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Abstract

In order to address the problem of indoor pedestrian tracking, this thesis reports a research on
spatial models’ ability to reduce tracking error of a WiFi positioning system. There are three
main objectives in this research. First, it is to build a suitable spatial model for tracking.
Second, it is to develop a tracking algorithm that can make full use of the spatial model.
Last, the tracking algorithm should be tested in a live environment.

Based on literature study, a grid-based spatial model is chosen to be built because it is easy
to design and maintain, has high flexibility, has accurate location data and is powerful for
computation. The thesis explores various geometric, topological and semantic features of the
grid model and select out the most useful features upon tracking purposes. Among geometric
features, coordinate, buffer, orientation vector and Euclidean distance are used. Among
semantic features, space, obstacle, and door are employed. Among topological features, the
difference between straight-line distance and shortest path distance is chosen.

We develop the tracking algorithm combining multiple tracking techniques. In addition to
the spatial model and WiFi positioning system, the algorithm also includes magnetometers
and grid filters. The former one measures the orientation of a pedestrian. The latter one
allows integrating all selected features of the grid model with the measurements from both
the WiFi positioning system and the magnetometer to compute the location recursively.

To test the algorithm’s performance, we built a tracking system with database, web service
and mobile client. Several experiments are carried out using the system in a real environment.
The experiment results show that the algorithm is able to determine locations at reasonable
places (in the correct space, outside obstacles and connected to the previous location) and
derive the accurate moving direction of a pedestrian.
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Chapter 1

Introduction

1-1 Context

The wide deployment of wireless networks promotes location-based services (LBS) on mobile
devices. The precise location is the foundation of most LBS applications. For example,
navigation, monitoring and emergency services, people and assets tracking, mobile advertising
and pedestrian moving pattern-based analysis, etc. Hence, there is an increasing interest in
developing effective positioning and tracking systems.

Global Positioning System (GPS) is the widely used in outdoor environment, but it fails in-
door due to the poor signals of satellites inside buildings. Therefore, many techniques (e.g.
Bluetooth, WiFi, RFID, GSM) are considered as alternatives for localization in indoor en-
vironments. The boom of WiFi networks over the past few years let the WiFi localization
technology obtain popularity rapidly. The cost of implementation of this technology is rel-
atively low because it makes use of the existing infrastructures and does not rely on extra
hardware except the mobile devices of users. Also, the number of private and public access
points (APs) is increasing in the cities and the WiFi coverage is getting higher, thus higher
precision can be provided [1].

Based on WiFi network, the location can be calculated through Cell identity, Time of Ar-
rival(TOA), Time Difference of Arrival(TDOA), Angle of Arrival(AOA) or signal strength
based methods [2]. Cell identity simply matches the target’s location with its connected AP.
This method does not require complex conditions such as time synchronization and multiple
APs, but it has very low accuracy due to its simplicity. The TOA, TDOA and AOA methods
receptively measure the travel time from a transmitter to a receiver, the difference of travel
time from several transmitters to a receiver and the angle from a transmitter to a receiver.
Multi-path effects of indoor environment influence these three approaches greatly. Moreover,
the TOA and TDOA require accurate time synchronization between transmitters and re-
ceivers. Hence, they are not optimal solutions for indoor positioning. The signal strength
based approaches utilizes the distance-to-signal-strength relationship to estimate location of
a mobile device. An example of the relation between signal strength and distance is given
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2 Introduction

in figure 1-1. Because it is difficult to represent the relation between the signal strength
and distance using simple analytical function [3], the fingerprinting method is often employed
for location determination. This method measures the received signal strength (RSS) from
Aps in two phases: off-line phase where the signal strength at various predefined locations is
mapped, and on-line phase where the possibility of a location is estimated by comparing the
signal strength at this location with the signal strength map obtained in the off-line phase.
For this thesis, the WiFi fingerprinting method is chosen since it can provide acceptable
localization accuracy and that it is not too complicated to be implemented.

Figure 1-1: Relation between signal strength and distance [3]

Spatial model is employed for various indoor applications. By far the most common applica-
tion discussed in the literature is navigation, however there is also research on using spatial
model for robotic exploration [4, 5], indoor tracking and spatial analysis [6]. Some examples of
use of spatial models for tracking are given below. To facilitate tracking application, Jensen,
Lu and Yang [7] utilize topological graph of indoor space to increase tracking accuracy and
Lee and Chen [8] use a floor model including the accessibility of different zones of the floor to
deduce a user current location. Spatial models can be categorized based on their representa-
tions, i.e. geometry, topology and semantics. Pure geometrical, topological or semantic model
is rarely used, instead hybrid models with various levels-of-abstraction [9]. Two typical spatial
models are network model and grid model. The former one uses vertex-edge representation
and has an irregular decomposition of the space. The latter one represents the indoor space
using a group of regular cells. By reviewing literature, we find that there is very little research
on using complete features of indoor space (geometry, topology and semantics) for tracking.
In the context of this thesis, geometric features are shapes and coordinates of indoor space and
structures, topological features refer to spatial relations of geometric primitives, which can be
adjacency or connectivity relation, and semantics is defined as information about high-level
entities such as rooms, corridors, doors, and their relationships. This thesis builds a hybrid
spatial model including the three types of features and uses this model to decrease tracking
errors.

Xu. Weilin Master of Science Thesis



1-2 Challenges in indoor tracking 3

1-2 Challenges in indoor tracking

There are some challenges in WiFi fingerprinting technology. First this method suffers the
electromagnetic interference. The WiFi signal frequency is in the 2.4 GHz public band which
is also used by many other wireless signal transmitters, e.g., phone, bluetooth, microwave oven
and video devices. In the online phase of fingerprinting, any other device in this frequency
can change the RSS patterns of the positioning device.

Second since the WiFi fingerprinting is divided into two phases, this method suffers from
the RSS variance problem caused by differences in device type, antenna orientation, and
environment changes between two phases [10].

Moreover, the accuracy of this method depends on sample points’ sampling space. Large
amount of sample points are needed for a high positioning accuracy. Any changes in the
WiFi network such as APs replacing and facilities upgrading can lead to re-sampling these
points. Thus to build and maintain the fingerprinting database is a very time consuming
work.

These shortages of WiFi fingerprinting method indicate that the measured locations are not
always reliable. In addition, it turns out to be worse when the target is moving. Tracking
errors like improper locations (e.g. at a wrong room, a wall, or a table), wrong heading
and jumps between consequent locations are often seen from the results of WiFi positioning
system.

To solve these tracking issues, some research has been conducted based on signal processing
and combining multiple sensors (WiFi, Bluetooth and inertial measurement unit (IMU), etc.).
However very little research makes use of the user’s movement and the indoor environment
to enhance localization accuracy [8]. Thus, the thesis also confronts challenges in building
an appropriate model for tracking purposes. Though there are several standards for indoor
modeling such as IFC, KML, CityGML LoD4, they do not consider the tracking as the main
purpose. Another standard for indoor spatial information, IndoorGML, which takes indoor
navigation and tracking into consideration, is still under development. A set of problems in
indoor modeling are summarized in the survey of Zlatanova [11]. Among them, the problems
for tracking application are determining the composition of space and granularity of model.

1-3 Objectives and research questions

Spatial models which can represent geometry, topology and semantics of indoor space include
constraints information about a person’s location and moving path in an indoor environment.
Therefore spatial models can contribute to detecting and correcting poor positioning results.
The goal of this thesis is to propose and implement a spatial model-aided tracking algorithm
that is able to reduce tracking errors of WiFi positioning systems and provide reasonable
location estimation when the positioning results is poor or missing temporally. The main
research question to be addressed is:

What contributions can a spatial model make to decrease tracking errors of WiFi technology
for indoor navigation?

This research question is divided into three underlying questions:
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4 Introduction

1. What features of spatial model could be employed for tracking? A spatial model may
have geometric, topological and semantic features. We think all of them can contribute
to tracking, but what kind of geometric, topological and semantic features are suitable
needs to be explored.

2. In what way can the selected features be integrated together to decrease tracking errors
of a WiFi positioning system? Inaccurate locations measured by a WiFi positioning
system can be filtered out according to model’s geometrical, topological and semantic
features. For example, a location can be matched to the model based on geometric
coordinates and its accessibility can be checked based on connectivity and semantics
of the spatial model. Thus, it is significant to develop a tracking algorithm which can
make use of the model’s features efficiently.

3. How can the spatial model aided tracking algorithm be implemented and tested? In
order to test the algorithm in a live environment, a tracking system for mobile devices
needs to be developed. Thus, the methodology of how to implement the system is
studied.

1-4 Research scope

The core of this research is to use spatial models to decrease the tracking errors of WiFi
positioning system upon navigation purposes. The spatial model is the base of the track-
ing algorithm and it needs to be built by the author. Not all types of spatial models are
looked at, but two most commonly used spatial models: grid-based model and network-based
model. The tracking algorithm is not aimed to improve absolute positioning accuracy but
decrease unreasonable locations. Finally the spatial model aided tracking method needs to
implemented based a WiFi positioning system and tested in a live environment. However,
There are several things not involved in this research:

• The development of localization system. This research will use a WiFi positioning
system developed by other researchers and implement the spatial model aided -tracking
algorithm based on the localization system.

• The construction efficiency of spatial models. The aim is to use spatial models, not to
build spatial models. Thus the spatial models are created in a convenient way.

• The moving pattern of a pedestrian. This thesis will not take various moving patterns
of person into consideration, only the most common case that walking in a constant
speed is considered by the tracking algorithm.

• The implementation of navigation. The locations provided by the tracking system
could be used for navigation purposes but the implementation of navigation service is
not concerned by this research.

1-5 Contributions

The values of this thesis research can be seen from both a scientific point of view and a societal
point of view:

Xu. Weilin Master of Science Thesis
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1-5-1 Scientific contribution

The main contribution of this thesis in scientific field is that it proposes a tracking algorithm
that makes use of the geometry, topology and semantics of a spatial model. From the literature
review in the next chapter, it can be seen that most commonly used tracking methods are
dead reckoning, Bayesian filters and map matching. These approaches employ very limited
spatial information. Moreover, it is hard to find any research on how to integrate geometrical,
topological and semantic features of indoor environment for tracking. Thus, this thesis first
studies the suitable spatial model for tracking purposes by comparing various proposed spatial
models in former research, then develops a tracking algorithm based on the selected spatial
model, finally implements and tests the algorithm in a real environment. These three steps
respectively answer the three research questions given. We consider this thesis can contribute
to the joint research of spatial model and indoor tracking.

Moreover, we develop the tracking algorithm based on a WiFi localization system developed
by the researchers of Wuhan University. In addition, our algorithm can improve the initial
positioning results of the system. Thus, the project can also benefit their research.

1-5-2 Societal contribution

Tracking service is an important aspect of location-based service (e.g., tracking children,
elderly, friends, customers, etc.) and is the basis of other location-based services (e.g., navi-
gation, evaluation, mobile advertising, etc.).

The growth of indoor LBS market is very impressive these years. The report of Marketsand-
Markets [12] estimates indoor location market will grow from $ 448.6 million in 2013 to $2.6
billion in 2018 and there are at least 170 companies today working on indoor location, indoor
maps, in-building tracking, and wayfinding (navigation) inside buildings.

However, providing precise location inside buildings is challenging. The improvement of
current tracking systems are expected by the market. With the boom in WiFi network, the
WiFi based positioning technology gains great popularity now. However the shortages of
WiFi positioning systems (introduced in 1-1) prevent this technology to be ubiquitous. The
output of this research can improve the tracking performance of WiFi positioning system so
that it could be more widely used.

This project is carried out at the Company CGI Group that is a leading IT consulting,
systems integration, outsourcing, and solutions company. The company has great interest in
the field of indoor localization and navigation. Some customers of the company are looking
for a solution for indoor localization and tracking issues. The company also owns the research
results of this project and they may use it for real applications in future.

1-6 Chapters overview

This thesis consists of 5 chapters which are organized as follows:

Chapter 1 introduces the context of this research, the challenges in indoor tracking, the
objective and scope of the thesis.

Master of Science Thesis Xu. Weilin



6 Introduction

Chapter 2 presents an overview of the existing indoor modeling methods and the common
used tracking methods. Decisions on what types of model and what tracking methods should
be used are made in this chapter based on literature study.

Chapter 3 explains what features of the spatial model are selected upon tracking purposes
and how a tracking algorithm including these features is designed. The requirements of the
algorithm are first analyzed and then how the algorithm is developed based these requirements
is illustrated.

Chapter 4 presents the implementation of the tracking system and test results of the system
in a live environment.

Chapter 5 concludes this thesis research.

Xu. Weilin Master of Science Thesis



Chapter 2

Background

This Chapter introduces the background of the thesis. The working principle of the WiFi
positioning system is first explained. Then a literature study is carried out to find the suitable
spatial model for the tracking. The grid model is selected according to the comparison of
various models. At last, four existing tracking techniques are introduced and we determine
to integrate three of them for this thesis: grid model, magnetometer and grid filter.

2-1 WiFi positioning system

The WiFi positioning system used for this thesis is provided by the researchers of Wuhan Uni-
versity, which uses WiFi fingerprinting method to localize the mobile client. The framework
of the system is depicted in figure 2-1.

In the offline training phase, for each sampling point the RSS from several APs are mea-
sured. The system assumes that the RSS values from different APs are independent and
have Gaussian distribution. The system estimates the distribution’s parameters rssi_para
(mean and standard deviation) using a number of RSS from an access point AP (i). The
coordinates of each sampling point x with its RSS distribution parameters for several APs
(rss1_para,rss2_para,rss3_para . . .) are stored in database, also known as the radio map.
In order to facilitate the matching process in the online phase, the system clusters the radio
map’s sampling points according to the four strongest APs covering each point. The sam-
pling points sharing common APs (four strongest APs) are grouped. In the later process,
the system only searches the corresponding cluster of sampling points rather than the whole
radio map.

In the online location determination phase, the mobile client measures a signal strength vector
rss = (rss1, rss2, rss3 . . .) from available APs at its location, then the positioning algorithm
matches the vector rss to the radio map to find the sampling point x that maximizes the
probability P (x|rss), i.e. we want arg maxx [P (x|rss)].
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8 Background

Figure 2-1: WiFi fingerprinting positioning system [13]

The positioning algorithm is based on Bayes’ theorem [3]:

P (x|rss) = P (rss|x)P (x)
P (rss) (2-1)

since P (rss) is a constant value for all x and the algorithm assumes that all sampling points
are equally likely, i.e. P (x) = 1/C where C is the number of sampling points. We can get
the equation 2-2 [13]:

arg maxx [P (x|rss)] = arg maxx [P (rss|x)] (2-2)

Therefore the problem now is to find the arg maxx [P (rss|x)]. The P (rss|x) is calculated
using the radio map [13]:

P (rss|x) =
k∏

i=1
P (rssi|x), i = 1, 2, . . . , k (2-3)

Where P (rssi|x) represents the probability of receiving signal strength rssi from an access
point AP (i) at location x, which can be obtained from the corresponding Gaussian distribu-
tion in the radio map. k is the number of available APs at location x.
Due to the fact that the mobile client is continuously moving rather than static, the developers
use time-average window (see formula 2-4 [13]) to smooth the resulting location estimate. It
obtains the location estimate by averaging the last W locations estimates. Their tests show
the optimal value for W is around 6.

x̄t = 1
min(W, t)

t∑
t−min(W,t)+1

xi (2-4)
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In addition, the system implements device self-calibration based on the RSS histogram to
reduce the influence of device variance. There is a linear relation between the RSS histogram
of the user’s device which is created and updated in real time and the RSS histogram of the
reference device which is obtained from the existing radio map [13]. According to the linear
relation, the measured RSS can be adjusted and matched to the radio map.
The system has an accuracy of 3.4m for 90% locations when the mobile client is static.
However, we find that the accuracy of the system for a moving mobile client is lower according
to our tests. In order to track a pedestrian in a complicated indoor environment, other
technologies are needed to improve the performance of the positioning system.

2-2 Modeling indoor space

2-2-1 Representations of spatial model

Various indoor spatial models have been proposed by former researchers [14, 15, 16, 6, 9].
By reviewing these models, we find that they can be distinguished by their representation,
i.e. geometry, topology and semantics. There are few pure geometric, topological or semantic
model, but hybrid models using various levels-of-abstraction [9]. In this thesis, we want to
construct a spatial model integrating geometric, topological and semantic features, thus in
below the approaches to represent each type of feature are studied.
The geometry of a spatial model depends on the subdivision of indoor space. The indoor space
can be partitioned by either real boundaries of the subspace (walls and doors) or arbitrary
boundaries defined by developers. The former method is not considered for this thesis because
it lacks capability to represent the spatial entities at low level (e.g. sub room and objects
inside room) and it is less suitable for navigation services [17]. The later method, also known
as cell-based partition, tessellates the indoor space into a finite number of areas. These areas
could be regular shapes like square grids, or irregular shapes such as triangles, trapezoids and
Voronoi diagrams [17]. Several commonly used cell-based models are compared in the next
section to determine which one is more suitable for tracking. The granularity of subdivision
(the size of cell) determines level of detail of the spatial model (e.g. room-level, sub room-level,
object-level). According to the survey of Domínguez, García and Feito [9], most presented
spatial models use point, line and polygon to represent the indoor space and have detail in
room-level.
The topology of an indoor space may be modeled either as a fully 3D space, using for example
cell complexes or as a linked collection of 2D layers [6]. Only the later approach is considered
in this thesis because it is easier to implement and sufficient for tracking purposes. Two types
of topological relations should be distinguished: connectivity and adjacency. Two spaces are
connected only if there are doors or windows between them but they are adjacent as long as
they share one item (like a wall). In the review of Domínguez, García and Feito [9], most
presented spatial models utilize connectivity graph to represent topology of the indoor space.
The connectivity graph can provide information about the accessibility between two locations
that is useful for location determination. Thus our spatial model should have connectivity
representation.
The semantics of a spatial model describes the basic spatial and structural concepts of indoor
environments [16]. The semantics is often referred to as ontology when it is not only used
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for representational purpose but also for reasoning [6]. Worboys [6] thinks it is significant to
make distinction between the fixed structures which support indoor space (e.g. walls, doors,
windows and floors) and the entities which are usually moveable (e.g. furniture and equip-
ment). More detailed definitions of indoor ontology are given by Goetz and Zipf [18] as well
as Tsetsos and Anagnostopoulos [16]. Goetz and Zipf classify the indoor space into room,
corridor, hall and vertical passage, and defines obstacle and point of interest to represent
indoor entities. Tsetsos and Anagnostopoulos define three subclasses for indoor space: corri-
dor, room and floor, while the vertical passage are categorized to the class of path_element.
Concepts of obstacle and point of interest are also used by them. For this thesis, we think it
should also distinguish two semantic types: space (e.g., room, corridor, vertical passage) and
object (e.g., obstacle and door).

2-2-2 Cell-based models

This section introduces and compares several commonly used cell-based models. We classify
these models into two categories according to their decompositions of the space. The first
class is network model, which is generated by irregular subdivision, and the second class is
grid model, which is obtained by regular subdivision.

There are several approaches to build network models, such as Constrained Delaunay trian-
gulation, Voronoi diagram, convex polygon-based and trapezoidal-based subdivision. This
model has vertex-edge representation where vertices represent irregular cells, and edges rep-
resent connections between them. Moving from one vertex to the other one is allowed only
when there is an edge between them. The edge indicates the distance or travel time between
vertices. Moreover, the vertex can include semantic information about the location, e.g.,
room vertex, door vertex, obstacle vertex, etc. Four examples of the network model are given
below.

Network model based on functional cells (given in figure 2-2): Lorenz, et al. [19] divide the
free space of the building into non-overlapping cells. The large room and long corridor are
decomposed into several cells due to their size. The room with multiple functional areas is
also subdivided according to their functionality, for example, an airport lounge may feature
waiting areas, meeting points, areas in front of the different counters and security checks,
passport control, etc. All of them serve a different purpose and they need to be represented by
different cells. The cell centers are extracted as the vertices of network model, and two cells are
connected by an edge. The model also contains semantic information. The vertices extracted
from the room’s cells and the corridor’s cells are distinguished, the door that connects two
rooms or a room and a corridor is represented by an edge. Their model is created mainly for
way finding purposes.
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Figure 2-2: Network based on functional cells [19]

Network model based on generalized Voronoi graph (GVG) (given in figure 2-3): Wallgrün [20]
derive the GVG from its corresponding generalized Vorinoi Diagram (GVD). The GVD is
a retraction of the free space onto a network of curves reflecting the connectivity of free
space. Figure 2-3a shows a simple two-dimensional environment and the corresponding GVD
(fine lines) consisting of curves that intersect at meet points and end up in corners of the
environment. Figure 2-3b shows the GVG, which is the graph corresponding to the GVD in
figure 2-3a with vertices corresponding to meet or corner points and edges connecting vertices
joined by Voronoi curves. This model well represents the topology of the environment and is
suitable for path planning and spatial reasoning.

(a) The generalized Voronoi diagram (b) The corresponding generalized Voronoi
graph

Figure 2-3: Network model based on Vorinoi diagram [20]

Network model based on Constrained Delaunay triangulation: we construct the network
model using constrained Delaunay triangulation (see figure 2-4). Because the initial result of
triangulation of a complicate space has many skinny tangles, we combine these small triangles
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with the neighbor that has the smallest area. The centroids of triangles are extracted as
vertices of space, a door or obstacle inside the space is represented by a vertex as well. To
build the connectivity, the vertices inside a space are connected with their neighbors and the
vertices in different spaces are connected through the door vertices.

Figure 2-4: Network based on Constrained Delaunay triangulation

Network model based on convex polygon: Lamarche and Donikian [21] derive the network
model from convex polygons of the environment. Extra constraint segments are added to
the parallel walls and corners of structures firstly, then the Delaunay triangulation is applied
under the constraints of the added segments and walls, finally the triangles are integrated
to generate convex cell (see figure 2-5a). Once the convex cell subdivision is computed, a
graph containing topological relations is extracted. A vertex of this graph is a convex cell
and an edge represents a free segment shared by two adjacent cells with a length greater than
the width of the humanoid (see figure 2-5b). This spatial subdivision accurately maps the
environment geometry and the extraction of narrow areas automatically identifies the most
constrained parts of this environment. Thanks to this information, accessibility between
adjacent cells can be filtered before any path planning computation by using the humanoid
width. This network model is also designed for path finding.

In this thesis, we only consider the grid model with square cells because it is the simplest and
most often used shape. The grid model decomposes the space into regular units with meaning
(semantic elements), for example a piece of room is considered a grid unit, and each grid unit
is linked to its neighbors [14]. Since the grid model does not abstract the space, it is able to
describe the location accurately and continuously. By reviewing literature, we find that less
grid models are employed for indoor pedestrian navigation, however a similar model, called
occupancy grid, are widely used for mobile robot navigation and tracking. In below, a grid
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model of indoor spaces is first introduced, and then the occupancy grid is explained.

(a) The subdivision of the environment

(b) Network extracted from the subdivision

Figure 2-5: Network model based on convex polygon [21]

Li, Claramunt, and Ray [14] propose a grid graph model (see figure 2-6). They first represent
the indoor space using cellular units (different elements of the indoor space like a room, a wall,
etc.) and then overlap a grid graph on the cellular units, which is illustrated in figure 2-6a.
Each vertex of the grid graph is connected to its eight neighbors (apart from the ones located
on the boundary of the grid model) with horizontal, vertical, and diagonal edges. Finally, in
order to reflect the geometrical information of cellular units in an indoor space, vertices and
edges of the grid graph are labeled according to their memberships to the underlying cellular
units. Each vertex that is contained by one and only one cellular unit has one and only
one membership value, while the membership value of an edge is multivalued when this edge
intersects several cellular units (see the figure 2-6b). The topological relationships among
cellular units can be extracted from edges with multiple membership values. Their research
also indicates that the extent and granularity are most important parameters for a grid model.
The extent of the grid model is usually set as the extent of the indoor environment and the
granularity of the grid model needs to be determined carefully according to the purpose of
the application.

(a) Overlap of the grid graph and cellular units.

(b) Intersections between cellular units and
graph components (vertices and edges).

Figure 2-6: Grid graph model [14]

An occupancy grid is a regular matrix consisting of equally-sized cells, and each cell can
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be connected to its eight neighboring cells. A high probability is assigned to cells within
accessible space, while a low probability to cells occupied by obstacles. Simplicity and met-
ric embeddedness are two advantages of the occupancy grid approach [22]. An example of
occupancy grid is depicted in the figure 2-7.

Figure 2-7: Occupancy grid [23]

The pros and cons of both cell-based models are summarized in the table 2-1.

Model Advantages Disadvantages
network location based on an irregular tessellation inaccurate location data

object-based or empty space related analysis
easy to tessellate the space
efficient because more compact

grid accurate location data Consumes excessive amounts
continuous analysis of memory and processor time
easy to design and maintain in large spaces
high flexibility

Table 2-1: Comparison of grid model and network model [17]

By reviewing all these models, we find that the network model has good representation of
the topology of the environment and is often used for path planning. However, this model is
considered less accurate since they lack geometric details on entities and places indoor. The
grid model is selected for this thesis due to the following reasons:

• The grid model is able to describe accurate location. The grid model usually has small
cell size (less than 1 meter), thus almost any locations of the indoor environment can
be reached through this model.
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• The grid model has high flexibility on the granularity. According to the complexity
of indoor environment, different granularity of decomposition may be desired. For a
simple environment with very little obstacles, a coarse decomposition is feasible, however
for a complex environment with many sub-spaces and obstacles, a fine decomposition
is needed to represent all details of the environment. It is very easy to adjust the
granularity using grid model because its cells have same size and can be scaled together.
But the granularity of cells of the network model is not uniform and it is more difficult
to obtain a fine decomposition through this method.

• The grid model is suitable for computation. The grid model can be also regarded as a
matrix which enable many matrix-based computation.

• The grid model is easy to implement and maintain.

2-3 Indoor tracking methods

Various technologies have been proposed in the literature to solve tracking problems. They
are briefly introduced below.

2-3-1 Dead reckoning

Dead reckoning calculates a person’s current location by advancing a known position using
course, speed, time and distance to be traveled. This data is measured by inertial mea-
surement unit (IMU) equipped on the tracked device, for example, accelerometer for steps,
gyroscope and magnetometer for heading. The uncertainty of dead reckoning positions grows
with time thus it is necessary to check the position regularly [24]. As a result, this method is
usually combined with other positioning technology (e.g. WiFi, RFID) to track the moving
object.

2-3-2 Grid filter

Grid filter is a discrete Bayesian filter, which probabilistically estimates a target’s location
based on observations from sensors. Grid filter tessellates the environment into small patches,
typically between 10 cm and 1 m in size. Each grid cell contains the probability that the person
or object is in the cell [25].

To make the computation tractable, grid filter is based on the Markov chain model. The
Markov Markov chain model is a system that its future state only depends on its current
state and not the previous states. An illustration of the Markov chain model is given in
figure 2-8. For location estimation, it assumes that sensor measurements depend only on an
object’s current location and that an object’s location at time t depends only on the previous
location at time t− 1. Locations before t− 1 provide no additional information.
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Figure 2-8: Markov chain model [26]: x(t) is the state at t, y(t) is the observation at t.

The grid filter methods are widely used in the field of robotics [4, 5]. It computes the location
in two phases: the prediction phase where the prior probability p−

t of location xt is estimated
based on the previous location xt−1 , the motion model ut (the control of the robot’s motion,
mostly the velocity) and the map of tracking environment m, and the update phase where the
posterior probability pt is computed by multiplying the prior probability with the conditional
probability p(zt|xt) that the measurement zt may be measured at xt. Thrun and Burgard and
Fox [4] give the prediction formula 2-5 and update formula 2-6 of mobile robot localization
and tracking.

p−
k,t =

∑
i

p(xk,t |ut, xi,t−1,m) pi,t−1 (2-5)

pk,t = α p(zt |xk,t,m) p−
k,t (2-6)

where xk,t and xi,t−1 denote individual locations (grid cells) at t and t − 1, p−
k,t and pk,t are

the prior and posterior probability over a grid cell xk,t, pi,t−1 is the posterior probability over
a grid cell xi,t−1, zt refers to measurements obtained from t − 1 to t, ut denotes the motion
control of the robot, m refers to the map of the environment, α is a normalizing constant
which lets pk,t between [0, 1].

An example of one dimensional grid filter is given in figure 2-9. In this example, the robot
carries a door-sensing camera that cannot distinguish different doors. Each frame depicts the
robot’s position in the hallway and the current belief b(x): The step (a) is the initial state
where all grid cells are assigned the same probability since the actual location is unknown, in
step (b) when the measurement is input, the probability of the robot’s location is updated.
In step (c), the probability of location is predicted based on the previous measurement and
the robot’s motion. When the new measurement is obtained in step (d), the probability is
updated again. The two phases are repeated to obtain new locations.
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Figure 2-9: An illustration of grid filter [4]:(a) the robot’s location is unknown, bel(x) refers to
initial probability {pk,0}. (b) the sensor detects a door, bel(x) refers to the posterior probability
{pk,1} at t = 1. (c) the robot moves, bel(x) refers to the prior probability {p−

k,2} at t = 2. (d)
the sensor detects another door, bel(x) refers to the posterior probability {pk,2} at t = 2. (e) the
robot moves again, bel(x) refers to the prior probability {p−

k,3} at t = 3. Additionally, (b) and
(d) depict the p(z|x), the conditional probability of observing a door at different locations in the
hallway.
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2-3-3 Map matching

Map matching assumes the person can be only located along certain routes. The constraints
of indoor construction are used to correct estimates of the position of a person moving within
a building, e.g. people and objects do not pass through walls, they pass along corridors
and through doorways [24]. Two commonly used map matching techniques are point-to-
vertex matching (match the measured location to a vertex of a route) in figure 2-10a and
point-to-edge matching (match the measured location to an edge of a route) in figure 2-
10b. Spassov [27] implements the later technique for continuous localization. Their results
show there is 85% edges are identified correctly. This method performs quite well in corridor
environment. There are no jumps of positions and the average distance to the middle of the
corridor is acceptable.

(a) Point-to-vertex matching (b) Point-to-edge matching

Figure 2-10: Map matching

2-3-4 Model based

Model based methods uses a vector model of the indoor environment to improve the estimation
of the user’s location. This method considers more factors than the constraints of indoor space,
which can be taken as an expansion of the mapping matching method. Girard et al. [28] define
model based tracking is a method that combines the use of model features (such as walls,
open areas or obstacles), information from the sensors (such as speed and direction) and
information from the user (such as mean velocity and velocity variance [29]) and they use
a grid model together with particle filter, ultrasound range sensors, and foot-mounted IMU
for indoor pedestrian tracking. Jensen, Lu and Yang [7] propose a base graph model which
represents the connectivity and accessibility of indoor space and use the model for RFID-
based tracking. More specifically, an deployment graph model of RFID reader is constructed
from the base graph model and this model is then used in their algorithms for constructing
and refining trajectories from raw RFID readings. Their experimental results show that the
method can considerably improve the indoor tracking accuracy at low computational cost.
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2-3-5 Integration of the selected tracking technologies

The four techniques above are commonly used tracking methods. However, there are some
disadvantages of these methods: the dead reckoning is very dependent on the hardware (e.g.
accelerometer, gyroscope, magnetometer, etc.), the grid filter needs continuous inputs of
measurements from sensors, the map matching method is very simple but may have large
matching errors, the model-based method also needs information from sensors or users. In
order to overcome the disadvantage of an individual technique, we will use a combination
of grid model, magnetometer and grid filter to improve the locations measured by WiFi
positioning system. By integrating the grid model and grid filter, the geometric, topological
and semantic features of the grid model can be used to predict the prior probability of the
person’s location. In the later phase, the probability is updated using the measurements
from WiFi positioning system. However, the WiFi measurements could have very low quality
for the reasons given in section 1-2. Thus, it is better to also make use of measurements
from other sensors rather than only the WiFi positioning system. Due to the restriction
of hardware, this thesis only employs the magnetometer to measure the orientation of the
walking person. When the WiFi measurement is not applicable, the orientation data can be
used instead to update the location’s probability.
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Chapter 3

Spatial model-aided tracking algorithm

As the search question 1 and 2 are strongly related, they are studied together in this chapter.

Question 1: What features of a spatial model could be employed for tracking?

Question 2: In what way can the selected features be integrated together to decrease tracking
error of WiFi positioning system?

The section 3-1 analyzes various geometric, topological and semantic features of a spatial
model and explains what features are considered to be useful for tracking. The section 3-2
describes the design processes of the tracking algorithm. In this section the requirements of
the algorithm is looked at first. Then the flowchart of the algorithm and specific explanations
of important processes in the flowchart are given in sub sections.

3-1 Spatial model’s feature

As introduced in the previous chapter, the grid model is selected for this thesis. Thus,
we will analyze all features of the model and figure out what features can contribute to
the improvement of tracking performance. The features are classified into three categories:
geometry, topology and semantics. They are looked at respectively in the following.

3-1-1 Geometric features

The geometry is the base of a grid model. To make the model accurate, the grid cell size should
be small (usually between 10 cm and 1m). For this thesis, 0.7m is used. More explanations
about how the cell size is determined are given in section 4-1-1. Four geometric features of
the model are introduced below.

Geometric coordinates: We represent grid cells using center points of cells. With the coordi-
nates of center points, the measured locations of WiFi positioning system can be mapped to
the model using the point-to-vertex approach (introduced in section 2-3-3).
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(a) Buffer: the blue rectangle is
the buffer of the black grid cell
with a radius of 3 times the cell
size.

(b) Distance: the black line is
Euclidean distance and the blue
lines are two paths that have the
same Manhattan distance.

(c) Orientation vector: two ori-
entation vectors and the angle
between them.

Figure 3-1: Geometric features:(a) buffer, (b) distance, (c) orientation.

Buffer: It costs a lot of computational processors to compute a location using the whole model
because it commonly covers a large area and has fine-resolution grids. Thus, it is necessary
to extract the relevant part of the model for the current location and only use this part for
location determination. We use a buffer of the known previous location to represent the
search region of the current location. The range of the buffer relays on the walking speed
and the time interval of location determination. An example of buffer feature is depicted in
figure 3-1a.

Distance: For a grid model, there are two common approaches to compute the distance
between two grid cells: Euclidean distance and Manhattan distance. The former one is the
ordinary distance between two points and the latter one is the sum of the absolute differences
of their Cartesian coordinates [30]. For Manhanttan distance, multiple paths could have the
same distance value. An example of two distances are given in figure 3-1b.

Orientation vector: We use an orientation vector to represent the direction from one grid cell
to another. The angle between two vectors (e.g., v1(x1, y1) and v2(x2, y2)) can be obtained
through computing the dot product of two vectors [31] (see formula 3-1). An example of
orientation vector is given in figure 3-1c.

θ = arccos( v1 · v2
‖v1‖ ‖v2‖) (3-1)

3-1-2 Semantic features

According to the literature (see section 2-2-1), semantics such as floor, space (e.g., room,
corridor and vertical passage), door, wall, obstacle and point of interest are commonly used.
We think following semantic features are useful upon tracking purpose:

Floor: the floor feature can help determine the change of floors.

Space: we define a space is a region that is separated from other regions by a real boundary
(e.g., room and hall) or a region that has a specific function (e.g., vertical passage). The wall
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can be represented by the boundary of the space, so it is not necessary to have semantics of
wall. The space concept is important for tracking because users expect to be localized at the
correct space even if the accurate location inside the space is hardly estimated. Moreover,
the space of vertical passage can be used for tracking between floors.

Door: we define a door as a connector between two separated spaces. The person has to pass
the door when walking from one space to the other one.

Obstacle: we define an obstacle as an object or a region that blocks the way that is not
reachable. The obstacle is needed for building the connectivity graph of the grid model. And
the user should not be localized inside any obstacle.

3-1-3 Topological features

As introduced in the previous chapter, two types of topological relations are distinguished:
adjacency and connectivity. We consider that the connectivity is more useful for tracking
because it indicates if a grid cell can be reached from a predefined location. The adjacency
relationship is less important but it is needed to build the connectivity graph of the grid
model. We define the rule of connectivity as below: A grid cell is connected to its neighboring
cells (at most 8) which do not belong to any obstacle and are in the same space of the grid
cell. For grid cells in different spaces, they can be connected through the grid cell of a door.

In addition to the connectivity graph, two other features based on this topology could also
contribute to tracking:

Shortest path: The shortest path here refers to the path with shortest distance. Based
on the connectivity graph, there are several methods to compute the shortest path, e.g.,
Dijkstra’s algorithm, A∗ search algorithm, breadth-first-search, best-first-search, etc. A∗

search algorithm is used for this thesis because it has high computational efficiency in this
case. The shortest path can not only represent the path between two grid cells but also gives
an estimation on if one grid cell can be reached from the other one within a certain time
period as it returns the path length.

Figure 3-2: An example of distance difference: the orange line denotes the straight-line distance
and the yellow line denotes the shortest path length returned by A∗ algorithm.
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Distance difference: we define the distance difference as the difference between the straight-
line distance (Euclidean distance) and the shortest path distance from one grid cell to another.
An example of the distance difference is depicted in figure 3-2. It is notable that the distance
difference is small if there is no obstacle between two grid cells and it increases with the
growth of obstruction between two grid cells.

3-2 Design of tracking algorithm

3-2-1 Requirements analysis

Before starting the design of tracking algorithm, several important questions need to be
answered:

Question 1: What kind of data does the algorithm deal with? The data used for this algorithm
is listed in table 3-1, which can be categorized into two classes. The first type of data is real-
time data obtained from mobile device. The two-dimensional location data is obtained per
half second from WiFi positioning system but their quality is not always high. The time of
when the location is acquired and the mobile device’s orientation at this time are measured
using the clock and magnetometer of the device. The measured orientation has relative high
accuracy when the device is kept forward the moving direction. The second type of data is
model data. The grid model is used, which contains geometrical, topological and semantic
information of the indoor environment.

Question 2: What assumptions are made for this algorithm? Since the motion of human
has great diversity and uncertainty, it is difficult to consider all cases in this thesis. Some
assumptions are made to let the tracking situation be less complicated.

• Assumption1: The start location of the person is known.

• Assumption2: The pedestrian is walking in a constant speed.

• Assumption3: The pedestrian is likely to walk in a constant direction and inside one
space within a short time.

• Assumption4: The mobile device’s forward orientation is the moving direction of the
person.

Question 3: What requirements must the algorithm meet? There are three requirements for
this algorithm:

1. Spatial model-aided. The algorithm need to make full use of the geometric, topological
and semantic features of the grid model and these features should be integrated in an
efficient way.

2. Adaptability. The adaptability refers to two aspects. Firstly, the algorithm is able to
deal with different walking cases, e.g. walking with turning, walking between differ-
ent space and floor. Secondly, the algorithm can handle the exceptions like the WiFi
positioning results are extremely poor or missing temporally.
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3. Effectiveness. The effectiveness is that the algorithm can improve the tracking accuracy
of the WiFi positioning system.

Data Value Quality
location x,y medium (mostly around 3-5 meters)
time nanoseconds high
orientation angle between the magnetic

north direction and the y-axis
of mobile device

high

grid model geometry, connectivity graph,
semantics

high

Table 3-1: Data quality analysis

3-2-2 Flowchart of algorithm

We design the tracking algorithm for the WiFi positioning system by integrating three other
tracking techniques: magnetometer, grid model and grid filter. The grid filter (see section
2-3-2) with recursive predict and update steps is the base of the tracking algorithm in which
the grid model is used instead of the map and the WiFi positioning system as well as the
magnetometer are inputs of measurements. The measurements are acquired with a high
frequency (every half second) but do not always have high accuracy. Thus, we use a set of
measurements during a short time period for each location determination to avoid the effect
of an individual inaccurate measurement. In this thesis, we use measurements obtained every
3 seconds to compute a new location because the moving distance of a pedestrian within 3
seconds is short and 6 measurements can be acquired on average.
We use the formulas introduced in section 2-3-2 to compute the prior and posterior probability
grids. Unlike the mobile robot, the motion of a pedestrian cannot be controlled, and to make
the situation to be less complicated we assume the pedestrian walks in a constant speed.
Thus, ut is excluded in our computation. The formulas 2-5 and 2-6 can be rewritten as
below:

p−
k,t =

∑
i

p(xk,t |xi,t−1,m) pi,t−1 (3-2)

pk,t = α p(zt |xk,t,m) p−
k,t (3-3)

where xk,t and xi,t−1 denote individual locations (grid cells) at t and t−1, p−
k,t and pk,t are prior

probability and posterior probability over a grid cell xk,t, pi,t−1 is the posterior probability
over a grid cell xi,t−1, m represents the grid model, zt is the measurements obtained from
t− 1 to t and α is a normalizing constant.
To reduce computational load, we convert the {pi,t−1} to a degenerate distribution [32] for
the prediction of xt, suppose xt−1 denotes the grid cell with maximum posterior probability
at t− 1, then

pi,t−1 =
{

1 if xi = xt−1

0 else
(3-4)
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So the formula 3-2 can be simplified further as below:

p−
k,t = p(xk,t |xt−1,m) (3-5)

The usage of grid filter is to combine the different features of the grid model, also the measure-
ments from the mobile device. By using them to compute the prior probability and posterior
probability of the locations, their influence is integrated and accumulated. The flowchart of
the algorithm in figure 3-3 gives an overview of the algorithm, where we can see there are
three steps to track a pedestrian: initialization, prediction and update.

The initialization step initializes the probability grids {pk,0}, which is used as the input to
predict the first location (xt=1).

In prediction step, we employ the previous location, the grid model as well as the previous
moving direction to calculate the prior probability of the current location. When the location
is at t = 1 or after a turning, the previous moving direction is not known or not feasible for
prediction.

In the update step, we use the measurements obtained from mobile devices (WiFi positioning
system and magnetometer) to update the prior probability grids and find the grid cell with
maximum posterior probability. This grid cell is taken as the current location and used as
the input for the prediction of the next location.

The latter two steps, prediction and update are repeated over time until the tracking is
over. The pseudocode of the tracking algorithm is given in Algorithm 1, the functions of
’Initialization’, ’Prediction’ and ’Update’ are respectively explained in the following sections.
One thing should be noticed that the flowchart does not include the case of tracking between
floors. Since the WiFi positioning system can only provide locations in two dimension, the
change of floors is determined in a different way which is explained briefly in section 3-2-6.

Data:
x0 :the start location
M :the grid model
z :measurements including measured locations and orientations

Result:
a trajectory

Initialization(x0, M);
while t < T do // t starts from 1, T is the end time of the tracking

Prediction(xt−1, M);
Update(zt, M);
t = t+1;

end
Algorithm 1: Spatial model-aided tracking algorithm
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Figure 3-3: The flowchart of the tracking algorithm

The important terms and concepts used to describe the algorithm are clarified here to make
the description in later sections understandable:

• Computed location: the location computed by this algorithm, which is a grid cell.

• WiFi measured location: the location measured by the WiFi positioning system.

• Measured orientation: the orientation of the mobile device when WiFi location is ac-
quired, which is measured by the compass of the mobile device.
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• Orientation vector: the vector from the center of one grid cell to another.

• Tracking interval: the time interval between two consecutive computed locations.

• Measurements: all measurements acquired by the mobile device during tracking interval,
each measurement contains three values: WiFi measured location, measured orientation,
and time.

• In moving direction: when we say a cell is in the moving direction, we mean the angle
between the orientation vector of this cell and the moving direction is less than an
threshold.

• Clustering Distance threshold (CDT): the clustering threshold for WiFi measured loca-
tions.

• Probability grids: the grid cells with initial, prior or posterior probabilities.

3-2-3 Initialization

Since the start location is known, the {pk,0} is initialized using the degenerate distribution
(given in equation 3-4) where xt−1 is replaced by x0. The pseudocode for this step is given
in Function Initialization.

Input:
x0 :the start location
{xk,0} :grid cells at t = 0

Output:
{pk,0} :initial probability grids

forall the xk,0 do
if xk,0 = x0 then

pk,0 ← 1 ;
else

pk,0 ← 0 ;
end

end
return {pk,0}

Function Initialization

3-2-4 Prediction

In prediction step (the pseudocode for this step is given in Function Prediction), the prior
probability grids are computed based on three factors:

The previous location. As it is very inefficient to use the entire model of the tracking environ-
ment to predict and update the location’s probability, we derive a sub model from the entire
model based on the previous location, and the sub model is updated at each prediction step.
Only the grid cells inside a buffer of the previous location are taken into consideration in later
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processes while other grid cells obtain a probability of 0 by default. We set the radius of the
buffer is 2 times the product of the average walking speed of human (1.4 m/s [33]) and the
tracking interval (3 seconds). We think the person should not be outside the buffer within 3
seconds.

The grid model. In order to determine the probability of the derived sub model, we make use
of its semantic and topological features. Two semantic features are employed: obstacle and
space. If the grid cell is an element of an obstacle, it gets probability as 0, and if the grid
cell is at a different space than the space of the last location, its probability is decreased by
dividing a constant value Ws. We set Ws as 2 in this case because we assume the probability
of the current location in a new space is half of the probability in the old space. Among
all topological features introduced in section 3-1-3, the distance difference is chosen. This is
because that it can represent the connectivity between two grid cells and it is suitable for
probability computation. The shortest path is not used because without the knowledge of the
real walking speed, it is difficult to determine the distance threshold of the path. Moreover,
the grid cells that are far from the previous location have been filtered out by the buffer so it is
not necessary to use an absolute distance. We assume there is a negative relation between the
distance difference and the probability, therefore the grid cell with larger distance difference
is assigned lower probability. We use a discrete probability distribution for distance difference
(see the equation 3-6).

P (∆d) =


P1 when |∆d| ≤ d1
P2 when d1 < |∆d| ≤ d2
P3 when d2 < |∆d| ≤ d3
P4 when |∆d| > d3

(3-6)

where ∆d denotes the distance difference, d1, d2, d3, d4 are thresholds of distance difference
and P1, P2, P3, P4 are corresponding probabilities.

In this research the d1, d2, d3 are set respectively as 1 m, 3 m and 5 m, P1, P2, P3, P4 are
set receptively as 0.9, 0.7, 0.5 and 0.1. This is because we suppose that there are no obstacles
between two grid cells if their distance difference is smaller than 1 m, there are no or a small
obstacle between two grid cells if their distance difference is above 1 m but smaller than 3 m,
and there are obstacles between two grid cells if their distance difference is larger than 5 m
for our testing environment. Thus, the grid cells with distance difference smaller than 3 m
get high probability (0.9 or 0.7) and cells that have distance difference larger than 5 m get
low probability (0.1). Other cells get medium probability (0.5).

The previous moving direction. If there is no turning at the previous location, we assume that
there is a very high probability (Phigh = 0.8) that the current moving direction is same as
the previous one and a low probability (Plow = 0.2) that the moving direction is changed. So
we decrease the probability of grid cells outside the moving direction by dividing a constant
value Wmd. Wmd is 4 in this case because Plow is a quarter of Phigh. To determine if a grid
cell is inside the moving direction, we compare the angle between the orientation vector of
the grid cell and the moving direction with a angle threshold AT. We set AT as 45 ◦ in this
thesis.

In this step, the spatial model’s geometric features (buffer and orientation vector) is used to
extract the sub model and compare with the previous moving direction, its semantic (space

Master of Science Thesis Xu. Weilin



30 Spatial model-aided tracking algorithm

and obstacle) and topological features (distance difference) are employed to determine the
prior probability.

Input:
xt−1 :the location at t− 1
zt−1 -md :the moving direction at t− 1
M :the entire grid model

Output:{
p−

k,t

}
:prior probability grids

// derive the sub model based on the previous location
m← UpdateModel(M,xt−1) ;
foreach xk ∈ m do

// compute prior probability using the grid model’s features
p−

k,t ← PredictbyModel(xk, xt−1,m) ;
// compute prior probability using the previous moving direction
if xk outside zt−1 -md then

p−
k,t ← p−

k,t/Wmd

end
end

Function Prediction

Input:
M :the entire grid model
xt−1 :the location at t− 1

Output:
m :the sub model

foreach mk ∈M do
B ← SetBuffer(xt−1, radius) ;
if mk inside B then

add mk to m ;
end

end
return m;

Function UpdateModel
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Input:
xk :a candidate location at t
xt−1 :the location at t− 1
m :the sub model

Output:
p(xk |xt−1,m) :the prior probability of xk

// mobstacle denotes the obstacle feature of xk in m
if mobstacle of xk is true then

p(xk |xt−1,m)← 0 ;
else

// mdistancediff denotes the distance difference feature of xk in m
if mdistancediff of xk < d1 then

p(xk |xt−1,m)← P1;
else if mdistancediff of xk < d2 then

p(xk |xt−1,m)← P2;
else if mdistancediff of xk < d3 then

p(xk |xt−1,m)← P3 ;
else

p(xk |xt−1,m)← P4 ;
end
// mspace denotes the space feature of a cell in m
if mspace of xk 6= mspace of xt−1 then

p(xk |xt−1,m)← p(xk |xt−1,m)/Ws ;
end

end
return p(xk |xt−1,m)

Function PredictbyModel
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3-2-5 Update

In this step, the probability grids are updated using new measurements. The pseudocode
of this step is given in Function Update. As introduced before, to overcome the influence
of a single inaccurate measurement, We use the measurements per 3 seconds to compute a
new location. But the orientation of each measurement is checked once it is acquired. If its
orientation is different from the previous moving direction, the process to deal with turning is
started (see section Turning process). We update the moving direction using the mean value
of new measured orientations and use it to filter WiFi measured locations (see section Remove
outliers of WiFi measured locations). After removing outliers of WiFi measured locations,
the next step is to determine the space property of the current location xt, namely to check
if the new location is at a different space from previous location (see section Determine space
property of the current location). Then the probability grid is updated based on the space
property and filtered locations. If all WiFi measured locations are filtered out, the prior
probability is updated based on the current moving direction (see section Compute posterior
probability). The grid cell with maximum posterior probability is taken as the current loca-
tion. In addition, we check the quality of the computed location every three tracking intervals
(9 seconds) using all measurements obtained in this period (18 measurements on average).
Details of this process are given in section Tracking quality check.

Remove outliers of WiFi measured locations

We use a set of measurements (zt) in 3 seconds to compute the person’s current location.
As the accuracy of WiFi positioning system is influenced by the dynamic environment, there
could be outliers inside WiFi measured locations zt -mls. The number of zt -mls is not large,
so we cannot eliminate the effect of outliers by just averaging all WiFi measured locations.
Instead, we remove outliers using hierarchical clustering which groups WiFi measured lo-
cations to clusters based on the distance between themselves [34]. This method does not
provide a single partitioning of the data set, but instead provide an extensive hierarchy of
clusters that merge with each other at certain distances, also known as dendrogram. By
cutting the dendrogram at different distance threshold, different clusters can be obtained.
There are also multiple choices for distance function, such as single-linkage (the minimum of
object distances), average-linkage (the average of object distances) and complete-linkage (the
maximum of object distances). Based on our experiments, the average-linkage hierarchical
clustering with distance threshold (CDT ) of 4 m has best performance and is used by the
algorithm. A result of the clustering of WiFi measured locations is given in Figure 3-4, in
which the six locations obtained in 3 seconds are clustered into three groups by a threshold
4m. The locations of the largest cluster (purple points) are considered more accurate than
other measured locations (pink and yellow points in the bottom figure). Moreover, We think
the moving direction zt -md is reliable and we also use it to detect the outliers of the WiFi
measured locations.

The process to filter out the outliers is given below: At first we look at the number of zt -mls, if
there are very little measurements (only one or two), it indicates that the WiFi signal strength
during this period is very poor and WiFi positioning system does not work normally. So we
think these WiFi locations are not reliable, namely they are outliers. Otherwise, we cluster
the measurements using average-linkage hierarchical clustering. We assume that the distance
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between locations in 3 seconds should be smaller than 4 m. If there is more than one cluster,
we think only one is trustful while others are outliers. In order to find the most reliable cluster,
we compare two features of these clusters: direction and size. The direction of cluster is the
orientation vector from the previous location to the cluster center. Finally the cluster whose
direction inside the current moving direction and size is largest is kept. The pseudocode of
this process is given in Function RemoveOutliers.

Figure 3-4: The top figure is the dendrogram of average-linkage hierarchical clustering, the
bottom figure is the clustering result with distance threshold as 4 m.

Determine space property of the current location

This process is applied after removing outliers of WiFi measured locations. We think the
remaining locations are reliable and use them to determine the space property of the current
location. In order to check the space property of WiFi measured locations, they are mapped
to the grid model based on geometric coordinates. If most WiFi measured locations are still
in the previous space, we believe the space of current location is also inside the previous space.
When most WiFi measured locations are in a new space, further checking is carried out to
confirm the change of space. To avoid ambiguity between two space, we use the door between
two space as a transition zone. So when the location is not in a new space for certain, we put
the location at the door. The pseudocode of this process is given in Functon DetermineSpace.
From it we can see there are two conditions to enter a new space:

1. the door connected two spaces is in the moving direction

2. the previous location is at the door
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Only when both conditions are met, the current location is considered to be at the new space.
If only condition 1 is met, the current location is determined at the door. Otherwise, the
current location is still at the previous space. In this way, the condition for entering a new
space is relatively strict. The person has to be first localized at the door before getting into
the new space, which also means most WiFi measured locations have to be in the new space
twice. The advantage of this strict rule is that ambiguous situations such as locations are
measured at wrong space temporally and the person going into and out the space very quickly
can be dealt with.

Compute posterior probability

There are two ways to update the position probability grids. If there is no WiFi measured
location is available, the probability is updated using the current moving direction, otherwise
it is updated using WiFi measured locations. For the later approach, the current moving
direction is not reused as that it has been applied to filter the WiFi measured locations.
The second approach is looked at firstly since it is the common way to update the probability.
We use a rectangular window function W (d) [35] to compute the conditional probability{
p(zj

t |xk,t,m)
}

based on each WiFi measured location zj
t . As shown in equation 3-7, the

function W (d) is the average of three sub window function with different window size. The
usage of the average window function rather than a single window function is to make the
conditional probability decrease with the increase of the distance to a WiFi measured location.
In order to allow the windows of different measured location overlap, we set the largest
windows size as CDT and other two size receptively as two-thirds and third of the CDT . Thus,
the grid cell that is close to all WiFi measured locations get highest conditional probability.
Then the conditional probability estimated by all WiFi measured locations are accumulated
and normalized to get the final conditional probability {p(zt |xk,t,m)}. Lastly, the posterior
probability of a grid cell is computed by multiplying its prior probability and conditional
probability. An illustration of this approach is given in figure 3-5.

Wi(d) =


1 for |d| < 1

2ni

1/2 for |d| = 1
2ni

0 for |d| > 1
2ni

W (d) = 1
3

3∑
i=1

Wi(d)

(n1 = CDT, n2 = 2
3CDT, n3 = 1

3CDT )

(3-7)

where |d| denotes the distance from a grid cell to the a WiFi measured location, ni is the size
of the rectangular window Wi.
When all WiFi measured locations are filtered out, the posterior probability is calculated
based on the current moving direction. We compute orientation vectors from the previous
location to the grid cells with the highest prior probability, then find the grid cell whose
orientation vector is closest to the current moving direction. Except this grid cell, other grid
cells are updated to 0. The pseudocode to compute posterior probability grids in both ways
are given in the function ComputePosteriorProbability.
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(a) rectangular window function (b) conditional probability (c) posterior probability

Figure 3-5: Update using WiFi measured locations: the red cell is the previous location, (a)
the green cells are WiFi measured locations and blue rectangles are window function, (b) the
conditional probability is represented by the darkness of the blue, the darker cell the higher
probability, (c) the blue cells are cells with maximum posterior probability.

Find the current location

The grid cell with largest posterior probability is considered to be the current location. How-
ever, there could be multiple grid cells with the maximum probability, in this case, we choose
the grid cell that is closest to the center of these grid cells.

Tracking quality check

Since the locations may be continuously estimated without using WiFi measured locations,
there could be errors caused by inaccurate moving directions. In order to control this error,
the location xt is checked per three tracking intervals. We use three tracking intervals (from
t − 3 to t) because on average 18 measurements (in 9 seconds) can be obtained during this
period and we suppose there should be reliable locations inside these measurements. All
measurements obtained during this period are used to compute a location xcheck and an
average moving direction mdcheck. We compute xcheck using the same processes to compute
other locations but with different parameter settings. The buffer to update the grid model
and the clustering threshold are enlarged because we use measurements of a longer period
(three tracking intervals). Then the location xt is qualified by checking its distance to xcheck

and the angle difference between its orientation vector zt -md and mdcheck. The threshold of
distance (DT ) and angle (AT ) are set respectively as 8m and 45 ◦ because we think the xcheck

is at the middle of the path from t− 3 to t and its distance to xt should not be larger than 8
m according to the average walking speed (1.4 m/s [33]). If the location xt is unqualified, it is
replaced by xcheck. The pseudocode of this process is given in function TrackingqualityCheck.

Turning process

The turning process is triggered when a measured orientation is outside the previous moving
direction. In order to make sure this change is really caused by turning rather than other
coincidences (e.g., rotation of the mobile device), more measurements need to be acquired. If
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the average orientation of these measurements is also outside the previous moving direction,
then we confirm there is a turning.

In order to adapt the general tracking procedure (prediction and update) to the case with
turning, we introduce the concept of turning point. We assume that the direction change
occurs only at the turning point. Thus, the locations before this point have the previous
moving direction and locations after this point have a new moving direction. We use the
turning point to replace the previous location, and then the general tracking procedure is
suitable again. The pseudocode of this process is given in function TurningProcess.

The approach to find the turning point is explained below: The main criterion for the turning
point is that it must be inside the moving direction of the previous location as well as the
opposite moving direction of the current location. To find the turning points, we firstly
estimate the current location at the center of WiFi measured locations, then use this estimated
location to back track the turning point. Since there could be multiple grid cells inside the
intersection of two directions, more constraints are applied to find the most reasonable one:
it should be at the same space of previous location, it should not be inside any obstacle,
the paths from the previous location to the turning point and from the turning point to the
current location should not blocked by any obstacle. An example of turning point is given in
figure 3-6.

Figure 3-6: Turning point: the right black point and vector (with the blue rectangle) are the
previous location and its moving direction, the left black point and vector (with the blue rectangle)
are the current location and its opposite moving direction. The red point is the turning point and
the dash line is estimated turning path.

3-2-6 Floor change process

As the spatial model and WiFi measured locations are all two dimensional, it is impossible
to estimate the moving path between floors. But is possible to detect the change of floors.
In the offline training phase of WiFi positioning (see section 2-1), the radio map is measured
at each floor and the floor number is also stored. Thus in the online localization phase of
WiFi positioning, the floor number of the matched location can be obtained. We define the
condition of floor change below: If a WiFi measured location is matched to the radio map in
different floor and the previous location is close to a vertical passage, we consider the person
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is walking between floors, and when most WiFi measured locations of a tracking interval are
located in a new floor, we assume the person is at the new floor now.

Input:{
p−

k,t

}
:prior probability grids

zt :measured orientations zt -mds and locations zt -mls from t− 1 to t
{xt−1, zt−1 -md, St−1} :the location, the moving direction and the space at t− 1
m :the sub model

Output:
xt :the location at t
zt -md :the moving direction at t

if ∀mdi ∈ zt -mds : mdi inside zt−1 -md then
zt -md← average(zt -mds) ;
zt -mls← RemoveOutliers(zt -md, zt -mls);
if size(zt -mls) > 0) then // update using WiFi measured locations zt -mls

Zt ← zt -mls;
St ← DetermineSpace(zt -mls, zt -md, St−1,m);
{ pk,t } ← ComputePosteriorProbability(Zt, St,

{
p−

k,t

}
) ;

else // update using the moving direction zt -md
Zt ← zt -md ;
St ← St−1 ;
{ pk,t } ← ComputePosteriorProbability(Zt, St,

{
p−

k,t

}
) ;

end
else
{ pk,t } ← TurningProcess(xt−1, zt−1 -md, zt,M) ;

end
xt ← FindCurrentLocation({ pk,t }) ;
// the computed location is checked per three tracking intervals
if t mod 3 = 0 then

xt ← TrackingqualityCheck(xt, zt -md,M) ;
end
return xt, zt -md

Function Update
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Input:
zt -mls :measured locations
zt -md :the moving direction at t

Output:
z̄t -mls :filtered locations

C ← hierarchical clustering of zt -mls ;
if size(C) > 1 then

foreach c ∈ C do
if c outside Zt -md then

remove c from C ;
end

end
// return the cluster containing most measured locations
foreach c ∈ C do

if size(c) = max then
return c;

end
end

else
// when there is only one cluster, all measured locations are

returned
return zt -mls;

end
Function RemoveOutliers
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Input:
zt -mls :measured locations(filtered),
zt -md :the moving direction at t
St−1 :the space at t− 1
m :the sub model

Output:
St :the space at t

// Smajority denotes the space property of the majority of measured
locations

find Smajority of zt -mls ;
if Smajority = St−1 then

St ← St−1 ;
else

if ∃ door ∈ m : door connects Smajority and St−1 and door is inside zt -md then
if St−1 at door then

St ← Smajority ;
else

St ← door ;
end

else
St ← St−1 ;

end
end
return St

Function DetermineSpace
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Input:
Zt :the selected measurements at t, could be zt -mls or zt -md
St :the space at t{
p−

k,t

}
:prior probability grids

Output:
{pk,t} :posterior probability grids

if Zt = zt -mls then // update using WiFi measured locations zt -mls
forall the k do

// initialize p(zt |xk,t,m)
p(zt |xk,t,m)← 0;
if xk,t ∈ St then

// apply the rectangular window function to each measured
location

foreach zi ∈ zt -mls do
di ← distance(xk,t, zi) ;
compute W (di) ;

end
p(zt |xk,t,m)←

∏
W (di)

end
pk,t ← αp(zt |xk,t,m) p−

k,t ;
end

else // update using the current moving direction zt -md
forall the k do

// initialize p(zt |xk,t,m)
p(zt |xk,t,m)← 0;
if xk,t ∈ St and p−

k,t = max then
compute anglediff between vector(xt−1, xk,t) and zt -md ;
if anglediff = min then

p(zt |xk,t,m) = 1;
end

end
pk,t ← αp(zt |xk,t,m) p−

k,t ;
end

end
return {pk,t}

Function ComputePosteriorProbability
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Input:
xt :the location at t
zt -md :the moving direction at t
M :the entire grid model

Output:
:the qualified location

xt−3, zt−3 -md← get the previous location and moving direction at t− 3 ;
zt−3:t ← get all measurements from t− 3 to t ;{
p−

k,t

}
,m← Prediction(xt−3, zt−3 -md,M) ;

xcheck,mdcheck ← Update(
{
p−

k,t

}
, zt−3:t, zt−3 -md,m) ;

if DistanceDiff(xt, xcheck) < DT and AngleDiff(zt -md,mdcheck) < AT then
return xt ;

else
return xcheck;

end
Function TrackingqualityCheck

Input:
xt−1 :the location at t-1
zt−1 -md :the moving direction at t-1
zt :measured orientations and locations from t− 1 to t
M :the entire grid model

Output:
turning result

zt+1 ← get more measurements ;
mdaverage ← Average({zt+1 -mds}) ;
if AngleDiff(zt−1 -md,mdaverage) > AT ◦ then // AT is a threshold of angle
difference

xturn ← find the turning point ;{
p−

k,t

}
,m← Prediction(xturn,M) ;

xt ← Update(
{
p−

k,t

}
, zt:t+1,m) ;

return true;
else

return false;
end

Function TurningProcess
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Chapter 4

Implementation and Testing

To answer research question 3: How can the spatial model aided tracking algorithm be imple-
mented and tested?

This chapter introduces the architecture of tracking system and explains how each layer of
this system is implemented. Five tests are done using this system to check the performance
of this tracking algorithm in a live environment. They respectively look at the algorithm’s
ability to track a pedestrian in different situations, such as in one space, between two spaces,
with turning and in a short distance.

4-1 Preprocessing

4-1-1 Build grid model

This section describes how a hybrid grid model containing geometry, topology and semantics
is constructed. The raw data to build the model is the floor plan of the selected environment.
The general modeling flow is depicted in figure 4-1.

Extract geometry

The grid cells are generated automatically by using GIS software, but two parameters need
to be set: extend and granularity (grid size). Apparently, the former one should be set as the
extent of the floor plan.

The criteria for choosing a suitable grid size are:

1. Important indoor objects e.g., door, obstacle can be represented by grid cells. Namely,
the grid size should be smaller than these objects’ size.
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Figure 4-1: Modeling flow

2. The occupancy of a grid should be as few as possible, the ideal situation is that each
grid cell is only occupied by one space or object. This enables a grid cell to have a
unique attribute.

3. The human factors such as step length or average walking speed should also be taken
into consideration.

4. The size of the model should not be too large. With increasing the number of grid cells,
the storage and computational load also go up and thus a too small cell size should be
avoided.

In order to find appropriate grid granularity for the tracking environment, a series of grid
sizes ranging from 0.5 meters to 4 meters are compared in table 4-1. The total number of
grid cells, their intersections with indoor space and objects and the uniqueness of grid cells
are listed with respect to the size of grid. More intersections indicates more details of the
environment can be represented. The uniqueness of grid cells shows the percentage of grid
cells that have unique occupancy.

granularity number of grid cells intersection uniqueness
4m 72 231 31.2%
2m 257 528 48.6%
1m 944 1442 65.5%
0.7m 1725 2554 67.5%
0.5m 3598 4442 81%

Table 4-1: Comparison of grid granularity

From the comparison in table 4-1, it is notable that when the granularity is smaller than 1
meter, most grid cells have unique occupancy. With the decrease of granularity, the intersec-
tions and uniqueness grows up but the number of grid cells also increase. Considering the
localization frequency of WiFi positioning system is 0.5 second and the averaging walking
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speed of human is 1.4 m/s [33] per second. A very fine granularity (less than 0.7m) is not
necessary for the localization purpose. Moreover in the algorithm, we integrate a grid filter
with the model and the common used size of grid filter is between 10 cm and 1 m according
to the literature (see section 2-3-2). Therefore 0.7 m is used by this thesis.

Extract semantics

There are three types of semantic features: space, door, obstacle (introduced in section 3-1-2).
For each grid cell, it must have one and only one space feature, but may have null or one
object feature (door or obstacle). We derive the space and object feature of a grid cell by
intersecting it with the floor plan. To ensure each grid cell has a unique space or obstacle
feature, a filtering based on area is applied to the initial results of intersection. If a grid cell
intersects with multiple spaces, than only the space that has the most occupancy is assigned
to this grid cell. If a grid cell is occupied by obstacles the grid cell is determined to be obstacle
only when more than half of it is occupied. As the door’s geometry in the floor plan is small
and it hardly occupies half or more of a cell when it intersects with multiple cells, we assign
door feature to a cell once it intersects with a door. However when a cell intersects with more
than one door, only the door that has the most occupancy is assigned to this grid cell.

Build topology

We first create the adjacency graph that describes eight neighbors of a grid cell (for the grid
cells at the boundary, there are less than eight neighbors). Then the connectivity of grid cells
is derived based on the adjacency graph. A grid cell, which is not obstacle, is connected to
its adjacent neighbors that have the same space property. Grid cells in different space are
connected only through door cells. The final grid model is shown in figure 4-2.
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Figure 4-2: Grid model
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4-1-2 Set up Mobile device

Two types of data are measured real time for tracking: location and orientation. The first
one is obtained by the WiFi positioning system and the second one is acquired by the mag-
netometer sensor of the mobile device.

WiFi positioning system

The first step is to create the radio map of the given area based on the RSSI data from all fixed
APs. To get high positioning accuracy, we have dense sampling points (see figure 4-3a). The
sampling interval ranges from 2 to 3 meters influenced by the obstacles in the indoor space.
Then the sampling data is processed to generate the radio map (see figure 4-3b). During the
online phase of WiFi positioning, the live RSS values are then compared to the radio map to
find the closest match.

(a) WiFi fingerprint sampling points (b) Visualization of the radio map

Figure 4-3: Radio map

The accuracy of WiFi positioning system is tested. According to the developer of the WiFi
positioning system, 90% locations have an accuracy of 3.4m. However, in our testing en-
vironment the accuracy is lower. This may be due to the influence of the Wireless LAN
Controller in our environment that adjusts the signal strength of access point based on the
environment. We compare the positioning accuracy in 4 locations table 4-2. It is notable that
the position accuracy is not the same everywhere, in some places the wifi locations are very
accurate (0.9m) but in other place the positioning error is 10 times higher (9.2m).
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location stand deviation of x stand deviation of y accuracy
l1 1.68m 3.02m 9.2m
l2 1.14m 0.31m 4.8m
l3 1.89m 1.98m 3.2m
l4 1.47m 1.75m 0.9m

Table 4-2: Comparison of positoning accuracy

Magnetometer

We use the magnetometer of the mobile device to measure its orientation. The coordinate
system of mobile device is shown in figure 4-4. We use the angle between the magnetic north
direction and the y-axis of mobile device to represent the orientation of the person because
we ask people to hold the mobile device flat with the top forward. We test the accuracy of
the measured orientation in two cases: still and walking in straight line. The angle’s stand
deviation of the first case is around 2 degree and the stand deviation of the second case is
around 9 degree. The person is likely to shake the mobile device during walking and thus the
latter case has larger variance.

Figure 4-4: Mobile device axis

4-2 Implementation of tracking system

The architecture of the system is given in figure 4-5. The system has a three-layer architecture:
the bottom layer is database where the spatial model is stored, the middle layer is web
service where the tracking algorithm is implemented, the top layer is mobile device, where
the measurements (location, orientation and time) are acquired and the tracking results are
presented. The web service also has three layers: data access object (DAO) layer where the
data from database is mapped to the web server, tracking service layer where the tracking
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algorithm is implemented, and controller layer where the communication between mobile
device and service is controlled. However due to the limitation of time, the two parts indicated
by dash line are not implemented. Currently the mobile client is not connected to the service
in real time, thus the tracking is offline, which means the trajectory is computed after the
walking, and the computed trajectories are stored in files instead of in database now. However,
these two functions do not influence the research of this thesis. The performance of the
tracking algorithm can still be tested using the incomplete system.

As mentioned before, this thesis is carried out in the company CGI group who has a lot expe-
rience on system development. The experts from the company recommend the architecture
of the system considering following advantages:

• The mobile client is lightweight. We put most computation load at the sever layer so
that the mobile client is only used to collect data and present the tracking results.

• The low requirements for data transmission. The model data in need can be sent to
the sever at start of the application, and during the tracking process the sever can
retrieve the model data locally. Between the mobile client and server, only a few data
is exchanged so it will not cause transmission problem.

• The system has high efficiency. Since the server has strong computational capacity,
the performance of the system is not restricted by the time complexity of the tracking
algorithm.

Figure 4-5: Tracking system structure
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4-2-1 Database

For this system, the main function of database is to store the grid model. The open source
spatial database PostGIS is used by this thesis. The entity-relationship diagram (ER diagram)
of the grid model which illustrates the relationships between entities in the database [36], is
given in figure 4-6. We can see the core component of the model is the grid cell that has
relationships with all other components. It has many to one relationship with space, obstacle
and door. Each space, obstacle or door is comprised of several grid cells. Every grid cell
must be related to one and only one space but may be related none or one object (door or
obstacle). To represent the connectivity between grid cells, the grid table is also related to
itself. A grid cell can have at most 8 neighboring cells. The grid cell entity has an attribute
of geometric coordinates. The space entity has three attributes: space_type which describes
the structure type of the space (e.g., room, vertical passage, hall, etc.), usage_type of the
space (e.g., work, print, washroom, etc.) and the floor of the space. The obstacle has an
attribute of obstacle type (e.g., table, couch, shelf, etc.). The door is the connection between
two spaces so that it has an attribute of the connected spaces (we assume the door can be
opened from both sides, so the direction of connection is not included). All entities and the
relationship ’Has neighbors’ are converted to tables in the database and other relationships
are represented through foreign keys.

Figure 4-6: Entity-relationship diagram

4-2-2 Web service

The web service is the most important part in this system, because most of the computation
is executed here. We build the web service using java technology. The program on the web
service is developed using Spring framework (it gives infrastructural support for program-
ming) and published on an open source web server Apache Tomcat. The combination of
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spring framework and tomcat server is widely used for web-based enterprise application and
recommend by CGI Group Company.

The web service has three layers: Data access object (DAO) layer is responsible for com-
munication with database. It maps the model data from database to the server so that the
computations based on the model can be carried out locally. This increases the efficiency
of the system greatly. The DAO layer is implemented using the DAO module of Spring
framework [37] with an open source object-relational mapping (ORM) library hibernate spa-
tial [38]. The benefits of DAO module and ORM are that they allow data persistence and
high performance of the application.

The tracking service layer is where the proposed tracking algorithm is implemented. The
program on this layer is mostly written by the author except two libraries used for shortest
path computation (PatherFinder [39]) and clustering (Hac [40]).

The controller layer is created to manage request-response between the mobile client and the
server.

4-2-3 Mobile client

The mobile client is developed based on Android 4.0+ operating system. The radio map
of the indoor environment is stored on the mobile client in xml format. The main function
this mobile client is to measure the location, orientation, and time of the mobile device.
We developed an application which integrates the WiFi positioning system with the module
to obtain the orientation and time from magnetometer and the device’s clock. Due to the
limitation of time, the real-time communication between the mobile client and the web server
is not realized yet.

4-3 Experiment results and analysis

4-3-1 Experiment contexts

The testing environment is the office of CGI Group company, at the A wing of the 8th floor
(around 780 m2) and the middle part of the 10th floor (around 220 m2). On the 8th floor 63
WiFi APs are used for WiFi positioning and On the 10th floor 30 WiFi APs are used. These
APs are not only from 8th or 10th floor but also from other floors.

The mobile device used for testing is Motorola Moto G. Its OS is Android 4.4.2 and it has
WiFi function and magnetometer sensor.

We set the tracking interval of the algorithm as 3 seconds. The tests given below were carried
out at different times.

4-3-2 Case 1: Walking inside a space

The first case is walking inside a space. The objective of this test is to check if the proposed
tracking algorithm can derive the moving trend of the walking person correctly and localize
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the person at an appropriate place (not inside obstacle and not in wrong space). The test
results are given in figure 4-7. From the result, we can see though there are some obvious
errors in the raw measurements of the WiFi positioning system, our algorithm still gets an
accurate trajectory of the person. No location is inside obstacle or at a wrong space and the
moving direction is correct.

(a) wifi measured locations (b) tracking results

Figure 4-7: Tracking inside a space: (a) the green points are WiFi measured locations, the
orange line is the actual walking path of the person. (b) the red star is the start location and the
blue points with the sequence numbers are locations computed by the tracking algorithm.

As introduced in section 3-2-5, a location can be computed based on either WiFi measured
locations or the moving direction. Later we call the location obtained via the first method
measured location and the location obtained via the second method estimated location. For
the tracking result of this case, the first two location point 1 and 2 are measured locations,
points 3 to 5 are estimated due to the fact that no accurate WiFi measured location are
available during this period. After that the location 6, 7 and 8 are measured locations again.
It is notable that even though many WiFi measured locations used to compute location
6 are located inside a neighboring space, the location 6 is still calculated correctly in the
old space by our algorithm. The last location 9 is estimated. In summary, the proposed
algorithm has good performance on filtering unreliable WiFi measured locations, and it can
provide reasonable estimation of person’s location when no accurate WiFi measured location
is available.

4-3-3 Case 2: Walking between spaces

The second case is walking between spaces. This test aims to check the algorithm’s capacity
on switching the person’s locations between two spaces. We can see both locations 11 in
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figure 4-8b and figure 4-8c are at the door connecting two spaces. This is because it’s first
time most WiFi measured locations are in a new space and the algorithm is not sure that the
person really enters the new space. So the location is put at the transition zone between two
spaces. The next time when most WiFi measured locations are in the new space again, the
algorithm confirms that the person enters the new space and computes the location based on
WiFi measured locations (location 12). It can be seen that there is a delay for entering a new
space caused by the algorithm’s conformation process. However the delay is not obvious for
one tracking interval (3 seconds). So we think the tracking algorithm’s performance on space
change is also quite well.

(a) WiFi measured locations (b) tracking results with more
estimated locations

(c) tracking results with more
measured locations

Figure 4-8: Tracking between two spaces: (a) the green points are WiFi measured locations, the
orange line is the actual walking path of the person. (b) and (c) the red star is the start location
and blue points with sequence numbers are locations computed by the tracking algorithm.

In addition, this test also looks at the influence of the ratio of measured locations and es-
timated locations in a trajectory on the accuracy. Since there are always inaccurate WiFi
measured locations during tracking, the trajectories always consist of both measured locations
and estimated locations. It is significant to know which type of location is more accurate. A
comparison is given by figure 4-8b and figure 4-8c. They use the same data to compute the
person’s walking trajectory, but the test of figure 4-8b has a smaller tolerance for inaccurate
WiFi measured locations than the test of 4-8c . Therefore more locations in this test are
estimated, for example the locations from 2 to 6 are all estimated location in 4-8b while in
the test of figure 4-8c, these locations are all measured location except location 6. It’s notable
that the estimated locations are closer to the actual path in this case. We think the esti-
mated location could be more accurate than measured location for a short walking distance
when the moving direction is not changing, however there is also error caused by continuous
estimations which can be seen in the later test.
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4-3-4 Case 3: Walking with turning

The third case is to check if the algorithm is able to deal with turning situations. The
experiment result in figure 4-9 shows that the algorithm can find a reasonable turning point
in the indoor environment and properly handle the change of moving direction.

In this test, it can be seen that in the middle part of the trajectory, locations are computed
at the wrong side of the obstacle. On the way from bottom to top, the error firstly happens
at location 4 which is located at the wrong side of the obstacle, after that even though new
WiFi measured locations are in the right side of the obstacle, the next location is still put at
wrong side because the path to the other side is blocked. Until the location 8 that is at the
end of the obstacle, the trajectory is adjusted. The same situation can be also seen on the
way back from location 14 to 18. This type of error is caused by two factors:

1. the WiFi positioning system is not very accurate. This causes the algorithm to deter-
mine the location at the wrong side.

2. the algorithm takes the constraint of indoor environment into consideration so that the
error can not be corrected immediately. We think this error is acceptable therefore it
does not influence the general tracking trend and can be corrected over time.

In addition, it is notable that the moving direction from 5 to 6 is opposite to the actual
moving direction. This is due to the control of estimation error which is explained in the
section 4-3-6.

4-3-5 Case 4: Comparison of tracking performance on short and long path

The fourth case studies if the tracking distance has an effect on the performance of the
algorithm. From the figure 4-10, we can see both the trajectories of short distance and long
distance deviate from the actual path inside the orange box. This error looks less serious
for the long trajectory because it is corrected later. The similar example can also be seen in
the result of the last test. Based on these results, we think the tracking performance can be
improved over time or tracking distance.

4-3-6 Case 5: Estimation error control

The fifth case looks at the error caused by estimation and how the algorithm prevents the
growth of this error. The test in figure 4-11a shows the maximum estimation error allowed by
the algorithm. In figure 4-11b the location 1 and 2 are estimated locations because the WiFi
measured locations are not inside the moving direction of the location 0. When computing
location 3, the estimation error is over the threshold. The location 3 is adjusted by using
WiFi measured locations obtained in a long period (from 1 to 3). Thus, the location 3 goes
back. After that, location 4 and 5 are computed using WiFi measured locations. It proves
that the estimation error will not increase over time.
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(a) WiFi measured locations (b) tracking results

Figure 4-9: Tracking with turning: (a) the green points are WiFi measured locations, the orange
line is the actual walking path of the person. (b) the red star is the start location, the blue points
with sequence numbers are locations computed by the tracking algorithm and the black point is
the turning point.

Figure 4-10: Comparison of short and long path: the brown points and vector represent the
locations computed by the algorithm and actual path of a short walking, the blue points and
vector represent the locations computed by the algorithm and actual path of a long walking.
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(a) WiFi measured locations (b) tracking results

Figure 4-11: Control of estimation error: (a) the green points are WiFi measured locations for
the locations 1 to 5 in (b), the orange line is the actual walking path of the person. (b) the the
blue points with sequence numbers are locations computed by the tracking algorithm.
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Chapter 5

Conclusion and future work

5-1 Conclusion

In this thesis, a spatial model-aided tracking algorithm based on WiFi positioning system is
proposed and its performance is tested in a live environment. The conclusion is made with
respect to the three sub research questions:

1. what features of spatial model could be employed for tracking?

2. In what way can the selected features be integrated together to decrease tracking errors
of WiFi positioning system?

3. How can the spatial model aided tracking algorithm be implemented and tested?

5-1-1 Spatial model

The grid model is suitable for tracking purpose. We compared several spatial models based
on different decompositions of the indoor environment through literature study. We consider
the grid model with regular subdivision of the indoor space is more appropriate because of
following advantages: It is easy to design and maintain. It has high flexibility. It is able to
provide accurate location data. Moreover, it is powerful for computation.

All geometric, topological and semantic features can contribute to improving the tracking per-
formance. As for geometric features, geometric coordinates, buffer, orientation, and distance
are useful for tracking. The geometric coordinates is employed to match the measurements of
WiFi positioning system to the model. The buffer of the previous location is used to derive
a smaller model for computing the current location. The orientation vector from the previ-
ous location to a grid cell is compared with the measured direction by the mobile device to
determine if the grid cell has a high probability to be the current location. The distance is
used to derive the distance difference feature that is one determinant of the prior probability
of the current location. As for semantic features, space, door and obstacle are employed.
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First these semantic features with the geometric coordinates are used together to derive the
connectivity graph of the grid model. Then they are included in both prediction and update
steps of the tracking algorithm. The ’space’ is a determinant of the prior probability and it is
used to determine the space property in the update step. The ’obstacle’ is also a determinant
of the prior probability it is used with the space to find the turning point. The ’door’ plays an
important role in the change of spaces. It works as a transition zone between two spaces and
successfully avoids ambiguous situations between spaces. As for topological features, various
features are derived, e.g., adjacency graph, connectivity graph, shortest path distance and
distance difference. These features are strongly related but not all of them are used. The
distance difference and connectivity graph are employed by the algorithm respectively for
prediction and finding the turning point.

5-1-2 Tracking algorithm

The tracking algorithm integrates all selected features of the spatial model as well as mea-
surements from WiFi positioning system and magnetometer using the grid filter. The grid
filter is a technique initially used for mobile robot localization and tracking, but we success-
fully adapted it to pedestrian tracking. In the prediction step of the grid filter, the geometric
features (buffer, orientation vector), topological features (distance difference) and semantic
features (space, obstacle) are combined to determine the prior probability of the location. In
the update step of the grid filter, the geometric coordinate feature is used to match the mea-
sured locations to the model, and the combinations of different types of features are employed
for special cases, such as space change and turning. The orientation vector together with se-
mantic features of space and door are used to determine the space property of locations at
the border of two spaces. The orientation vector, the semantic features of space and obstacle,
and connectivity graph are integrated to find the turning point.

The tracking algorithm can reduce the tracking errors of the WiFi positioning system. We
have tested the tracking algorithm for various cases in a live environment tracking. Our test
results shows that the algorithm can not only adjust the inaccurate locations measured by
the WiFi positioning system to a more reasonable place but also estimate a reliable location
when the quality of WiFi positioning is too poor. Moreover, the algorithm has the ability to
deal with complicated tracking cases like turning and passing spaces. However, it is difficult
to assess the tracking results quantitatively because we don’t know the precise walking path.
But by qualitatively comparing the computed trajectory and the actual path in the test result,
we can see the algorithm is able to derive the moving direction of the pedestrian correctly and
locate the pedestrian is always at a reasonable place (in the right space and outside obstacles),
and there is no obvious jumps between locations.

The performance of the algorithm is dependent on the input parameters, the indoor envi-
ronment and the tracking distance. The test case 2 shows the tolerance of outliers of WiFi
measured location can influence the tracking accuracy. From the test case 3 and 4, it can be
seen that the accuracy of the trajectory is affected by the constraints of the environment and
distance to track. The algorithm shows weakness on determining the location at the correct
side of the obstacle, but this error can be corrected with the increase of the tracking distance.
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5-1-3 Implementation

A tracking system is implemented to test the proposed algorithm. We developed a tracking
system using java technology. The system has three layers: database where the spatial model
is stored, web service where the tracking algorithm is implemented and mobile client where
the location and orientation data is measured. The web service also has three layer: DAO
layer, tracking service layer and control layer. The architecture of the system is recommended
by the CGI group company because it has following advantages: lightweight mobile client,
low requirements for data transmission, and high efficiency.

The tracking algorithm is tested offline, because the mobile client is not connected to web
service in real time, the algorithm is applied after the collection of all measurements. But the
system has the ability to track the pedestrian online when it is fully implemented.

5-2 Future work

The proposed tracking algorithm can provide a relatively accurate trajectory of the pedestrian
under the given assumptions. But the following aspects of the algorithm and tracking system
could be improved in future:

The algorithm uses a constant walking speed that is not suitable for real situations. The
walking speed of the person could be updated according to traveled distance and time. In
order to measure the speed, other devices such as inertial measure unit (IMU) and pedometer
are needed. With accurate speed, the algorithm can adjust the search region of the current
location (buffer) dynamically.

The algorithm uses the direction of the y-axis of mobile device to represent the person’s
orientation. However, this direction may be not the walking direction of the person if the
mobile device is rotated. It is necessary to adjust the direction based on the position of the
mobile device.

Most parameters of the algorithm are determined by experience or limited experiments. A
research on how to optimize these parameters should be carried out in the future.

The 2D grid model is used by this system. However, this model has limitations to represent
the vertical space between floors. In order to estimate the trajectory between different floors,
a 3D model could be considered.

The system should be fully implemented and tested in the case of online tracking. The
algorithm should be tested in a larger and more complex environment such as a large open
space or a place with repetitive architectural patterns. It is significant to know if the size and
complexity of the environment will influence the tracking performance.

A quantitative evaluation method to assess the performance of the tracking algorithm needs
to be studied.
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LBS location-based services

GPS Global Positioning System

RSS received signal strength

RSSI received signal strength indicator

APs access points

IFC Industry Foundation Classes

KML Keyhole Markup Language

GVD generalized Vorinoi Diagram

GVG generalized Vorinoi Graph

IMU inertial measurement unit

OS operating system

ER diagram entity-relationship diagram

ORM object-relational mapping

DAO Data access object
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Appendix A: Mobile client

1 public class Tracking extends ActionBarActivity {
2 private ArrayList<String> locationData = new ArrayList<String>() ;
3 private Location location ;
4 private SensorManager mSensorManager ;
5 private Sensor mOrientationSensor , mAccelerometerSensor ;
6 private float mTargetDirection , mAccelerometer ;
7 private Boolean hasOritensionSensor , hasAccelerometerSensor ,

hasRegisterSensorTOSensorManger , hasRegisterSensorTASensorManger ;
8 float x ;
9 float y ;
10 String result ;
11 private TextView text1 ;
12 private TextView text2 ;
13 boolean start ;
14 long starttime ;
15 long stoptime ;
16 double measuretime ;
17 @Override
18 protected void onCreate ( Bundle savedInstanceState ) {
19 super . onCreate ( savedInstanceState ) ;
20 setContentView (R . layout . activity_tracking ) ;
21 }
22
23 @Override
24 public boolean onCreateOptionsMenu ( Menu menu ) {
25 // Inflate the menu; this adds items to the action bar if it is

present.
26 getMenuInflater ( ) . inflate (R . menu . tracking , menu ) ;
27 return true ;
28 }
29
30 @Override
31 public boolean onOptionsItemSelected ( MenuItem item ) {
32 // Handle action bar item clicks here. The action bar will
33 // automatically handle clicks on the Home/Up button , so long
34 // as you specify a parent activity in AndroidManifest.xml.
35 int id = item . getItemId ( ) ;
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36 if (id == R . id . action_settings ) {
37 return true ;
38 }
39 return super . onOptionsItemSelected ( item ) ;
40 }
41
42 /*
43 * start tracking
44 */
45 public void start ( View view ) {
46 start=true ;
47 text1=(TextView ) findViewById (R . id . textView1 ) ;
48 text1 . setText ("processing" ) ;
49 localize ( ) ;
50 starttime=System . nanoTime ( ) ;
51
52 }
53
54 /*
55 * stop tracking and record measurements
56 */
57 public void stop ( View view ) {
58 start=false ;
59 removeSensorFromSensorManger ( ) ;
60 stoptime=System . nanoTime ( ) ;
61 text2=(TextView ) findViewById (R . id . textView2 ) ;
62 text2 . setText ("save" ) ;
63 /*String Path = Environment.getExternalStorageDirectory()
64 .getPath();*/
65 String Path = "/storage/emulated/legacy/whuapp" ;
66 /*String Path = Environment.getDataDirectory().getPath();*/
67 try {
68 FileWriter writer = new FileWriter ( Path+"/test.txt" , true ) ;
69 writer . append ("\n" ) ;
70 for ( String point : locationData ) {
71 writer . append ( point+"\n" ) ;
72
73 }
74 double seconds= ( double ) ( stoptime−starttime ) / 1000000000 .0 ;
75 writer . append ("time:"+seconds ) ;
76 writer . append ("\n" ) ;
77 writer . close ( ) ;
78 } catch ( IOException e ) {
79 // TODO Auto-generated catch block
80 e . printStackTrace ( ) ;
81 }
82 }
83
84 /**
85 * initial sensor
86 *
87 * @param mSensorManager
88 * SensorManageråŕźèśą
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89 */
90 private void initSensor ( SensorManager mSensorManager )
91 {
92 this . mSensorManager = mSensorManager ;
93 if ( ( mOrientationSensor = mSensorManager
94 . getDefaultSensor ( Sensor . TYPE_ORIENTATION ) ) != null )
95 {
96 hasOritensionSensor = true ;
97 }
98 if ( ( mAccelerometerSensor = mSensorManager
99 . getDefaultSensor ( Sensor . TYPE_ACCELEROMETER ) ) != null )
100 {
101 hasAccelerometerSensor = true ;
102 }
103 }
104
105 private SensorEventListener mySensorEventListener = new

SensorEventListener ( ) {
106 public void onAccuracyChanged ( Sensor sensor , int accuracy ) {
107 }
108 public void onSensorChanged ( SensorEvent event )
109 {
110 Sensor sensor = event . sensor ;
111 if ( sensor . getType ( )==Sensor . TYPE_ORIENTATION ) {
112 //get direction
113 float direction = event . values [ SensorManager . DATA_X ] ∗ −1.0f ;
114 // change direction to 0~360 degree
115 mTargetDirection = normalizeDegree ( direction ) ;
116 mTargetDirection = normalizeDegree ( mTargetDirection ∗ −1.0f ) ; //
117 }else if ( sensor . getType ( )==Sensor . TYPE_ACCELEROMETER ) {
118 // get accelerometer
119 mAccelerometer=getAccelerometer ( event ) ;
120 }
121
122 }
123 } ;
124
125 /**
126 * register sensor to SensorManger
127 */
128 protected void registerSensorToSensorManger ( )
129 {
130 if ( hasOritensionSensor )
131 {
132 mSensorManager . registerListener ( mySensorEventListener ,

mOrientationSensor ,
133 SensorManager . SENSOR_DELAY_GAME ) ;
134 hasRegisterSensorTOSensorManger = true ;
135 }
136 if ( hasAccelerometerSensor )
137 {
138 mSensorManager . registerListener ( mySensorEventListener ,

mAccelerometerSensor ,
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139 SensorManager . SENSOR_DELAY_GAME ) ;
140 hasRegisterSensorTASensorManger = true ;
141 }
142 }
143
144 /**
145 * remove sensor from SensorManger
146 */
147 protected void removeSensorFromSensorManger ( )
148 {
149 if ( hasOritensionSensor | | hasAccelerometerSensor )
150 {
151 mSensorManager . unregisterListener ( mySensorEventListener ) ;
152 hasRegisterSensorTOSensorManger = false ;
153 hasRegisterSensorTASensorManger = false ;
154 }
155
156 }
157
158 /**
159 * change angle to 0~360 degree
160 *
161 * @param measured degree
162 *
163 * @return normalized angle
164 */
165 private float normalizeDegree ( float degree )
166 {
167 return ( degree + 720) % 360 ;
168 }
169
170 private float getAccelerometer ( SensorEvent event ) {
171 float [ ] values = event . values ;
172
173 // Movement
174 float x = values [ 0 ] ;
175 float y = values [ 1 ] ;
176 float z = values [ 2 ] ;
177 float accelationSquareRoot =z−SensorManager . GRAVITY_EARTH ;
178 return accelationSquareRoot ;
179 }
180
181 public void localize ( ) {
182 mSensorManager = ( SensorManager ) getSystemService ( Context .

SENSOR_SERVICE ) ;
183 location = Location . getInstance ( mSensorManager ,
184 Tracking . this , getIntent ( ) ) ;
185 initSensor ( mSensorManager ) ;
186 if ( hasOritensionSensor | | hasAccelerometerSensor ) {
187 registerSensorToSensorManger ( ) ;
188 }
189 location . startLocation ( ) ;
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190 location . addOnLocationChangedListener ( new onLocationChangedListener ( )
{

191 public void parseLocation ( LocationEvent e ) {
192 if ( start ) {
193 x = e . getX ( ) ;
194 y = e . getY ( ) ;
195 measuretime=(System . nanoTime ( )−starttime ) / 1000000000 .0 ;
196 result=e . getResult ( ) ;
197 x=x+507400;
198 y=y+6791600;
199 String measure = x + "," + y +","+measuretime+","+

mTargetDirection+","+mAccelerometer+","+result ;
200 locationData . add ( measure ) ;
201 }
202 }
203 }) ;
204 }
205 }
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Appendix B: Tracking algorithm
(parts)

1 public Grid tracking ( Grid pgrid , List<Geometry> measurements , Map<String ,
String> params ) {

2 Double ori = Double . parseDouble ( params . get ("ori" ) ) ;
3 Double velocity= Double . parseDouble ( params . get ("velocity" ) ) ;
4 Double tinterval=Double . parseDouble ( params . get ("tinterval" ) ) ;
5 Double oriweight = Double . parseDouble ( params . get ("oriweight" ) ) ;
6 Double preori=Double . parseDouble ( params . get ("preori" ) ) ;
7 List<Double> mpara = new ArrayList<Double>() ;
8 Collection<Grid> mgrids =new HashSet<Grid>() ;
9 Map<String , Integer> spacevalue =new HashMap<String , Integer>() ;
10 Map<Grid , Double> posterior = new HashMap<Grid , Double>() ;
11 mpara . add ( velocity ) ;
12 mpara . add ( tinterval ) ;
13 Collection<Grid> gridmodel = updateGridModel ( pgrid , mpara , getGrids ( ) ) ;
14 Map<Grid , Double> priori = prediction ( pgrid , gridmodel , preori , oriweight

) ;
15 if ( measurequalityCheck ( pgrid , measurements , params ) . size ( ) >0){
16 measurements=measurequalityCheck ( pgrid , measurements , params ) ;
17 mgrids = mapPointtomodel ( measurements , gridmodel ) ;
18 spacevalue=spaceCheck ( mgrids , pgrid , ori , velocity∗tinterval ) ;
19 posterior = probabilityUpdate ( mgrids , spacevalue , gridmodel , priori

, 3 . 0 ) ;
20 /*Grid location= pgrid;*/
21 Grid location = findMaxpos ( posterior ) ;
22 return location ;
23
24 }else{
25 return estimateLocation ( priori , ori , pgrid ) ;
26
27 }
28
29 }
30 /**
31 * derive the sub model
32 */
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33 public Collection<Grid> updateGridModel ( Grid pgrid , List<Double> para ,
Collection<Grid> model ) {

34 Double ratio= 2 . 0 ;
35 Double extend = ratio∗para . get (0 ) ∗para . get (1 ) ;
36 Collection<Grid> newgridmodel = new ArrayList<Grid>() ;
37 for ( Grid grid : model ) {
38 if ( grid . getGeometry ( ) . coveredBy ( pgrid . getGeometry ( ) . buffer ( extend ) )

) {
39 newgridmodel . add ( grid ) ;
40
41 }
42
43 }
44 return newgridmodel ;
45 }
46 /**
47 * prediction step:
48 * compute priori probability
49 */
50 public Map<Grid , Double> prediction ( Grid pgrid , Collection<Grid>

gridmodel , Double ori , Double oriweight ) {
51 Map<Grid , Double> priori = new HashMap<Grid , Double>() ;
52 Double totalpos=0.0;
53 for ( Grid grid : gridmodel ) {
54 Double pos ;
55 if ( grid . getObs_id ( )==null ) {
56 GraphNode [ ] path= getRoute ( pgrid . getId ( ) , grid . getId ( ) ) ;
57 Double shortestpath=getRouteDistance ( path ) ;
58 Double distance = pgrid . getGeometry ( ) . getCentroid ( ) . distance ( grid

. getGeometry ( ) . getCentroid ( ) ) ;
59 Double pos0=getPreprob ( Math . abs ( shortestpath−distance ) ) ;
60 if ( grid . getSpace_id ( )==pgrid . getSpace_id ( ) ) {
61 pos=pos0 ;
62 }else{
63 pos=pos0 ∗ 0 . 5 ;
64 }
65 }else{
66 pos=0.0;
67 }
68 if (ori<=2∗Math . PI ) {
69 if ( oriCheck ( pgrid . getGeometry ( ) , grid . getGeometry ( ) ,ori , 1 0 . 0 , Math .

PI /4) ) {
70 pos=pos∗oriweight ;
71 }
72 }
73
74 priori . put (grid , pos ) ;
75 }
76 return priori ;
77 }
78 /**
79 * remove outliers of WiFi measured location
80 */
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81 private List<List<Integer>> removeOutliers (List<List<Integer>> clusters
, List<Double [ ] > clustercenters , Grid pgrid , Map<String , String> params )
{

82 Double ori = Double . parseDouble ( params . get ("ori" ) ) ;
83 Double velocity= Double . parseDouble ( params . get ("velocity" ) ) ;
84 Double tinterval=Double . parseDouble ( params . get ("tinterval" ) ) ;
85 Double range = 2∗velocity∗tinterval ;
86 int msize = Integer . parseInt ( params . get ("msize" ) ) ;
87 List<List<Integer>> newclusters = new ArrayList<List<Integer>>() ;
88 List<Double [ ] > newclustercenters= new ArrayList<Double [ ] >() ;
89 int size=clustercenters . size ( ) ;
90
91 for ( int i =0; i<size ; i++){
92 GeometryFactory gf = new GeometryFactory ( ) ;
93 Point pt =gf . createPoint ( new Coordinate ( clustercenters . get (i ) [ 0 ] ,

clustercenters . get (i ) [ 1 ] ) ) ;
94 if ( oriCheck ( pgrid . getGeometry ( ) ,pt , ori , range , Math . PI /3) ) {
95 newclusters . add ( clusters . get (i ) ) ;
96 newclustercenters . add ( clustercenters . get (i ) ) ;
97 }
98 }
99 clusters . clear ( ) ;
100 clustercenters . clear ( ) ;
101 clusters=newclusters ;
102 clustercenters=newclustercenters ;
103
104 if ( clusters . size ( ) >1){
105 int max=0;
106 int ind=0;
107 int sum=0;
108 for ( int i=0;i<clusters . size ( ) ; i++){
109 sum=sum+clusters . get (i ) . size ( ) ;
110 if ( clusters . get (i ) . size ( )>max ) {
111 max=clusters . get (i ) . size ( ) ;
112 ind=i ;
113 }
114 }
115 if (max>=sum /2) {
116 List<Integer> maincluster = clusters . get ( ind ) ;
117 clusters . clear ( ) ;
118 clusters . add ( maincluster ) ;
119 }else{
120 clusters . clear ( ) ;
121 }
122 }
123 return clusters ;
124 }
125 /**
126 * determine space property
127 */
128 private Map<String , Integer> spaceCheck ( Collection<Grid> mgrids , Grid

pgrid , Double ori , Double range ) {
129 Map<Integer , Integer> map = new HashMap<Integer , Integer>() ;
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130 Door spacedoor= new Door ( ) ;
131 for ( Grid mgrid : mgrids ) {
132 Integer count = map . get ( mgrid . getSpace_id ( ) ) ;
133 map . put ( mgrid . getSpace_id ( ) , ( count==null ) ?1 : count+1) ;
134 }
135 Integer max =0;
136 for ( Integer value : map . values ( ) ) {
137 if ( value>max ) {
138 max=value ;
139 }
140 }
141 Integer space=−1;
142 Integer sdoor =−1;
143 Map<String , Integer>spacemap = new HashMap<String , Integer>() ;
144 Integer previousspace=pgrid . getSpace_id ( ) ;
145 for ( Integer key : map . keySet ( ) ) {
146 if ( map . get ( key )==max ) {
147 if ( key==previousspace ) {
148 space=previousspace ;
149 break ;
150 }else{
151 space=key ;
152 }
153 }
154 }
155 if ( space !=previousspace ) {
156 for ( Door door : getDoors ( ) ) {
157 int sp1=door . getSpace1 ( ) ;
158 int sp2=door . getSpace2 ( ) ;
159 if ( ( space==sp1&&previousspace==sp2 ) | | ( space==sp2&&previousspace==

sp1 ) ) {
160 spacedoor = door ;
161 break ;
162 }
163 }
164 if ( spacedoor . getId ( ) <0){
165 space = previousspace ;
166 }else {
167 Set<Grid> doorgrids = spacedoor . getGrid ( ) ;
168 for ( Grid doorgrid : doorgrids ) {
169 if ( oriCheck ( pgrid . getGeometry ( ) , doorgrid . getGeometry ( ) ,ori ,

range , Math . PI /4) ) {
170 if ( pgrid . getDoor_id ( )==null | | pgrid . getDoor_id ( ) !=spacedoor .

getId ( ) ) {
171 sdoor=spacedoor . getId ( ) ;
172 }
173 }
174 }
175 }
176 }
177 if ( sdoor<0){
178 spacemap . put ("space" , space ) ;
179
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180 }else{
181 spacemap . put ("door" , sdoor ) ;
182 }
183 return spacemap ;
184 }
185 /**
186 * update step:
187 * compute posterior probability
188 */
189 private Map<Grid , Double> probabilityUpdate ( Collection<Grid> mgrids , Map<

String , Integer> spacevalue , Collection<Grid> gridmodel , Map<Grid ,
Double> priori , double range ) {

190 if ( spacevalue . get ("door" )==null ) {
191 for ( Grid grid : gridmodel ) {
192 Double count=0.0;
193 for ( Grid mgrid : mgrids ) {
194 if ( grid . getSpace_id ( )==spacevalue . get ("space" ) ) {
195 if ( mgrid . getGeometry ( ) . buffer ( range /3) . contains ( grid .

getGeometry ( ) ) ) {
196 count=count+3;
197 }else if ( mgrid . getGeometry ( ) . buffer (2∗ range /3) . contains ( grid .

getGeometry ( ) ) ) {
198 count=count+2;
199 }else if ( mgrid . getGeometry ( ) . buffer ( range ) . contains ( grid .

getGeometry ( ) ) ) {
200 count=count+1;
201 }
202 }
203 }
204 Double pos=count/mgrids . size ( ) ;
205 priori . put (grid , priori . get ( grid ) ∗pos ) ;
206 }
207 }else{
208 try {
209 Door door = getProjectService ( ) . getDoorByID ( spacevalue . get ("door"

) ) ;
210 Double pos ;
211 for ( Grid grid : gridmodel ) {
212 if ( hasDoor (door , grid ) ) {
213 pos=1.0;
214 }else{
215 pos=0.0;
216 }
217 priori . put (grid , priori . get ( grid ) ∗pos ) ;
218 }
219 } catch ( ProjectServiceException e ) {
220 // TODO Auto-generated catch block
221 e . printStackTrace ( ) ;
222 }
223 }
224 return priori ;
225 }
226
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227 private Grid estimateLocation (Map<Grid , Double> priori , Double ori , Grid
pgrid ) {

228 List<Grid> candidates =new ArrayList<Grid>() ;
229 for ( Grid key : priori . keySet ( ) ) {
230 if ( priori . get ( key )>0.5&&oriCheck ( pgrid . getGeometry ( ) , key .

getGeometry ( ) ,ori , 1 0 . 0 , Math . PI /4)&&key . getSpace_id ( )==pgrid .
getSpace_id ( ) ) {

231 GraphNode [ ] path= getRoute ( pgrid . getId ( ) , key . getId ( ) ) ;
232 Double distance=getRouteDistance ( path ) ;
233 if ( distance<4){
234 candidates . add ( key ) ;
235
236 }
237 }
238 }
239 if ( candidates . size ( )==0){
240 return pgrid ;
241 }
242 else if ( candidates . size ( )==1){
243 return candidates . get (0 ) ;
244 }else{
245 double max=0.0;
246 Grid location = pgrid ;
247 for ( Grid each : candidates ) {
248 Double [ ] vector1={Math . sin ( ori ) , Math . cos ( ori ) } ;
249 Double [ ] vector2={each . getGeometry ( ) . getCentroid ( ) . getX ( )−pgrid .

getGeometry ( ) . getCentroid ( ) . getX ( ) , each . getGeometry ( ) .
getCentroid ( ) . getY ( )−pgrid . getGeometry ( ) . getCentroid ( ) . getY ( )
} ;

250 if ( getAngleofvectors ( vector1 , vector2 )>max ) {
251 max=getAngleofvectors ( vector1 , vector2 ) ;
252 location=each ;
253 }
254 }
255 return location ;
256 }
257 }
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