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Summary
This thesis is about the hydrodynamic processes that occur when a nearshore sand-
bar migrates towards the shore driven by the waves. These processes are relevant
because process-based morphological models have difficulty simulating coastal ac-
cretion events in contrast to erosion events. Simulating accretion events is impor-
tant for engineering purposes, for example, to optimize shoreface nourishment for
the conservation of beach and dunes of the Netherlands. During onshore sandbar
migration, sediment is dominantly transported at the bed where the orbital wave
motion applies friction on the bed. This transport, known as bedload, may result
in a cross-shore net transport due to various hydrodynamic processes. First off,
the orbital motion under waves in the nearshore are not sinusoidal but asymmet-
ric as waves have steep fronts and flat backs. The wave shape is reflected back in
the orbital motion which has two consequences, first, the largest flow velocities are
found under the wave crests, and second, the largest horizontal pressure gradients
are found under the wave fronts. Numerical modeling results have shown that in
the wave bottom boundary layer the shape of the orbital motion is altered due to
flow deceleration. However, there have not been any observations to validate this.
Another set of hydrodynamic processes are the time-averaged currents generated by
the waves. In the wave bottom boundary layer these processes are ‘progressive wave
streaming’ and ‘wave shape streaming’. In addition, mass flux by waves (Stokes
drift) and wave breaking processes also generate currents that have an affect on the
time-averaged bottom shear stress. Although the time-averaged bed shear stress is
relatively small compared to the time-varying component it may have a large im-
pact on the net sediment transport. The accumulative effect of the aforementioned
processes on the time-averaged bed shear stress is not well understood.

The hydrodynamic processes near the bed are difficult to research for several
reasons: the small thickness of the wave bottom boundary layer, the proximity to
the bed and the harsh environment of the nearshore. In this thesis we study these
processes by conducting a laboratory wave flume experiment with observation of the
flow in the wave bottom boundary layer (Chapter 2). The laboratory wave flume
experiment had a rigid bottom with a single bar profile. The wave field was regular
and corresponded with conditions that would force the bar onshore. Observations of
the flow velocity were obtained using Particle Image Velocimetry. The measurement
resolution was large enough to clearly observe the flow structure of the wave bottom
boundary layer. The turbulent flow properties were obtained by ensemble averaging.
In addition, vortex tubes were observed.

For the analysis of the observations we first focused on the time-varying part
(Chapter 3). The bed shears stresses were derived by integrating the fluid shear
stress over the ‘interfacial sublayer’ which is located between the crest and trough of
the bottom roughness elements. From the flow observations it was evident that free-
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stream velocity was transformed in the wave bottom boundary layer by becoming
less asymmetric and more skewed. To study the relation between the free-stream
orbital velocity and the bed shear stress the harmonics of the time series were
analyzed (i.e. frequency analysis). It was found that, for every individual harmonic,
the relation can be described the analytic boundary layer solution for laminar flow.
However, the phase leads of the friction velocity components (w.r.t. the free-stream
velocity components) were approximately 37 degrees instead of the theoretical 45
degrees, which may be related to the fact that the bed was not smooth. A similar
exercise was performed on numerical modeling results of oscillatory boundary layer
flow where the flow was turbulent. It appeared that the relation between free-stream
velocity and bed shear stress is not quadratic and is closer to τb ∼ u1.6. However,
when the quadratic assumption is applied, the error made in the skewness of the
bed shear stress was relatively small. Furthermore, to describe the time-series of
the surface elevation or horizontal velocity of a single wave, Abreu et al. (2010)
suggested a waveform parameterization where the signal asymmetry and skewness
are related to the harmonic amplitudes and phases. The frequency analysis from
the experimental observations also describe this relation indicating the validity of
the waveform parameterization for regular waves in the nearshore.

In Chapter 4 the time-averaged currents and bed shear stresses were analyzed.
The relation between net bedload and the bed shear stress was investigated by
looking at the moments of the bed shear stress. Also, an analytic model was utilized
to aid in the interpretation of the vertical profiles of the horizontal velocity. From
the observations it was clear that the currents in the wave bottom boundary layer
have a complex vertical structure and consequently the free-stream velocity was not
a good proxy for the bed shear stress. The time-averaged bed shear stresses were
maximal and directed onshore at the bar crest where they contributed 20% to the
stress moment that is responsible for the bedload. By comparing the observations
with modeling results it appeared that the analytic model was unable to reproduce
the time-averaged velocity profiles when the flow was turbulent owing to the process
of ‘wave shape streaming’ which was not incorporated in the analytic model.

The findings of this study were elucidated by applying them to a real-scale ex-
ample of an onshore sandbar migration. Often, the example of the Duck94 onshore
sandbar migration is choosen. However, the use of the Duck94 example is not
straightforward because the onshore sandbar migration is an accumulation of dif-
ferent transport patterns over a tidal cycle. Therefore, we used the large-scale wave
flume experiment LIP11d Test 1c were the still water level was constant. Through
this example we illustrated the implementation our findings and confirm the im-
portance thereof. In addition, it was found that wave dissipation is currently not
modeled with sufficient accuracy to successfully model onshore sandbar migration.



Samenvatting
Dit proefschrift gaat over de hydrodynamische processen die zich voordoen wanneer
een zandbank naar de kust toe gedreven wordt door de golven. Deze processen
zijn relevant omdat proces gebaseerde morfologische modellen problemen hebben
met het simuleren van kust aangroei in tegenstelling tot kusterosie. Het simuleren
van kust aangroeiende gebeurtenissen is belangrijk voor technische doeleinden, bi-
jvoorbeeld, om vooroeversuppleties te optimaliseren voor het behoud van stranden
en duinen van Nederland. Tijdens de kustwaartse migratie van zandbanken, wordt
sediment overwegend getransporteerd nabij de bodem, waar de orbitaalbeweging van
de golven wrijving op de bodem uitoefent. Dit transport, bekend als bedload, kan
resulteren in een netto sediment transport door verschillende hydrodynamische pro-
cessen. Zo is de orbitaalbeweging onder golven nabij de kust niet sinusvormig maar
asymmetrisch waarbij golven steile fronten en flauwe ruggen hebben. De golfvorm
wordt teruggezien in de orbitaalbeweging met twee gevolgen, ten eerste, de groot-
ste stroomsnelheden bevinden zich onder de golftoppen en ten tweede, de grootste
horizontale drukgradiënten bevinden zich onder de golffronten. Numerieke model
resultaten hebben aangetoond dat in de bodemgrenslaag de vorm van de orbitaal-
beweging wordt gewijzigd als gevolg van stroomvertraging. Echter, tot op heden
waren er geen gedetailleerde waarnemingen om dit te valideren. Een andere set van
hydrodynamische processen zijn de tijdsgemiddelde stromingen door golven. In de
bodemgrenslaag zijn dit de processen ‘progressive wave streaming’ en ‘wave shape
streaming’. Bovendien genereren Stokes drift (massa flux van golven) en golfbrek-
ende processen ook stromen die een effect hebben op de tijdsgemiddelde bodem-
schuifspanning. Hoewel de tijdsgemiddelde bodemschuifspanning relatief klein is, in
vergelijking met de tijdsvariërende component, kan deze een grote invloed hebben
op het netto sedimenttransport. Het cumulatieve effect van de bovengenoemde pro-
cessen op de tijdsgemiddelde bodemschuifspanning wordt nog niet goed begrepen.

De hydrodynamische processen in de buurt van de bodem zijn om verschillende
redenen moeilijk te onderzoeken: de kleine dikte van de bodemgrenslaag, de nabi-
jheid van de bodem en de ruige omgeving van de kust. In dit proefschrift bestuderen
we deze processen door in een golfgoot van een laboratorium een experiment uit te
voeren met observaties van de stroming in de bodemgrenslaag (hoofdstuk 2).

Het laboratorium-golfgoot experiment had een vaste bodem met een profiel van
een zandbank. Het golfveld was regelmatig en correspondeerde met omstandigheden
die de bank landwaarts dwingen. Waarnemingen van de stroomsnelheden werden
verkregen met behulp van Particle Image Velocimetry. De meetresolutie was groot
genoeg om de structuur van de stroom in de bodemgrenslaag duidelijk waar te
nemen. De turbulente stroomeigenschappen werden verkregen door middeling van
een ensemble. In de bodemgrenslaag werden werden vortices waargenomen.

Voor de analyse van de waarnemingen hebben we ons eerst geconcentreerd op het
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tijdsvariërende deel (hoofdstuk 3). De bodemschuifspanningen werden afgeleid door
de vloeistof schuifspanningsgradienten te integreren over de sublaag die zich bevindt
tussen de toppen en dalen van de ruwheidselementen op de bodem. Uit de waarne-
mingen was het duidelijk dat de vrije stroomsnelheid werd getransformeerd in de
bodemgrenslaag waardoor de orbitaalbeweging minder asymmetrisch werd. Om de
relatie tussen de vrije stroomsnelheid en de bodemschuifspanning te bestuderen, zijn
de harmonische van de tijdreeksen geanalyseerd (i.e. frequentieanalyse). Het bleek
dat voor elke afzonderlijke harmonische component de relatie kan worden beschreven
met de analytische grenslaagoplossing voor laminaire stroming. De fasen verschillen
van de wrijvingssnelheid componenten ten opzichte van de vrije-stroom snelheid-
scomponenten waren ongeveer 37 graden in plaats van de theoretische 45 graden,
wat in verband kan staan met het feit dat de bodem niet glad was. Een vergelijkbare
oefening is uitgevoerd op numerieke modelresultaten van de oscillerende bodem-
grenslaag waarbij de stroming turbulent was. Het bleek dat de relatie tussen de
vrijestroomsnelheid en bodemschuifspanning niet kwadratisch is maar dichter bij
τb ∼ u1.6 lag. Echter, wanneer de kwadratische aanname wordt toegepast, was de
fout die werd gemaakt in de skewness van de bodemschuifspanning relatief klein.
Daarnaast, voor het beschrijven van de tijdreeksen van de oppervlakte uitwijking
of de horizontale snelheid van een enkele golf suggereerde Abreu et al. (2010) een
golfvorm parametrisering waar de asymmetrie en scheefheid van het signaal gekop-
peld zijn aan de harmonische amplituden en fasen. De frequentieanalyse van de
experimentele waarnemingen beschrijven een vergelijkbare relatie wat de geldigheid
van de golfvorm parametrisering bevestigd voor regelmatige golven nabij de kust.

In hoofdstuk 4 zijn de tijdsgemiddelde stromen en bodemschuifspanningen ge-
analyseerd. De relatie tussen de netto bedload en de bodemschuifspanning is on-
derzocht door te kijken naar de (wiskundige) momenten van de bodemschuifspan-
ning. Ook werd een analytisch model gebruikt om te helpen bij de interpretatie
van de verticale profielen van de horizontale stroomsnelheid. Uit de waarnemingen
was het duidelijk dat de stromingen in de bodemgrenslaag een complexe verticale
structuur hadden en daardoor was de vrije stroomsnelheid geen goede proxy voor de
bodemschuifspanning. De tijdsgemiddelde bodemschuifspanningen waren maximaal
en kustwaarts gericht boven de top van de bank waar ze 20% bijdroegen aan het mo-
ment van de bodemschuifspanning dat verantwoordelijk was voor de bedload. Door
de waarnemingen te vergelijken met de modelresultaten bleek dat het analytische
model niet in staat was om de tijdsgemiddelde snelheidsprofielen te reproduceren
wanneer de stroming turbulent was, wat mogelijk te wijten is aan het feit dat het
‘wave shape streaming’ proces niet was meegenomen in het analytische model.

De bevindingen van deze studie werden verduidelijkt door ze toe te passen op een
echt voorbeeld van een kustwaartse zandbank migratie. Vaak wordt het voorbeeld
van de Duck94 kustwaartse zandbank migratie gekozen. Echter, het gebruik van
het Duck94 experiment is niet eenvoudig, omdat de kustwaartse zandbank migratie
een opeenstapeling is van verschillende transport patronen over een getijdencyclus.
Daarom is hier het LIP11d Test 1c experiment gebruikt waar het waterniveau con-
stant was. Met dit voorbeeld hebben we de implementatie van onze bevindingen geïl-
lustreerd en het belang ervan aangetoond. Daarnaast is vastgesteld dat momenteel
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de golf dissipatie onvoldoende nauwkeurig gemodelleerd wordt om met succes een
kustwaartse zandbankmigratie te modelleren.
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1
Introduction

1.1. General
This thesis is about shoreward transport of sand by unbroken waves near the shore.
A typical sandy shore is often made out of a beach and dune. On a prograding
coastline, sediments are transported by wave-induced currents to the shoreline where
after the wind blows the sediments into the dune. Many sandy shores provide safety
by functioning as a barrier against storm surges and waves. In the Netherlands, 60%
of the population lives below sea level who are protected against the sea by a barrier
of sandy shores and dunes. On a global scale, many coastal cities (e.g. New York
city) rely on the protection of sandy shores against high surges and large waves
from storms, hurricanes and cyclones (Hallegatte et al., 2013). However, coastal
areas are under increased pressure due to climate change effects such as sea level
rise and larger storms.

Rising sea levels force the beach profile to follow upwards and this requires
sediments which are sourced from the beach-dune system. This phenomenon can
turn a stable coastline into an eroding coastline. To prevent coastal erosion, in e.g.
the Netherlands, the beach-dune system is nourished with million cubes of sand
close to shore at depths between 5 and 8 m. From experience, we know that the
nourished sand is distributed over the beach and dunes by waves, tide and wind
(Hillen and Roelse, 1995). However, This involves many transport processes which,
at the moment, we cannot accurately predict. One critical process is the shoreward
sediment transport by the waves. A better prediction would result in improved
nourishment design and planning and thus reduced cost and increased safety.

1.2. Shoreward sediment transport by waves
1.2.1. Waves and currents
When waves travel through the water, the fluid particles underneath the surface
make an orbital motion (see Figure 1.1). The fluid particle experiences a displace-
ment moving ‘back and forth’ and ‘up and down’. Thus, the fluid particle has a

1
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Figure 1.1: Orbital wave motion and currents under a progressive no-breaking wave.

periodic horizontal velocity, denoted with u, and a periodic vertical velocity, de-
noted with w, that are 90 degrees out of phase of each other. Under the wave
crest we find the maximum onshore-directed velocity and under the wave trough we
find the maximum offshore-directed velocity. The vertical excursion of the orbital
motion will become zero at the bed.

At the bed, friction decelerates the fluid. The layer of decelerated fluid is less
than a few centimeters thick and is called the ‘wave bottom boundary layer’ (wbbl).
The friction force between the bed and the fluid is referred to as the ‘bed shear
stress’.

Besides the intra-wave orbital motion, progressive waves generate various types
of time-averaged currents (see also Figure 1.1):

1. A relatively small net current in the wbbl commonly referred to as wbbl
streaming (Longuet-Higgins, 1953; Trowbridge and Madsen, 1984). This cur-
rent is result of a non-zero wave-averaged downward transport of horizontal
momentum into the wave boundary layer by the vertical orbital motion which
is characteristic for progressive surface waves.

2. There is another mechanism that actually drives a wbbl current against the
wave direction that is coined wave shape streaming (Kranenburg et al., 2012).
As the name indicates, the process is related to the wave shape which is non-
sinusoidal in the nearshore (more on wave shapes will follow in Section 1.2.3.
Bed friction in combination with a non-sinusoidal oscillatory water motion
leads to a nonzero time-averaged wave-related turbulent stress, which drives a
current in the wbbl against the direction of wave propagation(Holmedal and
Myrhaug, 2009; Kranenburg et al., 2012; Trowbridge and Madsen, 1984).
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3. Accompanied with the free-stream orbital motion of progressive surface waves
is a mass flux in the direction of wave propagation referred to as Stokes drift
(Phillips, 1977; Stokes, 1851). In case of a closed boundary, such as a shore, a
return flow must exist.

4. In addition to the above mentioned currents there is the undertow and rip
currents (see e.g. Dalrymple et al., 2011) associated with breaking waves which
fall outside the scope of this study.

1.2.2. Sediment transport
In this study we consider sediment transport as the movement of sand particles over
the horizontal space. Hereby, the particles can either be suspended in the water
and move with the flow, or, the particles can roll along the bed. The first mode
of transport is called ‘suspended load’ and the latter is called ‘bedload’ (Bagnold,
1966). In essence, during suspended load, sand particles are kept in suspension by
turbulent fluid motions and carried along with the main flow. During bedload, sand
particles are shoved over the bed by the shearing of the fluid over the bed.

Under unbroken waves, the fluid turbulence above the wbbl is small and hence,
there is no mechanism to keep sand in suspension, however, the shearing of the
orbital flow over the bed is strong enough to generate bedload. Therefore, bedload
is dominant over suspended load under unbroken waves.

The friction force between the fluid and the bed (hereafter called bed shear stress
τb) is related to the square of the flow velocity:

τb ∼ u2 . (1.1)

Empirical findings from experiments, see for example Meyer-Peter and Müller (1948)
and Wilson (1987), showed that bedload was related to the bed shear stress by

q ∼ τ1.5
b . (1.2)

Therefore, it is generally accepted that bedload q has a cubed (i.e. non-linear)
relationship with the horizontal flow velocity u

q ∼ u3 . (1.3)

Bagnold (1966) came to a similar conclusion based on a physically-based derivation.
Note that this relation is based on knowledge from sediment transport by ‘steady’
flows such as rivers and, in the absence of contrary evidence, is also applied for
sediment transport by the ‘unsteady’ orbital wave motion (see e.g. Bailard, 1981,
1982; Bailard and Inman, 1981; Bowen, 1980; Ribberink, 1998; Roelvink and Stive,
1989).

1.2.3. Onshore bar migration
The knowledge gap becomes apparent when we try to predict the shoreward mi-
gration of bars. On many natural sandy beaches we find bars close the shore. For
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Figure 1.2: Onshore bar migration.

example, Figure 1.2 shows a coastal profile consisting of a single bar. Field obser-
vations suggest that these bars migrate shoreward when mildly-energetic unbroken
waves travel over them (Aubrey, 1979; Ruessink et al., 2007a; Walstra et al., 2012;
Wright and Short, 1984)

In order for the bar to migrate shoreward, the bar needs to erode on the seaward
side and deposit on the shoreward side. In general, erosion happens when the sedi-
ment transport gradient is positive, and accretion when sediment transport gradient
is negative. Two things can be deducted from the associated erosion and deposition
pattern. First, the unbroken waves need to generate net transport, which means
that more sand is transported shoreward than seaward during one orbital motion.
Secondly, to comply with the associated erosion and deposition pattern, the net
transport needs to have a local maximum over the bar crest.

A purely sinusoidal fluid motion can not generate any net transport since the
shoreward part of the orbital motion is similar to the seaward part and the net
result would be zero. However, waves are not sinusoidal near the shore. As waves
start to feel the bed, their crest become sharper and troughs become flatter, i.e. the
waves become ‘skewed’. As waves travel into even shallower water depths, the waves
become pitched forward, this is called ‘asymmetry’. See the different wave shapes in
Figure 1.2 for a visual impression. The periodic horizontal flow velocity u generated
by the orbital motion has the same shape as the time evolution of the surface
elevation and, therefore, will have similar skewness and asymmetry features. Skewed
waves have the property that the shoreward velocity under the wave crest is larger
than the seaward velocity under the wave trough. Wave asymmetry has no effect
on the maximum and minimum velocity, instead, the shoreward flow accelerations
become larger than the seaward flow accelerations. For an impression, see the three
different velocity shapes in Figure 1.3 (shown by the black lines). Note that all three
velocity signals have similar variance and that their averages are zero. However, the
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Figure 1.3: The velocity and cube velocity of a sinusoidal, skewed and asymmetric velocity signal.
The titles show the first, second and third odd moments.

averaged of the cubed velocity is non-zero for the skewed signal and zero for the
asymmetric signal.

During the field experiment ‘Duck94’ at Duck, North Carolina, USA, in 1994,
an onshore bar migration was observed and the flow velocities were measured over
the bar. Gallagher et al. (1998) used the measured velocities in combination with
Equation 1.3 to predict the bar evolution. However, the observed onshore bar mi-
gration was not predicted. In the following section we provide a literature overview
that sprouted from Gallagher et al. (1998) publication. Table 1.1 gives an overview
of all the modeling attempts of the Duck94 onshore bar migration and can be a
useful reference when going through the following literature.

1.2.4. Possible explanations
Pressure force by surface curvature
In 2003, Hoefel and Elgar succeeded in predicting the Duck94 onshore bar migration
by including a proxy for the pressure force. The idea behind this is that the curvature
of the water surface provides, besides the shearing force of fluid, also a pressure force
that acts on the sediment grains. Since asymmetric waves have steeper fronts than
backs, the pressure force could explain net sediment transport. Hoefel and Elgar
(2003) used the flow acceleration as a proxy for the pressure force. This theory was,
among others, based on the observations of a military diver (Madsen, 1974):

Just prior to the passage of the crest of a near-breaking wave the bed
seemed to explode.

Interestingly, the moment ‘just prior to the passage of the crest’ is at the upcrossing
of the surface elevation. At that moment, the horizontal velocity by the orbital
motion is zero and, based on Equation 1.3, one would not expect any sediment
transport. Supported by the diver’s observation and the findings of Flores and
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Sleath (1998a) and Drake and Calantoni (2001), Hoefel and Elgar (2003) argued
that the pressure force played a crucial role in the transport of sediment.

Although from a physical point of view the pressure force could move sediment
it does not explain the suspension event described by the diver in Madsen (1974).
For a suspension event, water has to move around rapidly. Foster et al. (1994)
suggested that coherent structures, known as ‘vortex tubes’, are generated in the
wbbl and could be responsible for sediment suspension events. Carstensen et al.
(2010) studied the structures in a oscillatory flow tunnel. Unfortunately, there are
no measurements of vortex tubes under real waves.

Boundary layer streaming
Henderson et al. (2004) obtained similar results as Hoefel and Elgar (2003) while
excluding the pressure force. Instead of using ‘quasi steady’ approximations such as
Equation 1.3, they used a sophisticated numerical model to estimate the shearing
force exerted by the fluid on the bed and combined it with a sediment advection-
diffusion equation. This basically means that the sediment transport was modeled
as ‘suspended load’ and the sediment concentration close to the bed was related to
the shearing force of the fluid. From the model results Henderson et al. (2004) found
that the shoreward bar migration was caused by ‘wave boundary layer streaming’.

Kranenburg et al. (2013) developed a numerical model strongly similar to the
one used by Henderson et al. (2004) but included feedback between turbulence and
sediment concentration (stratification effects). Kranenburg et al. (2013) limited their
study to sediment transport by skewed waves over a flat bed. Their findings support
the relative importance of wbbl currents on net sediment transport. They found
that wbbl streaming accounted for approximately 40% of the net sediment transport
(when considering medium-sized sand). The other 60% of the net transport was due
to the relatively larger sediment concentrations under the wave crest (compared to
under the wave trough) caused by the fact that the oscillatory flow was skewed.

Henderson et al. (2004) found that the nearbed sediment transport correlated
very well with the third moment of the nearbed velocity and poorly with the third
moment of the velocity at the edge of the wbbl. Apparently when waves became
asymmetric, the horizontal velocity close to the bed was more skewed than at the
edge of the wbbl. In other words, the shape of the velocity signal changed in
the wbbl and, therefore, the net sediment transport was actually related to the
shape of the nearbed velocity instead of the free-stream velocity. Although an
important observation, this was not the mechanism that migrated the bar shoreward.
Henderson et al. (2004) remarked that this process was already noted by Nielsen
(1992). Terrile et al. (2009b) further improved the description given by Nielsen
(1992).

The mean current
Hsu et al. (2006) investigated, among others, the model of Gallagher et al. (1998),
Hoefel and Elgar (2003) and Henderson et al. (2004). Hsu et al. (2006) showed that
when only the free-stream wave orbital motion was considered (thus, no mean flow
outside the wbbl) all models predicted the shoreward sandbar migration to some
extent. Hsu et al. (2006) argued that the transport by the mean current outside the
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wbbl and the wave orbital motion need to be estimated separately. Physically sound
or not, this method basically sidelines the mean current. Since wbbl streaming,
Stokes drift, wave skewness and wave asymmetry all had a local maximum over
the bar crest, all models (although the underlying assumptions differ) predicted the
Duck94 shoreward sandbar migration to some extend.

The argument of Hsu et al. (2006) is supported by the modeling efforts of Kra-
nenburg et al. (2013) who showed that the return current outside the wbbl had a
subordinate effect on the net transport by skewed waves. However, this was for
cases were the free-stream current was smaller than 10% of the orbital velocity
(Kranenburg et al., 2013).

Other modeling efforts
There are also modeling efforts of the Duck94 onshore bar migration where the
model was forced by the offshore wave and water level conditions instead of the flow
velocity measurements. This means that the currents forced by the waves need to be
resolved. Under this category are the study by Ruessink et al. (2007a), Dubarbier
et al. (2015) and Fernández-Mora et al. (2015). The hydrodynamics were modeled
using the wave-averaged momentum and mass balance. The hydrodynamic model
by Fernández-Mora et al. (2015) was depth-averaged while Ruessink et al. (2007a)
and Dubarbier et al. (2015) used the quasi-3D flow model of Reniers et al. (2004a)
to estimate the vertical velocity profile.

Ruessink et al. (2007a) estimated the intra-wave near-bed orbital velocity using
the method of Rienecker and Fenton (1981) and only included wave skewness and
no wave asymmetry. Dubarbier et al. (2015) and Fernández-Mora et al. (2015)
estimated the intra-wave near-bed orbital velocity on the basis of the analytic wave
form by Abreu et al. (2010) and used the parameterized estimates of wave skewness
and asymmetry given by Ruessink et al. (2012a).

Ruessink et al. (2007a) estimated bedload with a Meyer-Peter Mueller power law
(MPM) (Meyer-Peter and Müller, 1948), which is approximately similar to Equa-
tion 1.3. Dubarbier et al. (2015) and Fernández-Mora et al. (2015) estimated bedload
with the extended energetics friction factor (EEFF) model of Hsu et al. (2006) in
combination with the acceleration-driven bedload model of Hoefel and Elgar (2003).
Note that the EEFF model of Hsu et al. (2006) is in essence also approximately sim-
ilar to Equation 1.3, however, bedload by the mean current and orbital motion are
considered separately.

All three models predicted the Duck94 onshore bar migration with good skill
ranging from 0.73 to 0.93. The onshore bar migration could be modeled by either
including wave skewness or asymmetry, however, including both works best for the
whole cross-shore profile. Furthermore, free model parameters leave enough room
to compensate for missing physics.

1.2.5. Status quo
All the aforementioned studies could not successfully pinpoint the dominant mech-
anisms of sediment transport during onshore bar migration (Dubarbier et al., 2015;
Fernández-Mora et al., 2015; Hsu et al., 2006; Ruessink et al., 2007a). However, fo-
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cused research questions can be formulated based on their findings and suggestions.

• Does the horizontal pressure gradient contribute to sediment transport (be-
sides bed shear stress)?

• What is the relation between the periodic bed shear stress and the nonlinear
orbital wave motion?

• How large is the time-averaged bottom shear stress due to mass flux, wave
breaking, Longuet-Higgens streaming and wave shape streaming?

The onshore bar migration during the field experiment at Duck, North Carolina,
USA, in 1994, was the only occurrence where the flow velocities and sediment con-
centrations were measured over a cross-shore transect that included the bar. Despite
the close position of instruments to the bed, the measurements did not measure the
flow in the wbbl. Therefore, the Duck94 data set cannot provide the answer to these
research questions.

The absence of experimental data can be attributed to the difficulty of measuring
them. The small wbbl thickness in combination with the rough environment of the
nearshore make it difficult to conduct measurements. In addition, despite recent
advances in acoustic measuring devices, there is no device commercially available
that can measure flow velocities and/or sediment concentrations of the bedload with
sub-millimeter spatial coverage (Chassagneux and Hurther, 2014).

The rough coastal environment can be avoided by resorting to the controlled
environment of a laboratory wave flume. This does not solve the limitations imposed
by the measuring devices. However, in clear water, i.e. without the obstruction
of moving sediment particles, optical based techniques can adequately measure the
flow velocities in the wbbl. A suitable optical-based technique called ‘Particle Image
Velocimetry’ (Westerweel, 1993) has proven to measure instantaneous flow fields of
small boundary layers (Lara et al., 2002; van der A et al., 2009, 2011).

In laboratory wave flumes the spatial dimensions are about a factor 10 smaller
than in the field. When the waves become a factor of 10 smaller, the flow velocity will
also become smaller and consequently sediment will not be moved. Alternatively,
the sediment particles can be downscaled. However, when sediment particles become
smaller their settling velocity also becomes smaller possibly changing the mode of
transport from bedload to suspended load. For the study of intra-wave sediment
transport it is essential to ensure that the laboratory model has the same transport
regime as the prototype. The use of sediment that is made from a lighter material
than sand can provide a solution. That way, the artificial sediment can be mobilized
by the flow velocities in the model while the settling velocity is not compromised.
Scale relations that are based on the dominant physical processes can provide the
optimal material density and grain diameter for a certain coastal setting (Henriquez
et al., 2008).
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1.3. This research
1.3.1. Main objective
The main objective of this study is to investigate onshore bar migration and is
restricted to the following research questions:

1. What is the relation between the periodic bed shear stress and the nonlinear
orbital wave motion?

2. How large is the time-averaged bottom shear stress due to mass flux, Longuet-
Higgins streaming and wave shape streaming?

1.3.2. Approach
To address the research questions data are required on near-bed free-stream flow
velocities and bed shear stresses during an onshore bar migration. Bed shear stresses
can be derived from detailed wbbl flow velocity measurements in the wbbl using
the ‘Particle Image Velocimetry’ (PIV) technique (see e.g. van der A et al., 2011).
However, repetition of the wave conditions are required to be able to ensemble
average for the determination of intra-wave turbulent bed shear stresses. Such
measurements need to be performed in the controlled environment of a laboratory
wave flume where conditions can be repeated. Therefore, an experiment will be
conducted in a laboratory wave flume with a fixed single-bar profile. The bottom
profile and wave conditions are based on data from an onshore bar migration event
that occurred during the mobile-bed wave-flume experiment described in Henriquez
et al. (2008).

1.3.3. Outline
The fixed-bed wave flume experiment is presented in Chapter 2. In the experiment
mild energetic waves were generated over a fixed bed with a single bar profile. Flow
velocities were measured with sub-millimeter resolution in the wbbl using PIV.

Chapter 3 investigates the relation between the bed shear stress and the orbital
wave motion. The focus is on the orbital shape of the free-stream velocity and bed
shear stress. In addition to the data of laboratory wave flume tests, a k-ε numerical
model was utilized to gain more insight in mechanics of the time-varying bed shear
stresses. We tested the validity of the analytic boundary layer solution for laminar
flow, the time-depended quadratic drag-law and a waveform expression.

Chapter 4 investigates the time-averaged bed shear stress under the regular
surface waves that traveled over the fixed single bar profile in the laboratory wave
flume. The focus was on the shoreward-directed wave Reynolds stress and the
seaward-directed pressure force (to compensate the Stokes drift). A analytic quasi-
1DV model was used as a tool to distinguish the relevant processes that govern the
time-averaged bed shear stress.

In Chapter 5 (Synthesis) the findings are discussed and compared with other
literature. Chapter 6 gives the conclusions and recommendations.
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bottom boundary layer under
nonlinear surface waves 1

Sediment in the nearshore is largely mobilized in the wave bottom boundary layer
(wbbl) hereby emphasizing the importance of this relatively thin layer to nearshore
morphology. This paper presents a laboratory experiment where hydrodynamic prop-
erties of the wbbl were quantified by measuring flow velocities using Particle Image
Velocimetry. The bottom of the wave flume was rigid with a single bar profile. The
measurements consisted of the velocities of the wbbl with a resolution in the order
of 10 points in time and space for skewed and asymmetric waves. In the wbbl there
was significant transformation of velocity skewness and asymmetry. Negative wbbl
streaming was generated by asymmetric waves. Boundary layer development and
generation of vortex tubes were observed. The velocity measurements included the
turbulent components resulting in quantification of turbulent stresses that were of
similar magnitude as the viscous stresses.

2.1. Introduction
The orbital motion under surface waves in the nearshore is affected by bottom
friction creating a wave bottom boundary layer (wbbl). The layer thickness ranges
from a few millimeters to a few centimeters (Nielsen, 1992). The fluid forces on
the bottom are the result of how momentum is transferred between the free-stream
wave motion and the bottom. Accurate predictions of the bottom forces and flow
properties are important for engineers and researchers since they mobilize and move

1This chapter has been published as: Henriquez, M., Reniers, A.J.H.M., Ruessink, B.G. and Stive,
M.J.F., 2014. PIV measurements of the bottom boundary layer under nonlinear surface waves.
Coastal Engineering, 94, pp.33-46. DOI: 10.1016/j.coastaleng.2014.08.004.

11
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matter such as natural sediment and bottom protection elements, and impact the
biotic environment (Koehl, 1982).

To date, uncertainties regarding flow properties of the unsteady wbbl, especially
under non-linear surface waves, still exist, for example, the time evolution of the
bottom shear stress over a non-linear wave cycle (Abreu et al., 2013; Mirfenderesk
and Young, 2003; Nielsen, 1992; van der A et al., 2011). In a way, this is surprising,
as the bottom shear stress is the basis for many sediment transport formulations
(Ribberink, 1998; van Rijn, 2007). Besides viscous forces, momentum is transferred
through the wbbl by turbulence and (lesser known) vortex tubes. These are all inter-
related hydrodynamic processes that result in sediment transport. The associated
transport gradients change the nearshore bathymetry and, under mild wave con-
ditions, cause onshore sandbar migration (Gallagher et al., 1998; Kuriyama, 2002;
Roelvink and Reniers, 1995; Ruessink et al., 2000; Sánchez-Arcilla et al., 2011). Nu-
merous transport processes have been identified to explain these transport gradients
(e.g., Berni et al., 2013b; Calantoni and Puleo, 2006; Drake and Calantoni, 2001;
Flores and Sleath, 1998b; Foster et al., 1994, 2006; Henderson et al., 2004; Hoefel
and Elgar, 2003; Hsu and Hanes, 2004; Kranenburg et al., 2013; Madsen, 1974; Ter-
rile et al., 2009a), but a consensus among scientist remains off (Henderson et al.,
2004; Hsu et al., 2006).

The time average flow by waves can be generated by three mechanisms (Kranen-
burg et al., 2012). The orbital motion of the free-stream causes a mass transport in
the wave direction, known as Stokes drift (Phillips, 1977). On the basis of continuity
there should be a time-averaged return flow. Closer to the bottom, in the wbbl, the
vertical and horizontal velocity are not exactly in quadrature thereby generating
a flow in the wave direction (Longuet-Higgins, 1953). Also in the wbbl, bottom
generated turbulence under waves in the nearshore generate a flow against the wave
direction (Trowbridge and Madsen, 1984). Kranenburg et al. (2012) appropriately
coined the wbbl flows as ‘progressive wave streaming’ and ‘wave shape streaming’,
respectively.

The bottom shear stresses by the unsteady orbital motion under nearshore waves
are not as easy to predict as in steady flows. A quasi-steady assumption is often
chosen where intra-wave bottom shear stresses are directly related to the square
of the free-stream velocity (Ribberink, 1995; Ribberink and Chen, 1993; Ribberink
et al., 2000). Henderson et al. (2004) and Berni et al. (2013b) show that this model
excludes the wbbl process where free-stream velocity asymmetry is transformed into
bottom velocity skewness, a process that can have a significant effect on net sediment
transport. It is also hypothesized that horizontal pressure gradients found under
the steep front faces of asymmetric waves mobilize sediment (Calantoni and Puleo,
2006; Drake and Calantoni, 2001; Flores and Sleath, 1998b; Foster et al., 2006;
Hoefel and Elgar, 2003; Hsu and Hanes, 2004). This process is based on field and
laboratory observations where sediment was mobilized during flow reversal under
the wave front (Foster et al., 2006; Madsen, 1974). Also, vortex tubes, i.e. coherent
flow structures that originate from instabilities generated at an inflectional-point of
the flow (Akhavan et al., 1991; Carstensen et al., 2010; Foster et al., 1994), may
contribute to the mobilization of sediment during flow reversal.
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At the TU Delft an experiment was conducted to measure the processes men-
tioned above in the context to research onshore bar migration. This paper aims
to present the data with a preliminary analysis to quantify and characterize these
processes.

The experiment took place in a medium-sized laboratory wave flume. This type
of facility correctly reproduces the free-stream flow structure under waves in the
nearshore (Hughes, 1993). The bottom roughness was adjusted to approximate
the turbulent flow properties found in the wbbl of the nearshore (Henriquez et al.,
2008). The medium-sized laboratory flume was ideally suited for Particle Image
Velocimetry (PIV) instrumentation. The challenging part is to get light (i.e. laser
sheet) into the measuring domain. Lara et al. (2002) delivered the laser sheet from
beneath the bottom through optically clear material. In this experiment a more
practical, yet also more intrusive setup was chosen following Hofland and Booij
(2004) and Schlicke et al. (2005) where the laser sheet was inserted into the water
surface using a streamlined window. To mimic the nearshore, a single bar profile was
built in the flume. Wave heights were adjusted to be maximum with the limitation
of not breaking before the bar crest. Tests with three different wave periods were
conducted to vary the nonlinearity of the waves.

The experiment is described in Section 2.2 and the data processing in Section 2.3.
Data with preliminary analysis are presented in Section 2.4. Conclusions are pre-
sented in Section 2.5.

2.2. Description of experiments
2.2.1. Facility
The wave flume, located in the hydraulic laboratory of the Faculty of Civil Engi-
neering and Geosciences at the Delft University of Technology in The Netherlands,
has a length of 40 m, a width of 0.8 m and a height of 1.0 m. The piston-type wave
maker is equipped with second-order steering and active reflection compensation.
The bottom was an impermeable rigid single bar profile as shown in Figure 2.1.
Sediment with a median grain diameter of d50 = 520 µm was glued to the bed to
adjust the bottom roughness to yield turbulent conditions in the wbbl. The water
depth h over the horizontal approach in the flume was 0.50 m; over the bar crest, it
was 0.14 m.

2.2.2. Instruments
Flow velocities were estimated using Particle Image Velocimetry (PIV). The PIV
system from LaVision consists of a control computer with DaVis 6 software, a Kodak
ES1.0 camera (1008× 1008 pixels) and a 50 mJ double New-Wave YAG laser. The
camera was equipped with an extension tube and a Nikon Nikkor 105 mm lens.
Double framed images were captured with a time of 450 µs between the frames.
A laser sheet was inserted into the water surface without distortion by using a
streamlined window. The setup is shown in Figure 2.2. The water was seeded
with hollow glass spheres of 10 µm diameter. The reflections of particles in the
light sheet were captured on camera which is positioned outside the transparent
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Figure 2.1: Bottom profile and camera locations. h denotes the water depth with respect to the
still water level and d the distance from the wave board.

flume wall. The bed was painted fluorescent red and an optical filter was placed in
front of the camera to diminish bed reflections of the light sheet. The camera was
positioned at six cross-shore locations, four locations on the seaward side of the bar
and 2 locations on the shoreward side of the bar (locations are shown in Figure 2.1
and are referred to as C1 to C6).

Surface elevations were measured using seven resistance type wave gauges with
a sampling rate of 200 Hz. Three wave gauges were permanently positioned in
the horizontal approach of the flume. Four wave gauges were positioned over the
barred profile to record wave transformation. Their position depended on the camera
location and could vary from test to test. One wave gauge was always co-located
with the camera.

The bottom profile was measured with a Laser Displacement Sensor (LDS) from
Micro-Epsilon (model: optoNCDT 1700). The LDS was mounted on a carriage
that drove on tracks along the flume. Every 0.5 mm along the flume the output of
the LDS was stored. This setup, considering some free movement and vibrations,
allowed for a distance resolution of 0.5 mm.

2.2.3. Experimental program
Tests consisted of regular waves with periods of 1.0, 1.8 and 2.5 s and root-mean-
square wave heights Hrms at the wave maker of 8.7, 8.4 and 8.0 cm, respectively. Us-
ing these wave conditions resulted in unbroken waves of similar wave height (Hrms)
over the the bar crest. The wave skewness and asymmetry over the bar corresponded
with those generally found in nature (Doering and Bowen, 1995).



2.2. Description of experiments

2

15

Figure 2.2: Experimental setup. The letter A denotes the laser generator, B the laser sheet, C
the streamlined window, D the mean water surface, E the bottom and F the camera.
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A test began by turning the wave maker on and starting the recording by the
wave gauges. After 15 minutes (to reach stationary conditions in the flume) the
camera took image pairs during a period of at least 10 waves (all these images
together are called a set). Hereafter, the images were transferred from the random-
access memory to the hard disk drive, which took several minutes. Then, the camera
took eleven more sets during the test. Each test took about 1 hour to complete. In
one test, the camera captured a minimum of 132, 120 and 120 waves for test with
periods of 1.0, 1.8 and 2.5 s, respectively. The sampling rate of the camera was
15 Hz with the exception of tests with a wave period of 2.5 s for which the sampling
rate was reduced to 10 Hz.

2.3. Data processing
2.3.1. Camera images
Image pairs consist of two grayscale images with 256 intensity levels. A background
was generated by taking the mean image intensity of an image set. The background
image was subtracted from every image to remove any permanent light source.
The background image was also used to make a mask for areas in the images that
correspond to the bottom or had significant reflections, see e.g. Figure 2.3. The
intensity level of pixels that were in the mask were set to zero. The images were
then processed with the PIV software package DaVis 6 from LaVision.

The PIV processing started with subdividing the image pairs in interrogation
windows of 64 × 64 pixels. The windows had an overlap of 50%. The windows
from the first image were cross-correlated with the windows of the second image
to detect the average pixel displacement of the particles per window. Then, a
consecutive cross-correlation was done but this time the window in the second image
was shifted with the displacement result of the previous cross-correlation. This step
was repeated two more times but with windows of 32× 32 pixels.

The vector fields from the intermediate cross-correlations were checked using a
minimum ratio of the first to the second highest correlation peak of Q = 1.1 and a
median filter where vectors were removed if they exceeded 2 times the root-mean-
square of neighbors. Removed vectors were replaced by interpolation and the field
was smoothed with a Gaussian filter (filter window: 3 × 3 vectors). The vector
fields of the final cross-correlation were also checked with an absolute allowed vector
range and vectors with less than 3 neighbors were removed. Removed vectors were
not interpolated. Vectors that were in the masked area were set to NaN (Not a
Number).

The calibration factor to convert pixels to meters varied slightly between camera
locations but was approximately 0.012 mm/pixel. Hence, the interrogation window
of the final cross-correlation covered an area of 0.4 mm by 0.4 mm, the vector spacing
was 0.2 mm, and the total image area amounted to 12 mm by 12 mm.

2.3.2. Wave gauges
During the tests the surface elevation η was recorded continuously. Only the parts
where the PIV system was active were used. All parts were cropped to start and
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end with a zero-down-crossing.

2.3.3. Ensemble averaging
A regular wave field can be seen as a repetition of similar waves in time t with a
constant period T (primary harmonic). All these waves form the ensemble. Let α be
any wave field variable such as the flow velocity or surface elevation and considered
to be a function of time t. Then the ensemble average of α, denoted by α̂, is
calculated by

α̂(t) = 1
N

N∑
n=1

α(t+ (n− 1)T ) 0 ≤ t < T (2.1)

where N is the number of waves and n is the wave counter (see Section 2.2.3 for
values of N). The wave field variable α can be divided in the following components:

α = α+ α̃+ α′ (2.2)
or

α = α̂+ α′ (2.3)

where α is the time-average component, α̃ is the periodic component, α̂ is the
ensemble average component, and α′ is the turbulent component.

There was a very small difference in clock running speed of the wave maker and
the PIV system. This resulted in a gradual shift of sampling times with respect
to the wave phases that was significant between the first and last set of a test (of
the order of the turbulent fluctuations). Within one set of 10 waves, the drift was
not significant and therefore the turbulent component was determined using the
ensemble average component of the concerning set instead of the whole test. The
drift was not significant for the time average and periodic component so these are
averages over the whole test.

2.3.4. Spatial averaging and local coordinate system
Spatial averaging is denoted with angled brackets 〈 〉. The bottom of the flume had a
single bar profile and the PIV interrogation window included the bottom. Therefore,
spatial averaging was done in the direction along the local bottom (and not the x-
direction). The bottom slope was derived from the tilt of the ellipsoid made by the
velocity vector of the primary harmonic of the velocity from tests with a period of
1.8 s at the center of the upper boundary of the PIV vector field. The primary
harmonic was determined with the Fast Fourier Transform and the local bottom
slope was assumed to be constant over the PIV interrogation window. The slope
estimate derived from the flow agreed with the slope derived from the bottom profile
measurements with the LDS. The estimates of the latter were not used because they
had large deviations depending on the span over which the gradient was determined.

To accomplish averaging the rows, a rotated orthogonal grid was used consisting
of grid lines normal and parallel to the bottom, see Figure 2.4. Linear interpolation
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was used to estimate the vectors from the original grid to the rotated grid. The
new grid corresponds with a local coordinate system where x is parallel to the local
bottom, positive in the wave direction, and the z is normal to the local bottom
and positive upward. x is zero at the left column of the rotated grid. z is zero at
the maximum spatial-averaged intensity 〈I〉 of the background image. The vertical
distance between z = 0 and the crests of protruding grains was approximately
one d50. The orientation of the coordinate system depended on the measurement
location since the bottom slope was different at every location. The flow velocity
vector was decomposed into the flow velocity u in the direction of x, and the flow
velocity w in the direction of z.
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Figure 2.3: Background image. Rectangular inset shows part of a camera image with tracers when
image brightness was increased. Green line is the edge of the mask.

2.4. Results
2.4.1. Flow regime
Jonsson (1980) delineated flow regimes using the wave Reynolds number, RE, and
the relative roughness, a/kN , were a is the horizontal orbital excursions and kN
is the Nikuradse roughness height equal to 2.5d50. The orbital excursion is given
by a =

√
2ũrmsT/2/π where ũrms is the root-mean-square of the periodic free-

stream velocity. The wave Reynolds number is given by RE =
√

2ũrmsa/ν where
ν is the kinematic viscosity of water. The hydraulic parameters are presented in
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Figure 2.4: Background intensity image with the rotated orthogonal grid. Grid lines are normal
and parallel to the bottom.
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Table 2.1: Hydraulic conditions.

test id h [m] Hrms [cm] ũrms [m/s] a =
√

2ũrmsT/2/π RE a/kN
T=1.0s@C1 0.267 8.5 0.112 0.025 3955 19
T=1.8s@C1 0.267 8.5 0.150 0.061 12829 47
T=2.5s@C1 0.267 7.6 0.151 0.085 18046 65
T=1.0s@C2 0.232 8.5 0.126 0.028 5076 22
T=1.8s@C2 0.232 8.4 0.171 0.069 16654 53
T=2.5s@C2 0.232 7.7 0.168 0.094 22411 73
T=1.0s@C3 0.187 8.7 0.144 0.033 6640 25
T=1.8s@C3 0.187 8.9 0.188 0.076 20181 58
T=2.5s@C3 0.187 8.1 0.195 0.110 30188 84
T=1.0s@C4 0.151 8.4 0.165 0.037 8651 29
T=1.8s@C4 0.151 8.7 0.197 0.080 22131 61
T=2.5s@C4 0.151 8.4 0.201 0.113 32098 87
T=1.0s@C5 0.143 7.7 0.160 0.036 8161 28
T=1.8s@C5 0.143 8.1 0.159 0.064 14468 50
T=2.5s@C5 0.143 7.5 0.172 0.097 23500 74
T=1.0s@C6 0.161 7.2 0.141 0.032 6325 24
T=1.8s@C6 0.161 6.0 0.129 0.052 9518 40
T=2.5s@C6 0.161 5.7 0.121 0.068 11628 52

Table 2.1 and shown in Figure 2.5. Wave Reynolds numbers were between 4× 103

and 3× 104 and the relative roughness was between 19 and 87. The flow regimes of
the wbbl were in the ‘transition’ regime positioned between the ‘laminar’ and the
‘rough turbulent’ regime, see Figure 2.5. This indicates that the flow was laminar
during low velocities with some turbulence during high velocities generated by the
roughness elements. In nature, the flow conditions during onshore bar migration
have larger relative roughness and wave Reynolds numbers due to larger orbital
excursions, velocities and periods. Thus, flow in nature is more turbulent than in
the wave flume and is in the ‘smooth turbulent’ regime, i.e. the onset of turbulence
is caused by flow instability, see Figure 2.5 for comparison.

2.4.2. Surface Elevation
The root-mean-square wave height Hrms was calculated from the variance of the
surface elevation

Hrms =
√

8η2 (2.4)

and is shown in Figure 2.6a. The wave height for the three wave conditions were
slightly different at the wave maker but converge at the crest of the bar. Waves
with longer periods showed a higher increase in wave height towards the bar crest
due to more intense wave shoaling. Once the waves passed the crest of the bar they
started to de-shoal due to increased water depth. Some waves did become unstable
after passing the top of the bar and broke. From observations it was evident that
waves with longer periods broke more frequently. The waves started to re-shoal
after passing the trough of the bar.

As waves shoaled, their shape became skewed (sharp crests and flat troughs)
and, later on, also asymmetric (pitched forward). Elgar and Guza (1985) defined
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Figure 2.5: Delineation of flow regimes following Jonsson (1980). The markers, circle, square and
upward-pointing triangle correspond with wave periods of 1.0, 1.8 and 2.5 s, respectively, the black
diamonds correspond with tests of van der A et al. (2011) and the downward-pointing triangle
corresponds with mild wave conditions during the Duck 1994 experiment (Berni et al., 2013b;
Elgar et al., 2001).

the wave skewness as

Sk of η = (η − η)3

(η − η)21.5 (2.5)

and asymmetry as

As of η = (H (η − η))3

(η − η)21.5 (2.6)

where η denotes the surface elevation as a function of time and H the imaginary
part of Hilbert transform. As waves become more pitched forward, the asymmetry
becomes more negative. It is actually common practice in coastal engineering to
say that the asymmetry increases for larger negative values, this use of word is
maintained in this manuscript. The wave skewness is shown in Figure 2.6c and the
wave asymmetry in Figure 2.6e. Generally, maximum skewness and asymmetry were
found over the bar crest. While skewness decreased after the bar crest, asymmetry
stayed more or less constant. Waves with periods of 1.8 s had the largest skewness
at all wave gauges while waves with periods of 2.5 s had the largest asymmetry at
all wave gauges. Waves with periods of 1.0 s had an asymmetry near zero at all
wave gauges.
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Figure 2.6: Characteristics of surface elevation and free stream velocity. (a) Root-mean-square
wave height. (b) Second moment of free-stream velocity u. (c) Skewness of the surface elevation.
(d) Skewness of the free-stream velocity u. (e) Asymmetry of the surface elevation. (f) Asymmetry
of free-stream velocity u. (g,h) Water depth h with respect to the still water level where d is the
distance from the wave board.
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2.4.3. Free-stream velocity
The upper boundary of the measurement window is approximately 10 mm above
the bottom and there the flow can be considered free stream since the wbbl is
expected to be a few millimeters. Generally, the second velocity moments, velocity
skewness, and velocity asymmetry increased from the wave maker to the bar crest,
see Figures 2.6b, 2.6d and 2.6f. After the bar crest, at C5 and C6, the second
velocity moments decreased and intersected for tests with different periods.

The time series of the free-stream horizontal velocity of T=1.0s@C4, T=1.8s@C4
and T=2.5s@C4 (tests on the bar crest where the ratio of wave height to water
depth was largest) are presented in Figure 2.7. Positive velocities were larger than
negative velocities due to wave skewness. For the same reason, the duration of
positive velocities was smaller than of negative velocities. Tests with significant
wave asymmetry experienced a shorter acceleration phase than deceleration phase.
The largest decelerations occurred just after passing of the wave top but still in the
positive phase. In all, skewed asymmetric waves experienced large velocity changes
from the wave trough to just after the wave top. This implies that the life expectancy
of the positive wbbl is relatively short.

2.4.4. Profiles of the horizontal velocity
In general, the profiles of the horizontal periodic velocity had typical wbbl features
such as overshoot and phase lead. Figure 2.8 shows the profiles of T=2.5s@C4
(test with the largest dimensional velocity asymmetry). The overshoot during the
acceleration phase was larger than during the deceleration phase where the overshoot
was almost nonexistent. The upper part of the positive overshoot extended 5 mm
up into the water column. Near-bed velocity gradients were larger during positive
flow than during negative flow.

2.4.5. Velocity transformation
The velocity skewness and asymmetry were determined using Eq. 2.5 and 2.6. The
velocity skewness near the bottom decreased for waves with periods of 1.0 s from
location C1 to C4. Waves with periods of 1.8 s and 2.5 s, had an increase of
velocity skewness near the bottom at all locations. The velocity asymmetry near
the bottom decreased for all tests. Figure 2.9 shows the vertical profiles of velocity
skewness and asymmetry in the wbbl at location C4. The skewness of T=2.5s@C4
was twice as large near the bottom (Skc = 1.3) as in the free stream (Sk∞ = 0.5)
(subscript c denotes the level (z = d50) corresponding with the crests of protruding
roughness elements). This effect was less for T=1.8s@C4 with near-bottom skewness
of (Skc = 1.1) and free-stream skewness of (Sk∞ = 0.8). Figure 2.10 shows the
ratio of near-bottom to free-stream velocity skewness, Skc/Sk∞, as a function of
the ratio of free-stream velocity asymmetry to skewness, As∞/Sk∞, for all tests.
The data show that Skc/Sk∞ was larger when As∞/Sk∞ was larger. Note that the
skewness and asymmetry of tests with periods of 1.0 s were relatively small which
leads to significant scatter in Figure 2.10.

Henderson et al. (2004) showed that the shape of the velocity oscillations change
in the wbbl due to phase shifts of the frequency components. The amount of de-
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formation, in this paper measured by velocity skewness and asymmetry, depends
on the free-stream velocity skewness and asymmetry. Based on the work of Elgar
and Guza (1985) and Henderson et al. (2004), Berni et al. (2013b) formulated the
relation,

Skb
Sk∞

= cos (φb)− sin (φb)
As∞
Sk∞

(2.7)

that estimates the velocity skewness near the bottom. The relation is derived from
bispectrum properties with the assumption that near the bottom the harmonic
frequencies have similar phase shifts and gain. These assumptions were suggested
by Henderson et al. (2004) based on their numerical wbbl model results. They
found a constant phase shift of 25 degrees close to the bottom where gain values
were approximately 0.2. Eq. 2.7 is shown in Figure 2.10 for phase shift of 25 degrees.
Eq. 2.7 underestimates the skewness at z = d50 for waves with periods of 1.8 s and
2.5 s (R2 = 0.86). The reason for this is that although the phase shifts of the
harmonic frequencies were approximately 25 degrees at z = d50, the gains of the
second harmonic frequencies were approximately 0.1 larger than the gains of the
first harmonic frequencies thus in conflict with one of the underlying assumptions
of Eq. 2.7. An increase of gain along the frequency components near the bottom
contributes to larger ratio of Skc to Sk∞ than constant gain along the frequency
components.

Berni et al. (2013b) pointed out that the above-mentioned assumptions are not
valid for laminar oscillatory flow described by Batchelor (2000) and the signal de-
formation near the bottom, where the orbital velocity goes to zero, follows

Skb
Sk∞

= 1− As∞
Sk∞

. (2.8)

Eq. 2.8 is shown in Figure 2.10. Since phase shifts in the coastal wbbl are not
higher than 45 degrees (Nielsen, 1992), Eq. 2.8 provides an upper limit for the ratio
of near-bottom to free-stream velocity skewness, Skb/Sk∞.

2.4.6. Time-averaged horizontal velocities
The vertical profiles of the time-average spatial-average horizontal velocity are shown
in Figure 2.11. Tests with periods of 1.8 s and 2.5 s had more or less identical
vertical profiles in contrast to tests with a period of 1.0 s. However, at the upper
boundary of the PIV vector field the horizontal velocity was always negative for all
tests at all locations. On the offshore slope of the bar at C1 all tests had a positive
horizontal velocity near the bottom. Moving along the camera locations further
from the wave maker, the positive horizontal velocity near the bottom changed to
negative for tests with periods of 1.8 s and 2.5 s, but for tests with a wave period
of 1.0 s this occurred only at C6. The vertical profile for tests with a period of
1.0 s had the largest negative horizontal velocity at C1 while further from the wave
maker up to the bar crest, at C3 and C4, tests with periods of 1.8 s and 2.5 s had
significantly larger negative horizontal velocities. Remarkable is that the largest
negative horizontal velocity at C3 and C4 were just above the wbbl at z is 3 mm
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Figure 2.9: Velocity skewness (a) and asymmetry (b) in the wbbl at location C4. Shading indicates
standard deviation around the vertical profile.
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and not at the highest point in the profile. After the bar crest, at C5 and C6, the
profiles tended to follow a logarithmic shape.

The negative horizontal velocity at the upper boundary of the PIV vector field
could be explained by the positive mass transport caused by the free-stream wave
motion also known as Stokes drift (Phillips, 1977). Since the flume was closed it can
be assumed that the total volume flux was zero. On the basis of continuity there
would be a time-averaged return flow. Also, after the bar crest, at C5 and C6, wave
breaking was observed which is known to generate a flow circulation with a flow
opposite to the wave direction near the bottom (Dyhr-Nielsen and Sorensen, 1970).

Longuet-Higgins (1953) showed that the wbbl generates a time-averaged flow
in the wave direction under progressive waves. Later on, Trowbridge and Madsen
(1984) showed that bottom-generated turbulence under nonlinear waves generates a
time-averaged flow opposite to the wave direction in the wbbl. These two competing
mechanisms can clearly be seen in the profiles where tests with a wave period of
1.0 s had a dominance of positive wbbl streaming and test with a wave period of
2.5 s had a dominance of negative wbbl streaming.

2.4.7. Horizontal velocity gradients
This section presents the spatial velocity gradients over the measurement area. Fig-
ure 2.12a shows the free-stream horizontal velocity. The spatial gradients over the
measurement area corresponded with the surface elevation of a wave. The root-
mean-square velocity over the ensemble, i.e. turbulence, was generally 0.01 m/s and
at phase 17 was up to 0.03 m/s. The turbulence over the measurement area at phase
17 and 18 was not constant.

Figure 2.12b shows the free-stream vertical velocity. The largest vertical veloci-
ties were measured at phase 14 and 17. Phase 14 is the upcrossing of the horizontal
ensemble-average velocity. This is in line with the fact that the vertical and hori-
zontal velocity are in quadrature. The horizontal gradients from phase 15 to 18 did
not correspond with the gradual course of the wave motion. Over phase 15 to 18,
the root-mean-square velocity was 0.02 m/s, while the other phases were 0.005 m/s.

Figure 2.12c shows the same as Figure 2.12b at 4.2 mm above the bottom.
Relatively large horizontal gradients started at phase 14. These horizontal gradients
had the same signature as those in the free stream.

Figure 2.12d shows the same as Figure 2.12b at 1.2 mm above the bottom. At
this distance from the bottom there was no wave-related vertical velocity visible as
in Figure 2.12b. However, ensemble-average velocities varied from 0 to 0.02 m/s
over the horizontal distance of a few millimeters at phase 14. Turbulence emerged
one phase later.

The striking signature of the vertical velocity over the measurement area at an
elevation of 1.2 mm above the bottom at phase 14 was also visible, to a lesser extent,
at phase 13 (see Figure 2.12d). The "negative" of this signature can be seen, among
others, during phase 1 to 12. The direction of the horizontal flow dictated the sign
of the vertical velocity. This means that the roughness elements perturbated the
flow with a wave length in the order of 10 mm.

The amplitude of the flow perturbation increased rapidly from phase 13 to 14.
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The timing corresponded with the horizontal flow reversal from negative to positive.
The amplitude growth was not seen was not seen during flow reversal from positive
to negative (phase 25).

The absence of turbulence at phase 13 and 14 indicates periodic flow, i.e. the
flow perturbations emerged at one consistent time and location during every wave
of the ensemble.

All tests contained amplitude growth of the vertical velocity over the bottom
perturbation at one or both flow reversals. However, the impact on the ensemble-
average flow varied significantly. For instance, the impact during T=2.5@C4 is clearly
visible. The flow perturbations resembled coherent structures known as vortex
tubes, i.e instabilities generated at an inflectional point of an oscillatory bound-
ary layer (Akhavan et al., 1991; Carstensen et al., 2010; Foster et al., 1994). In the
following section we further investigate the flow perturbations and try to identify
when they became vortical structures.
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Figure 2.12: Spatial overview of velocities of T=2.5@C4. The horizontal axis of a box is x which is positive to the right and directed to the shore.
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2.4.8. Vortex tubes
Swirling strength
Vorticity, quantified by velocity shear, is dominated by the large vertical velocity
shear of the boundary layer and cannot be used to identify vortices in the boundary
layer (see e.g. Nichols and Foster, 2007). Swirling strength is quantified with the
eigenvalues of the velocity gradient tensor and is ideal for vortex identification (see
e.g. Jeong and Hussain, 1995). For this research we adopt the practical formulation
by Hofland (2005). In the (x, z)-plane, the swirling strength λci was quantified as

4λ2
ci = max

[
0, −4∂u

∂z

∂w

∂x
+ 2∂u

∂x

∂w

∂z
− ∂u

∂x

2
− ∂w

∂z

2]
. (2.9)

λ2
ci is zero when the shear is dominant over the rotation.
Figure 2.13 shows the swirling stress of the first measured wave of T=2.5s@C4.

During the wave trough, see Figure 2.13c, there was a horizontal band of small-sized
patches (diameter < 1 mm) in the lower 3 mm from the bottom. During flow reversal
from negative to positive, see Figure 2.13d, one large-sized patch with significant
swirling strength emerged with the center at x = 8 mm and z = 2 mm. The patch
coincided with the center of the vortical structure defined by the streamlines. During
maximum velocity, see Figure 2.13e, there were numerous medium-sized patches of
significant strength distributed over the measurement area. During flow reversal
from positive to negative, see Figure 2.13b, there were numerous medium-sized
patches of low strength distributed over the measurement area.

It appears that during T=2.5s@C4, large vortices were generated close to the
bottom during free-stream flow upcrossings. These vortices were entrained in the
flow and prevailed over the whole positive free-stream flow cycle.

The rapid increase of vertical velocities at phase 14 in Figure 2.12d coincided with
the large-sized patch of swirling strength in Figure 2.13d. These vertical velocities
appear to be part of a vortex.

Swirl patch statistics
The swirling strength was calculated for all vector fields. Values smaller than 5 s-1

were not considered. Scalars that were connected to at least 4 others were grouped
together. Properties of vortices such as width, height, area A, equivalent diameter
d = 2

√
A/π and location of centroid were extracted.

The size distribution of swirl patches during phase 14 of T=2.5s@C4, see Fig-
ure 2.14a, was double-peaked with a clear group of patch sizes in the range of 3
to 5 mm. The number of big patches totals the amount of measured waves of the
test. The centroid of the big patches were focused around the location (x ≈ 8 mm,
z ≈ 2 mm). This means that the big patch of swirling strength in Figure 2.13d was
reproduced every wave cycle.

The swirling strength analysis detected big vortices for tests with periods of
1.8 and 2.5 s at C3 and C4 during flow reversal from negative to positive (see
Figure 2.15a). These tests had wave Reynolds numbers of 4× 103 < RE < 3× 104

(see Figure 2.15c). No big vortices were detected during flow reversal from positive
to negative (see Figure 2.15b).
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Figure 2.13: Swirling strength of the first wave of T=2.5s@C4. (a) free-stream horizontal velocity
with four specific markers, downward-pointing triangle for the downcrossing, circle for the min-
imum, upward-pointing triangle for the upcrossing and a square for the maximum. (b) swirling
strength of the flow during the downcrossing. White lines are streamlines and the purple color
represents the bottom. (c) idem for the minimum velocity. (d) idem for the upcrossing. (e) idem
for the maximum.
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Experiments by Carstensen et al. (2010) showed that vortex tubes over a smooth
bottom were generated by flow perturbations with wavelengths of l ≈ 6δ. The
boundary layer thickness of laminar oscillatory flow is δ = 3π/4

√
2ν/ω, for periods

of 2.5 s, δ = 2.1 mm leading to l ≈ 12 mm. The vortical structure visible by the
streamlines in Figure 2.13d had a similar length. However, the diameters of the
big swirl patches were consistently smaller. This can be explained by the spatial
variation of swirling strength over the vortex area where the largest magnitudes are
concentrated around the center (compare e.g. the streamlines with the swirl patch
in Figure 2.13d).

On a smooth bottom, vortex tubes were seen by Carstensen et al. (2010) for
wave Reynolds numbers between 7× 104 < RE < 3× 105. The lower limit is larger
than the wave Reynolds number of the present tests. Contrary to a smooth bottom,
the rough bottom contained a range of perturbations with wavelengths of the same
order as the wavelengths of vortex tubes. This may explain the occurrence of vortex
tubes during RE < 7×104. Another big difference was the shape of the free-stream
flow of Carstensen et al. (2010) which did not contain any velocity skewness and
asymmetry. In the present data, velocity skewness and asymmetry was significant,
see Figure 2.6. The different flow condition during flow reversal under the wave
front and back may explain the absence of vortex tubes during flow reversal from
positive to negative (see Figure 2.15b).
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Figure 2.14: Distribution of swirl patches of T=2.5s@C4 at the upcrossings (phase 14) of the free-
stream horizontal velocity. (a) Patch count versus patch diameter. (b) Locations of the patch
centroid. Magenta indicates the bottom.

2.4.9. Reynolds stress
The Reynolds stress is defined as −ρû′w′ and shown in Figure 2.16. Larger stresses
were measured for larger periods. Largest stresses (∼ 0.4 N/m2) were measured
at C4. Positive and negative stresses were separated by the developing boundary
layer edges. Positive stresses emerged at the bottom and diffused upward while
negative stresses appeared 2 mm above the bottom. T=1.8s@C6 and T=2.5s@C6
form an exception from the other tests with large stresses at the upper boundary of
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Figure 2.15: Overview of vortex generation during flow reversal. (a) Vortex tube count during
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the measurement window.
Vertical velocity shear du/dz during T=1.8s@C4 was O(100 m/s/m) leading to

viscous shear stresses τzx of O(0.1 N/m2). Hence, viscous- and turbulent stresses
were similar which supports the suggestion that the tests with periods of 1.8 and
2.5 s were in the transitional flow regime between laminar and rough turbulent (see
Figure 2.5 for flow regimes).

With the exception of T=1.8s@C6 and T=2.5s@C6, the measured negative stress
may be the aftermath of vortex tubes. Vortex tubes are characterized by their 2D
structure that will eventually breakdown and turn into 3D chaotic motion.

Negative stresses were detected at C5 while there were no big swirl patches
detected (see Figure 2.15a). It must be noted that the actual vortex tubes that were
generated in the measurement window were not directly related to the measured
negative stresses. The amplitude of the orbital excursion was ∼ 50 mm and the
window was ∼ 12 mm wide. Big swirl patches captured in the measurement window
were advected outside the window. Thus, measured negative stresses were related
to vortex tubes from adjacent areas. It could be that the local bottom, captured in
the 12 mm window at C5, was relatively flat or the bottom perturbations did not
include the wavelengths to generate unstable flow perturbations.
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Figure 2.16: Timestacks of vertical profiles of Reynolds stress 〈−ρû′w′〉. Colorbar gives values of 〈−ρû′w′〉. Magenta color indicates the bottom.
The plusses and crosses are the vertical location of maximum and minimum velocity 〈ũ〉, respectively, which shows the boundary layer thickness
over time. The horizontal axis is divided by dt resulting in measured phase numbers.
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2.4.10. Boundary layer thickness
The wbbl thickness δ is defined as the distance from z = 0 to the point of maximum
or minimum velocity 〈ũ〉 in a vertical measure profile. The point of maximum or
minimum velocity tends to coincide with either a zero velocity at the bottom or
the velocity overshoot. Figure 2.17 shows the wbbl thickness as a function of time
for T=2.5s@C4. The wbbl thickness increased linearly in time during favorable hor-
izontal pressure gradients (i.e. when the sign of the pressure gradient is opposite
to the sign of the fluid velocity). The coefficient of determination R2 between mea-
surements and a linear fit was usually above 0.9. When the pressure gradient sign
switched, the boundary layer thickness showed a sudden increase. Highly asymmet-
ric waves had wbbl growth rates under the wave front that were roughly twice as
large as under the corresponding wave back.

The analytic model by Batchelor (1967) describes a purely 1D oscillatory laminar
flow. The model is given as

u(r, t) = U

[
cosωt− e−

r
δs cos

(
ωt− r

δs

)]
, (2.10)

where U is velocity amplitude, r is the axis normal to the bottom, δs =
√

2ν/ω
is the Stokes length, ω = 2π/T is the angular wave frequency and ν is the fluid
viscosity. The time evolution of the wbbl thickness can be expressed by taking the
spatial derivative of Eq. 2.10 and equate it to zero

U

(
1
δs
e−

z
δs cos

(
ωt− z

δs

)
− 1
δs
e−

z
δs sin

(
ωt− z

δs

))
= 0 . (2.11)

The solutions give the boundary layer thickness as a function of time. The solution
for the boundary layer development during the positive flow phase is

δ+ = (3/4)πδs + ωδst (2.12)

and during the negative flow phase

δ− = −(1/4)πδs + ωδst . (2.13)

This implies that the purely sinusoidal laminar boundary layer thickness increases
linearly in time δ ∼ t, the growth rate is a function of 1/

√
T and the maximum

boundary layer thickness is a function of
√
T . This is different from Nielsen (1992)

and flows with steady pressure gradients where the boundary layer grows δ ∼
√
t.

Based on Eq. 2.12 and 2.13, the growth rate can be expressed as

dδ+/dt =
√

2πν/tfront (2.14)

and
dδ−/dt =

√
2πν/tback (2.15)

where tfront and tback are defined as the duration of the wave front and wave back,
respectively. For sinusoidal waves tfront is equal to tback but for asymmetric waves
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this is not the case. Eq. 2.14 and 2.15 suggest that under pitched forward waves the
wbbl growth rate is larger under the wave front that under the back. The boundary
layer growth rate of the measurements was estimated by using the slope of the linear
fits. Figure 2.18 shows the wbbl growth rate plotted against the duration of wave
front or back. The measured growth rates were generally larger for shorter tfront
and tback, and, were generally larger than Eq. 2.14 and 2.15.
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Figure 2.17: Wbbl thickness as a function of time for T=2.5s@C4. Panel a shows the time series of
the free-stream horizontal velocity. Panel b shows the time evolution of the wbbl thickness defined
by the minimum and maximum of 〈ũ〉. Filled markers correspond with boundary layer growth
during favorable pressure gradients and empty markers during adverse pressure gradients.

2.5. Conclusions
Detailed flow velocities were measured of the wave bottom boundary layer under
progressive surface waves traveling over a fixed single bar profile in a medium-sized
wave flume.

Free-stream asymmetric velocity signals transformed to skewed signals in the
wbbl. Near-bottom skewness was linearly related to the free-stream skewness and
asymmetry.

In some tests vortex tubes were generated during flow reversal from negative to
positive. These tests were characterized by large velocity skewness and asymmetry.
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Figure 2.18: Wbbl growth rate as a function of tfront and tback for all tests. Blue and red color
indicate positive and negative flow phase, respectively.

Due to fixed roughness elements and regular waves, the vortex tubes were generated
at fixed locations and wave phases.

Negative Reynolds stresses were observed a few millimeters above the bottom
after the generation of vortex tubes. Positive Reynolds stresses were observed during
the positive flow phase and originated from the bottom.

Significant time-averaged currents were measured in the order of 1 cm/s. Wave
wbbl streaming was negative instead of positive under skewed and asymmetric
waves.

The wbbl thickness increased linear in time under favorable pressure gradients.
The wbbl growth rate under asymmetric waves was larger under the wave front
than under the wave back. However, the wbbl thickness was larger under the wave
trough than under the wave top under asymmetric waves.





3
Intra-wave bed shear stress

by nonlinear waves
Skewed and asymmetric waves in the nearshore are known to generate onshore sed-
iment transport. However, there are still large uncertainties in the estimation of
the bed shear stress under arbitrary non-sinusoidal waves. Data of laboratory wave
flume tests and k-ε numerical model tests were utilized to gain more insight in me-
chanics of the time-varying bed shear stresses. We tested the validity of the analytic
boundary layer solution for laminar flow, the time-depended quadratic drag-law and
a waveform expression. It turns out that non-sinusoidal regular waves were accu-
rately described by a fairly simple waveform expression. The bed shear stresses in
the laminar flow regime were described by the analytic boundary layer solution. In
the turbulent regime, the bed shear stresses were adequately described on the basis of
the quadratic drag-law. An essential item for the correct time-evolution of the bed
shear stress was the consideration of a frequency-independent phase shift that allows
for the transfer of free-stream velocity asymmetry to friction velocity skewness.

3.1. Introduction
As waves travel to shore their shapes change from symmetrical to sharp crested
(skewed) and pitched forward (asymmetric) (Elgar and Guza, 1985). Skewed waves
are known to generate a net shoreward flux of sediment because the instantaneous
sediment transport depends on the power 3 to 4 of the free-stream velocity (Bowen,
1980; Dohmen-Janssen and Hanes, 2002; Ribberink and Al-Salem, 1995). On the
other hand, the effect of wave asymmetry on the net sediment transport is less
clear (e.g., Henderson et al., 2004; Hoefel and Elgar, 2003; Hsu et al., 2006). The
impact of the free-stream velocity asymmetry on the bed shear stress was already
suggested and modeled through a transfer function by Nielsen (1992, 2002). Later
on, Terrile et al. (2009b) and Abreu et al. (2013) improved and extended Nielsen’s
transfer function. In the meantime, measurements and numerical models showed
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that free-stream velocity asymmetry is actually transformed to velocity skewness in
the wave bottom boundary layer (wbbl) (see Berni et al., 2013a; Henderson et al.,
2004; Henriquez et al., 2014). Recently, Dubarbier et al. (2015) and Fernández-Mora
et al. (2015) showed that the inclusion of wave asymmetry improved the capability to
model the cross-shore morphology and specifically the onshore migration of sandbars
in the nearshore. Therefore, a validation of the transfer function and the underlying
assumptions is needed.

Basically, the transfer function works by summing a finite number of friction
velocity harmonics. The friction velocity harmonics are calculated by shifting the
velocity harmonics with a phase lead and by multiplying the velocity harmonics
with friction coefficients. This results in a transfer function that describes a lin-
ear relationship between the friction velocity skewness and the free-stream velocity
asymmetry (Berni et al., 2013a; Henderson et al., 2004).

According to the findings of Henderson et al. (2004) and Berni et al. (2013a),
the linear relationship between the friction velocity skewness and the free-stream
velocity asymmetry applies for laminar and turbulent flow regime. However, there
are some essential differences between the laminar and turbulent flow regime. First,
in laminar flow regimes the friction coefficients of consecutive harmonics depend on
the harmonic frequency while in rough turbulent flow regimes the friction coefficients
of consecutive harmonics are assumed to be similar. When the friction coefficients
are similar there will be a weaker transfer function. The second difference is that in
turbulent flow regimes the phase leads of the harmonic friction velocities are smaller
than 45 degrees (Jensen et al., 1989; Jonsson and Carlsen, 1976; Sleath, 1987). A
lower phase lead results in a weaker transfer function. The third difference is that in
turbulent flow regimes the time-evolution of the bed shear stress agrees better with
the quadratic relation for drag than the linear relation that applies for laminar flow
regimes (e.g., Jensen et al., 1989; Jonsson and Carlsen, 1976; Lofquist, 1986; Sleath,
1987). However, Nielsen (2002) noted that the quadratic drag relation is not fully
supported by experimental data.

Furthermore, the transfer function has always been calculated with the assump-
tion that the phase leads of consecutive friction velocity harmonics are constant
because there was no data to prove otherwise. This assumption needs to be vali-
dated. Recent tests by van der A et al. (2011) and Henriquez et al. (2014) provide
detailed wbbl flow measurements suitable for this validation.

To apply the transfer function in practice, the time series of the nonlinear free-
stream velocity is required. Abreu et al. (2010) developed a waveform description
that conveniently generates the free-stream velocity time series based on the veloc-
ity skewness and asymmetry (see Abreu et al., 2013; Drake and Calantoni, 2001;
Malarkey and Davies, 2012; Terrile et al., 2009b). However, the waveform descrip-
tion has not been validated against data of real surface waves.

In this chapter, we investigate the transfer of free-stream velocity asymmetry
to friction velocity skewness in the laminar and turbulent flow regimes. For the
laminar flow regime we analyze velocity measurements from a wave flume experi-
ment. However, the wave flume experiment does not cover the turbulent flow regime
and therefore we analyze the results of a numerical model that calculates the verti-
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cal profile of the horizontal velocity by solving the Reynolds-averaged Navier-Stokes
equation with a two-equation turbulence model for closure (Kranenburg et al., 2012;
Uittenbogaard and Klopman, 2001). In addition, we test the validity of the wave-
form description against the surface elevations and flow velocities of the wave flume
experiment.

In Section 3.2 we elaborate on the methods needed to analyze the amplitude
and phase lead of the friction velocity. The wave flume experiment is described
in Section 3.3 and the numerical model is described in Section 3.4. The results,
discussion and conclusions are presented in Section 3.5, 3.6 and 3.7, respectively.

3.2. Methods
The key variables of this investigation are the amplitudes and phase leads of the
friction velocity. The friction velocity u∗ can be directly converted from the bed
shear stress τb based on the expression by Nielsen (2002, Equation 7)

τb(t) = ρ
(√

2urms
)2−α

|u∗|αsign (u∗) (3.1)

where t is time, u is the free-stream horizontal velocity, ρ the fluid density, the
subscript rms indicates the root-mean-square and α = 1 corresponds to the laminar
form τb ∼ u and α = 2 corresponds to the quadratic form τb ∼ u|u|. Based on
experimental data of near-bed fluid stresses in turbulent oscillatory boundary layers,
Nielsen (2002) indicated that α is probably somewhere between 1 and 2. The value
of α can be determined by considering a test with a sinusoidal free-stream velocity
u(t) = U cosωt, where U is the amplitude, ω is the angular frequency and t is time.
Namely, raising the velocity to the power of α generates higher odd harmonics (see
Appendix B). Thus, a frequency analysis on the bed shear stress τb(t) will reveal
the value of α. The frequency analysis is performed by conducting the fast Fourier
transform (FFT) on the time series. Higher harmonics with amplitudes that were
smaller than 5% of the first harmonic were not included in the analysis.

To validate the waveform description by Abreu et al. (2010) we will compare how
well the amplitudes and phases of the free-stream horizontal velocity are represented
by the waveform. Based on the work of Drake and Calantoni (2001) and Abreu et al.
(2010) used the following function to describe waveforms

u(t) = =
{
fs

N∑
n=1

bn−1 exp i [nωt+ (n− 1) Φ]
}

(3.2)

Where = denotes the imaginary part, fs is a scale factor to get the correct signal
energy, b is a coefficient that controls the harmonic amplitudes, n is the harmonic
index, Φ is the so-called waveform parameter. Note that (n − 1)Φ represents the
harmonic phase shift θn and θ1 = 0. Malarkey and Davies (2012) showed that
the relations between the velocity skewness Sk and velocity asymmetry As of the
waveform and the waveform parameter Φ and the amplitude coefficient b are given
by
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Φ = tan−1
(
−As
Sk

)
(3.3)

b2 = 2B2

9 + 2B2 (3.4)

B2 = Sk2 +As2 (3.5)

Thus, when the bi-spectral properties of a signal, i.e. the skewness and asymmetry,
are known, Equations (3.3-3.5) provide the necessary waveform parameters to pro-
duce a waveform time series which can be scaled to get the correct energy (in this
case, the correct urms). The waveform expression can be validated by considering
the harmonic amplitudes bn−1 and phases (n − 1)Φ. More on the bispectrum and
the derivation of these equations can be found in Appendix A.

3.3. Wave flume experiment
3.3.1. Description of tests and data processing
In the following a brief overview of the experiment is given, more details can be
found in Henriquez et al. (2014). The flume has a length of 40 m, a width of 0.8 m
and a water depth of 0.5 m. In the flume a rigid single bar profile was build (see
Chapter 2, Figure 2.1). The top of the bar is approximately 0.15 m below the
mean water level. Granular sediment with a grain size of 0.54 mm was glued to
the surface to provide bottom roughness. The hydrodynamic model scale was 1:10,
which corresponds to a medium sized wave flume experiment.

The flow velocity vectors within the wave bottom boundary layer were measured
with Particle Image Velocimetry (PIV) at 6 locations along the flume; 4 locations
leading up to the bar crest and 2 locations between the bar crest and trough (see
Henriquez et al., 2014, Figure 1). The laser sheet for PIV was inserted into the
water from the water surface using a streamlined window. The camera was placed
outside of the flume (flume wall is transparent). The camera had a field of view
of approximately 10 × 10 mm2. The camera images were processed resulting in a
velocity vector for every 0.37×0.37 mm2. The surface elevations η(t) were measured
with 7 resistance type wave gauges sampling at 200 Hz of which one was co-located
with the PIV location.

Tests were carried out with wave periods of 1.0, 1.8 and 2.5 s with root-mean-
square wave heights at the wave maker of 8.7, 8.4 and 8.0 cm, respectively. For the
test with periods of 1.0, 1.8 and 2.5 s, the PIV system captured 132, 120 and 120
waves with sampling frequencies of 15, 15 and 10 Hz, respectively.

The velocity vectors were decomposed in a tangent and normal component on
the basis of the local bottom slope at each of the 6 locations (i.e. one general slope
angle per location was determined). The tangent velocity component u is positive
in wave direction and the normal velocity component w is positive in the direction
away from the bed (see Figure 3.1 for illustration of coordinate system).

The flow velocities of individual tests were also decomposed in different time
components. Averaging over the wave phase separates the turbulent velocity com-
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Figure 3.1: Sketch of the vertical references. The z-level was set to zero at the maximum of the
horizontally spatial-averaged image intensity I(z). The crest level of the roughness elements was
set at zc = d50 and the trough level was set at zt = −d50. The roughness geometry function A(z)
is zero for z < zt, one for z > zc and described by Equation 3.6 for zt < z < zc.

ponent u′. Subtracting the time-averaged component u from the phase-averaged
component gives the periodic component ũ. In addition, the velocity vectors of a
row were averaged to obtain the spatial-averaged velocity. Furthermore,the vertical
level at z = 9 mm is taken as the free stream based on the fact that the wbbl does
not grow past this level (see Henriquez et al., 2014, Figure 8).

3.3.2. Momentum-integral method
The bottom shear stresses were determined by using the “defect velocity integral”
from crest to trough level (e.g., Jonsson and Carlsen, 1976; Nielsen, 1992). For the
conservation of momentum in the interfacial sublayer it is necessary to consider the
amount of horizontal space occupied by fluid relative to the space occupied by the
bed which is described with the roughness geometry function A(z) (see Figure 3.2
for profile) (Nikora et al., 2001):

A(z) = 0.5 + 0.5 sin π

2d50
z for zc ≤ z ≤ zt (3.6)

where zt is the trough level and zc is the crest level. The roughness geometry function
(Equation 3.6) corresponds to the space characteristics of a sinusoidal rippled bed
and thus can be seen as a first order estimate. It is important to include this
parameter in the momentum integral, otherwise, rapidly decelerating flow deep in
the interfacial sublayer would be overestimated since it only occupies a small portion
of the total horizontal space of the PIV measuring window. Finally, the time-varying
bed shear stress was determined by

τ̃b(t) = τ̃zx(zc, t) + ρ

∫ zc

zt

A(z)
(
∂

∂t
(ũ∞ − ũ)

)
dz (3.7)
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where the tilde denotes the periodic component and τ̃zx is the sum of the laminar
and turbulent fluid shear stress

τ̃zx = ρν
∂ũ

∂z
− ρũ′w′. (3.8)

Note that the advective term −ρũw̃ is not included in the momentum integral. We
reason that the term is negligible due to the minimal vertical orbital velocities below
crest level. In addition, note that usually the free stream is taken as the the upper
limit of Equation 3.7 because, in contrast to this study, there is no data available on
the turbulent stresses at crest level of the bottom roughness elements (e.g. Jonsson
and Carlsen, 1976). However, in this study the data is available at crest level and by
choosing this upper level we also prevent contamination from the time and spatial
accelerations associated with vortex tubes (see Section 2.4.8).

The velocities were measured from the free stream downto the still bed. The
PIV technique estimates the velocity vectors by determining the spatial shift of
tracers between two consecutive images. Every image was divided into smaller
interrogation windows that can be interpreted as the “measuring volume”. The
width and height of the interrogation window was of the same order as the grain
diameter d50. This renders the vectors below the crest level of the bottom roughness
elements as unreliable because the fixed bed will be included in the cross-correlation.
In addition, the spatial resolution was too coarse to resolve the velocities in the
interfacial sublayer between the crest and trough level of the roughness elements (see
Figure 3.1 and 3.2) (Nikora et al., 2001). Consequently, the velocities at crest level
are considered as the closest bottom measurements. As can be seen in Figure 3.2,
the velocity attenuation at crest level was larger than 0.6 indicating that a large part
of the velocity deceleration due to bed friction took place in the interfacial sublayer.
Therefore, it is essential to integrate the “defect velocity integral” (Equation 3.7)
down to the through level of the bottom roughness elements.

To provide the interfacial sublayer with data, the spatially-averaged vertical pro-
files of the horizontal velocity were interpolated from the crest level to the trough
level. Velocity vectors below trough level were set to zero. The thickness of the
interfacial sublayer was assumed to be 2d50 based on the visual observation in the
PIV image (see Figure 3.1). The missing points were generated with spline interpo-
lation. A spline was chosen to ensure a derivative that was smooth and continuous.
It must be noted that we make the assumption that the interpolated variable tapers
off to zero, which is expected for the velocity and turbulence.

3.4. Description of numerical flow model
To solve the vertical profile of the horizontal flow velocity in an oscillating flow
tunnel we used the 1DV model of Uittenbogaard and Klopman (2001) and applied
it in a similar fashion as Ruessink et al. (2009) and Kranenburg et al. (2012). The
horizontal velocity u(z, t) was determined using the horizontal momentum balance

∂u

∂t
= −1

ρ

∂p

∂x
+ ∂τzx

∂z
(3.9)
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Figure 3.2: Vertical profile of the root-mean-square (rms) time-varying horizontal velocity of ex-
periment test T=1.8s@C4.
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where ∂p
∂x is the horizontal pressure gradient, z is the vertical coordinate, with z = 0

at the bed and positive upward, and τzx is the viscous and turbulent fluid stress
that is calculated using the eddy viscosity concept

τzx = ρ (νt + ν) ∂u
∂z

(3.10)

The turbulent eddy viscosity νt is calculated by

νt = Cµ
k2

ε
(3.11)

where Cµ = 0.09, k the fluid turbulent kinetic energy and ε its dissipation rate.
The variables k and ε are calculated from the standard k-ε turbulence equations
(Kranenburg et al., 2012; Launder and Spalding, 1974; Rodi, 1987). The lower
boundary is defined at the crests of the roughness elements of the bed where a
partial slip condition is applied under the assumption that locally: the velocity
profile is logarithmic, the quadratic friction law applies and there is equilibrium
between production and dissipation:

u(z)
u∗

= 1
κ

ln
(
α+ z

z0

)
; u2

∗ =
(
νt
∂u

∂z

)∣∣∣∣
z=0

; Pk|z=0 = ε|z=0 (3.12)

Here, the values of the friction velocity, turbulent kinetic energy and its dissipation
rate were calculated following Hinze (1975) and Jackson (1981):

∂u

∂z

∣∣∣∣
z=0

= u∗
9κz0

; k|z=0 = u2
∗√
Cµ

; ε|z=0 = u3
∗

9κz0
(3.13)

where κ is the Von Karman constant, 0.41, and z0 is the roughness length scale
for hydraulically rough flow related to the Nikuradse roughness height kN with
z0 = kN/30. At the upper boundary a no-shear condition is applied were the time-
varying horizontal pressure gradient is equal to the applied time-varying free-stream
horizontal velocity acceleration. Hence, a steady flow is allowed to develop without
any friction at the upper boundary.

The wave period and amplitude of the primary harmonic were set to 6.5 s and
1.0 m/s, respectively. The combination of wave period and orbital velocity resembles
field conditions where the wave Reynolds numbers are RE ≥ 1×106 (see Figure 3.3
and Table 3.1). Here, the wave Reynolds number is defined as RE = 2 std(u)/ων
where std stands for standard deviation and the wave friction factors were deter-
mined by fw = std(τb)/ 1

2ρ std(|u|u).
The velocity skewness and asymmetry ranged from 0 to 1 with intervals of 0.5

leading to 9 different combinations. The waveforms were made using Equation 3.2-
3.5. In addition, the Nikuradse roughness height was varied using a value of 0.35 mm
and 10 mm. Thus, in total 18 runs were carried out. The model was run with a
time step of ∆t = 6.5× 10−3 s for a duration of 650 s. The velocity at z = 0.20 m
was taken as the reference free-stream velocity.
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Figure 3.3: Wave friction factors in the Stanton diagram from Kamphuis (1975). The circle, square
and upward triangle markers correspond to the laboratory wave flume tests. The filled markers
correspond to the friction factor of the primary harmonic and the open markers correspond to
higher harmonics. The left and right triangle markers correspond to the numerical model tests.
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nr kN (mm) T (s) U1(m/s) Sk∞ As∞ a/ks RE × 106

1 0.35 6.5 1.0 0.0 0.0 2957 1.04
2 0.35 6.5 1.0 0.0 0.5 3038 1.09
3 0.35 6.5 1.0 0.0 1.0 3269 1.27
4 0.35 6.5 1.0 0.5 0.0 3038 1.09
5 0.35 6.5 1.0 0.5 0.5 3117 1.15
6 0.35 6.5 1.0 0.5 1.0 3342 1.32
7 0.35 6.5 1.0 1.0 0.0 3269 1.27
8 0.35 6.5 1.0 1.0 0.5 3342 1.32
9 0.35 6.5 1.0 1.0 1.0 3549 1.49
10 10.0 6.5 1.0 0.0 0.0 104 1.04
11 10.0 6.5 1.0 0.0 0.5 106 1.09
12 10.0 6.5 1.0 0.0 1.0 114 1.27
13 10.0 6.5 1.0 0.5 0.0 106 1.04
14 10.0 6.5 1.0 0.5 0.5 109 1.15
15 10.0 6.5 1.0 0.5 1.0 117 1.32
16 10.0 6.5 1.0 1.0 0.0 114 1.27
17 10.0 6.5 1.0 1.0 0.5 117 1.32
18 10.0 6.5 1.0 1.0 1.0 124 1.49

Table 3.1: Overview of numerical model test conditions

The upper boundary was set at a height of 0.21 m which is approximately equal
to 3-4 times the wbbl layer thickness and prevents interference between the upper
boundary and the wbbl development. The wbbl thickness δ is defined as the distance
from the bed to the point of maximum velocity overshoot and was estimated using
the relationship between δ/kN and a/kN (Fredsøe and Deigaard, 1992):

δ

kN
= 0.09

(
a

kN

)0.82
. (3.14)

3.5. Results
3.5.1. Measurements - laminar flow regime
Bed shear stresses of the measurements were determined using the defect velocity
integral (Equation 3.7). The wave friction factors were determined by fw,lam =
τb,n,max/

1
2ρU

2
n and the wave Reynolds numbers by RElam = U2

n/ωnν where U is
the velocity amplitude and the subscript n denotes the harmonic component. All
the friction factors fall close to the theoretical line of laminar flow fw = 2/

√
RE

(Figure 3). The relative roughness a/kN (using kN = 2.5d50) of the tests ranged
from 19 to 87. The tests fall in the expected roughness region indicated in the
diagram of Kamphuis (1975). It must be noted that the relative roughness in the
diagram of Kamphuis (1975) is defined using kN = 2d90 and thus we assume here
that 2.5d50 ≈ 2d90.

The friction velocity phase lead was determined as follows. First, the friction
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Figure 3.4: Friction velocity decomposition of the experiment tests. (a, b, c) Phase lead of the
friction velocity components as a function of frequency. The lines the panels correspond to the
different locations. (d) Phase lead of the primary friction velocity components as a function of the
distance from the wave maker.

velocity was derived from the bed shear stresses using Equation 3.1 with α = 1.
Second, the phases of the harmonics were determined by applying the FFT on the
time series of the friction velocity and free-stream flow velocity. Hereafter, the phase
lead was determined by subtracting the phase of the free-stream velocity component
from the friction velocity component

ϕn,u∗ = θn,u∗ − θn,u∞ (3.15)

The friction velocity phase lead of the first harmonics ranged from 30 to 45 degrees
with an average of approximately 37 degrees (see Figure 3.4a-c). No general trend
could be detected for the phase lead of the higher harmonics. Despite the scatter,
the difference between the first and corresponding second harmonic was often less
than 10 degrees. The friction velocity phase leads of the first harmonics varied with
measurement location (Figure 3.4d) and a maximum difference of approximately
15 degrees was found between locations.

The relative amplitude of the surface elevation and free-stream velocity of the
measurements agreed well with the amplitude coefficient b from Equation (3.4) (Fig-
ure 3.5). Deviations from Equation (3.4) were found after the bar crest for test with
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periods of 1.8 and 2.5 s. The harmonic phases (θn) of the free-stream velocity mea-
surements agreed well with the harmonic phases from Equation (3.2) (Figure 3.6).

3.5.2. Numerical modeling - turbulent flow regime
Bed shear stresses were calculated by the numerical model. The friction velocities
were determined using Equation (3.1) with the α values found for the purely sinu-
soidal tests. For the sinusoidal tests with kN = 0.35 mm (10 mm) the velocity was
raised to the power of α = 1.55 (1.64).

For the tests with kN = 0.35 mm, the amplitudes of the friction velocity in-
creased over the first three harmonics while a decline can be observed for the fifth
harmonic (Figure 3.7a). For tests with kN = 10 mm, the amplitudes of the friction
velocity increased steadily over the harmonic components (Figure 3.7b). For all
tests, the friction velocity amplitude of the second harmonics was about 1.2 times
larger than the amplitude of the first harmonics. There were no large differences
between the friction velocity phase leads for tests with kN = 0.35 mm and 10 mm.
The friction velocity phase leads of the first harmonics were approximately 18 de-
grees (Figure 3.7c, d). The second harmonics had phase leads that were relatively
lower, ranging from 14 to 18 degrees. The phase leads of the third, fourth and fifth
harmonics had some scatter, however, no trend was observed over these frequencies.

3.6. Discussion
The consecutive phase leads of the friction velocity components in the experiment
were approximately 37 degrees instead of the 45 degrees for the analytic solution by
Stokes (1851). This may be explained by the fact that multiple roughness elements
extended well into the boundary layer where they were in contact with fluid that had
relatively low velocity phase leads. In the numerical modeling results, the friction
velocity phase leads of the first harmonics were around 18 degrees. When compared
to past measurements results, see e.g. van der A et al. (2011, Figure 6), we would
expect the friction velocity phase lead of tests with a/kN ≈ 100 to be between 20
to 30 degrees. The higher harmonic phase leads were generally a few degrees lower
than the first harmonic. These results support the suggestion of Henderson et al.
(2004) for applying a constant friction velocity phase lead for consecutive harmonics.

Equation 3.2 is a good approximation for the shape of the regular waves encoun-
tered over the bar in the experiment, which spanned a broad range of skewness and
asymmetry. The differences found for waves after the bar crest were mainly caused
by a mismatch in amplitude (see Figure 3.5) which may be caused by wave breaking.
The use of a waveform parameter Φ seems justified since the phases of the higher
harmonics can be described by θn = (n− 1)Φ (see Figure 3.6).

Following Nielsen (1992), the bed shear stress by an oscillatory flow with an
arbitrary non-sinusoidal waveform can be calculated by summing the individual
solutions for laminar oscillatory flow (e.g., Batchelor, 2000):

τb(t) =
N∑
n=1

ρ
√
nωνub,n ; ub,n(t) = <{u∞,neiϕ} (3.16)
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Figure 3.5: (a, c, e) Relative amplitude of the surface elevation components as a function of B =√
Sk2 +As2 (Equation 3.5). (b, d, f) Relative amplitude of the free-stream velocity components

as a function of B. The colors red, green, blue correspond to test with periods of 1.0 s, 1.8 s,
2.5 s, respectively. Open and closed markers indicate measurements seaward and shoreward of the

bar crest, respectively. The black solid line is the relative amplitude bn−1 where b =
√

2|B|2
9+2|B|2

(Equation 3.4).
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Figure 3.6: The phase of the free-stream velocity components relative to the first harmonic as a
function of −As(u∞)/Sk(u∞). The colors red, green, blue correspond to test with periods of 1.0 s,
1.8 s, 2.5 s, respectively. Open and closed markers indicate measurements seaward and shoreward
of the bar crest, respectively. The solid lines represent (n− 1)Φ where the waveform parameter is
given by Φ = tan−1

(
−As
Sk

)
(Equation 3.3).
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Figure 3.7: Decomposition of the friction velocity for the numerical modeling tests. (a, c) Relative
amplitude and phase lead of the friction velocity component for the tests with kN = 0.35 mm. (b,
d) Relative amplitude and phase lead of the friction velocity component for tests with kN = 10
mm.
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where u∞,n is the free-stream velocity component that is described by Equation (3.2)
and ϕ is the friction velocity phase lead. The bed shear stress skewness of the exper-
iment tests was replicated with a r2 (coefficient of determination) of 0.94 predicted
by using ϕ = 37 degrees in Equation (3.16) and using Equation (3.2) to construct
the free-stream velocity harmonics (Figure 3.8a). The differences with the exper-
iment data were generally less than 10%. Almost all deviations larger than 10%
were found for the experiment tests with a period of 1 s, which had relatively low
skewness and asymmetry.

In the numerical modeling results, the amplitudes of the friction velocity were
still mildly frequency dependent for consecutive harmonics. However, in practice it
is convenient to choose for a frequency-independent friction factor and a quadratic
expression (i.e. α = 2) as proposed by Terrile et al. (2009b),

τb(t) = 1
2ρfw|ub|ub ; ub(t) = <{u∞eiϕ} (3.17)

where u∞ is the free-stream velocity and ϕ is the friction velocity phase lead. The
wave friction factor fw is a constant that can be calculated using the formula of
Swart (1974). The bed shear stress skewness of the numerical model data was
replicated with a r2 of 0.91 by using a phase lead of 18 degrees in Equation (3.17)
and using Equation 3.2 to construct the free-stream velocity (Figure 3.8b).

Equations (3.16) and (3.17) describe a linear relationship between the friction
velocity skewness and the free-stream velocity asymmetry (see Figure 3.9). This
also accounts for the experimental data and the numerical modeling results. Note
that the experimental tests with periods of 1 s show large scatter in Figure 3.9
because the velocity asymmetries were relatively low (close to zero) and, therefore,
the ratio of asymmetry to skewness was susceptible to measurement error. Overall,
these findings confirm the theories of Nielsen (1992, Equation 1.2.17) and Hender-
son et al. (2004, Section 5.1). In addition, these findings support the use of Equa-
tion (3.16) and (3.17) which offer a simple way of estimating the time-varying bed
shear stress from the free-stream velocity. Moreover, Abreu et al. (2010) derived
an analytical formulation for Equation (3.2) and, in combination with Equation
(3.3-3.5) (Malarkey and Davies, 2012), the free-stream velocity signal can be easily
translated into the bed shear stress signal (e.g., Dubarbier et al., 2015).

3.7. Conclusions
The shape of the surface elevation and horizontal velocity of nonlinear regular waves
can be adequately described using two shape parameters, i.e. one coefficient for the
harmonic amplitudes and one parameter for the harmonic phases as was suggested
by Abreu et al. (2010). These parameters can easily be derived from the skewness
and asymmetry of the signal.

Experimental bed shear stress data agreed with the analytic solution for laminar
oscillatory flow in terms of frequency dependent amplitudes and frequency indepen-
dent phase leads. However, the phase leads of the friction velocity components were
approximately 37 degrees instead of 45 degrees, which may be related to the fact
that the bed was not smooth.
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Figure 3.8: Skewness off the bed shear stress. (a) Comparison between the laminar expression,
Equation (13), and the experiment data. (b) Comparison between the quadratic expression, Equa-
tion (14), and the numerical modeling results.
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Figure 3.9: The transfer of free-stream velocity asymmetry to friction velocity skewness. The solid
lines represent Equation (3.16) and (3.17).
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Based on numerical modeling results of purely sinusoidal tests in the turbulent
regime it appeared that the relation between free-stream velocity and bed shear
stress is not quadratic and is closer to τb ∼ u1.6. However, when the quadratic
assumption is applied, the error made in the skewness of the bed shear stress was
relatively small. Furthermore, in the numerical model tests the phase leads of con-
secutive friction velocity components did not deviate more than a few degrees.

The experimental and numerical data confirm that under nonlinear regular waves
the free-stream velocity asymmetry leads to bed shear stress skewness. This process
can be conveniently modeled for practical applications by summing the solutions of
the harmonic components or using the analytic expressions of Abreu et al. (2010)
and Malarkey and Davies (2012).





4
Mean bed shear stress by
nonlinear surface waves

Even when the time-averaged component of the bed shear stress is small compared
to the time-varying component, it can have a large effect on the net bedload in the
nearshore. This chapter studies the time-averaged bed shear stress under regular
surface waves traveling over a fixed single bar profile in a laboratory wave flume.
The waves transformed to skewed and asymmetric and broke after passing the bar
crest. The bed shear stresses were derived from flow velocity measurements of the
wave bottom boundary layer. An analytic quasi-1DV model was used as a tool to
distinguish the relevant processes that govern the time-averaged bed shear stress.
The time-averaged bed-shear stresses by unbroken waves were mainly governed by
the shoreward-directed wave Reynolds stress and seaward-directed pressure force to
compensate the Stokes drift. For broken waves an additional force becomes apparent
that was not further investigated. To determine the impact of the time-averaged
bed shear stress on sediment transport we utilized the well-established power relation
between bed shear stress and bedload. The contribution of the time-averaged bed
shear stress to the net bedload ranged from 20% to 100% depending on the wave
shape and dissipation by wave breaking. When the wave skewness and asymmetry
were relatively large, the contribution of the time-averaged bed shear stress to the
net bedload reduced to 20%. Furthermore, the free-stream velocity at the top of the
wave bottom boundary layer was an unsuitable proxy for the time-averaged bed shear
stress.

4.1. Introduction
Waves in the nearshore generate bed shear stresses through a variety of processes,
which can mobilize sediments and, thus, are important for the coastal morphology.
The role of bed shear stresses during an onshore sandbar migration in the nearshore
has been investigated in the last three decades. Past experiments have shown that
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bedload is strongly related to the 1.5 power of the bed shear stress. Due to this
power relationship, a skewed bed shear stress will result in a nonzero net bedload
(Bowen, 1980). Therefore, many studies have focused on the relation between wave
shape and the time varying bed shear stress. The time-averaged component of the
bed shear stress is small compared to the time-varying component. However, it can
have a large effect on the total net bedload despite the relatively small magnitude.

Processes such as bed friction, mass flux and wave breaking all govern the time-
averaged bed shear stress. The downward flux of horizontal momentum into the
wave bottom boundary layer (wbbl), which is referred to as ‘wave Reynolds stress’,
generates a near-bed current in the direction of wave propagation (Longuet-Higgins,
1953). In addition, the friction between the bed and a non-sinusoidal oscillatory
water motion leads to a nonzero time-averaged wave-related turbulent stress, which
drives a current in the wbbl against the direction of wave propagation (Holmedal
and Myrhaug, 2009; Kranenburg et al., 2012; Trowbridge and Madsen, 1984). Thus,
in essence, the bed friction by streaming balances the nonzero time-averaged wave-
related turbulent stress. Kranenburg et al. (2012) coined this process ‘wave shape
streaming’.

A process outside the wbbl is the transport of mass in the direction of wave
propagation referred to as Stokes drift (Phillips, 1977; Stokes, 1851). In case of a
closed boundary, the depth-averaged velocity is zero and a return flow must exist.
In addition, the roller of a breaking wave generates a mass flux and a surface stress
in the direction of wave propagation (Duncan, 1981; Svendsen, 1984). The forces
exerted by progressive wave streaming on the bed and by the rollers on the surface
are balanced through a water level gradient and a bed shear stress contribution.

Hoefel and Elgar (2003), Henderson et al. (2004), Hsu et al. (2006), Ruessink
et al. (2007b) and Dubarbier et al. (2015) hindcasted the same onshore sand bar
migration event that was observed during the Duck94 field experiment using either
wave-averaged or intra-wave models and the combined effort reveals the dominant
transport processes remains inconclusive. Namely, the onshore bar migration could
be modeled by either including wave skewness or asymmetry, however, including
both works best for the whole cross-shore profile. In addition, the various methods
of including the time-averaged free-stream and wbbl currents had a large impact on
the results. Furthermore, free model parameters leave enough room to compensate
for missing physics. Therefore, the theoretical concepts and models cannot be vali-
dated with existing field data only and the role of the bed shear stresses during an
onshore sandbar migration cannot be properly assessed (see also Hsu et al., 2006). In
addition, bed shear stress measurements under progressive waves are scarce (Boers,
2005).

In this chapter we present the time-averaged bed shear stresses that were derived
from flow measurements of waves traveling over a fixed single-bar profile in a wave
flume. The primary objective is to investigate the potential contribution of the time-
averaged bed shear stress to the net bedload in the nearshore. To provide insight
in the contribution of the different processes (i.e., wave Reynolds stress, turbulent
stress, Stokes drift and the horizontal pressure gradient) a simple analytic model
will be compared with the measurements.
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First we elaborate on the relation between the contribution of the time-averaged
bed shear stress and the net bedload in Section 4.2 on methodology. Hereafter,
a brief description is given on the experimental data in Section 4.3. The analytic
model is described in Section 4.4. Results, discussion and conclusions are presented
in Section 4.5, 4.6 and 4.7.

4.2. Methodology
The flux of particles that roll along the bed is called ‘bedload’ (Bagnold, 1966).
Here, the sand particles are transported over the bed by the shearing of the fluid
over the bed. Empirical findings from the experiments of Meyer-Peter and Müller
(1948) and Wilson (1987), showed that bedload qb was related to the bed shear
stress τb by

qb ∼ τb|τb|0.5 (4.1)

where the overbar indicates averaging over time. Bagnold (1966) came to a sim-
ilar conclusion based on a physically based derivation. Note that this relation is
based on knowledge from sediment transport by ‘steady’ flows such as rivers and,
in the absence of contrary evidence, is also applied for sediment transport by the
‘unsteady’ orbital wave motion (see e.g. Bailard, 1981, 1982; Bailard and Inman,
1981; Bowen, 1980; Ribberink, 1998; Roelvink and Stive, 1989). To identify and
analyze the contribution of the time-averaged bed shear stress to the odd bed shear
stress moment, τb|τb|0.5, the bed shear stress is decomposed in a time-averaged and
time-varying component:

τb = τ b + τ̃b (4.2)

Decomposition of the odd bed shear stress moment τb|τb|0.5 is possible by assuming
that |τ b|< |τ̃b| and using a Taylor expansion (Bowen, 1980):

τb|τb|0.5 = τ̃b|τ̃b|0.5 + 3
2τ b|τ̃b|

0.5 + · · · (4.3)

where the term on the left-hand-side is referred to as the “odd bed shear stress mo-
ment”, the first term on the right-hand-side represents the “nonlinear contribution”
due to the nonlinearity of the waves and the second term on the right-hand-side rep-
resents the “mean contribution” due to the interaction between the time-averaged
and the time-varying bed shear stress component.

4.3. Measurements of bed shear stresses
This chapter uses the flow velocity data from the experiments conducted in a
medium sized wave flume described in Henriquez et al. (2014). In addition, this
chapter builds on the data processing methods (including data interpolation), sym-
bols and coordinate systems described in Section 3.3.

The time-averaged bed shear stress is determined by integrating the time-averaged
fluid shear stress over the interfacial sublayer which is located between the crest and
trough of the roughness elements (Nikora et al., 2001). In the interfacial sublayer,
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the amount of fluid is described by the roughness geometry function A(z), see Equa-
tion 3.6. The integral for the time-averaged bed shear stress is

τ b = τzx (zc)−
∫ zc

zt

A (z)
(
∂τzx
∂z

)
dz (4.4)

where the bar denotes the mean component, zt is the trough level and zc is the crest
level and τzx is the fluid shear stress (viscous and turbulent)

τzx = ρν
∂u

∂z
− ρu′w′. (4.5)

Note that the wave Reynolds stress −ρũw̃ is not included in Equation 4.4. We
reason that the term is negligible due to the small periodic vertical velocities below
crest level.

4.4. Description of the analytic model
The applied model uses parts from the analytic quasi-1DV model of Roelvink and
Reniers (1994) (see Reniers et al. (2004a) for the complete model description). The
model used in the present study includes only non-breaking wave orbital processes
and Stokes drift, and does not include alongshore processes nor wind processes since
the latter processes did not occur in the experiments.

The vertical distribution of the cross-shore flow is based on the 3 layer conceptual
model of De Vriend and Stive (1987) consisting of a top layer above wave through
level, a middle layer and a wave bottom boundary layer (wbbl). The water depth
below wave trough level ht includes the middle layer and wbbl and is determined by

ht = h− Hrms√
2

(4.6)

where Hrms is the root-mean-square wave height and h is the mean water depth.
The model utilizes a non-dimensional depth

σ = z

ht
(4.7)

where z is positive upward from the bottom level. The momentum balance of the
middle layer is governed by the fluid shear stress τzx and a depth invariant forcing
Fx

∂τzx
∂σ

= Fx (4.8)

The depth invariant forces Fx consist of a pressure force due to a horizontal water
level gradient gradient, Fx = −ρg ∂η̄∂x . Integration of Equation 4.8 along the σ-axis
and applying no surface stresses gives

τzx = −Fx (1− σ) (4.9)

In the wbbl the wave Reynolds stress is defined as τzx,WRS = −ρũw̃ and de-
creases to zero at the bed. The time-averaged wave energy dissipation D̄f in the
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wave bottom boundary layer due to friction between the bed and the oscillatory
flow is related to the wave Reynolds stress as

− ρ
(
ũw̃
)
∞ = Df

c
(4.10)

where c is the wave celerity. The time-averaged wave energy dissipation of laminar
oscillatory flow is calculated by

Df = 0.8 2
3πρfwu

3
orb (4.11)

where fw = 2
√
ων/uorb is the laminar wave friction factor (Jonsson, 1966). Note

that the factor of 0.8 is used to account for laminar flow. In the model, wave
Reynolds stress is assumed to decrease linearly to zero across the wave boundary
layer (Fredsøe and Deigaard, 1992).

ρ
∂ũw̃

∂σ
= −1

δ

D̄f

c
(4.12)

where δ is the thickness of the wbbl (scaled with the water depth ht defined as

δ = 2.28
ht

√
2ν
ω

(4.13)

which is equal to the vertical distance from the bottom to the maximum velocity
amplitude of a laminar oscillatory boundary layer. Including the wave Reynolds
stress in the horizontal momentum balance results in the force balance of the wbbl

τzx = −Fx (1− σ) + D̄f

c

(δ − σ)
δ

(4.14)

The relation between the shear stress and the vertical gradient of the mean horizontal
velocity is modeled using the turbulent eddy viscosity νt,

τzx = ρ
νt
ht

∂u

∂σ
(4.15)

The turbulent eddy viscosity νt is described using two parabolic shape functions,
see (Reniers et al., 2004b, Appendix A) for more details. The parabola that extends
from the bottom to the wave trough level has a depth-averaged eddy viscosity equal
to

ν̄t = 1
6κht

√
ght

∣∣∣∣∂η∂x
∣∣∣∣ (4.16)

The second parabola extends over the wbbl for the purpose to increase the depth-
averaged eddy viscosity over the wbbl. Since viscous stresses were dominant in the
wbbl we fixed the additional depth-averaged eddy viscosity ν̄t,wbbl to 1×10−6 m2/s
(Henriquez et al., 2014).

The combination of Equation 4.14, 4.15, 4.16, and the parabolic shape functions
for the turbulent eddy viscosity can be solved analytically which provides the ve-
locity profile and bottom shear stress (see Reniers et al., 2004b, Appendix B). The
model output will be compared to the measurements to aid in the interpretation of
the physical processes.
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4.5. Results
4.5.1. Velocity profiles
In this section we elaborate on the measured and modeled velocity profiles in the
wbbl. See Figure 4.1 to 4.6 for the profiles. Note that the thickness of the interfacial
sublayer (2d50 ∼ 1 mm) is in the same order of magnitude as the wbbl thickness
(1 − 5 mm, Henriquez et al. (2014)) meaning that a significant part of the profile
close to the bottom is obtained through interpolation. For example, at T=1.8s@C3,
the only positive time-averaged velocities were found below the crest level of the
roughness elements and thus are a result of interpolation.

Among the profiles were the typical positive wbbl streaming profiles that were
most often found for tests with periods of 1 s (see e.g., T=1.0s@C4 in Figure 4.4).
Negative velocities in the wbbl were most often found for tests with the larger
periods of 1.8 s and 2.5 s (see e.g., T=1.8s@C4 in Figure 4.4). The model predicted
the typical positive wbbl streaming profiles for all tests.

4.5.2. Bed shear stress
The vertical profiles of the viscous and turbulent stresses are shown in Figure 4.1 to
4.6. At crest level, the viscous and turbulent stresses were of comparable magnitude
and often in opposite direction (see e.g. T=1.8s@C4 in Figure 4.4).

The time-averaged bed shear stresses (determined with Equation 4.4) were mainly
positive (shoreward) with the exception at location C6 (see Figure 4.7). The maxi-
mum time-averaged bed shear stress was found at C4 (near the bar crest) and the
minimum was found at C6 (near the bar trough). Generally, the time-averaged bed
shear stresses increased from the wavemaker to the bar crest, and decreased from
the bar crest to the bar trough. The maximum magnitude of the time-averaged
bed shear stress was 0.03 Pa, which was two orders of magnitude lower than the
maximum magnitude of the time-varying bed shear stress (1.3 Pa). Remarkably,
for tests with periods of 1.8 s and 2.5 s the time-averaged bed shear stress at C2
was lower than at C1.

4.5.3. The odd 1.5th bed shear stress moment
Figure 4.7 shows the bed shear stress moments over the bar. In general, the odd bed
shear stress moment τb|τb|0.5 increased from location C1 to C4 and decreased from
C4 to C6. Thus, a well-defined maximum existed over the bar crest (see Figure 4.8).
There were little differences between tests with periods of 1.8 s and 2.5 s. At the
bar crest, the odd moment of the test with period of 1 s was half of the odd moment
of the tests with periods of 1.8 s and 2.5 s.

The oscillatory contribution, τ̃b|τ̃b|0.5, and the mean current contribution, 3
2τ b|τ̃b|0.5,

followed a similar distribution as the odd moment with a maximum at C4. At this
location, the mean contribution was approximately, 50%, 20%, 25%, for tests wit
periods of 1.0 s, 1.8 s, 2.5 s, respectively.

In all, the mean contribution 3
2τ b|τ̃b|0.5, to the odd moment of the bed shear stress

τb|τb|0.5 was generally smaller than the oscillatory contribution τ̃b|τ̃b|0.5, however, of
similar order of magnitude. At the bar crest, mean contribution 3

2τ b|τ̃b|0.5 was in the
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Figure 4.1: Vertical profiles at C1. Left panels, vertical profiles of the time-averaged horizontal
velocity of measurements (thick line) and model (thin line). Right panels, viscous shear stress
(green), turbulent shear stress (blue), sum of the shear stresses (gray) and Equation 4.4 (red). The
horizontal dashed lines mark the crest and trough level of the interfacial sublayer.
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Figure 4.2: Vertical profiles at C2. Left panels, vertical profiles of the time-averaged horizontal
velocity of measurements (thick line) and model (thin line). Right panels, viscous shear stress
(green), turbulent shear stress (blue), sum of the shear stresses (gray) and Equation 4.4 (red). The
horizontal dashed lines mark the crest and trough level of the interfacial sublayer.
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Figure 4.3: Vertical profiles at C3. Left panels, vertical profiles of the time-averaged horizontal
velocity of measurements (thick line) and model (thin line). Right panels, viscous shear stress
(green), turbulent shear stress (blue), sum of the shear stresses (gray) and Equation 4.4 (red). The
horizontal dashed lines mark the crest and trough level of the interfacial sublayer.
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Figure 4.4: Vertical profiles at C4. Left panels, vertical profiles of the time-averaged horizontal
velocity of measurements (thick line) and model (thin line). Right panels, viscous shear stress
(green), turbulent shear stress (blue), sum of the shear stresses (gray) and Equation 4.4 (red). The
horizontal dashed lines mark the crest and trough level of the interfacial sublayer.
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Figure 4.5: Vertical profiles at C5. Left panels, vertical profiles of the time-averaged horizontal
velocity of measurements (thick line) and model (thin line). Right panels, viscous shear stress
(green), turbulent shear stress (blue), sum of the shear stresses (gray) and Equation 4.4 (red). The
horizontal dashed lines mark the crest and trough level of the interfacial sublayer.
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Figure 4.6: Vertical profiles at C6. Left panels, vertical profiles of the time-averaged horizontal
velocity of measurements (thick line) and model (thin line). Right panels, viscous shear stress
(green), turbulent shear stress (blue), sum of the shear stresses (gray) and Equation 4.4 (red). The
horizontal dashed lines mark the crest and trough level of the interfacial sublayer.
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Figure 4.7: (a, b, c) Root-mean-square wave height of tests with periods of 1.0 s, 1.8 s, 2.5 s,
respectively. (d, e, f) Time-averaged bed shear stress (squares) of tests with periods of 1.0 s, 1.8
s, 2.5 s, respectively. Upper limit of shaded area corresponds with the wave Reynolds stress using
Equation 4.10 and the lower limit is the bed shear stress by the analytic model. The shaded area
represents the pressure force. (g, h, i) Similar plots of the fixed bottom profile, squares indicate
the locations of the PIV measurements.
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same (onshore) direction as the oscillatory contribution τ̃b|τ̃b|0.5. On the contrary,
in the bar trough the mean contribution 3

2τ b|τ̃b|0.5 was in the offshore direction.

4.6. Discussion
4.6.1. On results
In the following we explore a process that may explain the differences between the
measurements and the model results of the velocity profiles. In the absence of wave
breaking and in the laminar flow regime, two processes govern the time-averaged bed
shear stress: the wave Reynolds stress and the Stokes drift. In a closed flume, the
Stokes drift will generate a return flow that is driven by a horizontal surface gradient.
Therefore, in terms of a force balance, the expected bed shear stress is equal to the
wave Reynolds stress minus the pressure force by the water level gradient. Tests
with periods of 1 s had wbbl’s that were in the laminar flow regime and, with the
exception of C6, had positive time-averaged bed shear stresses (Figure 4.1-4.6). This
indicates that the wave Reynolds stresses were larger than the horizontal pressure
gradients due to Stokes drift. It is therefore no surprise that the velocity profiles
corresponded with a positive wave streaming profile. Since the model includes the
physical processes such as the wave Reynolds stress and the Stokes drift it produced
similar velocity profiles as in the measurements.

For tests with periods of 1.8 s and 2.5 s the time-averaged turbulent stresses in the
wbbl were of similar order of magnitude as the time-averaged viscous stresses. The
time-averaged turbulent stresses were nonzero because the time-varying turbulent
stresses were not symmetrical over time. The main reason for this was twofold; first,
the oscillatory velocity was skewed and asymmetric due to non-sinusoidal waves,
second, in turbulent flow the quadratic friction law applies. In the experiment,
the time-varying bed shear stresses were often dominated by viscous shear stresses.
However, the time-averaged turbulent stresses at crest level of the bottom roughness
elements were relatively large for some tests, for example, for T=1.8s@C4 the time-
averaged turbulent stress at crest level was 0.045 Pa, which is of similar order
of magnitude as the wave Reynolds stress τzx,WRS = Dfc

−1 = 0.039 Pa (using
Equation 4.10 and 4.11). The effect of the turbulent stresses become apparent
when we consider the horizontal momentum balance in the wbbl (for derivation see
Kranenburg et al., 2012, Appendix B);

ρ (ν + ν̄t)
∂u

∂z
+ ρ˜̄νt ∂ũ

∂z︸ ︷︷ ︸
τb

= ρ (uw − uw∞)︸ ︷︷ ︸
τb,WRS

+ ∂p

∂x
(z − h)︸ ︷︷ ︸
Fx

(4.17)

On the left-hand-side of Equation 4.17, the first term represents the shear stress
associated with the time-averaged velocity gradient ∂u

∂z and the second term rep-
resents the wave-related mean shear stress. On the right-hand-side, the first term
represents the wave Reynolds stress and the second term is the force associated with
the water level gradient Fx.

Note that the left-hand-side of Equation 4.17 represents the time-averaged bed
shear stress. Thus, when the wave-related mean shear stress is larger than the sum
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Figure 4.8: (a) The odd bed shear stress moment. Circles, squares, triangles correspond to tests
with 1.0 s, 1.8 s, 2.5 s, respectively. (b) The oscillatory contribution to the odd bed shear stress
moment. (c) The mean contribution to the odd bed shear stress moment. (d) Bottom profile.



4

78 4. Mean bed shear stress

of terms of the right-hand-side, i.e. the wave Reynolds stress and pressure gradient
force together, the shear stress associated with the time-averaged velocity gradient
will become negative and consequently a negative streaming profile will be observed
as in e.g., T=1.8s@C4. In the model, the wave-related mean shear stress was not
included and may explain the difference between the measurements and the model
results.

The model results indicate that at the offshore location C1 and onshore loca-
tion C6, the time-averaged bed shear stress was approximately equal to the wave
Reynolds stress indicating that the setup caused by Stokes drift was negligible. How-
ever, near the bar crest, the (negative) pressure force due to setup was approximately
half of the wave Reynolds stress.

From the bar crest to the bar trough there was a clear decreases in the measured
time-averaged bed shear stress with negative values at C6. The negative values were
likely caused by wave energy dissipation due to wave breaking. Namely, wave break-
ing is accompanied by additional mass flux and surface stresses that generate setup
and drives undertow (Reniers et al., 2004a). The effect of wave energy dissipation
was not included in the applied model and thus the model does not show the rapid
decrease and no negative values.

Additional difference between model output and measurements may partly be
explained by the method used to derive bed shear stresses from the velocity mea-
surements. The method involves spline interpolation over the interfacial sublayer
and thus will underestimate viscous stresses over the interfacial sublayer when there
would be strong curvature of the velocity profile. This can only be adequately re-
solved by measuring the velocity in the interfacial sublayer with sufficient spatial
resolution. Note that we discarded the flow measurement below the crest level of the
roughness elements due to insufficient spatial resolution. The interpolation prob-
lem will disappear when the time-averaged turbulent stresses become dominant
over the viscous stresses. Thus, bed shear stress estimates of tests with periods
of 1 s, T=1.8s@C2, T=2.5s@C2 and T=1.8s@C2 may be affected by the under-
representation of viscous stresses in the interfacial sublayer.

4.6.2. On past model usage
Ruessink et al. (2007b), Walstra et al. (2012) and Dubarbier et al. (2015) modeled
nearshore sediment transport using the Roelvink and Reniers (1994) model, which
is similar to the model herein. Ruessink et al. (2007b) and Walstra et al. (2012)
used the time-averaged horizontal velocity at 1 cm above the bed to estimate the
contribution of the mean flow to the bed shear stress while Dubarbier et al. (2015)
used the integrated velocity over the wbbl. It is questionable whether the modeled
wbbl current is a representative proxy for the bed shear stress. For instance, in the
model it may occur that the wbbl flow is zero or negative while the time-averaged
bed shear stress is positive, especially when there is a relatively small surface stress
present due to a roller. In addition, the net bedload predicted using the net power
(or net bed shear stress) expended by the oscillatory flow is over predicted since this
excess of power drives wave shape streaming in the wbbl, a process not included in
the model of Roelvink and Reniers (1994).
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Figure 4.9: The mean bottom shear stresses versus the free-stream currents of the experiment.

An alternative method for predicting bedload, which may be physically more
correct, can be achieved by adding the time-averaged bed shear stress attained from
the model output and add that to the oscillatory bed shear stress. Essentially, first
a translation is required from velocities to bed shear stresses and than from bed
shear stresses to bedload. This intermediate step can easily be applied to Shields
based transport formulas.

Furthermore, the near-bed suspended sediment transport is not correctly pre-
dicted because turbulent stresses under skewed or asymmetric waves, a process not
included in the model, will contribute to substantial offshore currents in the wbbl
(see also Kranenburg et al., 2012). To resolve the correct time-averaged horizontal
velocity profile, a parameterization of the process of wave shape streaming is re-
quired in the model. This could be done in a similar fashion as the wave Reynolds
stress where, in the case of time-averaged turbulent wave stresses, the shear stress
is zero at the top of the wave boundary and maximum at the bed. Here, the time-
averaged shear stress by the oscillatory flow can be attained based on the quadratic
friction law as described in Chapter 3.

During the experiment, the time-averaged horizontal velocities above the wbbl
were all directed offshore while the time-averaged bed shear stresses were directed
onshore with the exception of location C6 (see Figure 4.9. This renders the mean
free-stream velocity as an unsuitable proxy for the time-averaged bed shear stress
and may partly explain the poor predictive capability of conventional energetic type
sediment formulations during the onshore sandbar migration observed near Duck,
NC (22-27 September 1994) (Dubarbier et al., 2015; Fernández-Mora et al., 2015;
Gallagher et al., 1998; Hoefel and Elgar, 2003; Hsu et al., 2006)
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4.7. Conclusions
Laboratory wave flume measurements were conducted to study the bed shear stresses
by progressive surface waves traveling over a single bar profile. In this chapter the
focus was on the time-averaged bed shear stresses, the wave Reynolds stress and
the Stokes drift. Under the skewed or asymmetric waves that traveled over the
bar crest, the time-averaged bed shear stress was approximately half of the wave
Reynolds stress due to the return flow generated by Stokes drift. The free-stream
time-averaged velocity above the wbbl was not a good proxy for the time-averaged
bed shear stress in the absence of significant wave breaking. The odd 1.5th bed
shear stress moment, τb|τb|0.5, was investigated since bedload is closely related to
the power 1.5 of the bed shear stress. The time-averaged bed shear stress contributed
approximately 20% of the odd 1.5th bed shear stress moment, τb|τb|0.5, under skewed
or asymmetric waves at the bar crest. The analytic current profile model of Roelvink
and Reniers (1994) adequately predicts the contribution of wave Reynolds stress
and Stokes drift to the time-averaged bed shear stress. However, the model was
not capable of predicting the correct vertical profile of the horizontal velocity in the
turbulent wave bottom boundary layer because the process of wave shape streaming
was not included in the model.
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Synthesis

5.1. Introduction
This chapter draws together the contribution of this research on the topic of onshore
sandbar migration. First, the results of this research will be discussed in light of
the previous state of knowledge as summarized in the introduction chapter of this
thesis. The topic of onshore sandbar migration is divided into several sub topics
which correspond to different processes in space and time (i.e. periodic and time-
averaged). Figure 5.1 provides a schematic overview of the sub topics in the water
column with respect to space and time. In addition to the sub topics, the Duck94
onshore sandbar migration event is discussed. After the discussion the findings are
applied to the onshore sandbar migration event of the LIP11d Test 1c to identify
(new) knowledge gaps for further research that may impact modeling of onshore bar
migration. Finally, this chapter ends with the conclusions and recommendations.

5.2. Discussion
5.2.1. The wave front
The steep wave front of a nearly breaking wave has often been associated with
onshore sandbar migration. (Madsen, 1974) was the first to investigate this concept
inspired by the observations of a military diver: "Just prior to the passage of the
crest of a near-breaking wave the bed seemed to explode". Since prior to the passage
of the wave crest the horizontal velocity by the orbital motion is approximately zero
(at the moment of flow reversal from seaward to shoreward) and the water surface is
very steep, it was hypothesized that the horizontal pressure gradient may contribute
to sediment transport. This concept was further explored in the research of Flores
and Sleath (1998a), Drake and Calantoni (2001), Hoefel and Elgar (2003) and Foster
et al. (2000). Another process that may explain a suspension event during flow
reversal are coherent structures, known as ‘vortex tubes’, which are generated in
the wbbl during flow reversal (Carstensen et al., 2010; Foster et al., 1994).
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Figure 5.1: Overview of the research topics (denoted by the green boxes) in relation to the water
column and physical parameters.
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In this study the bed was fixed and the horizontal pressure gradient was not
measured. Therefore, we cannot expand further on the relation between the hor-
izontal pressure gradient and sediment transport. However, vortex tubes where
consistently observed in the wbbl under steep wave fronts over the bar crest. In the
tests of Carstensen et al. (2010) vortex tubes did not occur for Reynolds numbers
larger than RE = 3× 105 which coincided with the transition from laminar to tur-
bulent flow in the wbbl. In our tests the wave Reynolds numbers were not larger
than RE ≤ 3.2 × 104. This raises the question whether vortex tubes occur in the
field, for example, during the Duck94 onshore sandbar migration where the wave
Reynolds number was RE = 6 × 105 (Berni et al., 2013a). Unfortunately, there is
currently no data available to investigate this.

5.2.2. The waveform
For research relating to nonlinear surface waves it is necessary to have a unified
parameterization for nonlinear waveforms which can be related to real skewed and
asymmetric waves in the nearshore. The time series of surface waves (or horizon-
tal orbital velocity) is characterized by the bispectral parameters: 1) skewness, 2)
asymmetry, 3) energy and 4) peak frequency. A representative time series of a sin-
gle surface wave can be constructed from these four parameters using the waveform
description developed by Abreu et al. (2010)(their work is based on the work of
(see Drake and Calantoni, 2001; Terrile et al., 2009b)). The waveform description
is based on an amplitude and phase relation between the harmonics which was not
yet validated against real surface wave data.

From the data of this study it is evident that the waveform description is a good
approximation for the shape of the regular waves encountered over the bar in the
experiment, which spanned a broad range of skewness and asymmetry. Differences
were mainly found for waves after the bar crest where there was a mismatch in
harmonic amplitudes which may be caused by wave breaking processes. Thus, the
waveform description allows for the application of a nonlinear horizontal orbital
velocity at the surface or the upper boundary of the wbbl.

5.2.3. The transformation of the orbital velocity in the
wbbl

Nielsen (1992, 2002) noted that the shape of the free-stream horizontal velocity (i.e.
the signals non-dimensional skewness and asymmetry) is not similar to the shape
of the friction velocity at the bed (in case the signal is asymmetric). This process
can be explained by considering that the horizontal velocity signal is composed
out of harmonic components. In the wbbl, the horizontal velocity components will
lead the free stream components with a maximum phase lead at the bottom (see
e.g. Batchelor, 1967; Stokes, 1851). By adding a phase lead to the phase of the
horizontal velocity components the shape of the compound signal will change. This
process is elegantly described by Henderson et al. (2004):

“Qualitatively, the conversion of asymmetry to skewness results from the
frequency-independent shift in phase, which corresponds to a frequency-
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dependent shift in the timing of the Fourier components. The change in
the timing of the Fourier components systematically changes the shapes
of the velocity fluctuations.”

The experiment data of this study, Henriquez et al. (2014, 2011), and Berni
et al. (2013a) confirm that the horizontal velocity transformation occurs in the wbbl.
The magnitude of the transformation depends on the values of the phase leads and
amplitudes (i.e. friction coefficients) of the friction velocity components with respect
to the free-stream velocity components. For laminar flow and a smooth bed, the
oscillatory boundary layer velocity and bed shear stress are described by the the
analytic solution by Stokes (1851). In this study, the conditions of the experiment
consisted of dominantly laminar flow over a rough bed. Here, the friction velocity
phase leads were approximately 37 degrees instead of the 45 degrees of the analytic
solution.

In addition, we conducted and examined numerical model simulations of the
oscillatory boundary flow with turbulent flow conditions and a rough bed. Here,
the friction velocity phase leads of the first harmonics were around 18 degrees which
are a bit lower than the experimental findings of van der A et al. (2011, Figure
6). The higher harmonic phase leads were generally a few degrees lower than the
first harmonic and support the suggestion of Henderson et al. (2004) for allowing
a constant (friction) velocity phase lead for consecutive harmonics. The frequency
dependence of the friction velocity amplitudes was weak, i.e. the amplitude of
the second harmonics was about 1.2 times larger than the amplitude of the first
harmonics.

In all, free-stream velocity asymmetry leads to friction velocity skewness at the
bed which contributes to the net sediment transport over the wave cycle and is
therefore a very important process to consider in the sediment transport by waves
in the nearshore.

5.2.4. The quadratic friction law
The friction force between the fluid and the bed (i.e. the bed shear stress τb) for
steady flows is commonly expressed as τb ∼ u2 which is based on empirical findings
from experiments, e.g. Meyer-Peter and Müller (1948) and Wilson (1987) and the
physically-based derivation of Bagnold (1966). In the absence of contrary evidence,
the quadratic relation is also applied for bed shear stress estimates by the ‘unsteady’
orbital wave motion (see e.g. Bailard, 1981, 1982; Bailard and Inman, 1981; Bowen,
1980; Ribberink, 1998; Roelvink and Stive, 1989). Nielsen (2002) noted that the
quadratic drag relation is not fully supported by experiment data.

In this study we conducted numerical model simulations of oscillatory flow and
concluded that the relation between free-stream velocity and bed shear stress is not
quadratic and is closer to τb ∼ u1.6. However, the impact of this finding is minor on
the dimensional skewness of the bed shear stress (approximately 10%). Applying
the relatively simple quadratic expression (Equation 3.17) results in a r2 of 0.91
when compared to the numerical modeling results.
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5.2.5. The time-averaged bed shear stress
The cross-shore time-averaged bed shear stress is generally one order of magnitude
smaller than the maximum time-varying bed shear stress. Although smaller, the
time-averaged bed shear stress can have a large impact on magnitude and direction
of the total net bedload (Hsu et al., 2006). The contribution of the time-averaged
bed shear stress to the total net bedload becomes apparent when the terms are
decomposed using a Taylor expansion (Bowen, 1980):

qb ∼ τb|τb|0.5︸ ︷︷ ︸
odd 1.5th
moment

= τ̃b|τ̃b|0.5︸ ︷︷ ︸
time-varying

part

+ 3
2τ b|τ̃b|

0.5︸ ︷︷ ︸
time-averaged

part

+ · · · (5.1)

In this study the hydrodynamic conditions which occurred during an onshore bar
migration event were mimicked in a wave flume. In addition, an analytic quasi-1DV
model of Roelvink and Reniers (1994) was utilized to further explore the effects
of the wave Reynolds stress (wave forcing), mass flux and set-up gradients on the
time-averaged bed shear stress. Experiment and model data indicate that during
the experiment the time-averaged bed shear stress of the tests were directed onshore
over the bar crest. Furthermore, the time-averaged bed shear stress, |τ̃b|0.5, con-
tributed approximately 20% of the odd 1.5th bed shear stress moment, 3

2τ bτb|τb|0.5,
under skewed or asymmetric waves at the bar crest. These findings emphasizes
the importance to include the time-averaged bed shear stress in onshore sandbar
migration modeling efforts.

5.2.6. The flow velocity as a proxy
The time-averaged horizontal velocity is often used as a proxy for the time-averaged
bed shear stress in morphodynamic (model) studies (e.g. Dubarbier et al., 2015;
Fernández-Mora et al., 2015; Gallagher et al., 1998; Hoefel and Elgar, 2003; Hsu
et al., 2006; Ruessink et al., 2007b; Walstra et al., 2012). The results of the ex-
periment and modeling efforts herein indicate that the relation between the time-
averaged horizontal velocity and bed shear stress is not consistent due to the com-
plex vertical flow structure (see e.g. Figure 4.1-4.6 and Figure 4.9). This is caused
by the mixture of processes, among others, mass flux, wave Reynolds stress, wave
shape streaming (Kranenburg et al., 2012) and roller surface stress. This may partly
explain the poor predictive capability of conventional energetic type sediment for-
mulations during the onshore sandbar migration observed near Duck, NC (22-27
September 1994) (Dubarbier et al., 2015; Fernández-Mora et al., 2015; Gallagher
et al., 1998; Hoefel and Elgar, 2003; Hsu et al., 2006). Therefore, it is recommended
to obtain an estimate of the time-averaged bed shear stress from the force balance
of a process-based (analytic) model (e.g. Reniers et al., 2004a).

It must be noted that the current version of the process-based analytic model
of Reniers et al. (2004a) does not include the process of wave shape streaming.
However, this process may be parameterized and incorporated in the model.
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5.2.7. The Duck94 onshore sandbar migration
In this section we review the sediment transport pattern during the onshore sandbar
migration event of the Duck94 field experiment since this event has been used in
many studies to test hypothesis and rate the performance of morphological models
(see Table 1.1). The studies of Hoefel and Elgar (2003) and Henderson et al. (2004),
Hsu et al. (2006) focus on processes that generate a maximum sediment transport
over the bar crest. Hence the question: what was the actual sediment transport
pattern during the onshore bar migration event?

A sediment transport pattern with a maximum over the bar crest is motivated
by the erosion and accretion that may occur during an onshore sandbar migration.
Namely, when the bar migrates shoreward, the bar needs to erode on the seaward
side and accrete on the shoreward side. In general, erosion happens when the sedi-
ment transport gradient is positive, and accretion when sediment transport gradient
is negative. Two things can be deducted from the associated erosion and deposition
pattern. First, the unbroken waves need to generate net transport, which means
that more sand is transported during the shoreward movement of the orbital motion
than during the seaward movement of the orbital motion or vice verse. Secondly, to
comply with the associated erosion and deposition pattern, the net transport needs
to have a local maximum close to the bar crest (see also Walstra et al., 2012).

The onshore sandbar migration event occurred between 22 and 27 September
1994 during an extensive field campaign and was well registered. For this analysis,
the sediment transport is derived from the bed level observations. Figure 5.2 and 5.3
shows the sediment transport during two specific tidal cycles (corresponding with
tide event B and E in Figure C.3). Note that here a tidal cycle is defined by the
high water and the preceding low water.

The intra-tide sediment transport shows the following pattern:
1. Accretion on the shoreward side of the bar occurred during the low waters of

September 23 13:00 and September 26 16:00 while the sediment transport was
directed offshore.

2. Erosion on the seaward side of the bar occurred during the high waters of
September 23 19:00 and September 26 22:00 while the sediment transport was
directed onshore.

3. the combination of the sediment transports during low and high water result
in the typical sediment transport pattern where the maximum is over the bar
crest.

Therefore, we can conclude that the intra-tide sediment transport pattern did not
correspond with the typical sediment transport pattern and, the tide-averaged sed-
iment transport did correspond with the typical sediment transport.

5.3. Application - The LIP11d Test 1c
5.3.1. Introduction
In this section the findings are applied to a real-scale onshore bar migration event
to evaluate the current status of knowledge and identify (new) knowledge gaps. For
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Figure 5.2: Sediment transport during Duck94 on 23 September 13:00 (low water) and 19:00 (high
water)
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Figure 5.3: Sediment transport during Duck94 on 26 September 16:00 (low water) and 22:00 (high
water)
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this we use the observation of the LIP11d Test 1c which was part of a large-scale
wave flume experiment (Roelvink and Reniers, 1995). The findings of this study are
incorporated into a model structure.

5.3.2. Description of flume test
The experiments took place in the Delta flume of DELFT HYDRAULICS in the
Netherlands in April-June 1993. The flume had a length of 223 m, a width of 5 m,
a depth of 7 m and was equipped with a piston-type wave maker. The water level
in the flume was 4.1 m. The bed material consisted of sand with a median grain
diameter of 220 µm. The bottom profile at the start of Test 1c was the result of
previous tests that resulted in a single bar profile. The wave conditions were based
on a narrow-banded spectrum with a significant wave height of 0.6 m and a peak
period of 8 s. Contrary to the erosive wave conditions of the previous tests, the wave
conditions of Test 1c were considered strongly accretive due to a lower significant
wave height in combination with a larger peak period.

Ten pressure sensors were installed along the wave flume at fixed locations. A
vertical array of 5 electro-magnetic flow meters (emf) was attached to a carriage.
The bottom profiles were measured with an echosounder in combination with a
wheel-based profile follower.

Test 1c consisted of 13 consecutive wave hours. Usually, after one wave hour the
carriage was re-positioned at a different location. The distance between the carriage
and a pressure sensor was never more than 5 m. Bottom profiles were measured after
1 to 3 wave hours.

The sediment transport was obtained from the bed-level changes between the
profiles measured after 2 wave hours (code 1C02) and 7 wave hours (code 1C07)
(Figure 5.6d). Integrating the bed-level changes from the dry beach towards the
wave maker led to the total sediment transport (Figure 5.6c).

5.3.3. Model structure
The essence of the model structure shown in Figure 5.4 is to estimate the temporal
bed shear stress which constitutes of the time-varying and time-averaged part. For
the time-varying part, the bed shear stresses are estimated by parameterizing the
orbital free-stream flow velocity near the bed with a waveform and transforming the
waveform in the wbbl. Hereafter, the transformed waveform is converted into a bed
shear stress using the quadratic friction law:

τb(t) = 1
2ρfw|ub|ub ; ub(t) = <{u∞eiϕ} (5.2)

In this application the flow velocity measured by the lowest electro-magnetic flow
meters (emf) was used (approximately 10 cm above the bed). It must be noted that
when a skewed waveform is raised to the power of 2 a time-averaged component is
generated:

τb(t) = τ b,wave shape + τ̃b , (5.3)
The time-averaged bed shear stress component has the subscript ‘wave shape’ to
link to the process of ‘wave shape streaming’ (Kranenburg et al., 2012) and basically
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Figure 5.4: Schematic overview of modeling approach to estimate bedload. In the current two-
way approach the time-varying and time-averaged bed shear stress were determined independently.
The bed shear stresses are combined to determine the odd 1.5th moment which consists of a time-
varying and time-averaged part. See Section 4.2 for background on the terms of the odd 1.5th
moment.
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needs to be included in the time-averaged horizontal momentum balance. However,
this has not yet been accomplished, hence the dashed line in Figure 5.4.

The time-averaged part of the bed shear stress was estimated by solving the
horizontal force balance. For this application the analytic model of (Reniers et al.,
2004a) was used which was driven by the measured data. The wave dissipation
was set as a free variable in the model and was found by minimizing the difference
between model results and observations. For reference, the resulting wave dissipa-
tion was compared to the wave dissipation from the wave transformation model of
(Reniers et al., 1997).

5.3.4. Results and discussion
The analytic model was capable of reproducing the observed vertical flow profiles
(see Figure 5.5).

The transformation of the orbital flow velocity in the wbbl only had an impact on
the measurement location that was inshore of the bar (X = 138 m in Figure 5.6a).
Here, the third moment of the orbital velocity was larger due to the transformation
of velocity asymmetry to velocity skewness. Thus, this transformation promotes
onshore bar migration, however, since the maximum was located inshore of the bar
crest it also promoted bar damping (Walstra et al., 2012).

In contrast to the third moment of the orbital velocity, the maximum of the odd
1.5th bed shear stress moment was located offshore of the bar crest (X = 134 m
in Figure 5.6b). This promoted onshore bar migration and bar growth. Thus,
the location of the odd 1.5th bed shear stress moment was also determined by the
time-averaged bed shear stress.

The wave dissipation is commonly modeled through a roller which contains and
dissipates energy, and hence provides a surface stress. From the observed vertical
flow profiles the roller dissipation (Dr) was estimated with the analytic model of
(Reniers et al., 2004a). The roller dissipation increased rapidly inshore of X =
140 m (Figure 5.7c) which is in agreement with the fraction of observed rollers
(Figure 5.7b). Apparently, the rollers started dissipating their energy in the bar
trough.

The wave transformation model of (Reniers et al., 1997) provided wave energy
estimates that were in agreement with the observations (Figure 5.7a). However, the
wave transformation model predicted a large peak in the fraction of rollers and roller
energy dissipation at the bar crest (X = 135 m). This peak was not observed in
the observations and the analytic model (see Figure 5.7b and 5.7c). This mismatch
was also illustrated in the study of Boers (2005).

It must be noted that many onshore sandbar migration studies utilize the above-
mentioned wave transformation model (e.g., Dubarbier et al., 2015; Fernández-Mora
et al., 2015; Ruessink et al., 2007a). Consequently, the roller dissipation will dra-
matically affect the horizontal force balance since this is the most dominant force in
the nearshore. For example, during the LIP11d Test 1c, the time-averaged surface
stress in the bar trough was one order of magnitude larger than the wave Reynolds
stress.
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Figure 5.5: Vertical flow structure of the time-averaged horizontal velocity during the LIP11D
Test 1c. Solid lines are the RTSR04 model. The blue square markers are the measurements with
the exception of the marker at the bottom which is set to zero. The panels from top to bottom
represent different locations along the flume. The panels in the left column (a, c, e, g, i, k) show
the velocity profile over the entire (normalized) depth and the panels in the right column (b, d, f,
h, j, l) show the velocity profile over the lower 15 cm. The symbol τs is the modeled wave breaking
related shear stress at through level and Fη = ρgh ∂h

∂x
.
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Figure 5.6: Moments of the velocity and bed shear stress of the LIP11d Test 1c. (a) Third moment
of the orbital velocity u∞ of the lowest measurement point and ub (Equation 5.2 with ϕ = 20◦). (b)
The odd 1.5th moment including the time-varying and time-averaged part. (c) Sediment transport
derived from from profile 1C02 and 1C07. (d) Measured bottom profiles during the LIP11d Test 1c.
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Figure 5.7: Wave heights, fraction of breaking waves and wave energy dissipation of the of the
LIP11d Test 1c. (a) Wave heights along the wave flume. The markers are measurements. The red
line is the wave dissipation model of Roelvink (1995). (b) Fraction of breaking waves. Markers are
observations and the red line is the model of Battjes and Janssen (1978). (c) The roller dissipation
determined with Stive and De Vriend (1994) (red line) and by inverse modeling with the analytic
model of (Reniers et al., 2004a) (markers). (d) Bottom profile of the LIP11D Test 1c. Markers
indicate the locations of the measurements.
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Conclusions and

recommendations

6.1. Conclusions
What is the relation between the bed shear stress and the nonlinear orbital wave
motion?

In order to observe this relation an experiment was conducted in a medium-sized
wave flume with a rigid single bar profile. The shape of the profile was based on
a measured profile which occurred during an onshore bar migration event with a
mobile-bed in the same wave flume. The wave shapes were skewed and asymmetric
(i.e. nonlinear wave shape) when the waves were traveling over the bar crest. The
flow velocities in the wbbl were measured with the PIV technique at six locations
along the wave flume. The camera produced images which covered an area of ap-
proximately 12 mm by 12 mm with sub-millimeter resolution. Therefore, detailed
flow velocities were obtained of the wbbl. The velocity vectors were decomposed in
a tangent and normal component on the basis of the local bottom slope at each of
the measurement locations.

In some tests vortex tubes were generated in the wbbl during flow reversal of the
orbital motion. Due to the rigid bed in combination with regular waves, the vortex
tubes were generated at fixed locations and wave phases. The wave length of the
vortex tubes where approximately equal to the camera image width. To eliminate
the velocity variations over the horizontal space (along the wave flume) caused by
the vortex tubes, the flow velocity vector fields were spatially averaged over the
horizontal space.

Viscous and turbulent fluid shear stresses were derived from the flow velocity
vectors above the bottom roughness elements. However, these stresses are not yet
the stresses between the bottom and the fluid. Since the bottom was not smooth
the interface between the bottom and the fluid is defined by a layer between the
crests and troughs of the roughness elements, i.e. the interfacial sublayer. For the
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conservation of momentum it is necessary to consider the amount of horizontal space
occupied by fluid relative to the space occupied by the bed which was accounted for
by using a roughness geometry function.

The observations of the wbbl showed that in laminar flow the relation between
the free-stream velocity and the friction velocity components was linear. The friction
velocity amplitudes were frequency dependent and the phase leads were frequency
independent. Thus, these observations were inline with the analytic solution for
oscillatory laminar flow over a smooth bed. However, the phase leads of the fric-
tion velocity components were approximately 37 degrees instead of the theoretical
45 degrees, which may be related to the fact that the bed was not smooth in the
experiment.

Modeling results of the wbbl showed that in turbulent flow the relation between
the free-stream velocity components and the friction velocity components was non-
linear, approximately τb ∼ u1.6. Furthermore, the friction velocity amplitudes and
the phase leads were frequency independent. Applying the quadratic assumption
τb ∼ u2 will result in a relatively small error (∼ 10%) in the skewness of the bed
shear stress.

The experimental and numerical data confirm that under nonlinear regular waves
the free-stream velocity asymmetry leads to bed shear stress skewness. This process
can be modeled by summing the solutions of the harmonic components or using the
analytic expressions of Abreu et al. (2010) and Malarkey and Davies (2012). Namely,
the shape of the surface elevation and horizontal velocity of nonlinear regular waves
can adequately be described using two shape parameters, i.e. one parameter for the
harmonic amplitudes and one parameter for the harmonic phases as was suggested
by Abreu et al. (2010). These parameters can easily be derived from the skewness
and asymmetry of the signal.

How large is the time-averaged bottom shear stress due to mass flux, Longuet-
Higgins streaming and wave shape streaming?

During the wave flume tests, under the skewed or asymmetric waves that traveled
unbroken over the single bar profile, the bed shear stresses were generally directed
onshore and approximately equal to half of the wave Reynolds stresses. The max-
imum time-averaged bed shear stress was located at the bar crest. In general, the
free-stream time-averaged velocity above the wbbl was not a good proxy for the
time-averaged bed shear stress (at least under unbroken waves) due to the complex
flow structure in the wbbl.

Since bedload is related to the power 1.5 of the bed shear stress, the odd 1.5th bed
shear stress moments (τb|τb|0.5) were investigated. In the tests, the time-averaged
bed shear stress contributed approximately 20% to the odd 1.5th bed shear stress
moment, τb|τb|0.5, under skewed or asymmetric waves at the bar crest.

The analytic current profile model of Reniers et al. (2004a) estimated the con-
tribution of wave Reynolds stress and Stokes drift to the time-averaged bed shear
stress. However, the model was not capable of predicting the correct vertical pro-
files of the horizontal velocity when the wave bottom boundary layer was turbulent
because the process of wave shape streaming was not included in the model.
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The research questions were formulated to investigate and better understand
onshore sandbar migration. Essentially, onshore bar migration is driven by cross-
shore transport gradients where the maximum transport is over the bar crest. When
the maximum transport is located seaward (landward) of the bar crest the sand-
bar grows (dampens). In this research, the free-stream velocity skewness was the
main contributor to the odd 1.5th bed shear stress moments (τb|τb|0.5) which had
maximum over the bar crest. The transfer of velocity asymmetry to velocity skew-
ness in the wbbl was relatively large and resulted in the increase of the friction
velocity skewness with a factor of 1 to 4. The contribution of the time-averaged
stresses were relatively smaller, however, the time-averaged stresses tend to position
the maximum of the odd 1.5th bed shear stress moment on the seaward side of
the bar crest promoting bar growth. This effect is enhanced by wave breaking and
the corresponding dissipation which lead to negative time-averaged bottom shear
stresses.

6.2. Recommendations
From this study it appears that the time-averaged processes can have a large impact
on the odd 1.5th bed shear stress moment and, therefore, on the bedload. To
improve the modeling capabilities of onshore sandbar migration the following topics
are recommended for further research:

1. Improve the roller dissipation model. It is vital to accurately model the roller
dissipation in the nearshore since the associated time-averaged forces are one
order of magnitude larger than the time-averaged bed stresses by the orbital
motion.

There is a mismatch when the roller dissipation is estimated from the flow
velocity measurements through inverse modeling and when roller dissipation
is estimated from the surface elevation measurements using a roller model.
Observation of the roller and advanced numerical flow models may provide
insight in roller dissipation processes.

2. Incorporate ‘wave shape streaming’ in the time-averaged horizontal force bal-
ance of a nearshore flow model. In the turbulent wbbl the associated stress of
wave shape streaming is of similar order of magnitude as the wave Reynolds
stress.

Using advance numerical flow models ‘wave shape streaming’ can be parame-
terized and incorporated in practical nearshore flow models.

3. Extensive observations of nearshore processes over the vertical space for a
coherent picture.

The wave flume experiment in the study herein focused on the wbbl with
minimal wave breaking. The LIP11d experiment focused on the middle layer
(from wave through to the wbbl) with breaking waves. To investigate the
horizontal force balance it is recommended to have accurate observation of all
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three layers, the top layer from wave crest to wave through, the middle layer
and the wbbl.



A
Nonlinear waveforms

A.1. Skewness and asymmetry
As waves shoal, for instance, when traveling upslope, energy is transferred to the
higher harmonics giving the waves first a Stokes/skewed shape and eventually a
pitched forward asymmetric shape (Beji and Battjes, 1993; Doering and Bowen,
1995; Elgar and Guza, 1985). Energy transfer between harmonics is continued as
waves de-shoal, for instance, when traveling downslope (Beji and Battjes, 1993).
The nonlinear interactions can be modeled with sophisticated spectral, Boussinesq,
and non-hydrostatic models.

The wave shape can be quantified by the skewness and asymmetry parameter.
Lets consider a discretely sampled signal ζ(t) that can be a wave variable such as the
surface elevation or orbital velocity (see for example Figure A.1). The time series
ζ(t) can be represented as

ζ (t) =
N∑
n=1
{An exp (i2πfnt) +A∗n exp (−i2πfnt)} (A.1)

where f is frequency, An are complex Fourier coefficients, the asterisk denotes com-
plex conjugation, subscript n is the frequency index and N is the number of samples
Elgar and Guza (1985).

The skewness, a well-known parameter in statistics, is formally defined as the
third normalized moment

Skζ =
E
[
ζ3 (t)

]
E [ζ2 (t)]3/2

= µ3

σ3 (A.2)

where E is the expected value operator. The time series of the flow velocity shown
in Figure A.1a is representative for a shoaling wave where the maximum positive
velocity is larger than the maximum negative velocity due to the timing of the phases
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Figure A.1: Wave skewness and asymmetry.

of the higher harmonics (e.g. u2) with respect to the first harmonic (u1). This fact
will result in a third moment that is larger than zero (E

[
u3 (t)

]
> 0).

Besides the skewed shape feature, the time series exhibits a pitched forward shape
(or sawtooth shape). This shape feature is quantified by the asymmetry parameter
and determined by the third normalized moment of the Hilbert transform of the
time series

Asζ =
E
[
H{ζ (t)}3

]
E [ζ2 (t)]3/2

=
E
[
H{ζ (t)}3

]
σ3 (A.3)

where H is the Hilbert transform operator. The Hilbert transformation shifts the
harmonics by −π/2 which produces a time series H [ζ (t)] of similar variance where
the minimum and maximum are located at the maximum and minimum slope of
ζ (t), respectively. 1 The Hilbert transform of u(t) is shown in Figure A.1b. The
timing of the phases of the transformed harmonics (i.e. H [u1] and H [u2]) leads to
larger negative values of H [u] than positive values. Consequently, the third moment
of the transformed time series is smaller than zero (E

[
H{ζ (t)}3

]
< 0). Therefore,

pitched forward shapes are associated with negative asymmetry values. Note that
in order for waves to be skewed and asymmetric there needs to be significant energy
in the higher harmonics. However, the phases of the harmonics determine the ratio
of skewness to asymmetry.

1To some extend, the Hilbert transform is similar to the derivative of the time series, i.e.
H [cos(ωt)] = sin(ωt) and d

dt
cos(ωt) = −ω sin(ωt), however, there is a ω and sign difference

in amplitude.
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Figure A.2: Bispectral analysis.

A.2. The bispectrum
The wave skewness and asymmetry are properties that can be derived from the
bispectrum which is determined by the Fourier coefficients An and A∗n of Equa-
tion A.1. The Fourier coefficients can be calculated using the FFT technique on
the time series of ζ(t). The FFT returns N number of Fourier components that
includes the DC component. A signal sampled with frequency Fs is limited by the
Nyquist frequency fN = Fs/2. The Fourier components will have frequencies that
range from −fN ≤ f ≤ fN with discrete intervals of ∆f = Fs/N . 2

The power spectrum is defined as

P (fk) = 1
2E [A(fk)A∗(fk)] . (A.4)

Taking the sum over all frequencies is equal to the variance of ζ(t)∑
n

P (fn) = var ζ(t) = E
[
ζ2(t)

]
= σ2 . (A.5)

The power bispectrum is defined as (Elgar and Guza, 1985; Hasselman et al., 1963)

B (fk, fj) = E [A(fk)A(fj)A∗(fk + fj)] . (A.6)
2In practice, typically the power of two is chosen for the length of the time series, e.g. 210 = 1024,
thus the FFT will return an even number of frequency components that includes the zero-frequency
component. When the spectrum is centered around the zero-frequency component, the zero-
frequency component will be the 513th frequency component of the array. As a consequence, the
Nyquist frequency exists only on the negative axis and the maximum positive frequency is equal
to fN −∆f . A workaround to get the complete frequency range from −fN ≤ f ≤ fN is adding
the discrete frequency fN at the expense of energy preservation.
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The domain of the bispectrum in the (f1, f2)-space has the shape of a hexagon
(easily identified in Figure A.2 b) and is defined by

− fN ≤ f1, f2 ≤ fN and − fN ≤ f1 + f2 ≤ fN . (A.7)

The sum of the real part of the bispectrum is equal to the third moment of the
time series of ζ(t)

E
[
ζ3 (t)

]
=
∑
n

∑
l

<{B (fn, fl)} . (A.8)

Due to the symmetry relations

B (f1, f2) = B∗ (−f2, f1 + f2) = B∗ (−f1, f1 + f2) , (A.9)

the real part of the bispectrum can be described by its values within a triangle in
the (f1, f2)-space with vertices at (f1 = 0, f2 = 0), (f1 = fN/2, f2 = fN/2) and
(f1 = fN , f1 = 0). Therefore, the skewness Sk of the time series ζ (t) can be derived
by considering the part below the diagonal of the first quarter twelve times and the
diagonal of the first quarter six times

Skζ =
[

12
∑
n

∑
l

<{B (fn, fl)}+ 6
∑
n

<{B (fn, fn)}
]/

σ3 , (A.10)

where n > l. Furthermore, the bispectrum of H [ζ (t)] is equal to −i times the
bispectrum of ζ (t). This implies that the asymmetry As of the time series ζ (t) can
be derived from the imaginary part enclosed by the triangle

Asζ =
[

12
∑
n

∑
l

={B (fn, fl)}+ 6
∑
n

={B (fn, fn)}
]/

σ3 . (A.11)

The normalized sum of the bispectrum can than be given by

Bζ = Skζ + i Asζ . (A.12)

Note that when the frequency specification is omitted, the symbol B represents the
normalized sum of the bispectrum; a possible subscript denotes the symbol of the
time series.

Since the bispectrum is complex it can be written as 3

B (f1, f2) = |B (f1, f2)| exp{−iβ (f1, f2)} , (A.13)

3A complex number z = x + iy can graphically be represented as a point where the real part
(<{z} = x) is represented by the horizontal axis and the imaginary part (={z} = y) by the
vertical axis. The length of the connection from the axes origin to point z is called the amplitude
(or modulus) and is equal to |z| =

√
x2 + y2 (Pythagoras’ theorem). The angle enclosed by this

connection and the x-axis is called the argument and equal to α = arctan y
x
. This implies that

z = |z| (cosα+ i sinα). Using Euler’s formula, z = |z| exp {iα}.
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where the biphase β (f1, f2) is given by

β (f1, f2) = arctan
[
={B (f1, f2)}
<{B (f1, f2)}

]
. (A.14)

Similarly, the Fourier coefficients An can be written as

An = |An| exp {−iθn} (A.15)

where |An| is the amplitude and θn is the phase of the frequency component fn.
The relation between the biphase and the corresponding phases is given by (Kim
et al., 1980)

β(fi, fj) = θ (fi) + θ (fj)− θ (fi + fj) . (A.16)

The biamplitude and biphase can also be expressed as aggregated parameters for
the complete time series (i.e. considering all frequencies). From Equation A.12 it
follows that the normalized biamplitude and biphase are given respectively by

|Bζ | =
√
Sk2

ζ +As2
ζ , (A.17)

βζ = arctan
[
Asζ
Skζ

]
. (A.18)

A.3. Description of a waveform
Based on the work of Drake and Calantoni (2001), Abreu et al. (2010) defined
waveforms described by the function

u(t) = =
{
U1

N∑
n=1

bn−1 exp i[nω1t+ (n− 1) Φ]
}

(A.19)

where Φ is the so-called waveform parameter and n is the harmonic index. Note
that Eq. A.19 is the imaginary part of the complex waveform that described a sinus.
Often the real part is chosen which describes a series of cosines. When a signal is
described by Equation A.19, the waveform parameter is equal to the biphase with
the exception of a sign change

β (fi, fj) = −Φ . (A.20)

When we let the waveform parameter be frequency dependent Φn (subscript in-
dicates the harmonic index), the biphase and the waveform parameter are related
through

β(ωi, ωj) = (i− 1)Φi + (j − 1)Φj − (i+ j − 1)Φi+j . (A.21)

Abreu et al. (2010) showed that by using geometric series with N = ∞, Equa-
tion A.19 can be exactly given by

u(t) = f
sinωt− b sin Φ

1 + b2 − 2b cos (ωt− Φ) (A.22)
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where f ensures normalization. Building on the findings of Abreu et al. (2010),
Malarkey and Davies (2012) showed that, also by using geometric series with N =
∞, the skewness and asymmetry of Equation A.19 can be expressed as

Sk = 3b sin Φ√
2 (1− b2)

, (A.23)

As = 3b cos Φ√
2 (1− b2)

. (A.24)

Furthermore, when these expression of Sk and As are substituted in the equation
for the aggregated normalized biamplitude |B|, Equation. A.17, we can express b as
a function of |B|

b2 = 2|B|2

9 + 2|B|2 . (A.25)



B
The power of velocity

The effect when the velocity is raised to the power of α becomes apparent when we
expand the term u|u|α−1 with a Fourier cosine series (see also Dean and Dalrymple,
1991, Section 5.6)

u|u|α−1= a0 +
∞∑
n=1

an cosnωt (B.1)

Evaluating the coefficients reveals that the even coefficients (a0, a2, a4 . . .) are
zero and the odd coefficients (a1, a3, a5 . . .) are nonzero. The ratio of a3/a1 depends
on α and can be found numerically.
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Duck94 field experiment

In 1994 the Duck94 field experiment was carried out at the U.S. Army Corps of
Engineer’s Field Research Facility (FRF) near Duck, North Carolina, US. During the
experiment a single bar profile developed where the bar crest migrated shorewards
from 22 to 27 September while the bathymetry was relatively long-shore uniform
(Gallagher et al., 1998; Ruessink et al., 2001). The beach is characterized by sand
with median grain diameter of 200± 50 µm and a tidal range in the order of 1 m.

A pressure sensor array at 8 m depth captured the directional wave spectra.
There was a tide station located at the seaward end of the FRF pier. The overall
bottom topography was regularly (interval of a few days) measured with the Coastal
Research Amphibious Buggy (CRAB) that drove cross-shore transects. A cross-
shore array extended over the single bar profile consisting of co-located sonar al-
timeters, pressure sensors, and current meters. These data were sampled at 2 Hertz.

Sonar s13 was located on the shoreward side of the bar crest. Here, the overall
bed level increased 0.5 m. The bed level changes over the concerning period showed
two type of positive trends. The first trend was from 22 to 25 September where the
bed level change was consistently positive and eventually tapered off. The second
trend started on 26 September and had significant diurnal oscillations that included
positive and negative bed level changes.

Sonar s15 was located on the seaward side of the bar crest. Here, the overall
bed level decreased 0.2 m. Similar to sonar s13, the bed level changes tapered off
towards 25 September and started again on 26 September. Contrary to sonar s13,
only negative bed level changes were observed.

Two successive wave events with normal incident waves can be identified from
the directional wave spectra data. The first event was characterized by a mixed sea
with a significant wave height of 0.8 m, a peak period of 8 to 10 s and died out on
the 25th of September. The following day a new swell arrived that was relatively
narrow-banded with a significant wave height of 0.8 to 1 m and a peak period of 11
to 15 s.

The diurnal oscillations of the flow velocity and the bed level at the shoreward
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Figure C.1: Duck94 directional wave spectra.

side of the bar crest during the second wave event were synced with the water
levels of the tide. Higher (lower) water levels corresponded with smaller (larger)
offshore velocities and higher (lower) bed levels. The bed level at sonar s13 increased
consistently during the high waters. Moreover, most of the accretion at s13 occurred
over a total of six high waters (referred to as A-F in Fig C.3).
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Figure C.2: Brief overview of the Duck94 experiment. (a) Bottom profiles derived from CRAB
measurements and locations of current meters that had co-located sonars. (b) Significant wave
height. (c) Peak wave period.
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Figure C.4: DUCK94 23 September 13:00 (low tide)
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Figure C.5: DUCK94 23 September 19:00 (high tide)
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Figure C.6: DUCK94 26 September 16:00 (low tide)
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Figure C.7: DUCK94 26 September 22:00 (high tide)
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