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Abstract

The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the
climate system, regulating heat and freshwater transport across the globe. Its stability
is of particular concern because an AMOC weakening or collapse could trigger abrupt
and potentially irreversible climate shifts. A critical region for this stability is the North
Atlantic Subpolar Gyre (SPG), where deep convection hepls drive the AMOC. Yet, the
literature presents contrasting explanations for multistability of convection in the SPG:
the continuous horizontal box model of Bastiaansen suggests physically meaningful mul-
tistability, whereas the one-dimensional column model of Den Toom points to spurious
multistability.

This thesis investigates whether the multistability observed in complex ocean mod-
els reflects genuine physical processes or arises as an artifact of modeling techniques.
To bridge the contrasting perspectives by Bastiaansen and Den Toom, an overarching
two-dimensional model is developed that contains elements of both approaches, allowing
reproduction of each limiting case and systematic exploration of their combined effects.

Analysis shows that multistability in Bastiaansen’s model depends critically on param-
eter choices, disappearing when physically realistic parameters are used. In Den Toom’s
model, multistability vanishes with increased vertical resolution, confirming that it is a
numerical artifact. Since climate models lack sufficient vertical resolution, this artifact
is relevant in practice. The overarching model demonstrates that a combination of both
mechanics can introduce additional multistability on top of multistability similar to Den
Toom, but these features vanish with higher horizontal resolution.

Overall, the results indicate that the multistability observed in these idealized ocean
models is spurious, arising from unrealistic parameters or insufficient numerical resolution
rather than reflecting true ocean dynamics. These findings highlight the importance
of physically justified parameterizations and sufficient model resolution in interpreting
bifurcation structures and potential tipping points in climate models.
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1 Introduction

The Earth’s climate system is regulated by a delicate balance of interacting components,
an important one being the Atlantic Meridional Overturning Circulation (AMOC). This
massive ocean current acts like a global conveyor belt, transporting warm water from the
tropics to the North Atlantic and returning cold, dense water to the deep ocean. It plays
a vital role in regulating global temperatures and weather patterns [1]. One well-known
effect is its contribution to Europe’s relatively mild climate compared to other regions at
similar latitudes [2].

However, recent research suggests that the AMOC may be more vulnerable to disrup-
tion than previously assumed [3|. A particularly important region is the Subpolar Gyre
(SPG) in the North Atlantic, see Figure 1. Here, deep-ocean convection helps drive the
AMOC: surface waters cool, increase in density and sink [4, 5|. If this convection process
is disrupted, it could destabilize the entire circulation system |[3].
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Figure 1: Map of the SPG and its connection to the AMOC [3]. The SPG is marked with red,
containing the Labrador Sea and Irminger Sea. The AMOC is represented by the (warm)
surface water current in orange and the (cold) deep water current in blue.

One way this disruption might occur is through freshwater input, for example from
melting ice sheets. This reduces surface water density, making sinking less likely. This
process, known as stratification, can block vertical mixing and potentially shut down
deep convection. This mechanism can lead to multistability: the existence of multiple
stable states under the same conditions. Such states can feature full, partial, or no deep
convection [6].

Multistability is often visualized using bifurcation diagrams, which are mathematical
tools that show how equilibrium states of a system change when a control parameter, such
as freshwater input, is varied. Simulations in complex climate models reveal a variety of
such stable states in the AMOC |7, 8|, an illustrative example is given in Box 1. Transitions
between these states could occur rapidly, potentially within a few decades, with significant
implications for the climate system [9].



Box 1: Multistability in Complex Climate Models

Simulations by Lohmann [7] using Veros show rich multiplicity of the state of the
AMOC over freshwater forcing. Veros is a versatile ocean simulator that supports
realistic, high-resolution, global ocean simulations [10]. In the bifurcation diagram,
see Figure 2, each dot represents a stable state, with colors marking different branches
of stability:.
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Figure 2: Bifurcation diagram of the state of the AMOC with the freshwater forcing as
control parameter, showing multistability. The vertical axis shows the mean AMOC
strength during the last 1000 years of simulation. Each dot represents a stable state, with
colors marking different branches of stability [7].

The main hysteresis, the loop in Figure 2, displays the classical result of convec-
tion or no convection [11]. More smaller jumps between different stable branches
are visible, which are labeled as “snaking” patterns. These coincide with changes in
convection patterns 7], as illustrated in Figure 3. Here, maps of the modeled area
are shown depicting the mixed layer depth (MLD) for different equilibrium simula-
tions in Figure 2. The MLD is the depth until which the monthly average ocean
temperature is within 0.5 K of the sea surface temperature. It gives an indication of
the stratification.
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Figure 3: Spatial patterns of convection for different stable states depicting the 100-year
average winter MLD [7]. The winter MLD is obtained by averaging over the first 4
months of the year. the color coding in the panel titles indicates the branches of
attractors in Figure 2.




To explore this multistability, often idealized models are used. These are valuable
tools for studying isolated mechanisms that govern stability and transitions in ocean
circulation. Two idealized models that provide insight into the origins of multistability of
the SPG are those developed and analyzed by Bastiaansen et al [12] and Den Toom et al
[13].

The model of Bastiaansen et al [12] builds on the classical two-box convection model
[14], which captures vertical mixing between surface and deep waters. By extending
this framework to include horizontal spatial diffusion and spatially varying atmospheric
forcing, Bastiaansen shows that multistability can arise from physical processes such as a
spatially varying freshwater input from meltwater [12].

Den Toom et al [13] studies a one-dimensional vertical model with convection. This
model also exhibits multistability. However, in this case, the behavior depends on the
number of vertical layers used, indicating that the bifurcations might be numerical arti-
facts rather than physical mechanisms of convection [13].

The difference in origin of the multistability in the simplified models raises the fol-
lowing question:

Is the multistability observed in complex ocean models a true reflection of
physical processes, or an artifact of modeling techniques?

Understanding this distinction is essential, not only for the credibility of numerical simu-
lations but also for predicting tipping points in climate systems.

To tackle this question, the two models of Bastiaansen and Den Toom are analyzed
in isolation, their model components are compared, and their characteristics that lead to
multistability are combined into an overarching model. In Chapter 2, the existing models
are introduced in more detail. It also outlines the key differences between the models of
Bastiaansen and Den Toom, with a focus on identifying how they can be unified into one
overarching model, introduced in Chapter 3. Here, the implementation of this model and
the used analysis method are also explained. Next, in Chapter 4, the overarching model is
first validated by checking the known limit cases studied by Bastiaansen and Den Toom.
Then, these limit cases are analyzed focusing on the following subquestions:

1. How does multistability in Bastiaansen’s model depend on its parameters? In par-
ticular, does the structure persist within a realistic parameter range?

2. How does the multistability in Den Toom’s model depend on the number of vertical
layers? Specifically, does the structure converge as the vertical resolution increases?

In Section 4.4.3, the two-dimensional overarching model is set up with parameters chosen
to capture key SPG features and analyzed to investigate when multistability arises from
physical mechanisms versus numerical artifacts, answering the following subquestion:

3. How does the bifurcation structure of the overarching model change under freshwater
forcing?

Finally, the results are discussed in Chapter 5, and key conclusions are presented in
Chapter 6.



2 Review of Convection Models

In this chapter, the existing models relevant to this thesis are reviewed. First of all
the classical two-box convection model by Welander [14] is explained. This provides
an understanding of how convective processes are modeled. Subsequently, Bastiaansen’s
extension of this model [12] is introduced and the physically meaningful multistability in
the resulting model is discussed.

These box models simplify the system by focusing on integrated quantities and the
relationships between them, thereby omitting the explicit representation of dynamics. A
model that does capture these dynamics is the model developed by Weijer and Dijkstra
[15], which is introduced in Section 2.3. This model incorporates dynamical behavior by
solving the full momentum balance. A reduced version of the Weijer and Dijkstra model,
proposed by Den Toom [13], is introduced next. The spurious multistability observed in
this model is discussed.

Finally, the key differences between the models of Bastiaansen and Den Toom are
identified, laying the foundation for their unification in the overarching model developed
later in this thesis.

2.1 Modeling Convection

This section presents the classical two-box convection model developed by Welander [14],
which serves to illustrate the basic principles involved in convection modeling.

Convection arises when denser water overlies less dense water, creating static insta-
bility. Then there is vertical mixing until static stability is restored. The density of water
(p«) depends on the temperature (7,) and salinity (S,) of the water. Their relation is
described by the linearized equation of state:

p. = p(1 = ar(T. — T) + as(S. - 5)). (1)

where starred variables represent dimensional quantities. The parameters p, T and S
are reference quantities. The thermal expansion and haline contraction coefficients are
denoted by a7 and ag respectively, and convert the differences in temperature or salinity
to differences in density. This equation shows that colder and more saline water has a
higher density than fresher, less saline water.

Both temperature and salinity effects are relevant in the SPG. The cold atmosphere
cools the surface water, increasing its density and potentially triggering convection. At
the same time, input of precipitation and meltwater reduces surface salinity, thereby
decreasing density and potentially suppressing convection.
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Figure 4: Schematic of Welander’s two-box model for convection [14]. The surface box (T'(t),
S(t)) exchanges heat and freshwater with the atmosphere (T4, S4), while convective exchange
occurs between the surface and deep boxes (Tp, Sp) depending on density differences.

The box model of Welander is used to study this effect of temperature and salinity
on the surface layer and its impact on convection. This model is illustrated in Figure 4
and is described by the following system of equations [14]:

O~ kr(Ta—T) — W(A)(T ~ ), (2a)
% — ks(Sa— S) — K(AP)(S — So). (2b)

Here, the temperatures and salinities are non-dimensionalized in line with the equation
of state: X R
T=ar(T.-T), S=asS.—>5). (3)

The model consists of a surface layer with a temperature 7'(¢) and salinity S(¢), which
dynamically depend on the prescribed static atmosphere (T4, S4) and deep ocean layer
(To, Sp). The temperatures and salinities are used to obtain the densities p and py with
Equation (1). The parameters ky and kg describe the rate of exchange of the temperature
and salinity with the atmosphere box. The function x(Ap) represents the rate of exchange
between the surface layer and the deep ocean due to convection.

The function k(Ap) should be large when there is static instability (p > po) and zero
when there is static stability (p < pg). Therefore it is modeled as an approximated step
function depending on the density difference between the density of the surface box, p,
and of the deep ocean box pg: Ap = p — pg, and reads:

R(Ap) = S[1+ tanh((Ap — Apur)/2)] (4)

N | =X

Here & is the maximum exchange rate during convection. For Ap < Ap,s the system
is stably stratified and there is no convection. For Ap > Ap. the exchange rate is
k(Ap) = k. Lastly, by reducing €, Equation (4) approximates the step function, meaning
that the region in Ap-space in which the system adjusts from no to maximum convection
gets smaller. The effect of Ap,ef and € on the step function is visualized in Figure 5.
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Figure 5: Rate of exchange k(Ap) expressing convection, varying convection threshold
parameter Ap,of and steepness parameter €.

2.2 Bastiaansen: Physically Meaningful Multistability

Bastiaansen [12] extends the box model by Welander spatially with diffusion in the hor-
izontal direction described by x. The dimensionless equations describing this model are:

00_7; = kr(Ta(z) = T) — k(Ap)(T —Tp) + D%, (5a)
6(;_5 = ks(Sa(z) —5) — k(Ap)(S — Sp) + D%, (5b)

where D is the dimensionless diffusion coefficient defined by D = TL%*, with 7 the char-
acteristic timescale and L the horizontal length scale of the system. Bastiaansen sets
D = 0.01. The exact scalings are not stated by Bastiaansen, but they should correspond
to the following. The timescale is around 7 = 75 days, corresponding to the timescale
of atmospheric temperature forcing [13]. The horizontal diffusion coefficient D, of ocean
systems is typically between 100 and 1000 m?s~!. This corresponds to an ocean basin
of about 100-1000 km in size, aligning with the approximate width of the Labrador Sea,
which is a key region for convection in the SPG, represented in the nondimensional do-
main z € [—1,1]. The prescribed atmospheric temperature, T4(z), and salinity, Sa(x),
are now a function of z. The other parameters, kr, ks and x(Ap) are the same as those

in the Welander model. The parameter values used by Bastiaansen are given in Table 1.

k=10
Apref: -1
kr=1

D =0.01
po(z) =0
z € [-1,1]

Table 1: Nondimensional parameter values used by Bastiaansen [12]. While reproducing Figure
6, it was found that % = 10 and Ap,.f = —1 were actually used instead of the stated & = 100
and Apper = —0.5.



Because the convection-driven exchange rate x(Ap) depends on Ap, these equations
are rewritten to Ap = p — py. Since the variables have been non-dimensionalised using
Equation (3), it follows from the equation of state that

p=ptp—p)=5-T. (6)

However, since both T" and S evolve independently, an additional variable is introduced
to capture their combined behavior. This variable is called the spiciness:

p=2=5+T, (7)

with corresponding Au = p — g, where g is the spiciness value of the deep ocean box.
To simplify the model, Bastiaansen assumes that kr = kg, meaning that the ex-
change rate of temperature and salinity with the atmosphere is the same. This is a strong
and physically unrealistic assumption. In reality heat exchange and freshwater fluxes
are distinct physical mechanisms and typically act on different timescales [16]. However,
mathematically this assumption decouples the dynamics of Ap from Ap. With the as-
sumption kr = kg, and subtracting Equation (5a) from Equation (5b), it becomes clear
that the equation for Ap does not depend on Ap. This allows the system to be reduced

to a single dimensionless equation:
OAp O?Ap

ot =D 02

4 kr(Apa(e) - Ap) - w(ap)ap + DZLAD), ®)

where Apa(x) = pa(x)— po and the atmospheric density is prescribed as pa(x) = Sa(z) —
TA(CL’)

At the boundaries in the horizontal direction, no flux (Neumann) boundary conditions
are imposed, meaning there is no horizontal exchange of heat or salt across the edges of the
domain. This assumption is common in idealized models and is reasonable for studying
internal dynamics [17].

To further simplify the model, Bastiaansen sets the deep ocean density to po(z) = 0,
implying a spatially uniform deep ocean. While in reality the temperature and salinity
of the deep ocean do vary slightly in space and time, this simplification is justified due
to the model’s emphasis on surface processes over relatively short spatial and temporal
scales.

The atmospheric density forcing is modeled as spatially varying by [12]:

T

Apa(z) =2+ flL + cos()], (9)
where f is a bifurcation parameter, representing freshwater fluxes. Negative values of f
simulate the addition of freshwater to the system, introducing a surface density minimum
(freshwater maximum) at the center of the domain (x = 0). The horizontal direction
corresponds to a zonal (east-west) transect. Such spatial freshwater forcing is physically
plausible and observed in the subpolar North Atlantic, where freshwater accumulates
due to precipitation and melting from sea ice and the Greenland Ice Sheet. Section 3.2
discusses this in more detail, supported by observational data.

In Figure 6, the steady state solutions are shown as a function of the parameter f,
revealing how changes in freshwater forcing affect the surface layer density. In this bi-
furcation diagram the steady state solutions are represented by the mean of p over the

10



horizontal domain: (p) = %:pi, where n, is the number of grid cells in the horizontal

direction. Solid lines indicate stable solutions, while dashed lines indicate unstable solu-
tions. It can be seen that there is a possibility of coexisting states: there are multiple
stable states for certain values of f. These states can be with full (red), partial (light blue)
or absent (blue) deep convection. This multistability arises from the physical processes
embedded in the equation, and is thus labeled physically meaningful.

Figure 6: Bifurcation diagram from Bastiaansen [12]. On the vertical axis (p), the mean
density of the domain. On the horizontal axis the atmospheric freshwater parameter f. Solid
lines indicate stable solutions, while dashed lines indicate unstable solutions. The solutions can
be with full (red), partial (light blue) or absent (blue) deep convection. Plots of the equilibrium
solutions are included in the boxes, where p is plotted over z.

2.3 Dynamical Extension of Convection Models

To move beyond the limitations of box models and capture the full dynamical behavior of
ocean circulation, Weijer and Dijkstra [15] developed a two-dimensional (latitude-depth)
model that explicitly conserves momentum, temperature, and salinity. This model serves
as a more physically realistic foundation for studying density-driven circulation and forms
the basis for Den Toom’s reduced version discussed in the next section.
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Figure 7: Modeled area by Weijer and Dijkstra [15] marked in red. The vertical axis represents
depth on a domain of z € [—D, 0], while the horizontal axis represents latitude on a domain of

¢ € [—on, on].

The model considers a purely buoyancy-driven flow on a non-rotating Earth in order
to eliminate longitudinal dependence. The domain, illustrated in Figure 7, spans a verti-
cal ocean slice with latitude and depth as its spatial dimensions: ([—¢x, ¢n] % [—D,0]).
At the surface, temperature and salinity are subjected to mixed boundary conditions:
surface temperatures are relaxed towards a prescribed profile with a restoring timescale
of 7 = 75 days, representing air-sea heat exchange, while salinity is forced by a net fresh-
water flux. Thus, unlike in Bastiaansen’s model, ocean—atmosphere interactions influence
temperature and salinity differently.

Mixing due to eddies is parametrized by anisotropic diffusion which means different
diffusion rates apply in different directions. The horizontal and vertical eddy diffusivity
are denoted by Ky and Ky, respectively. The key model parameters used in this study
are summarized in Table 2.

D =40x10°m p=1.0x10% kg m~3

~

¢n = 60° T =15.0°C
Ky=10x10m?s™' S =350 psu
Ky=10x10"%m?s' ar=10x10"*K!

7 = 175.0 days ag =76 x 107 psu~!

Table 2: Selected parameters of Weijer and Dijkstra’s model [13]. The table lists parameters to
describe the domain (D, ¢y ), eddy diffusivities (Kp, Ky ), atmospheric relaxation timescale 7,
reference values (p, T, S) and thermal expansion and haline contraction coefficients (ar, ag).

Temperature and salinity in this model are transported by horizontal and vertical
advection, horizontal and vertical diffusion and convective adjustment (CA). The CA term
is introduced as an enhanced vertical diffusion process, applied when the water column
becomes statically unstable. For a tracer C, (temperature or salinity), the convective
adjustment is parameterized as:

0 D dp,\ OC.
A(C,) = Ky F, — : 1
CALC) V002, (]: <,00 8z*) 82:*) (10)

12



where Fj is the efficiency of convection and F(x) is a continuous approximation of the

Heaviside step function:
F(x) = max(0, tanh[(ex)?]). (11)

This ensures that enhanced vertical mixing only occurs under unstable stratification. An
alternative approximation of this step function, similar to Equation (4), reads:

G(z) = %(1 + tanhlez]). (12)

The model is run with and without CA. The resulting bifurcation diagrams are shown
in Figure 8. They show the maximum of the meridional overturning streamfunction W,
over freshwater forcing strength 4. In the solution without CA a structure with two stable
states (solid lines) for the same freshwater parameter 7 is visible. This occurs due to the
salt-advection feedback [11], explained in Box 2. When CA is included, a large number
of small folds appear on the branches, each corresponding to an additional saddle-node
bifurcation.

Den Toom argues that this multistability is due to spurious events introduced by the
CA parametrization. To show this, Den Toom reduced this model to a one-dimensional
column model, isolating the convection process.
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Figure 8: Comparison of bifurcation diagrams for the two-dimensional model of Weijer and
Dijkstra [15] with and without CA. Freshwater forcing strength 4 as control parameter. The
plots show the maximum of the meridional overturning streamfunction ¥, in Sverdrups [13].
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Box 2: Salt-Advection Feedback

The salt-advection feedback has first been investigated by Stommel [11]. The ex-
perimental set up shown in Figure 9 consists of two vessels, both relaxed towards
a different salinity and temperature. Vessel 1 is the warm, saltier box, vessel 2 the
cold, fresher box. These vessels are connected by two tubes; one at the top (over-
flow), one at the bottom (capillary). The rate of flow in these tube is represented
with ¢g. Stommel found that two stable states can occur:

e Temperature Dominated State (Strong Overturning) When the tem-
perature differences dominate, cold water in vessel 2 is denser than in vessel 1.
This induces a flow (—¢) in the capillary from vessel 2 to vessel 1, which also
means there is a flow in the overflow from vessel 1 to vessel 2, which enhances
the density in vessel 2 by the higher salinity, reinforcing the flow.

e Salinity Dominated State (Reversed or Weak Overturning) When the
salinity differences dominate, the freshened water (due to for example ice melt)
in vessel 2 is less dense than in vessel 1. Then the flow (q) reverses.

Vessel | vessel 2
- - overflow — -
:'] l 3% 1 1 %] B
3 T % ;
s -8 f -8
Si7 b ] Sz
7 o7 TH on 7
I copillary J
—_—
qQ

Figure 9: Model of the salt-advection feedback by Stommel [11]. Two vessels are
connected by a surface overflow and a bottom capillary, with flows indicated by g. The
vessels are well stirred and connected to an outside vessel each, where the temperature

and salinity are maintained at constant values.

- J

2.4 Den Toom: Spurious Multistability

To better understand the role of convective adjustment in generating multiple equilibria,
Den Toom [13] reduces the two-dimensional model of Weijer and Dijkstra [15] to a one-
dimensional vertical column model. The resulting model equations read:

T, 0 T, ros -
T KV_@Z* ([1 + FOICT*]—(?Z*) — k(I T — Ti(24)), (13a)
0S5, 0 05, ros .

The first term on the right-hand side represents vertical diffusion. This consists of back-
ground mixing due to eddies and the enhanced diffusion representing convective adjust-
ment similar to equation 10. Here, K7, and Kg, are the convective adjustment functions,

14



which are typically functions F (%) or G (%) as introduced earlier in Equation (11) and

(12).

The second term represents the forcing of the system. This forcing happens over the
entire length of the column and can be seen as the interaction between the SPG and the
boundary current [18]. The properties of this boundary current are described by T, (z,)
and 5*(2*) The type of forcing can be controlled with ¢**: if :"* = 1 the tracer is relaxed
to a prescribed profile at rate k, if " = 0 the term represents a fixed flux.

The model domain extends vertically from z, = —D (bottom) to z, = 0 (surface),
with no-flux boundary conditions at both ends. A sketch of the model is given in Figure
10.

Dimensional parameters

Ky =10x10"4m? s

aT/dz = 0,d5/3z = 0 = [—D 0]
Scaling
A
v Kt =5 years
D =40x10°m
*
v Nondimensional parameters
T(z,t), S(z,t) 7(2), $(z)
. P=10°
v z € [-1,0]
. Modeling parameters
* ‘res
i5° =0
8T /dz = 0,05/9z = 0 Fy =100
_ _ _ _ dp
Figure 10: Schematic of Den Toom’s Kr, 1_0 Ks, =K, =Ky = ‘7:(5)
€ =

one-dimensional vertical column model.
With vertical mixing in the column due to
convection and forcing from the side with

Table 3: Parameter values used by Den Toom

[13]. The table lists the dimensional and
nondimensional parameters for vertical
diffusion and the domain, the used scalings,
and modeling parameters for the type of
forcing and convection.

a constant temperature and salinity profile

(T(2),5(2)).

This system can be nondimensionalised using Equation (3) to nondimensionalize T'
and S and rescaling the vertical coordinate with the column depth D, z = D~'z,, and of
time t, with s, t = st,. Here k= = 5 years represents the typical timescale of interaction
with the side forcing. Then, as the convective adjustment terms depend on the density,
the equations are reformulated in terms of density p and spiciness p using Equation (6)
and (7). This leads to the following formulation of the system:

ap 1 a ap -res -res ~
ot POz (D £l @) — (I +ipn = p(2)) (14a)
a,u 1 a 8,u -res ‘res ~
5" P ([1 + FoC] _82') — (i"p+ i — f(2)) (14b)
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where

res “Tres ‘res ‘res
+ 17 ~

ies = T’ ires = % 5(2) = 5(2) = T(2), flz)=8(2)+T(z). (15)

Here, K, and IC are convective adjustment functions similar to Kr, and Kg,. Further-
more, P = ==~ can be interpreted as the vertical Péclet number, representing the ratio of
the tlmescale for vertical diffusion across the full column to the timescale of relaxation to-
wards the prescribed side forcing. Physically, it indicates whether the column is efficiently
mixed (P < 1) or whether forcing dominates and stratification can persist (P > 1). The
forcings are defined as:

T(z) = cos(2mz2), (16a)
S(2) = ycos(mz). (16b)

Here, the parameter v sets the amplitude of the freshwater flux. The shape of the salin-
ity profile S (z) is consistent with a typical freshwater forcing scenario, where salinity is
reduced at the surface due to precipitation and ice melt.

In contrast, the temperature profile T(z) is less physically intuitive. This corresponds
to a warm-cold-warm structure over the vertical column. In reality, the boundary cur-
rent may exhibit a temperature profile more like cold-warm-cold, i.e. —T(z), where the
surface is cooled by atmospheric interaction, the mid-depths are warmed by northward
heat transport by the AMOC, and the deep ocean is again colder [19]. Relaxing the sys-
tem towards such a profile introduces static instability and allows the model to capture
convective processes. The difference between the two forcings will be discussed in Section
4.3.

Den Toom studies this model with parameters chosen to approximate realistic oceanic
conditions, as listed in Table 3. The system is solved by discretizing the equations using
finite differences, shown in more detail in Section 3.3. The number of vertical layers in
this discretization is denoted by n.. In Figure 11, the resulting bifurcation diagrams are
shown for discretizations with n, = 10 and n, = 20 vertical layers. These are bifurca-
tion diagrams with as bifurcation parameter the fresh water inflow strength v. On the
vertical axis the sum of the convective adjustment function over the interfaces is plot-
ted: D ortical interfaces & (%), indicating the intensity of convection. It can be seen that the
number of both equilibrium solution (stable and unstable states) depends on n,. This res-
olution dependency indicates that the observed multistability is not physical, but rather
a numerical artifact. The multistability is therefore labeled spurious.

16



10 ' ' : ; 20
R u— “H
H
8
. 15
H. H
6 : /J
W (—/. K 10 =
AT -~ - [] I —
= = - ' ]
(__ 5 e —
2 L4 - —C — —
-———— —_
0 "/:/—— 0 r{’
-0.3 -0.2 -OI.W O 1 -0.3 -0.2 -01 0 1
Y ¥
(a) n, = 10. (b) m, = 20.

Figure 11: Bifurcation diagram for the one dimensional model of Den Toom, using the
parameters noted in Table 3 and n, = 10 or n, = 20 [13]. On the vertical axis > G indicating
the intensity of convection. On the horizontal axis the freshwater parameter from the side, ~.

2.5 Comparing Bastiaansen and Den Toom

In the previous sections, the models of Bastiaansen and Den Toom have been introduced.
These models form the basis for answering subquestions 1 and 2 regarding their respective
multistability.

In this section, the differences in model choises and assumptions between the models
of Bastiaansen and Den Toom are listed. Also, the convection terms of both models are
compared. This way the parameters used in Bastiaansen are linked to those used by Den
Toom. This section creates an overview of the theoretical background which will form the
foundation of creating an overarching model, described in Chapter 3. This overarching
model provides the foundation for answering subquestion 3 on multistability.

The differences in choises and model assumptions between the models of Bastiaansen
and Den Toom are depicted in Figure 12. The main differences are:

e Horizontal direction Bastiaansen’s model includes dynamics in the horizontal
direction whereas Den Toom’s model does not include a horizontal direction.

e Vertical direction The model by Bastiaansen is a box model, modeling the ocean
as two boxes: a variable surface ocean box and a static deep ocean box. Therefore
this equals n, = 2 when using a vertical discretization. In contrast, the model by
Den Toom focusses on dynamics in the vertical direction.

e Bottom boundary condition In Bastiaansen’s model the deep ocean box repre-
sents a Dirichlet boundary condition: pg = 0. This assumes that the deep ocean has
a static density. In Den Toom’s model however it is assumed that at the bottom
boundary there is no flux: 83%0 = 0. This reflects the assumption that the ocean
bottom acts as a closed boundary with no exchange across it.

e Forcing In Bastiaansen’s model the forcing is an atmospheric forcing only. The
density of the ocean is relaxed towards an atmospheric density (temperature and
salinity). In Den Toom’s model the dynamcis are only forced from the side, this
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can be visualized as the boundary current passing by the SPG. The temperature is
relaxed towards a background profile, whereas salinity is forced by a constant flux.

e Coupling between p and i The forcing in the model by Bastiaansen is assumed
to be identical for temperature and salinity. Therefore the equation of p does not
depend on p, and the system is thus decoupled. In contrast, since in Den Toom
there is a difference in forcing between temperature and salinity, this is a coupled
system.

e Convective mixing threshold Ap,.s This parameter determines the onset of
vertical mixing. Bastiaansen uses a negative value, allowing mixing even when the
upper layer is still lighter. Den Toom sets Apy = 0, triggering mixing as soon as
the upper layer is denser.

Bastiaansen Den Toom
2 o+ 0 w o+ 1
— dpg
Po = 0 _—
0 dz E

e &
0]0 G0

Apref <0 Apref =0

Figure 12: Overview of the key modeling elements in Bastiaansen’s and Den Toom’s models.
Differences include dimensionality, bottom boundary conditions, types of forcing, coupling of p
and u, and the convective mixing threshold Apyes.

2.5.1 Comparison of Convection Parameterizations

The convection term is an important modeling element in both models. In this section
the discretized version of the convection term used in the two models will be compared.

Den Toom The convection term in the one-dimensional column model of Den Toom,
extracted from Equation (14), is

10 Jp
9. ([1 + FoiC,) £> , (17)

where K, = K, = Q(%) = (1 + tanh(e%)). The derivatives in this equation are
discretized using finite differences (with half steps):

Ofi _ fivyz = ficape

0z Az ’ (18)
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how these points are defined is visualized in Figure 13. Furthermore, Ap; = p; — p;_1 is
substituted, this yields:

P (1 50+ tann(e25))| 285 ) = ([14 (1 + tanh(e32))] 52)

> (19)
P Az
Pn,
*Pi+1
__lzii'l_ *Pi+1/2
Pi «0;
Pi-1 *Pi-1/2
* Pi-1
Po

Figure 13: Visualization of the discretized column, in particular showing pi+1, pi11/2, Pis Pi—1/2
and Pi—1-

Bastiaansen In the extended version of Bastiaansen’s model with multiple boxes in the
vertical direction, the convection term becomes:

K(Apis1)Apiv1 — K(Ap;)) Ap;. (20)

Here r(Ap) = §[14tanh((Ap— Aprer) /€)] (Equation (4)) can be substituted. This results
in:

[1 + tanh((Apis1 — Aprer) /€)]Apiv1 — g[l + tanh((Ap; — Apier)/€)|Api. (21)

N | ZI

This equation can be rewritten to resemble Equation (19) by setting the parameters
according to Apyer =0, & = Pion and € = %, which yields:

1 (|20 + tann(eB5))] 2252) — ([2(1+ tanh(e52))] 42)
P Az

Now the similarity between the two convection terms in Equation (19) and (22) be-
comes clear. The only difference is that Den Toom’s formulation includes an additional
diffusion term:

(22)

1[50+ tanh(e22)] 2822) — ([0 + tanh(B2))] 32) 201 2n

Az
Az Az
= + = . (23)
P Az P Az
TV 4 ~ TV
Bastiaansen’s convective term (Equation (22)) extra diffusion term

With the comparison of the convection terms, an expression for Bastiaansen’s param-
eters k and € can be determined in terms of Den Toom’s parameters. These are:
Fy 1

R=—. €=-. 24
= e=- 1)
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Substituting these into Bastiaansen’s convection term (Equation (22)) recovers Den Toom’s
convection term (Equation (19)). The factors of Az needed are due to making the box
model continuous in the vertical direction.

In summary, this chapter has introduced the models of Bastiaansen and Den Toom,
outlined their key differences in assumptions and design, and connected the underlying
components of convection modeling. These findings provide the basis for the next chapter,
where an overarching model is proposed.
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3 Proposed Overarching Model

In the previous chapter, the key components of the models of Bastiaansen and Den Toom
were outlined and compared. This chapter introduces an overarching model that inte-
grates these components into a unified framework. Since not all features from both mod-
els are compatible, the overarching model is designed to be modular: specific elements
can be turned on or off to recover either of the original models or explore intermediate
configurations.

The chapter begins by presenting the structure and assumptions of the overarching
model. Then, the parameter values that are used are discussed. Next, the implementation
is explained, including numerical discretization and treatment of boundary conditions.
Finally, the analysis method is described: bifurcation diagrams are used to investigate
multistability.

Overarching Model

dp
Po=0 / a_zozo

- 18
QJONCD

Apref

Figure 14: Overview of the key modeling elements in the overarching model. This includes
dimensionality, bottom boundary conditions, types of forcing, coupling of p and u, and the
convective mixing threshold Ap,ef.

The components incorporated into the overarching model are summarized in Figure
14 and include:

e Two-dimensional domain: The model domain covers both the horizontal (x)
and vertical (z) directions. This generalizes Den Toom’s one-dimensional vertical
column model and Bastiaansen’s horizontally structured box model.

¢ Bottom boundary condition, Dirichlet or Neumann: Two types of boundary
conditions can be applied at the bottom: a Dirichlet condition (py = 0) sets the
bottom density to a fixed value, while a Neumann (zero flux) condition (%L; =
0) requires the vertical density flux to vanish. These reflect the choices made in

Bastiaansen and Den Toom, respectively, and affect the numerical implementation.

e Atmospheric and/or side forcing: Forcing can be applied at the surface and/or
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from the side. This allows replication of the Bastiaansen model (atmospheric forc-
ing) or Den Toom’s setup (side forcing), or combinations thereof.

e Coupled or uncoupled dynamics: The interaction between temperature and
salinity is determined by how forcing is applied. If both are forced identically (as in
Bastiaansen’s model), the system is uncoupled. If salinity and temperature receive
distinct forcings (as in Den Toom’s model), the system becomes coupled. This is
controlled via the relaxation parameters 4,57 and Zyes 5.

e Convective mixing threshold Ap..s: The convection term includes a reference
density difference Ap.s that sets the stratification threshold for vertical mixing.
Setting Apef = 0 (Den Toom) triggers mixing only when the upper layer is denser,
while a negative value (Bastiaansen) allows convection to be already triggered if the
system is still stably stratified.

3.1 Mathematical Formulation

The mathematical formulation of the overarching model that describes the evolution of
dimensionless density p(z,z,t) and spiciness p(z, z,t) reads:

L2 (0+RAD) o+ 2) + T8 (o
W 22 (114 RO L) — (Ep v iy — i)+ DIE (asb)
where
jres — % jres — % 3(2) = §(2) = T(2), jilz) = §(2) + T().  (26)
The convective adjustment function is defined by:
G(x) = 5(1 + tanhfe(z — Apu))). (27)

The atmospheric forcing is embedded in the boundary condition at the top. At the
bottom, the model allows for either a Dirichlet boundary condition (py = 0) or a zero-flux
condition. No-flux boundary conditions are imposed in the horizontal direction. The
resulting boundary conditions of p(z,z,t) and u(z,z,t) read:

5oe (|14 moGED | 2GR0 ko(5aw) - £555(0,2.0) ~ kn (Talo) = 5T 0.2,0),
(28a)

[13 ({1 . Fog<a”(0’“"’t)>] a”m’x’t))L — ks(Sa(e) — 550, 2,6)) + ke (Ta(x) — 55 T(0,2, 1),

(28b)

— = _ _ 8P(—1,$,t) o 8P(—1,$,t) .
p( 1;x;t) _M( 17x7t) —O or az = az _O’
(28¢)
Op(z,—1,t)  Ou(z,—1,t)  Op(z,1,t)  Ou(z1,t) 0
ax B 63: - 8$ - 81‘ .
(28d)
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Here )% and #{% indicate if S and T are relaxed towards a background profile
(17 = 1) or there is a constant flux (i"® = 0). The atmospheric temperature and salinity
are denoted by T4(z) and S4(z), their values will be discussed in the next section. Fur-
thermore, to determine 7°(0, x,t) and S(0, z,t) the following transformations are applied:

0,z,t) — p(0,z,t)
2

S0, = MOz ;p(o’x’t). (29)

T(0,z,t) = i

3.2 Parameters

Since the parameters by Den Toom were chosen to represent a realistic ocean setting [13],
these parameter values are also used as default values in the overarching model. This
concerns the extend of the domain in the vertical direction, and the parameters Fy, P, €,
Apret, 17° and 15°, see Table 4.

Dimensional parameters

z. € [-D, 0] r, € [-L, L]
Ky=10x10"%m?s!' Ky=1.0x10>m?s!
kr, = 1/75 days™ Apres, = 0 kg m™3
Scaling

D =4.0x10*m L =450 x 10* m

7 =5 years p=10x10%kgm™

Nondimensional parameters

z € [—1,0] xr € [—1,1]
P =10 D =10.78
fop = 24.3 Apret = 0

Modeling parameters

i =1 is® =0
yres yres  __
tar =1 s =0
Fy =102 e=10

Table 4: Parameter values used in the overarching model. The table lists dimensional and
nondimensional parameters for the horizontal and vertical domain sizes, diffusion in the
horizontal and vertical direction and atmospheric relaxation, the used scalings, and the

modeling parameters for the type of forcing and convection.

The side forcing is adapted from Den Toom, with the temperature profile inverted to
produce a cold-warm-cold structure as discussed in Section 2.4:

T(z) = —cos(2m2), (30a)
S(2) = ~cos(m2), (30b)
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where the parameter v sets the amplitude of the freshwater flux. However, it is important
to note that translating this forcing back into dimensional variables using Equation (3)
results in unphysical temperature ranges on the order of —10* to 10* °C. This indicates
that Den Toom applied a rescaling, although this was not explicitly stated. A more
realistic temperature variation would lie between approximately 10 and 20 °C, implying
a rescaling factor of about 2000. Because the model equations are linear aside from the
convection adjustment function, which resembles a step function, this rescaling can be
absorbed into the nonlinearity parameter ¢ without affecting the model dynamics. A
detailed derivation is provided in Appendix A.1.

The forcing from the atmosphere is determined using data from the Climate Explorer
by the KNMI [20]. The average precipitation and atmospheric temperature over the
SPG are shown in Figure 15 and 16. To estimate the forcing, the data within the green-
highlighted region (55W to 40W at 57N) in Figure 15a is used. The length of this region is
approximately 900 km. The region lies within the Labrador Sea and the data here shows
a clear pattern. A cross-section in the zonal direction is selected, since the boundary
current profile varies along the meridional direction [15], making the zonal direction more
suitable for assuming a roughly constant side forcing. Approximating and rescaling this
data the values for kg, Sa(z) and T4 (z) will be estimated.

First of all, k7 is determined by rescaling the atmospheric relaxation rate kp, with
the timescale 7 of 5 years. Then, kr is computed as:

kr = Tk, ~ 24.3, (31)

Here, the atmospheric relaxation rate kr, = 1/75 day ™! is used, which follows from the
timescale for atmospheric relaxation given in Table 2.

Figure 15b shows the atmospheric temperature distribution of the area marked in
green, which can be approximated by a linear function ranging from 2.5 to 6.0 °C. The
values are nondimensionalised using Equation (3) and rescaled by a factor of 2000, consis-
tent with Den Toom’s approach. The horizontal domain is chosen similar to Bastiaansen

s [=1,1], following from the nondimensionalisation x = %= with L = 450 km as the

L
typical length scale. The resulting atmospheric temperature is then given by:

Ta(z) = —2.15 + 0.352. (32)

Ta,

(a) Color map of the atmospheric temperature (°C) for the  (b) Cross-section of the atmospheric
entire area of the SPG. temperature (°C) at 57N.

Figure 15: Atmospheric temperature in °C, averaged over 30 years (1990-2020) [20]. Based on
annual mean temperature data from ERA5 [21]. The data used to approximate the
atmospheric forcing is marked green (at 57N from 55W to 40W).
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The precipitation distribution is shown in Figure 16b and can be approximated by

px = 3.4+ 0.4cos(% — 0.4) mm/day. This first has to be transformed in a salinity flux,
using the following formula:
Sp.
H Y
where the mixing depth H = 50 m and reference salinity S = 35 psu are used. This
is an estimate; however, since the salinity source term is multiplied by the bifurcation
parameter f, this does not affect the qualitative behavior of the system. The values
are nondimensionalised using Equation (3), are rescaled to a timescale of 5 years and
by a factor of 2000, consistent with Den Toom’s approach. Together the input for the
atmospheric salinity flux is:

AS, = —

(33)

ksSa(z) = f(—6.6 0.8008(% —0.4)). (34)

Px

2 2.4 2.8 32 3.6 4

(a) Color map of the precipitation (mm/day) for the entire  (b) Cross-section of the precipitation
area of the SPG. (mm/day) at 57N.

Figure 16: Precipitation in mm/day, averaged over 30 years (1990-2020) [20]. Based on annual
mean precipitation data from ERA5 [21]. The data used to approximate the atmospheric
forcing is marked green (at 57N from 55W to 40W).

Lastly, D is the horizontal diffusion parameter, corresponding to Ky which is the
horizontal diffusion parameter due to eddies as noted in Table 3. This has to be rescaled
using the typical scales for the length L = 450 km and times of 7 = 5 years. With these

choices, D = 247 ~ 0.78.

3.3 Implementation

The variables in the overarching model are p(z, z,t) and u(z,z,t). These are modeled as
vectors of lexicographic order. The system of equations given in Equation (25) has to be
discretized for implementation. For the first and second order derivative, finite differences

are used:
dfi _ fimn = fin and d*f; _ fin = 2fi + finr
ox 2Ax Oz Ax? ’
First of all, the diffusion in the vertical and horizontal direction can be modeled as
Alinearp and Ajjpearft- Ajinear can be formed as

Alinear = Ix & Az + Am &® Iz (36)

(35)
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Here I, and I, are identity matrix of the size of the horizontal and vertical grid respec-
tively. The matrix A, represents the diffusion in the horizontal direction. The matrix A,
represents the background diffusion in the vertical direction and can contain the atmo-
spheric and bottom box boundary condition. Since the background diffusion is not present
in Bastiaansen’s model it can be turned on and off with setting background_diffusion
to true or false.

If both boundary conditions in a dimension are no flux boundary conditions (% =
0), then from the first order derivatives it follows that f;_; = f;41. Then
D - 1 -
A, = —A, A, =—-A,
Ax? PAz2 (37)
with ~ _
-2 2
1 -2 1
A= " (38)
1 -2 1
2 =2

The convection term is nonlinear and implemented directly using the first order deriva-
tive as in Equation (35). The appropriate boundary conditions are incorporated into this
term.

The implementation of the other terms is straightforward. The numerical implemen-
tation differs slightly depending on the specific model choice within the overarching model,
as discussed below.

Bottom boundary condition One of the model options is a Dirichlet boundary con-
dition at the bottom instead of a zero flux boundary condition (dirichlet_BC = true).
The values of the bottom box are then set to pg = 0 and gy = 0. This changes the
implementation in the following way:

e First of all, the vectors describing p and u reduce to vectors of size (n, — 1)n,. As
the bottom value is a constant, the corresponding equation can be removed.

e For the discretization of %g the discretization of p; reduces to %22% o Alz)z (po —

2p1 + p2) = @(—Qpl + p2). Therefore the new discretization matrix is

A =
* PAz?

of size (n, — 1,n, —1).

e Lastly, in the convection term corresponding to p1, pg has to be substituted.
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Coupling between p and ;¢ Another choice that can be made is the coupling which
depends on the relaxation parameters i,.,s. When all relaxation parameters are set to one:

‘Tes __ sres __ res __ ;res __
lp =1lg =lpa7 =1lpag = 1, (40)

both p and p are relaxed to predefined profiles. Then the equation of p is independent of
i, thus the system is uncoupled.

Forcing The atmospheric forcing is directly implemented as the boundary condition in
the convection term as described in Equations (28a) and (28b). The atmospheric forcing
and side forcing can be turned on by setting atmos_BC and side_forcing to true respec-
tively.

Lastly, it is important to note that for specific settings of the overarching model the
solution for salinity is only determined up to a constant. This occurs when all boundary
conditions for the diffusion in the domain are zero-flux and the salinity forcing consists
solely of fluxes (i§® = #{% = 0). Then the distribution of S is free up to a constant.
Therefore an extra constraint is required to ensure a unique solution:

0 ol
/ / Sdxdz = 0. (41)
—1J-1

This constraint is implemented using a Lagrangian multiplier.

To be consistent with this constraint, it is necessary that the total integrated salinity
flux over the domain is also zero. The side forcing satisfies fi)l Sdz = 0 by definition.
However, the atmospheric forcing must be adjusted to satisfy this condition. The salinity
flux is then modeled as:

ksSa(z) = £(0.469 — o.SCOS(% —0.4)). (42)

Since the implementation is discrete, a small correction factor is recalculated at each run
to ensure that f_ll ksSa(x)dx = 0 holds numerically. The implications of this assumption
will be discussed in Section 4.4.2.

3.4 Continuation

To answer the research questions the multistability of the system is analyzed using bi-
furcation diagrams. In this section it is introduced how such a bifurcation diagram is
computed.

In a bifurcation diagram, an indicator of the system’s equilibrium state is plotted
against a control parameter related to freshwater forcing (either atmospheric, f, or from
the side, 7). In this thesis, the vertical axis represents either the mean of p over the whole
domain, or the sum of the convection over the vertical interfaces: ) G, averaged in the
horizontal direction. This last value gives an indication of how much convection there is
in the system. To compute such diagrams, the BifurcationKit package in Julia is used
[22], specifically employing its continuation function.

This continuation function requires a sufficiently accurate initial guess of an equi-
librium state, which is obtained using Newton’s method. It is essential to start from a
configuration where the initial state can be found, such as a state of full convection or a
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scenario without spatial forcing. At higher spatial resolutions, convergence becomes more
challenging. In such cases, an interpolated solution from a coarser resolution is used as
the initial guess.

The continuation function uses a pseudo-arclength continuation, allowing the step
size to adapt dynamically, more efficiently tracking solution branches through folds [23].
Although this pseudo-arclength continuation is used, the step size must be small enough
to avoid missing bifurcations. However, using very small steps can lead to memory issues.
In order to resolve this, the bifurcation diagram is divided in segments and a memory
node of DelftBlue is used [24]|. After each segment, continuation is restarted from the last
computed solution. The direction of the restart step is determined by the recent change in
the continuation parameter. The sign of this difference determines in which direction the

continuation proceeds. For a more detailed discussion of the restart method see Appendix
A2

Altogether, this chapter has introduced the overarching model, which unifies the key
elements of the models by Bastiaansen and Den Toom into a single modular framework.
By allowing individual components to be switched on or off, the model can replicate
either of the original models or explore their combined effect in a two-dimensional setting.
Furthermore, the parameter choices for this configuration have been introduced. This
chapter provides a foundation for the systematic analysis of multistability, which is the
focus of the next chapter.
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4 Results: Multistability in Overarching Model

In this chapter the model is first validated by reproducing the known limit cases of the
models of Bastiaansen and Den Toom. These two limit cases are then studied in more
depth, answering the following subquestions:

1. How does multistability in Bastiaansen’s model depend on its parameters? In par-
ticular, does the structure persist within a realistic parameter range?

2. How does the multistability in Den Toom’s model depend on the number of vertical
layers? Specifically, does the structure converge as the vertical resolution increases?

Finally, the two-dimensional overarching model is set up with parameters chosen to cap-
ture key SPG features and analyzed to investigate when multistability arises from physical
mechanisms versus numerical artifacts, answering the following subquestion:

3. How does the bifurcation structure of the overarching model change under fresh
water forcing (atmospheric, f, and from the side, v)?

A visual summary of the relationships between the overarching model, the two limit
cases, and the model adaptations needed to reproduce the results of Figure 6 and 11a is
shown in Figure 17.

Overarching Model

H: + -]

dpy
Po=0/ E=U

-1
QJOXCD

Aprep

/

\

Bastiaansen Den Toom .
reproduction reproduction
noextra < -
diffusion term Jel s w o+ 1 ¢ 7F
-0 dpo
parameter Po E= convergence
analysis, inn;
convergence (N -
in n, | 4
0]O. G0
Aprgr <0 Ap,.p = 0

Figure 17: Overview of the key modeling elements in the overarching model and its limits
(Bastiaansen’s and Den Toom’s model). This includes dimensionality, bottom boundary
conditions, types of forcing, coupling of p and u, and the convective mixing threshold Ap,ef.
Also, the slight modifications for needed to reproduce the results of Figure 6 and 8b are



4.1 Model Validation

To validate the overarching model, it is first shown that the results of Figure 6 and 11a
can be reproduced by using the settings as denoted in Table 6.

Parameter Bastiaansen Den Toom
dirichlet_BC true false
atmos_BC true false
side_forcing false true
background_diffusion false true

n, 2 10

Ny 70 3

Iy 10% 102

P 103 103

€ 1 10

Apref -1 0
convective adjustment G F

D 0.01 0.01

i 1 -

s 1 -

kr 1 -

ks 1 -

TA (ZE) -2 -

Salw) F(1+cos(22)) -

T — 1

s - 0

T(2) — cos(27z)
S(z) - yeos(mz)

Table 5: Simulation parameters for reproducing Den Toom and Bastiaansen. The table lists
boolean values which describe the model configuration, the grid resolution (ng,n.), the
convection parameters (Fy, P, €, Apre) and convective adjustment function, the horizontal
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diffusion D, the side forcing (if5°, 7', T(z), S’(z)) and the atmospheric forcing (zAT, ihgs kr,
ks, Ta(z), Sa(z)).

In Figure 18a, the reproduction of the bifurcation diagram of Bastiaansen is plotted,
with bifurcation parameter f, representing atmospheric freshwater forcing, on the hori-
zontal axis. On the vertical axis the mean density of the solution, (p), is plotted. The
reproduction is exactly the same as the result of Bastiaansen in Figure 6.

In Figure 18b, the reproduction of the bifurcation diagram of Den Toom is plotted,
with bifurcation parameter 7, representing freshwater forcing from the side, on the hor-
izontal axis. On the vertical axis Y F averaged over z is plotted, which indicates the
intensity of convection in the system. Den Toom has no dynamics in the horizontal direc-
tion, however in the reproduction n, = 3 is used. Since there is no heterogeneity in the
horizontal direction in the system, this is similar to a one dimensional vertical system.
Comparing this reproduction to the result of Den Toom in Figure 1la, there are two
differences. In the reproduction the stability is not included, due to computational costs.
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Also, the bifurcation diagram is only shown for v < 0, since this area is of interest as it
represents situations with melting water. Apart from these differences in presenting the
solution, the solutions are the same.

Together, these limit cases contain all model elements of the overarching model, thus
their successful reproduction provides strong confidence in the implementation of the
overarching model.
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-6 -5 —fA -3 -2 -0.25 -0.20 -0.15 v -0.10 -0.05 0.00
(a) Reproduction of bifurcation structure (b) Reproduction of bifurcation structure
found by Bastiaansen. On the vertical axis found by Den Toom. On the vertical axis
(p), the mean density of the domain. On the > F, averaged over z, indicating the intensity
horizontal axis the atmospheric freshwater of convection. On the horizontal axis the
parameter f. freshwater parameter from the side, ~.

Figure 18: Reproduction of the bifurcation diagrams corresponding to the models of Den Toom
and Bastiaansen as limits of the overarching model.

The two bifurcation diagrams use different axes. The control parameter on the hor-
izontal axis is related to freshwater forcing, either atmospheric (f) or from the side (7).
The vertical axis also differs for both cases: > F, averaged over z, indicates the intensity
of convection in the system, whereas (p) measures the mean density of the solution.

For the analysis of the two dimensional overarching model it is preferable to use a
vertical axis that captures the multistability arising from both mechanisms from Basti-
aansen and Den Toom. Therefore, the variable on the vertical axis is changed, with >~ G,
averaged over z, in Figure 19a and (p) in Figure 19b. Since in Bastiaansen’s and Den
Toom’s model different convective adjustment functions are used, G and F respectively,
the measure on the vertical axis changes slightly. However, both indicate the intensity of
convection in the system. Although the multiple equilibria can still be observed in both
plots in Figure 19, the use of Y F or ) G, averaged over z, offers clearer insight into the
system’s equilibrium state as it indicates the intensity of convection. For this reason, this
metric is used while analyzing the two dimensional overarching model.
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Figure 19: Reproduction of the bifurcation diagrams corresponding to the models of Den Toom
and Bastiaansen with different values on the vertical axis.

4.2 Analysis of Bastiaansen’s Model: Physical Meaningful Mul-
tistability

As shown in Section 4.1 the bifurcation structure in Bastiaansen’s model can be suc-
cessfully reproduced using the overarching model. This section presents a more detailed
analysis of that structure. Specifically, it investigates its sensitivity to model parameters
and examines the horizontal resolution required to ensure numerical convergence.

The bifurcation structure corresponding to Bastiaansen’s model is plotted in Figure
20 as the turquoise line. Two different types of bifurcations are detected. The upper right
double fold consists of two bifurcations, F1 and F2, where one eigenvalue crosses zero.
The lower left double fold consists of two bifurcations, F3 and F6, where two eigenvalues
cross zero. An additional solution branch, shown in green, emerges from these bifurcations
and contains an extra stable solution. The equilibria along this branch are asymmetric,
in contrast to those on the main branch. A more detailed discussion of this additional
branch is provided in Appendix A.3. In the rest of this thesis, this additional branch is
omitted, since it represents secondary multistability that can only exist in the presence
of multistability in the main branch.
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Figure 20: Bifurcation diagram using the function bifurcationdiagram from BifurcationKit. On
the vertical axis (p), the mean density of the domain. On the horizontal axis the atmospheric
freshwater parameter f. The turquoise line shows the general continuation of the branch. The
green line shows the extra fold. The dots represent bifurcation points. In bp one eigenvalue
crosses zero, in nd two. Stable solutions are displayed by a bold line, unstable by a thinner line.

4.2.1 Influence of Ap.r on Bifurcation Structure

The bifurcation structure observed in Bastiaansen’s model is highly sensitive to the pa-
rameters Apef, k7, and D. This subsection focuses on Ap,f, which determines the critical
value at which the convective adjustment function G triggers mixing.

In Bastiaansen’s setup, Ap,f = —1, which means that convection is triggered even
under stable stratification (when the surface is less dense than the deep layer). This
behavior is not physically realistic. However, it has been argued in the literature that
using a small negative value for Ap,o¢ improves numerical stability, while still preserving
the essential dynamics of the system in the limit as Ap,s — 0~ [14]. From a physical
perspective, Ap.s = 0 is the more appropriate choice: convection occurs only when the
system becomes unstably stratified, which is consistent with the underlying physics.

To test this, in Figure 21 the bifurcation diagram is plotted for a range of Apet
values between -1 and 1 with steps of 0.1. It can be seen that by increasing the value,
the unstable part of the solutions decreases, until the bifurcations eventually vanish. In
Figure 21, it can be seen that at Aps = —0.2 the bottom left double fold has vanished.
All bifurcations have disappeared at Ap,f = —0.1. This indicates that the structure does
not persist in the physically consistent limit (Ap,es = 0), contrary to earlier assumptions.

The bifurcation point where the fold bifurcations disappear when varying Ap.er is
called a cusp bifurcation. This is a bifurcation where two branches of saddle-node bifur-
cations meet tangentially [25]. The cusps are marked with red stars in Figure 21.

33



Figure 21: Three-dimensional bifurcation diagram using the parameters of Bastiaansen (table
1) and ranging Apyef € [—1, 1] with steps of 0.1 on the z-axis. The darkest line represents
Apres = 0. On the y-axis (p), the mean density of the domain. On the x-axis the atmospheric
freshwater parameter f. The dots represent bifurcation points: in blue dots one eigenvalue
crosses zero, in pink dots two. The red stars indicate the cusp bifurcations.

The parameters used in the overarching model are listed in Section 3.2. It is not
straightforward to use these parameters in a simplified two-box model as Bastiaansen’s,
in which one box represents the surface ocean and the other the deep ocean. For instance,
atmospheric forcing in the overarching model affects only a thin layer at the top of the
surface box. The relative magnitudes of ky, D and k = % determine which processes
dominate: the atmospheric influence, the smoothing by diffusion, or vertical convection.
Different values can therefore lead to qualitatively different bifurcation structures. To
assess the effect of the parameters kr and D these parameters are systematically varied.

Figure 22 summarizes the resulting bifurcation types across the (Apyer, k1, D) param-
eter space. The purple transparent markers correspond to bifurcation diagrams without
any bifurcation points, the lighter blue markers correspond to two bifurcation points, and
the dark blue markers correspond to four or more bifurcation points. Within the last cat-
egory, a variety of bifurcation shapes can occur, though a detailed classification is beyond
the scope of this study.

The main observation here concerns the role of Ap.¢. A bifurcation structure with
multistability can be found for negative values of Ap,e, but this multistability vanishes
when Aper is set to zero. This further supports the finding that the observed multistability
does not persist under physically realistic parameter choices.
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Figure 22: Indication of the bifurcation structure for different values of kp (atmospheric
exchange rate), D (diffusion in the horizontal direction) and Apyer (convection threshold
parameter). The purple transparent markers correspond to bifurcation diagrams without any
bifurcation points, the lighter blue markers correspond to two bifurcation points, and the dark
blue markers correspond to four or more bifurcation points.

4.2.2 Horizontal Resolution and Convergence

An important consideration in analyzing Bastiaansen’s bifurcation structure is the choice
of horizontal resolution, denoted by n,. If n, is too low, the solution fails to converge,
and spurious bifurcations appear as numerical artifacts. This behavior is illustrated in
Figures 23a and 23b, reproducing the results presented by Zanuttini [26]. In this setup, an
additional variable box is introduced in the vertical direction (n, = 3). At low resolution
in the horizontal direction multiple double folds appear. Their number equals [% ], where
n; is the number of horizontal grid cells. In principle, each grid cell gives rise to a double
fold. However, due to the left-right symmetry of the domain, symmetrically located cells
behave identically and thus share the same double fold, halving the total count. If n,
is odd, the central grid cell adds an additional double fold, which explains the ceiling
function in [%]. For sufficiently large n, the solution converges. In Figure 23c the
converged solution is plotted for n, = 70, for larger values of n, the bifurcation structure

remains the same.

)
()

f f f

(a) ny = 5. (b) ng, = 10. (c) ngy = 70.

Figure 23: Bifurcation diagrams showing the dependency on n,. Bastiaansen’s parameters
(Table 1) and model with an additional variable box are used. On the vertical axis (p), the
mean density of the domain. On the horizontal axis the atmospheric freshwater parameter f.
The dots represent bifurcation points: in blue dots one eigenvalue crosses zero, in pink dots two.
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4.3 Analysis of Den Toom’s Model: Spurious Multistability

As shown in Section 4.1 Den Toom’s bifurcation structure can be successfully reproduced
using the overarching model. In the original analysis, bifurcation diagrams were only
presented for vertical resolutions up to n, = 20, leading to the suggestion that the observed
bifurcations were spurious. However, it remains unclear whether this structure might
converge at higher resolutions. To investigate this, a convergence check is performed.

4.3.1 Vertical Resolution and Convergence

Figure 24a shows part of the bifurcation diagram for increasing values of n,. As n,
increases, the distance between the folds decreases, eventually leading to their disappear-
ance. This suggests that the multistability is not physical, but rather introduced by
limited vertical resolution.

To quantify this behavior, Figure 24b plots the width of the second double fold starting
from v = 0 as a function of n,. This width is indicated for n, = 20, 50 and 100 with a thick,
slightly darkened line in Figure 24a. Empty dots indicate that the fold has disappeared
entirely, providing further evidence that the bifurcations vanish with sufficient resolution.

The required resolution for convergence depends on the value of the freshwater pa-
rameter y: for more negative values, finer vertical resolution is necessary to eliminate
spurious folds. This behavior is illustrated more explicitly in Figure 24c, which shows the
bifurcation diagram at n, = 1500, with bifurcation points highlighted. These bifurcations
only appear for v < —0.009, for larger values of v, the diagram becomes smooth and free
of bifurcations.
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Figure 24: Convergence with n.. (a,b) Bifurcation structure for different values of n,. On the
vertical axis ) F, averaged over x, indicating the intensity of convection. On the horizontal
axis the freshwater parameter from the side, ~.

Because achieving convergence for all values of 7 requires extremely high vertical
resolution, the exact structure of the bifurcation diagram at full convergence remains
unclear. To test the hypothesis that the bifurcations disappear for more negative v as n,
is increased, the analysis is repeated using P = 50, which strengthens vertical diffusion
and likely reduces the required resolution. The resulting bifurcation diagrams for varying
n, are shown in Figure 25. These results reveal the fully converged solution: one double
fold remains.

For the analysis in this section, 7(z) = cos(2nz) is used in line with the analysis
performed by Den Toom. However, in the analysis of the overarching model T(z) =
—cos(27z) is used since this represents a cold-warm-cold configuration as discussed in
Section 2.4. The results of this section still apply since the bifurcation diagrams using
both temperature profiles are the same, as shown in Appendix A.4.
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Figure 25: Bifurcation structure for different values of n,, using stronger vertical background
mixing (P = 50). On the vertical axis %7 averaged over x, indicating the intensity of
convection. On the horizontal axis the freshwater parameter from the side, . The dots

represent the bifurcation points remaining in the converged solution.

4.4 Multistability in the Overarching Model under Freshwater
Forcing

After analyzing both limit cases, this section examines the impact of fresh water forcing
on the two-dimensional overarching model. The bifurcation structure under fresh water
forcing, parameterized by the atmospheric forcing amplitude f and side forcing amplitude
v, is systematically studied.

First, the side forcing and atmospheric forcing are separately applied on the two-
dimensional system to study their respective influence. Thereafter, both forcings are ap-
plied simultaneously and the bifurcation structure is generated on a grid of f and ~ values.

Unless stated otherwise, the parameter values used are given in Table 6 (see Section
3.2 for a motivation). A zero-flux bottom boundary condition is used, consistent with the
configuration in most complex climate models.

Furthermore, typical climate models have a vertical resolution of around 64 layers and
a horizontal resolution of 1.0 ° (common) to 0.1 ° (high resolution). Since the modeled
area in this overarching model spans 15 °, that corresponds to a horizontal resolution of
ng, = 15 to n, = 150.

The computational power is however a limiting factor for this analysis. Therefore in
the analysis that follows n, = 10 is chosen. This choice is further motivated in Section 4.3
where it is shown that the solution using n, = 64 is qualitatively similar to the solution
using n, = 10. The baseline horizontal resolution is n, = 10, which is varied to explore
resolution effects.
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Parameter Overarching model

dirichlet_BC false
atmos_BC true
side_forcing true
background_diffusion true

Ny 10

n, 10

Ey 102

P 10?

€ 10

Apref 0
convective adjustment G

D 0.78

5 1

i 0

ko 24.3
Ta(x) —2.15+ 0.35z
ksSa(x) f(0.469 — 0.8cos(%F —0.4))
e 1

ies 0

T(2) -cos(27z)
S(2) yeos(mz)

Table 6: Default parameter values used in the overarching model. The table lists boolean
values which describe the model configuration, the grid resolution (n,,n.), the convection
parameters (Fo, P, €, Apyer) and convective adjustment function, the horizontal diffusion D, the

yres

side forcing (i, ig®, T'(2), S(2)) and the atmospheric forcing (¢5%, i, kr, Ta(z), ksSa(x)).

4.4.1 Dynamics under Side Forcing

First of all, the model is studied when only side forcing is present (atmos_BC = false). In
this case the model is quite similar to the model by Den Toom. The only difference is the
convective adjustment function, which is G instead of F.

In Figure 26 the bifurcation diagram is shown for n, = 10 with both G and F. It can
be seen that the bifurcation structure is qualitatively similar. With G, the bifurcation
structure appears slightly smoother, which is consistent with the fact that G (Equation
(12)) provides a smoother approximation of the step function than F (Equation (11)).
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Figure 26: Bifurcation structure with only side forcing for n, = 10, using F and G. On the
vertical axis Y F or »_ G, averaged over x, indicating the intensity of convection. On the
horizontal axis the freshwater parameter from the side, 7.

4.4.2 Dynamics under Atmospheric Forcing

Next, the influence of the atmospheric forcing on the system is studied by neglecting
the side forcing (side_forcing = false). Because the model behavior depends on the
resolution in both the horizontal and vertical direction, first the influence of n, and n, is
examined. Thereafter, the bifurcation diagram over fresh water parameter f is analyzed.

In Figure 27, the density profiles at f = 0.3 are shown for different combinations of
horizontal (n,) and vertical (n,) resolution. For each configuration (n,,n.), the density
profile at every discretized layer is plotted, and all curves belonging to the same configura-
tion are shown in the same color. Thus, the number of curves corresponds directly to the
chosen vertical resolution n,. Figure 27a shows the effect of varying n, with n, = 10, while
Figure 27b shows the effect of varying n, with n, = 50. The dashed black line indicates
the atmospheric density p4. Differences between the density profiles are most pronounced
in the upper ocean layers, where atmospheric forcing has the strongest impact.

In Figure 27a, it can be seen that a sufficiently large horizontal resolution n, is required
for convergence. In this case, n, = 40 is adequate, as increasing the resolution beyond this
does not change the solution. However, the value of n, needed for convergence increases
with f, since then sharper gradients occur in the system. Figure 27b demonstrates the
effect of vertical resolution. Higher resolution leads to thinner layers, therefore the impact
of pa can be seen in more top layers.
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Figure 27: Density profiles p at f = 0.3 for different vertical (a) and horizontal (b) resolutions.
For each configuration (n,,n.), the density profile at every discretized layer is plotted, and all
curves belonging to the same configuration are shown in the same color. Thus, the number of
curves corresponds directly to the chosen vertical resolution n,. The dashed black line
represents the atmospheric density, pa.

The bifurcation diagram over f is shown in Figure 28a using n, = 50 and n, = 10.
It can be seen that there is no multistability. There are however slight changes visible in
the total convection strength in the system (expressed by > G).

To explain this behavior, it is important to note that the condition f_ll Sadr =0
is implemented to ensure that the system is uniquely solvable. Due to this assumption
the atmospheric density p4 is positive on the left side and negative on the right side.
This results in an unstable stratification on the left, which triggers convective mixing
there. The positive density spreads downward and, due to the diffusion in the horizontal
direction, spreads over the entire horizontal domain. As the freshwater forcing amplitude f
increases, this effect intensifies, eventually causing the negative density to spread upwards
again because of background diffusion in the vertical direction. This vertical spread is
possible since strong convective mixing does not occur in the upper right region, where
the stratification remains stable.

This behavior is illustrated in Figures 28b and 28c, where the solutions for different
values of f are shown. Here, convective mixing across an interface is indicated by a white
line. This convection pattern is mainly induced by the salinity, as shown in Appendix
A.5. The turning points in the bifurcation diagram coincide with the onset of convective
mixing across an entire vertical layer.
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(a) Bifurcation structure. On the vertical axis ) G, averaged
over z, indicating the intensity of convection. On the
horizontal axis the atmospheric freshwater parameter, f. (c) Visualization at f = 5.0.

Figure 28: (a) Bifurcation structure for n, = 10 and n, = 50, with only atmospheric forcing.

(b,c) Visualizations of the solution for two different atmospheric freshwater parameter values.

The value of p is displayed on the (z, z)-domain as a color plot. White lines between vertical

layers indicate static instability (top layer denser than the layer underneath). The upper layer
in the black box represents the atmospheric forcing.

4.4.3 Dynamics under Atmospheric and Side Forcing

In this section, the two-dimensional model is investigated under the combined influence of
atmospheric and side forcing. First, the bifurcation structure is analyzed with freshwater
forcing only from one side: varying the freshwater parameter from the side, v, with no
atmospheric freshwater forcing, f = 0, and varying the atmospheric freshwater parameter,
f, with no freshwater forcing from the side, v = 0, focusing on the dependency of the
number of horizontal cells n,. Thereafter, the bifurcation structure is computed for a grid
of freshwater parameters v and f.

Freshwater forcing from the side First of all, the bifurcation structure is studied
varying the freshwater parameter from the side, v, with no atmospheric freshwater forc-
ing, f = 0, meaning that the only freshwater forcing in the system originates from the
side. The bifurcation diagrams for n, = 10 and n, = 50 are shown in Figure 29. The
qualitative structure is similar to the results obtained by Den Toom (Figure 26). However,
since the surface is now cooled, making the top layer denser, a larger freshwater flux is
required to have stratification. This is reflected by the larger values on the horizontal
axis. Furthermore, for n, = 10 extra multistability appears, whereas for n, = 50 these
folds vanish. This indicates that this multistability is a result of insufficient resolution.
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Figure 29: Bifurcation diagram for with n, = 10 and n, = 10 or n, = 50. Only freshwater
forcing from the side is applied (f = 0). On the vertical axis ) G, averaged over z, indicating
the intensity of convection. On the horizontal axis the freshwater parameter from the side, +.

Freshwater forcing from the atmosphere Next, the bifurcation structure is studied
varying the atmospheric freshwater parameter, f, with no freshwater forcing from the
side, v = 0, meaning that the only freshwater forcing in the system originates from the
atmosphere. The bifurcation diagrams for n, = 10, n, = 50 and n, = 100 are shown
in Figure 30. These plots illustrate the strong impact of the horizontal resolution: the
bifurcation diagram for n, = 10 (Figure 30a) is structurally very different from those
for n, = 50 and n, = 100 (Figure 30b). These seem to converge to the same solution,
although for n, = 50 some additional saddle nodes appear that vanish for n, = 100,
indicating that these arise due to insufficient horizontal resolution.
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Figure 30: Comparison of bifurcation diagrams for different n, values with n, = 10. Only
freshwater forcing from the atmosphere is applied (7 = 0). On the vertical axis > G, averaged
over z, indicating the intensity of convection. On the horizontal axis the atmospheric
freshwater parameter f.

The difference in structure seems to relate to the values of the atmospheric forcing,
represented by T4 and S4. On a coarser grid, these values are less extreme. For n, = 10,
the first bifurcation that occurs relates to the lowest row of the mixed layer becoming
stably stratified. This transition is illustrated by the change between Figures 31a and
31b, where the density fields in the (x,z)-plane are shown together with white lines

43



indicating the layers between which convection occurs. In Figure 31b, the bottom white
line has vanished, indicating that this layer has become stably stratified. The bifurcation
at f =~ 1.9 corresponds to the upper layer that separates itself from the rest. This process
is illustrated in Figures 31b and 31c, where the breakup of the top white line indicates

detachment of the upper layer.
6 6 ) 6
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(a) f =1.0. (b) f = 0.29. (c) f =1.64.

Figure 31: Comparison of p fields at different atmospheric forcing values f, corresponding to
Figure 30a, visualizing the different possible structural changes. The value of p is displayed on
the (z, z)-domain as a color plot. White lines between vertical layers indicate static instability
(top layer denser than the layer underneath). The upper layer in the black box represents the
atmospheric forcing, the column in the black box represents the side forcing.

For n, = 50, the bifurcation structure changes: the double folds correspond to an
additional top layer separating from the rest of the column, while the lowest row of the
mixed layer becomes stably stratified between these folds. Although the structure appears
converged with respect to n,, it remains strongly dependent on n..

Grid Finally the bifurcation structure can be computed on a grid of freshwater param-
eters f and 7. In Figure 32 (n, = 10) and 33 (n, = 50) these are shown only looking
at f > 0 and v < 0, representing the situations with meltwater. The bifurcation struc-
ture for n, = 50 is much smoother than that for n, = 10. Especially in the bifurcation
diagrams over 7y the spurious bifurcations due to horizontal resolution have disappeared.
The spurious bifurcations due to vertical resolution remain.

Altogether, these experiments highlight that the bifurcation structure of the overar-
ching model is controlled primarily by the side-forcing mechanism, producing spurious
multistability as found in Den Toom’s model. Horizontal heterogeneity introduces addi-
tional folds, but these disappear once horizontal resolution is sufficient.

44



-0.5

-0.4
-0.3

-0.2

-0.1

0.00

Y

Figure 32: Bifurcation structure on a (f,v)-grid, representing freshwater forcing from the
atmosphere (f) and from the side (), using n, = 10 and n, = 10. The orange (green) lines
show bifurcation structures over v (f) for a constant f (7). On the vertical axis ) | G, averaged
over x, indicating the intensity of convection.

Figure 33: Bifurcation structure on a (f,v)-grid, representing freshwater forcing from the
atmosphere (f) and from the side (), using n, = 50 and n, = 10. The orange (green) lines
show bifurcation structures over v (f) for a constant f (7). On the vertical axis ) | G, averaged
over x, indicating the intensity of convection.
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In summary, the analysis in this chapter shows that multistability in Bastiaansen’s
model depends critically on parameter choices, disappearing when physically realistic pa-
rameters are used. In Den Toom’s model, multistability vanishes with increased vertical
resolution, confirming that it is a numerical artifact. Since climate models lack sufficient
vertical resolution, this artifact is relevant in practice. The overarching model demon-
strates that a combination of both mechanics can introduce additional multistability on
top of spurious multistability similar to Den Toom, but these features vanish with higher
horizontal resolution.
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5 Discussion and Further Research

This chapter reflects on the main findings of this thesis, highlighting the assumptions
and limitations of the modeling approach. Furthermore, the results are discussed in the
context of idealized ocean models and their role in climate research. Meanwhile, potential
directions for future work are suggested.

5.1 Limitations of Modeling Approach

The model developed in this thesis is intentionally idealized to enable systematic analysis
of convection dynamics under controlled conditions. While this approach provides clear
insights into the influence of specific processes, it also relies on assumptions and simpli-
fications that constrain its realism and scope. This section examines four such aspects
in detail: the spatial representation of the system, the extra constraint imposed for solv-
ability, the treatment of freshwater forcing, and the effects of numerical resolution. For
each, the implications for interpretation are discussed and possible directions for future
improvement are outlined.

5.1.1 Spatial Assumptions for Idealized Model

The idealized model relies on several simplifying spatial assumptions in space that can
influence the results. The two-dimensional setup of the model limits the representation
of oceanic processes, which are three-dimensional. The horizontal domain is chosen as a
zonal line on the area where deep convection takes place. The longitudinal dynamics are
represented by the side forcing, which mimic the boundary current.

In reality, the gyre is an area enclosed by a boundary current, see Figure 34 [18]. To
be able to realistically model the spatial heterogeneity within the gyre it would therefore
be necessary to make a three-dimensional model. This also raises questions about the
assumption that the side forcing acts uniformly on all grid cells, as the boundary current
interacts locally with the neighbouring water directly, not uniformly with the entire gyre.
This side forcing is also set to a very simplified constant, but in reality the boundary
current and the gyre influence each other. It could therefore be better to implement a
variable boundary current, similar to the model by Born which is introduced in Box 3.

This also brings attention to the choice of a constant horizontal diffusion coefficient
D, which implies uniform eddy mixing across the domain. This contradicts observational
evidence for strong spatial variability [27].
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Box 3: Variable Boundary Current

Born [18] introduced a model with a variable boundary current, which better cap-
tures the interaction between the boundary current and the convective basin. The
model consists of four boxes: the boundary current and convective basin contain an
upper and lower layer each.

The cylindrical interior region models the convective basin. The upper and lower
region are instantly mixed by convection when stratification becomes unstable. Note
that this differs from the modeling of convection in this thesis. The upper layer is
forced by temperature and freshwater flux.

The boundary current encircles the convective basin. The layers of the boundary
current are in contact with the convective basin through parameterized eddy fluxes
of heat and salt. The fluxes depend on the differences in temperature and salinity
between the two regions and are scaled by an exchange coefficient, which is influenced
by the velocity of the boundary current.

Figure 34: Schematic of the model by Born with a variable boundary current [18]. The
convective basin is represented as a cylindrical interior region with an upper layer of
height h and lower layer of height d, which are mixed by convection (C') when unstable
stratification occurs. Surrounding it is the boundary current, also split into an upper and
lower layer with velocities U; and Us, respectively. Heat and salt exchange between the
basin and current occurs through parameterized eddy fluxes (F). The upper layer of the
interior region is forced by a fresh water flux F' and relaxed towards the atmospheric
temperature 7724,

- J

Further research could address these limitations by expanding the model by Born.
This model could be expanded to a vertical continuous column to further study the
interaction between the boundary current and the gyre.

Another topic for further research could be to implement a different type of spatial
structure, considering multiple sites of deep convection. Connecting these sites could also
induce different patterns 28|, where certain sites are off while others show deep convection.
This could maybe explain the different convection patterns in the multistability observed
in climate models [7].
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5.1.2 Extra Constraint for Solvability

Another modeling choice is the extra constraint on the salinity: ffl ﬁ1 Sdxdz = 0. This
constraint serves to determine a unique solution to a system that is determined up to
a constant due to Neumann boundary conditions at all boundaries. This choice can be
justified as the convection depends on the gradient, which is the same for all constants.

However, to be able to find a solution, the forcings in salinity also have to be net
zero. For the atmospheric forcing this means: fjl Sadx = 0. This means that at a part
of the surface the water is modeled to become saltier instead of fresher. This contrasts
with reality, where ice melt and precipitation lead to freshening across the whole surface.
In Section 4.4.2 the impact of this assumption became clear. An artifact that has to be
taken into consideration while analyzing the results of the overarching model.

5.1.3 Fresh Water Forcing in Overarching Model

The study of freshwater forcing via parameters f (atmospheric forcing amplitude) and ~y
(side forcing amplitude) provides insight into their separate and combined effects on the
bifurcation structure. But the bifurcation structures have only been studied for one of
these forcing amplitudes set to a constant. The freshwater input from the atmosphere
and the boundary current are however linked.

Also, since the freshwater forcing is modeled as a constant salinity flux, it does not
take into account that in time the surface water freshens. However, the difference in
salinity does depend on the current salinity and amount of precipitation, as given by
Equation (33).

Future work should explore reducing the freshwater forcing parameters f and v to
a single parameter. This could simplify interpretation within real oceanographic contexts
and highlight joint effects.

5.1.4 Numerical Resolution and Convergence

In Section 4.2.2 and 4.3.1 the importance of using sufficiently large n, and n, for conver-
gence is highlighted. However, the analysis method is limited in computational efficiency,
although a pseudo-arclength algorithm and a memory node of DelftBlue are used. This
limits the possibilities for analyzing the two-dimensional model where increasing the reso-
lution comes with great computational cost. The resolution does however alter the results,
as shown in Section 4.4.3. Caution is needed while analyzing these results, since solutions
are analyzed that have not converged.

Further research is therefore needed to develop a more efficient analysis method.
There is mainly improvement possible in varying the step size within the pseudo-arclength
algorithm, as the super small step size is only necessary for the sharp turns in the bifur-
cation structures. The other parts could do with bigger steps.

Another way to improve numerical efficiency is to vary the thickness of the vertical
boxes with depth, using thinner boxes near the surface where more dynamic processes
occur.

5.2 Role in Climate Research

While the immediate findings of this study are important, the modeling framework also
fits within a broader scope of using idealized ocean models to advance climate science.
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This section considers two aspects in particular: the relationship between bifurcation
analyses and transient behavior in a changing climate, and relating climate model closure
schemes to effective vertical mixing parameters.

5.2.1 Bifurcation Analysis vs Transient Analysis

Throughout this paper, bifurcation analysis has been used to systematically explore the
multiple equilibria of the idealized ocean model. In contrast, most climate models are
typically run in a transient mode, evolving forward in time until an equilibrium is reached
or conditions change. Despite this difference in approach, knowledge of multiple steady
states remains crucial: even in transient simulations, the presence of alternative equilibria
can manifest through phenomena such as rate-induced tipping or noise-induced tipping,
which may cause the system to shift abruptly between states under gradual or stochastic
forcing. Understanding the bifurcation structure thus provides a framework for interpret-
ing potential transitions in time-dependent climate simulations.

5.2.2 Relating Closure Schemes to Effective Mixing Parameters

Vertical mixing is a key process in ocean models, but its parameterization varies across
climate modeling frameworks [29]. Common schemes include enhanced vertical diffusion
(used in this thesis) and turbulence closure schemes such as Gaspar [30] and KPP [31].
To connect the results of this thesis to climate models using such closure schemes, it is
important to relate them to the enhanced vertical diffusion by estimating effective mixing
parameters.

Future work could develop a method for estimating effective mixing parameters from
turbulence closure schemes used in climate models. A suggested approach is:

1. Initialize a vertical column with a linearly stable stratification due to temperature
alone.

2. Apply a constant surface cooling until convection occurs.

3. Keep forcing constant and monitor the evolution of surface temperature, mixed-layer
depth, and vertical mixing coefficient.

4. Compare the timescales of these changes using one of the turbulence closure schemes
used in climate models with those from a reference enhanced-diffusion simulation
to estimate equivalent parameters € and Apyes.

This procedure translates mixing in turbulence closure schemes into equivalent en-
hanced vertical diffusion parameters, enabling comparison between idealized models and
climate models.
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6 Conclusion

This thesis set out to investigate whether the multistability observed in complex ocean
models represents genuine physical processes or is instead an artifact of the modeling tech-
niques used. This question arises from the two different explanations for multistability in
the Subpolar Gyre (SPG) presented in literature: the box model with continuous hori-
zontal direction by Bastiaansen suggests physically meaningful multistability, whereas the
one-dimensional column model by Den Toom suggests spurious multistability. In this the-
sis an overarching model combining elements from both approaches is presented, designed
to reproduce each limit case and explore the interplay of mechanisms in a two-dimensional
model. This model is analyzed by answering the following subquestions:

1. How does multistability in Bastiaansen’s model depend on its parameters? In particu-
lar, does the structure persist within a realistic parameter range?

The multistability in Bastiaansen’s model is highly sensitive to the chosen parameters,
in particular the convection threshold parameter Ap,. In the original results, Apys < 0
allows convection to occur even under stable stratification. However, adopting the phys-
ically realistic value Ap,s = 0, where mixing is triggered only when the upper layer
becomes denser than the deep layer, eliminates all multistability. This shows that the
observed structure is not robust under realistic parameter values.

2. How does the multistability in Den Toom’s model depend on the number of vertical
layers? Specifically, does the structure converge as the vertical resolution increases?

In Den Toom’s model, the multistability vanishes as the number of vertical layers in-
creases. The spacing between bifurcation folds decreases with resolution and eventually
disappears, confirming that the original multistability is a numerical artifact caused by
coarse vertical discretization. However, the limited vertical resolution typically used in
climate models is insufficient to eliminate these spurious bifurcations.

3. How does the bifurcation structure of the overarching model change under fresh water
forcing?

When both dynamics of the models are combined in the overarching model, side forcing
dominates, producing multistability similar to in Den Toom’s model. Additional multi-
stability also arises, but diminishes with higher horizontal resolution, again pointing to a
resolution-related origin.

Based on these results, the main research question, Is the multistability observed
in complex ocean models a true reflection of physical processes, or an artifact
of modeling techniques?, can be answered.

The evidence strongly suggests that the multistability in the models studied in this
thesis is spurious. In Bastiaansen’s case, it depends on unrealistic parameters and in
Den Toom'’s case, it is eliminated with sufficient resolution. Since climate models lack
sufficient vertical resolution, this artifact is relevant in practice. In the overarching model
the bifurcation structure corresponding to Den Toom’s model dominates, showing extra
bifurcation points due to the resolution in the horizontal direction. However, to be able
to fully link this research to complex ocean models, the respective vertical mixing param-
eters should be extracted from these models.
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These findings underline the importance of physically justified parameters and suffi-
cient numerical resolution when interpreting multistability in climate models. Without
these, bifurcation structures may reflect model artifacts rather than real climate tipping
behavior.
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A Appendix

A.1 TImplicit Rescaling by Den Toom

Studying the side forcing by Den Toom more closely, it becomes apparent that an implicit
rescaling is applied to the equations. The temperature side forcing is given by

T(z) = cos(2mz). (43)
Translating this forcing back into dimensional variables using the non-dimensionalization

T =ap(T, - T) (44)

results in unphysical temperature ranges on the order of —10* to 10* °C. This indicates
that Den Toom applied a rescaling, although this was not explicitly stated:

T = aar(T, — T). (45)

A more realistic temperature variation would lie between approximately 10 and 20 °C,
implying a rescaling factor of about a = 2000.

Because the model equations are linear aside from the convection adjustment func-
tion, which resembles a step function, this rescaling can be absorbed into the nonlinearity
parameter € without affecting the model dynamics. This is shown in the following deriva-
tion.

The original equation for the temperature was:

%_f = %% ({1 +F G(l + tanh[e%]))] %) - (ifST - T(Z)) - (46)

Rescaling the temperature (and also salinity and thus density) with

%%_:_f - %a% ({1 ) (%(1 + tanh[ei@pﬂ ég—f) ~ (i{fﬁiT - if(z)) )

a0z Q a

gives:

Q=

By multiplying this equation with &, the original equation can be recovered, except for
the nonlinear term (1 + tanh[eé%]). However, € is a modeling parameter determining
the steepness of the step function, and is therefore up for change. Replacing € by € = dae
makes sure that the nonlinear term is also the same as before.

Thus, considering this extra rescaling factor & = 2000 the side forcing temperature
T(z) = cos(2rz) models a realistic temperature range of 10 and 20 °C, with the modeling
equations staying intact. However, this rescaling does effect the parameter ¢ modeling

the steepness of the step function.
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A.2 Difficulties Restart Method

Using the restart method as described in Section 3.4 three kinds of events occur where
a manual restart is needed. These three events are displayed in Figure 35 and described
below.

1. Going around the corner. If a segment of the bifurcation diagram goes around

the corner, because of the corner the automatic determined step size might be in
the wrong direction. Then the bifurcation diagram will start backtracking.

. Unstable part. The bifurcation diagram is not completely numerically stable. It

oscillates and therefore it can be that the automatic determined step size might be
in the wrong direction. To have this event occur less it is better to choose more steps
in between which the direction is determined, however note that this will increase
the probability of event 1 to occur.

. Backtracking. Backtracking can also occur within a segment itself. Then the

continuation probably gets to close to a zero eigenvalue for it to be able to handle
it. This has only occurred when using F which contains a step function, probably
leading to this numeric instability. This can be overcome by restarting from a
slightly different solution, approaching the bifurcation point differently.

()\ 1. Going around the corner

- 2. Unstable part

O/ 3. Backtracking

-0.25 -0.20 -0.15 -0.10 -0.05 0.00
Y

Figure 35: Difficulties in constructing a bifurcation diagram. An example of a bifurcation

diagram is shown, in which all colored pieces represent a segment. Furthermore, typical error

locations are indicated including a visualization of the error.
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A.3 Extra Branch Bastiaansen

In Figure 36, the same as Figure 20, it can be seen that apart from the structure found
by Bastiaansen in turquoise, another branch is also present in the system. In this section
this extra branch is studied in more detail.

extra /
cont F1 —

Figure 36: Bifurcation diagram using the function bifurcationdiagram from BifurcationKit. On
the vertical axis (p), the mean density of the domain. On the horizontal axis the atmospheric
freshwater parameter f. The turquoise line shows the general continuation of the branch. The
green line shows the extra fold. The dots represent bifurcation points. In bp one eigenvalue
crosses zero, in nd two. Stable solutions are displayed by a bold line, unstable by a thinner line.

To show the difference in equilibrium solutions between the different branches, the
equilibrium solutions are plotted at f = —4.7 (lower left fold) and f = —3.7 (upper
right fold). At f = —4.7 separate plots are made for the solutions corresponding to
the general continuation and the extra fold. The difference between the solutions is
that those corresponding to the general continuation are symmetrical, whereas the ones
corresponding to the extra fold are asymmetrical. Note that the mirrored asymmetrical
solutions also exist.
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Symmetric solutions f=-4.7 Symmetric solutions f=-3.7

Figure 37: Equilibrium solutions at folds for f = —4.7 and f = —3.7, plotted as the density
profile p over the horizontal domain. Yellow, orange and red lines represent bottom, middle
and upper solutions. Dashed lines represent unstable solutions, full lines stable solutions.

This phenomena occurs due to the symmetry in the atmospheric density. Due to this
symmetry, convection in combination with diffusion can either impact the left or right side
of the steady state solution (extra fold), or both at the same time (general continuation).

This is a special case and can be altered by creating an asymmetry in the atmospheric
density. In order to achieve that Apy = 2 4 f(1 + cos[%f + s]) is used. Here s shifts
the cosine creating an asymmetric density. The bifurcation diagrams corresponding to
s = 0.01, s = 0.06 and s = 0.1 are displayed in Figure 38. The general bifurcation
structure is plotted in blue. The previous double fold connected to the extra branch gets
separated in two double folds. This happens as the left and right side of the cosine are
decoupled. They both get impacted by convection in combination with diffusion at a
different threshold. The bigger the shift the more these double folds get separated, until
they do not even overlap anymore.
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s =0.01
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Figure 38: Bifurcation diagrams for different values of s using Apa =2+ f(1 + cos[%f + s]),
including the extra branch (in red) if existing. On the vertical axis (p), the mean density of the
domain. On the horizontal axis the atmospheric freshwater parameter f.

At the limit of s = 0, the folds are exactly on top of each other, and an extra
solution connected to the branch appears, which is the unstable solution in the general
continuation. The extra branch found at s = 0 cannot suddenly appear, thus a similar
solution should also be present in the case with s # 0. By starting with a solution at
the extra branch at s = 0 and taking this as a starting point for a continuation with
s = 0.00015 the extra branch can be found. This process can be repeated: increasing s
with very small steps (0.0002 up to 0.001) and finding the extra branch each step.

In Figure 38, the continuation (blue) with extra branch (red) is plotted for several
values of s. It can be seen that the extra branch has a butterfly shape with bifurcation
points on the tips. The width of this extra branch depends on the overlap between the two
folds created by the asymmetry. With increasing s the branch decreases and eventually
disappears.

A similar bifurcation structure due to symmetry has also been found by Neff et al
[28]. Here, a simple box model with two polar boxes with deep-water formation is studied.
When asymmetry is introduced in freshwater and thermal forcing, ’'partial shutdown’
states are possible. This supports the findings that spacial heterogeneity can give rise to
multistability.
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A.4 Side Forcing: T(z)

In this section the temperature to which the ocean is relaxed from the side is further
investigated. In the model by Den Toom the temperature to which the ocean is relaxed is
T(z) = cos(2mz). The explanation given for this function is: "which is such that it tends
to stabilize (destabilize) the stratification above (below) z = 0.5" [13]. This is copied
from Vellinga [32]. It does not seem to be based on physical reasoning.

Plotting this temperature forcing it can be seen that the profile shows warm water
on the top, cold in the middle and warm at the bottom (figure 39a). However, in the
Subpolar Gyre, it would be expected to have colder water at the top due to atmospheric
cooling, warmer in the middle due to the AMOC and cold at the bottom. Thus exactly
a reverse of T(2): They(2) = —cos(2nz), see figure 39b.

0.00
y \
0.25
P
050 050
0.75
\ //
1.00
»l‘U —D‘S 0.0 0‘5 1.0 -1.0 -0.5 0.0
T(z) T(2)
(a) T = cos(2mz): (b) Trey = —cos(2mz):
warm-cold-warm cold-warm-cold
configuration. configuration.

Figure 39: Plots of the temperature with which the ocean is relaxed from the side.
Temperature on the z-axis and the z-domain on the y-axis.

The impact of these different side forcings is shown in the figure below. With T
convection would find place at thf: bottom, with 7}, on the top. Thinking of mixed layer
depth, the solution found using 7., is more in line with observations.
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Figure 40: Equilibrium solutions corresponding to T’ and T}, for v ~ —0.205. The profiles of 0,
T and S are plotted over the z-domain. Red dots indicate static instability (top layer denser
than the layer underneath).

Due to symmetry of the side forcings of salinity and temperature, the bifurcation
structure corresponding to Den Toom remains the same, as can be seen in figure 41. The
orange line corresponds to ﬂev, the green one to T. Thus for the bifurcation analysis of
Den Toom’s model this would not change anything.

5F Trev

*0‘25 *0120 *0‘15 *0‘10 *0105 0,‘00
\i
Figure 41: Comparison of bifurcation structures for different temperature profiles. On the
y-axis »_ F indicating the intensity of convection. On the z-axis the freshwater parameter from
the side, 7.

However, for the analysis of the two-dimensional overarching model this does make
a great difference. The different structures are displayed below. Now the atmospheric
forcing will enhance or counter the side forcing and therefore effect the convection in a
different way:.
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Figure 42: Solutions corresponding to 7' and The, for v = 0 and f ~ 0.34. The value of p is

displayed on the (z, z)-domain as a color plot. White lines between vertical layers indicate

static instability (top layer denser than the layer underneath). The upper layer in the black
box represents the atmospheric forcing, the column in the black box represents the side forcing.
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A.5 Dynamics under Atmospheric Forcing

In this appendix the density profile shown in Figure 43a, the same as Figure 28b, is
studied in more detail. To determine which variable induces the static instability structure
visualized by the white lines in Figure 43a, the temperature and salinity profiles are
separately plotted in Figure 43. In Figure 43b the white lines indicate where the upper
layer has a lower temperature than the layer underneath. In Figure 43c the white lines
indicate where the upper layer has a higher salinity than the layer underneath. Since
the density is related to the temperature and salinity as p = S — T (Equation (6)),
these white lines give an indication of the contribution of temperature and salinity to the
static instability. The pattern in Figure 43c highly resembles the pattern in Figure 43a,
indicating that salinity induces the static stability in this solution.
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(a) Density field. White lines between vertical
layers indicate static instability (top layer

denser than the layer underneath).
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(b) Temperature field. White lines between
vertical layers indicate a top layer with lower
temperature than the layer underneath.
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(c) Salinity field. White lines between vertical
layers indicate a top layer with higher salinity

than the layer underneath.

Figure 43: Visualizations of the solution for freshwater parameter f = 1.0. The value of p, T
and S are displayed on the (z, z)-domain as a color plot. The upper layer in the black box
represents the atmospheric forcing.
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