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Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles
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We present results of an extensive set of first-principles density functional theory calculations of point defect
formation, binding, and clustering energies in austenitic Fe with dilute concentrations of Cr and Ni solutes.
A large number of possible collinear magnetic structures were investigated as appropriate reference states for
austenite. We found that the antiferromagnetic single- and double-layer structures with tetragonal relaxation of
the unit cell were the most suitable reference states and highlighted the inherent instabilities in the ferromagnetic
states. Test calculations for the presence and influence of noncollinear magnetism were performed but proved
mostly negative. We calculate the vacancy formation energy to be between 1.8 and 1.95 eV. Vacancy cluster
binding was initially weak at 0.1 eV for divacancies but rapidly increased with additional vacancies. Clusters
of up to six vacancies were studied and a highly stable octahedral cluster and stacking fault tetrahedron were
found with total binding energies of 2.5 and 2.3 eV, respectively. The 〈100〉 dumbbell was found to be the most
stable self-interstitial with a formation energy of between 3.2 and 3.6 eV and was found to form strongly bound
clusters, consistent with other fcc metals. Pair interaction models were found to be capable of capturing the
trends in the defect cluster binding energy data. Solute-solute interactions were found to be weak in general, with
a maximal positive binding of 0.1 eV found for Ni-Ni pairs and maximum repulsion found for Cr-Cr pairs of
−0.1 eV. Solute cluster binding was found to be consistent with a pair interaction model, with Ni-rich clusters
being the most stable. Solute-defect interactions were consistent with Ni and Cr being modestly oversized and
undersized solutes, respectively, which is exactly opposite to the experimentally derived size factors for Ni and
Cr solutes in type 316 stainless steel and in the pure materials. Ni was found to bind to the vacancy and to the
〈100〉 dumbbell in the tensile site by 0.1 eV and was repelled from mixed and compressive sites. In contrast, Cr
showed a preferential binding to interstitials. Calculation of tracer diffusion coefficients found that Ni diffuses
significantly more slowly than both Cr and Fe, which is consistent with the standard mechanism used to explain
radiation-induced segregation effects in Fe-Cr-Ni austenitic alloys by vacancy-mediated diffusion. Comparison
of our results with those for bcc Fe showed strong similarity for pure Fe and no correlation with dilute Ni and Cr.
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I. INTRODUCTION

Austenitic, face-centered cubic (fcc), γ -Fe-based steels are
key materials in many applications. However, modeling the
basic form, γ -Fe, is challenging because it is metastable under
the zero-temperature conditions typically used in quantum
mechanical calculation. The high-temperature stabilization of
fcc over ferromagnetic (fm) body-centered cubic (bcc) α-Fe
at 1185 K is due primarily to the onset of paramagnetism
which contributes a considerable amount of entropy in the
fcc form. Phonon and electronic entropy also contribute,
but the primacy of the magnetic effect is underlined by the
return to paramagnetic bcc δ-Fe at still higher temperature
(1667 K).

There has been considerable experimental effort to stabilize
γ -Fe at lower temperatures, primarily by epitaxial growth of
thin films on Cu substrates (e.g., Meyerheim et al.1) and by
the formation of γ -Fe precipitates by heat treatment of dilute
alloys of Fe in fcc Cu (e.g., Tsunoda et al.2 and Hines et al.3).
For a review of earlier work, see Marsman and Hafner.4 The
principal motivation behind this effort has been to study the
structural and magnetic properties of γ -Fe at temperatures
low enough for stable magnetic ordering. The study of point
defects in these systems has not been attempted.

First-principles calculations have proved to be a very reli-
able method of obtaining information about radiation-induced
defects, which previously had been unreliably calculated using
empirical potentials. In nonmagnetic elements such as molyb-
denum and vanadium it was shown that the pseudopotential
plane wave method reproduced experimentally inferred self-
interstitial migration energy barriers to within 0.1 eV (Ref. 5),
giving confidence that experimentally inaccessible quantities
such as interstitial formation energies would also be reliable.
This is assisted by the discovery that the strain fields associated
with interstitials are less extensive than had been predicted by
interatomic potentials,5–8 such that calculations with supercells
as small as 100 atoms can give near-converged solutions.

Application of density functional theory (DFT) to steels
is of particular interest for radiation damage applications
in which high-energy defects such as self-interstitials are
formed. Modeling commercial steels is a more complicated
task on account of their multicomponent nature; however,
there has been much progress in ferritic Fe (e.g., the results
of the European FP6 PERFECT project9 and references
therein) and Fe-Cr alloys10–15 which showed a number of
unexpected outcomes. In particular, isolated Cr atoms have
a small negative heat of solution in α-Fe (Refs. 10 and 11),
in apparent conflict with the phase diagram,16 which shows
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a miscibility gap. This conundrum was resolved12,13 when it
was shown that Cr atoms in bcc Fe exhibit strong nearest-
neighbor repulsion, resulting from magnetic frustration, with
weaker repulsion still present up to sixth-nearest-neighbor
separation.13 Consequently, a dilute solution of Cr in α-Fe
has a negative heat of formation only up to at most 10 at.%
(at 0 K), a result that is consistent with experimental results
for the heat of solution and short-range order parameter, as
discussed by Bonny et al.,17 but was not included in the
extrapolations present in the phase diagram. The nonlinear
variation of cohesive energy with concentration means that
determining unambiguous energies for quantities such as the
binding of a self-interstitial to a Cr solute proved impossible
in concentrated alloys15 since the calculated energy had a
complex dependence, not only on the defect, but also on
concentration and the atomic arrangement.

First-principles studies of γ -Fe with collinear18–22 and
noncollinear4,23 magnetism have found many distinct mag-
netically ordered and spin spiral (meta-)stable states lying
(approximately) between 0.08 and 0.15 eV/atom above the
bcc ferromagnetic ground state, α-Fe. However, techniques
allowing reliable first-principles calculations of the param-
agnetic state of γ -Fe are only just beginning to appear in
the literature, for example, the work of Körmann et al.
and references therein.24 There remains some debate about
whether the paramagnetism is best represented as itinerant or
involves localized moments on the ions; however, throughout
this paper we interpret our results through the localized-
moment picture. From a purely numerical point of view there
are also difficulties. The Kohn-Sham functional applied in
nonmagnetic DFT has a single minimum with respect to the
wave functions, but collinear-magnetic DFT may have up to
2N minima for an N -atom supercell, corresponding to possible
permutations of the spin. In practice, most of these will be
unstable but one can never be sure that the lowest energy
structure has been reached. The concept of metastability is
also slippery, since the numerical algorithms used to find the
minimum electronic energy do not correspond to physical
pathways which the material can follow: The very definition
of metastability is then, to some extent, algorithm dependent.

The Born-Oppenheimer approximation is used to decouple
electronic and atomic degrees of freedom. The status of mag-
netic degrees of freedom in this approximation is debatable.
One viewpoint is that, since magnetism is due to electrons,
the Born-Oppenheimer surface is the one corresponding to
the magnetic state with the lowest energy globally. An
alternative view, which we adopt here, is that there are many
Born-Oppenheimer surfaces, each corresponding to a given
magnetic ordering. Many of the magnetic states in fcc Fe
are sufficiently metastable to make this a useful distinction.
It should, however, be borne in mind that DFT calculations
are almost exclusively performed using a numerical algorithm
which minimizes the energy of the system with respect to the
free parameters of a set of basis functions used to represent
the wave function. This algorithm does not correspond to
any physical trajectory which the electrons could follow
(cf. time-dependent DFT). Consequently, “local minimum”
means a minimum from which the algorithm, in our case
block Davidson,25 cannot escape in this basis set. It does not
guarantee that the spin-state will be a local minimum in reality.

To date (and to the best of our knowledge) only a few
first-principles studies of solutes and impurities have been
performed in austenitic Fe21,22,26–31 and only the work of
Nazarov31 includes defect calculations (in order to study
vacancy-hydrogen interactions). There exists no comprehen-
sive study of point defects and their interactions in pure fcc Fe
or in dilute solid solutions of Ni and Cr in fcc Fe. We present
here just such a study using a set of magnetically ordered states
to represent the paramagnetic state of γ -Fe. By considering
more than one magnetic state we are able to estimate the
accuracy of this assumption. This approach is certainly not
ideal but is consistent with the constraint presented by first-
principles calculations, which are performed at 0 K, where
the lowest energy states dominate. Any conclusions that we
make for the paramagnetic state of γ -Fe are clearly within the
confines of this approach.

We also intend this work to provide a basis for understand-
ing the complex interactions present in concentrated Fe-Cr-Ni
fcc alloys. We study the relatively simple dilute case here to
gain insight into the Fe-Cr-Ni system and any extrapolations
to concentrated alloys do not include possible many-body
concentration-dependent effects.

The layout of the paper is as follows. Section II contains
the computational details of the DFT calculations performed in
this work. In Sec. III we present and discuss our results on the
bulk properties and stability of the magnetic reference states.
The energetics of point defects in pure Fe and their interactions
are discussed in Sec. IV, as is their tendency to form small
defect clusters relevant in the nucleation of microscopic defects
such as voids and dislocation loops. The results of dilute Ni and
Cr solute calculations in defect-free Fe and in interaction with
point defects are presented and discussed in Sec. V. Finally,
we make our conclusions in Sec. VI.

II. COMPUTATIONAL DETAILS

All of the following calculations have been performed
using the mainstream DFT code VASP,32,33 a plane-wave
code that implements the projector augmented wave (PAW)
method.34,35 Standard PAW potentials supplied with VASP were
used with exchange and correlation in the generalized gradient
approximation described by the parametrization of Perdew
and Wang36 and spin interpolation of the correlation potential
provided by the improved Vosko-Wilk-Nusair scheme.37 Po-
tentials with eight, six, and ten valence electrons were used for
Fe, Cr, and Ni, respectively.

The local magnetic moments on atoms were initialized to
impose the magnetic state ordering and were then allowed to
relax. The relaxed local magnetic moments were determined
by integrating the spin density within spheres centered on the
atoms. Sphere radii of 1.302, 1.323, and 1.286 Å were used
for Fe, Cr, and Ni, respectively.

Calculations of the bulk properties for Fe, Cr, and Ni
were performed with a sufficiently high plane-wave cutoff
energy (400 eV) and sufficiently dense k-point sampling
of the Brillouin zone (e.g., 163 Monkhorst-Pack grid for a
conventional bcc cell) to ensure convergence of the energy of
the system to less than 1 meV per atom.

Elastic constants were determined numerically using stress
tensor measurements after applying small (1%–2%) strain
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deformations to the equilibrium structures. These were cross-
checked, where possible, with comparable determinations
using the energy. Ensuring convergence of the elastic constants
placed significantly higher demands on our calculations than
for other bulk properties. A plane-wave cutoff energy of 600 eV
was used and sufficient k-point sampling to ensure that the
elastic constants were converged to ±2 GPa, for example, a
203 Monkhorst-Pack grid for a conventional unit cell of the
fcc ferromagnetic low-spin (fm-LS) magnetic state. It was
also necessary to reduce the energy convergence criteria for
electronic minimization to 10−8 eV.

Formation energies of defects and solutes were calculated
in supercells of 256 (±1, ±2, . . .) atoms, with supercell
dimensions held fixed at their equilibrium values and ionic
positions free to relax. For these supercells a 23 k-point
Monkhorst-Pack grid was used to sample the Brillouin zone.
Test calculations showed this sampling to be sufficient to
converge formation energies to less than 0.05 eV in all
calculations except those involving interstitial defects, where
the uncertainty could be as high as 0.1 eV (Ref. 38). Formation
energy differences and binding energies were found to be
converged to less than 0.03 eV except in calculations involving
interstitial defects where the error was found to be 0.04 eV
(Ref. 38). These errors are sufficiently small for our purposes.
Performing calculations in a fixed supercell of volume, V ,
results in a residual pressure, P , for which an Eshelby-type
elastic correction for finite size to the system energy6,39 of
−P 2V/2B, where B is the bulk modulus of the bulk material,
can be applied and also serves to indicate the likely error.
The size of these corrections is negligible in much of the work
presented here, being smaller than other sources of error in our
calculations. However, in the largest of our vacancy cluster
calculation and in those containing overcoordinated defects
these finite size corrections are of relevance and are discussed
in the corresponding text.

Our data are the result of the merging of two sets of data,
one calculated in the single-layer antiferromagnetic (afmI) face
centered tetragonal (fct) state, the other mainly in the double-
layer antiferromagnetic (afmD) state in either of fcc and fct
structures but also including some fct ferromagnetic high-spin
(fm-HS) calculations. The plane-wave cutoff energy was taken
to be 300 eV for the afmI calculations and 350 eV in all
others. The nonconvergence error in the formation energies
from either of these plane-wave cutoff energies was found to
be smaller than the k-point sampling error.38 First-order (N =
1) Methfessel and Paxton smearing40 of the Fermi surface
was used throughout with smearing width, σ , set to 0.3 eV
for the afmI calculations and 0.2 eV in all others. Structural
relaxations were considered converged when the forces on all
atoms were less than 0.03 eV/Å for afmI calculations and less
than 0.01 eV/Å for other magnetic states. Test calculations
showed that the differences in force convergence criteria do
not lead to any significant systematic error.38 The choice of
σ , however, leads to a systematic effect comparable in size to
the convergence error with respect to the number of k-points.38

This is still, however, smaller than the uncertainty arising from
choice of reference state and is therefore sufficiently small
for our purposes. Formation-energy calculations in the afmI
state have been performed at the equilibrium lattice parameters
determined with those settings; that is, a = 3.4252 Å and c =

TABLE I. Lattice parameters, a and c, energy per atom relative to
the fct afmD state, �E, magnetic moment, μ, elastic moduli in Voight
notation, Bij , and the first three eigenvalues of the matrix of elastic
moduli, λi , for four distinct magnetically ordered structures at their
energy minima. We estimate the uncertainties in the elastic moduli
to be of the order of a few percent. The nonzero stresses present
in the fcc afmD state are, in Voight notation, σ1 = σ2 = 3 GPa and
σ3 = −6 GPa. We measure the energy per atom for the fct afmD state
to be 0.077 eV higher than the bcc fm ground state.

Structure fcc afmD fct afmD fct afmI fct fm-HS

a (Å) 3.527 3.447 3.423 3.418
c (Å) 3.527 3.750 3.658 4.017
c/a 1.000 1.088 1.069 1.175
�E (eV) 0.020 0.000 0.014 0.031
μ (μB ) 1.80 1.99 1.50 2.40
B11 (GPa) 224 212 333 131
B12 (GPa) 147 211 241 267
B13 (GPa) 81 92 103 106
B31 (GPa) 90 92 103 106
B33 (GPa) 119 210 250 289
B44 (GPa) 87 73 173 56
B66 (GPa) 108 203 251 165
λ1 (GPa) 1 92 −136
λ2 (GPa) 485 630 503
λ3 (GPa) 148 194 184

3.648 Å and not with those presented in Table I. The resulting
differences in formation energy are, however, negligible.

Throughout this paper we define the formation energy,
Ef({nX}), of a configuration containing nX atoms for each
element, X, relative to a set of reference states for each element
using

Ef({nX}) = E({nX}) −
∑

X

nXEref
X , (1)

where E({nX}) is the calculated energy of the configuration
and Eref

X is the reference state energy for element, X. Here we
take the reference energies to be the energies per atom for the
pure materials, that is, Ni in its fcc fm ground state, Cr in its
bcc antiferromagnetic (afm) state and Fe in the specific ground
state for the magnetic ordering we are studying.

We define the binding energy between a set of n species,
{Ai}, where a species can be a defect, solute, cluster of defects
and solutes, etc., as

Eb(A1, . . . ,An) =
n∑

i=1

Ef(Ai) − Ef(A1, . . . ,An), (2)

where Ef(Ai) is the formation energy of a configuration
containing the single species, Ai , and Ef(A1, . . . ,An) is the
formation energy of a configuration containing all of the
species. An energetically favored configuration therefore has
a positive binding energy.

III. BULK PROPERTIES AND REFERENCE STATES

Density functional theory has a number of energy min-
ima corresponding to different magnetic states with crystal
structures close enough to fcc to be plausible as reference states
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FIG. 1. (Color online) Energy difference per atom, �E, between
distinct magnetic reference states for austenitic Fe (open symbols)
and the bcc fm ground state (black solid circles) versus atomic
volume, Vatom. We include ferromagnetic (fm, black circles), non-
magnetic (nm, red squares), and antiferromagnetic (001) single-
layer (afmI, green upward triangles), double-layer (afmD, blue
downward triangles), and triple layer (afmT, purple right-facing
triangles) orderings. Also shown is a magnetic (001) layered structure
with a spin-up, spin-up, spin-down ordering (uud, beige left-facing
triangles), an antiferromagnetic (111) single-layer structure (afmI111,
orange stars), and a magnetic ordering formed by taking a four-
atom fcc unit cell with three spin up atoms and one spin down
atom (fm-flip, cyan diamonds). We distinguish between fcc (solid
curves) and fct (dashed curves) for the same magnetic (001)
structures.

for austenite. We take fcc to mean that the unit cell has a = b =
c, in contrast with fct where the unit cell relaxed tetragonally;
that is, c �= a = b. Our calculated energy versus volume curves
for many of these collinear magnetic structures are shown
in Fig. 1.

The results are consistent with, and extend, previous
work.4,18–21,23 In a similar manner to these previous studies
we have concentrated on (001) magnetic layered structures,
which exhibit a common in-plane ferromagnetism but distinct
spin orderings between planes. We have, however, considered
other planar structures, such as the afmI111 state, which is
ferromagnetic within (111) planes but antiferromagnetically
ordered between planes, and nonplanar structures, such as the
fm-flip state. While we cannot be certain we have found the
lowest energy structure within our finite dataset (as discussed
earlier), our results do show the (001) magnetic layered
structures to be generally more stable.

Overall our results show that there are many competing
magnetic structures very close in energy. Indeed, the energy
difference between the nonmagnetic state and the most stable
magnetic state is only 0.062 eV/atom. Test calculations in
both the fcc afmI and fcc afmD structures showed that a single
flipped magnetic moment was (meta)-stable and cost 0.03 and
0.05 eV, respectively, in a 256-atom cell, again indicating how
close different magnetic structures are in energy. Moment flips
in the fcc fm-HS state proved costly at 0.5 eV and destabilized
the fcc fm-LS state with partial relaxation toward one of the
afm states. No (meta-)stable moment flips were found for any
of the fct structures.

x

z
y

1
2

4

6

3

5

(a)

1c

1b

1a

2b

2a

2c

(b)

FIG. 2. (a) (Self-)Interstitial defect positions (black circles) in
the fcc/fct afmD magnetically ordered structure. (b) A-B interactions
between on-site defects and solutes in the fcc/fct afmD magnetically
ordered structure. Species A is shown in black, species B in gray, and
the surrounding Fe atoms in white. Arrows indicate local moments in
both figures and the magnetic planes are shown to aid visualization.
The afmD state has been shown here to uniquely identify all of its
distinct defect configurations. The higher symmetry afmI and fm-HS
states share this set of configurations, although many (e.g., tetra uu
and tetra ud) will be symmetry equivalent.

It is worth drawing the reader’s attention to the fact that
the afmI, afmD, and fm-HS magnetic states in cubic cells
have been found to be unstable with respect to tetragonal
distortion. Both afmI and afmD transform spontaneously when
the constraint is removed but the fcc fm-HS state is an unstable
equilibrium position. Tetragonal distortion away from the
perfect fcc structure either resulted in full relaxation to the
ferromagnetic bcc ground state via the Bain path,41 that is, by
setting c/a < 1, or to the fct fm-HS state with c/a > 1. For
atomic volumes below about 11.4 Å

3
this unstable equilibrium

position continuously becomes a stable equilibrium position
for the fcc fm-LS state. Overall, the fct parameter space
exhibits many local ferromagnetic minima, the most stable
being the bcc fm ground state (for c/a = 1/

√
2), a result

most succinctly presented in the contour plots of Spišák and
Hafner.19

The elastic moduli, {Bij }, of the lowest energy structures
representative of the distinct magnetic states considered here
are presented along with the lattice parameters, magnetic
moments, and energy differences with respect to the lowest
energy fct afmD state in Table I. These elastic moduli
correspond to the derivatives of the stress tensor with respect
to strains and are only equal to the conventional elastic moduli,
{Cij }, which are proportional to the second derivative of the
energy with respect to strain, in the case of a state of zero
stress.42 So for the fcc afmD state, which is not in equilibrium,
the {Bij } differ from the {Cij }. For all others they are identical.
In the case of zero stress the stability of the state with respect
to tensile and shear strains can be examined by calculating
the eigenvalues of the elastic constant matrix. Only if these
eigenvalues are positive is the state an energy minimum
with respect to strain. For an fct structure the eigenvalues,
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{λi}, are

λ1 = C11 − C12,

2λ2 = (C11 + C12 + C33)

+ (
(C11 + C12 − C33)2 + 8C2

13

)1/2
,

2λ3 = (C11 + C12 + C33)

− (
(C11 + C12 − C33)2 + 8C2

13

)1/2
,

as well as λ4 = C44, which is doubly degenerate and λ6 = C66.
The first three are given in Table I.

The stability criterion for λ1, that is, C11 > C12, is not
satisfied by the fct fm-HS state, showing that it is unstable
with respect to an orthorhombic distortion breaking the a = b

symmetry in the lattice parameters. Despite being unstable,
it is still an equilibrium structure, that is, a saddle point
in the energy landscape, which after a small orthorhombic
symmetry-breaking perturbation relaxes directly to the bcc fm
ground state. Note that although this barrier-free double shear
route from fcc to bcc (via fct) is not the generally considered
Bain path, the relationship between the initial and final states
is identical. One final point worth mentioning here is that the
lattice parameter, c = 4.017 Å for the fct fm-HS state is almost
exactly

√
2 times the bcc fm lattice parameter, which is 2.831 Å

with the settings used here. In the Bain transformation from
fcc to bcc two of the lattice parameters must increase to exactly
this value. The conclusion is that if we only allow one lattice
parameter to increase, that is, by constraining to an fct cell
with c/a > 1, the system will still relax that lattice parameter
all the way toward bcc and not to an intermediate value.

The fct afmD state is stable, but is very soft with respect
to a further orthorhombic distortion, that is, upon applying the
eigenstrain associated with λ1. By applying such a strain we
confirmed the existence of a wide minimum about zero strain
with direct measurements of λ1 yielding values between 5 and
10 GPa. This direct determination is still small but larger than
the indirect measurement.

As well as considerations of structural stability any prospec-
tive reference state suitable for our purposes should be stable
with respect to the introduction of simple point defects and
solutes. The fcc fm-LS state, being unstable even to the
introduction of a vacancy, is ruled out, as is the fcc afmI state
which was found to disorder in some calculations. The fcc
fm-HS state was unsurprisingly found to be unstable to defects
breaking the fcc crystal symmetry. Using the fct fm-HS state,
as will be shown, improved the situation, although it was still
unstable to defects generating orthorhombic distortions. All
other structures were found to be stable with respect to the
introduction of defects.

The final consideration in our choice of reference states
is the usefulness of our results as a solid foundation for
understanding the complex results in concentrated Fe-Cr-Ni
austenitic alloys. The afmI magnetic ordering has been found
to be the most stable state for a concentrated austenitic
alloy with composition Fe70Cr20Ni10.43 In addition, there
is evidence for the stability of a ferromagnetic state at other
concentrations,29,44 indicating that the ferromagnetic state may
be stabilized by alloying.

Given the considerations discussed above, we have concen-
trated on four main reference states for austenitic Fe and dilute
Cr and Ni alloys in this work. These are as follows.

(i) The fct afmI state. It exhibits stability both in structure
and against the introduction of defects and is of direct relevance
in the study of concentrated alloys.

(ii) The fct afmD state. It shows reasonable structural
stability and stability against the introduction of point defects
and is the structure with the lowest energy of all collinear
magnetic structures found in this work and elsewhere.

(iii) The fct fm-HS state. Despite its instabilities it best
represents the ferromagnetic state and insights gleaned from
its study have relevance for concentrated alloy systems. It also
has the closest volume per atom to the paramagnetic state.

(iv) The fcc afmD state. It is stable against the introduction
of point defects and is the lowest energy fcc state. Comparison
with the fct afmD state allows the effect of tetragonal distortion
on formation and binding energies to be studied.

It is worth reiterating that none of these structures can,
by themselves, represent high-temperature austenite or con-
centrated austenitic alloys. All the results in this paper must
be accepted as approximations and only when a feature is
common against multiple reference states are we confident
that it is generalizable.

Before discussing our point defect and solute calculations
in these reference states we comment on the effect of
noncollinear magnetism, which is known to be present in fcc Fe
(Refs. 23 and 4). We calculated seven systems while allowing
noncollinear solutions. The systems were a vacancy, 〈001〉
dumbbell, and an octahedral interstitial in pure Fe, single Cr
and Ni solutes, a mixed Cr-Ni 〈001〉 dumbbell interstitial, and a
Ni solute next to a vacancy. The initial moments were set in an
afmI configuration, with most of the initial moments aligned
collinearly. The directions of moments on a sufficient number
of atoms were changed, however, to perturb the system away
from the collinear solution. All moments were free to rotate
into noncollinear directions in the calculations.

Six of these seven calculations converged to collinear
solutions. Only in the case of a Ni solute situated next to a
vacancy were clearly nonparallel directions of moments on
atoms observed. Even then, the energy of the noncollinear
solution was only marginally lower than for the collinear
solution and by an amount below other sources of error.
Therefore, while noncollinearity was observed, it can be
omitted for our purposes.

IV. POINT DEFECTS IN PURE FE

The basic quantities upon which all microstructural
radiation-induced damage and segregation effects depend are
the energies associated with point defect formation, interac-
tion, and diffusion, that is, the behavior of the primary damage
in radiation-induced displacement cascades. We calculate
point defect formation and binding energies in pure γ -Fe based
on our four different magnetic reference states for austenite. It
should be borne in mind that the particular magnetic ordering
and the presence of tetragonal distortion in these states lowers
their symmetry relative to the perfect fcc crystal structure. As a
result, some defects which would have been uniquely defined
in fcc have multiple configurations with different energies.
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TABLE II. Point defect formation energies, Ef , in eV (upper number) for the different (magnetic) structures studied in this work. Total
magnetic moments relative to the bulk material, �M , in μB (lower number) are given for completeness with all defects that can be considered
as sited within a magnetic plane positioned in planes of positive moment. Interstitial defect sites (numbers 1 to 6) are shown in Fig. 2(a).
Dumbbells are identified by their axis direction in the coordinate system shown in the same figure, for example, a [001] dumbbell has its axis
along z and perpendicular to the magnetic planes. Where the defect was found to be unstable the defect formed in the relaxation is identified.
The negative formation energies for fct fm-HS (shown in brackets) are unphysical and stem from the instability of this reference state with
respect to orthorhombic distortions. The positive formation energy for the [001] dumbbell (for fct fm-HS) corresponds to a symmetrical starting
position. The negative formation energy (identified as 8b) resulted from the relaxation of the [011] dumbbell, which initially broke the x-y
symmetry then relaxed to [001]. Eshelby corrections to the formation energies are less than 0.07 eV in all cases and at most 0.01 eV for
formation energy differences.

Defect fcc afmD fct afmD fct afmI fct fm-HS

1.672 1.819 1.953 1.692
Vacancy −6.67 −2.50 −2.74 1.50

Octa (1) rlx (7) rlx (7) 4.353 3.620
−4.92 −0.71

3.581 3.864 N/A 3.039
Tetra uu (2) −6.04 −2.82 −4.91

3.332 3.663 4.322 N/A
Tetra ud (3)

0.00 0.00 0.06

rlx (3) rlx (3) 4.799 3.305
[110] Crowdion (4) −5.51 −3.10

3.771 4.255 N/A (−1.791)
[011] Crowdion uu (5) −3.53 −3.73 −2.58

3.874 4.168 4.818 N/A
[011̄] Crowdion ud (6)

0.00 0.00 0.00

2.978 3.316 3.531 (−3.181)
[100] Dumbbell (7) −7.79 −4.66 −2.96 −1.40

2.790 3.195 3.615 2.416
[001] Dumbbell (8) −9.39 −0.17 4.49 −6.27

N/A N/A N/A (−2.529)
[001] Dumbbell (8b) −5.29

4.290 4.322 4.803 3.288
[110] Dumbbell (9) −4.86 −4.23 −5.81 −3.12

[011] dumbbell (10) rlx (7) rlx (7) rlx (7) rlx (8b)

rlx (3) rlx (3) 4.559 1.919
[111] Dumbbell (11) −2.13 0.70

We refer to these differences as symmetry-breaking effects
and they should primarily be taken as an additional source
of uncertainty in our calculations when conclusions about
austenite and austenitic alloys are made. In order to aid the
discussion of our results we refer to the planes of constant
moment in the bulk afm structures and the planes perpendicular
to the direction of tetragonal distortion in the fct fm-HS state
by the term “magnetic planes.” The results of our point defect
calculations are shown in Table II.

Problems with the fct fm-HS state are immediately ap-
parent, that is, negative interstitial formation energies. These
are associated with extensive reconstruction throughout the
unit cell. All defects exhibit significantly lower formation
energies than the other reference states. Formation energies
in the fcc afmD state are systematically lower than those in fct
afmD by around 10%. The total configuration energies in fcc
are, however, still significantly higher than the fct state. We
associate the formation energy reductions in the fct fm-HS and

fcc afmD states with the fact that these states are not minima
with respect to strain. By contrast, the fct afmI and afmD states
are minima and the influence of the defects is confined to the
first few neighbor shells. The associated energies can therefore
be regarded as attributable to the defect. We thus base our
predictions for paramagnetic austenite on these two reference
states, with their difference giving some indication of the error.

A. Vacancy formation

We find that the vacancy formation energy lies in a range
between 1.82 and 1.95 eV. This is slightly higher than the
typical value of one-third of the cohesive energy observed in
other transition metals.45–47 The local influence of the vacancy
on the lattice was found to be highly dependent on the reference
state. Displacements of up to 0.24 Å toward the vacancy were
found for atoms in the first-nearest-neighbor (1NN) shell in the
fct fm-HS state, whereas no displacements exceeded 0.02 Å
in the fct afmI state. An intermediate value of 0.09 Å was
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TABLE III. Formation energies, Ef , in eV for the transition states involved in vacancy migration and calculated migration barrier heights,
Em, in eV, calculated as the difference in formation energy between the transition state and the relaxed vacancy, as given in Table II. The
formation energies, Ef , are therefore equivalent to the activation energy for self-diffusion, Q0, along each path, which is the sum of the
vacancy formation energy and migration barrier height. The migration paths are labeled by the two sites involved, as given in Fig. 2(b), and
the transition state constructed with the migrating atom placed symmetrically between the two sites.

fcc afmD fct afmD fct afmI fct fm-HS

Path Ef Em Ef Em Ef Em Ef Em

1a 2.717 1.046 2.563 0.743 2.575 0.622 1.826 0.133
1b 2.384 0.712 2.867 1.048 N/A (−3.935 −5.627)
1c 2.940 1.268 3.401 1.581 3.677 1.724 N/A

found in the fct afmD state. The displacements for the fct
afm states compare well with a value of 0.08 Å calculated
with similar settings for fm bcc Fe. Those for the fct fm-HS,
however, appear excessive and may well be attributable to the
instability of this reference state, as discussed earlier.

Magnetic moments were typically enhanced in the 1NN
shell, the effect being strongest within a magnetic plane.
Increases of 0.2 μB were found for the fct afmD and fm-HS
states and up to 0.35 μB in the afmI state. At 2NN, moments
within a magnetic plane were consistently found to be reduced
in magnitude but by less than the enhancement seen in the 1NN
shell. The overall enhancement of moments suggests that there
may be a significant magnetic contribution to the entropy of
formation for the vacancy in paramagnetic austenite.

B. Interstitial formation

All reference states give the 〈001〉 dumbbell as the stable
self-interstitial configuration. The fct afm states suggest a
formation energy of between 3.2 and 3.6 eV, large enough
to preclude the formation of thermal interstitials or Frenkel
pairs. Therefore, these defects are only of importance in
irradiated samples. The symmetry-breaking effect between the
[001] and [100] dumbbells is approximately 0.1 eV, that is,
around 3% of the formation energy. Experimental evidence
in the fcc metals aluminium and copper indicates the 〈001〉
dumbbell as the most stable self-interstitial defect.48 Other
measurements47,49,50 are consistent with this conclusion and
also suggest the same to be true of fcc Ni. In summary, all
experimental evidence suggests that the 〈001〉 dumbbell is the
most stable self-interstitial in fcc metals, with theory in strong
agreement8,9,51–53 here.

Magnetic moments on the 〈001〉 dumbbell atoms were
severely reduced or even flipped relative to the magnetic plane
containing the dumbbell in all reference states. Moment flips
were observed for the [001] dumbbell in the fm-HS state
and for the [100] dumbbell in the afmI state. In all other
cases, the moments were reduced to values in the range from
0.1 to 0.5 μB . The influence of the 〈001〉 dumbbell on the
local lattice naturally splits the 1NN shell into tensile sites,
lying within the plane perpendicular to the dumbbell axis,
and compressive sites lying above and below that plane. The
effect on the compressive sites is by far the most pronounced,
exhibiting displacements of between 0.2 and 0.3 Å consistently
for all reference states. Magnetic moments on these atoms were
consistently reduced in magnitude by at least 0.33 μB with a
greatest reduction of 0.92 μB observed in the afmI state for

a [001] dumbbell. Atoms in the tensile sites at 1NN relaxed
toward the dumbbell center by between 0.06 and 0.13 Å and
exhibited enhanced moments of 0.10 μB in the fm-HS state
and between 0.21 and 0.44 μB in the afm states.

C. Vacancy migration

We present estimates of formation energies for the transition
states involved in vacancy migration and the respective barrier
heights above the energy of an isolated vacancy in Table III.

The transition states used were those naturally suggested by
symmetry with the migrating atom placed halfway between the
two lattice sites involved. Nudged elastic band (NEB) method
calculations confirm this to be the correct choice for migration
within the magnetic planes of the afmD state.

The results for the fct fm-HS state show clear signs of
instability and are included here only to illustrate this point.
The broken symmetry of the afm states means that there are
several nonequivalent barriers. For path 1c the initial and final
moments on the migrating atom are opposite in sign. The
constraint of collinear magnetism means the moment must
therefore either be zero at some point along the path, which
is very likely to be the transition state in that case given the
high energy cost of suppressing the moment in Fe, or discon-
tinuously flip sign at some point. In our calculations a stable
moment of zero was ensured by symmetry in the transition
state, resulting in relatively large energy barriers. However,
there is no reason to constrain the moment to be continuous
along the migration path and the inclusion of discontinuous
flips would very likely lower the barrier height and the values
in Table III should therefore be taken as upper limits.

Along paths 1a and 1b the initial and final moments for
the migrating atom have the same sign and so no moment
flips are required. In the afmI state, however, the most stable
moment for the migrating atom was found to have opposite
sign to the initial and final points. A stable solution was
found with the same sign of moment but this was found to
be around 0.4 eV higher in energy. Despite this complication,
our estimate of the barrier height still stands if we allow
discontinuous moment flips along the migration path. Our data
show that moment flips have an energy cost of around 0.05 eV
and would therefore have no effect on barrier height. We
therefore estimate the relevant barriers for vacancy migration
in austenite to be in the range from 0.6 to 1.05 eV. Combined
with the formation energy, this gives good agreement with the
experimental activation energy for self-diffusion in austenite
which is Q0 = 2.945 eV (Ref. 54).
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TABLE IV. Formation energies, Ef , and, binding energies, Eb, in eV for interacting vacancies at up to second-nearest-neighbor separation.
Configurations are labeled as in Fig. 2(b).

fcc afmD fct afmD fct afmI fct fm-HS

Cfg. Ef Eb Ef Eb Ef Eb Ef Eb

1a 3.139 0.205 3.602 0.037 3.843 0.063 3.558 −0.173
1b 3.288 0.056 3.512 0.127 N/A (−2.586 5.970)
1c 3.269 0.075 3.463 0.175 3.860 0.046 N/A
2a 3.322 0.022 3.702 −0.064 3.883 0.023 (−2.600 5.984)
2b 3.423 −0.079 3.657 −0.018 3.996 −0.090 3.348 0.036

One final point worth mentioning is that the moments on
the migrating atoms in the transition state were consistently
enhanced relative to bulk to between 2.51 and 2.68 μB , unless
constrained to be zero. These increases exceed those found for
atoms 1NN to a vacancy defect, as would be expected given
the larger volume the migrating atoms occupy.

D. Point defect interactions and clustering

The fate of an irradiated material is initially dependent
on the interactions between point defects. Calculations of
such quantities are given in Tables IV and V. Again, the low

TABLE V. Formation energies, Ef , and, binding energies, Eb,
in eV for interacting 〈100〉 SI dumbbells. Configurations are labeled
as in Fig. 2(b) with the ordering of specific dumbbells, labeled as A
and B, uniquely identifying a configuration.

fct afmD fct afmI

A-B/Configuration Ef Eb Ef Eb

[001]-[001]/1a 5.541 0.850 6.423 0.807
[001]-[001]/1b 6.584 −0.194 N/A
[001]-[001]/1c 6.339 0.052 7.301 −0.071
[001]-[001]/2a 6.556 −0.165 7.789 −0.559
[001]-[001]/2b 6.398 −0.007 7.344 −0.114

[001]-[100]/1a 5.942 0.569 6.655 0.491
[001]-[100]/1b 5.629 0.882 N/A
[001]-[010]/1b Unstable N/A
[001]-[100]/1c 5.867 0.644 6.570 0.576
[001]-[010]/1c Unstable Unstable
[001]-[100]/2a 6.284 0.227 6.987 0.159
[001]-[010]/2a 6.084 0.428 6.711 0.435
[001]-[100]/2b 6.101 0.410 7.017 0.129
[001]-[100]/2c 6.339 0.172 N/A

[100]-[100]/1a 6.417 0.214 7.085 −0.023
[100]-[010]/1a Unstable Unstable
[100]-[100]/1b 5.928 0.703 N/A
[010]-[010]/1b 6.506 0.125 N/A
[100]-[010]/1b 6.120 0.511 N/A
[100]-[100]/1c 5.540 1.091 6.539 0.523
[010]-[010]/1c 6.451 0.181 7.161 0.099
[100]-[010]/1c 5.988 0.643 6.618 0.444
[100]-[100]/2a Unstable Unstable
[010]-[010]/2a 6.760 −0.129 7.667 −0.605
[100]-[010]/2a 6.238 0.393 6.913 0.149
[100]-[100]/2b 6.572 0.059 7.548 −0.486
[100]-[010]/2b 6.383 0.248 6.846 0.216

symmetry of the reference states necessitates calculation of
many configurations; however, a clear picture emerges from
this, that vacancies bind to form divacancies with an energy
of order 0.1 eV (or in afmD up to 0.2 eV). This rather weak
binding suggests that at elevated temperature, divacancies will
not be thermodynamically stable and nucleation of voids will
face a nucleation barrier. By contrast, interstitials bind strongly
into pairs, with binding energies of around 1 eV for parallel
[001] dumbbells on adjacent sites, just as was observed in
similar calculations in fcc Ni (Ref. 55), where a binding of
0.97 eV was found. Such structures can form the nucleus of
dislocation loops.

These geometric conclusions can be taken as robust, given
the good agreement between the two magnetic structures. The
elastic strain fields are still small (∼0.02 eV) for divacancies,
however, for di-interstitials the Eshelby correction lies between
−0.2 and −0.3 eV. The effect on binding energies is smaller
due to a partial cancellation of correction terms but is still
significant, resulting in between 0.1 and 0.15 eV increases.
However, the stable geometry is determined by the differences
between binding energies, and these converge much more
rapidly.

To investigate void formation and dislocation loop nucle-
ation further we have performed a set of small defect cluster
calculations. Our choice of vacancy-cluster configurations
was motivated by the observation that the strongest vacancy-
vacancy binding energies are at 1NN separation (Table IV) and
covers most of the small, stable vacancy clusters found in other
fcc metals using empirical potential and ab initio methods.56–60

Our results for clusters containing up to six vacancies are
given in Table VI and presented graphically along with
results for divacancies in Fig. 4(a). For dislocation loop
nucleation we consider clusters of up to five [001] dumbbells
(axis perpendicular to magnetic planes) lying within a single
magnetic plane, as motivated by the strong 1NN binding seen
for both afmI and afmD. The results are presented in Table VII
and shown along with the pair binding results in Fig. 4(b).

The first feature which is notable is that both vacancy and
interstitial defects have a strong tendency to bind into clusters.
As shown in Fig. 4, the total binding energy increases steadily
with the addition of defects. This is especially pronounced
for the vacancy-cluster data where, despite the large spread of
values for a fixed number of vacancies, there appears to be a
superlinear increase in the total binding energy. This implies
that, on average, the binding of an additional vacancy to an
already existing cluster is increasing with cluster size. The
additional binding should eventually tend to the formation
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TABLE VI. Formation, Ef , and total binding, Eb, energies in eV
for vacancy clusters. Configurations are identified by the lattice sites
occupied by vacancies, as numbered in Fig. 3. Each section of the
table contains configurations with the same number of vacancies.
Some of the configurations consist of vacancy clusters forming
symmetrical voids with a single Fe atom placed at or near the center
(denoted by +Fe). In the case of the tetrahedral (0,5,9,10) + Fe
cluster stable configurations were found with the central Fe atom
placed symmetrically (denoted sym) and off-center along an axis
perpendicular to the magnetic planes (denoted asym). For the six
vacancy clusters we distinguish between a (111) planar defect (PD)
and a stacking fault tetrahedron (SFT) having the same base as the
planar defect.

fct afmD fct afmI

Configuration Ef Eb Ef Eb

(0,5,6) 5.388 0.069 5.711 0.148
(0,9,11) 5.094 0.363 5.746 0.113
(0,1,3) 5.179 0.279 N/A
(0,1,9) 5.134 0.324 5.800 0.059
(0,5,7) 5.348 0.110 5.694 0.165
(0,1,11) 5.112 0.346 5.747 0.112
(0,5,11) 5.264 0.194 5.761 0.098
(0,3,5) 5.307 0.151 N/A
(0,1,10) 5.128 0.329 5.761 0.098
(0,5,1) Unstable N/A
(0,5,9) Unstable 5.507 0.352
(0,5,9,10) + Fe sym 5.662 −0.204 6.072 −0.213
(0,5,9,10) + Fe asym 4.883 0.575 5.283 0.576
(0,1,2,5) + Fe 4.815 0.642 N/A

(0,5,9,10) 6.576 0.701 7.110 0.702
(0,1,2,5) 6.501 0.776 N/A
(0,5,6,13) 6.994 0.282 7.406 0.406
(0,9,11,14) 6.499 0.777 7.496 0.316

(0,5,6,10,13) 7.866 1.230 8.337 1.428
(0,2,5,6,13) 8.220 0.876 N/A
(2,5,6,10,13) 7.507 1.589 8.312 1.451
(0,2,5,6,10,13) + Fe 7.404 1.692 8.183 1.582

(0,2,5,6,10,13) 8.402 2.513 9.200 2.518
(0,1,4,5,7,16) PD Unstable 10.532 1.184
(0,1,4,5,7,16) SFT 8.573 2.342 9.366 2.350
(0,5,7,10,11,17) SFT 8.751 2.164 N/A

energy for a vacancy in bulk although it appears from the data
we are not at this limit yet.

The most strongly bound trivacancy cluster is formed by
the removal of a tetrahedron of atoms, with an additional atom
replaced near the center. There is a strong agreement between
the afmI and afmD states here with a total binding energy
of 0.58 eV and a magnetic moment on the central atom of
3 μB. Our calculations also show that if the central Fe atom
is positioned symmetrically, with zero moment, the energy is
almost 0.8 eV higher, indicating the high cost of suppressing
the Fe moment. Such a large value for the moment is consistent
with earlier observations that the local moment increases
along with the local volume occupied by an atom (unless
constrained to zero by symmetry), converging asymptotically
to the moment on the free atom. Calculations in bcc Fe are in
strong agreement with this finding.61
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FIG. 3. Lattice site numbering used to identify clusters of point
defects and solutes. The afmD magnetic state is shown to identify
its clusters unambiguously but the numbering is equally valid for the
other magnetic states considered here (where no ambiguity exists).

Significant differences between the reference states were
observed for the binding energies of the less well bound
trivacancy clusters. A particular case worthy of mention is
configuration (0,5,9) (see Table VI and Fig. 3), which is stable
in the afmI state but found to be unstable for afmD, where it
relaxes to one of the tetrahedral arrangements. Despite this,
however, the next most strongly bound trivacancy cluster in
both cases has a binding energy of approximately 0.35 eV,
clearly indicating the additional stability of the tetrahedral
arrangement. It is well established that stacking fault tetrahedra
(SFT) are stable vacancy configurations in fcc and this cluster
could be regarded as the smallest possible such object.

Another vacancy can be absorbed to form a tetrahedron,
with an additional binding of approximately 0.1 eV but this is
significantly lower than the binding energy per defect of the
most stable trivacancy so this may prove a bottleneck against
forming three-dimensional voids.

There is, however, a rapid increase in the stability of va-
cancy clusters above this point. The addition of a fifth vacancy
increases the binding energy by around 0.7 eV on average.
The most stable five-vacancy configuration considered here
is formed by adding a single Fe atom to the center of an
octahedral vacancy cluster. The local arrangement of first

TABLE VII. Formation, Ef , and total binding, Eb, energies in eV
for clusters of [001] SI dumbbells. Configurations are identified by
the lattice sites occupied by dumbbells, as numbered in Fig. 3.

fct afmD fct afmI

Configuration Ef Eb Ef Eb

(0,5,6) 8.048 1.538 9.580 1.265
(0,5,7) 7.897 1.689 9.168 1.677

(0,5,6,7) 10.583 2.198 13.006 1.454
(0,5,6,13) 9.820 2.962 11.867 2.593
(5,6,7,8) 13.055 −0.274 15.628 −1.168

(0,5,6,7,8) 13.061 2.916 16.651 1.424
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FIG. 4. Total binding energies, Eb, in eV for (a) vacancy clusters
and (b) self-interstitial dumbbell clusters. Data have been shifted
horizontally for clarity. Configurations of defects are considered
clusters when all defects can be connected by chains of 1NN bonds.

neighbors to this central atom is bcc-like. There is a significant
relaxation of these first neighbors toward the central atom but
the effective bcc lattice parameter is still greater than that
for bcc Fe at equilibrium and significant tetragonal distortion
remains. The moment on the central atom was found to
align with its neighbors in the afmI state, that is, locally
ferromagnetic with moments between 2.3 and 2.4 μB . In afmD
similarly enhanced moments relative to the bulk were found
but the afmD magnetic order remained the stable arrangement.

The jump to six-vacancy clusters is again associated with a
large increase in total binding energy. Of particular interest is
the extremely stable octahedral arrangement of six vacancies
with a total binding energy of 2.5 eV in both the afmI and the
afmD states, which is 0.8 eV higher than the binding energy of
any five-vacancy cluster. The six-vacancy SFT configurations
show similarly high binding energies. These configurations
are the next size of SFT up from the elementary example
discussed earlier and can be formed by removing six atoms
in a 1NN triangular arrangement from a (111) plane in fcc
with a subsequent and significant relaxation of the four atoms
forming a tetrahedron directly above this plane downward to
fill the void. This type of defect represents an alternative to
the formation of three-dimensional voids, best represented in
our calculations by the octahedral cluster. We cannot clearly
distinguish between these two on energetic grounds. One
interesting aside here is that we found the six-vacancy (111)

planar defect to be metastable in the afmI state, whereas this
arrangement relaxed to the SFT in afmD. This mirrors what
was found for the three-vacancy (111) planar (0,5,9) cluster.
In both of these cases, however, the SFT was found to be
significantly more stable.

The Eshelby corrections to the formation energy of most of
our vacancy-cluster calculations are only a few hundredths
of eV, with some notable exceptions. The correction for
five-vacancy clusters is, at most, −0.13 eV, for the octahedral
cluster the correction is −0.06 eV, and for the SFT the
correction is −0.2 eV. These corrections do not affect our
conclusions in any significant way.

For interstitial clusters we also find a strong tendency
to bind and align in parallel to form (001) protoloops [cf.
Fig. 4(b)], again in agreement with ab initio results in fcc Ni
(Ref. 55) where a tri-interstitial binding energy of 1.71 eV was
observed. The picture is complicated by repulsion between
2NN dumbbells, which is particularly strong for the fct afmI
state. The most strongly bound planar clusters are therefore
those which maximize the ratio of 1NN to 2NN bonds. The
precise energetics and geometry of these results should be
treated with care, since our results sample a few of the very
large number of possible configurations. Furthermore, the
Eshelby correction to the binding energy was found to be
around −1 eV for the largest cluster (as confirmed by a direct
constant pressure, P = 0 GPa, calculation), a value that is
comparable with the binding itself. Even so, this correction
can only increase the binding energy, enhancing the driving
force for clustering.

E. Pair bond models for defect clusters

We have attempted to model the binding energy of pairs
of defects and defect clusters with a linear pairwise bonding
model up to second-nearest neighbors,

E
(m)
b (n1,n2) = p1n1 + p2n2, (3)

where n1 and n2 are the total number of 1NN and 2NN
bonds, respectively, between defects in the cluster and p1

and p2 are the corresponding fit parameters. This model does
not distinguish between the distinct neighbor bonds resulting
from the symmetry-breaking effects of the magnetic states
and tetragonal distortion and fits using this model therefore
provide an effective averaging over distinct bonds. Including
these symmetry-breaking effects was found to significantly
improve the agreement between model and data but at the
expense of considerably more parameters.

The nature of the model also means that it is only directly
applicable to clusters where the individual defects can be
assigned to single lattice sites. This is not the case for the
tetrahedral and octahedral voids with a single Fe atom at the
center and for the six-vacancy SFT and these configurations
have not been included in the modeling. Fits were performed
both to the afmI and afmD data sets individually and to their
combined data, averaging over the two sets in the process. For
vacancy clusters the inclusion of 2NN bonds in the model made
little difference to the results and have therefore been omitted
(effectively setting p2 = 0). The resulting fit parameters are
given in Table VIII and the corresponding model values are
compared with the data in Fig. 5.
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TABLE VIII. Fit parameters, pi , for the pair bond model from
fits to defect cluster binding energies for single magnetic data sets or
combined fits to both data sets as indicated.

Parameter afmD afmI both
Vacancy-cluster results

p1 (eV) 0.175 0.141 0.162

Self-interstitial dumbbell cluster results
p1 (eV) 0.841 0.829 0.841
p2 (eV) −0.142 −0.441 −0.275

The fit parameters for these models have the units of energy
and can be thought of as effective or averaged binding energies
for pairs of defects. Comparison with the pair binding energies
shows that this is generally true, particularly for interstitials.
The afmI vacancy-cluster parameter, p1 = 0.141 eV, does,
however, overestimate the pair binding but should be thought
of as an effective value which best represents the interactions
in all clusters included in the fit.

From Figs. 5(a) and 5(b) it is clear that there is a significant
horizontal spread in the vacancy-cluster ab initio data for a
fixed number of bonds and therefore model value, just as there
was for a fixed number of vacancies in Fig. 4(a). This is a
direct result of symmetry-breaking effects in the reference
states, which the model does not incorporate and effectively
averages over. There is, however, a broadly linear trend in the
data that the model is able to capture. This is even true of
the combined fit to both data sets where the model values lie
generally within the error bars resulting from averaging over
distinct bonds and magnetic states. It is worth mentioning that
for some of the data points the model values for the combined
fit were not significantly different from the single fits and
these points in the plots are obscured as a result. Despite the
general agreement of the models they do tend to overestimate
the average binding of smaller clusters and underestimate the
binding of the largest (octahedral) cluster. This is certainly
attributable to the exceedingly strong binding of the octahedral
configuration which may well define a limit on the applicability
of this model since still larger clusters are likely to be even
more strongly bound.

The agreement between models and data for interstitial
clusters [shown in Fig. 5(c)] is significantly better than for
vacancies. This is partly due to our consideration of only planar
clusters but also demonstrates the existence of clear trends in
the data. The primary difference between the two magnetic
states is the significantly larger repulsion between dumbbells
at 2NN separation for the afmI state. Data for clusters where
2NN interactions are significant therefore shows significant
spread. Model values for the combined fit offer an effective
averaging over these differences and provide our best guess
for a predictive model of planar defects in austenite.

F. Comparison with bcc fm Fe

As a final means to summarize our findings in pure Fe we
make a direct comparison of our data for the afm states of
austenitic Fe to the ferritic (bcc fm) ground state, as shown in
Fig. 6.

We have included data for the formation of single-vacancy
and single-interstitial defects,14 the divacancy binding energy,
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FIG. 5. Plots of binding energies from the pairwise bond model,
E

(m)
b , versus ab initio fit data, Eb, for defect clusters in the fct afmI

and afmD states. The results of fits performed to data from a single
magnetic state or simultaneously to both are shown, as labeled. The
simultaneous fit results have been separated into those for afmI and
afmD states in order to allow the effect of a combined fit to be directly
compared with the single-fit results. The E

(m)
b = Eb line is included

to indicate a perfect fit. Horizontal lines indicate representative error
bars for the averaging over both magnetic states in the combined fits.

and the binding of the most stable (dumbbell) interstitial defect
into planar clusters.62 Each quantity plotted is uniquely defined
in the bcc fm state with the vertical spread in fcc values coming
from the symmetry-breaking effects in the magnetic states
considered here.
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FIG. 6. Comparison of point defect formation and binding ener-
gies between austenitic and ferritic Fe. Interstitial formation energies
for the two datasets have been associated with one another in order
from lowest to highest energy. The black line is included to indicate
an exact agreement.

The data clearly show a high level of similarity between
the bcc and fcc results at the energy resolution of the plot.
Each quantity occupies a clearly defined energy range for the
corresponding process, for example, divacancy binding from
0.0 to 0.2 eV and di-interstitial binding from 0.8 to 0.9 eV.
It also demonstrates the generally good level of agreement
between the afmI and afmD states. One noticeable difference
is the generally lower formation energies for point defects
in austenite, particularly for afmD. Despite this, the binding
energies show a generally good agreement. Overall, this raises
the question of whether such a crystal structure independence
exists generally in metals or is particular to Fe.

V. DILUTE Ni,Cr RESULTS

Commercial austenitic stainless steels typically contain Cr
and Ni as major alloying elements. As a first step we have
examined the behavior of these atoms in the dilute limit. Our
results for single substitutional solutes are given for the four
reference states considered here in Table IX.

The substitutional formation energy of both Ni and Cr in
austenitic Fe is small but positive in the fct afm reference
states, indicating a weak tendency for phase segregation, but
only at temperatures way below the stability limit of austenite.
In the fm-HS state we find Ni to be soluble, whereas Cr is
not and while the energies involved are small this trend is
opposite to that seen in similar calculations in bcc fm Fe
(Ref. 63). The magnetic moments on the solute atoms exhibit
the usual behavior of Ni to be ferromagnetic to its neighbors
and Cr to be antiferromagnetic. In the afmD state the Ni

moment is heavily suppressed relative to its pure reference
state value (μref

Ni = 0.59 μB), whereas in afmI the moment
is aligned with the majority of its 1NN Fe atoms although
still reduced in magnitude. The moment on a single Cr atom
in the afm states remains comparable to the reference state
value (μref

Cr = 0.89μB ) and even shows enhancement in the
afmI state. Enhanced moments are also seen for both Ni
and Cr solutes in the fm-HS state, exhibiting alignment and
antialignment with Fe, respectively, just as was observed in
bcc fm Fe (Ref. 63).

Bond lengths from single Ni and Cr solutes to their nearest-
neighbor shells differ from pure Fe by at most 0.05 Å. This 1%
to 2% effect exists only for the 1NN shell and decays rapidly
with distance. A study of the magnitude and directions of
bond length changes is complicated by the symmetry-breaking
effects in the reference states. We consider instead the changes
in the lattice parameters of the unit cell surrounding a single
substitutional solute, which naturally distinguishes between
effects within and perpendicular to the magnetic planes. The
buildup of stresses on the supercells was found to be consistent
with the changes in the lattice parameters. The influence of Ni
and Cr solutes was found to be very similar within the afm
reference states but showed differences in the fm-HS state. For
the fct afm states both solutes increased the lattice parameter
within a magnetic plane by 0.04 Å in afmD and 0.05 Å
in afmI. The influence on the out-of-plane lattice parameter
distinguished between afmD, which showed a contraction of
0.03 Å, and afmI, where an almost negligible increase was
found for Ni and a small contraction for Cr of 0.016 Å.
The only significant change in the fm-HS state was a con-
traction of 0.04 Å in the out-of-plane lattice parameter for Ni.

The influence of Ni and Cr solutes on the magnetic moments
of surrounding Fe atoms is more pronounced. For the 1NN
shell changes of 0.1 μB are typical but were found to be as
high as 0.16 μB for Ni in the afmI state. No significant (>1%)
moment changes were observed for the fm-HS state at higher
orders. In the fct afmD state moments 2NN to Ni showed
perturbations of up to 0.06 μB and were negligible above that.
The influence of Cr was similar in magnitude at 2NN but
persisted out to the 4NN shell. In the fct afmI state both Ni
and Cr solutes exerted a more pronounced influence out to the
4NN shell than in other states. For Ni, moments on atoms at
2NN differed by up to 0.12 μB (i.e., 8%) from the pure Fe
value and differences of up to 0.05 μB were observed at 4NN.
For Cr, moment changes in the 4NN shell were the largest
measured for that separation at 0.07 μB , exceeding those at
1NN separation, which were up to 0.05 μB .

Overall, we conclude that a significant contribution to the
interactions of Ni and Cr solutes with defects and other solutes

TABLE IX. Formation energies, Ef , in eV and magnetic moments, μ, in μB for substitutional Ni and Cr solutes in austenitic Fe. The
sign of the moments indicates whether there is alignment (positive) or antialignment (negative) with the moments of the atoms in the same
magnetic plane.

fcc afmD fct afmD fct afmI fct fm-HS

Configuration Ef μ Ef μ Ef μ Ef μ

Substitutional Ni −0.033 −0.08 0.084 0.04 0.167 −0.29 −0.053 0.70
Substitutional Cr 0.106 0.53 0.268 0.85 0.047 1.07 0.036 −2.17
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TABLE X. Formation energies, Ef , and, binding energies, Eb, in eV for substitutional Ni and Cr solutes in Fe. Solute pair configurations
are labeled according to the definitions in Fig. 2(b). The afmI data have been produced with a 33 Monkhorst-Pack k-point sampling, except
for Ni-Cr 2b. Negative formation energies for the fct fm-HS state have once again been included (in brackets) only to illustrate the instability
of the reference state.

Configuration fcc afmD fct afmD fct afmI fct fm-HS

A-B/configuration Ef Eb Ef Eb Ef Eb Ef Eb

Ni-Ni/1a −0.089 0.024 0.113 0.056 0.204 0.110 −0.124 0.018
Ni-Ni/1b −0.061 −0.004 0.141 0.027 N/A −0.126 0.020
Ni-Ni/1c −0.022 −0.043 0.182 −0.014 0.280 0.034 N/A
Ni-Ni/2a −0.101 0.036 0.151 0.018 0.267 0.067 (−5.853 5.748)
Ni-Ni/2b −0.020 −0.045 0.182 −0.014 0.257 0.058 −0.086 −0.020

Cr-Cr/1a 0.257 −0.044 0.562 −0.027 0.173 −0.062 0.313 −0.241
Cr-Cr/1b 0.218 −0.005 0.547 −0.012 N/A (−5.742 5.814)
Cr-Cr/1c 0.305 −0.093 0.633 −0.098 0.183 −0.071 N/A
Cr-Cr/2a 0.170 0.043 0.512 0.023 0.086 0.008 0.102 −0.030
Cr-Cr/2b 0.214 −0.001 0.546 −0.011 0.121 −0.010 0.077 −0.005

Ni-Cr/1a 0.090 −0.016 0.327 0.025 0.162 0.051 0.012 −0.028
Ni-Cr/1b 0.092 −0.018 0.363 −0.012 N/A (−5.750 5.734)
Ni-Cr/1c 0.095 −0.021 0.325 0.027 0.215 −0.002 N/A
Ni-Cr/2a 0.095 −0.021 0.367 −0.016 0.236 −0.022 −0.029 0.012
Ni-Cr/2b 0.095 −0.021 0.367 −0.016 0.239 −0.025 0.013 −0.029
Ni-Cr/2c 0.098 −0.024 0.359 −0.008 N/A N/A

in austenitic Fe, especially at longer range, will come from
their magnetic interactions. Volume-elastic contributions will
be smaller and should be similar for Ni and Cr in the fct afmD
and fct afmI states.

Interactions between pairs of Ni and Cr solutes, given in
Table X, are weak in general. The only non-negligible attrac-
tion observed here is between pairs of Ni atoms of up to 0.1 eV
at 1NN separation and at around 0.06 eV for the afmI state at
2NN. This extended attraction may well result from the partic-
ularly strong and long-ranging influence of Ni on neighboring
magnetic moments in that state. Interactions between pairs
of Cr atoms are repulsive at 1NN separation and found to be
particularly strong for the fm-HS state, where Eb = −0.24 eV.
A very similar negative binding was found for Cr-Cr pairs in
bcc fm Fe63 at 1NN separation. The binding of Ni-Ni pairs
was found to be almost negligible in bcc Fe, in contrast to the
modest attraction seen in afm states here, but consistent with
our findings for the fm-HS state. Interactions between pairs
of Ni and Cr are mostly negligible save for some signs of an
attraction at 1NN in the afm states. Based on these solute pair
interactions we suggest that the amount of short-range order
in alloys at typical operating temperatures for nuclear appli-
cations will be small but with a tendency for locally enhanced
Ni-Ni and reduced Cr-Cr ordering over the random alloy.

We have performed a small set of solute cluster calculations,
containing up to five solute atoms, in order to further
investigate the trends seen for pairs of solutes and to investigate
whether a simple pair interaction model is consistent with the
data. The results of our calculations, which were performed
only for the fct afm states, are given in Table XI.

It is immediately apparent that the most strongly bound
solute clusters contain predominantly Ni atoms. More particu-
larly these clusters contain a majority of Ni-Ni 1NN and 2NN
pair bonds and Ni-Cr 1NN bonds, indicating that these results

are consistent with the binding energies of pairs of interacting
solutes and that a pair interaction model is justified. In order to
quantify this claim we have performed fits to our solute cluster
and solute pair binding energies using a pair bond model. The
form of this model is similar to that used for defect clusters but
now we have to count the numbers of Ni-Ni, Ni-Cr, and Cr-Cr
bonds independently, resulting in a six-parameter model:

E
(m)
b = pNi-Ni

1 nNi-Ni
1 + pNi-Ni

2 nNi-Ni
2

+pCr-Cr
1 nCr-Cr

1 + pCr-Cr
2 nCr-Cr

2

+pNi-Cr
1 nNi-Cr

1 + pNi-Cr
2 nNi-Cr

2 . (4)

Fits to the fct afmD dataset with this model showed good
agreement within errors. For the afmI dataset the agreement

TABLE XI. Formation, Ef , and binding, Eb, energies in eV for
solute clusters. Configurations are identified by listing the lattice sites
occupied by Ni and Cr solutes, as numbered in Fig. 3.

fct afmD fct afmI

Configuration Ef Eb Ef Eb

Ni:(0,5,7) 0.141 0.111 0.272 0.227
Ni:(0,5,6) 0.124 0.128 0.231 0.269
Cr:(0,5,7) 0.795 0.008 0.266 −0.125
Cr:(0,5,6) 0.815 −0.012 0.256 −0.115
Ni:(0), Cr:(5,6) 0.549 0.071 0.155 0.105
Cr:(0), Ni:(5,6) 0.361 0.075 0.202 0.179
Ni:(5,6,14,15) 0.336 −0.000 0.430 0.236
Cr:(5,6,14,15) 1.085 −0.015 0.251 −0.063
Ni:(0), Ni:(5,6,14,15) 0.326 0.094 0.367 0.466
Ni:(0), Cr:(5,6,14,15) 1.138 0.016 0.357 −0.003
Cr:(0), Ni:(5,6,14,15) 0.559 0.045 0.422 0.291
Cr:(0), Cr:(5,6,14,15) 1.386 −0.048 0.422 −0.187
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FIG. 7. Plots of binding energies from the pairwise bond model,
E

(m)
b , versus ab initio data, Eb, for solute clusters in the fct afmI and

afmD states. The E
(m)
b = Eb line is included to indicate a perfect fit.

was also generally good but there were clear outliers from
the fit. Further inspection showed that these outliers came
exclusively from configurations containing Ni atoms in the
(5,6,14,15) positions, that is, those with Ni-Ni 3NN bonds. A
calculation of the relevant Ni-Ni 3NN binding energy in afmI
gave a value of 0.055 eV. Within a pair bond model this result
is consistent with the relatively high binding energies seen in
the outliers and we have therefore included an extra term to
include contributions from Ni-Ni 3NN bonds in the afmI fit.
We have not attempted a combined fit to the afmI and afmD
datasets because the magnitude and range of the solute-solute
interactions is too distinct and the number of fit parameters
differs between the sets. The results for the six-parameter fct
afmD and seven-parameter fct afmI fits are compared with the
data in Fig. 7 and the fit parameters given in Table XII.

As was noted earlier the data presented in Fig. 7(a) show
generally good agreement between model and data for solute
clusters. The seemingly greatest disagreement is present in
the central section of the graph, as shown in Fig. 7(b), which
primarily contains binding energies for pairs of solutes. All of
the significant outlying points, however, come from symmetry-
breaking effects in the reference states, resulting in a spread
of data values corresponding to a single model value, just as
was seen for the vacancy-cluster data. Our models agree with
this data in the sense that the model value for a particular con-
figuration lies within the spread of data, effectively finding an
average value that is most consistent with all of the cluster data.
The generally good agreement between solute pair and cluster

TABLE XII. Fit parameters, pA-B
i , for the pair bond model from

fits to solute cluster binding energies for the afmI and afmD states.

Parameter afmD afmI

pNi-Ni
1 /eV 0.046 0.096

pCr-Cr
1 /eV −0.014 −0.058

pNi-Cr
1 /eV 0.030 0.055

pNi-Ni
2 /eV 0.005 0.047

pCr-Cr
2 /eV −0.003 −0.022

pNi-Cr
2 /eV −0.014 −0.031

pNi-Ni
3 /eV 0.043

data strengthens our suggestion that the amount of short-range
ordering in alloys will be weak but with some tendency for
enhanced Ni-Ni ordering and the possibility of forming Ni-rich
clusters. Our results do not, however, rule out the possibility
of complex many-body effects in concentrated alloys.

A. Defect-solute interaction

We present our results for the binding of Ni and Cr solutes
to a single vacancy defect in Table XIII and for their vacancy-
mediated migration in Table XIV.

We find that Ni binds to a vacancy but by no more than
0.1 eV at 1NN and shows no sign of interaction at 2NN. In
contrast, the Cr-vacancy interaction is repulsive overall, even
at 2NN, with (negative) binding energies as low as −0.091 eV.
Calculations in bcc Fe (Ref. 63), in contrast, show that both
Cr and Ni bind to a vacancy: Cr by 0.2 eV at 2NN separation
and Ni by 0.07 eV at 1NN. The lack of any strong tendency
for vacancy binding suggests that the rate of microstructural
evolution and of creep should be relatively unaffected, at least
in dilute alloys under irradiation. There is, however, strong ex-
perimental evidence that increasing Ni content suppresses void
formation.64,65 The inclusion of small quantities (<1 at.%)
of oversized solutes, such as Zr and Hf, in austenitic Fe-
Cr-Ni alloys was also found to significantly suppress void
formation and radiation-induced segregation (RIS) at grain
boundaries.65–68 Kato66,68 suggested the positive binding of
vacancies to the relatively immobile oversized solutes as
a mechanism by enhancing recombination and inhibiting
vacancy diffusion, which is supported by the modeling of
Stepanov69 in the case of RIS. The vacancy-Ni binding
observed in this work is small but is likely to be cumulative
and should therefore not be overlooked as a contributory
mechanism for void suppression at higher Ni concentrations.
The cumulative effect may also be able to explain the reduction
in the experimentally determined vacancy formation energy
with increasing Ni content in FeCrNi austenitic alloys.70

The barrier energies for vacancy migration steps involving
solute-vacancy exchange (in Table XIV) show that those for
Ni are consistently higher than those for Cr by between 0.25
and 0.43 eV. In the afmD states the migration barrier heights
for Fe self-diffusion (Table III) lie consistently between those
for Ni and Cr in all but the 1c path, presumably because of the
higher cost of suppressing the Fe moment to zero, as discussed
earlier. The very same ordering of migration barrier heights
was found for Cr, Fe and self-diffusion in fcc Ni in ab initio
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TABLE XIII. Formation energies, Ef , and binding energies, Eb, (in eV) for a vacancy defect to substitutional Ni and Cr solutes in Fe.
Configuration labeling defined in Fig. 2(b).

fcc afmD fct afmD fct afmI

A-B/Configuration Ef Eb Ef Eb Ef Eb

V-Ni/1a 1.596 0.043 1.847 0.056 2.031 0.089
V-Ni/1b 1.626 0.013 1.876 0.027 N/A
V-Ni/1c 1.675 −0.036 1.887 0.016 2.078 0.042
V-Ni/2a 1.614 0.026 1.906 −0.003 2.109 0.011
V-Ni/2b 1.687 −0.048 1.914 −0.011 2.130 −0.010
V-Ni/2c 1.691 −0.051 1.909 −0.005 N/A

V-Cr/1a 1.866 −0.087 2.083 0.004 1.970 0.030
V-Cr/1b 1.845 −0.066 2.161 −0.075 N/A
V-Cr/1c 1.866 −0.088 2.177 −0.091 2.079 −0.079
V-Cr/2a 1.803 −0.025 2.103 −0.017 2.052 −0.052
V-Cr/2b 1.818 −0.039 2.153 −0.066 2.075 −0.075
V-Cr/2c 1.814 −0.036 2.091 −0.004 N/A

studies by Domain and Becquart9,55 and by Tucker53,71 with
barrier heights of 0.8, 0.95, and 1.05 eV for Cr, Fe, and Ni,
respectively. In the fct afmI state the low barrier height for
self-diffusion along path 1a results in a reversal of the Fe and
Cr ordering relative to this trend but Ni remains consistently
with the highest barrier.

The migration barrier heights by themselves suggest a
particular ordering for the rate of diffusion of Cr, Ni, and Fe in
these reference states. However, care should be taken to incor-
porate correlation effects associated with vacancy-mediated
diffusion, such as those included in the five-frequency model
of Lidiard and LeClaire,72,73 before conclusions can be made.
By the use of suitable approximations we derive an expression
for the ratio of diffusion coefficients, RB

A, in the five-frequency
model in Appendix A. This is given in Eqs. (A10) and (A14)
and only depends on four quantities, namely, Cm, Cb, H B-TS

b,1 ,
and H B-TS

b,2 , as defined in Eqs. (A9), (A11), (A12).
Our calculations allow a direct evaluation of H B-TS

b,2 for each
of the distinct 1NN vacancy-solute exchange paths in the afmD
and afmI states. For the migration enthalpies, Hm,0 and Hm,2, at
zero pressure we use the migration barrier heights in Tables III
and XIV, respectively. We take H B-V

b,1NN at zero pressure as Eb

from Table XIII. The error associated with this use of constant
volume results for the zero-pressure case can be estimated

using the Eshelby correction term and amounts to a few meV
at most. The results for H B-TS

b,2 are given in Table XV.
Results for the 1c path are clearly distinct from the others.

We attribute this to the overestimation of the self-migration
barrier along this path, resulting in an overestimation of H B-TS

b,2
that is independent of the solute species. In the afmD states,
values for H B-TS

b,2 along 1a and 1b are rather similar, implying
that a significant cancellation of systematic differences has
occurred in their calculation. The true value along the 1c path
may also be similar, which is consistent with their solute-
independent but reference-state-dependent overestimation. We
take the arithmetic mean of the 1a and 1b results as suitable
estimates in our diffusion coefficient modeling, for example,
in the fct afmD state H Ni-TS

b,2 = −0.094 eV and H Cr-TS
b,2 =

0.209 eV. For the fct afmI state we use the 1a results.
We expect the factors Cb and Cm to be close to unity and

weakly temperature dependent for Ni and Cr solutes in our
reference states. Ab initio evaluations of these factors for the
similar case of Cr and Fe solutes in fcc Ni from the work of
Tucker et al.53 are certainly consistent with this expectation.
We set Cb = Cm = 1 in our analysis of RB

A [Eq. (A10)] but
can account for any deviation from this value by noting that
RB

A is linear in Cb and approximately linear (although strictly
sublinear) in Cm.

TABLE XIV. Formation energies for the transition states, Ef , and calculated barrier energies, Em, in eV for the possible vacancy migration
steps involving solute-vacancy exchange. The transition state configurations for the migration are taken to be when the solute atom is midway
between the two lattice sites involved in the migration, as labeled in Fig. 2(b).

fcc afmD fct afmD fct afmI

Solute/Configuration Ef Em Ef Em Ef Em

Ni/1a 2.901 1.305 2.738 0.891 3.014 0.983
Ni/1b 2.509 0.883 3.049 1.172 N/A
Ni/1c 2.608 0.932 3.066 1.179 3.441 1.363

Cr/1a 2.712 0.846 2.643 0.560 2.705 0.735
Cr/1b 2.417 0.572 2.903 0.742 N/A
Cr/1c 2.523 0.657 3.021 0.844 3.101 1.022
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FIG. 8. (Color online) Ratios of tracer diffusion coefficients
versus temperature, T , for vacancy-mediated diffusion of Ni and Cr
solutes and self-diffusion in the fct afmI and afmD Fe reference
states. The two curves for each reference state were evaluated
with H B-TS

b,1 = ±0.5 eV and provide a conservative measure of the
uncertainty resulting from that parameter.

A detailed calculation of H B-TS
b,1 , which would require a

determination of the transition-state energy using the NEB
method for a large number of symmetry nonequivalent
configurations has not been performed here. In the few cases
where the transition state is stabilized by the symmetry
of the configuration, however, we find values in the range
−0.2 to 0.2 eV. We therefore conservatively estimate that
H B-TS

b,1 will lie somewhere between −0.5 and 0.5 eV and
since RB

A is a monotonically increasing function of H B-TS
b,1 ,

its evaluation at −0.5 and 0.5 eV will give a measure of the
resulting uncertainty. We present our results for RNi

Fe , RCr
Fe , and

RNi
Cr = RNi

Fe/R
Cr
Fe in Fig. 8.

TABLE XV. Results for H B-TS
b,2 in eV, as defined in Eq. (A12) for

solute vacancy exchange along the distinct 1NN paths.

Solute/Configuration fcc afmD fct afmD fct afmI

Ni/1a −0.216 −0.092 −0.272
Ni/1b −0.158 −0.097 N/A
Ni/1c 0.300 0.418 0.403

Cr/1a 0.113 0.187 −0.083
Cr/1b 0.074 0.231 N/A
Cr/1c 0.523 0.646 0.623

With our choice of model parameters, Ni diffusion is found
to be significantly slower than that of both Cr and Fe in both
reference states, especially at typical operating temperatures
for nuclear energy applications. The appropriate combination
of Cb and Cm factors would have to change significantly from
1, that is, by at least a factor of 2 to alter this conclusion, which
we believe to be unlikely. The relative ordering of Cr and Fe
diffusion, however, depends on the reference state, with Cr
being the fastest diffusing species in the fct afmD state and Fe
in the fct afmI state. We cannot, therefore, make any general
predictions regarding the relative diffusivity of Cr and Fe in
austenite.

The preferential association of solutes with a radiation-
induced (point) defect flux (i.e., the inverse Kirkendall effect)
is posited as the primary mechanism for RIS in Fe-Cr-Ni
austenitic alloys, where Cr depletion and Ni enhancement
is observed at grain boundaries and other defect sinks is
observed.74–76 These observations can be adequately explained
by the preferential diffusion of Cr over Ni by the vacancy
mechanism74–76 as long as the induced Cr flux is in the
opposite direction to the vacancy flux. We note, however,
that interstitial mediated diffusion77 may also contribute to
the relative rates of diffusion, which we discuss later in this
section. Our results certainly show a preferential diffusion of
Cr over Ni but an analysis of diffusion coefficients does not
determine the relative direction of solute flow to the vacancy
flux. The vacancy wind,78 G, which we discuss in Appendix B,
provides a means to investigate this question. The solute and
vacancy fluxes are in opposite directions when G > −1 and
the same direction when G < −1. In the five-frequency model,
with our approximations, the only parameter of G is H B-TS

b,1

[Eq. (B2)]. When H B-TS
b,1 � 0 the vacancy and solute fluxes are

opposite at all temperatures. However, if H B-TS
b,1 > 0 then there

exists a temperature below which the solute and vacancy flux
are in the same direction (see Fig. 10). We have not performed
a detailed calculation of H B-TS

b,1 in this work. However, the
few high-symmetry cases we were able to calculate give a
consistently negative value for Cr and either zero or positive
values for Ni. This is not conclusive but does indicate that
Cr solutes will diffuse opposite to the vacancy flux. It also
indicates that Ni is more likely to diffuse with the vacancy
flux than opposite it, which would further enhance the Ni
enhancement at defect sinks.

We present our results for interstitial Ni and Cr solutes
in Table XVI. It is clear from the data that Ni is strongly
repelled from interstitial sites, negative binding showing a
direct preference for self-interstitial defects and substitutional
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TABLE XVI. Formation energies, Ef , and binding energies, Eb, in eV for interstitial defects containing Ni and Cr solutes. Binding is
defined relative to noninteracting self-interstitial defects of the same type and substitutional solute atoms. The numbering of interstitial defects
is as in Fig. 2(a). Dumbbell configurations are identified by their direction axis and by their composition, in order along that axis, with their
centers considered to lie on the lattice site identified in Fig. 2(a). All 〈110〉 mixed dumbbells were found to be unstable. In the [111] FeNi
and NiFe dumbbell calculations the Fe atom relaxed to a tetrahedral site and the Ni to a substitutional site at 1NN to the Fe. Binding energies
have been calculated accordingly. Calculations for [110] crowdions, which were unstable for afmD, were not performed in the afmI state.
Mixed dumbbell configurations have not been calculated for fcc afmD.

fcc afmD fct afmD fct afmI

Defect Ef Eb Ef Eb Ef Eb

Octa Ni (1) Unstable Unstable 4.920 −0.400
Tetra Ni uu (2) 4.314 −0.765 4.447 −0.499 N/A
Tetra Ni ud (3) 3.766 −0.467 4.086 −0.338 5.180 −0.691
[110] Ni crowdion (4) Unstable Unstable
[011] Ni crowdion uu (5) 4.116 −0.378 4.507 −0.167 N/A
[011̄] Ni crowdion ud (6) 4.006 −0.164 4.296 −0.044 5.336 −0.370
[100] FeNi dumbbell 3.416 −0.471 3.717 −0.317 4.112 −0.414
[001] FeNi dumbbell 3.069 −0.311 3.215 0.065 4.116 −0.334
[001] NiFe dumbbell 3.097 −0.340 3.469 −0.190 as FeNi
[111] FeNi dumbbell 3.431 −0.132 3.740 0.007 4.378 0.111
[111] NiFe dumbbell 3.701 −0.153 3.989 −0.041 as FeNi

Octa Cr (1) Unstable Unstable 4.177 0.223
Tetra Cr uu (2) 3.550 0.137 3.785 0.347 N/A
Tetra Cr ud (3) 3.305 0.133 3.580 0.351 4.305 0.064
[110] Cr crowdion (4) Unstable Unstable
[011] Cr crowdion uu (5) 3.740 0.137 4.166 0.357 N/A
[011̄] Cr crowdion ud (6) 3.691 0.290 4.025 0.411 4.606 0.259
[100] FeCr dumbbell 3.050 0.034 3.385 0.198 3.583 −0.005
[001] FeCr dumbbell 2.933 −0.036 3.184 0.279 3.592 0.070
[001] CrFe dumbbell 2.850 0.047 3.267 0.196 as FeCr
[111] FeCr dumbbell 3.414 3.739 4.387 0.219
[111] CrFe dumbbell Unstable Unstable as FeCr

[100] NiNi dumbbell 3.897 −0.413 4.620 −0.755
[100] NiCr dumbbell 3.643 0.024 3.939 −0.194
[100] CrCr dumbbell 3.826 0.025 3.930 −0.305
[001] NiNi dumbbell 3.438 −0.075 4.160 −0.210
[001] NiCr dumbbell 3.344 0.203 3.943 −0.114
[001] CrNi dumbbell 3.162 0.385 as NiCr
[001] CrCr dumbbell 3.536 0.195 3.931 −0.269

Ni. A small but positive binding was found for the FeNi [001]
dumbbell but only for the fct afmD state. While interesting,
this result is at odds with the other reference states so cannot
be taken as a general conclusion for austenite. The generally
repulsive trend is also supported by observations that in
mixed dumbbell configurations the Ni atom is generally closer
to the lattice site than Fe. For the [111] FeNi and [111]
NiFe dumbbells this asymmetry is so pronounced that the
configuration must be considered as a tetrahedral Fe interstitial
with a substitutional Ni atom at 1NN separation and the
binding energies given in the table have been calculated
accordingly. Although relatively stable, these states are always
less stable than mixed 〈100〉 dumbbells and are important only
as possible intermediate states in the rotation, migration, and
disassociation of the stable interstitials.

In contrast, Cr generally shows positive binding to in-
terstitial sites, an effect that is particularly prevalent in the
afmD states. In mixed dumbbell configurations the trend

is for Cr atoms to be farther from the lattice site than
Fe. This was particularly pronounced for the [111] CrFe
dumbbell in the afmD state, which relaxed to the tetrahedral
Cr ud configuration. Once again the mixed 〈100〉 dumbbell
configurations are the most stable.

Our calculations for doubly mixed 〈100〉 dumbbells show a
clear distinction between the fct afmI and afmD states. We find
that NiCr dumbbells exhibit the strongest binding in afmD and
while the same configurations are the most stable for afmI the
interaction is repulsive. One result that the two states do have
in common, however, is that in NiCr dumbbells the Ni atom
is generally closest to the lattice site and the effect is more
pronounced than for mixed FeNi dumbbells.

The emerging picture here is of a general order of preference
for the different atomic species to be found within overcoor-
dinated defects with Cr being the most stable, followed by
Fe and finally Ni. There is evidence of the same ordering in
ab initio studies of bcc fm Fe where Cr shows significant
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binding to overcoordinated defects14,15 and there is a repulsive
interaction between Ni and the most stable dumbbell.63 Ab
initio studies of dilute Cr and Fe in fcc Ni55,71 also show
that Cr binds strongly to the 〈100〉 dumbbell in mixed and
doubly mixed forms but Fe shows little interaction. This
preferential binding of Cr to overcoordinated defects should
result in a positive association of Cr with the interstitial defect
flux in irradiated environments.67,76,77 This is an interesting
result as it is in the opposite sense to the flux resulting
from the vacancy mechanism of the inverse Kirkendall
effect.

The same interstitial mechanism was proposed for Ni as a
possible explanation for RIS in Fe-Cr-Ni austenitic alloys, for
example the work of Watanabe79 where a binding of 0.75 eV
was suggested. The inclusion of this effect in models of RIS
was, however, shown to be inconsistent with experiment75

for binding energies from 0.1 to 1.5 eV and our results are
consistent with these findings.

The formation and binding energies of single Ni and Cr
solutes to 〈100〉 self-interstitial dumbbells at 1NN and 2NN
separation is presented in Table XVII. In both the fct afmI
and afmD states Ni is most stable in the tensile 2NN site,

collinear with the dumbbell axis, exhibiting a binding up
to approximately 0.1 eV. These are also the most stable
configurations found here for a single Ni solute interacting
with an overcoordinated defect, although in the fct afmD state
the FeNi [001] dumbbell is close in energy. Although small,
this binding allows Ni to act as a weak trap that inhibits
interstitial diffusion and is therefore worth consideration in
models of microstructure evolution and RIS, especially at
higher Ni concentrations. Finally, it is worth noting that Ni
is most strongly repelled from compressive sites at 1NN to the
self-interstitial dumbbell.

For Cr there is less agreement between the two magnetic
states. In fct afmD the FeCr and CrFe [001] mixed dumbbells
are the most stable, closely followed by Cr in compressive sites
at 1NN to a self-interstitial dumbbell. The same configurations
are found to be among the most stable in the fct afmI state
although others are at least as stable with no discernible
preference for tensile or compressive sites. Despite these
differences our dilute results show that, on average, Cr exhibits
positive binding to 〈100〉 dumbbells in mixed or neighboring
sites, where, like Ni, it would act as a weak trap for interstitial
diffusion.

TABLE XVII. Formation energies, Ef , and binding energies, Eb, in eV for 〈100〉 defect to substitutional Ni and Cr solutes in Fe.
Configuration labeling is as defined in Fig. 4(b).

fcc afmD fct afmD fct afmI

Configuration Ef Eb Ef Eb Ef Eb

[001]-Ni/1a 2.831 −0.074 3.286 −0.006 3.783 −0.001
[001]-Ni/1b 2.887 −0.129 3.249 0.030 N/A
[001]-Ni/1c 2.949 −0.191 3.357 −0.078 3.783 −0.001
[001]-Ni/2a 3.313 −0.034 3.861 −0.079
[001]-Ni/2b 3.291 −0.011 3.723 0.059
[001]-Ni/2c 3.209 0.070 N/A

[100]-Ni/1a 3.484 −0.085 3.769 −0.071
[100]-Ni/1b 3.373 0.027 N/A
[010]-Ni/1b 3.453 −0.053 N/A
[100]-Ni/1c 3.379 0.021 3.710 −0.012
[010]-Ni/1c 3.402 −0.003 3.726 −0.028
[100]-Ni/2a 3.279 0.121 3.598 0.100
[010]-Ni/2a 3.376 0.024 3.747 −0.049
[100]-Ni/2b 3.404 −0.004 3.692 0.006
[100]-Ni/2c 3.382 0.017 N/A

[001]-Cr/1a 2.953 −0.056 3.428 0.035 3.614 0.048
[001]-Cr/1b 2.859 0.038 3.274 0.189 N/A
[001]-Cr/1c 2.843 0.053 3.270 0.193 3.547 0.115
[001]-Cr/2a 3.500 −0.037 3.783 −0.121
[001]-Cr/2b 3.394 0.069 3.670 −0.008
[001]-Cr/2c 3.467 −0.004 N/A

[100]-Cr/1a 3.407 0.176 3.527 0.051
[100]-Cr/1b 3.471 0.112 N/A
[010]-Cr/1b 3.492 0.091 N/A
[100]-Cr/1c 3.529 0.054 3.577 0.001
[010]-Cr/1c 3.461 0.122 3.575 0.003
[100]-Cr/2a 3.570 0.013 3.526 0.052
[010]-Cr/2a 3.552 0.031 3.608 −0.030
[100]-Cr/2b 3.522 0.061 3.569 0.009
[100]-Cr/2c 3.598 −0.015 N/A
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FIG. 9. Comparison of solute properties in austenitic and ferritic
Fe. The dataset consists of the substitutional formation energy, solute-
vacancy binding energies, and solute-interstitial binding energies for
the most stable self-interstitial, in eV. The black line is included to
indicate an exact agreement.

Overall, the interactions of Ni and Cr solutes with point
defects in austenitic Fe are consistent with what would
intuitively be expected of moderately oversized and under-
sized solutes, respectively. Ni binds to the vacancy and is
generally repelled from the mixed and compressive sites of
〈100〉 dumbbells but shows positive binding in the tensile
sites. Cr generally exhibits the opposite tendencies. Such a
conclusion should, however, be contrasted with the lack of
consistent behavior for single solutes in defect-free Fe, as
discussed earlier. Indeed, experimental results80 find Ni to
be undersized and Cr oversized in an austenitic Fe-Cr-Ni
alloy, consistent with the pure elements. This may account
for the earlier attempts to suggest a positive binding of Ni to
interstitial defects which our results show is an unwarranted
conclusion.

As a final means to draw conclusions from the data we have
plotted our results for the solute substitution energy, solute-
vacancy binding energies, and binding energies of solutes to
the most stable interstitial dumbbells in the mixed positions
in austenitic Fe against the corresponding values for bcc Fe
in Fig. 9. Ab initio data for bcc Fe was either as published
previously14,63,81 or calculated here with similar settings.

It is immediately clear that there is no discernible correla-
tion between the two data sets, which is in complete contrast to
the strong similarity found for pure Fe. The (vertical) spread of
fcc data also illustrates just how strong the effects of symmetry
breaking within and between the two afm datasets can be,
especially when compared to the average binding energies.
We note that data for the afmI state appears to be lower, on
average, than the afmD dataset. We suggest that these result
simply emphasize just how sensitive the interactions of solutes
and point defects are to their local magnetic environment in
the Fe-Cr-Ni system in addition to the usual volume-elastic
effects. The importance of developing a deeper understanding
of these effects cannot be overemphasized for the modeling of
austenitic alloys.

VI. CONCLUSIONS

We have carried out an extensive series of first-principles
calculations to determine the energetics of austenitic steels.

We first investigated a large set of possible reference states
for austenite at 0 K and found the fct afmI and afmD states
to be the most suitable, highlighting the problems with the
unstable equilibrium fm-HS states in the process. It would be
incorrect to associate any defect property of a paramagnetic
material with a single microstate. However, by sampling
various reference configurations we have been able to provide
estimates of defect energies typically to within a few tenths
of 1 eV. The uncertainties associated with choice of reference
state in this work are in addition to the normal discrepancy
between ab initio and experimental quantities arising from,
on one hand, choice of pseudopotential, exchange-correlation
potential, neglect of zero-point energy, and on the other
from finite temperature and experimental errors. However,
with considerably more computational effort, our dataset for
austenitic materials has only moderately larger uncertainties
than previous ones for ferritic steels.

The main results and predictions of the paper can be
summarized as follows.

(i) The vacancy formation energy in austenite (at 0 K) is
between 1.8 and 1.95 eV. Divacancy binding is rather weak
at around 0.1 eV, suggesting that the nucleation of voids will
face a nucleation barrier at elevated temperatures. There is,
however, a rapid increase in total binding energy with cluster
size, for example, 2.5 eV for a six-vacancy octahedral cluster.
SFT exhibit similarly strong binding to the protovoids (e.g.,
octahedral cluster) considered here and we therefore cannot
distinguish between these two on energetic grounds.

(ii) The most stable self-interstitial is the 〈100〉 dumbbell,
consistent with other fcc metals, with a formation energy of
between 3.2 and 3.6 eV. These dumbbells aggregate strongly
to form small defect clusters in (100) planes and although not
considered here, pair binding also suggests that clusters in
(111) planes would also exhibit high stability.

(iii) Pair bond models for the total binding of defect pairs
and clusters agree well with the data and are able to capture
and highlight general trends.

(iv) Our results show that Ni and Cr do not strongly attract
each other: Binding energies of at most 0.1 eV were found
for Ni-Ni pairs. The binding energies of solute clusters were
consistent with pair interactions and fits to a pair bond model
showed good agreement.

(v) We find that Ni binds to vacancies but by no more
than 0.1 eV and can therefore act as a weak trap for vacancy
migration, which may be of importance for void formation
and RIS in concentrated alloys. The Cr-vacancy interaction is
weakly repulsive, suggesting that its effect on microstructure
evolution and creep is negligible but concentration dependent
effects cannot be ruled out in this study. Tracer diffusion
coefficient calculations found that Ni diffuses significantly
more slowly than Cr and Fe. Our calculations were also
consistent with Cr diffusing in the opposite sense to the
vacancy flux and indicate that Ni may diffuse with the vacancy
flux. Both of these results are consistent with the standard
mechanism used to explain the effects of RIS in austenitic
alloys by vacancy-mediated diffusion.

(vi) Cr was found to bind to mixed interstitial defects,
whereas Ni is generally repelled. The preferential association
of a particular solute with the interstitial flux under irradiation
is considered an important factor in RIS and our findings
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for Cr are worthy of consideration in the modeling of such
effects. Substitutional Ni and Cr bind to 〈100〉 self-interstitial
dumbbells at nearest-neighbor sites and therefore act as weak
traps for their migration.
(vii) Our results in austenitic Fe were compared with

equivalent results in ferritic Fe. A strong similarity was found
between these two datasets for point defect formation and
binding energies in pure Fe. In contrast, no correlation was
observed for Ni and Cr solute interactions with point defects.
(viii) We performed tests for the presence and influence
of noncollinear magnetism in a subset of configurations.
The tests either proved negative or resulted in marginal
changes to the energy of the system. It should be borne in
mind that such tests were useful to perform but are by no
means exhaustive.

In very broad terms, we have found that austenitic Fe
behaves similarly to other fcc metals, with 〈100〉 intersti-
tials clustering to form protodislocation loops and vacancies
clustering to form sessile SFT and voids. This normality is
in contrast to the often anomalous behavior of bcc Fe. The
interactions of Ni and Cr with point defects are consistent
with those of modestly oversized and undersized defects,
respectively, despite the experimentally observed size factors
and pure element data showing the opposite result. Migration
of Cr through the lattice by both vacancy and interstitial
mechanisms is enhanced relative to Fe self-diffusion. By
contrast, Ni migration is slow. Pure fcc Fe is stable only at
high temperature, but the similarity to other fcc metals strongly
suggests that FeCrNi steels stabilized at lower temperature by
alloying will also behave normally.

Of course, to make these predictions more quantitative it
will be necessary to run further calculations using a method
suited to larger systems and longer time scales, such as
molecular dynamics or kinetic Monte Carlo. One of the
main benefits of this study is to provide a large database of
configurations against which such models can be parametrized.
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APPENDIX A: TRACER DIFFUSION COEFFICIENTS

The diffusion coefficient, D, describing atomic diffusion in
a crystalline material (in three dimensions) is given by73

D = 1
6 r2�f, (A1)

where � is the number of atomic jumps per unit time, r

is the length of each jump and f is the correlation factor,
which encodes the fact that successive jumps are, in general,
correlated. In a solid solution the diffusion of the solvent
element, A, and any substitutional (i.e., on lattice) solute
element, B, is mediated by either vacancy or interstitial defects.
In these cases it is clear that correlations will arise because
the defect mediating a jump will still be present next to the
migrating atom after the jump, which, for example, makes the
reverse jump more likely than others.

The tracer diffusion coefficient, D∗
B, for a solute, B, is the

diffusion coefficient for B in solvent, A, in the limit where the

TABLE XVIII. Coefficients for Eq. (A6) from the work of Koiwa
and Ishioka (Ref. 83).

i 0 1 2 3 4

ai 1338.0577 924.3303 180.3121 10
bi 435.2839 595.9725 253.3000 40.1478 2

concentration of B atoms tends to zero. The jump frequency,
�, for vacancy-mediated tracer diffusion of B is given by

� = w2pV, (A2)

where w2 is the vacancy jump frequency for exchange with
a B atom at 1NN and pV is the probability that a vacancy is
associated with a B atom at 1NN and is given by

pV = cVz exp
(
βGB-V

b,1NN

)
, (A3)

where cV is the vacancy concentration, z is the coordination
number of the lattice, GB-V

b,1NN is the Gibbs free energy of
binding for a B atom and vacancy at 1NN [defined in an
equivalent manner to the binding energy in Eq. (2)], and
β = 1/kBT , where kB is Boltzmann’s constant and T is the
temperature. The tracer diffusion coefficient is then given by

D∗
B = 1

6 r2ω2cVz exp
(
βGB-V

b,1NN

)
fB. (A4)

In the five-frequency model of Lidiard and LeClaire72,73

the correlation factor, f = fB, is given in an fcc lattice by
Manning82 as

fB = 2w1 + 7w3F (w4/w0)

2w1 + 2w2 + 7w3F (w4/w0)
, (A5)

where the wi are the vacancy jump frequencies for solvent-
vacancy exchanges: w1 is where the vacancy is 1NN to B and
remains so after the jump; w3 is where the vacancy is 1NN to
B and does not remain so after the jump, that is, a dissociative
jump; w4 is where the vacancy is not at 1NN to B but is so after
the jump, that is, an associative jump and the opposite of w3

and w0 is for a jump in the pure solvent, that is, self-diffusion.
The factor, F , is the fraction of dissociative jumps that do not
return to a site 1NN to B and we have used the expression from
Koiwa and Ishioka83 here

7F (x) = 7 − a1x + a2x
2 + a3x

3 + a4x
4

b0 + b1x + b2x2 + b3x3 + b4x4
, (A6)

where x = w4/w0 and the coefficients ai and bi are given in
Table XVIII.

An identical expression for D∗
B has been derived by Tucker

et al.53 from results for the phenomenological coefficients by
Allnatt.84

The self-diffusion coefficient of solute A can be determined
from Eq. (A4) by considering B as a same-mass isotope of A.
In this case all jump frequencies equal w0 and GB-V

b,1NN = 0,
giving

D∗
A = 1

6 r2w0cVzf0, (A7)

where the correlation factor, f0 = 0.7815 for fcc.
We use an Arrhenius-type expression for the vacancy jump

frequencies,

wi = Cm,i exp(−βHm,i), (A8)
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where Hm,i is the enthalpy difference between the transition
state and initial (on-lattice) state at T = 0 K for a wi jump,
that is, the migration barrier height, and Cm,i is a weakly
temperature-dependent prefactor. We include the zero-point
phonon contributions to the enthalpy at 0 K in the prefactor. A
similar expression can be found for the binding energy factor in
Eq. (A4) by writing GB-V

b,1NN as a T = 0 K contribution, H B-V
b,1NN

(which excludes the zero-point energy), plus a term correcting
for finite T , which gives

exp
(
βGB-V

b,1NN

) = Cb exp
(
βH B-V

b,1NN

)
, (A9)

where the prefactor, Cb, contains the term correcting for finite
T and is itself weakly temperature-dependent.

Using Eqs. (A8) and (A9) we can write an expression for
the ratio of D∗

B to D∗
A as

RB
A ≡ D∗

B

D∗
A

= fB

f0
CmCb exp

(
βH B-TS

b,2

)
, (A10)

where

Cm = Cm,2/Cm,0 (A11)

and H B-TS
b,i is the binding enthalpy for a B solute to the transition

state (TS) for a wi jump, that is, the lowering of enthalpy
resulting from exchanging a B atom infinitely far from a
migrating A atom with an A atom at the relevant site for a
wi jump. It can be shown to be given by

H B-TS
b,i = Hm,0 − Hm,i + H B-V

b,i , (A12)

where H B-V
b,i is the binding enthalpy for the initial (on-lattice)

configuration for a wi jump. Equation (A12) actually holds for
any vacancy jump in the presence of a single B solute atom and
yields the correct limit that Hm,i tends to Hm,0 when the B atom
is sufficiently far away that the two binding energies are zero.

The relative diffusivities of B and A can be investigated
using Eq. (A10) as long as suitable expressions for all the
factors can be found.

The expression for the correlation factor, fB, can be
simplified using some reasonable approximations. First, note
that we can re-express Eq. (A12) to give

Hm,i = Hm,0 + H B-V
b,i − H B-TS

b,i . (A13)

For w3 and w4 jumps we make the assumption that H B-TS
b,3 ≡

H B-TS
b,4 = 0, that is, that the presence of the B solute does not

influence the transition-state enthalpy at this separation. This
approximation is consistent with the results presented for Cr
and Fe solutes in fcc Ni by Tucker et al.,53 where migration
enthalpies were calculated directly, and we believe will also
be for Cr and Ni solutes in fcc Fe.

In addition, we make the approximation that Cm,i = Cm,0

for all vacancy-solvent exchanges, that is, that this factor only
depends on the element being exchanged.53 The only other
assumption we make is that H B-V

b,4 = 0, that is, that the binding
between a B atom and vacancy is zero at 2NN, 3NN, and
4NN separation, which is consistent with the data given in
Table XIII. Including these approximations in Eq. (A5) gives

fB = 2 exp
(
βH B-TS

b,1

) + 7F (1)

2 exp
(
βH B-TS

b,1

) + 2Cm exp
(
βH B-TS

b,2

) + 7F (1)
, (A14)
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FIG. 10. (Color online) The vacancy wind, G, versus tempera-
ture, T , for a number of distinct values for H B-TS

b,1 , which are used
to label the corresponding curves. The line G = −1 is shown to
distinguish the vacancy drag regime from the regime where solute
flux is opposite to vacancy flux.

which we use along with Eq. (A10) to investigate the relative
diffusivities of Ni and Cr in fcc Fe.

APPENDIX B: VACANCY WIND

It is also useful when investigating defect-mediated dif-
fusion to be able to determine the direction of the solute
flux relative to that of the corresponding defect flux. For
vacancy-mediated diffusion the vacancy wind,78 G, allows
this relationship to be investigated. When G > −1 the flux of
B solute atoms is opposite to the vacancy flux. By contrast,
when G < −1 they are in the same direction and the vacancy
flux tends to drag any solute along with it.

In the five-frequency model for fcc the vacancy wind is
given by

G = 6w3 − 4w1 + 14w3(1 − F (w4/w0))(w0 − w4)/w4

2w1 + 7w3F (w4/w0)
,

(B1)

which with the approximations used here becomes

G = 6 − 4 exp
(
βH B-TS

b,1

)

2 exp
(
βH B-TS

b,1

) + 7F (1)
. (B2)

The temperature dependence of G is controlled by the single
parameter, H B-TS

b,1 , which essentially determines whether w1

vacancy jumps are more probable (for positive values) or less
probable (for negative values) than dissociative w3 jumps.
When w1 jumps are significantly more probable diffusion
is dominated by the Johnson mechanism,85 where vacancy-
solute complexes diffuse cooperatively. We plot G versus
temperature in Fig. 10 for a number of values of H B-TS

b,1 .
It is clear that if H B-TS

b,1 � 0 then G > −1 and the solute
flux is opposite the vacancy flux for all temperatures. However,
if H B-TS

b,1 > 0, then there exists a critical temperature, below
which the vacancy drag mechanism prevails and diffusion is
primarily by the Johnson mechanism.
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