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ABSTRACT 

Object recognition is often conceived of as proceeding by segmenting an object from its surround, then 

integrating its features. In turn, peripheral vision’s sensitivity to clutter, known as visual crowding, has 

been framed as due to a failure to restrict that integration to features belonging to the object. We hand-

segment objects from their background, and find that rather than helping peripheral recognition, this 

impairs it when compared to viewing the object in its real-world context. Context is in fact so important 

that it alone (no visible target object) is just as informative, in our experiments, as seeing the object alone. 

Finally, we find no advantage to separately viewing the context and segmented object. These results, 

taken together, suggest that we should not think of recognition as ideally operating on pre-segmented 

objects, nor of crowding as the failure to do so. 
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INTRODUCTION 

How do we recognize an object? Traditional theories of visual perception suggest that the visual system 

must segment the object from the background, and piece together or “integrate” features of increasing size 

and complexity in order to recognize the object. There exist a number of explicit examples of this theory 

(e.g. Biederman, 1987; Kosslyn, 1987; Marr, 1982; Neisser, 1967; Palmer & Rock, 1994ab). The idea is 

also implicit in a number of theories. Selfridge (1959), for instance, describes matching an object in 

memory to the "observed object" without regard for how the latter might be distinguished from the 

background or surrounding clutter.   

It seems at first glance almost a logical necessity that object recognition ignores spurious features outside 

the object. If this view is correct, then a fundamental issue consists of how to integrate the parts that 

belong to the object and ignore the parts that do not. Some researchers have suggested that this is a role 

for attention: that attention “selects” the target, in essence “shrink-wrapping” it so that the visual system 

can respond to its features and not those of surrounding image regions (Moran & Desimone, 1985). 

In the fovea, object recognition is relatively robust and effortless. However, the visual system has trouble 

recognizing objects in the peripheral visual field in the presence of nearby flanking stimuli, a 

phenomenon known as crowding (Whitney & Levi, 2011; Levi, 2008; Pelli & Tillman, 2008). Crowding 

is characterized by a critical distance within which clutter greatly disrupts recognition of the target object 

(Bouma, 1970). Across a range of stimuli, the critical distance equals approximately half the eccentricity, 

i.e. the distance between the target and the point of fixation (Pelli & Tillman, 2008). Crowding has been 

attributed to a failure of object recognition mechanisms to limit integration of features to the object of 

interest, known as “excessive integration”: (Parkes et al, 2001; Pelli et al, 2004; Pelli & Tillman, 2008; 

Chakravarthi & Cavanagh, 2009; Bernard & Chung, 2011). Some researchers have further suggested that 

the excessive integration might be due to limited attentional resolution (He et al, 1996; Intriligator & 

Cavanagh, 2001; Yeshurun & Rashal, 2010; and related to the more general notions of competition in 

Desimone & Duncan, 1995), such that the peripheral visual system cannot “select” only the object of 

interest for further processing.  

These theories, both of normal object recognition mechanisms isolating the target object, and of crowding 

as a failure to do so, presume that ideally the visual system should shrink-wrap the target, integrating 

features over only its area. However, in everyday life, objects tend to appear in certain environments and 

not others. These regularities mean that context, i.e. the surrounding scene, provides cues for object 

recognition. Oliva and Torralba (2007) eloquently demonstrated this theoretical point by collecting a large 

number of images of a given type of object, centering them on that object, and averaging them. If context 

were uninformative, the result would be a uniform gray field everywhere except at the location of the 
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object. Instead, the average images show considerable structure: keyboards tend to appear below 

computer monitors and on top of desks; faces tend to appear above a body and near the horizon; a fire 

hydrant sits on the ground plane; and boats lie in the water near other boats 

(http://people.csail.mit.edu/torralba/gallery). Nor does context only inform perception at the level of 

object recognition. The same image regularities that lead to Gestalt grouping mean that neighboring 

image regions are often informative as to the features of a given region. A particular edge segment, for 

instance, tends to co-occur with neighboring edges of certain locations and orientations, and not with 

others (Geisler & Perry, 2009). 

The visual system clearly can make use of contextual information. A letter is better recognized within a 

meaningful word than in isolation (Reicher, 1969; Wheeler, 1970). When a gray mask hides an object, 

observers can correctly guess that object’s category on their first try more than 60% of the time (Greene et 

al., 2010). The Fusiform Face Area shows as much fMRI activation to a face implied by contextual cues 

(a body) as it does to a face alone (Cox, Meyers, & Sinha, 2004), although others have argued that this 

may be an artifact of low-resolution fMRI scanning (Schwarzlose, Baker & Kanwisher, 2015). 

Given the potential importance of contextual information, does crowding point to a puzzling failure of 

peripheral vision to shrink-wrap the target? Or is such shrink-wrapping not ideal in real-world vision? We 

ask observers to recognize objects in real images, with naturally occurring correlations between the object 

and other scene elements, and natural amounts of nearby clutter. By varying the window through which 

observers view the peripheral object, we examine the relative importance of shrink-wrapping and 

integrating contextual information.  

EXPERIMENT 1 

We asked observers to identify peripheral objects, and varied the size of the surrounding aperture. The 

smallest aperture just fit the target; the largest aperture was five times the object size (Figure 1A). 

[PUT FIGURE 1 ABOUT HERE] 

Figure 1B shows several possible outcomes. Typical crowding experiments utilize arrays of items against 

a blank background, such as a triplet of letters. By design, the letters flanking the target are completely 

uninformative as to the identity of the target. In such experiments, performance typically drops as the 

flankers move to within the critical distance of the target. Based upon typical crowding experiments, what 

results might we expect when we vary the aperture size? Small aperture sizes are similar to wide target-

flanker spacing, in the sense that no flankers appear within critical distance of the target. On the other 

hand, for larger aperture sizes, clutter lies within the critical distance of the target. Similarly, in traditional 

crowding experiments clutter lies within this window when target-flanker spacing is less than the critical 
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distance. If our results were like classic crowding, we would expect performance to drop as the aperture 

size increased beyond the size of the object, asymptoting as it reached Bouma’s critical distance (blue 

curve). On the other hand, to the extent that the visual system makes use of informative context, we 

would expect larger apertures to facilitate recognition, at least partially mitigating negative effects of 

crowding. Performance might follow a dipper function (yellow), in which for small apertures crowding 

dominates, but at larger aperture sizes contextual facilitation takes over. Crowding and contextual effects 

might balance, at least for small apertures (green). Or contextual information might more than 

compensate for detrimental effects of clutter (red). Of course, what happens in practice will depend 

heavily on the difficulty of the object recognition task (e.g. basic level categorization vs. subordinate 

level), and the degree of correlation between object identity and context in a particular dataset. Our goal 

here is to see what happens if we pick a natural image dataset, and a collection of common objects (i.e. no 

cherry-picking of either objects or their context), and ask for a straightforward and natural basic-level 

categorization. 

Methods 

Participants 

	 	

Figure	1.	 Experiment	1,	methodology	and	predictions.	A.	Each	target	appears	at	10°	eccentricity,	within	5	possible	aperture	
sizes.	 B.	 The	 effects	 of	 informative	 context	 and	 visual	 crowding	 work	 in	 opposition.	 A	 number	 of	 outcomes	 are	 possible,	
depending	upon	the	relative	strength	of	these	two	factors	(see	text).	 
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Five observers participated, all male students (mean age 21). All had normal or corrected-to-normal 

vision and were native Dutch speakers. This number of observers was chosen based on power calculations 

as follows: As each observer views a given object at only one of five window sizes, we combine across 

observers to compare performance for different apertures. Five observers gives us 656 trials per condition. 

For a binomial distribution, the estimated confidence interval (CI) is largest at a probability of 0.5. For 

n=656 at p=0.5, the estimated CI is +/- 0.04, which we deemed sufficiently precise to reveal important 

differences between the conditions (note that for a typical crowding experiment performance varies from 

near chance for the smallest target-flanker spacing to 80% correct or more for an unflanked target). 

Stimuli 

Stimuli derived from the SUN2012 database (Xiao, Hays, Ehinger, Oliva, & Torralba, 2010). It contains a 

diverse collection of object and scene categories, with a large number of images per category. The 

database also includes hand-labeled masks for individual objects, gathered using the LabelMe toolbox 

(Russell, Torralba, Murphy, & Freeman, 2008).  

For each of the 100 most common objects in the SUN2012 database – excluding background elements 

such as wall, sky, ceiling, etc. – we randomly selected image-object pairs to satisfy the following 

constraints: (1) the object must have sufficient resolution, subtending at least 100 pixels in width or 

height; (2) all five apertures must fit completely within the image; (3) we eliminated any occluded 

objects. The final selection contained a total of 656 stimuli, consisting of 85 unique object labels. The 

number of stimuli within the same category ranged from 1 to 24, with an average of 7.7 stimuli per object 

category. Examples are shown in 1B. 

We scaled each image so that the target subtended 4° in its largest dimension, and centered the image 

such that target objects appeared at 10° eccentricity. The aperture surrounding the target varied in size 

from 4° to 20° diameter, in steps of 4°. The largest aperture extended from the central fixation point to the 

edge of the screen (see Figure A, far right). At 10° eccentricity, crowding typically occurs when flankers 

lie within a critical spacing of approximately 5°, i.e. within a 10° diameter aperture (Bouma, 1970). The 

classical critical spacing, then, lies midway between the 2nd- and 3rd-smallest aperture sizes. 

Procedure 

Each observer saw all 656 objects in one of five possible aperture sizes. The order of objects and aperture 

sizes were random and the aperture sizes were balanced across observers. Thus, each object was 

presented within five different aperture sizes to five different observers, and each data point in Figure 2A 

consists of results from 656 trials. 
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For each trial, the observer fixated an isolated central cross, and then pressed the space bar to start the 

presentation. The observer was seated on one (long) side of a table looking at the presentation screen, 

while the experimenter (the first author, in experiments 1 and 2) was seated at the other side, looking at a 

flanking screen facing the opposite direction. A webcam under the observers’ screen streamed a close-up 

of the observers’ eyes to the experimenters’ screen. During a trial, the experimenter watched this stream 

closely until an answer was given, which he logged on a spreadsheet in his screen. The observer was also 

instructed to report fixation violations. A violation reported by either the observer or experimenter result 

in the trial being discarded; in practice nearly all reported violations were noticed by the experimenter 

(i.e. it rarely happened that the observers reported a violation while the experimenter did not), while 

observers sometimes did not notice their own deviations, as one would expect. Variability among 

observers was rather large (4, 8, 35, 63, 16 fixation violations were counted for the five observers, 

respectively) amounting to an average of 3.8% of the trials. In the appendix an overview of all fixation 

violations per conditions for all experiments is presented. While the method we used to detect fixation 

violations is not as robust as one utilizing an eye tracker, the violation data in the appendix do not suggest 

that undetected violations drive any of the reported results (under the assumption that undetected 

violations for a given condition are proportional to detected violations).  

In typical crowding experiments one can simply instruct the observer to identify the middle object in an 

array. However, for real scenes it can be difficult to determine which object lies in the center of a sizeable 

aperture, even when centrally viewed. We used a red circle, the size of the smallest aperture, as a precue, 

to clarify the task. The scene faded in (approx. 600 ms), to minimize spontaneous saccades due to sudden 

peripheral change. Presentation time was not limited but observers were encouraged to respond promptly. 

The observer responded by pressing a space bar to terminate the presentation, and then verbally indicated 

the basic-level object category. Answers were made in Dutch by native Dutch speakers, and logged by the 

(Dutch-speaking) experimenter. 

Data analysis 

We viewed the original photo while evaluating the correctness of each response, in order to be robust to 

labeling errors or ambiguities in the SUN2012 database. This led to a fairly liberal criterion for correct 

identification – rather than requiring a match to the SUN2012 label, we accepted observer labels that 

appeared to match the target object. Although we instructed observers to give a basic-level categorization 

(e.g. car), they sometimes responded with a subordinate level (e.g. convertible). We scored such 

responses as correct. Superordinate levels (e.g. vehicle) counted as incorrect. We computed average 

accuracy across observers, for each aperture size. 
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Results 

[PUT FIGURE 2 ABOUT HERE] 

 

To assess which of the qualitative models shown in Figure 1 would apply, we tested for significant 

differences between subsequent window sizes. Because the accuracy data is binomially distributed, we 

used two-sample proportion tests converting the differences to z-scores. We used the binomial 

approximation to quantify 95% confidence intervals. 

Accuracy monotonically increased from 45.2% (95% CI: 41.2-49.0) for the smallest aperture to 70.1% 

(CI: 66.5-73.6) for the largest aperture (Figure 2A). Performance appears to saturate at around the third 

aperture size, i.e. just beyond Bouma’s critical distance. Planned comparisons for each of the four 

consecutive aperture pairs revealed that aperture size 2 was significantly better than size 1 (proportion 

test, z=5.48, p<0.05), no other consecutive aperture size pair showed significant differences (p>0.05). 

We also fit a logistic function 𝑓 𝑥 = (1 − 𝑐)/(1 + 𝑒!(!!!)/!) to the data. Here, x denotes the aperture 

size, (1-c) denotes the asymptotic behavior for increasing x, a specifies the horizontal translation of the 

whole function, and b partly (together with c) determines the slope. We found that the best fit parameter 

of c to be 0.304, (95% CI: 0.245-0.330), for an asymptotic recognition rate of approximately 70% correct. 

Given that c is less than 1, the sign of b distinguishes between a monotonically increasing or decreasing 

	

Figure	2.	Peripheral	recognition	accuracy	in	all	three	experiments.	A)	Accuracy	as	a	function	of	aperture	size.	Shown	with	best-
fit	logistic	function.	Error	bars	indicate	95%	confidence	intervals	on	the	data	points.	The	plot	clearly	shows	that	accuracy	rises	
rapidly	between	the	first	and	second	aperture	size	and	asymptotes	around	the	third	aperture	size.	B)	Context	provides	nearly	as	
much	information	as	the	object	alone.	Performance	for	the	shrinkwrapped	target	is	similar	to	that	for	the	smallest	window	size	
in	 (A),	suggesting	the	poor	performance	with	a	small	aperture	was	not	due	to	poor	shrinkwrapping.	C)	Performance	is	similar	
when	context	and	object	are	presented	together	as	when	the	context	is	presented	first,	followed	by	the	shrinkwrapped	target.	
The	stimulus	presentation	of	 the	Concurrent	condition	 is	similar	 (but	different	observers)	 to	the	 largest	apertures	size	 in	 (A),	
which	is	reflected	by	the	similar	accuracies.	 
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function. The best fit parameter for b was 0.809 (95% CI: 0.520-1.595), indicating that performance 

significantly increases rather than decreases with increased aperture size.  

Except for model I, the models shown in Figure 1B all yield equal or worse performance as aperture sizes 

increase from the size of the target up to Bouma’s radius. The data shows instead an increase in 

performance within this regime, as confirmed statistically both by the planned comparisons and the best 

fit parameters of the logistic function. Including the background in object recognition leads to better 

rather than worse performance. Fixation violations were relatively constant over the various aperture sizes 

(23, 27, 34, 22, 20), indicating that the pattern of better performance for larger apertures is unlikely to 

have arisen from observers being more likely to violate fixation for those conditions.  

Discussion 

Context clearly provides information for peripheral object recognition in real scenes. More context, i.e. a 

larger aperture around the target, is better. The benefit of context outweighs any degradation due to not 

shrink-wrapping the target. 

If crowding is a failure to select a target from its surround, then helping select it should improve 

identification. Instead, the opposite occurs; smaller apertures yield poorer performance. 

EXPERIMENT 2  

These results naturally raise the question of how well observers would identify the object if shown only 

the context and not the object itself. In addition, the smallest aperture may still contain some clutter; 

would performance improve if we more carefully shrink-wrapped the object to its silhouette?  

Methods 

Four observers (two males) participated in the second experiment. One male was 58, the other three 

observers were students with a mean age of 21. All had normal or corrected-to-normal vision and all were 

native Dutch speakers. 
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We used the same set of 656 images from SUN2012 as in the first experiment. The experimental 

procedure was also similar, except that it included only two apertures: ‘context-only’ and ‘shrink-

wrapped’ (see Figure 3). In the ‘context-only’ condition, the largest aperture size was used, with the 

circular target area blanked out with the same mid-gray as the background. Trials were blocked by 

aperture type, with block order balanced across participants. Each observer saw a given scene only once, 

in only one of the two presentation conditions. Therefore, 1312 trials underlie analysis of each of the two 

conditions. Fixation violations again varied substantially between observers (44, 0, 68, 28 times, 

respectively), amounting to discarding 5.3% of the trials. For all observers, the violations were higher or 

similar in the shrink-wrapped condition.  

Results 

[PUT FIGURE 3 ABOUT HERE] 

 

In both the Context-only and Shrink-wrapped conditions, observers correctly identified about 40% of the 

stimuli (Figure 2B). Chance is at most 1.2% correct (there were 85 object types present in the 

experimental set, although observers were naïve as to this number). The difference between the two 

conditions was small and not significant (z(x)= 1.2027, p = 0.23, context-only: 38.6% (CI: 35.9-41.2), 

shrink-wrapped: 40.9% (CI: 38.2-43.6)).  

We also conducted proportion tests to compare the current results with Experiment 1. Performance with 

the largest aperture size was significantly better than with context alone (z=12.9697, p<0.05). Though 

	

Figure	3.	Screenshots	of	the	Context-only	and	Shrink-wrapped	conditions	in	Experiment	2.	As	in	Experiment	1,	observers	had	
to	 fixate	the	central	 fixation	cross	 (shown	 in	the	 figure	enlarged	by	a	 factor	of	 3	and	red	 for	visibility).	 In	one	block	only	 the	
context	 was	 presented	 by	 showing	 the	 largest	 aperture	 size	 with	 the	 target	 covered	 by	 a	 gray	 disk.	 In	 another	 block	 a	
shrinkwrapped	version	of	the	object	was	shown,	using	the	polygonal	masks	given	in	the	SUN2012	database.	The	stimulus	pair	
shown	 here	 is	 complementary:	 the	 object	 and	 surround	 originate	 from	 the	 same	 image.	 For	 a	 given	 original	 image,	 each	
observer	saw	either	the	context	alone	or	the	object	alone,	but	not	both.	 
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context alone proves quite valuable in identifying the (non-visible) object, recognition is better if the 

object is visible. The difference between the smallest aperture size condition and the shrink-wrapped 

condition was not significant (z= 1.75969, p = 0.078); careful shrink-wrapping does not improve 

performance with respect to the smallest aperture size from Experiment 1.  

Discussion 

With context alone, observers attain 40% correct performance identifying (invisible) peripheral objects. 

Context alone is as good as viewing only the target. These results would surely vary with the particular 

choice of images, targets, and task (e.g. basic-level vs. subordinate-level categorization). Nonetheless, 

with a plausible sampling of real image-object pairs, context is clearly highly important for basic-level 

categorization of objects in the periphery. Exactly what drives this perhaps surprisingly good performance 

at identifying unseen objects? In some images, nearby objects may actually have the same identity as the 

target; for example, cars tend to appear on the street near other cars. Scene category clearly affects the 

likelihood that a given target appears. Pairs of objects may also tend to co-occur, independent of scene 

category (Draschkow & Võ, 2017); a spoon may lie near a teacup regardless of where one takes one’s tea. 

Because our stimulus set was chosen relatively randomly, rather than controlled, it is difficult to make 

strong inferences about the relative contribution of these factors without more systematic study.  

EXPERIMENT 3 

Clearly contextual information is useful for peripheral object recognition. However, perhaps shrink-

wrapping remains optimal for the object recognition system, so long as some other mechanism extracts 

	

Figure	4.	Screenshots	of	Experiment	3.	In	the	Sequential	condition	observers	were	first	presented	with	the	context	for	1	second	
and	then	shown	the	shrink-wrapped	object.	 In	 the	Concurrent	condition	the	object	and	context	were	 shown	simultaneously,	
similar	to	presentation	of	the	largest	aperture	size	from	Experiment	1. 
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contextual information, such as the gist of the scene. Then a decision process could combine object and 

contextual information to categorize the object. If so, we would expect to see an advantage to presenting 

context and object separately, compared to presenting them together. Presenting the isolated object would 

overcome peripheral vision’s failure to shrink-wrap the target, while presenting the context would 

normalize the available contextual information. The magnitude of the benefit for separate presentation 

provides a measure of the cost of peripheral vision failing to select the target. 

Methods 

[PUT FIGURE 4 ABOUT HERE] 

 

We compared presenting context and target one after the other (Sequential condition) to presenting them 

at the same time and in the same image (Concurrent condition). Eight observers participated. All had 

normal or corrected-to-normal vision. All were native (American) English speakers. 

Stimuli and procedure were similar to Experiments 1 and 2. For both Sequential and Concurrent position 

we used the largest aperture size. In the Sequential condition, the context faded in over 600 ms, was 

present for 1000 ms, after which the shrink-wrapped stimulus faded in over 600 ms and remained for until 

a response (as previous experiments). In the Concurrent condition, observers saw an aperture containing 

the target object, similar to the largest aperture condition in Experiment 1. An illustration of the procedure 

is shown in Figure 4. Each observer saw each of the 656 stimuli in only one condition. The conditions 

were blocked and counterbalanced: four participants first viewed 328 stimuli in the Sequential condition 

followed by the remaining 328 stimuli in the Concurrent condition, and other the four participants first 

viewed the Concurrent condition. A total of 2624 trials underlie analysis of each of the two conditions. 

Fixation violations (7, 7, 25, 20, 35, 13, 25, 9 times for each of the 8 observers, respectively) amounted to 

2.7% of the trials being discarded.  

Results 

Performance in the Sequential condition was 74.4% (CI: 72.7-76.1), very similar to the 72.1% (CI: 70.3-

73.8) correct performance in the Concurrent condition (Figure 2C). A two-proportion z-test found no 

significant difference between the two conditions (z=1.93, p=0.054).  

Discussion 

Even when one normalizes the amount of context available, performance is still not appreciably better 

with a shrink-wrapped target. Even if one considers the difference marginally significant, the impact on 

performance of viewing the target in context – the cost of failing to select the target – is very small. 

Sequential viewing provided a benefit of only 2.3% correct over performance in the Concurrent condition. 
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If crowding were a critical failure to select the target, then we would expect to see substantially better 

performance when viewing shrink-wrapped targets in the Sequential condition.  

GENERAL DISCUSSION 

We found that peripheral object recognition performance monotonically increases as a function of the size 

of the viewing aperture around the target object. Viewing the context alone, without a visible target, led to 

as good of performance as viewing the shrink-wrapped target. Finally, there was no great advantage to 

viewing the context and object separately, compared to viewing the object within its natural context. 

It is important to discuss these results within the context of classic crowding experiments. Previous 

studies using carefully controlled stimuli have provided great insight into peripheral mechanisms. 

Peripheral vision appears to integrate information over sizeable regions, often leading to significant 

degradation in performance when those regions contain irrelevant clutter. Crowding is often taken to 

mean that “objects in the world, unless they are very dissimilar, can be recognized only if they are 

sufficiently separated” (Pelli, 2008). This would predict that peripheral object recognition in the real 

world would generally be quite poor. However, Experiment 1 showed that in real images, observers 

recognize peripheral objects quite well. Furthermore, crowding has been described as a failure to select 

only the target, so as to integrate only the features of that object for recognition. When we “select” the 

object for the observer, however, performance is worse. This result differs from typical crowding 

experiments, in which (effectively) cutting out the target and displaying it apart from the flankers greatly 

improves performance. Note, however, that our results do not suggest that crowding mechanisms do not 

operate when viewing real-world scenes; presumably they do (Rosenholtz, 2014). In Experiment 1, 

peripheral object recognition performance asymptotes at only about 70% correct. Crowding is likely a 

major factor in this poor performance. Although we did not control for other possible losses in peripheral 

vision, such as reduced acuity, acuity losses are considerably smaller, and likely of less importance in 

identifying real-world stimuli than crowding (Rosenholtz, 2016). 

[PUT FIGURE 5 ABOUT HERE] 
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Figure	5.	Number	of	flanking	objects	within	the	aperture,	as	a	function	of	aperture	size.	An	object	was	considered	present	if	the	
centroid	of	 its	 LabelMe	mask	 lay	within	 the	aperture.	 This	definition	 likely	underestimates	 the	degree	of	 crowding	of	 target	
objects	 in	our	stimulus	set,	since	crowding	can	occur	when	the	target	 is	 flanked	by	parts	of	objects,	or	by	clutter	other	 than	
objects.	Nevertheless,	this	plot	gives	some	intuition	about	the	amount	of	object	clutter	in	our	scene	stimuli.	The	classic	critical	
distance	of	crowding	lies	between	aperture	sizes	2	and	3,	within	which	there	lie	approximately	3	flanking	objects,	on	average.	

 

Nor do real-world scenes contain less clutter than classic crowding experiments. When we randomly 

sampled targets in real-world scenes, on average approximately 3 flanking objects lay within critical 

distance of the target (Figure 5). This number almost certainly underestimates the amount of crowding-

inducing clutter, since it counts only flanking objects, narrowly defined. In comparison to classic 

crowding experiments, this should provide sufficient clutter to induce crowding. 

Rather, peripheral object recognition in real-world images is likely better than expected because normally 

occurring context provides a cue to object identity that mitigates the effects of crowding. The 

informativeness of context means that rather than isolating an object, ideally one should “integrate” 

information from beyond its boundaries. In fact, we found that context alone can be as useful as the object 

itself. Interestingly, we found that the beneficial contribution of integration seems to saturate around 

Bouma’s radius. Whereas the traditional crowding hypothesis would suggest that this integration 

sabotages recognition, we find the opposite effect. Intuitively, it makes sense that the benefit of context 

would, on average, plateau for larger window sizes. While a distant car may make a target object 

somewhat more likely to be a car, or distant water make the target more likely a boat, in general an 

object’s identity likely correlates more strongly with nearby objects and materials. A nearby bed helps 

identify a clock radio, but a bookcase elsewhere in the room provides little additional information. 

Of course, in the real world a target object may also be flanked by uninformative clutter. An 

uninformative flanker effectively “occludes” relevant contextual information. Object recognition needs 

tolerance to occlusion, but such tolerance is generally thought to be accomplished through robust 

inference rather than through shrink-wrapping the object (Yuille & Kersten, 2006).  
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We started with the notion that object recognition involves integration of features belonging to the object, 

and that crowding is the failure of peripheral processes to restrict integration to only the object. However, 

several lines of research challenge this view of object recognition.  Many successful computational 

models of object recognition (from the fields of both human and computer vision), utilize features both 

from within the object and from outside of it (Riesenhuber & Poggio, 1999; Fink & Perona, 2003; 

Torralba et al., 2004; Dalal & Triggs, 2005; Heitz & Koller, 2008; Zhu, Bichot, & Chen, 2011; 

Krizhevsky, Sutskever, & Hinton, 2012; Yamins et al., 2014). In addition, considerable research from the 

study of figure-ground segregation has challenged the notion that segmentation precedes recognition 

(Peterson, Harvey, & Weidenbacher, 1991; Peterson & Gibson, 1991, 1993, 1994ab; Peterson, 1994; 

Vecera & Farah, 1997; Navon, 2011). Nonetheless, the segmentation-first view of object recognition has 

persisted in various forms. 

Previous theories have often focused on integration beyond object boundaries as the culprit in crowding. 

However, crowding phenomena may instead result from the particular features integrated by the visual 

system, and from the information lost in the process. Our results support the latter hypothesis. We have 

demonstrated that one should not conceptualize crowding as a failure to select only the object, since such 

selection is not ideal. Nor does it seem that some other mechanism extracts contextual information and 

provides it to recognition mechanisms that process the isolated object. We find only a weak and non-

significant benefit to presenting object and context separately; the "cost" of not shrink-wrapping the target 

is small or non-existent. Rather, mechanisms with large receptive fields, extending beyond object 

boundaries, may jointly process features of both object and context. The detrimental effects of crowding 

then arise from the nature of the “integration”, i.e. how peripheral vision encodes its inputs. Given the 

importance of context, integration over a sizeable region, rather than being a failure of peripheral vision, 

actually makes sense. 
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