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Abstract
This study presents novel drag reduction active-flow-control (AFC) strategies for a three-
dimensional cylinder immersed in a flow at a Reynolds number based on freestream veloc-
ity and cylinder diameter of Re

D
= 3900 . The cylinder in this subcritical flow regime has 

been extensively studied in the literature and is considered a classic case of turbulent flow 
arising from a bluff body. The strategies presented are explored through the use of deep 
reinforcement learning. The cylinder is equipped with 10 independent zero-net-mass-
flux jet pairs, distributed on the top and bottom surfaces, which define the AFC setup. 
The method is based on the coupling between a computational-fluid-dynamics solver 
and a multi-agent reinforcement-learning (MARL) framework using the proximal-policy-
optimization algorithm. This work introduces a multi-stage training approach to expand 
the exploration space and enhance drag reduction stabilization. By accelerating training 
through the exploitation of local invariants with MARL, a drag reduction of approximately 
9% is achieved. The cooperative closed-loop strategy developed by the agents is sophisti-
cated, as it utilizes a wide bandwidth of mass-flow-rate frequencies, which classical control 
methods are unable to match. Notably, the mass cost efficiency is demonstrated to be two 
orders of magnitude lower than that of classical control methods reported in the literature. 
These developments represent a significant advancement in active flow control in turbulent 
regimes, critical for industrial applications.
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1  Introduction

Active-flow-control (AFC) devices are essential tools across diverse industries, aiming to 
optimize fluid-flow processes, enhance performance, and improve overall efficiency (Choi 
et al. 2008). Currently, the aeronautical sector needs more robust and sophisticated systems 
to develop better control strategies. In this scenario, innovative solutions are required to 
address the pressing environmental concerns linked to fossil-fuel dependence. Discovering 
and understanding physical mechanisms to reduce air resistance are crucial for the sus-
tainable development of the transport industry. Passive-flow-control (PFC) solutions, while 
simpler and easier to integrate, typically lack the adaptability and performance capabili-
ties of AFC methods. However, in critical sectors like aerospace, automotive, energy, and 
maritime, AFC devices emerge as pivotal tools, effectively managing airflow around sur-
faces, minimizing drag, boosting lift, and controlling separation. For instance, some pas-
sive systems are protuberances or fixed flaps such as vortex generators or winglets. On the 
other hand, active devices like slats and flaps placed along airplane wings enhance maneu-
verability and efficiency. Dynamically optimizing all these devices is challenging due to 
the complex interactions between pressure and viscous effects across multiple flight condi-
tions. To design and converge on possible solutions, substantial experience and computa-
tional resources are required.

Recent advancements in flow control have been complemented by the integration of 
machine-learning (ML) techniques, offering significant promise to the aeronautics sec-
tor. This includes the exploration of fundamental issues in fluid mechanics (Vinuesa et al. 
2023) and the development of novel approaches for both active and passive flow control 
(AFC and PFC)  (Le Clainche et  al. 2023). Deep reinforcement learning (DRL), particu-
larly, has emerged as a rapidly expanding field within ML, capturing substantial interest. 
Following its success in domains like board games (Silver et al. 2016) and robotics (Ibarz 
et al. 2021), DRL demonstrates effectiveness in systems where a controller interacts with 
an environment to optimize a particular task; note that this is a characteristic highly rel-
evant to many AFC scenarios. In such instances, DRL can dynamically interact with the 
flow, receiving feedback and refining actions iteratively over time. Designing AFC setups 
involves working with complex, high-dimensional systems, requiring significant computa-
tional power to explore the vast parameter space and identify optimal global values. DRL 
and neural networks streamline this process, facilitating the development of effective con-
trol strategies with a reduced computational burden.

The state-of-the-art on DRL for AFC applications is rapidly expanding, featur-
ing studies on flow control for two-dimensional (2D) cylinders across a range of ReD 
(Reynolds number based on inflow velocity U∞ and cylinder diameter D) from 100 to 
8000, resulting in drag reductions of 17% and 33%, respectively  (Tang et al. 2020; Li 
and Zhang et al. 2022; Ren et al. 2021; Chatzimanolakis et al. 2024; Yan et al. 2023). 
DRL has also been tested against Linear Genetic Programming Control (LGPC) in a 
cylinder at ReD = 100 , highlighting DRL’s robustness against variable initial conditions 
and sensor noise, while LGPC provided compact and interpretable control laws  (Cas-
tellanos et  al. 2022). In addition, it has been compared to other global optimization 
techniques  (Pino et  al. 2023). Specific studies have also focused on the mitigation of 
vortex-induced vibrations, e.g. Chen et al. (2023). Additionally, research on the applica-
tion of DRL has been conducted on aircraft wings (Vinuesa et al. 2022), fluid–structure 
interaction (Chen et al. 2023), and controlling highly turbulent flows, as demonstrated 
in Font et  al. (2024), successfully reducing a turbulent separation bubble at a friction 



Flow, Turbulence and Combustion	

Reynolds number of Re� = 750 . There are also studies on flow control in turbulent 
channels (Guastoni et al. 2023) and Rayleigh–Bénard convection (Vignon et al. 2023). 
Recent literature (Wang et al. 2023) suggests the possibility of transfer learning from 2D 
cylinders to three-dimensional (3D) domains and higher ReD . Recent research (Suárez 
et al. 2023) has contributed to advancing the state-of-the-art in the control of 3D cyl-
inders. This advancement involves DRL training directly in 3D, considering Reynolds 
numbers ReD = 100 to 400 that include the transition to three-dimensional wake insta-
bilities. The latter uses an AFC configuration comprising numerous zero-net-mass-flow 
(ZNMF) actuators managed through a multi-agent reinforcement-learning (MARL) 
framework.

Although it is expected that the differences in flow physics between 2D and 3D flows 
would lead to even better results when training on full 3D physics, the increased complex-
ity and unique characteristics of 3D flows also introduce challenges and opportunities for 
control that are are not encountered in simpler 2D configurations.

The present work builds on previous successful training in transitional regimes, advanc-
ing further to tackle the significant challenge of achieving a subcritical Reynolds number 
of ReD = 3900 . This represents a more complex scenario, marking the first exploration of 
such conditions in MARL state-of-the-art, with more intricate structures to analyze and 
learn from. This classic case has been extensively investigated (Lehmkuhl et al. 2013; Nor-
berg 1994; Parnaudeau et al. 2008; Ma et al. 2000; Kravchenko and Moin 2000; Franke 
and Frank 2002), serving as a reference for benchmarking and facilitating the study of 
well-known physics. Such insights are very valuable for devising an appropriate closed-
loop control mechanism within a MARL framework. Despite the wealth of documenta-
tion available, consisting of numerous simulations and experiments, there remains a degree 
of inconsistency when comparing the time-averaged statistics in the near-cylinder wake. 
This inconsistency primarily stems from the high sensitivity to minor disturbances and 
the unsteady behavior of vortex formation, which directly impacts the configuration of the 
near wake. The primary point of discussion revolves around determining the number of 
shedding cycles required to attain converged statistics. Recent studies demonstrate how the 
presence of low-frequency fluctuation mechanisms, along with the well-established vortex-
shedding frequency and smaller Kelvin–Helmholtz instabilities, contribute to the gradual 
contraction and expansion of the recirculation region (Lehmkuhl et al. 2013).

We first considered a control periodic in time and uniform in the spanwise direction as 
a controlled reference case. We identified the optimal frequency of actuation around the 
vortex-shedding frequency fvs , and also adjusted the maximum amplitude. Although this 
strategy led to drag reduction for ReD between 100 and 400  (Suárez et  al. 2023), at the 
present Reynolds number of 3900 this approach actually increased the drag by 30 to 50%.

Kim and Choi (2005) studied flow-control strategies for the 3D cylinder at ReD = 3900 , 
and reported successful drag reduction control by considering two types of control: in-
phase and out-of-phase. In their control strategies they consider sinusoidal profiles in the 
spanwise direction of the cylinder, but fixed blowing and suction constant in time. The 
velocity profile consists of a constant normal velocity of �max = 0.1U∞ over a jet width of 
10◦ . They assess various possible configurations by analyzing the impact of the spanwise 
wavelength �z of their control. The difference between both control types is that, while the 
out-of-phase has opposed blowing and suction on the top and bottom at the same spanwise 
location, the in-phase has the same amount of blowing or suction for both surfaces. For a 
wavelength of �z∕D = � (hence, �z∕D = Lz ), they reported 25% and 18% drag reduction for 
the in-phase and out-of-phase cases, respectively. Since in-phase does not comply with the 
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ZNMF condition, in this study we will consider their out-of-phase case as the controlled 
reference case and from now will be denoted as KC05.

Developing flow-control strategies for fully turbulent 3D wakes around cylinders consti-
tutes a significant challenge for DRL. As the wake becomes three-dimensional, the MARL 
setup must effectively utilize spanwise characteristic structures to devise efficient control 
methods, which can have profound implications for drag reduction. Note that DRL can 
discover new strategies by maximizing rewards rt for an agent interacting with the envi-
ronment through actions at and partial observations st . Through episodes of consecutive 
actions, neural-network weights are updated, optimizing policies to maximize expected 
rewards. For recent advances in flow control using MARL, interested readers are directed 
to Belus et al. (2019), Brunton et al. (2015), Vignon et al. (2023), where significant pro-
gress and insights have been reported.

2 � Methodology

This study involves a 3D cylinder subjected to a constant inflow in the streamwise direc-
tion, with all lengths non-dimensionalized using the cylinder diameter D. The computa-
tional domain, depicted in Fig. 1, has dimensions Lx∕D = 40 , Ly∕D = 25 , and Lz∕D = � , 
with the cylinder centered at (x∕D, y∕D) = (6.25, 12.5) . Here x, y and z denote the stream-
wise, vertical and spanwise directions, respectively. Note that the coordinate-system origin 
is located at the front face left-bottom corner. Periodic boundary conditions are used in the 
cylinder spanwise direction. As discussed in the references presented in Table 1, there is a 
consensus in the literature that a spanwise length of � is sufficient to statistically capture all 
wavelengths of the relevant structures. At the inlet, a constant velocity U∞ is imposed with 
a Dirichlet condition. The surfaces of the cylinder include the no-slip and no-penetration 
conditions, while the top, bottom, and outflow surfaces of the domain box are set as zero-
stress outlet. The cylinder incorporates two sets of njet = 10 synthetic jets positioned at the 
top and bottom surfaces ( �0 = 90◦ or 270◦ , respectively). Here, Ljet is defined as the span-
wise length of the jets. Hence, the jet length is Ljet∕D ≃ 0.314 , which is 21.5% shorter than 
what was employed in previous studies at lower ReD (Suárez et al. 2023). This will allow 

Table 1   The statistical values 
for flow around a cylinder at 
Re

D
= 3900 are presented, with 

comparisons made between 
the results of the present 
uncontrolled case and results 
reported in the existing literature

* The recirculation bubble length ( Lr∕D ) is measured as the distance 
from the rear point of the cylinder to the position where the centerline 
velocity in the x-direction satisfies u = 0

** The back pressure coefficient ( Cpb ) is defined as 
Cpb = (p − p∞)∕

(

1
2
�∞U2

∞

)

Reference Lz∕D St Lr∕D
∗

CD −Cpb

∗∗

Present uncontrolled case � 0.22 1.30 1.08 0.95
Lehmkuhl et al. (2013) � 0.215 1.36 1.015 0.935
Parnaudeau et al. (2008) 23 0.208 1.51 – –
Norberg (1998) ( ReD = 3000) 67 0.22 1.66 0.98 0.88
Lourenço and Shih (1993) 21 – – 0.98 0.9
Tremblay et al. (2002) � 0.22 1.3 1.03 0.93
Kravchenko and Moin (2000) � 0.21 1.35 1.04 0.94
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a more flexible strategy when controlling the spanwise structures in the wake, which are 
finer in the present higher-ReD case where mode B of �z∕D = 1 is dominant–instead of the 
mixed mode A ( �z∕D = 4 ) and B experienced during transition regimes. The current setup 
provides at least two jets for each mode B structure, ensuring greater control authority. As 
discussed in Sect. 1, this setup resembles the one reported in Kim and Choi (2005), with 
two key differences. First, it will not be a prescribed control, as the DRL framework ena-
bles dynamic adjustments within a closed-loop system. Second, the control will vary both 
in the spanwise direction and over time. In the current study, the jet velocity profile in the 
direction normal to the surface is defined in terms of the angle � and the desired mass-flow 
rate per unit length Q as follows:

where Q = ṁ∕Lz , |� − �0| ∈ [−�∕2,�∕2] , ṁ is the mass flow rate and � is the angular 
opening of the jet as shown in Fig. 1. For every pseudo environment (also called MARL 

(1)‖Ujet(Q, �)‖= Q
�

�D�
cos

�
�

�
(� − �0)

�
,

Fig. 1   Schematic representation that illustrates the multi-agent reinforcement-learning framework applied 
to a three-dimensional cylinder, showing communication channels between two main actors. In this case, 
the direction of the information is clockwise. At the top, we show the agent architecture featuring a shared 
neural network. At the bottom, the computational-fluid-dynamics (CFD) environment is depicted, with the 
cylinder diameter D as the reference length. Moving rightward, emphasis is placed on the local MARL 
environment, also known as the pseudo environment. Note that � denotes the jet angle width, while �0 
represents the angular location of each jet center. Additionally, the green shading illustrates the sinusoidal 
velocity profile, which remains uniform in the spanwise direction within a single jet length, Ljet.
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environment, as discussed later), we set opposite action values between the pair of top and 
bottom jets, i.e. Q90◦ = −Q270◦ , to guarantee an instantaneous global zero net mass flux, as 
discussed in Suárez et al. (2023).

The numerical simulations are carried out by means of the numerical solver Alya, which 
is described in detail in Vázquez et al. (2016). The spatial discretization is based on the 
finite-element method (FEM) and the incompressible Navier–Stokes equations, which are 
formulated below:

are integrated numerically. Here u is the velocity vector, � is the fluid kinematic viscosity, � 
is the strain-rate tensor � = 1∕2(∇u + (∇u)T) and f  represents external body forces. In Eq. 
(2), the convective term (u ⋅ ∇)u is formulated to conserve energy, momentum, and angu-
lar momentum, as described in Charnyi et al. (2017, 2019). Time discretization employs 
a semi-implicit method where the convective term follows a second-order Runge–Kutta 
scheme, and a Crank–Nicholson scheme is utilized for the diffusive term (Crank and Nicol-
son 1947). Alya determines the suitable time step using an eigenvalue-based time-integra-
tion scheme  (Trias and Lehmkuhl 2011). Subsequently, the numerical solution of these 
equations is computed for each time step. Drag and lift forces ( Fx and Fy , respectively) are 
computed through integration over the cylinder surface s:

where � is the Cauchy stress tensor, n is the unit vector normal to the surface, and ej is a 
unit vector aligned with the direction of the main flow velocity for Fx and the perpendicular 
cross-flow direction for Fy.

In order to define the uncontrolled case it is important to carefully study the conver-
gence of the cylinder at ReD = 3900 . In this study we use an unstructured mesh in the xy-
plane, which is then extruded in the z direction. Following a convergence study, an interval 
of 300 convective time units, which are defined in terms of U∞ and D, tU∞∕D , is consid-
ered to be sufficiently long to properly capture the pressure distribution around the cylin-
der, which in turn is associated with the computation of the aerodynamic forces, since the 
drag of a cylinder in these regimes mostly comes from the pressure component. Following 
the grid–independence study reported in Appendix, the simulations with the chosen mesh 
show reasonable agreement with the results reported in the literature for this case, as shown 
in Table 1. Note that there is a discrepancy in CD (defined later in Eq. (7) in Sect. 2.1) com-
pared to the results of Lehmkuhl et al. (2013). This discrepancy may arise from the case 
being particularly sensitive in the near-cylinder region, where very low-frequency modula-
tions associated with higher CD have been also reported in the literature.

2.1 � Multi‑agent Reinforcement Learning (MARL)

We implement a deep-reinforcement-learning (DRL) framework using the Tensorforce Python 
library (Schaarschmidt et al. 2017). DRL is very well suited for unsteady flow-control prob-
lems. It provides the possibility to dynamically interact with an environment in a closed-loop 
approach, being able to set the actuation based on the varying flow state following a trained 

(2)�tu + (u ⋅ ∇)u − ∇ ⋅ (2��) + ∇p = f ,

(3)∇ ⋅ u = 0,

(4)F = ∫ (� ⋅ n) ⋅ ejds,
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policy �(at|st)–which describes the probability of selecting an action at given the current state 
st . We use the proximal-policy-optimization (PPO) algorithm (Schulman et al. 2017), which 
is a policy-gradient approach based on a surrogate loss function for policy updates to prevent 
drastic drops in performance. This algorithm exhibits robustness, as it is forgiving with hyper-
parameter initializations and can perform adequately across a diverse range of RL tasks with-
out extensive tuning. While PPO was selected for its stability and ease of use in this context, 
we acknowledge that other reinforcement learning algorithms, such as DDPG or SAC, could 
also be viable options.

The neural-network architecture consists of two dense hidden layers of 512 neurons 
each. The batch size M, i.e., the total number of streamed experiences that the PPO agent 
utilizes for each gradient-descent iteration, is configured to 60, exceeding the values 
employed in previous 2D cylinder experiments (Varela et al. 2022) and previous 3D train-
ing scenarios (Suárez et al. 2023). The main constraint to set such a value lies in having 
10 actuators per environment, requiring 10 streamed experiences which are synchronized. 
Thus, we must operate with a total of njets × nenvs sets of experiences, similar to what has 
been reported in Rabault and Kuhnle (2019). A streamed experience encompasses a collec-
tion of states, actions, rewards, and the predicted state that the agent anticipates achieving, 
denoted as {st, at,R, s�t} for each pseudo environment. Moreover, we encounter computa-
tional resource limitations. If the batch size, M, is excessively large, a single training ses-
sion might be interrupted before any batch update occurs, resulting in the loss of already 
explored trajectories.

In previous studies on 2D cylinders, the different training stages are executed using a 
single-agent reinforcement learning (SARL) setup. However, considering the effectiveness 
of MARL in managing multiple actuators simultaneously, as demonstrated in recent litera-
ture (Suárez et al. 2023; Vignon et al. 2023; Guastoni et al. 2023; Font et al. 2024), SARL 
is not a feasible choice for the current 3D cylinder configuration with distributed input 
forcing and distributed output reward (referred to as the DIDO scheme). As opposed to 
SARL, the MARL framework mitigates the curse of dimensionality by exploiting invari-
ances and focuses on training local pseudo environments with the option for collaboration 
among agents to achieve a global objective. This approach makes high-dimensional control 
manageable, as the agents are trained in smaller domains to maximize local rewards. This 
makes the problem more scalable as long as the size of stacked local invariants is main-
tained. All agents share the same neural-network weights, significantly accelerating train-
ing. Each pseudo environment is linked to a pair of jets that actuate independently. Obser-
vation states st,ijet comprise partial pressure values along the domain, focused on the wake 
and near-cylinder regions to exploit the spanwise pressure gradients when controlling. As 
detailed in Table  2, these pressure values form multiple slices in the xy plane, evenly 
spaced in the spanwise direction by Δzslice∕D = �∕30 . Each set of three slices corresponds 
to an individual pseudo environment. The total reward R(t, ijet) , as defined in Eq. (5), com-
prises the sum of local, rlocal , and global, rglobal , rewards corresponding to each jet ijet . The 
scalar KR adjusts the values approximately within the range [0,  1], while � balances the 
local and global rewards; in this work, � = 0.8 . The rewards r(t, ijet) , defined in Eq. (6), 
depend on aerodynamic force coefficients CD and CL ( CDb

 represents the averaged value for 
uncontrolled conditions). The user-defined parameter � serves as a lift penalty, and in our 
study we set � = 0.6 . This parameter is crucial for mitigating undesired asymmetric strate-
gies that favor a reduction of the component parallel to the incident velocity (drag) over the 
perpendicular one (positive or negative lift), commonly known as the axis-switching 
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phenomenon. Note that Table 2 summarizes the rest of MARL and computational-fluid-
dynamics (CFD) parameters that define the whole framework employed here.

The aerodynamic forces described in Eq. (7) incorporate the frontal area Af = DLjet , 
derived from the local pseudo-environment surfaces for CDlocal

 , and from the entire cylinder 
for CDglobal

.
The interactions between the agent and the physical environment are represented by 

actions at , which influence the system over a time interval of Ta time units. We update each 
jet boundary condition using Eq. (1) with its corresponding Qt,i . To transition smoothly in 
time between the actions at t and t + 1 i.e., Qt,i → Qt+1,i , we employ exponential space-time 
functions. This ensures a gradual shift in time, reducing the occurrence of sudden mass 
discontinuities that could disrupt the training process. These functions exhibit better per-
formance than the linear slopes employed in Varela et al. (2022). Regarding the spatial dis-
tribution of the {Q1,Q2,… ,Qnjets

}t , Heaviside functions are used to activate or deactivate 
each jet depending on its location. Therefore, spatial smoothing has not been necessary for 
the present work. The DRL Python library requires normalization of the output actions at 

(5)R(t, ijet) =KR

[
�rlocal(t, ijet) + (1 − �)rglobal(t)

]
,

(6)r(t, ijet) =CDb
− CD(t, ijet) − �|CL(t, ijet)|,

(7)where CD =
2Fx

�AfU
2
∞

and CL =
2Fy

�AfU
2
∞

.

Table 2   Main parameters of the 
MARL architecture and the CFD 
setup used in the present work, 
for both DRL-10-s1 and DRL-
10-s2 cases 

Parameter Value/type

Number of grid points 9.6 × 106

Lx∕D 40
Ly∕D 25
Lz∕D �

Ljet∕D 0.314
st size 183 (3 xy slices of 61)
st variable Pressure
Qmax 0.176
KR 5
� 0.6
� 0.8
Ta 0.25
Actions/episode 150
CPUs/environment 1800
Parallel CFD environments nenvs 6
Actuators/CFD njets 10
Batch size M 60
Neurons (hidden layers) 512 (2)
Time-smoothing function Exponential
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to the range [−1, 1] . To achieve this, the output actions are scaled by a factor Qmax , such 
that Q = atQmax . Accordingly, Qmax = 0.176 was determined based on our experience with 
DRL for flow control in Suárez et al. (2023), Varela et al. (2022).

A vortex-shedding period is Tvs = 1∕St ≈ 4.7 time units, based on our uncontrolled case 
and validated with the existing literature results. Note that St = fvsD∕U∞ is the Strouhal 
number, and fvs denotes the vortex-shedding frequency. The episode duration is specifically 
set to span at least seven vortex-shedding periods ( Tvs = 1∕fvs ). We choose Ta ≈ 0.05Tvs , 
based on insights gained from previous studies (Rabault et  al. 2019), i.e. Ta = 0.25 time 
units. This interval allows sufficient time between actions to produce an effect on the flow. 
A shorter Ta could introduce noise into the training process, complicating trajectory explo-
ration and correlation within the st gradients. Conversely, an excessively long Ta may com-
promise the capability of the agent to control shorter characteristic time scales. Thus, a 
total of 150 actuations i.e. 37.5 time units per episode, seemed adequate for evaluating 
cumulative rewards, based on a preliminary estimation.

At the beginning of the training, each episode starts from an uncontrolled, converged 
baseline state, with subsequent episodes beginning always from the last timestep of the 
baseline. After this first stage of the training period, the process is paused to evaluate the 
policy � in exploitation mode, labeled DRL-10-s1 (stage 1).

Previewing the results discussed in Sect. 3.2, we observed that the episode duration for 
the DRL-10-s1 policy was more limiting than expected at this ReD , restricting its ability to 
stabilize control performance. In short, the DRL-10-s1 case would lose and then recover 
drag control once it exceeded the predefined episode duration, indicating that it could not 
continue performing effective control beyond the episode duration. The reasoning behind 
this conclusion will be explained in detail later in Sect. 3.2.

In this work, we introduce a novel multi-stage training approach to address these limi-
tations. The current training continues with a second stage, where a ratio � of episodes 
begins from the last timestep of the previous episode, allowing for improved stabilization 
beyond the transition from uncontrolled to controlled state. This model, trained with the 
updated approach, is referred to as DRL-10-s2 (stage 2). Additionally, we compare our 
DRL-based control strategies with those developed using the Kim & Choi out-of-phase 
setup from 2005, here denoted as KC05.

3 � Results

In this section, we present the successful training at ReD = 3900 , which relies on a MARL 
implementation. The proposed multi-stage training process, associated challenges, conver-
gence assessment through reward evaluation, and its contributions, among other aspects, 
are described initially. Subsequently, both models trained, DRL-10-s1 and DRL-10-s2, 
are evaluated in exploitation mode, also known as deterministic mode. The latter entails 
choosing actions without exploration; the agent solely applies the action associated with 
the highest probability of maximal reward given a particular state. Statistical results are 
presented alongside the uncontrolled case and the controlled reference case KC05. The 
purpose of conducting such a comparison is to clarify which novel drag-reduction physical 
mechanisms the agent explores.
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3.1 � Exploration

Setting up a good training configuration in advance is crucial for achieving a consistent 
and efficient reward improvement. In fact, it is worth noting that to reach the configuration 
already shown in Table 2, there has been an iterative process of assessing different values 
of the main parameters. For instance, unsuccessful attempts were made with an observation 
state st of 181 × 3 slices (543 pressure values in total), or taking into account more slices 
from neighbor actuators or even with njets = 15 , hence shorter jets with Ljet∕D ≃ 0.21 . 
DRL requires methodical hyperparameter tuning in order to obtain the optimal setup for 
the case under study.

The exploration is evaluated continuously by monitoring the final and cumulative 
rewards in real wall-clock time. Based on our experience, the most helpful metrics to track 
are the total reward R, its contribution due to lift-bias, −�|CL(t, ijet)| , and the pure drag 
reduction, CDb

− CD . Additional data from Tensorboard logs, including policy and base-
line losses, entropy, and episode returns, were analyzed to cross-validate our own metrics 
from CFD. However, tracking these metrics proved challenging due to multiple restarts 
from checkpoints and scattered data. The reward evolution shown in Fig. 2 highlights the 
difficulties when assessing whether a particular training is converged or not. To explain 
and interpret this plot, which plays a crucial role in deciding whether to stop training early 
and thereby save computational resources, we observe two distinct trends corresponding to 
the two stages of training. This observation is noteworthy: during the final episodes of the 
initial stage, which lasts for 800 pseudo-environment episodes, exploration appeared stag-
nant, showing limited improvement-this posed a risk of overfitting, although such a risk is 

Fig. 2   Evolution of all rewards collected at the end of pseudo-environment episodes, denoted as R, through-
out the multi-stage exploration phase, along with its contributions from lift-bias and pure drag-reduction 
during the training session. The signals are smoothed using a moving average of 15 values window. Note 
that the top part describes the training of two stages
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relatively low with PPO. However, with the workflow modifications introduced-outlined in 
the scheme at the top of the figure-the agent is encouraged to improve its ability to stabilize 
and achieve further improvements. As a result, the agent nearly doubled the total reward 
and reduced lift penalties over an additional 550 episodes.

At this point, we decided to stop the training process for two reasons: first, the reward 
had converged; second, the drag–reduction contribution approached our target value of 
R = 1 , which was predefined based on the KC05 results, indicating that the performance 
can be already considered satisfactory.

If we examine the details of the reward fluctuations, we observe that, although the 
reduction in CD converges to an acceptable reward value, the maximum, minimum, and 
standard deviation still contain significant levels of stochasticity, associated with the learn-
ing process and corresponding random exploration. To further assess the learning, inter-
mediate exploitation of the model is also needed to monitor the drag reduction and if the 
control strategies are depicting any pattern. Based on our experience, this is very important 
when tackling unsteady and chaotic environments – because such reward evolution can be 
misleading when deploying � . For instance, in a previous case with the model at 500 epi-
sodes (not reported here), the performance was similar to that after 800 episodes (DRL-
10-s1). This suggests that training could have potentially been stopped earlier to allow for 
further adjustments. However, there is always a risk that the agent may not explore enough 
to reject poor trajectories. Rejecting poor trajectories is just as crucial as learning favorable 
ones, as it prepares the agent for any disturbances it may encounter.

In terms of computational expense, training constitutes the dominant part. The pre-
sented training session required around 1350 trajectories, akin to executing 135 numerical 
simulations with 10 pseudo environments each. All exploration sessions were conducted on 
the Dardel machine at PDC, the high-performance-computing (HPC) center at KTH. These 
sessions operate across 90 nodes concurrently, each 15 nodes executing a single numerical 
simulation consisting of 10 simultaneous pseudo environments, totaling 60 pseudo envi-
ronments. Each node is equipped with two AMD EPYCTM Zen2 2.25 GHz 64-core proces-
sors and 512 GB of memory. With each batch of 6 CFD simulations optimally requiring 
approximately 10 h in this specific setup, the process involves a minimum of two weeks of 
continuous operation. This is equivalent to using 11,520 CPU cores running for ≃ 3 million 
CPU hours in total. It should be noted that making an accurate estimation for such training 
sessions is difficult, considering synchronization times, the necessary restarts between epi-
sodes, and data movement in memory and on disk. After deciding to conclude the explora-
tion phase, we proceed to evaluate the deployment of the model and its performance during 
exploitation.

3.2 � Exploitation

When the agent operates without exploration, it always selects the best possible action 
from the policy � . In Fig. 3, we show how drag and lift coefficients evolves during exploi-
tation for both models, DRL-10-s1 and DRL-10-s2, alongside the control law from KC05 
and the uncontrolled case. The effectiveness of the KC05 strategy is evident, but, as will 
be discussed later, it requires significantly higher actuation cost. Focusing on DRL-based 
strategies first, we observe a successful reduction of CD . Regarding the results after the 
first stage, there is a reduction of ΔCDs1

= −9.44% with the DRL-10-s1 policy. Note that 
the drag exhibits some low-frequency oscillations with a period of approximately 40 time 
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units—roughly the duration of the training episodes, spanning t1 → t2 , using nomenclature 
in Fig. 2. Within these intervals, the CD values transition quickly, in around 20 time units, 
to a brief but significant reduction of ΔCD ≈ −14% . However, the strategy is unable to 
sustain this reduction, and the drag forces revert to uncontrolled CD values and then back 
to the previous reduction again. This observation connects with the insights introduced ear-
lier in Sect. 2. Our hypothesis is that the training episode duration is insufficient to fully 
capture the transition period and subsequently learn to stabilize this new flow state beyond 
these 40 time units.

It is then that the idea of a second training phase emerges, in which the agent is forced 
to explore beyond the episode duration, aiming to reduce the oscillations that negatively 
impact average performance. After an additional 550 episodes of training, we run with the 
DRL-10-s2 strategy in exploitation mode, and the results partially confirm our expecta-
tions. We observe that the agent is now able to sustain lower CD values for a longer period, 
once again reaching ΔCD = −14% but now maintaining this reduction for over 40 time 
units–as seen between tU∞∕D = 60 to 100 in Fig. 3. However, it also appears to lose some 
ability to transition as quickly as before. Perhaps the 20% rate of episodes starting from 
the uncontrolled case causes the agent to “forget” the transition process, trading it for 
improved stabilization of the reduction. Despite the improvement in low-frequency oscil-
lations, the average reduction slightly worsens to ΔCDs2

= −8.33% . Although DRL-based 
control occasionally surpasses KC05’s drag reduction value of ΔCDKC05

= −15% (which is 
lower than the 18% reported in the original study (Kim and Choi 2005)), the latter demon-
strates consistency in control with fewer oscillations. This is also visible in the root-mean-
squared values presented in Table 3, where the DRL-based RMS values are up to three 
times higher than the uncontrolled case and five times higher than KC05. This resembles 
the behavior from the controlled cases studied in the transition regimes between ReD = 100 
to 400 (Suárez et al. 2023). On the other hand, a clear difference respect to the results in the 
transition regime is observed in the lift signals. Although the averaged values are also very 
close to zero, indicating no significant bias, the DRL-based strategies exhibit a minimal 

Fig. 3   Evolution in time of the (top) drag coefficient CD and (bottom) lift coefficient CL . Note that dashed 
horizontal lines are the averaged values and the transitional stages are included. When tU∞∕D = 0 the con-
trol starts for all cases, DRL-10-s1, DRL-10-s2 and KC05
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increase in fluctuations. In contrast, KC05 also yields good consistency with a low RMS. 
This suggest that the drag–reduction mechanisms explored here do not focus on minimiz-
ing these fluctuations in the pressure distribution.

An important note to make at this point is that overfitting to a specific initial condi-
tion is discarded, as the DRL-based policies are tested with activation and deactiva-
tion at different timeframes. These tests show consistent performance with the results 
reported in Table 3. However, these results are not reported in the present paper.

Table 3 also shows the rest of relevant physical quantities taking into account aerody-
namic forces. All values are averaged over the last 150 time units in the converged stage, 
equivalent to 30 shedding periods approximately. We observe how the DRL-based cases 
are able to influence St, while the KC05 case has no influence. The drag-reduction mecha-
nism is very similar to those reported in Varela et al. (2022), Suárez et al. (2023), at least 
statistically. Interestingly, the recirculation bubble is extended by 41% in DRL-10-s1, 49% 
in DRL-10-s2 and by 67% in KC05 relative to the case without control. The pressure valley 
at the most downstream point in the cylinder surface increases slightly, a fact that is directly 
related to the integral necessary for computing the forces exerted on the surfaces. However, 
although both DRL-based policies have the same value, it will be discussed below that the 
pressure distributions are different.

The aspect in which DRL significantly outperforms classical AFC methods is in the 
cost associated with the control. Only considering the maximum values of mass-flow rate 
per unit length over time, it can be observed that it is an order of magnitude lower for both 
DRL-based cases compared to KC05. But if we also consider that KC05 maintains a con-
stant value over time instead of fluctuating, we observe that E∗

c
∕ΔCD ratios are two orders 

of magnitudes lower in the DRL case, compared with KC05. Note that E∗
c
 is defined as:

which represents the mass cost over time of any control system with njets compared to the 
corresponding mass intercepted by the cylinder E∞ , where Q∞ = DU∞ . Note that low 

(8)E∗
c
=

Ec

E∞

=
Ljet

(t2 − t1)Q∞Lz ∫
t2

t1

njets∑

i=1

|Qi(t)| dt,

Table 3   Summary of the statistical quantities for both DRL based controlled cases (DRL-10-s1 and DRL-
10-s2) compared with the present uncontrolled case and KC05. All values are averaged over 150 time units 
after discarding the initial transients resulting after applying the control

Uncontrolled DRL-10-s1 DRL-10-s2 KC05

St 0.22 0.177 0.172 0.22
Lr∕D Bubble length 1.30 1.80 1.94 2.18
−Cpb

0.95 0.75 0.75 0.69
Qmax – 0.053 0.023 0.11
QRMS – 0.037 0.066 –
fc – 0.168–0.177 0.167–0.194 –
CDRMS

0.021 0.049 0.06 0.011
CLRMS

0.238 0.25 0.34 0.048
CD

1.08 0.978 0.99 0.918

ΔCD [%] – − 9.44 − 8.33 − 15

E∗
c
∕ΔCD

– 0.0014 0.0015 0.22
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values of E∗
c
∕ΔCD imply that control is much more efficient in terms of used mass per drag 

reduction ΔCD.
Such good performance indicates that the DRL-based control is much more fine-grained 

than the fixed spanwise control by KC05, and is able to adapt to the instantaneous state of 
the wake, effectively exploiting the wake structures to achieve drag reduction. Note that 
in Table 3 we also include the main frequency bandwidth of the mass-flow control signal, 
denoted by fc . It is interesting to note that this frequency differs from both the uncontrolled 
and the controlled Strouhal numbers.

To study how the wake topology changes in the various scenarios, we present the vorti-
cal motions in the instantaneous flow in Fig. 4. We note that similar patterns have been 
observed at different time sequences, although only one snapshot per case is shown here. 
The most remarkable aspect is the non-invasive nature of DRL-10-s1 and DRL-10-s2 
compared to KC05, where a distinct peak of suction z∕D = �∕4 and another of blowing 

Fig. 4   Instantaneous coherent structures identified with the �2 criterion  (Jeong and Hussain 1995), where 
the isosurfaces �2D2∕U2

∞
= −5 are coloured by the streamwise velocity. We show a uncontrolled, b DRL-

10-s1, c DRL-10-s2 and d KC05 cases, and all of them are chosen to show the flow in a statistically con-
verged stage. Note that for a the locations of P1 and P2 that will be referred later in Fig. 6a, b are shown
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at z∕D = 3�∕4 are clearly observed due to the wavelength covering the entire span of the 
cylinder. This is particularly evident in the Kelvin–Helmholtz instabilities, represented by 
the smaller tubular structures at the top, near the separation point, where the shear layer 
becomes unstable with high values of streamwise velocity–very visible in the xz-view in 
the right column. All controlled cases appear to extend these instabilities in the streamwise 
direction, helping to increase the recirculation bubble.

However, there are some particularities: in the DRL-10-s1 case, a narrower shear layer 
is observed, but it is more aligned with the streamwise direction. In contrast, in stage 2, the 
shear layer is wider and forms a more open angle. In the case of KC05, the shear layer is 
notably more stable, maintaining the secondary tubular structures for a longer distance as 
part of the main vortex shedding process, thereby enlarging the recirculation bubble a bit 
more than the other cases. Additionally, all control strategies delay the emergence of the 
main counter-rotating vortices that initiate vortex shedding.

Figure 5a and b illustrate the benefits offered by a system like MARL. In comparison to 
what is observed at lower Reynolds numbers (Suárez et al. 2023), where it was clear that 
the control tries to synchronize all jets to act at the same frequency adapting to minimal 
instabilities, here we have a much richer control. As shown by the power-spectral density 
in Fig. 5c, Q evolution undergoing DRL-based control exhibits more features besides the 
main frequency fc . In contrast, strategy reported for ReD = 400 in Suárez et al. (2023) only 
has a clear peak and a second harmonic compared to the rest of its spectrum in the figures. 
It can be observed a control resolution where multiple actuators collaborate. Among them, 
they form a distributed blowing/suction spanning a spanwise length of around D, which 
aligns with the wavelengths experienced in this classic fluid case. When comparing both 
DRL cases, it is interesting to observe how the bandwidth of the spectrum broadens after 
the second training stage, thus containing more frequencies around the St.

As a general observation, building on the previous discussion about mass cost, 
it is worth noting that in the DRL strategies, the values are mainly within the range of 
Qs1∕s2 ∈ [−0.01, 0.01] , which is an order of magnitude smaller than in KC05, where the 
equivalent mass-flow per unit length is QKC05 = 0.11 . Despite this, there are occasional 
peaks in Qs1 that saturate the signal, reaching Q > 0.02 . This indicates that the DRL-10-s1 
actuators are able to fully exploit the mass flow rate when needed. However, it also sug-
gests that the system periodically loses track and effectively resets the flow state, repeat-
edly recovering a favorable reduction of CD . This behavior is also reflected in the low-
frequency fluctuations seen in the drag reduction signal already commented in Fig. 3. For 
DRL-10-s2, the evolution of Qs2 is slightly different: the sudden peaks are diminished, and 
the signal becomes more homogeneous in time, though more heterogeneous in the span-
wise direction.

Overall, it is important to highlight that despite the DRL agent being able to explore 
beyond this range during training, it decides to limit the maximum control values to be 
only 10% of Qmax during exploitation. This suggests the algorithm is conservative, aiming 
to use the minimum mass-flow rate for maximum impact. In our experience, poor learning 
is often indicated by signal saturation, where the agent fails to adapt to the flow.

This sophisticated distribution is remarkable. If we focus on the standard deviations � 
shown in Fig. 5d, these are orders of magnitude higher than the those in the reference case at 
ReD = 400 reported in Suárez et al. (2023). The agents at ReD = 3900 are capable of acting 
precisely on the dominant structures in the wake. Again, after the second stage i.e. DRL-
10-s2, the � the distribution over the span is richer than that in the DRL-10-s2 case too.

Next, we study the spectra of temporal signals of the streamwise and cross-flow 
velocities for two locations in the wake of the cylinder, see Fig. 6. Inspired by the study 
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conducted by Lehmkuhl et  al. (2013), points P1 at (x∕D, y∕D, z∕D) = (6.81, 13.25, 1.26) 
and P2 at (x∕D, y∕D, z∕D) = (8.25, 13.25, 1.26) were chosen to assess the main frequencies 
and compare them with those reported in the literature.

In the uncontrolled case, the shedding frequency of vortices fvs = 0.22 is clearly 
captured at both locations. However, at the P1 location, it seems to be too close to the 

Fig. 5   Mass-flow rate per unit width Q as a function of time for all jets, showing spatial distribu-
tion over z/D (top) and Q for all jets overlapped (bottom) for a DRL-10-s1 and b DRL-10-s2. c 
Power-spectral density of all actuators Q signals in time comparing (shifted by 102 between cases, 
for visualization purposes). d Evolution in time of the variance of the mass-flow rate computed in z, 
�2(t) = (1∕njets)

∑njets

i=1
(Qi(t) − Q(t))2 , and normalized by the squared peak Q values from each case. Note 

that (c) and (d) show DRL-10-s1 (blue), DRL-10-s2 (purple) at ReD = 3900 , and ReD = 400 reported in 
Suárez et al. (2023) (black)
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cylinder surface to effectively capture the bubble instability, especially when consider-
ing the streamwise velocity. Additionally, at point P2, we can discern the emergence of a 
higher frequency at fKH = 1.55 , which according to literature, could be associated with the 
Kelvin–Helmholtz instability in the separating shear layer. The observed value is slightly 
higher than the estimate provided by Prasad and Williamson (1997), which is given as 
fKH = 0.0235Re0.67

D
fvs = 1.31.

If we compare with the results of the controlled cases, we can observe the influence of 
the actuators in both DRL-based and KC05. In DRL-10-s1, there is a shift to a lower shed-
ding frequency and lower intensity, f s1

vs
= 0.177 . On the other hand, DRL-10-s2 turns to 

decrease the intensity of those fluctuations on those locations–indicating that the recircula-
tion bubble is a bit larger than DRL-10-s1. Meanwhile, KC05 maintains the same shed-
ding frequency, f KC05

vs
= fvs = 0.22 , but with a slight decrease in intensity. This is consist-

ent with the fact that the KC05 control does not involve any temporal dependency, thus 
not affecting the dominant frequency in the wake. At point P1 (Fig.  6), it is interesting 
how the intensity of the energy cascade for KC05 is much lower compared with to the 

Fig. 6   Power spectral density of the (left) streamwise velocity u and (right) cross-stream velocity v. The 
points considered are located at the following coordinates: a P1, (x∕D, y∕D, z∕D) = (6.81, 13.25, 1.26) 
and b P2, (x∕D, y∕D, z∕D) = (8.25, 13.25, 1.26) . All studied cases are shown, with the main frequencies 
denoted by fVS for vortex shedding and fKH for Kelvin–Helmholtz instabilities. A dashed line representing 
the E(k) ∼ k−5∕3 energy spectrum, characteristic of the inertial subrange in turbulent flows, is also included 
for reference
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uncontrolled case, while DRL-10-s1/s2 exhibit a slight increase. It can be inferred that the 
agent is enriching the finer scales near the cylinder, whereas the strong actuation of KC05 
causes such structures to fade. Note that St values shown in Table 3 are computed using 
spectra from probes located further away, as well as from the lift signal.

The influence of the studied AFC is not limited to frequencies but also extends to the 
mean fields in the wake. First, Fig. 7a shows how the recirculation bubble is enlarged as a 
result of both DRL controls. In DRL-10-s1 and DRL-10-s2, we can observe very similar 
results: a shorter recirculation bubble than in the KC05 case, also exhibiting fewer regions 
of mean streamwise velocity where |u| < 0.03 (highlighted as yellow-colored regions). The 

Fig. 7   Time- and spanwise-averaged flow-field statistics comparison–averaged all over 150 time units after 
transients. a Mean velocities, u and v , and mean pressure P fields for from top to bottom: uncontrolled, 
DRL-10-s1, DRL-10-s2 and KC05. Yellow regions denote wake-stagnation points where |u| < 0.03 , which 
is used to compute Lr∕D in Table 3. b Mean Reynolds stresses u′u′, u′v′, v′v′ and w′w′ for from top to bot-
tom: uncontrolled, DRL-10-s1, DRL-10-s2 and KC05. c Maximum Reynolds-stress values and their cor-
responding x/D locations across all investigated cases, compared with values from the literature (Lehmkuhl 
et al. 2013)
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KC05 case resembles the uncontrolled configuration, with larger regions of zero velocity 
than the DRL cases.

Second, in Fig. 7b, c we analyze the Reynolds stresses. We observe a similar trend in 
all controlled cases, where the maximum stresses are reduced by ≈ 50% and their locations 
shifted upstream. Note that the KC05 case prominently exhibits the shift of the locations 
of those peaks by a length of around D. For DRL-based control, the change is less pro-
nounced but still effective, as the absolute values of the stresses decrease. Specifically, the 
v′v′ component reduces by more than 60% compared to the baseline values. This behav-
ior is consistent with the drag-reduction mechanisms observed at lower Reynolds num-
ber (Suárez et al. 2023).

This is consistent with previous findings for similar configurations. Specifically, the 
DRL agents work to expand the recirculation area and suppress mixing between the inner 
and outer flow within the recirculation bubble. This results in a more stable and extended 
outer shear layer enveloping the bubble. Doing so, the actuators effectively reshape the 
flow into a more aerodynamically efficient profile, resembling a teardrop or airfoil, which 
is known to minimize drag. Figure  8 provides a simplified depiction of how these drag 
reduction mechanisms evolve and influence the wake topology.

The pressure distribution on the surface of the cylinder is shown to be consistent with 
the literature, except for a slight deviation in the minimum peak at � ≈ −112.5◦ , as seen in 
the Fig. 9a. However, when considering the influence of all controlled cases, around this 

Fig. 8   Schematic representation of wake topology evolution, illustrating the transition from uncontrolled 
to controlled flow states. The diagram highlights the key drag reduction mechanisms and their influence on 
wake dynamics and flow organization

Fig. 9   a Pressure-coefficient distribution around the cylinder, where � = 0 is the back of the cylinder. The 
red shaded area corresponds to the location of the jets, that spans � = 10◦ . b Averaged streamwise velocity 
along the centerline at y∕D = Ly∕2 . Note that several curves from the literature are included to validate the 
present uncontrolled case in (a) and (b)
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pressure valley, we observe that both DRL-10-s1 and KC05 follow the same trend, recover-
ing some pressure. On the other hand, unexpectedly, DRL-10-s2 deviates from these strate-
gies, further decreasing this valley value. Nevertheless, we observe that the most signifi-
cant change occurs in the distribution, specifically within the separation bubble delimited 
by ±�s = 89◦.

In the Fig. 9b, we observe a V-shaped mean streamwise velocity along the centerline 
in the wake when uncontrolled, which shows good agreement with the literature. The con-
trolled cases, however, exhibit a more U-shaped velocity profile. The reattachment, with 
the downstream velocity value–which is more relevant–occurs later for all controlled cases, 
indicating an increase in the recirculation bubble, as discussed earlier in Table  3. Both 
DRL-10-s1 and DRL-10-s2 reach higher negative velocity values, while KC05 is better 
at maintaining regions closer to u = 0 near the cylinder. The minimum velocity values are 
also noticeably shifted by the latter, around D/2.

To conclude the analysis, the different velocity profiles along the wake show very good 
agreement with the literature, see Fig.  10. Given that significant scattering with the refer-
ences typically happens near the cylinder, the observations at the first three locations ( x∕D =

6.83, 7.31, and 7.79) reaffirm our earlier observations: The recirculation zone is wider in 
the controlled cases, with KC05 showing a slightly more pronounced effect compared to 
the DRL cases. Additionally, u exhibits a flatter profile near the centerline. For instance, at 
x∕D = 7.79 , it is noteworthy how the recirculation zone is maintained in the controlled cases, 
while in the uncontrolled case, u reattaches to the downstream velocity further into the wake. 
This indicates that the velocity deficit remains higher, and the momentum is more sustained 
in the controlled cases. As expected, farther from the cylinder, the wake recovers its shape 
similarly across all controlled cases, with no significant differences observed in the redistri-
bution of momentum from the central velocity deficit to the upper or lower regions.

Fig. 10   Mean streamwise velocity u profiles at different locations along the wake. Note that reference trends 
from the literature are included to validate the present uncontrolled case in all the figures
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4 � Conclusions

This study couples a multi-agent reinforcement learning (MARL) framework with a 
numerical solver to explore efficient drag-reduction strategies by controlling multiple 
jets positioned along the span of a three-dimensional cylinder. The investigation is 
conducted at ReD = 3900 , representing the fully turbulent wake, and compared with a 
classical controlled case based on the out-of-phase strategy reported by Kim and Choi 
(2005), referred to as KC05. The framework benefits from an innovative multi-stage 
training workflow for AFC applications, where training is optimized dynamically. In 
this process, the policy � is evaluated at two stages: after the first phase, DRL-10-s1, 
and after the second phase, DRL-10-s2.

The DRL-based control policies outperform the ratio of mass cost per drag reduc-
tion rate used in the KC05 strategy by two orders of magnitude. Both DRL-10-s1 and 
DRL-10-s2 exploit the emergence of spanwise instabilities to discover successful 
drag-reduction strategies with ΔCDs1

= −9.4% and ΔCDs2
= −8.3% respectively. This is 

achieved by leveraging the underlying physics within pseudo environments and opti-
mizing the global problem involving multiple interactions concurrently. Notably, the 
cooperative closed-loop strategy developed by the agents introduces a novel approach, 
utilizing a range of mass-flow-rate frequencies that would be difficult to achieve using 
classical control methods. These findings underscore the DRL approach’s ability to 
identify more refined flow-control strategies than those previously achieved through 
classical methods, covering a broad range of frequencies and effectively managing 
various flow-structure wavelengths in the wake. Regarding the drag-reduction mecha-
nisms, the actuators discover a novel way to interact with the flow around the three-
dimensional cylinder by enlarging the recirculation bubble, influencing the fluctuations 
by shifting them downstream and attenuating their intensity. At the same time, they 
attenuate the mixing between the inner and outer region of the bubble. As a result, the 
wake behind the cylinder takes on a shape resembling a teardrop or airfoil-like topol-
ogy, which is known to be more efficient for drag reduction (as illustrated in Fig. 8).

Another advantage of MARL is its ability to deploy trained agents across various 
cylinder lengths and numbers of actuators, while ensuring consistency in the spanwise 
width of the jets and the corresponding pressure measurement locations as observation 
states. It is worth noting that the training focuses on symmetries and invariant struc-
tures, a task not feasible with SARL due to its limitations in scaling to different geom-
etries. MARL enables computational cost-effective training sessions in smaller and 
simplified computational domains, thereby accelerating the process required for flow 
control in high-fidelity simulations. This, combined with the results from implement-
ing the second stage to address weaknesses already observed in the DRL-10-s1 policy, 
suggests that there are many ways to enrich the exploration process and enhance the 
capabilities of the same training session without having to start from scratch, as seen 
with the DRL-10-s2.

The current DRL-based AFC strategies demonstrate impressive efficiency in reduc-
ing drag, offering both immediate energy savings through on-the-fly adjustments and 
long-term actuation benefits. A particularly novel and important contribution of these 
strategies is their non-invasive nature, which allows significant modifications to the 
wake topology while maintaining minimal disruption to existing systems. From a 
physics perspective, this non-invasiveness is especially interesting, as it enables sub-
stantial changes in the flow dynamics. Furthermore, this study is the first to perform 
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training on a fully turbulent 3D cylinder flow at ReD = 3900 , within the framework 
of MARL with two-stage exploration. This achievement provides a valuable reference 
for the DRL community and may encourage future applications in distributed-input, 
distributed-output systems.

While the results are promising, the practical implementation of these strategies in 
real-world applications will require careful consideration of computational resource 
demands and the ability for real-time adjustments. Further exploration is needed to 
assess the feasibility of DRL-based strategies for industrial use.

Appendix: Grid Convergence Study

In order to ensure the reliability and accuracy of the results, a grid independence study was 
conducted for three-dimensional cylinders at ReD = 3900 , with the drag coefficient as the 
primary integral quantity of interest. The study reveals that the drag coefficient converges 

Table 4   Summary of grid 
independence study using five 
different mesh for Re

D
= 3900 : 

coarse (C), medium (M), and 
fine (F). The medium mesh (M) 
was used in the present paper. 
All quantities are averaged over 
the last 150 time units of the 
simulation. We refer to Table 1 
for some references to compare 
them

Case Grid points min(Δr) Δz CD CD
RMS

CL
RMS

C1 7.6 × 106 0.0049 0.0314 1.240 0.078 0.464
C2 9.2 × 106 0.0045 0.0260 1.119 0.066 0.279
M 9.6 × 106 0.0036 0.0260 1.081 0.021 0.236
F1 13.5 × 106 0.0031 0.0260 1.089 0.063 0.258
F2 17.8 × 106 0.0026 0.0209 1.083 0.041 0.201

Fig. 11   Convergence analysis for CD and CL signals for the 5 different proposed meshes. (top left) Temporal 
evolution CD = f (t) . (top right) Accumulative average, CD = f (�) and (bottom left and bottom right) RMS 
for CD and CL as f (�) as well, respectively; starting from the last timestep and advancing backwards where 
� = (tend − t)U∞∕D and �(�) = (1∕�) ∫ �

0
�(t)dt.
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as the mesh is refined, stabilizing with finer grids, as shown in Table  4. In this table, 
meshes M, F1, and F2 converge around CD = 1.08 . We note that our results are slightly 
higher values than those reported in the literature, even with much finer meshes. Although 
the literature also reports modes that alternate between CD = 1.00 and 1.08 and reinforces 
the validity of our findings.

Figure 11 illustrates how all averaged quantities reach a plateau when 𝜏 > 100 . Addi-
tionally, other key statistics, such as mean–flow patterns and pressure distributions, were 
validated for the used mesh and are shown in Figs. 9 and 10, as well as in Table 1. Note 
that is important to indentify the minimum number of grid points that would provide ade-
quate accuracy. This study strikes a balance between the desired simulation quality and the 
high computational demand typical of DRL training, ensuring reliable results for large-
scale simulations while maintaining the accuracy of the drag coefficient and other flow 
characteristics.

As a final comment on the mesh depicted in Fig.  12, it is generated by a parametric 
GMSH script with three distinct refinement regions: the boundary layer around the cylin-
der surface, the near wake, and the larger wake.
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