching the finer scales near the cylinder, whereas the strong actuation of KC05
causes such structures to fade. Note that St values shown in Table 3 are computed using
spectra from probes located further away, as well as from the lift signal.

The influence of the studied AFC is not limited to frequencies but also extends to the
mean fields in the wake. First, Fig. 7a shows how the recirculation bubble is enlarged as a
result of both DRL controls. In DRL-10-s1 and DRL-10-s2, we can observe very similar
results: a shorter recirculation bubble than in the KCO5 case, also exhibiting fewer regions
of mean streamwise velocity where |u| < 0.03 (highlighted as yellow-colored regions). The
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Fig.8 Schematic representation of wake topology evolution, illustrating the transition from uncontrolled
to controlled flow states. The diagram highlights the key drag reduction mechanisms and their influence on
wake dynamics and flow organization
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Fig.9 a Pressure-coefficient distribution around the cylinder, where 6 = 0 is the back of the cylinder. The
red shaded area corresponds to the location of the jets, that spans @ = 10°. b Averaged streamwise velocity
along the centerline at y/D = L, /2. Note that several curves from the literature are included to validate the
present uncontrolled case in (a) and (b)

KCOS5 case resembles the uncontrolled configuration, with larger regions of zero velocity
than the DRL cases.

Second, in Fig. 7b, ¢ we analyze the Reynolds stresses. We observe a similar trend in
all controlled cases, where the maximum stresses are reduced by ~ 50% and their locations
shifted upstream. Note that the KCOS5 case prominently exhibits the shift of the locations
of those peaks by a length of around D. For DRL-based control, the change is less pro-
nounced but still effective, as the absolute values of the stresses decrease. Specifically, the
Vv component reduces by more than 60% compared to the baseline values. This behav-
ior is consistent with the drag-reduction mechanisms observed at lower Reynolds num-
ber (Suarez et al. 2023).

This is consistent with previous findings for similar configurations. Specifically, the
DRL agents work to expand the recirculation area and suppress mixing between the inner
and outer flow within the recirculation bubble. This results in a more stable and extended
outer shear layer enveloping the bubble. Doing so, the actuators effectively reshape the
flow into a more aerodynamically efficient profile, resembling a teardrop or airfoil, which
is known to minimize drag. Figure 8 provides a simplified depiction of how these drag
reduction mechanisms evolve and influence the wake topology.

The pressure distribution on the surface of the cylinder is shown to be consistent with
the literature, except for a slight deviation in the minimum peak at 8 ~ —112.5°, as seen in
the Fig. 9a. However, when considering the influence of all controlled cases, around this
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pressure valley, we observe that both DRL-10-s1 and KCO5 follow the same trend, recover-
ing some pressure. On the other hand, unexpectedly, DRL-10-s2 deviates from these strate-
gies, further decreasing this valley value. Nevertheless, we observe that the most signifi-
cant change occurs in the distribution, specifically within the separation bubble delimited
by +6, = 89°.

In the Fig. 9b, we observe a V-shaped mean streamwise velocity along the centerline
in the wake when uncontrolled, which shows good agreement with the literature. The con-
trolled cases, however, exhibit a more U-shaped velocity profile. The reattachment, with
the downstream velocity value—which is more relevant—occurs later for all controlled cases,
indicating an increase in the recirculation bubble, as discussed earlier in Table 3. Both
DRL-10-s1 and DRL-10-s2 reach higher negative velocity values, while KCO5 is better
at maintaining regions closer to u = 0 near the cylinder. The minimum velocity values are
also noticeably shifted by the latter, around D/2.

To conclude the analysis, the different velocity profiles along the wake show very good
agreement with the literature, see Fig. 10. Given that significant scattering with the refer-
ences typically happens near the cylinder, the observations at the first three locations (x/D =
6.83, 7.31, and 7.79) reaffirm our earlier observations: The recirculation zone is wider in
the controlled cases, with KCO5 showing a slightly more pronounced effect compared to
the DRL cases. Additionally, u exhibits a flatter profile near the centerline. For instance, at
x/D =7.79, it is noteworthy how the recirculation zone is maintained in the controlled cases,
while in the uncontrolled case, u reattaches to the downstream velocity further into the wake.
This indicates that the velocity deficit remains higher, and the momentum is more sustained
in the controlled cases. As expected, farther from the cylinder, the wake recovers its shape
similarly across all controlled cases, with no significant differences observed in the redistri-
bution of momentum from the central velocity deficit to the upper or lower regions.

z/D=6.83 z/D="7.31 z/D="17.79 x/D=11.25 z/D=13.25 z/D=16.25

15

y/D

>

10 F——L Co S = : :
~0.40,51.4 -0.4051.4 -04051.4 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
u u U u u u

—— Uncontrolled —— DRL-10-s1 O Lehmkuhl et al. 2013 (DNS) + Parnadeau 2005 (Exp)
KCO05 —— DRL-10-s2 A Ong & Wallace 1994 (DNS)

Fig. 10 Mean streamwise velocity u profiles at different locations along the wake. Note that reference trends
from the literature are included to validate the present uncontrolled case in all the figures
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4 Conclusions

This study couples a multi-agent reinforcement learning (MARL) framework with a
numerical solver to explore efficient drag-reduction strategies by controlling multiple
jets positioned along the span of a three-dimensional cylinder. The investigation is
conducted at Re;, = 3900, representing the fully turbulent wake, and compared with a
classical controlled case based on the out-of-phase strategy reported by Kim and Choi
(2005), referred to as KCO5. The framework benefits from an innovative multi-stage
training workflow for AFC applications, where training is optimized dynamically. In
this process, the policy z is evaluated at two stages: after the first phase, DRL-10-s1,
and after the second phase, DRL-10-s2.

The DRL-based control policies outperform the ratio of mass cost per drag reduc-
tion rate used in the KCO5 strategy by two orders of magnitude. Both DRL-10-s1 and
DRL-10-s2 exploit the emergence of spanwise instabilities to discover successful
drag-reduction strategies with ACp = —9.4% and AC), | = —8.3% respectively. This is
achieved by leveraging the underlying physics within pseudo environments and opti-
mizing the global problem involving multiple interactions concurrently. Notably, the
cooperative closed-loop strategy developed by the agents introduces a novel approach,
utilizing a range of mass-flow-rate frequencies that would be difficult to achieve using
classical control methods. These findings underscore the DRL approach’s ability to
identify more refined flow-control strategies than those previously achieved through
classical methods, covering a broad range of frequencies and effectively managing
various flow-structure wavelengths in the wake. Regarding the drag-reduction mecha-
nisms, the actuators discover a novel way to interact with the flow around the three-
dimensional cylinder by enlarging the recirculation bubble, influencing the fluctuations
by shifting them downstream and attenuating their intensity. At the same time, they
attenuate the mixing between the inner and outer region of the bubble. As a result, the
wake behind the cylinder takes on a shape resembling a teardrop or airfoil-like topol-
ogy, which is known to be more efficient for drag reduction (as illustrated in Fig. 8).

Another advantage of MARL is its ability to deploy trained agents across various
cylinder lengths and numbers of actuators, while ensuring consistency in the spanwise
width of the jets and the corresponding pressure measurement locations as observation
states. It is worth noting that the training focuses on symmetries and invariant struc-
tures, a task not feasible with SARL due to its limitations in scaling to different geom-
etries. MARL enables computational cost-effective training sessions in smaller and
simplified computational domains, thereby accelerating the process required for flow
control in high-fidelity simulations. This, combined with the results from implement-
ing the second stage to address weaknesses already observed in the DRL-10-s1 policy,
suggests that there are many ways to enrich the exploration process and enhance the
capabilities of the same training session without having to start from scratch, as seen
with the DRL-10-s2.

The current DRL-based AFC strategies demonstrate impressive efficiency in reduc-
ing drag, offering both immediate energy savings through on-the-fly adjustments and
long-term actuation benefits. A particularly novel and important contribution of these
strategies is their non-invasive nature, which allows significant modifications to the
wake topology while maintaining minimal disruption to existing systems. From a
physics perspective, this non-invasiveness is especially interesting, as it enables sub-
stantial changes in the flow dynamics. Furthermore, this study is the first to perform
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Table 4 Summary of grid . - —
C Grid t: A A
independence study using five ase rid points  min(Ar) z Cp

different mesh for Re;, = 3900:
6
coarse (C), medium (M), and Cl1 7.6 %10 0.0049 0.0314 1240 0.078  0.464

fine (F). The medium mesh (M) ~ C2  92x10° 00045 00260 1.119 0.066 0279
was used in the present paper. M 9.6 x 10° 0.0036 00260 1.081 0021 0236

All quantities are averaged over
the last 150 time units of the F1 13.5x10°  0.0031 0.0260 1.089 0.063  0.258

simulation. We refer to Table 1 F2 17.8 x 10° 0.0026 0.0209 1.083 0.041 0.201
for some references to compare
them
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Fig. 11 Convergence analysis for Cj, and C, signals for the 5 different proposed meshes. (top left) Temporal
evolution Cj, = f(¢). (top right) Accumulative average, C_D = f(r) and (bottom left and bottom right) RMS
for Cp and C; as f(z) as_well, respectively; starting from the last timestep and advancing backwards where
T = (fopa — DUq /D and ¢(z) = (1/7) [ p(D)dt.

training on a fully turbulent 3D cylinder flow at Re;, = 3900, within the framework
of MARL with two-stage exploration. This achievement provides a valuable reference
for the DRL community and may encourage future applications in distributed-input,
distributed-output systems.

While the results are promising, the practical implementation of these strategies in
real-world applications will require careful consideration of computational resource
demands and the ability for real-time adjustments. Further exploration is needed to
assess the feasibility of DRL-based strategies for industrial use.

Appendix: Grid Convergence Study
In order to ensure the reliability and accuracy of the results, a grid independence study was

conducted for three-dimensional cylinders at Re;, = 3900, with the drag coefficient as the
primary integral quantity of interest. The study reveals that the drag coefficient converges
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Fig. 12 Mesh used in M case

with details regarding the refine-

ment boxes. Where V;, /D? is set Vin/D? |cylinder =0.032
in Gmsh software =

Vin/D? | neqr = 0.04

wake

as the mesh is refined, stabilizing with finer grids, as shown in Table 4. In this table,
meshes M, F1, and F2 converge around C_D = 1.08. We note that our results are slightly
higher values than those reported in the literature, even with much finer meshes. Although
the literature also reports modes that alternate between Cj, = 1.00 and 1.08 and reinforces
the validity of our findings.

Figure 11 illustrates how all averaged quantities reach a plateau when 7 > 100. Addi-
tionally, other key statistics, such as mean—flow patterns and pressure distributions, were
validated for the used mesh and are shown in Figs. 9 and 10, as well as in Table 1. Note
that is important to indentify the minimum number of grid points that would provide ade-
quate accuracy. This study strikes a balance between the desired simulation quality and the
high computational demand typical of DRL training, ensuring reliable results for large-
scale simulations while maintaining the accuracy of the drag coefficient and other flow
characteristics.

As a final comment on the mesh depicted in Fig. 12, it is generated by a parametric
GMSH script with three distinct refinement regions: the boundary layer around the cylin-
der surface, the near wake, and the larger wake.

Author Contributions Suarez, P.: Methodology, software, validation, investigation, writing - original draft
and visualization. Alcéntara—Avila, F., Rabault, J., Mir6, A. & Font, B.: Methodology, software, and writ-
ing - review & editing. Lehmkuhl, O.: Funding acquisition, supervision, and writing - review & editing.
Vinuesa, R.: Conceptualization, project definition, methodology, resources, writing - original draft, supervi-
sion, project administration and funding acquisition.

Funding Open access funding provided by Royal Institute of Technology. This study was enabled by
resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) at
PDC, KTH Royal Institute of Technology. R.V. acknowledges financial support from ERC grant no.2021-
CoG-101043998, DEEPCONTROL. Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.

Data Availability The data presented in this study are available upon request from the corresponding author.
Declarations

Conflict of interest The authors have no conflicts to disclose.

Ethical Approval Not applicable.

Informed Consent Not applicable.

@ Springer



Flow, Turbulence and Combustion

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Belus, V., Rabault, J., Viquerat, J., Che, Z., Hachem, E., Reglade, U.: Exploiting locality and translational
invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling
liquid film. AIP Adv. 9, 12 (2019)

Brunton, S.L., Noack, B.R.: Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67,
050801 (2015)

Castellanos, R., Cornejo Maceda, G. Y., De La Fuente, 1., Noack, B. R., Ianiro, A., Discetti, S.: Machine-
learning flow control with few sensor feedback and measurement noise. Phys. Fluids 34, 047118
(2022)

Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier—Stokes Galer-
kin discretizations. J. Comput. Phys. 337, 289-308 (2017)

Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: Efficient discretizations for the EMAC formu-
lation of the incompressible Navier—Stokes equations. Appl. Numer. Math. 141, 220-233 (2019)

Chatzimanolakis, M., Weber, P., Koumoutsakos, P.: Learning in two dimensions and controlling in three:
generalizable drag reduction strategies for flows past circular cylinders through deep reinforcement
learning. Phys. Rev. Fluids 9, 043902 (2024)

Chen, W., Wang, Q., Yan, L., Hu, G., Noack, B.R.: Deep reinforcement learning-based active flow con-
trol of vortex-induced vibration of a square cylinder. Phys. Fluids 35, 5 (2023)

Choi, H., Jeon, W.-P., Kim, J.: Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113-139
(2008)

Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential
equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43, 50-67 (1947)

Font, B., Alcéntara—Avila, F., Rabault, J., Vinuesa, R., Lehmkuhl, O.: Active flow control of a turbulent
separation bubble through deep reinforcement learning. J. Phys. Conf. Ser. 2753, 012022 (2024)

Franke, J., Frank, W.: Large eddy simulation of the flow past a circular cylinder at Re;, = 3900. J. Wind
Eng. Ind. Aerodyn. 90, 1191-1206 (2002)

Guastoni, L., Rabault, J., Schlatter, P., Azizpour, H., Vinuesa, R.: Deep reinforcement learning for turbu-
lent drag reduction in channel flows. Eur. Phys. J. E 46, 27 (2023)

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., Levine, S.: How to train your robot with deep
reinforcement learning: lessons we have learned. Int. J. Robot. Res. 40, 698-721 (2021)

Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69-94 (1995)

Kim, J., Choi, H.: Distributed forcing of flow over a circular cylinder. Phys. Fluids 17, 033103 (2005)

Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at Re;, = 3900. Phys.
Fluids 12, 403—417 (2000)

Le Clainche, S., Ferrer, E., Gibson, S., Cross, E., Parente, A., Vinuesa, R.: Improving aircraft perfor-
mance using machine learning: a review. Aerosp. Sci. Technol. 138, 108354 (2023)

Lehmkuhl, O., Rodriguez, 1., Borrell, R., Oliva, A.: Low-frequency unsteadiness in the vortex formation
region of a circular cylinder. Phys. Fluids 25, 8 (2013)

Li, J., Zhang, M.: Reinforcement-learning-based control of confined cylinder wakes with stability analy-
ses. J. Fluid Mech. 932, A44 (2022)

Lourenco, L.M., Shih, C.: Characteristics of the plane turbulent near wake of a circular cylinder (1993)

Ma, X., Karamanos, G.S., Karniadakis, G.E.: Dynamics and low-dimensionality of a turbulent near
wake. J. Fluid Mech. 410, 29-65 (2000)

Norberg, C.: Ldv-measurements in the near wake of a circular cylinder. ASME paper no. FEDSM98-
521, vol. 41 (1998)

Norberg, C.: An experimental investigation of the flow around a circular cylinder: influence of aspect
ratio. J. Fluid Mech. 258, 287-316 (1994)

@ Springer


http://creativecommons.org/licenses/by/4.0/

Flow, Turbulence and Combustion

Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow
over a circular cylinder at Reynolds number 3900. Phys. Fluids 20, 8 (2008)

Pino, F., Schena, L., Rabault, J., Mendez, M.A.: Comparative analysis of machine learning methods for
active flow control. J. Fluid Mech. 958, A39 (2023)

Prasad, A., Williamson, C.H.K.: The instability of the shear layer separating from a bluff body. J. Fluid
Mech. 333, 375-402 (1997)

Rabault, J., Kuhnle, A.: Accelerating deep reinforcement learning strategies of flow control through a
multi-environment approach. Phys. Fluids 31, 9 (2019)

Rabault, J., Kuchta, M., Jensen, A., Reglade, U., Cerardi, N.: Artificial neural networks trained through
deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech. 865,
281-302 (2019)

Ren, F., Rabault, J., Tang, H.: Applying deep reinforcement learning to active flow control in weakly
turbulent conditions. Phys. Fluids 33, 3 (2021)

Schaarschmidt, M., Kuhnle, A., Fricke, K.: TensorForce: a tensorflow library for applied reinforcement
learning (2017). https://github.com/reinforceio/tensorforce

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algo-
rithms (2017). arXiv:1707.06347

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.: Mastering the game of go with
deep neural networks and tree search. Nature 529, 484-503 (2016)

Suérez, P., Alcéntara—Avila, F., Mir6, A., Rabault, J., Font, B., Lehmkuhl, O., Vinuesa, R.: Active flow
control for three-dimensional cylinders through deep reinforcement learning. In: 14th International
ERCOFTAC Symposium on Engineering, Turbulence, Modelling and Measurements: 6th—8th Septem-
ber 2023, Barcelona, Spain: proceedings. Preprint arXiv: 2309.02462 (2023)

Tang, H., Rabault, J., Kuhnle, A., Wang, Y., Wang, T.: Robust active flow control over a range of Reynolds
numbers using an artificial neural network trained through deep reinforcement learning. Phys. Fluids
32,5 (2020)

Tremblay, F., Manhart, M., Friedrich, R.: LES of flow around a circular cylinder at a subcritical Reynolds
number with cartesian grids. Adv. LES Complex Flows 8, 133-150 (2002)

Trias, F., Lehmkuhl, O.: A self-adaptive strategy for the time integration of Navier—Stokes equations.
Numer. Heat Transf. Part B Fund. 60, 116-134 (2011)

Varela, P., Suarez, P., Alcéntara—/\vila, F., Mir6, A., Rabault, J., Font, B., Garcia-Cuevas, L.M., Lehmkuhl,
O., Vinuesa, R.: Deep reinforcement learning for flow control exploits different physics for increasing
Reynolds number regimes. Actuators 11, 359 (2022)

Vazquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Aris, R., Mira, D., Calmet, H., Cuc-
chietti, F., Owen, H., Taha, A.: Alya: multiphysics engineering simulation toward exascale. J. Comput.
Sci. 14, 15-27 (2016)

Vignon, C., Rabault, J., Vasanth, J., Alcéntara—Avila, F., Mortensen, M., Vinuesa, R.: Effective control of
two-dimensional Rayleigh-Bénard convection: invariant multi-agent reinforcement learning is all you
need. Phys. Fluids 35, 6 (2023)

Vignon, C., Rabault, J., Vinuesa, R.: Recent advances in applying deep reinforcement learning for flow con-
trol: perspectives and future directions. Phys. Fluids 35, 3 (2023)

Vinuesa, R., Lehmkuhl, O., Lozano-Duran, A., Rabault, J.: Flow control in wings and discovery of novel
approaches via deep reinforcement learning. Fluids 7, 62 (2022)

Vinuesa, R., Brunton, S.L., McKeon, B.J.: The transformative potential of machine learning for experiments
in fluid mechanics. Nat. Rev. Phys. 5, 536-545 (2023)

Wang, Z., Fan, D., Jiang, X., Triantafyllou, M.S., Karniadakis, G.E.: Deep reinforcement transfer learning
of active control for bluff body flows at high Reynolds number. J. Fluid Mech. 973, A32 (2023)

Yan, L., Li, Y., Hu, G., Chen, W. L., Zhong, W., Noack, B.R.: Stabilizing the square cylinder wake using
deep reinforcement learning for different jet locations. Phys. Fluids 35, 115104 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://github.com/reinforceio/tensorforce
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2309.02462

	Active Flow Control for Drag Reduction Through Multi-agent Reinforcement Learning on a Turbulent Cylinder at 
	Abstract
	1 Introduction
	2 Methodology
	2.1 Multi-agent Reinforcement Learning (MARL)

	3 Results
	3.1 Exploration
	3.2 Exploitation

	4 Conclusions
	Appendix: Grid Convergence Study
	References


