
Delft Center for Systems and Control

Model-based Wavelength Esti-
mation with Tunable Color Filter
and Single Photodiode

T.E Agbana

M
as

te
ro

fS
cie

nc
e

Th
es

is





Model-based Wavelength Estimation
with Tunable Color Filter and Single

Photodiode

Master of Science Thesis

For the degree of Master of Science in Electrical Engineering at Delft
University of Technology

T.E Agbana

5th July 2013

Faculty of Electrical Engineering · Delft University of Technology



Copyright c⃝ Department of Telecommunications(EEMCS)
All rights reserved.



Delft University of Technology
Department of

Department of Telecommunications(EEMCS)

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering for acceptance a thesis entitled

Model-based Wavelength Estimation with Tunable Color Filter and
Single Photodiode

by
T.E Agbana

in partial fulfillment of the requirements for the degree of
Master of Science Electrical Engineering

Dated: 5th July 2013

Supervisor(s):
prof.dr.ir. M. Verhaegen

prof.dr. O. Yaravoy

Reader(s):
prof.dr.ir. J. Spronck

dr.ir. J. Kalkman





Abstract

Wavelength measurement and control of lasers is of paramount importance and has found
vast application in areas such as linear and nonlinear spectroscopy, multichannel wavelength
division multiplexing, laser meteorology and applications which involve testing of laser and
LED light sources to ensure spectral purity and power distribution.

While the state of the art optical wavelength measuring devices such as the AQ6317 Yokogowa
Optical spectrum analyzer have high spectral resolution of about 0.015nm at the cost price of
50,000 euro,and the Thorlabs FT Michelson Spectrometer with a resolution of about 0.001nm
has a cost price of about 23,000 euros, other easy to use table top Wavelength Meter developed
in recent time provide limited resolution and accuracy. The trade off is cost, resolution, size
and accuracy.

The major research question in this thesis is how do we realize an optical wavelength measure-
ment machine which has the capability of providing a spectral resolution better than 0.015nm
with an accuracy better than 0.1nm at a low-cost?

In this thesis we presents a novel and simple approach to optical wavelength measurement and
the working principles is demonstrated with a tunable color filter and a single photodiode. A
simple and lowcost solution that could lead to realising the functionality of the state of the
art equipment at a cost of less than 700 euros is therefore proposed in this thesis work.
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“There is a spirit in man, the inspiration of the Almighty God giveth him under-
standing.”
— Job 32 vs.8





Chapter 1

Introduction

Wavelength measurement and control of lasers is of paramount importance and has found
vast application in areas such as linear and nonlinear spectroscopy, multichannel wavelength
division multiplexing, laser meteorology and applications which involve testing of laser and
LED light sources to ensure spectral purity and power distribution.
This thesis investigates how to simplify the optical wavelength measurement device such that
wavelength metering with high spectral resolution is achieved at a very low cost. The spec-
tral resolution in this context refers to the minimum separation required between two spectral
features in order to resolve them as two separate lines.(i.e the ability of the wavelength mea-
surement device to display two signals closely spaced in wavelength as two distinct responses)
[4,17].
While the state of the art optical wavelength measuring devices such as the AQ6317 Yokogowa
Optical spectrum analyzer have high spectral resolution of about 0.015nm at the cost price
of 50,000 euro, and the Thorlabs FT Michelson Spectrometer with a resolution of about
0.001nm has a cost price of about 23,000 euros, it is the goal of this thesis to realize an
optical wavelength measurement machine which has the capability of providing a spectral
resolution better than 0.015nm at a low cost of about 700 euros.
This chapter introduces the fundamental on optical wavelength measurement devices, it sum-
marizes the state- of-the art in wavelength measurement, discussing the limitation of existing
approaches and motivates this thesis. This chapter provides specific answers to the following
questions:

• The need for wavelength measurement.

• How wavelength meter works?

• What is the state of the art in spectrum analysis?

• What are the shortcomings of existing wavelength measurement device?

• What is the goal of this thesis and how is the goal achieved?

• What are the main contributions of the thesis?
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2 Introduction

1-1 The Need for Optical Wavelength Measurement Devices

Light is an electromagnetic radiation (an electric and a magnetic field perpendicular one to
each other moving in the vacuum at the speed depending on the medium) and behave as a
particle or as a wave (but not as both at the same time). Due to its duality, it shares all the
properties of a wave and a particle and it carries energy because it moves.

If light is perceived as a wave, then we can represent it by its wavelength (λ) (the distance
from two successive crest) and the quantity of crests that succeed in a second is the frequency
(f).

E = hc

λ
(1-1)

The energy of light is then the product of the frequency and the Planck constant h The
frequency is expressed in terms of wavelength since f = c

λ . Thus light energy can be observed
experimentally by using photodetector to measure the intensity (energy per unit area and
unit time) and the intensity of light is proportional to the square of the amplitude of the
electric field of the light wave. The intensity arrives at an optical receiver (photodetector)
as discrete units called photons. Photons are the particle of light and therefore the photonic
characteristics of light enables it to act as a particle [1,3,15].

Light has found significant application in diverse fields ranging from metrology, medical imag-
ing, astronomy to data transmission etc. As a matter of fact, the current demands for high
data rates transmission in terms of internet connections, and computer speed is gradually
becoming insatiable by the available electronics particularly when attempts are made to in-
crease the speed of data transfer via cables and through microwave channels or when attempt
is being made to speed-up the rates of computing and data storage [5].

Since the capabilities of current electronics necessary for meeting the demand for high band-
widths and data storage are approaching their ultimate limits a proper control of the spectral
and temporal properties of light therefore provides a solution to this overwhelming demands.
The control of the spectral and temporal properties of light has provided valuable contribu-
tion to the speed of the computers and also enhanced internet connections considering the
fact that the fastest internet connections which are commercially available at the moment are
the so-called fiber-to-the-home internet links which provides data rates of up to 500Mbit/s.
[5]

With such contributions, it is obvious that advanced light sources will play a dominant role
in the future speed or density of data requirement. This will however be feasible if light
output with high spectral purity, wide wavelength tuning, phase control or temporal control
are developed.

Based on this, several methods have currently been developed to realize cheap laser sources
which will enable the possibility of combining a wide wavelength tunability, narrow optical
bandwidth, the possibility for mass production at low manufacturing costs of about 20 euros
and at small sizes suitable for optical integration.

Despite the advantages provided by such low-cost semiconductor tunable lasers, the tendency
of experiencing significant wavelength drift as a function of temperature introduces the pos-
sibility of instability in the tunable laser and of course the spectral purity of the Laser is
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1-2 Principles of Optical Wavelength Measurements 3

compromised [12]. To stabilise such semiconductor lasers, it is important to have an instru-
ment to determine the output wavelength quickly and with an acceptable level of accuracy
at a cost less than 700 Euro since the essence of fabricating a lowcost semiconductor laser
which can be purchased at the cost price of about 20 euros will be lost if its optical properties
and spectral purity can only be measured accurately using a spectrometer which cost about
20,000 euro (a thousand times the cost of manufacturing the semiconductor laser).

Different methods of wavelength measurements have been developed in time past and these
measurement methods involves collecting the light to be measured and sending it into a
spectrometer or grating monochromator for the measurement of its spectral components.
High accuracy measurement with these previously developed optical wavelength measurement
device however required cumbersome long-path instruments and wavelength measurement of
light under this condition was a time-consuming task [12].

With the increased need in ensuring the spectral purity of semiconductor diode lasers to
meet up the need for its common application in recent past, table-top easy to use wavemeter
is of uttermost importance. In this thesis, we describe the core principles of tunable color
filter, present a representative spectrometer system design, we examine its performance in
terms of its essential properties such as precision, resolution and accuracy. We also compare
to currently available products and evaluate the possibilities for maximizing portability and
efficiency while cost is minimized.

1-2 Principles of Optical Wavelength Measurements

In this section, three common mechanisms used for the isolation of spectral information from
optical signals are reviewed from [6,7,8,9,10,19]

• Interferometry: The interferometric spectrometers modulate light in fourier or modal
space contrary to the spatial dispersion based spectrometers which modulates light in
the image plane. The fourier transform spectrometers are particularly very useful when
there is a need to measure a spectrum using one detector.

• Resonance:Resonant effect can be created by the use of optical cavities or by quantum
mechanical material processes. The resonant effect is used to create spectroscopic filters
such as the thin film filters, metal nano particles, organic dyes, etc. Using these devices,
spectral analysis can be achieved by using electronic detectors with intrinsically spectral
sensitivity.

• Spatial dispersion : Employs the use of dispersive elements such as gratings and prisms
(which redirects, refracts and diffracts waves as a function of wavelengths) to spread
light into a spectrum such that the spectral components can be measured.

Since spectral analysis is of uttermost interest due to its application in various fields, the
introduction to optical wavelength measurement techniques provide background information
on how spectrometers and wavelength meters works in general.
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4 Introduction

1-3 Interferometric Spectrometers

Wavemeters have been designed based on several underlying principles since its evolution. To
realize wavemeters with absolute accuracy and precision however, the interferometric tech-
niques have proven to be the most practical design principles.

This section provides a review of optical wavelength measurement devices based on the scan-
ning of the Michelson Interferometer.

1-3-1 Michelson interferometer based Spectrometer

The working principle of the Michelson interferometer based spectrometer is illustrated in the
schematic diagram in [Figure 1.1] below.

Figure 1-1: Schematic of the Michelson interferometer.The input light beam is splitted into two.
While E1(z, t) is transmitted to the moving mirror, the other half E2(z, t) is reflected to the
fixed mirror. The variation of the distance d of the moving mirror causes a consequent sinusoidal
variation in the output intensity and the combined intensity from the mirrors m1 and m2 is
therefore measured at the output of the interferometer by the detector [6].

The Michelson multiplex spectrometer has a collimated light from a source transmitted
through a beam splitter (a special material which transmits half of the radiation striking
its surface and reflects the other half) [4,6].

The two beams separated by the beam splitter are coherent and are reflected from two flat
mirrors m1 and m2. As a result of the coherence, the combined amplitudes are added.
Due to the variation in the position of the moving mirror, the path difference is changed and
consequently the transmitted intensity of a monochromatic light source varies sinusoidally [6].
As a perfectly collimated light beam from a monochromatic source enters into the system, the
beam splitter (BS) which is located between the two mutually perpendicular plane mirrors (m1
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1-3 Interferometric Spectrometers 5

Figure 1-2: Illustration of the intensity of the light beam at the exit of the Michelson interferom-
eter as a function of optical path difference. As observed in the figure above, Maximum intensity
is obtained when the path difference is equal to nλ where n is an integer. When d1 = d2 as
shown in fig 1.2, then the two beams are in phase and this consequently yields a constructive
interference depicted in this schematic as a peak. Conversely destructive interference represented
by the dip in the diagram is experienced when the path difference is half the wavelength.
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6 Introduction

and m2) divides the input beam into two beams such that the input light beam is partially
reflected to the fixed mirror and partially transmitted to a moveable mirror as shown the
figure [1.1]. The mobility of the moveable mirror through distance ′d′ causes a variability of
the optical path length between the fixed mirror and the moveable mirror. This variation
generates an interference pattern (an overall pattern that results when two or more waves
interfere with each other showing regions of constructive and of destructive interference [9] )
at the detector.

The effect of interference causes variations in the output intensity as the difference in the
path length changes. The difference between the two optical path lengths d1 and d2 is the
optical path difference which is equal to the product of the physical distance travelled by the
moving mirror and ’n’ the refractive index of the medium filling the interferometer arms.

Let the intensity of the input beam be denoted as I and the reflectance of the beam splitter
represented as R, then the intensity of the reflected beam by the beam splitter is RI and the
intensity of the transmitted light is (1 − R)I. Following the propagation of the transmitted
beam, the moving mirror m1 is adjusted such that the reflected beam from the moving mirror
returns back to the beam splitter by the same path.Therefore the reflected beam will coincide
with the incoming beam (which has an intensity (Iin)) at exactly the same point on the beam
splitter [6].

The intensity which is reflected from the mirror is depicted in fig.1.1 is I1 = R(1 − R)I.
Following the propagation of the reflected beam from the beam splitter however, the mirror m2
is adjusted in similar manner and the intensity which crosses the beam splitter is represented
as I2 = R(1 − R)I. Having properly adjusted the Michelson Interferometer, then it is able to
split the incoming beam which has an intensity Iin into two beams of equal intensities I1 and
I2 propagating in the same direction towards the optical detector [6,7,9,10].

The resulting output intensity (which is a function of the optical path difference) is detected
as an interference signal with an optical receiver and fed into a data processing unit where
the interference signal is converted into optical spectrum waveform by means of fast Fourier
transform. The resultant optical spectrum waveform is processed such that the output wave-
length and power data of the input signal is obtained.To obtain the output intensity of the
interferometer from the resulting field however, the electric fields created by the two beams
E1(z, t) and E2(z, t) must be summed.

Assuming that the light input as shown in Fig 1.1 is from a monochromatic light source and
with the beams propagating in the same direction along the z-axis, the mathematical model
of the system functionality can be represented according to [6] as follows:

Let the electric field created by one of the beams on the output of the interferometer be
denoted as Eout then,

E1(z, t) = Eoute
i(wt−κz−φ1) (1-2)

and
E2(z, t) = Eoute

i(wt−κz−φ2) (1-3)

φ1 and φ2 are the phases which depends on the propagation distance of the beam from the
beam splitter to the reflectors (fixed mirror and moving mirror) φ1 and φ2 can be written as
2κd1 and 2κd2 respectively where κ is the wave number which is 2π

λ (it determines the wave
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propagation direction) and the multiplier 2 implies that each beam travels twice the distance
from the beam splitter to the corresponding Mirrors [9,10].

Thus the field E at the output of the interferometer is the summation of both fields E1 and
E2 and can be written as :

E = Eout(ei(wt−κz−2κd1)) + Eout(e(i(wt−κz−2κd2)) (1-4)

Therefore,
E = Eoute

i(wt−κz)(e−2iκd1 + e−2iκd2) (1-5)

Since the square of the amplitude of the electric field is proportional to the light intensity,
then the output intensity of the interferometer can be deduced from the output electric field
using equation 1.5.

Iout = ⟨E.E∗⟩ (1-6)

Therefore,

Iout = E2
oute

i(wt−κz)(e−2iκd1 + e−2iκd2)e−i(wt−κz)(e2iκd1 + e2iκd2) (1-7)

Iout = 2E2
out(2 + e−2iκ(d1−d2) + e2iκ(d1−d2)) (1-8)

Iout = 2E2
out(1 + cos2κ(d1 − d2)) (1-9)

By smooth changing of the distance d1 or d2 and counting the interference maxima, which is a
cosine function of the distance, the wavenumber can be determined as the number of maxima
per unit length and the wavelength is derived as an inverse of wavenumber. Therefore the
intensity as derived in (equation 1.9) can be written in terms of wavelength by converting the
wavenumber κ to wavelength.

Substituting κ = 2π
λ into equation 1.9 yields,

Iout = 2E2
out(1 + cos4π

(d1 − d2)
λ

) (1-10)

From equation (1.10) It can be observed that the output intensity Iout consist of two parts.
While the first component is constant and contains no useful information for the deduction of
the wavelength, the second part is modulated and thus useful for spectroscopic measurement.
The modulated part is referred to as the inteferogram which is the resulting signal that exits
the interferometer as a result of interference caused by the optical path difference due to
the displacement of the moving mirrors. The interferogram has the unique property that
every data point (a function of the moving mirror position) which makes up the signal has
information about the wavelength.

To estimate the wavelength of the input beam, we first consider the simplest option where the
optical signal has a single wavelength. From the derived equation, (equation 1.10), A change
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Figure 1-3: Normalized photocurrent versus differential arm length for wavelength λ =
1550nm[19]

in length corresponds to a change in photocurrent ′I ′ measured as intensity of the beam.
From Fig. 1.3, [19] The photocurrent passes through maximum and minimums alternatively.

By deriving the photocurrent ′I ′ as a function of the change in optical path length, then the
wavelength of the signal can be estimated. For example, every time the photocurrent crosses
the half-maximum point, equation 1.10 becomes (cos4π(d1−d2

λ )) = 0

The interval between adjacent crossings δL = δd as shown in Fig 1.3 above is then recorded
satisfying the equation 4π δd

λ = π and therefore the wavelength of the signal is estimated.
This wavelength measurement techniques is also known as fringe counting and the key to this
technique is the accurate knowledge of the differential length variation of the interferometer
arm.

Since 4π δd
λ = π therefore the signal wavelength can be found as λ = 4δd.

To measure an optical signal with multiple wavelengths however, the fast fourier transform
is used to determine the wavelengths. The Fast fourier transform is used to convert the
measured data from the length (δd) domain into the frequency (f) domain. The wavelength
coverage and the spectral resolution of the wavelength meter can then be determined by the
step size and the total range of the scanning interferometer arm, respectively.

Estimating the spectral details of the optical signal with multiple wavelengths requires taking
into consideration the performance characteristics of the optics. Therefore taking the reflec-
tion coefficient (i.e a description of the intensity of a reflected wave relative to an incident
wave) of the beam splitter and the reflection coefficient of the mirrors into consideration.
Writing equation 1.9 in terms of the reflectance of the beam splitter BS, we obtain:

Iout = 2IinR(1 − R)(1 + cos4π(d1 − d2
λ

)) (1-11)
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The above equation can be written as

Iout = 2IinR(1 − R) + 2IinR(1 − R)(cos4π(d1 − d2
λ

)) (1-12)

Disregarding the first part of equation 1.12, we obtain the interferogram represented by equa-
tion 1.13 (the modulated part which contains the spectral details of the waveform.)

Iout = 2Iin(1 − TBS)RmTBScos2κδ (1-13)

Where TBS is the transmission coefficient (the description of the intensity, or total power of
a transmitted wave relative to an incident wave) of the beam splitter, Rm is the reflection
coefficient of the mirrors and δ represents d1 - d2. Furthermore, we take into account the
responsivity of the detector which is dependent on the wavelength (i.e it changes at different
wavelength). The responsivity of the optical detector is defined as the amount of photocurrent
(Ip) that results from an optical input of 1 W [1].

Hence for a broadband wavelength dependent source, the interferogram becomes:

Iout =
∫ +∞

−∞
U(κ)cos2πδdκ (1-14)

Where U(κ) = 2(1 − TBS(κ)Rm(κ)TBS(κ)G(κ)) and G(κ) represents the response of the
optical detector to the incident light beam.

The spectrum of the light source producing the interferogram taking into consideration the
instrument function (i.e the properties of the devices ranging from the beam splitter to the
mirror along the transmission path towards the optical detector) is denoted as U(κ) in equa-
tion (1.14).

The intensity, therefore can be obtained from equation 1.14 by performing the Fourier trans-
form of the interferogram Iout. Fourier transform maps a function defined on physical space
to a function defined on the space of frequencies whose values quantify the amount of each
periodic frequency contained in the original function.The original function can be recovered
from its transformed frequency components by Inverse Fourier transform [13].

Therefore the sum of the monochromatic interferograms simply turns into an integral as
indicated below.

U(κ) =
∫ +∞

−∞
I(δ)e−i2πκδdδ (1-15)

Since the integral equation obtained in equation 1.15 above ranges to infinity, it is obviously
impossible to achieve an infinite path difference, therefore the application of fourier theory
is impossible because of the non infinite boundaries. To provide an infinite resolution to the
infinite integral however, a boxcar function which is a truncation function with a value equal
to 1 between 0 and a chosen finite number V ′ and thus equal to zero everywhere else.

With the truncation function, equation 1.15 can be written as :

T (κ) =
∫ +∞

−∞
I(δ)f(δ)cos(2πκδdδ) (1-16)
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Where T (κ) is the total fourier transform of the finite path difference interferogram.

In conclusion, the essential idea is that there is a 1-to-1 correspondence between spectra and
interferogram. Each particular light spectrum is related to a unique interferogram, and each
interferogram corresponds to a unique spectrum and the mathematical relationship between
the two is the Fourier transform.

1-3-2 Advantages of the Fourier Transform Spectrometer

• The Multiplex Advantage: Since the interferometer does not separate energy into in-
dividual wavelength, the interferogram therefore contains information from each wave-
length of light that is being measured. A scan of the entire light spectrum is equivalent
to every stroke of the moving mirror and therefore, averaging of the signal can be
done by combining all the individual scans.This makes this type of spectrometer suit-
able for high speed measurement as contrary to the Dispersive Instrument where every
wavelength across the spectrum must be measured by the scanning of the grating.The
multiplex advantage implies that many scans can be completed and averaged using an
FT Spectrometer in a shorter time as compared to the dispersion based spectrometer
[4,18].

• Since no slit is required for higher resolution in the hardware design of the FT spec-
trometer, it thus implies that the amount of light reaching the detector is not limited
therefore making the amount of energy reaching the detector in the Michelson Inter-
ferometer much higher than what is obtained in the dispersion based spectrometer.
In retrospect, higher signal-to-noise ratio is obtained and this account for the better
sensitivity in the performance of the fourier transform spectrometers [4,18].

• Precision Advantage : Since an internal reference laser HeNe (helium neon) is used
to control the velocity of the moving mirror and to time data collection throughout
the mirror scan, the calibration of the wavenumber of the interferometer is much more
accurate and has much long term stability as compared with other spectrometer that
requires external calibration standards [18].

• Reduced sensitivity to stray light: Since Fourier Transform is used for the spectrum
analysis then only interference signals are allowed to contribute to spectrum. Back-
ground light have little or no effect on the measurement results [18].

1-3-3 Disadvantages of the Fourier Transform Spectrometer

• One major drawback in the Fourier transform spectrometers is their sensitivity to their
environment. Fourier transform spectrometers are particularly sensitive to temperature
variation and vibrations as a result of the tight tolerances inside the interferometer.
Although various design methods (such as thermostatting the interferometer and dy-
namic alignment) have been developed to counteract these deficiencies, the inherent
sensitivity makes these instruments unsuitable for process applications unless they are
located within an environmentally controlled shelter [19].
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1-4 Resonance based Spectrometer 11

Figure 1-4: Schematic diagram showing the working principle of the Fabry Perot Interferometer.
The input electric field Ein enters the cavity and it is reflected multiple times until the amplitude
of the field is significantly reduced.

• Complex and expensive hardware are needed for the processing of the interferogram.
Furthermore, the incorporation of the reference laser also increases the cost of the
equipment. Typical Fourier transformed spectrometer cost about 30,000 euros.

1-4 Resonance based Spectrometer

The resonant devices in recent past have introduced qualitatively novel features into optical
systems. The design, fabrication and tools for analysis of the resonant devices are evolving
rapidly and these has made them suitable for optical spectroscopy. This section gives an
overview of the resonance based spectrometer, its advantages and disadvantages are also
discussed.

1-4-1 Fabry-Perot Interferometer

The Fabry-Perot etalon is the simplest example of a resonant interferometer. It consists of
two partially transmissive and partially reflective surfaces which is separated by a dielectric
gap of thickness d as shown in Fig [1.4]. The optical cavity can tightly enclose a light field in
all directions and this makes it suitable for the design of high-resolution optical spectrometer.
The resonance frequencies of the Fabry-Perot resonator or interferometer can be tuned by
changing the cavity length (the distance between the mirror) [14].

An incident wave which is partially reflected by the first surface and partially transmitted
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12 Introduction

Figure 1-5: Illustration of a circular fringes pattern when a noncollimated light source is launched
onto a screen through a Fabry Perot Interferometer.[18]

into the cavity experiences an infinite series of partial reflection and transmission event at
each surface.

Let the intensity of the incident light be represented as Ein = ei(wt−κz) and the reflection of
the two mirrors with approximately same reflection be expressed as ’r’ for the electric field
flow. Taking the two mirrors into consideration, the intensity reflection becomes R = r2 and
the corresponding transmittance for the electric field component of the wave is T =

√
1 − r2.

The interference pattern at the output of the interferometer is formed as a result of multiple
reflections (repetition of the reflection within the cavity until the amplitude of the beam is
significantly reduced) of the incoming beam between the mirrors [6,7].

Figure 1.5 above shows a point light source which is illuminated on a Fabry Perot Interfer-
ometer. A group of bright rings which appears on the screen behind the Fabry Perot Inter-
ferometer depicts the light fringes and the diameters of the rings depend on the thickness of
the Fabry Perot Interferometer as well as on the signal wavelength [18].

Denote the electric field created by the incoming plane wave just before the first mirror M1
as Ein = ei(wt−κz), since (z=0) then Ein = eiwt.

Taking the transmittance of mirror M1 into account, the emerging electric field of the incident
light becomes Teiwt where T is the transmittance of mirror M1. Since the field propagates over
a distance z = d towards the second mirror M2, the electric field at M2 becomes Tei(wt−κd),
thus E1 = T 2ei(wt−κd) is transmitted field by M2, and it is the first beam participating in the
interference of the interferometer output.

Trei(wt−κd) is the light reflected back to the mirror M1 and a portion of it is reflected back to
M2 The field of the reflected light is E2 = Tr2ei(wt−2κd). The field is transmitted by mirror
M2 to form the second participating beam E2 = T 2r2ei(wt−3κd) this equals E1r2e−i2κd
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Re-reflection process continues over and over again thus producing beams with fields, E3, E4, .....En.
Therefore for beam n, the electric field becomes En = E1r2(n−1)e−i2κd(n−1) The sum of all
the beam is the resulting electric beam after mirror M2 and according to [6,19] it is therefore
obtained as follows:

Eout = E1

+∞∑
n=0

(r2e−i2κd)n = E1
1 − r2e−i2κd

(1-17)

Intensity of the transmitted beam is therefore obtained as follows

Iout = ⟨EoutE
∗
out⟩ = (1 − r2)2

(1 − r2)2 + 4r2sin2κd
(1-18)

since κ = 2π
λ and R = r2, then the equation above can be converted to intensity reflection.

Iout = Iin( (1 − R)2

(1 − R)2 + 4Rsin2 2πd
λ

) (1-19)

The transfer function (the ratio of the output intensity to the input intensity) is therefore
defined by the equation below, and this is equivalent to the transmission of the Fabry Perot
Interferometer.

Iout

Iin
= T (λ) = ( (1 − R)2

(1 − R)2 + 4Rsin2 2πd
λ

) (1-20)

From the transfer function, the wavelength λm which corresponds to the mth transmission
peak (which is the highest intensity measurement with respect to the transmission of the
mirror)is found as

λm = 2nd

m
(1-21)

where ′d′ is the space between the mirrors and the ′n′ is the refractive index of the mirrors.
The peak transmission wavelength is moved when the length of the cavity is varied [19].

The block diagram shown [Fig.1.6] depicts an optical spectrum measurement device using
a scanning Fabry Perot Interferometer. The Fabry Perot Interferometer mirror is linearly
scanned by a sawtooth voltage waveform (A non-sinusoidal waveform which ramps upward
and sharply drops) which consequently causes the linear scanning of the peak transmission
of the Fabry Perot Interferometer transfer function. To measure the output waveform, a
photodiode is used at the output of the Fabry Perot Interferometer to convert the optical
signal into electrical waveform and this is then displayed on an oscilloscope.

To convert the measured oscilloscope waveform into an optical spectrum a precise calibration
method is required to determine the relationship between time and frequency.
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14 Introduction

Figure 1-6: Block diagram of an optical spectrum measurement using a scanning Fabry Perot
Interferometer [18]

1-4-2 Advantage of the Fabry-Perot Interferometer

• The major advantage of the Fabry-Perot interferometer is that it has a very narrow
spectral resolution (typically in the range of 0.01nm and 0.001nm). The narrow spectral
feature enables Fabry-Perot interferometer to be very useful in the measurement of laser
Chirp (an abrupt change of the center wavelength of a laser, caused by laser instability)
[1].

• It also provides superior spectral resolution as compared to the diffraction grating spec-
trometers which has a spectral resolution of about 0.08nm.

1-4-3 Disadvantage of the Fabry-Perot Interferometer

• The Fabry Perot interferometers have narrow wavelength coverage [18].

• Due to their narrow resolution range, these devices may allow many wavelengths to pass
through their filter at any one point, presenting an interference issue.

1-5 Spatial dispersion based Spectrometer

Diffraction Gratings are optical components used to separate light into its component wave-
lengths. Diffraction gratings consist of a series of closely packed grooves that have been
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1-5 Spatial dispersion based Spectrometer 15

engraved or etched into the grating surface [6]. It is an optical component which can either
be transmissive or reflective. As light transmits through or reflects off a Grating, the grooves
causes the light to diffract, dispersing the light into its component wavelengths.

An incident beam striking the surface of the diffraction grating device is reflected in a number
of directions. The first reflection is referred to as the zero-order beam (m=0). The perfor-
mance characteristics of the diffraction grating device at this point of zero-order reflection is
equivalent to a plane mirror such that no diffraction of the input beam is observed. Therefore,
the input beam is not separated into different wavelengths neither is the beam used by the
optical spectrum analyzer [2,12,14].

Figure 1-7: The Incident beam is separated by the input beam into a number of outputs.Within
the output beam, except the zero order beam, different wavelengths are separated. [2]

The first order beam (m=1) is created by the constructive interference of reflections off each
groove [2], and constructive interference occurs when the difference in path-length between
reflections from adjacent grooves equals to one wavelength.

If an input light containing more than one wavelength component is incident on the diffraction
grating device, then the beam will have some angular dispersion, (i.e each wavelength exhibits
a different reflection angle so as to satisfy the requirement that the path-length difference off
the adjacent grooves is equal to one wavelength). When the path-length difference from
adjacent grooves is equal to two wavelengths then the second-order beam (m=2) is defined.
Consequently,a three wavelength differences defines the third-order beam and so forth.

Lets assume a normal light incidence and one wavelength shift between the reflection as
depicted in figure 1.7, then the angular position of the diffraction maxima is expressed in
equation 1.22.

sinθ = mλ

l
(1-22)
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Figure 1-8: Diffraction grating with period l. The first order diffraction angle appears when delay
between reflections from the neighbor grooves is equal to one wavelength Λ.[6]

Therefore a flat incident wavefront is reflected from the grating at a number of angles θ which
is determined by the grating period and the wavelength as expressed in equation 1.22 above.

Wavefronts passing through the grating that are parallel to the incident light wave are referred
to as zero order (undiffracted) or direct light. Diffracted higher-order wavefronts are inclined
at an angle θ according to the equation 1.22 where λ is the wavelength of the wavefront,
l is the grating period and m is an integer termed the diffraction order (e.g., m = 0 for
direct light, Âś1 for first order diffracted light, etc.) of light waves deviated by the grating.
The combination of diffraction and interference effects on the light wave passing through the
periodic grating produces a diffraction spectrum, which occurs in a symmetrical pattern on
both sides of the zero order direct light wave [6,20]. Therefore the diffraction angle can also
be expressed in terms of the grooves number such that

sinθ = mλ(g) (1-23)

The diffraction grating based Optical spectrum analyzer uses the monochromator (an optical
device which works as narrow band wavelength filter with mechanically adjustable transmis-
sion wavelength )as the tunable optical filter. The monochromator is an optical device which
works as narrow band wavelength with mechanically adjustable transmission wavelength. As
depicted in the schematic diagram in Figure 1.9, an incoming light crossing the input slit (i.e
the opening through which the incoming wavefront is transmitted to the grating) is collected
by a spherical mirror with a focal length F located at a distance F , from the slit. The mirror
produces a flat wavefront and this directs the wavefront to a diffraction grating device (an
optical device which spread light into a spectrum).

The flat wavefront is reflected from the grating at a number of angles determined by the
grating period and the wavelength. From equation 1.22 the angular Period of the diffraction
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1-5 Spatial dispersion based Spectrometer 17

Figure 1-9: Monochromator optical scheme: di and do are the sizes of the input and output slits
respectively, F is the focal length of the mirrors and φ is the angle between the incident and the
diffracted beam and α denotes the incident angle of the light on the grating.

maxima are sinθ = mλ
l where l is the grating period and m is the diffraction order of the

rotating diffraction grating used in the monochromator. The grating produces a diffracted
light which is collected by the second mirror and thus focused to the output slit d0 and the
output wavelength at the slit can be changed by simply tuning the grating.

Considering the geometry in Fig. [1.9] and thus taking into account the incident angle of
light on the grating and the angle between the incident and diffracted beams (an angle which
is fixed as a result of the geometry of the instrument), the angle of reflection sin(θ) can be
expressed as sin(α)+sin(φ+α).Therefore, the equation of the light transmission wavelength
can be now be expressed as :

l(sinα + sin(φ + α)) = mλ (1-24)

Here α is the incident angle of the light on the grating and φ is the angle between the incident
and diffracted beams. expressing the above equation in terms of grooves number yields

sinα + sin(φ + α) = mλg (1-25)

From Trigonometric identities, sinα+sin(φ+α) = sinα+sinαcosφ+cosαsinφ Thus equation
1.25 is simplified thus :

sinα(1 + cosφ) + cos(αsinφ) = α(1 + cosφ) + sinφ = mλg (1-26)
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where g is the groove number which is the reciprocal of the grating period. Considering a
normal incidence of light on the grating, which implies light incidence angle α is approximately
equal to zero, (i.e alpha is small α) the simplified equation becomes :

sinα(1 + cosφ) + cos(αsinφ) = α(1 + cosφ) + sinφ = mλg (1-27)

λ = (α1 + cosφ

mg
+ sinφ

mg
) (1-28)

Equation (1.26) is known as the monochromator dispersion equation and it shows the linear
relationship between the incident angle of the light on the grating and the wavelength. This
linear dependence explains why the wavelength scale is very common for spectroscopy devices.
The spectral resolution of the monochromator is determined by the slit size and the spectral
resolution of the monochromator is expressed as follows :

∆λ = di
1 + cosϕ

Fmg
(1-29)

while F = focal distance.

The intensity of the diffracted light is measured by a photodetector and the tuning of the
diffraction based optical spectrum analyzer is achieved by rotating the diffraction grating.

The spectrum resolution of the monochromator can be improved by doing the following:

• Decreasing the size of the input slit. This however implies that smaller amount of light
will enter into the monochromator and as the slits size approaches the wavelength the
monochromator efficiency is gradually reduced.

• Making use of mirrors with longer focal distance. Although this increases the resolution
of the monochromator, however the physical dimension of the monochromator is also
increased thus creating a disadvantage.

• Increasing the number of grooves on the grating also increases the resolution of the
monochromator.

1-5-1 Wavelength Tuning

The wavelength tuning of the dispersion based spectrometer is achieved by rotating the diffrac-
tion grating element. Each angle of the diffraction grating element causes a corresponding
wavelength of light to be focused directly to the centre of the slit. An initial angle and a
final angle can be determined and recorded such that a the equipment can sweep across a
given span of wavelength. Precisely controlling the diffraction-grating angle provides accurate
tuning of the diffraction grating element.
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1-5-2 Tuning Techniques

The tuning techniques employed for the rotation of the diffraction grating element in disper-
sion based optical spectrometer is the gear reductions system. The gear reduction system is
used to obtain the required angular resolution of the diffraction grating. The Agilent Tech-
nologies Optical spectrum analyzers have employed the use of the direct-drive motor system.
This tuning system provides very good wavelength accuracy (1nm) and a very fast tuning
speed [2].

1-5-3 Advantage of the Diffraction grating Spectrometer

• The diffraction grating spectrometer has a wide wavelength coverage.

• The diffraction grating also provide good measurement accuracy, precision, resolution
and sensitivity.

1-5-4 Disadvantages of the Diffractiong grating Spectrometer

• The diffraction grating spectrometer spectral resolution is limited by the groove-line
density of the grating and also by the size of the collimated optical beam on the grating.

• To obtain high resolution diffraction grating optical spectrum analyzers, the focal dis-
tance has to be increased and this constitute a disadvantage as such diffraction grating
spectrum analyzers are usually bulky and typically have a weight of 19kg.

1-6 Optical Spectrum Analyzer Using the Combination of Grating
and Fabry Perot Interferometer

Having discussed the resonance based spectrometers and the dispersion based spectrometers,
we came to a conclusion that the dispersion based spectrometer has wide wavelength coverage
but limited in its spectral resolution due to the groove-line density of the grating and the size
of the collimated beam of the grating. The Fabry Perot Interferometer based spectrometers
can however provide high spectral resolution by using long cavity length but since its transfer
function is periodic, the spectral coverage is limited to a free spectral range.

To achieve both high spectral resolution and wide wavelength coverage however, a spectrom-
eter which combines a Fabry Perot Interferometer and a grating can be designed.

Figure 1.10 depicts the operating principle of the high resolution spectrometer using the
combination of the Fabry Perot interferometer and a grating.

The Fabry Perot Interferometer transforms the incident optical signals into discrete narrow
band slices with the wavelength separation equals to the free spectral range (the frequency
separation between adjacent transmission peaks of a Fabry Perot interferometer). After the
wavelength separation, the transmission grating disperses each wavelength slice into a beam
at a certain spatial angle δϕ. ∆ϕ is theoretically determined by the convolution between
spectral bandwidth of the fabry perot interferometer and the angle resolution of the grating.
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Figure 1-10: High resolution Spectrometer design based on the combination of the Fabry Perot
Interferometer and dispersion grating optical devices.[18]

Due to the angular width, a beam with width ∆L is produced at the surface of the pho-
todiode array. Assuming the photodiode has a width d there will be n = ∆L

d photodiodes
simultaneously illuminated by this light beam. Summing up the photocurrents generated by
all the n associated photodiodes, an electrical signal which linearly is proportional to the
optical power within the optical bandwidth selected by each transmission peak of the fabry
perot interferometer is obtained.
Assuming there are m light beams where the number of beam m = 4 as shown in figure 1-
10, each beam corresponds to a specific transmission peak of the Fabry Perot Interferometer
transfer function. For each Fabry Perot Interferometer setting, the signal’s optical spectral
density can be measured simultaneously at separate wavelengths. If each transmission peak of
the Fabry Perot Interferometer is linearly swept across a free spectral range, the measurement
will be able to cover a continuous wavelength range of m times free spectral range.
In this type of spectrometer, the frequency sweep of the Fabry Perot interferometer is con-
verted into angular sweep of the light beams at the output of the grating and thus the spatial
position on the surface of the photodetector is estimated. This optical wavelength measure-
ment device is able to provide a high spectral resolution as well as wide spectral coverage if
the signal processing unit of the device is properly configured.

1-7 Specification of Optical Wavelength Measurement devices.

The selection of an appropriate optical wavelength measurement devices is impossible when
the important specification of the measurement device is unknown. As such this section give
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a brief review of the cogent specification of optical wavelength measurement device.[19]

The most important qualities of an Optical wavelength measurement devices can be specified
by the following parameters:

• Wavelength range: The wavelength range of an optical wavelength measurement device
is the maximum wavelength range the device can cover while ensuring that its specified
performance is not violated. Optical Filters play a major role in the wavelength range
of a wavelength meter as such the desire to have an optical wavelength measurement
device with a large wavelength range has not been actualized due to the limited ap-
plication window of optical filters, photodetectors and other optical devices necessary
for the design and development of such spectrometers. Typical wavelength range of
commercially available grating-based Optical Spectrum analyzer is 400nm to 1700nm.

• The Wavelength Accuracy : It is a specification of the optical wavelength measurement
device that specifies how accurately the device measures the wavelength of the light un-
der test. Most commercial wavelength measurement devices separately specify absolute
wavelength accuracy and relative wavelength accuracy. Absolute wavelength accuracy
specifies how accurate the measured absolute wavelength value is, this is often affected
by the wavelength calibration. Relative wavelength accuracy tells how accurate the
measured wavelength separation between two optical signals is, it is mainly determined
by the nonlinearity of the optical filters. In typical Wavelength measurement device,
wavelength accuracy of less than 0.1 nm can be achieved.

• Resolution Bandwidth. Defines how fine an optical wavelength measurement device
slices the signal optical spectrum during the measurement. Hence a smaller resolution
bandwidth means more detailed characterization of the optical signal. The finest optical
resolution bandwidth of a grating based optical wavelength measurement device ranges
from 0.1nm to 0.01nm. The minimum resolution bandwidth is usually limited by the
narrowest bandwidth of the optical system the measurement device can provide and
also limited by the lowest detectable optical power of the receiver.

• Sensitivity : It specifies the minimum measurable signal optical power before the back-
ground noise floor influences the measurement signal. Hence the noise characteristics
of the photodetector used in the measurement device determines the detection sensi-
tivity. Short wavelength range (typically from 400nm to 1000nm) are detected by the
photodiode with less noise interference, for wavelength ranging from 1000nm to 1700nm
an InGaAs photodiode is required. Commercially available Wavelength measurement
device can provide a detection sensitivity of -120dBm in the 400-1700 wavelength range.

• Maximum power. The maximum allowable signal optical power before the wavelength
measurement device detection system is saturated.

• Calibration accuracy. Specifies how accurate the absolute optical power reading is in
the measurement. Typically a calibration accuracy of less than 0.5 dB can be achieved
in a commercial optical wavelength measurement device.

Some limitations of existing optical wavelength measurement device are summarized below:
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• The Rotating Grating Spectrometer: A very common type of the diffraction grating
based spectrometer is the AQ6370C Optical spectrum analyzer produced by Yokogawa.
A rotating grating and a photon-diode is used as the optical measurement device. The
spectrum of the input light is measured by scanning the whole spectrum of the incident
light. This device has the capacity to measure a spectrum range of 600nm to 1750nm and
it also has a resolution of 0.01nm. Due to the hardware configuration of this system,
the AQ6370C cost about 50,000 euros with a weight of about 19kg which makes it
unaffordable and not easily transferable. Furthermore, the option of integrating this
device with a semiconductor tunable laser is absolutely impractical.

• The Fixed Grating Spectrometer: The Oriel spectrometer is an example of such an
optical measurement device which measures the spectrum of an incident light by em-
ploying the use of static grating and a CCD array using dispersion of light. This device
has measurement range of 550nm to 1600nm, and has an accuracy of about 0.5nm,
its resolution is however limited by the discretization of the spectrum in the hardware
such that the size of the CCD pixel causes a limitation to the discretization. The Oriel
spectrometer is also expensive costing about 20,000 euro to purchase one of such device.

• Interference Based Spectrometer : WS5-IR2 is a type of spectrometer based on the
interferometric technique. The wavelength of a monochromatic light is measured by
comparing a reference interference pattern with the one formed by the light with un-
known wavelength. This device measures wavelength within 1100nm to 2250 nm range
and it offers an accuracy of about 0.01nm at the cost of 30,000 euro. Though this de-
vice provides the required accuracy needed for lots of spectroscopic application, again
the cost of purchase and optical integration remains a major limitation. Although it is
possible to save cost in the methods described above, however cost saving will be done
at the expense of measurement accuracy.
Cheaper spectrometers with ease of optical integration have been developed in time
past. A common example is the OMH-6727B from ILX Light wave.This spectrometer
employs the use of two fixed color filters and two photon-detectors for wavelength and
power estimation. The transfer function of the color filters and photon detectors are
calibrated a priori and stored in a look-up table.
An unknown wavelength of an incident monochromatic light is estimated by checking the
lookup table and looking at the ratio between the measurements from the two photon-
detectors. This optical wavelength measurement device is affordable as compared to
the others described above, costing about 4500 euros its measurable wavelength range
is 900 nmâĂŞ1650 nm and the best accuracy it can provide is about 1nm.

From the state of the art of the equipment described above, several methods have been
employed in the measurement of optical wavelengths and power but obtaining a low-cost
measurement device with high accuracy has not been attainable and hence only certain trade-
offs were possible.

1-7-1 Resonance based principles for wavelength estimation

From the principles of optical wavelength measurements highlighted above, the Resonance
based Optical wavelength measurement methodology has been selected as the underlying
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principles for our proposed wavelength meter.Although other conventional small optical wave-
length estimation machines are also built on this principle our approach however provides
better accuracy and better resolution at low cost as compared to the other conventional
wavelength measurement device. This section provides a quick overview on the principles of
operation of simple Look up table technique for wavelength estimation.

1-7-2 The Look-up table approach

The conventional small and low-cost optical wavelength measurement device which employs
the resonance based optical wavelength measurement principles employs the look-up table
approach for unknown wavelength estimation. In these types of wavelength measurement
devices,a tunable color filter and two photodiodes are deployed to provide the measurements
necessary for the determination of the wavelength of an incoming light with an unknown
wavelength.

An incoming light with an unknown wavelength passes through the precisely characterised
colored filter glass assembly. The photodiodes attached to the assembly generate independent
photocurrents.[22] The ratio of the two generated currents depends on wavelength and this
ratio is translated to a wavelength using a calibration lookup table stored with each colored
filter glass assembly. The measured number is then transmitted to the display electronics [22].
Hence the look up table uses two spectra curves (output of two photodiodes) to construct
a table. Although this approach employs a simple and low-cost technique for wavelength
estimation, yet its accuracy is limited to 1 nm and the resolution provided by this system is
about 0.5 nm due to the method of wavelength estimation which employs the use of limited
data for calibration.

1-7-3 Our proposed Wavelength estimation approach

Using the resonance based optical wavelength measurement methodology as our underlying
principles, we proffer a system which estimates the unknown wavelength of an incoming light
with better accuracy (better than 1 nm) and better resolution (better than 0.01 nm). In our
approach, a nonlinear model will be built and this nonlinear model will have approximately
30 inputs (30 photodiode measurements) and one output (wavelengths). Since our approach
provides more spectra curves and more data for calibration with an appropriate estimation
algorithm to estimate unknown wavelength, it will therefore provide a wavelength estimation
methods with accuracy and resolution better than the look-up table technique of wavelength
measurement.

1-8 Motivation and Goal for this thesis

This thesis focuses on a simple approach to optical wavelength measurement with a single
tunable color filter and a single photo detector. From our literature survey, several design
methods employed for spectral analysis have been reviewed. Although some of these existing
systems provide good accuracy in measurement, the system hardware configuration causes
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some limitations which make them unsuitable for routine laboratory applications which re-
quire accuracy of a few tenths of a nanometer. From the analysis of the prior art above, the
goal of the thesis is summarized as follows:

1-8-1 Goal of this thesis

• To develop a simple, compact and low-cost optical wavelength measurement device
(spectrometer) which provides a high spectral resolution (better than 0.01nm) and an
accuracy (better than 1nm) in an integrated optical design using a single color filter
and photodiode.

1-8-2 Main contributions

• In our model based wavelength meter with single tunable color filter and single photodi-
ode, a novel and simple approach to optical wavelength measurement has been proposed.
This makes a high performance simple, low-cost optical wavelength measurement device
available for optical integration.

• A novel method is proposed for the determination of the unknown wavelengths as the
photo detector signals are analyzed using neural network and nonlinear optimization
algorithm.

• An optical wavelength measurement device proof of concept experimental setups have
been developed and this experimental validation proves that the proposed wavelength
measurement technique is not only efficient in improving the simplicity of the device but
also, interface with the computer to produce an immediate readout of the wavelength
to a level of accuracy that rivaled the best monochromator systems.

T.E Agbana Master of Science Thesis



Chapter 2

Model-based Wavelength Meter
Theory

This chapter aims at improving the simplification of high precision optical wavelength mea-
surement system by the use of a single tunable color filter and a single photo detector. The
improvement is achieved by tuning the spectral transmission of the Tunable color filter and
identifying the combined spectral sensitivity of both the tunable color filter and the photodi-
ode at different incident wavelength and control signals from the measurement data. Based on
the identified model, spectral sensitivity curves obtained from the photodiode measurement
are approximated using an appropriate curve fitting method. Experimental result shows that
the system is capable of providing an accuracy which is comparable to the accuracy provided
by high cost optical spectrum analyzer.

2-1 Introduction

Application of modern spectroscopy technologies include astronomy, medicine, research, re-
mote sensing etc. Despite the diverse application fields, there is still a common dependency
on the technological advances in the field of spectroscopy specifically in the area of cost and
portability as established in the previous chapter. Although significant efforts have been
focused on miniaturizing the traditional laboratory spectrometer and decreasing its cost in
recent years, these efforts have however resulted to a subsequent decrease in the functionality
of the equipment specifically in terms of accuracy and resolution capabilities.

Based on the review of the methodologies on which the state of the art spectrometers are
based, the Resonance spectroscopy has been selected for the design of our optical wavelength
meter. Our choice of employing the resonance spectroscopy methodology in realizing our
system design is based on the availability and the simplicity of the optical device. Further-
more, its ability to provide good resolution which is better than the resolution provided by
the grating based spectroscopy makes it a device of choice for our proposed system.
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In this chapter we continue in the line of improving the accuracy and sensitivity of a conven-
tional simple wavelength meter by means of developing a nonlinear model using the perfor-
mance characteristics of the Fabry Perot tunable color filter and a single photodiode . Fabry
Perot etalon filters consist of two highly reflective mirrors separated by a distance. The sep-
aration distance of the cavity and the refractive index of the mirrors determines the finesse
of the filter. The Fabry Perot tunable color filter is considered in this thesis because of the
tunability function of the filter when voltage is applied. Also its free spectral and tunable
range, high resolution and low driving voltage also enhance its consideration for our system
design (this will be discussed in later sections).
The main contribution of this chapter is to develop a high precision simple wavemeter using
the tunable color filter and photodiode. This chapter is organized as follows: In section 2.2,
a general overview of the system component is discussed,the problem and the strategy is
formulated in section 2.3 while Section 2.4 focuses on the theory of the design of a tunable
light source to validate our model.

2-2 Overview of system components

It is part of the goal of this thesis to achieve the design of our system with a single color filter
(bandpass filter) and a single photodiode. In this regard, this section provides a description
of the components used for the design of our wavelength meter.

2-2-1 Bandpass Filter (Tunable Color Filter)

Bandpass filters provide one of the simplest ways to transmit a well-defined wavelength band
of light, while rejecting other unwanted radiation. Their design is essentially that of a thin
film Fabry-Perot Interferometer formed by vacuum deposition techniques and consists of
two reflecting stacks, separated by an even-order spacer layer. These reflecting stacks are
constructed from alternating layers of high and low refractive index materials, which can
have a reflectance in excess of 99.99. By varying the thickness of the spacer layer or the
number of reflecting layers, the central wavelength and bandwidth of the filter can be altered
[27].

Figure 2-1: Overview of a Bandpass filter (purchased from Thorlabs and used in our system
set-up) showing the transmission of the well defined wavelength band of light [27].

A bandpass filter is created by depositing layers of material on the surface of the substrate.
Typically, there are several dielectric stacks separated by spacer layers. The dielectric stack
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is composed of a large number of alternating layers of low-index and high-index dielectric
material. The thickness of each layer in the dielectric stack is λ

4 , where λ is the central
wavelength of the bandpass filter (i.e. the wavelength with the highest transmittance through
the filter). The spacer layers are placed in between the dielectric stacks and have a thickness
of nλ

2 , where n is an integer. A Fabry-Perot cavity is formed by each spacer layer sandwiched
between dielectric stacks. The filter is mounted in an engraved metal ring for protection and
ease of handling [27].

Figure 2-2: Filter operation overview showing the filter structure. Picture gotten from Thorlabs
[27],a manufacturer of the tunable color filter used in our system model.

Filter Operation

The constructive interference conditions of a Fabry-Perot cavity allow light at the central
wavelength, and a small band of wavelengths to either side, to be transmitted efficiently,
while destructive interference prevents the light outside the passband from being transmitted.
Although these materials effectively block out of band transmission of incident radiation they
also decrease the transmission through the filter in the passband [27]. The filter is intended to
be used with collimated light normally incident on the surface of the filter. For uncollimated
light or light striking the surface and an angle not normally incident to the surface, the
central wavelength (wavelength corresponding to peak transmission) will shift toward lower
wavelengths and the shape of the transmission region (passband) will change [27],[33]. Varying
the angle of incidence by a small amount can be used to effectively tune the passband over
a narrow range. Large changes in the incident angle will cause larger shifts in the central
wavelength but will also significantly distort the shape of the passband and, more importantly,
cause a significant decrease in the transmittance of the passband.

An engraved arrow on the edge of the filter is used to indicate the recommended direction for
the transmission of light through the filter. Although the filter will function with either side
facing the source, it is better to place the coated side toward the source. This will minimize
any thermal effects or possible thermal damage that blocking intense out-of-band radiation
might cause due to the absorption of the out-of-band radiation by the substrate or colored
glass filter layers.
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Filter Temperature

The central wavelength of the bandpass filter can be tuned slightly ( 1 nm over the operating
range of the filter) by changing the temperature of the filter. This is primarily due to the
slight thermal expansion or contraction of the layers.

2-2-2 Light sensor

A Light Sensor generates an output signal indicating the intensity of light by measuring the
radiant energy that exists in a very narrow range of frequencies basically called "light", and
which ranges in frequency from "Infrared" to "Visible" up to "Ultraviolet" light spectrum.
The light sensor is a passive devices that convert this "light energy" whether visible or in
the infrared parts of the spectrum into an electrical signal output. Light sensors are more
commonly known as "Photoelectric Devices" or "Photo Sensors" because they convert light
energy (photons) into electricity (electrons).
Of particular interest to our design is the photodiode.The photodiode is made from silicon
semiconductor PN-junctions (An interface between two regions in a semiconductor crystal
which have been treated so that one is a positive-type semiconductor and the other is an
negative-type semiconductor) which are sensitive to light and which can detect both visible
light and infrared light levels. It uses light to control the flow of electrons and holes across the
PN-junction. Photodiode is classified as a photojunction device and it is specifically designed
for detector application. It is also used as a light sensor with its spectral response tuned to
the wavelength of incident light.

The Photodiode

The Photodiode is a light sensor that has an outer casing which is transparent or has a clear
lens to focus the incoming light onto the PN junction for increased sensitivity. When light falls
upon the junction more hole/electron pairs are formed and the leakage current increases. This
leakage current increases as the illumination of the junction increases. Thus,the junction will
respond to light and the photodiode current is directly proportional to light intensity falling
onto the PN-junction [28].
The fast response of a photodiode to changes in the light levels is its main advantage when it
is used as a light sensor , but one disadvantage is the relatively small current flow even when
it is fully illuminated.

Noise in the Photodiode

The following subsection describes the source of noise in a photodiode.

1. Johnson noise : Johnson noise is generated by thermal fluctuations in conducting ma-
terials. It is also referred to as thermal noise sometimes. It results from the random
motion of electrons in a conductor. Cooling of the system can reduce the magnitude of
Johnson noise [24]. The Johnson noise (thermal noise) is given by:

Ij = (4KTB

R
)

1
2 (2-1)
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Figure 2-3: Diagram showing a typical photodiode and its current-voltage charateristics depict-
ing the increasing in photocurrent of the photodiode when the illumination of the PN junction
increases.[28].

where : Ij = Johnson noise current K = Boltzmann constant [1.38*10 JK], T = absolute
temperature [K], R = resistance giving rise to noise, Ohms, B = bandwidth of system,Hz.

2. Dark current: Dark current is the current through the photodiode in the absence of light,
when it is operated in photoconductive mode. The dark current includes photocurrent
generated by background radiation and the saturation current of the semiconductor
junction. Dark current must be accounted for by calibration [23]. Dark current con-
tributes to the total system noise and gives random fluctuations about the average
photocurrent [25].

3. Shot noise: Is a measure of the intensity variation in the signal itself and it occurs when
the finite number of particles that carry energy (such as electrons in an electronic circuit
or photons in an optical device) is small enough to give rise to detectable statistical fluc-
tuations in a measurement. Shot noise tends to be more visible at low intensity because
relative fluctuations in number of photons is more significant when the brightness of
light is reduced [24,25,26].
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Figure 2-4: A junction photodiode model with basic discrete components depicting the main
characteristics of the operation of photodiodes. Picture gotten from Thorlabs [],a manufacturer
of the photodiode used in our system model.

Figure 2-5: A pictoral representation of noise sources in a photodetector [25]

2-3 Strategy

To realise our goal of developing a low-cost model based wavelength meter with a Tunable
Color Filter and a single photodiode, we proceed in four steps as indicated below :
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1. Step 1 : Formulation of the Problem.

2. Step 2 : Calibration of the device (System Identification).

3. Step 3 : Initialization and Generation of Data.

4. Step 4 : Wavelength estimation using the Neural Network Approach and the Non Linear
Least Square Approach.

2-3-1 Step 1 : Formulation of the Problem

Photodiode

y(k)

λo, Po

Tunable
color filter

Voltage v(k)

Figure 2-6: Schematic of the proposed wavelength measurement method.Control signal v(k) is
applied to the TCF and intensity y(k) is measured from the photodiode.

The schematic of our wavelength estimation method is depicted in figure 2.6. Incident light
with an unknown wavelength λ0 and power P0 passes through the tunable color filter and
illuminates a photodiode. The intensity of the transmitted light is measured by the photodiode
at discrete time instant k and the intensity is denoted by yk. To tune the spectral transmission
of the tunable color filter, a control signal (represented by vk) is applied to the TCF. The
spectral transmission of the Tunable color filter is denoted as T (λ0, v) because it is a function
of wavelength and the control signal.

The input intensity spectrum denoted by f(λ0) which is incident on the tunable color filter
with spectral transmission T (λ0, vk) produces a photo current Ip(λ0) at a photodetector with
responsivity R(λ0) and the generated photocurrent at the photodiode in our system is reffered
to as the intensity of the incoming light. The intensity of the measurement is therefore
represented in equation 2.2 below.

y(λ0) = R(λ0)T (λ0, vk) + ηk (2-2)

The product of the photodiode spectral sensitivity and the spectral transmission of the tunable
color filter at control input signal is referred to as the combined spectral sensitivity and it is
denoted as

R(λ)T (λ, vk) = f(λ0, vk) (2-3)

.

Hence equation 2.2 becomes
y(λ0) = f(λ0, vk) + ηk (2-4)
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where ηk is the measurement noise. The Photodetector spectral sensitivity can be defined as
the ratio of the output signal to the input signal and it is represented as :

R = (Outputsignal

inputsignal
) (2-5)

where
R = ηqλ

hc
(2-6)

where η in this context is the quantum efficiency of the photodetector, q is the charge of an
electron, h is the planck constant and c is the vacuum speed of light. The responsivity is a
function of wavelength λ through spectral variation in the quantum efficiency.

2-3-2 Step 2 : Calibration of the Spectral Function (f(λ0, vk))

The combined spectral sensitivity function f(λ0, vk) plays a dominant role in the estimation
of the unknown wavelength of an incoming light, hence the first step is to obtain all relevant
information on the transmission function. There are several strategies for calibrating the
spectral sensitivity curves f(λ0, vk) amidst are:

1. Using Measurements to obtain the model structure and parameters at once (black-box
modelling) by minimising the prediction error.

2. Developing a set of physical equations based on some available physical insight whilst
some parameters such as the wavelength needs to be determined from the observed
data.

Deriving the combined spectral function f(λ0, vk) by physical equation as recommended in
the second point above is possible but the accuracy of the result is limited. To obtain high
accuracy however the combined spectral sensitivity function is calibrated with tunable light
source of known wavelength highlighted as the first strategy above (black-box modelling).

The combined spectral sensitivity curves f(λ0, vk) is approximated by fitting an analytical
function for the recorded data. Neural network fitting method is selected for use for our data
analysis amidst others such as as spline fitting, polynomial fit, etc because it is able to fit a
broad range of nonlinear curves with a minimum number of fit parameters.(Refer to Appendix
A for a more information on the basic idea of the Neural Network Algorithm.)

For fitting, a choice of a 2 layer Neural Network with q neurons in the first layer and one
neuron in the second layer is made. Output ŷk(λ0) of the neural network is determined as

ŷk(λ0) = f̂(λ0, vk) = w1tanh(w2λ + s1) + s2 (2-7)

where f̂(λ0, vk) is the estimate of the f(λ0, vk), w2 ∈ RQ∗1 and w1 ∈ R(1∗Q) contain the input
and the output weight of the neural network respectively.

The input and output neurons have biases represented as s1 ∈ R(Q∗1) and s2 ∈ R while tanh is
the hyperbolic tangent function. The parameters w1, w2,,s1 and s2 are optimised by training
the neural network with sufficient data points λ, y and v.
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Obtaining a good compromise between a maximum quality of the fit and a minimum number
of fit parameter requires varying the number of neurons that describe a single transmission
curve. The numerical implementation of the neural network algorithm produces a fit curves
f̂(λ0, vk) which are approximation of the true transmission function f(λ0, vk)

2-3-3 Step 3: System set-up and Generation of Data

Step 3 of our strategy for wavelength estimation involves system set-up and data generation.
The following data (necessary for wavelength estimation) were generated from our system
set-up.

1. Control signal vk (degrees) : Control input signal generated from the stepper motor
which causes angular displacement of the tunable color filter so that the spectral trans-
mission function of the filter can be altered.

2. Intensity data yk (volts): Intensity of the incoming light is the only property of light
that we can measure and use for the estimation of the unknown wavelength. At control
signal vk , the intensity of the incoming light which represents the combined spectral
sensitivity function of the tunable color filter and the photodiode is measured.

3. For the purpose of calibration, The unknown Wavelength λ0 ( nm)of the incoming light
source is measured using the purchased Avantes Spectrometer.

4. At certain instances, the need to measure the Power (watts) of the incoming light source
is necessary. The power of the incoming light source is estimated from the voltage and
current values obtained from the power source.

The data generated serves two purposes:

1. Approximation of the combined spectral sensitivity function.

2. Development of an algorithm that estimates an unknown wavelength of incoming light
source with great accuracy.

Wavelength Calibration Device - Avantes Spectrometer

To generate the data needed for the estimation of the unknown wavelength, the need for
the use of a functional spectrometer was necessary therefore, a low-cost spectrometer was
purchased from Avantes (A manufacturers of fiber optic spectroscopy instruments). The
purchased spectrometer is known as AvaSpec-3648 Fiber Optic Spectrometer and it is designed
based on the AvaBench-75 symmetrical Czerny-Turner design with 3648 pixel CCD Detector
Array. The spectrometer has a fiber optic entrance connector, collimating and focusing mirror
and diffractional grating.
The AvaSpec-3648 has a USB2 interface with the computer and therefore the wavelength of
an incoming light coupled through the fiber (400µm) to the spectrometer can be measured
with the Avasoft (a software purchased from the company and installed on the computer for
the measurement of the wavelength). The specification of the used Calibration Device is given
below :
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• The spectrometer covers the visible optical region (360 -860 nm).

• The irradiance calibrated spectrometer has a 0.5nm resolution.

• The accuracy of the spectrometer is 1nm.

It is important to note that the specification of the spectrometer (in terms of accuracy and
resolution) is a limitation to the performance (desired resolution and accuracy) of our model
since the data measured by this equipment is used for calibration is limited in accuracy and
resolution.
The picture below depicts the measurement set-up for determining the wavelength of a light
with an Avantes Spectrometer.

Figure 2-7: Figure showing a typical set up for irradiance measurement. The incoming light
source is coupled to the AvaSpec through a fibre optics cable,the CC-UV/VIS and the Avasphere-
50-IRRAD enables the coupling of the incoming light into the spectrometer. The spectrometer is
connected to the computer via a USB cable and the read out of the wavelength is obtained on
the computer through the Avasoft software installed for wavelength and intensity measurement.

2-3-4 Step 4 : Wavelength estimation

The fourth step involves estimating the unknown wavelength of an incoming light from a set
of photodiode measurement yk and control signal vk generated as indicated in step 3 above.
The estimation of the unknown wavelength is done using the following algorithm :

• The Nonlinear Least Square Optimisation Algorithm.

• The Neural Network Algorithm.
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Wavelength estimation with NonLinear Least Square Optimisation Algorithm

From the generation of data as described in the previous step, each photodiode intensity
measurement produces a non-linear equation which is represented as described in equation
2.53. Using the true transmission function y(λ0) = f(λ0, vk) + nk from equation 2.4 and the
true (but unknown) wavelength λ0, the result of the set of measurements is summarised as a
vector.

Y =



y1
y2
...
...
...

yn


=



f(λ0, v1) + η1
f(λ0, v2) + η2

...
f(λ0, vn) + ηn


(2-8)

In similar manner, considering the transmission function obtained from the calibration f̂(λ, uk)
with approximate (guessed) wavelength λ̂ as described in step 2, a vector with N predicted
measurements values is obtained as follows:

Ŷ =



ŷ1
ŷ2
...
...
...

ŷn


=



f̂(λ̂0, v1) + η̂1
f̂(λ̂0, v2) + η̂2

...
f̂(λ̂0, vn) + η̂n


(2-9)

The unknown wavelength λ0 can be estimated Solving the following equation
set for λ0:

λ̂0 = arg min
λ̂

∥∥∥Y − Ŷ
∥∥∥2

2
. (2-10)

The difference between the measurement vector Y and the approximation Ŷ is defined as
the cost function. The Nonlinear least square optimisation algorithm estimates the unknown
wavelength by minimising the cost function starting from an initial guess λ and selecting the
optimal wavelength that minimises the cost function the most as the final wavelength which
corresponds to the estimated wavelength.

Wavelength estimation with Neural Network Algorithm

The Neural network employs the use of a learning process in which a set of activation functions
are used to approximate the unknown multiple-variable function between the input variables
intensity Y and control signal U and the expected output (λ) by means of nonlinear mapping.
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In the Neural Network approach, a set of intensity measurement is presented as an input into
the network and the calibrated wavelength is presented as the target (desired response) of
the Network.

λ = ΥNN (Y, U) (2-11)

The Neural Network fitting approach requires training of the neurons by selecting a set of
weights to optimise the accuracy of the mapping. The training algorithm minimizes an error
function which is the sum of squares errors between the network output vector λ(y, u) at
given input vector (y, v) and its corresponding target vector λ and this is represented in the
equation below.

Errornet =
K∑

k=1

o∑
o=1

[λn(yk) − λk
n]2 (2-12)

The mean squared error is dependent on the weights and the biases of the network.

Top: The architecture of a three layer MLP with one hidden node to solve our problem

The above figure depicts a network of processing elements, neurons or nodes represented by a
circle. Each circle are connected by lines known as weights. The intensity measurement y is
applied to the k unit. The output layer is represented as O = 1 while H represents the hidden
layer. The input variables yk, for k = 1, ....K multiplied by the weight whk thus generating
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a vector of inputs to the units in the middle layer. The vector is transformed by a nonlinear
activation function denoted as ϑ and the output of the hidden layer is written as:

ζh = f(
K∑

k=1
whkyk + bh) (2-13)

bh is a bias or offset and the function f() is the activation function (a sigmoid function)
denoted as

φ(y) = 1
1 + exp−y

(2-14)

is chosen for neurons in the hidden layer and a linear function is selected for the neurons in
the output layer. The hidden layer produced an output which is multiplied by weight woh,
(o = 1) and bias bo is added to the resulting vector and the network output is generated as
represented in the equation below.

λo =
L∑

h=1
wohζk + bo (2-15)

The above equation is combined such that the neural network algorithm corresponds to the
mapping of intensity measurements yk to outputs λ. Hence

ΥNN (y, u) = λo(y1, ...yk) =
L∑

h=1
wohf(

K∑
k=1

whkyk + bh) + bo (2-16)

The limitation of the Neural Network is that the data presented to the trained network must
be statistically similar to the data used to trained the Neural Network. Therefore, the network
generalizes by interpolating within the range of input data and the network is not expected
to give reliable results if a different data is used.

2-4 Validation of the proposed strategy

To validate our propose strategy for wavelength estimation the need for a tunable light source
is not negotiable. The cost of a tunable laser source left us with no option but to design and
construct a tunable light source suitable for the validation of our proposed methodology for
wavelength estimation. In an effort to realise a tunable light source, two methods designs
were implemented and these includes :

1. Design of tunable laser using a laser pointer.

2. Design of a tunable laser using a bandpass filter.
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Figure 2-8: Schematic of the tunable light laser source using a laser pointer.

2-4-1 Design of a Tunable laser source using a Laser Pointer

A laser pointer is a small hand held device with a power source (usually a battery) and a laser
diode emitting a very narrow coherent low-powered laser beam of visible light, intended to be
used to highlight something of interest by illuminating it with a small bright spot of colored
light. Power is restricted not to exceed 5 mW The laser pointer used in our experimental
set-up had a centre wavelength of 632 nm and was suitable for our research.
The wavelength of the laser pointer was tuned by a heating resistor which was fixed to the
cavity of the laser pointer. As the input voltage to the heating resistor was gradually increased,
the temperature also increased. This caused a corresponding increase in the heat radiated to
the cavity of the laser pointer and this consequently caused a drift in the wavelength of the
laser pointer.
The change in the wavelength is measured by passing the light through a diffraction grating
device (a low-cost compact disc).The displacement of the 1st order diffraction of the light
passing through the diffraction grating corresponds to a change in wavelength. This displace-
ment is measured by a calibrated position sensitive device whose voltage output corresponds
to the wavelength. The displacement of the light on the position sensitive device therefore
correspond to the wavelength of interest based on the amount of heat applied to the diode
cavity of the point laser.
The displacement measured is fed into a MATLAB Algorithm which estimates the wavelength
from the measured displacement and therefore keeps the temperature of the heating element
constant by adjusting the voltage of the resistive element attached to the laser pointer via
a Proportional-Integrator (PI)controller. Hence, the PI controller was used to set the wave-
length of the laser to a user defined reference.
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Though this method of realizing a tunable laser source provided the necessary wavelength
shift, it however had the following limitation which made it unfit for an accurate generation
of a tunable laser source suitable for generating the required data for the design of our system.

• Stabilizing a desired wavelength using a simple proportional integrator controller pro-
duced an inaccurate result due to the high sampling rate of 2.5s. The slow cooling of
the heated point laser also contributed to the increased time measurement process and
this constitute potential inaccuracy in measurement. Although a method of increasing
the speed of cooling by incorporating a peltier element which will optimised the speed
of the system was contemplated, however, this method is limited in accuracy.

• The red laser diode are tunable over the range of + − 5 nm around the 650 nm optical
region and thus such diodes produces effective wavelength and not single wavelength.

• Mode Hopping : When the temperature of the red laser diode was tuned, a slow shift
in wavelength is observed (approximately 0.06 nm/degree). However, further increase
in temperature may result to observation of discrete jumps (jumps from 0.06 nm to
0.3 nm). This mode hopping occurs when the laser switches from one longitudinal
mode to another. therefore, the mode hops occurs in an erratic way with the laser
switching back and forth between wavelengths. Furthermore, since the distance between
two hops is about 0.25 nm and the tunable color filter has a transmission window of
about 3 nm, it thus implies that about 10 modes will be oscillating unnoticed. This
also causes a corresponding fluctuations in the laser output intensity which further
introduces unwanted intensity noise.

Based on the inaccuracy of the designed tunable laser source a new tunable light source was
designed and the design details are discussed in the following section while the experimental
set-up and results are discussed in the next chapter.

2-4-2 Design of Tunable Light Source with a Bandpass Filter

The tunable light source is designed based on the transmission characteristics of an optical
bandpass filter . When a portion or all of incident radiation is at an angle other than the
normal to the surface of a bandpass filter a wavelenght shift occurs i.e increasing the angle θ
between the filter normal and the incident rays causes a shift towards the lower wavelength
according to the equation below:

λθ = λ0(1 − (Ne

N

∗
)2 sin2 θ)

1
2 (2-17)

λθ is the centre wavelength at an incident angle θ. Ne and N∗ denote the refractive index of
the outer medium and the filter.

The optical thickness of a thin film decreases with an increase in angle of incidence; conse-
quently, a multilayer narrow bandpass filter’s center wavelength shifts toward shorter wave-
lengths as the angle of incidence is increased [20,21]. The magnitude of the shift in wavelength
is dependent on the type of filter, the filter design, the refractive index of the coating materials
used and the precision with which the coating materials are deposited [20].
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Figure 2.9 below represents the schematic design of a simple tunable light source used for the
validation of our proposed strategy.

Figure 2-9: The schematic diagram of the Tunable Light Source. The light from the red Light
Emitting Diode is collimated by the collimating Lens system and then incident on the tunable color
filter mounted on a stepper motor, the output from the tunable color filter is collimated again
and passed through a beam splitter where. The incoming light is splitted and part is reflected to
the spectrometer and part is further transmitted into the wavelength meter [18]

The output of the light source which is a red high power Light Emitting Diode (LED) is
collimated by a thin lens and the wavelength is defined and selected by a tunable color filter.
The field propagating over a distance F (where F is the focal point)and thus striking the lens
is the impulse response denoted as

h(x, y) = eik0z

λz
exp(iπ x2 + y2

λF
) (2-18)

The field is transformed by the lens into a plane wave by modulating it by a transmittance
function t(x, y). The transmittance of the lens can be derived from the phase modulation
experienced by the field by propagating through the lens. The transmittance of the lens due
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to its non absorbing property is denoted by t(x, y) = exp[iϕ(x, y)] where ϕ(x, y) is the phase
delay, encountered by the field when passing through the lens at point (x, y).

The phase delay is thus

ϕ(x, y) = (2π

λ
)(∆0 − ∆(x, y)) + (2πn

λ
)∆(x, y)) (2-19)

where ∆(x, y) is the thickness of the lens at position (x, y) on the lens. ∆(0, 0) = ∆0 and n
is the refractive index of lens.

From the analysis of the geometry of the lens, the phase delay propagation through the lens
is approximately:

ϕ(x, y) = 2π

λ
∆0 − 2π(n − 1)

λ
( 1
R1

− 1
R2

)(x2 + y2) (2-20)

Denote
1
F

= (n − 1)[ 1
R1

− 1
R2

](Noted as the lens maker equation) (2-21)

we obtain the lens transmittance as

t(x, y) = exp(−iπ
x2 + y2

λF
)P (x, y) (2-22)

Where P (x, y) is the pupil function introduced to account for the finite transverse aperture
and lens shape aberration of real lenses.

The pupil function

P (x, y) = Circ(

√
x2 + y2

D
) (2-23)

Where D is the diameter of the lens. considering the first part of the schematic as shown
below...

The field at the plane(x, y) is diffracted along the Iz axis through a distance z1 to the (x′
1, y′

1)
plane which contains a lens. The transmittance of the lens causes a modulation of the field
after which the field is diffracted along the Iz axis at a distance Z2 to the (x′′, y′′) plane.

Given the field f(x, y) on the (x, y) plane, the field at the output represented by g(x′′, y′′) on
the (x′′, y′′) is computed as a linear transformation due to the transmittance of the lens and
it is characterize by an impulse response.

Therefore an impulse at (x0, y0) in the(x, y) plane produces

u(x′, y′) = eik0z1

λz1
exp(iπ (x′ − x0)2 + (y′ − y0)2

λz1
) (2-24)

The field is modulated after passing through the thin lens and the field produced is a product
of the impulse and the lens transmittance.

t(x′, y′), u(x′, y′) = eik0z1

λz1
exp(−iπ

x′2 − y′2

λF
∗ exp(iπ (x′ − x0)2 + (y′ − y0)2

λz1
)P (x′, y′) (2-25)
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The impulse response describes the linear transformation that occurs when a field passing
through a lens is modulated by the transmittance of the lens [6]. The impulse response at
the output plane is therefore denoted as h(x′′, y′′, x0, y0) and it is obtained by convolving the
modulated field with the fresnel kernel and this produces equation 2-26. For more detailed
derivation, interested reader is referred to [6].

h(x′′, y′′, x0, y0) = eik0(z1+z2)

λ2z1z2

∫ ∫
exp(−iπ

x′2 + y′2

λF
P (x′, y′) ∗ exp(iπ (x′ − x0)2 + (y′ − y0)2

λz1
)

∗exp(iπ (x′′ − x′)2 + (y′′ − y′)2

λz2
δx′δy′ (2-26)

To further solve the above integral equation, the following assumptions were made :

• Assume z1 = z2 = F then the impulse response is given below

h(x′′, y′′, x0, y0) =
ei 4πF

λ

λ2z1z2
exp(iπ x′′2 + y′′2

λz2
)exp(iπ x2

0 + y2
0

λz1
)

∗
∫ ∫

P (x′, y′)exp[−i
π

λF
(x′2 + y′2)]

∗exp(i2π

λ
[x′(x0z1 + x′′z2)] + [y′(y0z1 + y′′z2)]δx′δy′) (2-27)

To neglect the impact of the aperture, we assume P (x, y) = 1 and thus the integral becomes
the fourier transform of the complex gaussian. Thus applying the similarity theorem, the
impulse response becomes :

h(x′′, y′′, x0, y0) = ei2k0f

iλF
exp(−iπ

x′′2 + y′′2

λF
)exp(iπ x2

0 + y2
0

λF
)

∗exp[−iπFλ( x0
λF

+ x′′

λF
)2 + ( y0

λF
+ y′′

F
)2] (2-28)

and h(x′′, y′′, x0, y0) is the impulse response of the propagation of the incident field from the
front focal plane of the lens to the back focal plane.

g(x′′, y′′) = ei2k0F

iλF

∫
f(x, y)exp[−i

2π

λF
(xx′′ + yy′′)]δxδy (2-29)

Thus g(x′′, y′′) is the output field which is the fourier transform of the incident field evaluated
at u = x′′

λF and v = y′′

λF
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2-5 Concluding Remarks

In this chapter, the strategy used for the design of the model based wavelength wavelength
estimation device was proposed. The progression in steps, necessary for the actualisation of
our model was also described. Furthermore, the underlying theories of the components used
in our system such as the TCF, the photodiode, the Avantes spectrometer etc were discussed.
To validate our system, the need for a tunable light source was emphasised and the methods
deviced for the realisation of the tunable light source have been documented.

The experimental set-up of a tunable light source used to validate our system and the exper-
imental set-up of our wavelength estimation device will be discussed in the next chapter.
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Chapter 3

Wavelength Estimation

The previous chapter describes our strategies for the design of our wavelength meter with
particular focus on developing a model for the calibration of the transmission function of
our system using the Neural Network method. Furthermore, the Nonlinear Least Square
optimisation algorithm and the Neural Network algorithm were proposed as the method of
estimation of the unknown wavelengths. This chapter presents the details of the implemen-
tation of our proposed strategies described in the previous chapter and the results obtained
from the experimental implementations.

3-1 Experimental set-up of Tunable light source

To validate our proposed strategy, we built a tunable light source (described in 2.42) which
produces better accuracy than the tunable laser source described in 2.41. The schematic
diagram is described in figure 2.9.

Light from a red light emitting diode (LED) is collimated by lens L1 and lens L2. The
collimated laser beam is focused into a pin hole of 20µm. The light emerging from the pin
hole passes through the lens L3 and thus collimated before striking the tunable optical filter
surface.

The optical band pass filter allows the transmission of wavelengths in a narrow range around
a specified wavelength hence it selectively transmit a defined wavelength and rejects other
wavelengths. The transmission characteristic of the optical filter is tuned by changing the
angle of incidence of the incoming light from the red LED via the stepper motor on which the
filter is mounted. When a control signal vk at a time instant k is sent from the computer to
the stepper motor via the microcontroller, the stepper rotates in steps of 1 degrees and thus
the wavelength shifts to shorter wavelengths according to equation 2.41.

The output of the filter is then passed through a beam splitter (a device which splits the
incoming light beam into two halves) the first half is collimated by a collimating lens and the
intensity of the collimated output beam is measured by a photodiode and the second half is
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fed into an Avantes spectrometer which measures the wavelength of the output beam thus
enabling the calibration of the light source.

The intensity measured by the photodiode when the Optical filter is tuned by the stepper
motor is readout and transmitted to the PC via a data acquisition card. The stepper motor
control signal is generated by the PC and the control voltage to the stepper motor is set via
a digital to analog card connected to the PC.

All user-defined parameter for the hardware and software are written in a text file by Matlab.
During the experiment, Matlab communicates with the Digital Acquisition Card (DAQ) and
Digital Analogue (DA) cards and the results are also read out by MATLAB. The Avantes
spectrometer is also connected to the PC via the Matlab and its Avantes software and both
softwares are used interchangeably.

In our experimental set-up, the tunable color filters (Thorlabs, GmbH, Germany) is tuned
by a stepper motor (Texas instrument) with a step angle of 1.0 degrees. The photodiode
measurement is readout by National Instrument SCB-68.

3-1-1 Experiment and Results

The experimental set-up described in section 3.1 gives a tunable light source which generates
15 wavelengths. As the TCF is rotated, the central wavelength shifts downwards and the
wavelength output shifts from 630.6235 nm to 615 nm, spanning a range of approximately
15 nm. The result is displayed in table 3.1. With a complete rotation of the TCF from 35

Table 3-1: Wavelengths obtained at control input (θ) to the Tunable color filter.

S/no Angles (degrees) Wavelength(nm)
1 θ1 630.6235
2 θ2 630.3121
3 θ3 629.8450
4 θ4 629.2222
5 θ5 628.4434
6 θ6 627.5085
7 θ7 626.5734
8 θ8 625.6380
9 θ9 624.7023
10 θ10 624.2344
11 θ11 622.5179
12 θ12 621.1127
13 θ13 619.2382
14 θ14 616.8933
15 θ15 615.0162

degrees to 70 degrees (almost blocked transmission to the other end of blocked transmission)a
repetition of the wavelength cycle is visible as depicted in figure 3.1. The limitation of the
designed tunable light source is that it cannot provide a high and consistent resolution due
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to the properties of the filter, the tunning of the filter and the properties of the light source.
This however limits the performance of our model but gives us insight into the performance
of our proposed methodology for wavelength estimation.

3-1-2 Calibration of the tunable color filter

The combined spectral function f(λ0, v) of the Tunable Color Filter needs to be identified.
This is referred to as the calibration of the Tunable Color Filter and it provides gainful insight
into the performance characteristics of the filter especially when an angular displacement is
applied to it.The calibration of the TCF was done in two steps:

Calibration of f(λ0, v) at fixed λ0

In this first step, wavelength λ0 of incident light is fixed and only the bandpass filter is rotated
by the stepper motor (i.e, v changes). As the incident angle of the incoming light changes,
the transmitted intensity varies as shown in figure 3.3. This shows that the spectra curve
f(λ0, v) is sensitive to the incident angle (i.e.control signal v) and thus can be used in our
system set-up.

Calibration of f(λ, u) for varying λ and u

In the second step, both λ0 and v are varied i.e for every wavelength, a set of intensity
measurement is recorded. The recorded intensity measurement y is thus used for identifying
f(λ0, v). The results of the calibration of the color filter is depicted in figure 3.4.

3-2 Wavelength Estimation Methods

The goal of our model is to estimate the unknown wavelength of light injected into our
system. As described in chapter 2, two algorithms are used for the estimation of the unknown
wavelength. In this section, three approaches based on the two algorithms described in chapter
two are used for wavelength estimation. The three approaches are highlighted below and
described in the subsections that follows:

• Non-linear least square optimisation approach based on Neural Network.

• Single Neural Network approach.

• A hybrid (Neural-least square) approach based on two Neural Network.

3-2-1 Non-Linear Least square Optimisation approach based on Neural Network

The purpose of the NLLS optimisation approach based on Neural Network is to estimate
the unknown wavelength of an incoming light by deducing the optimal wavelength which

Master of Science Thesis T.E Agbana



48 Wavelength Estimation

minimises the cost function as shown in the equation below:

λ̂ = arg min
λ̂

∥∥∥Y − Ŷ
∥∥∥2

2
. (3-1)

where

Y =



y1
y2
...
...
...

yn


=



f(λ0, v1) + η1
f(λ0, v2) + η2

...
f(λ0, vn) + ηn


, Ŷ =



ŷ1
ŷ2
...
...
...

ŷn


=



f̂(λ̂0, v1) + η̂1
f̂(λ̂0, v2) + η̂2

...
f̂(λ̂0, vn) + η̂n


(3-2)

and

V =



v1
v2
...
...
...

vn


(3-3)

From the above equations, Y = F (λ0, V ) and Ŷ = F̂ (λ0, V ). This implies that equation 2.10
can be re-written as

λ̂ = arg min
λ̂

∥∥∥Y − Ŷ
∥∥∥2

2
. (3-4)

Approximating spectral function F̂ (λ, V ) by a Neural Network

Given the fact that the wavelength of an incoming light source was measured (calibrated)
with the Avantes Spectrometer, the control input signal at each time instant was known
and the intensity measurement was measured by recording the output of the photodiode,
approximating the function F̂ (λ, V ) by a Neural Network is possible by fitting a function to
the data generated.

F̂ = NN(λ, V ) (3-5)

The Neural Network is trained by presenting the calibrated wavelength λ and the control signal
U as the input to the network and the output of the network is the intensity measurement
recorded at the control signal U . The network is trained with the Levenberg marquardt
algorithm and the choice of neurons which minimises the cost function is appropriately selected
such that the function (F̂ λ, U) is well approximated.

An incoming light with an unknown wavelength λ provides an intensity vector Y at control
signal U . The difference between the measured intensity Y and the function F̂ (λ, U) approx-
imated using the Neural Network approach is minimised by using the non-linear least square

T.E Agbana Master of Science Thesis



3-2 Wavelength Estimation Methods 49

optimisation algorithm. The wavelength which minimises the cost function provides the best
estimate of the unknown wavelength of the injected light.

The cost function J = 1
N ∥Y − F̂ (λ, U)∥2

2 is defined as the Mean Square Error (MSE) between
the measurement vector Y and the approximation at certain guess λ and the purpose of
equation 3.4 is to find the suitable λ̂ such that the cost function is close to zero as much as
possible.

Pseudo Algorithm for NLLS approach

1. Initially known parameters are : F̂ (λ, U) which is the result obtained from calibration
using Neural Network algorithm, intensity measurement Y and control signal U .

2. Initialise parameter : λ0 as initial guess.

3. Run Levenberg Marquardt algorithm to optimiseλ̂x = arg minλ̂x

∥∥∥Y − Ŷ
∥∥∥2

2
.

4. Store λfinal.

3-2-2 The Neural Network Approach

Section 2.4 gives an overview on the principles of Neural Network and how to fit a Neural
Network.

For this Neural Network approach for wavelength estimation, a Neural Network is trained
with inputs Y which is the measured set of intensity data and the output of the network λ
(the calibrated wavelength measured with the Avantes Spectrometer) is the desired response
or the target response of the Network. This approach allows the estimation of the optimal
wavelength λ when a set of intensity measurement is presented to the trained network.

In this approach, the control signal U is known and it corresponds to Y (U).

λ = NN(Y (U)) (3-6)

The unknown wavelength is estimated with the Neural Network approach by deducing the
inverse of the calibrated function as depicted in the equation below:

λ = F̂ −λ(Y (U)) (3-7)

λ = F̂ −λ



f(λ, u1)
f(λ, u2)

...

...

...
f(λ, um)


(3-8)
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Training and Validation.

Neural Network fitting adopted for the estimation of wavelength in our wavelength meter
requires two-phase handling which are :

1. Training.

2. Validation.

Training

The training involves using a large database of intensity measurement and control signal to
teach the neural network to perform a mapping. In the training phase, a learning process is
completed and a hyper-surface is constructed. The constructed hyper-surface which is as a
result of optimising the free parameters of the network, fits to the training data points.

The primary goal of the Training phase is to minimize the error function (which is the sum
of squares of the errors between the output vector λ(yp) (at a particular sets of intensity
measurement of the network which represents our input vector yp) and the corresponding
target vector λp (which is our calibrated wavelength at a specified intensity).

Validation

The Validation phase is the phase where a set of intensity measurement from a light source
with an unknown wavelength is presented to the trained network.

The unknown wavelength is deduced from the interpolation on the constructed hyper-surface.
The process of validation is completely equivalent to computing the unknown wavelength of
an incoming light since the weights or the parameters of the network have been determined
after the completion of the training process.

For the network to generalize to new data such that the unknown wavelength can be estimated,
it is essential that the training data spans the input space where the mapping is to be applied
because Neural Network are poor at extrapolating beyond their training experience and are
very efficient at interpolating within their training examples.

3-2-3 The Hybrid Method

In this method , the two wavelength estimation methods discussed above are combined.

Two Neural Networks are combined with the Non Linear Least square algorithm to provide an
estimation of the unknown wavelength of an incoming light. The first Neural Network NN1
is fitted with the intensity measurement Y as the input to the network, while the output
(desired response) of the network is the calibrated wavelength λ as described in section 3.2.2.

The first Neural Network is used to compute the initial estimate of the optimal wavelength λ
thus providing an educated guess for the Non Linear Least Squares optimisation algorithm.

The provision of an educated initial guess ensures that the an abstract initial guess is not
selected.The provision of an educated guess ensures convergence to a unique solution. It
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also allows the iterative method to converge in fewer iterations. This method could prevent
convergence to the wrong solution since the initial guess is well predicted by the Neural
Network.

The second Neural Network NN2 is as described in (3.21) The second Neural Network has
calibrated wavelength λ and the control input signal U as the input to the network to produce
an estimate Ŷ of Y which is the output of the second Neural Network. This Neural Network
is used in Non-Linear Least Square optimisation to deduce the approximate of the function
F̂ (λ, U) such that

∥Y − F̂ (λ, U)∥2
2 (3-9)

is formed.

Difference between the Least square approach,the Neural network approach and the Hybrid
Solution

• Least square approach to curve fitting requires optimization for every set of data points
to be fitted.

• The Neural network approach to curve fitting performs one - time optimization which
is sufficient to solve a whole class of fitting problems.

• Once the neural network is trained it can very quickly perform the curve fitting operation
on a new data.

3-3 Performance Measures

Two performance indices are defined to evaluate the performance of our model.

The optimisation algorithm for finding the unknown wavelength uses the sum of squares
as minimisation criteria. Although this performance index can be used for evaluating the
performance of our model, another performance index which is the Variance-Accounted-For
(VAF) is defined. The sum of squares can indicate that a perfect model is not performing well
if the signal is noisy. The VAF however is less sensitive to this and it gives a better model
judgement when we have noisy signals.

3-3-1 Variance-Accounted-For

The Variance Accounted For is often used to verify the correctness of a model, by comparing
the real output with the estimated output of the model. VAF weights the variance of the
residual with the variance var(λ) of the measured wavelength λ. The maximum VAF is 100,
but for an inaccurate model the VAF can even become negative.

The VAF is calculated as:

v = (1 − var(λreal − λ̂

var(λreal)
) ∗ 100 (3-10)
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where λreal is the calibrated wavelength and λ̂ is the predicted wavelength. The VAF of two
signals that are the same is 100. If they differ, the VAF will be lower.
Inputs:

• λreal Signal 1, often the real output which is the wavelength calibrated by the Avantes
spectrometer.

• λ̂ Signal 2, often the estimated output of our model.

• Output: v is the Variance-Accounted-For, computed for the two signals

3-3-2 Sum of Squares

Sum of Squares is applied as performance evaluation (cost function) for the minimisation of
the prediction error in the nonlinear calibration procedure. This cost function is minimised by
the Levenberg Maquardt algorithm to estimate the unknown wavelength with the nonlinear
least squares optimisation technique. The sum of squares is defined as follows:

J(λ) = 1
N

∑
(ŷ(k, λ) − y(k))2 (3-11)

where k is the time index of the sampled data, λ is the parameter to be estimated, ŷ(k, λ) is
the predicted spectral curve, y(k) is the measured data and N is the number of samples.
The absolute error is computed from the Sum of Squares error by dividing the summation of
the absolute value of the error by the number of measurements.

J(λ) = 1
N

∑
(ŷ(k, λ) − y(k)) (3-12)

3-4 Experiments and results

An experimental setup has been built in DCSC Smart optics Laboratory for a proof of concept
of our proposed wavelength estimation method.
A high power LED (4.6 Watt) is used as our light source. The Light source is collimated
by various collimating lens and therefore passed through a Tunable Color Filter (FL632.8-
3, Thorlabs) mounted on a stepper motor (RDK-Stepper Motor,Texas Instrument) which
enables the realisation of a tunable light source with a tunning range of 15nm(630nm −
616.1114nm). The light at every wavelength is transmitted through the wavelength meter
assembly. The set-up is depicted in figure 3.5.
Spectral sensitivity function F (λ, θ) is identified from a set of input-output data {λ, y} at
θ = 30 : 1.0 : 60 deg.
For each fixed θ, λ is scanned from 616.6nm to 630.3 nm with an inconsistent increment of ap-
proximately 0.6 nm (the resolution is limited by our light source, motor steps (approximately
1.8 degrees) and the resolution of our wavelength calibration equipment).
The range [616.6 nm, 630.3 nm] is selected because the Tunable color filter produces optimal
tunability when it is tuned over the range of 18 degrees. Each {λ, y} curve is approximated
by a neural network.
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3-5 Data for calibration and wavelength estimation

To demonstrate the performance of our proposed optical wavelength meter, four data set
were generated. The first two dataset A and B generated are used for the calibration of our
function and the for the validation of our model respectively.

Dataset A and B are limited in terms of the recorded transmission data points hence the
number of measurements made is reduced as compared to dataset C and D. This therefore
reduces the prediction accuracy of our proposed wavelength estimation algorithms.

To observe the impact of the number of measurements on the accuracy of our wavelength
estimation algorithm, data set C and D are generated. Dataset C and D have high number
of recorded transmission data point.

While dataset C is used for the calibration of our Model, dataset D is used for the validation
of our proposed. Further details are discussed in the section that follows.

3-5-1 Data set A

Data set A is the transmission data points (intensity measurement) recorded at varying wave-
length λ0 i.e for every wavelength selected by the first tunable color filter a complete rotation
of the second tunable color filter produces a transmission data point which is recorded by the
photodiode.

Dataset A is mathematically depicted by equation 3-13 and the measured data includes the
intensity measurement Y , the calibrated wavelength λ and the control signal V .

The overview of the measurement profile of the data set is represented mathematically in
equation 3-13 below. 

Y1
Y2
...
...
...

Y18


=



F (λ1, V )
F (λ2, V )

...
F (λ18, V )


(3-13)

For a given set of angles that is set by the inputs U1:18 where U is the control input signals
to the stepper motor which generated the wavelength from the red LED, wavelength λi for
i = 1 : 18 is generated.

For each λi, corresponding set of intensity measurement Y = y(1:1:15) are recorded at control
signal V = v(θ1:1:θ15) where V is the control signal to the color filter used for the wavelength
estimation.

This process is repeated for a different angle set by a different control signal U. To ensure
accuracy of our system more intensity measurements were generated by repeating each inten-
sity measurement 18 times for the same λi. In total we have 15 settings of angle, repeated 18
times for each 18 wavelengths generated. It is important to note also that the transmission
data points were recorded while the light source (LED) is kept at constant power.
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Data set A is used for the calibration of our system such that the nonlinear least square
algorithm can adequately estimate the optimal wavelength that minimises the cost function.
In the neural network approach however, this data set is used for training the neural network
since the need for calibration is not necessary.

3-5-2 Validation Data set B

Data set B is measured under similar condition as data set A and it is mathematically repre-
sented as equation 3-13.

Data set B was used for the validation of our model therefore, it is not used for calibration
or for training. Data set B was recorded 72 hours after data set A was measured. The
time difference between measurement A and B is deliberately done so that allowance is given
for drifts in measurement which may arise as a result of temperature variation, vibrations,
displacements etc.

Using data set B as our validation data gives us insight into the accuracy of our model and
how our model will behave when data which are completely different from the data used for
calibration and wavelength estimation are used to predict the wavelength in our proposed
wavelength estimation methods.

3-5-3 Data set C

Data set C is similar to the Data set A (which is the recording of the intensity measurement
at varying wavelength λ).

While the transmission data point in data set A is recorded for the power of the light source
set at a constant value, the transmission data points in data set C is measured while the
power of the light source is varied. The variation in the power of the light source results
in measurements of the transmission data points through the range of 13 different power
levels (watts) and this results into a large database of transmission data points used for the
calibration of our system and the estimation of the unknown wavelength.

For data set C, the control signal is designed such that 30 intensity measurements are taken
at each wavelength which also makes data C different from data A where only 15 intensity
measurements are recorded. A set of intensity measurement Y = y(1:1:30) is measured given
a set of control signal U = u(θ1:1:θ30) thus giving rise to 30 angles which implies that Nangles

= 30. For the generation of data set C, 15 wavelengths are used.



Y1
Y2
...
...
...

Y18


=



F (Pλ1, U)
F (Pλ2, U)

...

...
F (Pλ15, U)


(3-14)
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Table 3-2: Four data set used for system calibration and wavelength estimation

Dataset No.Angles No.Wavelength No.Duplicates Intensity Val. Pwr.Levels
DS A 15 18 18 4860 1
DS B 15 18 18 4860 1
DS C 30 15 18 105300 13
DS D 30 15 18 8100 1

3-5-4 Data set D

Data set D is measured under similar condition as data set C and like data set B, data set D
is also used to validate and test our model.

A complete cycle (30 intensity measurement at each of the wavelength selection which is
repeated for 18 duplicates) is recorded while the light source is at constant power (arbitrary
power (watt) setting of the light source). This measurement was done one week after the
data set C dataset was generated because this will simulate a more realistic situation and will
proffer better insight into the performance of our model in terms of accuracy.

3-6 Data Processing

To gain more useful insight into the performance of our wavelength estimation method, the
recorded transmission data points (light intensity and calibrated wavelength) were processed
and the results of the processed data points are compared with the results obtained from the
unprocessed data points.

3-6-1 Normalizing the transmission data points

To ensure consistency in our data and to see the impact of introducing consistency into our
data analysis, the entire set of data was normalized by deducing the maximum intensity value
in each channel and dividing the entire measurement in a channel by its maximum intensity
measurement.

This analysis reduces the database to a consistent maximum value of 1 for every channel.
Normalization was performed on each of the data set (intensity measurement) in the above
table and the result will be discussed in the subsequent section on experimental results. The
normalisation procedure is mathematically described below :

for each Yi :
Ynormalized = Yi

max(Yi)
(3-15)

3-6-2 System of equation

Equation for the calibration of our system with ŷ normalized :
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ŷk(λ) = f̂(λ0, vk) = w1tanh(w2λ0 + s1) + s2 (3-16)

Set of non-linear equation derived from the physics of our system.

y1 = f(λ0, v1) + η1

y2 = f(λ0, v2) + η2
...

yn = f(λ0, vn) + ηn

(3-17)

Equations denoting the set of approximated transmission curve.

ŷ =



ŷ1
ŷ2
...
...
...

ŷn


=



F̂ (λ̂0, v1) + b̂x

f̂(λ̂0, v2) + b̂x

...
F̂ (λ̂0, v3) + b̂n


(3-18)

Available measurements

• θk : Control input at time instant k for tunning the tunable color filter.

• yk : Intensity measurement at time instant k recorded by the photodiode.

• λ : Calibrated wavelength measured by the Avantes spectrometer.

• Power : The power (watts) of the light source at various time instant k.

Parameters to be estimated

• λ : Unknown wavelength of a tunable light source.

• ŷ : F̂ (λ, θ) spectra sensitivity of combined color filter and photodiode.

Cost function

λ̂x = arg min
λ̂x

∥∥∥Y − Ŷ
∥∥∥2

2
. (3-19)
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3-7 Results for Data Set A and Data Set B

This section presents the wavelength estimation results using the Neural Network estimation
algorithm where data set A (with 4806 recorded transmission data points) was used for the
training of the Neural network.

The estimation algorithm has been tested with data set B which was generated at the same
control input signal θ and wavelength λ but the measurement was performed 3 days after
data set A was generated. The dataset B is therefore referred to as the validation data set
which is used to validate the accuracy and the performance of the Neural Network estimation
algorithm for wavelength estimation.

3-7-1 Result of trained Neural Network with validation data set A

The validation data set used to test our trained network is thesame as the dataset used to
train the network (i.e a part of the generated data was used for training the network while
the other part was used for the validation of the model.)

The Neural network is trained with Dataset A, using 20 Neurons and the computed vari-
ance -Accounted-For between the wavelength measured by the Avantes Spectrometer and the
wavelength estimated by the Neural Network is 99.9971 percent. The wavelength estimation
error which is the difference between the calibrated wavelength and the predicted wavelength
is depicted in Figure 3-6.

Figure 3-6 shows the plot of the estimation error and the histogram of the errors when
the trained neural network is tested with similar data used for the training. The maximum
estimation error for the validation set is about 0.4 nm. 98% of the estimation error is between
-0.1 nm 0.1 nm.

3-7-2 Result of trained Neural Network with validation data set B

A validation data set measured 72 hours later was used to validate the Neural Network
estimation algorithm. When a completely different data set which is measured under different
environmental conditions (such as drift in temperature, humidity, vibrations, drift in the
power of light source,etc) is used to measure the accuracy of the prediction of the unknown
wavelength the performance of our trained Neural Network dropped and this is obvious in
the decrease of the value of the computed VAF and the increase in the absolute error.

The plot and the histogram of wavelength estimation error in figure 3-7 depicts the perfor-
mance of our model. The Variance-Accounted-For between the estimated wavelength using
data set B and the calibrated wavelength is 91.4740 the absolute error is 1.4044.

3-7-3 Neural Network algorithm validation data set B Normalized

To observe the impact of processing the data sets on the performance of our model, data set A
was normalized before it was used for the training of the neural network. The training of the
neural network was done under similar conditions as when the data sets were not normalised
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Table 3-3: Summary of Neural Network training process.

Modelling dataset Number of Neurons Algorithm
Data set A 20 Levenberg-Marquadt

Data set A Normalised 20 Levenberg-Marquadt

Table 3-4: Results of the Neural Network estimation Algorithm.

Modelling dataset Validation dataset VAF Absolute error
Data set A Data set A 99.9971 0.2 nm
Data set A Data set B (72hrs later) 91.4740 1.4044 nm

Data set A Normalised Data set B normalised 99.1892 0.5942 nm

(i.e, 20 neurons were used for the training and the Levenberg Marquardt method was used).
The data set used for the validation (i.e data set B) was also normalised before it was used
to validate the performance of our model. The plot and the histogram of the wavelength
estimation error are depicted in Figure 3-8 below.

For the normalised data sets, the Variance-Accounted-For is equal to 99.1892 percent,the
absolute error = 0.5942. Normalizing the data used for training and for validating the Neural
network is important to the accuracy and the performance of neural network algorithm.

Data normalisation ensures consistency in the statistical properties of the data set used for
training and the data set used for validation of the trained network.

3-7-4 Hybrid (Neural Network - Nonlinear least square optimisation) algorithm
validation data set B Normalized

The combination of the Non-linear least square optimisation and the neural network algorithm
was validated with the normalised dataset B. The Neural network provided the initial guess
needed to minimise the cost function. The variance accounted for is 99.6535 and the computed
absolute error is equal to 0.4446.

The results for the wavelength estimation of different data sets are compared in the table 3.4
and 3.5. The table shows the Variance-Accounted-For and the absolute error for each data
set. The performance of Neural Network when the training dataset was used as the validation
dataset provides the best VAF and the minimum absolute error. This is not the case however
when real validation data generated 72 hours later were presented to the trained network.

Table 3-5: Table 3.4: Results of the Hybrid (NNNLS).

Modelling data set Validation data set VAF Absolute error
Data set A Normalised Data set B normalised 99.6535 0.4446 nm
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The network generalizes best when the data presented to the network are statistically similar
to the data used to train the network.

Processing the data by normalizing it as discussed earlier improves the performance of the
Neural Network model when presented with a new data set. From the table 3.4 it can be
deduced that the accuracy and the VAF improved significantly when the data set presented
to the trained NN was normalized.

The NLLS algorithm provides a good estimate of the wavelength as depicted in table 3-5. A
VAF of 99.6535 depicts how accurate the model is for wavelength estimation. It is important
to note also that the accuracy of the estimation algorithm is limited by the accuracy of the
calibration equipment (Avantes Spectrometer which has an accuracy of 1 nm) and the tunable
light source designed to validate our methodology. This implies that a more accurate tunable
light source (Tunable laser) with a high resolution and accurate optical spectrum analyser is
needed for a better performance of the Neural network wavelength estimation algorithm.

3-7-5 Results for Data Set C and Validation Data Set D

This section describes the results for Data set C (the large transmission data points of 1.05∗105

is recorded for different settings of power (watts) of the light source). Data set C is used for
the following purposes in the wavelength estimation methodology.

1. The training of Neural Network required for wavelength estimation.

2. The calibration of our system required for the approximation of the spectral curve
needed for non-linear least square optimisation algorithm method of wavelength esti-
mation.

3. The training of the neural network used to predict the wavelength required for the initial
guess of the optimisation algorithm.(Hybrid method to wavelength prediction).

Data D is measured three days after data C was generated and it was used for the validation
of the proposed wavelength estimation methodology. The data set will be analysed using the
following proposed wavelength algorithm:

1. Neural Network Algorithm.

2. The Non-linear least square optimisation algorithm.

3. The Hybrid (Neural-Non-Linear least square optimisation algorithm).

3-7-6 Neural Network Algorithm with Dataset D

Dataset C is used to train the Neural network, the network input is the recorded intensity
measurement and the output (target) of the network is the calibrated wavelength measured
using the Avantes Spectrometer. The network is trained with 80 neurons in 156 iterations
and the trained network is stored.
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Data set D containing the intensity measurement of an unknown wavelength is presented
to the trained network. The trained network predicts the unknown wavelength and the
performance measures is estimated providing the following results:

The Variance-Accounted-For is 99.7998, the absolute error =0.1941 and the computational
time = 0.010175sec.

3-7-7 Non-linear least square optimisation algorithm

The non-linear least square optimisation algorithm was used to estimate the unknown wave-
length in the following steps :

• Calibration of transmission curve using the Neural network to fit an analytical function
to the recorded transmission data points. The Neural network is trained with data
set C where the input to the neural network is the vectorised form of the calibrated
wavelength and the control input signal θ. The output of the network is the intensity
measurement recorded by the photodiode.

• The selection of appropriate λinitialguess requires human intervention such that the lower
and the upper bound of the initial guess is selected to avoid the convergence of the
algorithm to a wrong solution due to the wrong selection of initial guess. Two initial
guess are selected and the impact of the selection choices is observed as documented in
table 3-6.

The wavelength estimation error obtained when data set D is used to validate the optimisation
algorithm is depicted in the figure 3-12.

With an initial guess of 625nm, the Variance-Accounted-For is equal to 96.1761, the absolute
error is equal to 0.5048 and the computational time is 0.862121 seconds.

3-7-8 Hybrid solution (Educated - iterative method)

Due to the fact that the a wrong choice of an initial guess can cause the algorithm to converge
to a wrong solution then a hybrid solution estimation algorithm is proposed. This educated-
iterative algorithm increases the convexity of the optimisation algorithm. The neural network
is trained with the data set C and the input used for the training is the recorded intensity
measurement and the output is the calibrated wavelength. When a set of intensity measure-
ment needed for the estimation of unknown wavelength is presented to the trained network
a wavelength needed for use as the initial guess in the optimisation algorithm is estimated.
The educated-iterative method involves the following steps.

1. Calibration of the system by training the Neural network with vectorised form of the
calibrated wavelength and control input signal as the input to the network.

2. Selection of an appropriate initial guess by training the neural network with data set C
and estimating λinitialguess.

T.E Agbana Master of Science Thesis



3-8 Concluding Remarks 61

Table 3-6: Results of the estimation algorithm on Data set C and D..

Algorithm VAF Absolute error Computational time
NN 99.7998 0.1941 nm 0.0107 sec

NLLS625 96.1761 0.5048 nm 0.8621 sec
NLLS620 17.4174 4.1603 nm 0.3773 sec

HYBRID (NN+NLLS) 99.5971 0.3972 0.2002 sec

3. Present data set D for the estimation of the unknown wavelength and estimate optimal
lambda that minimises the cost function the most.

The result obtained from the hybrid method is tabulated in table 3-6.

It can be deduced that the estimation accuracy of the unknown wavelength using the Hybrid
NLLS aproach depends on the number of measurements for solving Eq. (3.18), the initial
guess of λ0 and the weighting matrix Wk used for the calibration of the system. The number
of measurements determines the shape of the cost function J (e.g., how many local minima in
J). A good initial guess of λ0 ensures that Eq. 3-18 converges to λ0 if the model is accurate.

3-8 Concluding Remarks

In this chapter, wavelength has been estimated with a single tunable color filter and a single
photodiode. The Neural Network and the NonLinear Least Squares optimisation algorithms
are used to estimate the unknown wavelength of an incoming light.

The Neural Network provides a good estimation of the unknown wavelength but it is observed
that the NN approach provides excellent approximation when the data presented to the
trained network is statistically similar to that which formed the dataset used to trained the
neurons.

This implies that the network generalizes by interpolating within the range of the input data
and as such the network is not expected to give reliable results if substantially novel input
data are used. When a validation data set measured three days later was used to validate the
trained network, the result shows a clear decline in the performance of the model.

Processing the modelling and validation data set by normalizing the data however, improves
the accuracy of the estimation of the unknown wavelength with noticeable improvement in the
Variance-Accounted-For as depicted in tables 3.1-3.4. The nonlinear parameter estimation
problem is tackled by minimising a cost function based on the sum of squares. An optimisation
technique called Levenberg Marquardt is used for minimising the cost function. The validation
results shows that it is possible to obtain a good model which predicts the unknown wavelength
with good accuracy.

From the result obtained, it is clear that the estimation accuracy improves with the number
of measurements and a good initial guess of the wavelength λ. When an initial guess chosen
by human intervention was used, it was observed that the accuracy of the estimation of the
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unknown wavelength can not be predicted. For example an initial guess of 625 nm provides
a good estimate of the unknown wavelength and an initial guess of 620 nm provides a bad
estimate of the unknown wavelength as depicted in the table. Hence the use of an educated
guess provides a better estimation of the unknown wavelength.

Now that the system has been calibrated and the wavelength estimation algorithms have been
tested, in the next chapter we predict the performance of our proposed wavelength estimation
algorithms when a temperature drift is introduced into the system.
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Figure 3-1: Figure showing the plot of wavelength obtained by tuning the tunable color filter,the
color filter is mounted on a stepper motor which provides the control input signal θ thus generating
a total of 18 wavelengths when the angle is displaced from normal angle. Maximum wavelength
obtained is 632.3nm and the minimum is 609.3nm. For our application, 15 wavelengths were
selected and the rest discarded. Although this does not proffer a very accurate tunable light
source for the calibration of our system, it however gives an opportunity to develop a proof of
concept in the DSCS Optics Lab.
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Figure 3-2: Figure showing the system set-up comprising of the tunable light source

Figure 3-3: Spectra curve f(λ, v) for different motor angle u at fixed wavelength λ. 1 angle step
is approximately equal to 1 degree. Intensity varies from 0 (all blocked),to maximum;
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Figure 3-4: Spectra curve f(λ, u) for different motor angle u at varying wavelength λ.
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Figure 3-5: Top: Figure showing the system set-up comprising of the tunable light source and
the wavelength meter on the optical bench in the DSCS Lab; bottom: Figure showing the system
set-up comprising of the tunable light source.
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Figure 3-6: Top: the plot of wavelength estimation error in the modeling data set; bottom:
histogram of the wavelength estimation error in the modeling data set.
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Figure 3-7: Top: the plot of wavelength estimation error using the data set B generated 72
hours later; bottom: histogram of the wavelength estimation error in the data set B.
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Figure 3-8: Top: the plot of wavelength estimation error using the normalised data set B
generated 72 hours later; bottom: histogram of the wavelength estimation error in the normalised
data set B.
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Figure 3-9: Top: the plot of wavelength estimation error using the normalised data set B recorded
72 hours later; bottom: histogram of the wavelength estimation error in the normalised data set
B. Hybrid solution (NN+NLLS)is used to estimate unknown wavelength
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Figure 3-10: Top: the plot of wavelength estimation error using data set D ; bottom: the plot of
the wavelength estimation error as plotted against wavelength.Neural Network trained with data
set C and validated with data set D
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Figure 3-11: Top: the histogram of wavelength estimation error using data set D.
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Figure 3-12: Top: the plot of wavelength estimation error using data set D ; bottom: the plot
of the wavelength estimation error when an initial guess of 625nm is used for the wavelength
estimation algorithm. Nonlinear least squares algorithm used to estimate unknown wavelength in
data D at an intial guess of 625 nm
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Figure 3-13: Top: the histogram of wavelength estimation error plotted against wavelength.
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Figure 3-14: Top: the plot of wavelength estimation error using data set D ; bottom: the plot
of the wavelength estimation error when NN is used to predict the initial guess needed to deduce
the optimal wavelength. Using the Hybrid algorithm to estimate unknown wavelength in Data D
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Figure 3-15: The wavelength estimation error plotted wavelength.
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Chapter 4

Temperature Drift

4-1 Bandpass Filter Performance

Water, temperature, and other environmental conditions can affect the performance of Tun-
able Color Filters. The actual coating processes have a definite influence on the details of
the interaction between the coating performance and the environment to which the filter is
exposed .

The transmission characteristics of the bandpass filter is altered as the coating absorbs mois-
ture. If the filter is subsequently dried either by heating in a warm oven or by leaving it in
a dry box for a longer period of time, the performance shifts back toward the preexposure
values [33].

Of particular interest to our application is the temperature response of a bandpass filter since
temperature change provides the fastest alteration in the transmission characteristics of the
bandpass filter.

The following subsection provides an overview on the impact of Temperature on the perfor-
mance of the bandpass filter.

4-1-1 Impact of Temperature on the performance of Bandpass filter

Temperature can affect the performance of bandpass filters because both the index of refrac-
tion and the thickness vary as a function of temperature. The center of a narrow wavelength
structure may shift by a large fraction of its width owing to changes in the optical thickness
of the layers in the coating.

The optical thickness of each layer varies with temperature as a result of

1. The change in the refractive index induced by the temperature dnl
dT .

2. The linear coefficient of expansion dl
dT which affects the physical thickness.
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As the temperature of the bandpass filter increases, the refractive index become smaller and
on the other hand, the expansion coefficients increases which leads to a corresponding increase
in the path length. dnl

dT becomes negative while dll
dT is positive [33]. Thus, the change in optical

thickness change with temperature. The result is that for most materials, the performance
of a filter shifts to longer wavelengths as the temperature is increased. This implies that
the transmission characteristics of the bandpass filter is altered when the temperature is
considerably increased beyond the normal room temperature.

Introducing the Temperature Drift to the Bandpass filter

To measure the performance of our wavelength estimation algorithm, a temperature drift was
intentionally introduced to the filter performance in the following procedure.

1. A small aluminium housing was designed just big enough to contain the bandpass filter.
The size of the aluminium housing is chosen to be very small so that the movement of
airflow in the aluminium box can be significantly reduced. The incoming light is allowed
to pass through the aluminum to the bandpass filter and to exit the aluminum box to
the photodiode through a small hole on the aluminium box. The filter was inserted into
the aluminum box which also allows the free rotation of the bandpass filter mounted on
the stepper motor.

2. A heating blower (Temperature range of 50 degrees to 660 degrees) was used to heat the
aluminum box to specific temperature of choice. Three temperatures selected were 50
degrees, 70 degrees and 90 degrees. The temperature measurement is as an approximate
of the desired values as the heat was manually applied.

3. A thermocouple was inserted into the aluminum box and attached to the metallic ring
of the bandpass filter without making contact with the surface. The thermocouple
measures the temperature of the air in the aluminium box and since the air flow in the
box is restricted, the temperature of the air in the box is the temperature on the surface
of the bandpass filter inserted into the aluminium box.

4. The thermocouple is connected to a voltmeter and the temperature measured in the
box is read from a voltmeter connected to the thermocouple.

Overview on Thermocouple

A thermocouple is a sensor for measuring temperature, that consists of two dissimilar metals
that are joined together at the sensing end. Thermocouple indicate temperature by providing
a very small voltage signal generated by a junction of dissimilar metals [32].

Thermocouple work because heat creates a thermoelectric voltage in a wire. This is the
Seebeck effect. Anywhere there is a temperature gradient, there will be a voltage because
electrons want to flow from hot to cold. The voltage value per degree temperature difference is
the Seebeck coefficient and depends on the characteristics of the specific wire alloy. Bringing
both ends of the wire to a voltmeter gives the temperature desired temperature reading [32].
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4-2 Experimental details

To see the performance of our wavelength estimation algorithm when a temperature drift is in-
troduced, intensity measurements of an incoming light source with unknown wavelength were
recorded. The unknown wavelength was estimated using the Nonlinear Least square Algo-
rithm and the Neural Network Algorithm and the wavelength estimation error, the Variance-
Accounted-For and the absolute error were estimated. The performance measures provides
useful insight to the performance of our designed system when a temperature drift occurs.
The following subsections describes the results of these experiments.

4-2-1 Function F̂ (λ, U)RT with Validation dataset generated at high tempera-
ture.

The function calibrated at room temperature was used to estimate the unknown wavelength
from a set of data generated at high temperature. This is mathematically described in equa-
tion 4-1 below:

∥YHT − F̂ (λ, U)RT ∥2
2 (4-1)

YHT is the intensity measured at high temperature and the function was calibrated with
dataset (intensity) recorded at room temperature. Data set E is the intensity measurement
which was recorded at varying wavelength λ under increased temperature of 50 degrees, 70
degrees and 90 degrees. While the transmission data point in data set A is recorded for the
power of the light source set at a constant value, the temperature was increased . For data
set E, the control signal is designed such that 30 intensity measurements are taken at each
wavelength and at specific temperatures set of intensity measurement Y = y(1:1:30) is measured
given a set of control signal U = u(θ1:1:θ30) thus giving rise to 30 angles which implies that
Nangles = 30 at specified temperature.



Y1
Y2
...
...
...

Y3


=



F (λ1, V )
F (λ2, V )

...

...
F (λ15, V )


(4-2)

The data set E measured when the temperature was increased, was used to validate our model
and the details of Dataset E is summarized in table 4.1 below.

The above validation data set were processed (normalized) to validate the performance of our
estimation algorithm.

The Nonlinear least square algorithm with calibration data and its initial guess estimated
with Neural Networks trained with dataset recorded at room temperature and the Neural
Network which was trained with data set measured at room temperature were used to estimate
the unknown wavelength of the validation dataset E. The result of the performance of the
wavelength estimation algorithm is compared and tabulated in the following tables.
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Table 4-1: Dataset measured at various temperatures drift.

Dataset No.Angles No.Wavelength No.Duplicates Intensity Val. Temp (deg)
DS E 30 15 3 1620 50
DS F 30 15 3 1620 70
DS G 30 15 3 1620 90

Table 4-2: Results of the estimation algorithm at Temperature 50 degrees with the photodiode
offset (dark current) removed.

Algorithm VAF Absolute error
Hybrid (NN+NLLS) 99.7009 0.2065 nm

Neural Network 93.046 1.1648 nm

Table 4-3: Results of the estimation algorithm at Temperature 70 degrees with the photodiode
offset (dark current) removed.

Algorithm VAF Absolute error
Hybrid (NN+NLLS) 99.6878 0.2482 nm

Neural Network 90.168 1.1639 nm

Table 4-4: Results of the estimation algorithm at Temperature 70 degrees with the photodiode
offset (dark current) removed.

Algorithm VAF Absolute error
Hybrid(NN+NLLS) 99.7952 0.3499 nm

Neural Network 89.8516 1.2425 nm
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Figure 4-1: Wavelength estimation error and the corresponding histogram at Filter temperature
of 50 degrees (top left: Wavelength estimation error with offset), 2 (top right:Wavelength es-
timation error histogram with offset), 3 (bottom left:Wavelength estimation error with offset of
the photodiode removed) and 4 (bottom right:Wavelength estimation error histogram with offset
removed). Case 1 :The performance of the Non-linear least square algorithm is validated when
temperature drift is introduced to the system.

4-2-2 Case Scenarios

To observe the impact of the temperature drift on the accuracy of the wavelength estimation,
two case scenarios were tested.

Case 1

The first case scenario is represented by the equation below :

∥Y90 − F̂ (λ, U)RT ∥2
2 (4-3)

The validation dataset was recorded at 90 degrees and the algorithms calibrated and trained
with data set recorded at Room Temperature are used for wavelength estimation. The result
is presented in table 4-8:
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Figure 4-2: Wavelength estimation error and the corresponding histogram at Filter tempera-
ture of 50 degrees (top left: Wavelength estimation error with offset), 2 (top right:Wavelength
estimation error histogram with offset), 3 (bottom left:Wavelength estimation error with offset
of the photodiode removed) and 4 (bottom right:Wavelength estimation error histogram with
offset removed). Case 1 :The performance of the Neural Network algorithm is validated when
temperature drift is introduced to the system.

Case 2

The second case scenario is represented by equation 4-4 :

∥Y90−degrees − F̂ (λ, U)90−degrees∥2
2 (4-4)

The validation dataset was generated at 90 degrees and the calibration of our model was done
with dataset generated at 90 degrees also. The unknown wavelength is estimated from the gen-
erated validation dataset at high temperature using the calibrated function F̂ (λ, U)90−degrees.

The result is presented in table 4.8 and table 4.9.

The estimated wavelength is compared with the calibrated wavelength at various temperature
and the plot is shown in figure 4-7 and 4-8.

T.E Agbana Master of Science Thesis



4-3 Concluding Remarks 83

Figure 4-3: Wavelength estimation error and the corresponding histogram at Filter temperature
of 70 degrees (top left: Wavelength estimation error with offset), 2 (top right:Wavelength es-
timation error histogram with offset), 3 (bottom left:Wavelength estimation error with offset of
the photodiode removed) and 4 (bottom right:Wavelength estimation error histogram with offset
removed). Case 1 :The performance of the Non-linear least square algorithm is validated when
temperature drift is introduced to the system.

4-3 Concluding Remarks

In this chapter we have shown that the Hybrid approach (Nonlinear Least Square + Neural
Network), provides a good estimate of an unknown wavelength despite the intense temperature
drift introduced into the component of the measurement system.

The performance measures (VAF), shows that the Neural Network approach performs quite
badly when a temperature drift is introduced into the system because the Neural Network is
similar to the look-up table approach and its performance is enhanced when validation data
set statistically similar to the training data set are used to validate the trained network.

The noise sources that influences the performance of our wavelength estimation algorithm
includes the dark current and read out noise of the photodiode. The dark current and the read
out noise which influences the photodiode was compensated for by calibrating the photodiode
before every measurement. The offset (i.e the output voltage of the photodiode measured
when no light is incident on it) is therefore deducted from the intensity measurement used for
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Figure 4-4: Wavelength estimation error and the corresponding histogram at Filter tempera-
ture of 70 degrees (top left: Wavelength estimation error with offset), 2 (top right:Wavelength
estimation error histogram with offset), 3 (bottom left:Wavelength estimation error with offset
of the photodiode removed) and 4 (bottom right:Wavelength estimation error histogram with
offset removed). Case 1 :The performance of the Neural Network algorithm is validated when
temperature drift is introduced to the system.

our estimation. The calibration of the photodiode a priori enables the realisation of a more
accurate model which generally predicts the wavelength more accurately than when the dark
current and read out noise is unaccounted for.

From the temperature drift experiment, it was observed that the spectral sensitivity curve
of the Tunable Color Filter was altered at increased temperature. This constituted a drift
in the performance of the TCF. The NLLS Algorithm provided a good estimate of the un-
known wavelength at high temperature when the NLLS was calibrated with data recorded at
room temperature. The performance of the NLLS Wavelength estimation algorithm is better
improved when the calibration is done with data set generated at high temperature.

The Neural Network Algorithm did not give a good estimate of the wavelength because the
data used to trained the network differs considerably from the data used for the validation.

Conclusively,the increased temperature of the filter caused a change in the refractive index of
the filter and thus the filter transmission characteristics was altered However, this alteration
is only observed at high temperature of 70 degrees and above. At such drift, the Nonlinear
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Figure 4-5: Wavelength estimation error and the corresponding histogram at Filter temperature
of 90 degrees (top left: Wavelength estimation error with offset), 2 (top right:Wavelength es-
timation error histogram with offset), 3 (bottom left:Wavelength estimation error with offset of
the photodiode removed) and 4 (bottom right:Wavelength estimation error histogram with offset
removed). Case 1 :The performance of the Non-linear least square algorithm is validated when
temperature drift is introduced to the system.

Least square algorithm provides a good estimate of the unknown wavelength of an incoming
light source with good accuracy.
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Figure 4-6: Wavelength estimation error and the corresponding histogram at Filter tempera-
ture of 90 degrees (top left: Wavelength estimation error with offset), 2 (top right:Wavelength
estimation error histogram with offset), 3 (bottom left:Wavelength estimation error with offset
of the photodiode removed) and 4 (bottom right:Wavelength estimation error histogram with
offset removed). Case 1 :The performance of the Neural Network algorithm is validated when
temperature drift is introduced to the system.

Table 4-5: Results of the estimation algorithm at Temperature 90 degrees.∥Y90 − F̂ (λ, U)RT ∥2
2

Algorithm VAF Absolute error
Hybrid (NN+NLLS) 98.6770 0.4520 nm

Neural Network 93.7520 1.4862 nm

Table 4-6: Results of the estimation algorithm at Temperature 90 degrees.∥Y90 − F̂ (λ, U)90∥2
2

Algorithm VAF Absolute error
Hybrid (NN+NLLS) 99.9572 0.1285 nm

Neural Network 99.3244 0.3220 nm
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Figure 4-7: Plot of Estimated wavelength compared with the calibrated wavelength using the
NNLS 3 (bottom :Plot of Estimated wavelength compared with calibrated wavelength using NN.)
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Figure 4-8: Plot of Estimated wavelength compared with the calibrated wavelength using the
NNLS estimation algorithm (bottom :Plot of Estimated wavelength compared with calibrated
wavelength using NN algorithm.)
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Chapter 5

Conclusions

The development of cheap semiconductor laser in recent times is on the increase and therefore
the need for a low-cost wavelength measurement device that will accurately measure the spec-
tral purity of low-cost semiconductor laser is irreplaceable in this world of laser technological
advancement.

Most of the Wavelength measurement device currently available measure the wavelength with
high precision, resolution and accuracy but the the challenge is the trade off that arises as a
result of the cost and performance of the device.

This thesis focuses on the design of a simple low-cost wavelength measurement device that
estimate an unknown wavelength with an accuracy and resolution as good as the high cost
spectrum analyser. It is also the focus of this thesis to ensure the simplicity of the integration
of this device.

This thesis describes four necessary steps to realise this simple device : Problem formulation,
Function Calibration, Data generation and Wavelength estimation. To estimate the wave-
length of an incoming light source three algorithms are proposed : The Neural Network, The
Non-Linear Least Square algorithm and the Hybrid (Nonlinear-Neural) algorithm.

The contribution of this thesis are summarised in section 5-0-1. Consequently, the answer to
the research question below is given in section 5.2.

1. To what degree of resolution and accuracy does our proposed wavelength estimation
algorithm estimates an unknown wavelength.

more detailed research objectives are :

1. Development of a model for the estimation of unknown wavelength.

2. Selecting an appropriate wavelength estimation algorithm that will provide a wavelength
estimation with good accuracy.
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3. Investigation of the model accuracy and accounting for the drifts that could cause
inaccurate estimation. Selection of the most accurate model.

Finally this chapter ends with a recommendation for future research.

5-0-1 Thesis Contribution

Chapter 3

In chapter 3, an integral model of the complete system is developed using the Neural Network.

This technique allows the estimation of an unknown wavelength of an incoming light source .
The Nonlinear least square algorithm and the Neural Network were the estimation algorithm
used for wavelength estimation and the performance of the algorithms on validation data set
were measured.

The Nonlinear least square algorithm provides good estimation of an unknown wavelength
but the Neural Network’s performance does not differ from the conventional look-up table
approach. This chapter also provides a simple technique of improving the performance of the
Nonlinear Least Square optimisation technique by incorporating an educative initial guess.

The proposed method is called the Hybrid method which is the combination of the NLLS
and NN. This wavelength estimation technique provides a good estimation of the unknown
wavelength than the single Nonlinear Least Square method.

Chapter 3 also provides a simple technique of data processing (data normalisation) which im-
proves the accuracy of our model. A tunable light source was also designed and implemented
and the details are described in chapter 3.

Chapter 4

In chapter 4, the performance of our wavelength estimation algorithm when presented with
data generated at high temperature is investigated. A temperature drift was introduced by
increasing the temperature of the Tunable color filter beyond 50 degrees.

The performance of our developed model was measured on a set of validation data set gener-
ated at such high temperatures.

We show that for the Nonlinear least square optimisation algorithm, we are able to reliably
estimate the unknown wavelength even when the validation data set were measured at high
temperature.

The Neural Network’s performance to validation data set generated at high temperature is
unreliable and does not provide a good estimate of the unknown wavelength.

5-1 Conclusions

In this thesis work, a control-based approach using a black-box model is used for wavelength
estimation and the following conclusion can be drawn.
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• The proposed method of wavelength estimation provides the possibility of having a
simple high precision wavelength meter at low-cost. The technique used in realising
this measurement devices enables its compactness and ease of optical integration.

• Estimating an unknown wavelength of an incoming light source requires three algorithms
: While the single Non-linear least square algorithm provides a good estimate of the
unknown wavelength based on the developed black-box model, the challenge however is
the issue of convergence to the wrong solution if the initial guess of the wavelength λ is
far from the true estimate.
The NLLS approach to wavelength estimation provides a good estimate of an unknown
wavelength if the initial guess of λ and the weighting matrix Wk are well selected. A
good initial guess of λ ensures convergence if the model is accurate.
The Single Neural Network provides a good estimate of the wavelength only if it is pre-
sented with a validation data set which has similar statistical properties with the data
used for training the network therefore the trained Neural Network provided a bad es-
timate of the unknown wavelength when validation data generated at high temperature
were presented to the network.

• The Hybrid Algorithm which essentially consisted of two Neural Network combined with
the Nonlinear Least Square Algorithm uses one of the Neural network as an educative
guess.
This algorithm provides a more accurate estimate of the unknown wavelength since the
initial guess of λ is done by Neural network and this enables convergence to the right
solution.

• The accuracy of the estimation algorithm is well improved when the offsets in the system
are compensated for. For example,compensating for the dark current and the read out
noise in the photodiode by measuring the photodiode offset significantly improves the
performance of the model thus improving the accuracy of the wavelength estimation.

• It was shown that normalising the data by dividing the measured intensity in each
channel by the maximum intensity in that channel provides a maximum intensity of 1
in each channel and this improved the calibration of the function, and the estimation
of the unknown wavelength.

• A proof of concept is developed and the result obtained shows that this wavelength
estimation method measures the wavelength with high precision and resolution.

5-2 Recommendation

With regard to the work done in this thesis, the following research directions are suggested.

• In the experimental set up, the tunable light source used is limited in resolution and
accuracy and as such for the deployment of this system it is important to take it fur-
ther by purchasing a tunable light source from which a resolution of 0.01 nm can be
generated such that the systems specification as relevant to wavelength resolution can
be estimated.
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• In this thesis, a low-cost spectrometer which is limited in accuracy and resolution is
used for the generation of our calibration data set. This however limits the performance
of our system since the calibration data are limited in accuracy and in resolution.
Obtaining a high cost optical spectrum analyzer which provides better resolution and
and improved accuracy will also improved the resolution and accuracy of our system
model.

• In this thesis, tunning the spectral function of the color filter was done with stepper
motor which has steps that correspond to 1.8 degrees. Fine tuning the angular displace-
ment of the stepper motor might provide a better spectral property of the filter.

• In this thesis, the intensity measured by the photodiode are amplified and transferred
to the computer for analysis in Matlab. Taking the cost of a PC, a National Instrument
Data Acquisition card and the cost of purchasing the license of the Matlab software into
consideration, the overall system will cost much more than 2000 euros.
To further simplify the cost of this device and derive the low-cost benefit, miniaturisation
of the system should be considered.
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Appendix A

Basic idea of the Neural Network

A-1 An Appendix Section

A neural network is a massively parallel distributed processor made up of simple processing
unit which has a natural propensity for storing experiential knowledge and making it available
for use [10]. Hence neural network acquires knowledge from its environment through a learning
process and the knowledge acquired are stored by the interneuron connecting strengths which
are known as synaptic weights.

Neural network are non linear since they are made up of an interconnection of non-linear
neurons, therefore the neural network can be used to develop a learning algorithm which is
suitable for the analysis of our system. The intensity measurement versus wavelength which
is the input to the neural network is non-linear. The learning process in the neural network
which is of particular interest to the wavelength estimation in our system is the supervised
learning which involves the adjustment of the synaptic weights of the network by applying a
set of labelled training samples.

Each sample has a unique input signal and a desired response. When the network is presented
with an example picked at random from the set of input the synaptic weights of the network
are adjusted such that the difference between the desired response and the actual response
of the network is minimized. Network training is done again and again for many examples in
the set of input until a steady state is reached. The steady state is a point where no further
change is observed in the synaptic weights.

A-1-1 Advantages of the Artificial Neural Network.

• Nonlinearity : The ANN exploits nonlinearity (i.e a nonlinear system in which the ef-
fect of external factors is not purely additive and may be disruptive, hence it cannot be
decomposed into parts and reassembled into the same unit and a change in its output
is not proportional to a change in its input) Since real-life problems are mostly non-
linear in nature, we therefore need nonlinear computational unit to solve the nonlinear
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computational problems. The ANN provides an interconnection of non-linear Neurons
and the non-linearity is distributed throughout thus making it very suitable for solving
non-linear equations or problems.

• Input - Output mapping : An input is fed into the input of the system and a corre-
sponding output or desired response is specified. When there is a difference in the actual
output and the desired output, then the free parameters of the system can be modified
accordingly such that for a given input, an output output closest to the desired output
can be obtained. First time a pattern is fed into the system, the system has no prior
knowledge of the pattern therefore what the desired output should be is also fed into the
system but the actual output of the system will be different from the desired output.
The difference between the actual output and the desired output is therefore minimized
by adjusting the free parameters and this has to be done several times thus giving rise
to a process of learning which involves a teacher. The role of the teacher is to specify
the output corresponding to a set of a given input such that if the system output does
not correspond to what has been specified by the teacher then the teacher places a
demand for the adjustment of the free parameters such that when the same input is
fed again into the system, an output closer to the desired output will be obtained and
then deviation between the actual and the desired response corresponding to a given set
of input is minimised. The learning ability of the neural network distinguishes it from
other conventional computational units. Learning can also be done with association
where a given set of input is associated with a desired output.

• Adaptivity : Neural network can adapt the free parameters to the changes in its sur-
rounding environment.

• Evidential Response : The Neural network associates a great percentage of confidence
measures to its decision.

• Ability for Fault Tolerance : A failure of one neuron will not result into a catastrophic
failure but might result into a degradation in performance which is referred to graceful
degradation (meaning the number of fault is proportional of degradation such that if the
number of fault is minimal then the degradation is also very reduced)which is contrary
to the computer unit where a failure of a single processing unit can cause a catastrophic
failure.

• VLSI implementable :VLSI (is the process of creating integrated circuits by combin-
ing thousands of transistors into a single chip) A very large number of neurons can
be integrated together using integrated circuits. This is achievable because the neu-
rons are absolutely parallel computational units (i.e the neurons can do independent
computation).

A-1-2 Non-linear model of a neuron

The neuron is the information-processing units which very key to the operation and perfor-
mance of a neural network. The neuron model (a functional description of various elements
that constitute the model of a neuron) has three fundamental elements which are very im-
portant for its operation.
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The above figure depicts the non-linear model of a neuron with its three basic elements.

• The connectivity link (Called synapses):The synapse decide the strength of the con-
nection i.e how strong or how weak the connecting link is hence the strength of the
connection is called the synaptic weights and it is proportional to its value. The larger
the value, the stronger the connection and vice versa.The synaptic weights are defined
for the connection between the input and the neuron under consideration and are repre-
sented as shown above as wkj Where wkj is the connection between neuron k and input
j. Each of the connecting link has the weight of its own such that the input signal xj is
multiplied by the connecting links to produce an input signal which is weighted by the
connecting links such that .

• The Adder : Sums up the weighted input signals of the respective input so that the
sum total is the summation of all the weighted input and effectively linearly combining
them together.

• The activation function: It squashes the output of a neuron thus limiting its amplitude
to 1 or 0 such that the response of the neuron is absolutely binary in nature, if the
output of the neuron requires a threshold function limiting is output to −1 and 1 then
activation function is defined as a signal function.

The bias bk increase or lowers the net input of the activation function, it is often used as
input into the system. The neuron k can be described in mathematical terms by the following
equation :

Uk =
∞∑

j=1
WkjXj (A-1)

and the output yk = φ(Uk +bk) Where the input signal are x1, x2, x3, ...xn and the connecting
links or synaptic weights are wk1, wk2....wkm.

The adder produces an output Uk after summing the input signals weighted by the respective
connecting links. The bias is represented by bk and the activation function is denoted as φ()̇.
While yk is the output of the neuron. The activation function employed in our Neural network
algorithm is the sigmoid function. The S-shaped sigmoid activation functions exhibits a good
balance between linear and non linear behaviour [34].

An example of the sigmoid function is the logistic function defined by

φ(v) = 1
1 + exp(−av)

(A-2)

where a is the slope parameter of the sigmoid function.

The hyperbolic tangent function expressed as φ(v) = tanh(v) is the corresponding form of
the sigmoid function.

A-1-3 Knowledge Representation of the Neural Network

The neural network has a predominant task of learning a model of the environment where
it is embedded and to maintain the model such that it is sufficiently consistent with the
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real world thus achieving its goal of interest. Prior information is a type of knowledge of
the Neural Network which provides fact about what information is and what information has
been known. Measurements or observations of the world are also obtained by sensors designed
to probe the environment in which the neural network is supposed to operate thus providing
a pool of information from which examples used to train the network are drawn. This is
another type of information that forms the knowledge of the network. A set of training data
therefore contrast of a set of input-output pairs with each pair consisting of an input signal
and a corresponding desired response.

A-1-4 Learning Process of a Neural Network

Learning is a process by which the free parameters of a Neural network are adapted through
a process of stimulation by the environment in which the network is embedded. Hence a
learning algorithm is a prescribed set of a well-defined rules for the solution of a learning
problem. The difference in learning algorithm is rooted in the way in which the adjustment
to a synaptic weight of a neuron is formulated. The learning algorithm of our neural network
is based on the error-correction rule.

Figure A-1: The schematic diagram of the Neural Network error correction learning [18]

Figure depicts a neuron K which represents the only computational node in the output layer
of the neural network

x(n) a signal vector is the output of the hidden layer of neuron driven by an input vector
applied to the input layer of the network. The output Neuron K is thus driven by the signal
vector x(n). Where n is an argument denoting the time step of an iterative process used for
the adjustment of the synaptic weights of neuron k. The output neuron k produces an output
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Figure A-2: The schematic diagram of the Neural Network error correction learning [18]

signal denoted by yk(n). The output yk(n) is compared to the desired response or target
output denoted by dk(n) in the diagram. This comparison gives rise to an error-signal which
by definition is represented as :

ek(n) = dk(n) − yk(n) (A-3)

The error signal ek(n) activates the control mechanism which is aimed at applying a sequence
of corrective adjustment to the synaptic weights of neuron k. The corrective adjustment aims
at making the output signal yk(n) come closer to the desired response in a sequential manner.
This aim is achieved when the cost function defined in terms of error signal is reduced. The
learning process is however terminated when the step -by-step adjustment to the synaptic
weights of neuron k brings the system to a steady state i.e the synaptic weights are essentially
stabilized.

This learning rule is commonly known as the Widrow-Hoff Rule which is defined as (the
adjustment made to a synaptic weight of a neuron is proportional to the product of the error
signal and the input signal of the synapse in question). Let wkj(n) be the value of the synaptic
weight wkj of neuron k excited by element xj(n) of the signal vector x(n) at time step (n).
The adjustment ∆wkj(n) applied to the synaptic weight wkj at time step n is defined by :

∆wkj(n) = ηek(n)xj(n) (A-4)

and η is a positive constant determining the learning rate. Since the synaptic adjustment
∆wkj(n) is computed then updating it is done as follows.

∆wkj(n + 1) = wkj(n) + ∆wkj(n) (A-5)
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wkj(n) is the old value of synaptic weight and wkj(n+1) is viewed as the new value of synaptic
weight wkj

A-1-5 The Back Propagation Algorithm

The back propagation algorithm is an algorithm based upon the error-correction learning rules
and it is employed to train neural network which have one or more hidden layers between
the input layer of the computational nodes and the output layer of computation nodes, such
multilayer network is called a multilayer perceptron. The multilayer perceptron has three
characteristics :

• The model of each neuron in the network includes a non-linear activation function.

• The network contain one or more layer of hidden neuron which are excluded from the
input or output of the network. The ability of the network to learn complex tasks is
enhanced by the hidden layer.

• A high degree of connectivity determined by the synapsis of the network is exhibited
by the network
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Appendix B

Methods for solving the Non Linear
Least Square

The non-linear least square method involve an iterative improvement to parameter values in
order to reduce the sum of the squares of the errors between the approximated function and
the measured data points. Methods for solving the Non-linear least square problems include
:

1. Gradient-descent method.

2. Gauss -Newton method.

3. Levenberg-Marquardt Algorithm.

The above highlighted algorithms are reviewed in the next subsection according to the fol-
lowing references [29,30,31]

B-0-6 Gradient Descent Method

The Gradient Descent Method is a general minimization method which updates parameter
values in the direction opposite to the gradient of the objective function. It is an iterative
method that is given an initial point, and follows the negative of the gradient in order to
move the point toward a critical point, which is hopefully the desired local minimum. It is a
highly convergent algorithm for finding the minimum of simple objective functions. Its major
disadvantage is that it can take a long time to converge.

B-0-7 Gauss-Newton Method

The Gauss-Newton Method is a method of minimizing a sum-of-squares objective function. It
presumes the objective function is approximately quadratic in the parameters near the optimal
solution.It is an algorithm that converges much faster than the gradient-descent methods.
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B-0-8 Levenberg-Marquardt Method

The Levenberg-Marquardt curve-fitting method is actually a combination of two minimiza-
tion methods: the gradient descent method and the Gauss-Newton method. In the gradient
descent method, the sum of the squared errors is reduced by updating the pa- rameters in
the direction of the greatest reduction of the least squares objective. In the Gauss-Newton
method, the sum of the squared errors is reduced by assuming the least squares function
is locally quadratic, and finding the minimum of the quadratic. The Levenberg-Marquardt
method acts more like a gradient-descent method when the pa- rameters are far from their
optimal value, and acts more like the Gauss-Newton method when the parameters are close
to their optimal value.

The LM algorithm was chosen for our NLLS optimisation technique because its solution
typically converges rapidly to the local minimum and the ease in implementing it in Matlab.

Local Minima

The local minima is the smallest value that the function takes at point either within a given
neighborhood. Non-linear optimisation may result in a local minimum or have multiple
solutions therefore it is important to keep the initial guess (λ) bounded so that the initial
guess can be randomly chosen between an interval [λmin and λmax].
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List of Abbreviations

• FP : Fabry Perot.

• DG : Diffraction grating.

• OSA : Optical Spectrum Analyzer.

• TCF : Tunable Color Filter.

• PD : Photodiode.

• NLLS : NonLinear Least Square.

• DCSC : Delft Centre for Systems and Controls.

• DS : Dataset

• No.Angles : Number of Angles.

• No. Wavelength : Number of Wavelength.

• No. Duplicates : Number of Duplicates.

• Intensity Val : Intensity Value.

• Pwr.Levels : Power Levels.
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