
Delft University of Technology
Master’s Thesis in Embedded Systems

Integration of V2H/V2G Towards Effective
Demand-Response Programs

Duncan Lew





Integration of V2H/V2G Towards Effective

Demand-Response Programs

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Duncan Lew
d.w.o.lew@student.tudelft.nl

10th November 2017

mailto:d.w.o.lew@student.tudelft.nl


Author
Duncan Lew (d.w.o.lew@student.tudelft.nl)

Title
Integration of V2H/V2G Towards Effective Demand-Response Programs

MSc presentation
17th November 2017

Graduation Committee
Prof. dr. K. G. Langendoen Delft University of Technology
Dr. RangaRao Venkatesha Prasad Delft University of Technology
Dr. Ir. Arjan van Genderen Delft University of Technology

Daily Supervisor
Dr. Akshay Uttama Nambi Microsoft Research India

mailto:d.w.o.lew@student.tudelft.nl


Abstract

Increasing adoption of EVs in the next few decades is going to present new
challenges such as EV charging creating a new and significant demand on
the grid. The purpose of this thesis is to create a system that intelligently
schedules the charging of EVs while considering the cost of energy and the
discomfort of the user. At any given moment, 90% of vehicles are parked
and have a huge energy source left unused. EVs could also be used as power
sources for vehicle-to-home/vehicle-to-grid (V2H/V2G) to benefit from them
during high demand of energy. This way the power plants would see almost
a constant demand and usage, in the long run, making them more efficient.

This thesis uses a non-intrusive data-driven technique to create a occu-
pancy and EV charging model of the household. Smart meters in each
household collect power usage data. From this power usage data we de-
termine occupancy and EV charge sessions. The next step is to determine
temporal metrics for occupancy and EV charge sessions. The temporal met-
rics study the likelihood for occupancy or an EV charge session to occur or
to switch from one state to another. Because there are differences between
weekday/weekend and seasonal power usage, we have decided to create tem-
poral metrics for each time period.

The next step is to create the EV charging algorithm and V2H/V2G
algorithms. These algorithms require a flexibility window. This window
indicates in which hours the EV can be charged. Which hours of the flexib-
ility window are chosen, depends on the type of objective. We have created
three objectives: cost minimization, comfort maximization and joint object-
ive. The V2H/V2G algorithm is executed when the state of charge (SoC)
of the EV is higher than the SoC boundary.

In order to measure the performance of the algorithm, we have created
two metrics: relative savings and miss rate. The miss rate measures how an
hour was scheduled for EV charging but failed. During the testing of the
algorithm, we found that only the objective cost minimization was deemed
useful. Each objective uses a flexibility window and we conclude that the
user’s preferences are already taken into account during the creation of this
window. For the execution of the EV charge scheduling algorithm, a max-
imum relative savings can be achieved of 27% and a maximum miss rate of
11.1%. By choosing the SoC boundary value of 60% for V2H, maximum
relative savings of 9.9% and a maximum miss rate of 5.2% can be achieved.
V2G execution had a negligible effect on the relative savings and miss rate
because the pricing dataset did not contain many price surges.
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Chapter 1

Introduction

1.1 Background

The first electric vehicles (EVs) were produced in the late 19th century
[1]. They were popular in the early 20th century until advancements in
combustion engines and mass production of fossil-fuel vehicles caused a sharp
decline in the usage of EVs. However, since 2008 there is a resurgence in the
production of EVs due to advancements in battery technology, increasing
oil prices and the importance of decreasing amount of greenhouse gases in
the atmosphere [2].

Moreover, according to the Intergovernmental Panel on Climate Change
(IPCC), 14.3% of the total worldwide green-house emissions were contrib-
uted by burning fossil-fuel for transportation [3]. Of all the transportation
modes, road transportation contributed a total of 72% of greenhouse gases
worldwide. If all these vehicles on the road were to be replaced with vehicles
that produce zero emissions, this could drastically reduce the amount of
emissions produced.

The transition to clean and renewable energy sources (RES) has been
growing in the past couple of years. An alternative for traditional fossil-
fuel cars are EVs. They produce zero emissions. Depending on government
policies to incentivize the usage of EVs, the adoption rate will increase more
rapidly in some countries. One of the big transitions in the coming years
will be the transition from fossil-fuel based vehicles to fully electric vehicles.
However, this rapid adoption of EVs is going to present new challenges. EV
charging is going to create a new and significant demand on the grid[4]. EV
users want to save money while charging their EVs. Electricity companies,
on the other hand, want their power plants to operate at maximum efficiency,
since turning the knobs to increase/decrease electricity production is a slow
process and lowers efficiencies [5]. Having a variable pricing scheme for
electricity is a way for both users and electricity companies to benefit.

In Figure 1.1, there are three hourly pricing levels. In order to incentivize

1



2 CHAPTER 1. INTRODUCTION

customers to use electricity during midnight, the prices during these hours
are the lowest. This helps in utilizing the power generated during the night
hours. If an EV user charges their EV during midnight, they are saving
money and they are helping the company to reduce its losses from over-
capacity at midnight. The goal is to shift the charging of EVs to other
time periods where it is cheaper and that benefit both the customer and the
electricity companies.

Figure 1.1: Example of hourly pricing levels

Usually, the EVs contain a battery with a capacity ranging from 24 kWh
to 90 kWh [6]. At any given moment, 95% of cars are parked [7]. If all
these cars were EVs, a huge energy source would be left unused. A use-case
for these batteries is to store the excess energy produced by RES. Another
use-case can be to power a house with an EV battery, which is called vehicle-
to-home (V2H). These parked EVs can be used to alleviate power demand
in the house. An instance in which the usage of V2H is desirable is when
the energy prices are very high during certain periods of a day.

EVs can also be used to sell the energy back to the grid when there is a
shortage of energy. The action of transferring energy from the EV to the
grid is called vehicle-to-grid (V2G). Users who sell their energy from the
battery back to the grid get a monetary compensation, while the electricity
companies benefit from keeping the stability of the grid.

Charging the EV battery is called home-to-vehicle (H2V) or grid-to-vehicle
(G2V), but there is no special jargon to refer to this action and it will be
called EV charging for the rest of this thesis.

The usage of RES and EVs poses new problems that need to be solved in
order to intelligently make use of the energy of EVs to optimize or lower the
demand and the load on the grid and household energy usage. The change
in altering the power consumption to better match the power demand or
supply is called demand response (DR). The goal of this thesis is to make
use of intelligent scheduling methods in order to use the untapped energy



1.2. PROBLEM STATEMENT 3

source of the parked EVs.

1.2 Problem statement

In the coming years, as the adoption rate of EVs and more decentralized
renewable energy sources increases, it will also provide an increasing amount
of methods with which users can reduce their CO2 footprint [8][9]. EVs and
RES create new challenges. EV charging can create sudden demand spikes
on the grid. RES, on the other hand, does not provide a constant supply of
energy. A new method has to be thought out to connect the demand and
supply in such a way that both the user and the electricity companies can
benefit.

EVs have an energy source of 20-80 kWh depending on the model. The
energy in these batteries can also be used for other purposes than driving:
V2H and V2G. New algorithms have to be created for the decision making
of when to use the EV’s battery to power the house or send the energy back
to the grid.

Not much research has been done to satisfy both the preferences of the
users and the electricity companies while integrating V2H/V2G into one
home ecosystem in order to alleviate power demand in the grid and in the
household by shifting the timing when energy is consumed. Users have
certain constraints on when they would want their EV to get charged and
electricity companies have their own constraints regarding how much power
demand they can handle. The problem statement (summed up in one sen-
tence) is: How can EV charge scheduling and V2H/V2G be integ-
rated into the home ecosystem while taking other constraints into
account?

The problem statement, studied in this thesis, consists of three major
challenges which are as follows:

• Charging EVs create a significant load on the grid
If everyone comes home at 18:00 after work and charges their EV at
exactly the same time, it will create a significant power load on the
electricity grid. This situation is especially exacerbated when each EV
owner uses a high power output charger of more than 22 kW.

• Aiding the household/grid with V2H/V2G
If the electricity prices are very high during certain periods of time, this
indicates that there is a scarce supply of electricity available. The high
prices discourage people from using too much electricity. EV batteries
contain a lot of energy that can be used to power appliances in the
house. This V2H operation is ideal for time periods when electricity
prices are higher. Parked EVs can also be used to sell their excess
energy back to the grid. This V2G operation can thus help the grid
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to reduce its scarce supply. Intelligent scheduling algorithms will have
to be implemented in order to optimize the operations of V2H/V2G.

• Users’ preferences
Shifting the charging time of EVs can create an inconvenience to the
user. Scheduling an EV to be charged during hours that a user is most
likely not at home is not ideal. The algorithms that shift charging
time cannot be run unrestrained without taking other constraints into
account. A constraint that is important is users’ preferences. Users
have a predictable pattern in which they are most likely to be at home
and most likely to charge their car. This will vary from user to user.
The execution of all these scheduling algorithms should also take these
preferences into account. The first question that would have to be
answered is how to define the preferences of the user.

1.3 Methodology

The methodology which will be followed to execute this project can be seen
in Figure 1.2. The first step is to create a model of the household’s behavior.
The behavior will be studied using the dataset of household energy usage
and EV charging usage. From these two datasets, the household occupancy
and EV charging behavior can be extracted for the model. The household
occupancy and EV behavior form the basis of the user’s preferences.

The next step is to create demand-response programs based on the input
data of household energy and EV charging. The model from the previous
step is used to determine a charging window of the EV. Each time slot of
the charging window contains a value based on the user’s preferences. Using
this charging window, an EV charging and V2H/V2G algorithm will be run
to determine what operations are the most beneficial for each situation.

1.4 Contributions

The contributions of this thesis are summarized here:

• Non-intrusive data-driven technique is proposed to create a model for
household and EV usage
The household energy usage and EV charging behavior of households
have to be analyzed first. A system model is made of the behavior
of a household and EV energy usage, which can be used later on for
scheduling purposes.

• New metrics to define measure of comfort of a household is proposed.

• Algorithm for EV charge scheduling and V2G/V2H is developed
These algorithms also take into account users’ preferences, battery
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Figure 1.2: Methodology for executing the project

percentage and hourly electricity pricing scheme. EV scheduling and
V2G/V2H are closely related to each other since a trade-off has to be
made when to charge the EV and when to use it for V2H/V2G.

• Implementation study of the algorithm.
The results show the effects of taking users’ preferences into account
when it comes to these algorithms. We will also show the optimum
solutions for different objectives.

• Compare the relative savings and discomfort of using algorithms and
not using algorithms for different configurations

1.5 Structure of thesis

The structure of the thesis is as follows: Chapter 2 gives an overview of
the different research topics that have been conducted in this field of study.
Chapter 3 elaborates in depth on the techniques used to create a system
model. Chapter 4 discusses the algorithms created for the demand-response
programs.
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Chapter 2

Literature review

In this chapter works from other research teams are discussed in depth to
identify how the topic of this thesis is related to these projects and what can
be improved. There are different topics that are of importance to see what
has been done and what can be improved. The users are the ones who have
to adopt these new scheduling policies and therefore it is important to see
what the main barriers are for users in terms of new technology adoption.
A hardware implementation for V2H/V2G done by different research teams
will also be discussed. These hardware implementations require some form
of scheduling algorithms to make a decision between whether to charge the
EV batteries or to use the batteries for V2H/V2G. How other research teams
implemented these algorithms will be studied in this literature review. The
topics that will be discussed are:

• Users’ adaptability

• Hardware platforms

• Shifting EV charging

• V2H/V2G

• Window of opportunity

This chapter will be concluded with a discussion of all these different works
and what improvements can be made upon all these works.

2.1 Users’ preferences and behavior

Before adopting new ways of saving energy and using the EV battery for
V2H/V2G purposes, it is also important to take the preferences of the users
into account. They will be the ones using these new energy management
systems and will be the main factor in how successful the adoption is thereof.

7



8 CHAPTER 2. LITERATURE REVIEW

In [10] consumers’ interests and willingness to adopt new policies concern-
ing energy management have been studied. A number of observations have
been made. The key drivers to acquisition of new energy policies are electri-
city savings, less emissions and environment friendly. Users also want to be
able to see immediately from a display inside or outside the car how much
battery percentage is left. Consumers are not willing to pay a premium to
charge vehicles during peak hours. It defeats the purpose of having an en-
vironmentally friendly car and then having to charge it during peak hours.
Furthermore, users are willing to use night time charging or off-peak hour
charging to save money, but would like the option to charge whenever needed
when they suddenly need to make an unexpected trip. Controlled or inter-
rupted charging is tolerable for consumers only if the interruption does not
take too long and there is enough charge left to make an unexpected trip.
Around 50% of consumers of EVs expect their EV to be charged up fully in
the hour range from 4 to 8 hours. Consumers’ preferred charging location is
at home. This can be confirmed with a different study [11] that EV charging
occurs more than 90% of the time at home.

The conclusion of these studies show that users are open to new EV char-
ging policies. Users prefer an unobtrusive implementation of these policies
with minimum involvement from them. However, they do want to be in
control of these policies if their preferences change, and do not want these
policies to disrupt their normal EV usage too much.

2.2 Profiling energy behavior

In [12], [13], the increasing usage of smart meters in households is discussed.
These smart meters collect massive amounts of fine-grained usage data of
households. [13] proposes that the analysis of this data can lead to better
demand-response programs.

The data collected from the smart meters are placed into clustering al-
gorithms in order to find demand states of user’s energy consumption. The
clustered results can be used to determine other kinds of temporal metrics.
Different kinds of temporal metrics are described in [13]. These temporal
metrics describe certain energy usage characteristics of households over cer-
tain periods of time. Most important temporal metrics that are of relevance
are transient probability and temporal membership.

Transient probability describes the probability to move from one state to
another state. The formula for the transient probability T u

a→b from demand
state a→b for a quality feature u is given by:

T u
a→b =

1

l − 1

l−1∑
j=1

βj (2.1)

where βj is equal to 1 if the transition a→b takes place, otherwise 0. The
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l in this situation denotes the total amount of time periods in which this
transition is looked at. This transient probability can show how big the
chances are for a household to move from a low energy state to a higher
energy state. The equation only shows the transition a→b, but other kinds
of transitions, including downwards transition, can be studied.

Temporal membership describes to preference to be in a certain demand
state. These demand states indicate the intensity of the energy usage for a
specific time period in which the measurement is made. The equation for
temporal membership Mu

0 for demand state 0 for feature u is as follows:

Mu
0 =

1

l

l∑
j=1

γj (2.2)

where γj is equal to 1 if the demand state at time j is equal to 0, otherwise
it is equal to 0. Temporal membership provides a better understanding
of energy behavior by giving a value between 0 and 1 which indicates the
likelihood for a demand state 0 to occur.

The thesis will need metrics on which the model of the household energy
usage will be based on. The metrics introduced in [13] can be used as a
steppingstone to look at the dynamics of energy states in a household. We
can look at the probability to be in a demand state and the probability to
switch from one demand state to another demand state.

2.3 Hardware platforms

Hardware architectures and communications platforms are proposed by [14],
[15] and [16]. The focus is on the implementation of an energy management
system with the help of communication protocol. The energy management
system acts as a mediator. The house and EV communicate with this energy
management system in order to sense in what kind of power consumption
state each party resides in. These hardware and communication platforms
require specific power electronics to make the execution of V2H/V2G suc-
cessful. The proposed concept of making every part of the power delivery
bidirectional can be seen in Figure 2.1.

Figure 2.1: Concept of bi-direction architecture for V2H/V2G and G2V [16]
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In [17] the power output of an EV battery during the execution of V2H is
studied. The execution of V2H requires a DC to AC converter and this comes
with some losses that have to be accounted for. The calculated efficiency for
this conversion is 93% and this research team measured an efficiency of 88%.
The 5% loss is probably attributed to the cooling system of the battery to
keep the battery from overheating during a discharge.

We see that much work has been done to design a hardware architecture
to make bi-direction power delivery possible. These architectures have been
tested and their efficiencies have been measured. This thesis will have to
take inefficiencies and other intricacies of the architectures into account and
the preliminaries that have been performed by these research teams are
beneficial.

2.4 Shifting EV charging

EV charging consumes a considerable amount of power depending on how
depleted the battery is. Shifting the charging time of EV to other hours when
electricity prices are lower can reduce the EV charging bill significantly.
In [18] EV charging is completely shifted to midnight. No other users’
preferences are taken into account in terms of SoC and whether the user
might need to suddenly make an emergency trip. The assumption in [18] is
that electricity prices are the lowest during midnight. No consideration is
taken into account concerning hourly pricing schemes in which certain hours
of midnight the prices can be lower. By shifting everything to midnight, the
relative savings on the EV bill which can be saved is 12.5%. Another research
team attempted to schedule EV charging based on past data on EV charging
demand [19]. Past charging behavior is used to determine how to distribute
EV charging in a neighborhood.

In [20] EV charging is approach from a game theory standpoint with a
focus on energy sharing [21], [22]. The situation if of that of a neighborhood
in which many EVs want to charge their batteries. There is, however, only
one electricity company available to facilitate the charging of these EVs.
Cooperative and non-cooperative scheduling is used to schedule EV charging
for all these vehicles. A note has to be made that these scheduling algorithms
do not take the users’ preferences into account, no minimum amount of SoC
is required which could lower the comfort level of the EV user if EV is
suddenly needed. Other research teams attacked this problem of multiple
EVs charging at the same time with linear programming and a data-driven
queuing model [23], [19]. In this case, an optimal charge rate of each EV is
determined in order to maximize the power that can be outputted by the
grid.

We see that the maximum amount of relative savings that can be achieved
for one research time when shifting EV charging to midnight is 12.5%. We
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will use this as our reference value during the development of algorithms
for EV charging to which we want to improve our design. Furthermore,
we have seen that many research teams have approached the interactions
between home, EV and grid as a game theory problem. The resource that
has to be shared among all three actors in this game is the EV battery.
The research teams have looked into optimizing this problem, but do not
take user’s preferences into account for the decision making in how the EV
battery should be shared.

2.5 V2H/V2G

The purpose of V2H is to alleviate the power demand in the household during
peak electricity prices. In [24] methods for V2H systems are proposed. This
system would allow a user to input their preferences in terms of what they
would like the minimum SoC to be and what the usual departure times are
of the user. This paper only introduces a conceptual approach and strategy
to handle this problem. There is no actual implementation. This research
team, however, did look at how constant discharge and charge at specific
depth of discharge (DoD) levels affect the age of the battery. This can be
seen in Figure 2.2. The more the battery is depleted constantly to a specific
DoD, the faster the battery is going to age.

Figure 2.2: Cycle aging for different DoD [24]

In [25] a simulation is run on the execution of V2H. An EV battery with
various SoCs is used for the simulation to study how the electricity demand
in the house can be lowered. The assumption in these simulations is that
the EV is always at home. No other considerations are taken into account in
terms of availability of the EV and users’ preferences. The goal of research
team was to reduce peak power demand on the grid from charging EVs.
The simulation for V2H execution was unfortunately not successful and the
results of the optimizations for V2H execution could not be reported.
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In [26], V2G is implemented based solely on the SoC, while in [27] V2G
this is only done based on off-peak pricing. The two elements that influenced
the design are the SoC and the off-peak pricing. If the SoC drops below a
threshold value, only EV charging is allowed. If the SoC is higher than a
specific threshold value, it may be used for V2G purposes. The flow of the
decision making process of [26] can be seen in Figure 2.3. In [27], V2G and
EV charge scheduling is combined into one algorithm and their achieved
relative savings is 7%.

Figure 2.3: Management control for V2G [26]

V2H and V2G are methods introduced to alleviate power demand from the
household on the grid. The work of the research teams shed light on different
topics regarding the implementation of V2H and V2G. There were no results
in terms of relative savings that could be achieved for V2H. Luckily, there
was result of relative savings of V2G combined with EV charge scheduling.

2.6 Window of opportunity

In order to shift EV charging scheduling, we need to be able to create time
periods in which we are able to charge the vehicle. The first thing that
should be done before looking at time windows is looking at the preference
of the user to charge during certain periods of time. In [28] real-world data is
used to study the flexibility of charging behavior of EV users. First the char-
ging behavior of the users was analyzed. Afterwards, the different charging
behaviors which could be extracted from the data were put into categories of
how flexible they are for the execution of demand-response programs. The
key findings from this research team pointed out that charging times during
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evening and weekend were the most flexible in the sense that those times
could easily be used for demand-response programs. Charging times that
were executed at public spaces were the least flexible. This was probably
due to the fact that people usually do not stay long at those public spaces
to charge their car, thus rendering the usage of demand-response programs
negligible.

In [29] a flexibility window is introduced. This flexibility window is defined
as the window in which the EV can be charged. This is done on basis of
the SoC. The time periods in which the SoC does not change or increases
are windows in which the EV can be charged. Time slots in this flexibility
window are created and a set of constraints is made to determine in which
time slot to charge the EV. These time slots are filled with values based on
discomfort level. This discomfort level is based on the SoC and the likelihood
to use the vehicle. Historic data is used to determine how likely the user is
to use their car in the time slot. Higher values in these time slots thus mean
that the likeliness to use the car is higher, which means that it is not the
most ideal time slot to schedule EV charging.

This prior research on the window of opportunity for charging EVs shows
at which time periods shifting EV charging can benefit the users the most.
This is mainly in the evening hours and in the weekends when the usage rate
of the vehicle is lower. A flexibility window, which contains time slots, is of
great value to this thesis. The algorithm for determining this window and
the decision making for choosing specific time slots are of importance when
implementing shifting EV charge scheduling and V2H/V2G execution.

2.7 Conclusion

Many different hardware implementations have already been realized to
make V2H/V2G possible. The user behavioral study [10] also points out that
users are open to change their EV charging behavior in order to save money,
but would still like to be in control when necessary in cases of emergencies
or unexpected trips. Intelligently shifting EV charging and V2H/V2G ap-
plications to save money or to adapt to the grid’s supply has been done in
one form or another.

The main focus of this thesis is to fill in the blanks to find out what can be
improved upon all these introduced methods. An overview of the different
subjects covered by the papers can be seen in Table 2.1. As can be seen
from this table, there are a lot of different subjects which have been studied
separately, but there is no integrated package that takes everything into
account. An example of this is the study of user’s preferences and behavior.
A lot of the implementations of these papers study the EV usage behavior
by putting bluetooth beacons or GPS trackers in the vehicles. This is a
quite intrusive way to track vehicle usage.
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Furthermore, a form of user preference that can be tracked is EV usage
analysis, but this does not paint the whole picture. Looking at household
occupancy to determine whether an EV is at home or able to charge is an
example of user’s behavior analysis. From this data user preferences can
be deduced. The main focus of this paper is to integrate shifting of EV
charging and V2H/V2G applications with constraints of user’s preferences.
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Chapter 3

System model

This chapter goes in depth about the dataset and the methods which are
used to create a system model. The workflow that is followed can be seen in
Figure 3.1. The first step in the workflow is to check what kind of data can
be collected from the database. The assumption is that sensors are used in
conjunction with smart meters in households to extract fine-grained power
usage data of household and (hybrid) electric vehicles (HEV). The second
step is to analyze the data to know which characteristics of the households
can be extracted. This is done by using a clustering algorithm. The results
of the clustering algorithm are used to determine the occupancy and active
EV charge sessions of the households. The last step is to create models
based on the extracted information by using temporal metrics.

Figure 3.1: Workflow for system model

15
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3.1 Analysis of dataset

The database which is used for this thesis project is Pecan Street [30]. Pecan
Street contains numerous households and their daily energy usage data. All
this data is collected from households in the state of Texas in the USA. The
energy usage data is split up according to the available rooms and appli-
ances which are available in the household. Households also have metadata
concerning the number of occupants and which days they spend a significant
portion of the workday at home. This database thus contains a multitude
of data which can be used to create the system model.

In the database provided, there are households that own a hybrid electric
vehicle (HEV) or EV. The intention is to filter households that have an
(H)EV. The other intention is to make sure that there is sufficient data
from the database to work with. After careful examination of the different
types of data that are available from the database, two sets of data are of
the most importance and will be used for further analysis in the next steps.
The two data sets which were the most interesting were the EV charging
data and the household energy usage data. The household energy usage
data does not include the charging of the EV. The database provides two
ways to represent this power usage data. The data can be represented in
time intervals of hours or minutes.

For a specific household (with dataid 26), the household and EV charging
usage of January 9, 2014 using minute by minute data can be seen in Figure
3.2. The same representation in hourly data can be seen in Figure 3.3. The
horizontal axes in both these figures represent the hours of the day and the
vertical axes represents the average power usage. The minute data shows
the raw data of the overall average power usage from minute to minute. It
can be clearly seen where home power consumption suddenly spikes, namely
around 6:00 and 16:00. Those periods correspond to an increase of activity
in the household, which indicates that someone is at home using electricity.
The precise moment of the start and end of charge sessions can also be ob-
served in the minute data figure. Figure 3.3, shows a rough sketch that also
corresponds to hourly periods in which increased activity in the household
occurs.

Figure 3.2: Minute by minute data of the energy usage
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Figure 3.3: Hour by hour data of the energy usage

3.2 Profiling households

From the previous section, we can see graphs in which time periods of in-
creased electricity usage in the house can be observed. Time periods of EV
charging can also easily be found. There are two ways to represent this data.
Since the goal of the project is to look at changes from hour to hour and not
zoom in on a minute to minute basis, the focus will be placed on the hourly
data of the dataset. The model that will be created is not concerned with
what happens on a minute to minute basis, but will extrapolate to what
happens on an hourly basis.

Now that we know what type of data is used, the next step is to find out
how households can be profiled from the data. For the household energy
usage, the question that has to be answered is: How do you determine when
someone is at home? For the EV charging usage, the question is to determine
when EV charging takes place. In order to determine this, various groups
are going to be made for the energy usage of the household and EV charging.
This is achieved by using a clustering algorithm. Afterwards, we are going to
use temporal metrics to be able to create models of the households’ energy
usage and EV charging behavior.

3.2.1 EVs and charge rate

Using the dataset, the model of EV that each household owns can be found
very easily. The battery capacity for each EV in the household can be found
using the model of EV. However, the type of charger that the household
uses to charge their EV is not known. There are different kinds of chargers
available for EVs and each type charges at its own rate. The metadata of
the database does not provide information of the type of charger used. The
best way to find out what the charge rate is, is to look at a minute by minute
data of the charge session. Figure 3.2 illustrates nicely that when the EV
is charged, it charges immediately at its maximum rate. The household in
this figure uses a 3.3 kW charger.
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3.2.2 Clustering

Clustering is the task of placing objects in the same group that are similar
to each other. In this case, the hourly energy usage of households will be
placed in different cluster groups according to their levels. This will also
be done for EV charging. An unsupervised machine learning algorithm is
used to make this classification. The main benefits of using clustering is
that it does not require the data to be labeled. The other reason is that
clustering can indicate the possible states the energy usage of a household
can reside in. If for example clustering produces three clusters, the clusters
could indicate low, medium and high level states.

For this thesis, Expectation-Maximization algorithm [31] is used for the
clustering. This algorithm takes as input the hourly energy usage values
and outputs the cluster values. The cluster values represent a specific group
that the hourly usage value belongs to for a specific hour. Each cluster value
contains a centroid, which represents a central value for a specific cluster.
Energy usage values that are close to a cluster’s centroid are going to be
placed in that cluster. These clustered values only hold for hourly time
intervals since this is being used as input.

All the relevant data of the households regarding the household energy
usage and EV usage is collected with hourly intervals in a time period of one
year. A time period of one year is ideal since this includes all the seasonal
changes and energy shifting behavior during a year. All this data is put into
the clustering algorithm to produce the clustering characteristics for each
household.

An simple illustration of the input and output of the EM clustering al-
gorithm can be seen in Figure 3.4. The input of all households with their
corresponding energy usage values of either household or EV charging is in-
putted into the algorithm in hourly intervals. The output of the algorithm
is the clustered values for their corresponding hourly interval.

Figure 3.4: Input and output of EM clustering algorithm

3.2.3 Determination of characteristics

There are two datasets which have been retrieved from the dataset: house-
hold energy usage and EV charging usage. Two specific characteristics have
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to be distinguished for the households, namely, we have to be able to de-
termine the occupancy of the household. Of the EV charging usage, we
have to be able to determine when a charging session occurs. Since the data
is collected in hourly intervals, the determination of occupancy and active
charge session is also done on an hourly basis. The determination of these
occupancy and charging states will be done by means of clustering data.

Occupancy

Putting the household energy usage data through the clustering algorithm
will produce a certain amount of cluster values. Each cluster value represents
a different level of energy usage. The higher the cluster value, the higher
the energy usage for that particular hour. From these cluster values, the
occupancy has to be determined. The occupancy is either True or False. The
lowest cluster value will have a centroid of around 0, which may represent
that there are no occupants at that hour. All the cluster values higher than
the lowest value can indicate that there are occupants in the home. This
cluster value of 0 can be used as a boundary value. However, this boundary
value may not always be valid for all households.

We need a boundary value to determine whether there is occupancy in
a household. Finding this boundary can be done by considering different
factors. Looking at the centroid values of the clusters can be one of the
things that can be used. Looking at whether there is enough separation
between the two lowest clustered values, can be an indication of a valid
boundary value.

Another way of making this distinction of occupancy based on cluster
values is to use metadata of the households. If there are more occupants in
the house, the assumption can be made that a higher cluster value might be
needed to indicate occupancy. If a household indicates that they are often
at home on certain days of the week, a higher cluster value might also be
needed to indicate that the residents are at home, since the energy usage on
those indicated days can be higher.

In order to extract this occupancy property properly, three assumptions
are made and each assumption will be tested to see whether they hold up in
all conditions. Occupancy for hour h is occupancyh. The assumptions are
as follows:

• Assumption 1
There is sufficient separation between the two lowest clustered values
that cluster 0 can be used as boundary value to map True/False oc-
cupancy

occupancyh =

{
False, if clustered value = 0

True, otherwise
(3.1)
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• Assumption 2
The days on which households have indicated that they are at home,
requires higher boundary values since their baseline electricity usage
on these days is higher

occupancyh =

{
False, if clustered value <= boundary value

True, otherwise

(3.2)

• Assumption 3
The higher the number of occupants in the household, the higher the
boundary value has to be set to determine occupancy.

occupancyh =

{
False, if clustered value <= boundary value

True, otherwise

(3.3)

The boundary values as seen in these equations are not defined yet. Valida-
tion will have to be done to see what boundary values can be used in these
equations of the three assumptions. These assumptions will also have to be
validated to see whether they are valid in all situations. The validation will
be done in Chapter 5.

EV charge session

The determination of active EV charge sessions is more straightforward than
that of occupancy. When an EV is not charging, it draws 0 kW from the
grid. This 0 kW is represented with the lowest clustered value. All cluster
values higher than the lowest cluster value indicate that there is a charge
session active. The boundary for the determination of EV charge sessions is
thus easily found.

The method for determination of occupancy and EV charge session is
to use the clustered values and determine from these values a True or False
state for each hour. Concerning the EV charge sessions, we are not concerned
about the intensity of the energy usage but solely on whether a charge session
is active or not. We declare a variable called active charge. This variable
represents a True or False value depending on whether a charge session is
active or not. The active charge at hour h is defined as follows:

active chargeh =

{
False, if clustered value = 0

True, otherwise
(3.4)

3.3 Modeling of the households

In order to model the households depending on a specific property, metrics
are needed. These metrics are temporal metrics, which are based on previ-
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ous studied papers. These temporal metrics will have to be tweaked a bit in
order to make them compatible with the True/False state of the properties.
In the end, a distinction will be made between weekdays/weekend and sea-
sonal metrics, since the energy usage between these time periods can differ
considerably.

3.3.1 Temporal metrics

In order to create models for the households based on their energy usage
and EV charging, two metrics are going to be used: temporal membership
and transient probability. These are metrics which are based on [13].

Temporal membership for hour h is defined as the probability of a house-
hold to be in a certain cluster c over a time period n. Temporal memberships
are created for each hour h over a time period of n days. This is expressed
as follows:

Mh
c =

1

n

n∑
i=1

bhi ; bhi =

{
1, if cluster c occurs

0, otherwise
(3.5)

Since there are 24 hours in a day, 24 temporal memberships are created to
asses the likelihood to be in a certain cluster at hour h.

Transient probability from hour h to h + 1 is defined as the probability
of moving from one cluster value (a) to a different cluster value (b) over a
period of time n

T h→h+1
a→b =

1

n

n∑
i=1

ch→h+1
i ; ch→h+1

i

{
1, if shi = a ∧ sh+1

i = b

0, otherwise
(3.6)

where ch→h+1
i is a binary value that is either 1 or 0 depending on whether

the cluster values of shi and sh+1
i satisfy the condition. A cluster transition

from a to b can either mean that there is a cluster transition upwards or
downwards. If for example the transition is from cluster value 1 to cluster
value 2, this means that in that hour transition, the energy level also goes
up. The downward transition can also be studied with this equation.

These temporal metrics are expressed in percentages in order to asses
whether a household is more likely to be a member of a certain cluster or
whether a certain cluster transition is more likely to happen.

The temporal metrics as described in Equation 3.5 and 3.6 are only valid
for a specific household. Since the data differs for each household, these
metrics have to be calculated separately for each household.

3.3.2 Consequence of mapping clusters to True/False states

As discussed in Section 3.2.3, cluster values will be mapped to either a True
or False state for both occupancy and EV charging states. This entails that
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there is no variation anymore in the energy intensity level of the energy usage
expressed cluster values. Temporal metrics discussed above look at cluster
values and not at True/False states. The equations have to be tweaked
slightly to only look at True/False states.

Each temporal metric represents a specific property of the household. This
property can either be the occupancy or the charge session of the household.

Temporal membership measures the likelihood for a household to be a
member of a certain cluster. Since there are only two states, it is easier to
use a different terminology to define temporal membership. After tweaking
the temporal membership equation, we are left with a property probability.
The probability for a household to be in a positive state at a certain hour h
over a period of days n is expressed as follows.

P h
property =

1

n

n∑
i=1

bhi ; bhi =

{
1, if state = True

0, otherwise
(3.7)

where b is a binary value that is 1 if the occupancy for hour h is True. This
property probability can be either an occupancy probability (Poccupancy) or
an EV charge session probability (Pcharge).

Transient probability can study both the upwards or downwards cluster
transitions. In the case of only having two states, the following 4 transitions
can be studied:

• False → False

• True → True

• False → True

• True → False

The las two transitions in which a state change occurs are interesting to
study, since they measure the probability for a specific state transition. If,
for example, a person in a specific household always arrives home at 5 PM,
the positive transition from 4 PM to 5 PM is going to occur a lot more
frequently, since the household energy usage most likely is going go up from
5 PM onwards.

Transient probability for a property is defined as the probability of trans-
ition (0→ 1) 1 to occur from hour h to h+ 1 over a period of time n:

T h→h+1
property,0→1 =

1

n

n∑
i=1

ch→h+1
i ; ch→h+1

i

{
1, if shi = False ∧ sh+1

i = True

0, otherwise

(3.8)

1The notation of 0 → 1 is used instead of False→True to make the equation more
organized since it needs less space
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where ch→h+1
i is a binary value that is either 1 or 0 depending on whether

the upwards state transition occurs. This upward transition is denoted by
shi and sh+1

i . Note that in this equation only the upwards transition is taken
into account.

The other transition that we also studied is the downwards transition of
1 → 0. This state transition of 1 → 0 can be denoted by the following
formula:

T h→h+1
property,1→0 =

1

n

n∑
i=1

ch→h+1
i ; ch→h+1

i

{
1, if shi = True ∧ sh+1

i = False

0, otherwise

(3.9)
The transient probability can either be an occupancy transient probability
(Toccupancy) or a charge session transient probability (Tcharge).

3.3.3 Splitting properties into weekdays/weekends and sea-
sons

The two metrics which we use are property probability and transient prob-
ability. Each metric studies two properties. These properties are occupancy
and EV charging. The behavior of the occupancy of a household during
weekdays and weekends can vary significantly. If there are two people in
a household and both of them work each day during the week except for
the weekends, their occupancy pattern is going to be different during the
weekends. The same also holds for the EV charging property.

The dataset contains households from Texas. Texas has 4 seasons with
the two extremes of summer and winter. People’s energy usage is going
to change depending on the season. Therefore, having separate metrics for
each season will also be more representative for the model.

Since each property’s behavior during weekdays and weekends can vary,
it is better to have separate probabilities for each case. Furthermore, there
are 4 seasons, resulting in 4 property probabilities for each week/weekend
period. The visualization of this binary tree can be seen in Figure 3.5.

A binary tree can also be created for the transient probability. There
are also two properties for transient probability. Each property can be split
into weekdays and weekends. There are also 4 seasons, which results in the
weekday and weekend having their separate 4 seasons probabilities. The
visualization of this binary tree can be seen in Figure 3.6. The two state
transitions of interest (1→ 0 and 0→ 1) are not denoted in this figure.

3.4 Conclusion

With the help of data collection and data analysis, a model can be made of
the occupancy and EV charging behavior of each household. The model will
use the clustered values of each dataset for the determination of occupancy
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Figure 3.5: Tree for P h
property

Figure 3.6: Tree for T h→h+1
property

and active EV charge sessions. Based on this model, temporal metrics are
introduced. They are as follows:

• Occupancy probability

• EV charge probability

• Occupancy transient probability for state transition 0→ 1

• Occupancy transient probability for state transition 1→ 0

• EV charge transient probability for state transition 0→ 1

• EV charge transient probability for state transition 1→ 0
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These temporal metrics will determine the behavior of the algorithms which
will be discussed in the next chapter.
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Chapter 4

Algorithms

In this chapter, we first discuss the preparation steps that were done for the
algorithms. The actual algorithm will also be discussed. The preparation
steps consist of the definitions of EV charge sessions, pricing scheme and
flexibility window. These are all elements that are of importance before
the actual design of the algorithms can be started. In order to implement
these elements, metrics of Chapter 3 are used. Furthermore, we created
two algorithms. The first one is the EV charge scheduling algorithm. The
second algorithm is the V2H/V2G algorithm.

4.1 EV charge session

We need to be able to define what an EV charge session is. From the previous
results, using the clustered results, the specific hours at which an EV charge
session is running can be found easily. We may know at each hour whether
an EV session is active, but we may not necessarily know when the session
began and when it ended. There are also other properties of each EV session
that we have not uncovered yet from the clustered results.

In Figure 4.1 the hourly power usage and clustered values can be seen for
EV charge sessions. If for an hour the EV cluster value has a value larger
than 0, that means that at that hour there is an active charge session. In this
Figure, the hours in which there are active charge sessions are hours 18:00
and 19:00. We can clearly see that this is a continuous charge session which
started at hour 18:00 and ends at hour 20:00. The figure thus illustrates
one charge session. In order to identify each charge session, a finite-state
machine (FSM) is made. This FSM uses the EV clustered values to identify
the start and end of each charge session. This FSM can be seen in Figure
4.2. An EV charge session that starts for example at 23:00 and ends at 02:00
counts as one charge session and not two separate sessions.

Now that each EV charge session can be identified, we can easily retrieve
how much energy is charged during each session. Using this data, we can

27
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Figure 4.1: Graph in which an EV charge session can be seen

Figure 4.2: Finite-state machine for identifying each charge session

calculate depending on the EV model the battery percentage when the ses-
sion started. This battery percentage is called state of charge (SoC). The
assumption is that each EV charge session charges the battery to 100%. For
each charge session, the following properties can be extracted:

• start hour

• end hour

• energy used

• SoC prior to session

4.2 Pricing scheme

A pricing scheme is needed to know how much has to be paid for an amount
of kWh used for a specific hour. For this thesis, an hourly pricing scheme
from the US electricity company ComEd is used [32]. Using this pricing
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scheme, customers can decide to shift their energy usage to a specific hour
or time period in which the prices are the lowest.

ComEd provides an API to access historical electricity prices. All the
modeling of the previous chapters is based on the year 2014. The year 2014
is also included in the historical electricity prices of ComEd.

4.3 Flexibility window

Before we move on to algorithms, it is important to discuss what a flexibility
window is. For each charge session a flexibility window is created. The
flexibility window consists of hourly time slots. Each time slot contains a
value which indicates whether charging in this hour is preferable.

The flexibility window gives a time period in which the charging of the
EV can be scheduled. Which hours are chosen for charging the EV depends
on the type of objective. The creation and the decision making based on
certain objectives will be discussed in the next few sections.

4.3.1 Requirements

To create the flexibility window, we need a set of requirements. These re-
quirements dictate the length of the window and what rules are applied to
create the flexibility window. The requirements and their explanation are
as follows:

• The window’s minimum length is the minimum hours needed to charge

minimum length =
⌈
(1− SoC) · battery capacity

charge rate

⌉
(4.1)

• The window’s maximum length is equal to 6 hours
We have set the maximum length of the window to 6 hours. The
reasoning for this is that one would want their car to be charged fully
in the next 6 hours. Anything longer than 6 hours or a quarter of a
day could be experienced as an inconvenience.

• The window expansion is based on boundary value of transient prob-
ability
Occupancy transient probability is used with the state transition of
1→ 0. We are checking the probability for the occupants to leave the
house. If the probability to leave the house is lower than the bound-
ary value, the window may be expanded. If the transient probability
crosses the boundary value, this implies that there is a big probability
that there will be no people at home in the next hour. There is no need
to expand the window. If the probability to leave the house is lower
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than the boundary value, people will stay home and we can expand
the window because they are not going to need the vehicle.

• During midnight the window may be expanded to maximum length
The midnight hours are defined as the period of 00:00 till 05:00. If
the next hour to which the window can be expanded happens during
this midnight period, the window may be expanded to this extra hour
without considering the boundary value expansion of the previous re-
quirement. These midnight hours are usually hours when someone is
asleep and the energy usage activity is at its lowest.

During midnight the window may be expanded to maximum length
The midnight hours are defined as the period of 00:00 till 05:00. If the next
hour to which the window can be expanded happens during this midnight
period, the window may be expanded to this extra hour without considering
the boundary value expansion of the previous requirement. These midnight
hours are usually hours when someone is asleep and the energy usage activity
is at its lowest.

4.3.2 Creation of the flexibility window

The creation of the flexibility window takes all the requirements of the pre-
vious section into account. The process of creating the flexibility window
can be seen as an FSM in Figure 4.3. The following variables are used in
the FSM:

• length
This is the length of the window.

• min length
This is the minimum length of the window which is defined as the
minimum hours needed to charge EV to 100%.

• max length
This is the maximum length of the window which is defined as 6 hours.

• trans prob
This is the transient probability of the occupancy for transition 1→ 0.
It is the probability that measures the likelihood of leaving the house
for a certain hour transition.

• boundary
This is the occupancy boundary value which is used for the condi-
tional statements of the check boundary/midnight state. If the
trans prob is lower or equal to the occupancy boundary value, the
window may be expanded with one hour extra. Otherwise, the expan-
sion of the window is halted.
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Creation process

The creation of the window is started when there is a new charge session.
The window length is immediately set to the minimum length. As long as the
length is smaller than max length, the expansion process will continue. The
next hour beyond outside the window is checked for its transient probability
and whether it is a midnight hour. If the transient probability of that hour
is lower or equal to the occupancy boundary value or it is a midnight hour,
the window may be expanded with that hour. The window will constantly
be expanded until the condition trans prob > boundary is satisfied or if
the length of the window is 6 hours.

A higher occupancy boundary value will result in bigger flexibility win-
dows, but there will be a risk of the EV not having a high enough SoC for
the user in case of an emergency. Varying the boundary values will be done
in the next chapter to find the optimum values for boundary.

We are going to discuss one boundary condition of the flexibility window
creation process. What if there is a new charge session and the minimum
length of the window is set to 7. The expansion process is not run at all and
the window creation process is completed with a length of 7 hours. This
boundary condition is taken into account in the FSM with the conditional
transition: length ≥ max length.

Figure 4.3: FSM for the flexibility window

4.3.3 Decision making

Let’s say that a flexibility window containing 3 hours is created for a charge
session with start hour 12:00 as seen in Figure 4.4. Since hour 15:00 does
not satisfy the boundary condition, it will not be added to the flexibility
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window and the expansion has been halted. Let’s assume that 2 hours are
needed to charge the EV to 100%. Which of these 2 hours of the 3 hours
will be chosen to charge the EV? This decision making will depend on the
objective. We introduce two types of objectives: cost minimizing, comfort
maximizing and variable comfort.

Figure 4.4: Flexibility window created with a length of 3 hours

Cost minimizing
Cost minimizing as objective entails that in the decision making the cheapest
hours of the flexibility window will be chosen to charge the car. The chosen
hours may not make up a continuous charge session. Looking at Figure 4.5,
we can see the electricity price for each hour in the flexibility window. Let’s
continue with the previous example that the EV needs 2 hours to be charged
fully. 2 of the 3 hours have to be chosen to charge the EV. The hours that
are the cheapest are 12:00 and 14:00. These hours will be chosen to charge
the EV, leaving an idle hour 13:00 in between.

Figure 4.5: Chosen hours of flexibility window based on prices

Comfort maximizing
The other objective used for the process of decision making is comfort max-
imizing. The main question is how to define comfort in terms of users’
preferences. The definition of comfort for the user depends on what comfort
entails. This comfort should be based on the user’s preferences and past
behavior. We need a way to express the comfort level, (comforth), for a
given hour h. Four parameters are introduced to measure the comfort level.
These four parameters contain values ranging between 0 and 1. The four
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parameters with their explanations how they contribute to comfort are as
follows:

• Occupancy probability: P h
occ

If there is a high probability for someone to be at home at hour h, this
will be reflected in the value of P h

occ. Otherwise, P h
occ will be lower. If

the probability is lower, the chances are bigger that the EV cannot be
charged, since no one is at home. Higher probability contributes to
higher comfort level, since there is a higher chance that the EV can
be charged successfully during those hours.

• Charge probability: P h
charge

If the occupant is very likely to charge at hour h, the value of P h
charge

will be higher. The EV owner may have their own preferences when
they would like to charge their car normally. Choosing hours in which
the charge probability is higher contributes more to the level of com-
fort.

• Price comfortability: price comforth

The price comfortability is a value expressed between 0 and 1. Nor-
malized prices of the year 2014 are used to calculate price comforth.
price comforth is calculated using the following formula:

price comforth = 1− normalized priceh (4.2)

If price comforth has a value of 1, this entails that the comfort is at
its highest and therefore the prices are at their cheapest. On the other
end of the spectrum, price comforth having a value of 0 entails that
the prices are at their most expensive. A visualization of the range of
price comforth can be seen in Figure 4.6.

Figure 4.6: The range of price comfort

• Midnight boolean: Bh
midnight

The midnight hours are defined as the time period of 00:00 to 05:00.
These are normally hours in which people are at home sleeping and not
using their car. These hours are thus ideal from a user’s preferences
perspective to charge their EV.
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The four parameters are all specific to an hour and season. Each para-
meter has a value ranging between 0 and 1 except for Bh

midnight. These four
parameters are defined as components that measure the comfort level. The
occupancy and charge probability are the likelihood of users to be at home
and charge their car, respectively. They are considered as contributors of
comfort, since the user’s preferences are taken into account. Choosing hours
with higher chances of being home and chances of charging the car, will res-
ult in a higher success rate of the charge plan. A higher success rate means
that the comfort is higher for the user.

These 4 parameters each contain a weight that decides how much they
contribute to the comfort level. The formula for the level of comfort for hour
h is as follows:

comforth =
1∑4
i=1 ci

·
[
c1 ·price comforth+c2 ·P h

occ+c3 ·P h
charge+c4 ·Bh

midnight

]
(4.3)

This equation for the level of comfort produces a value between 0 and 1. The
weights of each parameter expressed by ci are used to determine how much
they can contribute to the comfort level. The determination of the weights
can be done from the user standpoint. If the user has a very high preference
for cost minimizing (price comfort) but also to occupancy probability, they
can appoint higher weights to these two parameters.

Joint comfort

In the objective “comfort maximizing”, we defined the level of comfort in
which the weights for each parameter are fixed. They can be set beforehand,
but afterwards there is not much flexibility. What if we want the weights
to change dynamically according to certain conditions? In this case, we
introduce a new objective: joint comfort. In joint comfort the weights are
going to change depending on certain conditions.

If the electricity prices are low, it may not matter so much which hour you
choose to charge the EV. It may be more relevant to then pick the hours in
which someone is most likely to be at home or to charge the car. So we want
to put more emphasis on user’s preferences when the electricity prices are
low. If the prices are high, we may want to prioritize the hours according
to the prices instead of user’s preferences.

We use the price comfort boundary of 0.8 for deciding what to priorit-
ize. This value of 0.8 corresponds to the electricity price of 32 c/kWh. If
the prices are lower than 32 c/kWh, higher weights are given to the user’s
preferences. Otherwise, the weight for price comfort will be given a higher
weight.
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4.4 EV charge scheduling algorithm

Now that we have a thorough understanding of how the flexibility window
works and how it is created, we can move on to the next step: EV charge
scheduling algorithm. This algorithm has as input the start hour of an
EV charge session and schedules the charging time according to a certain
objective. Using this objective, a charging schedule is made to charge the
EV to 100%. After having made a schedule of when to charge the car, this
new charging schedule has to be checked against the real occupancy data
to see whether the scheduled charge time can actually be completed. If the
EV cannot be charged during the scheduled hour, the algorithm tries to
schedule this missed hour in the remaining hours if possible.

4.4.1 Requirements

We introduce two requirements for the EV charge scheduling algorithm. The
first requirement is that the EV can only be charged when the occupants are
at home. If there is no one at home, the EV cannot be charged, since the
assumption is that the occupants left the house with the EV. The second
requirement is that the hourly average power usage from the grid may not
exceed 10 kW. This requirement is made to ensure grid stability and to
prevent too big of a strain on the grid. This value of 10 kW to ensure stability
in the grid will vary depending on the neighborhood and the electricity
company. We start with an average hourly power of 10 kW as a boundary
that may not be exceeded. Using both a washing machine and a dryer at
the same time will constitute an average power usage of 3 kW. Most home
EV chargers are of the 3.3 kW type 1. There is still 3.7 kW of power left
that can be used for household purposes. A boundary value of 10 kW seems
reasonable as a starting point for the boundary value.

4.4.2 The steps of the algorithm

The flow diagram of the EV scheduling algorithm can be seen in Figure
4.7. Each step of the algorithm is clearly highlighted in this figure. One
new variable is introduced in this algorithm: deficiency. The deficiency is
defined as the amount of kWh left to charge the EV to 100% during the pre-
vious charge session. A deficiency can occur when during a previous charge
session the EV could not get charged to 100% due to certain requirements
as discussed in the previous section. The following steps in the algorithm
are undertaken:

1. Create flexibility window
The input of start hour, SoC and the deficiency of the start of the

1From all the households used for this thesis, 83% of them have a 3.3 kW charger.
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charge session are used to create a flexibility window. The flexibility
window is expanded up to the maximum length depending on the
boundary value. This flexibility window is that given as input to the
next step.

2. Schedule which hours to charge
The flexibility window contains the hours that are available to charge
the EV. Depending on the objective of either cost minimizing or com-
fort maximizing, certain hours will be chosen to charge the EV. These
chosen hours are given to the next step.

3. Check whether charge successful
An input is received of which hours are chosen to schedule the charging
of the EV. In this step, the verification is done whether it is possible
to charge the EV during those scheduled hours. This is done for each
hour from the beginning to the end. If it is not possible to charge
the EV during a specific hour due to the requirements, the algorithm
goes back to step 2 and tries to reschedule in the remaining hours
of the flexibility window, if possible. It is only possible to select the
hours after the failed scheduled hour. After all the scheduled charging
hours are verified, one of the following two scenarios are possible before
continuing step 4: the EV could be charged fully to 100%, or there
were no more hours left in the flexibility window to charge EV to 100%.
Regardless of either scenario, step 4 is entered.

4. Check deficiency
In step 4, we are going to verify whether the EV could be charged
to 100% during the previous step. If the EV could not be charged to
100%, there is a deficiency. This deficiency is given as input to step 1
and will be corrected the next time when the EV is charged again. If
there is no deficiency, there is nothing els to do and the algorithm can
be exited.

Figure 4.7: Flow diagram of the EV charge scheduling algorithm
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4.4.3 Special scenario for midnight

We have created two special scenarios in which the algorithm behaves dif-
ferently. The first scenario concerns step 3 of the algorithm. Each hour of
the flexibility window is checked whether there is a scheduled charge ses-
sion and this scheduled hour is checked whether occupancy is true at that
hour. However, according to the model, there are certain hours when the
occupancy is always false, but people are at home. These are the midnight
hours when people are asleep. The midnight hours are defined as the hours
from 00:00 to 05:00. During these hours, the assumption is made that the
occupants are at home. The EV can thus always be successfully charged
during midnight hours.

The second scenario concerns the deficiency. We always want the car to
be charged to 100% by 5 AM so that it is ready to be used for the day.
What if there was a deficiency created during one of the charge sessions and
that has not been corrected by 00:00? In this case, we are going to run the
algorithm again with the input of start hour at 00:00. By doing this, the
EV can be charged to 100% by 5 AM.

4.5 V2H/V2G scheduling algorithm

In this section, the algorithm for V2H/V2G scheduling is introduced. Its
starting point is the start of the EV charge session. At this point in time,
the SoC of the EV and the starting time of the session are known. Using
this preliminary information, the algorithm is run for the next consecutive
hours until the EV is charged to 100% at 05:00 or the EV is used again. This
algorithm introduces a couple of intermediary steps that have to be finished
before executing V2H/V2G. These intermediary steps are all checks to make
sure that certain requirements are met first before actually doing V2H/V2G
execution. If a requirement is not met, the algorithm falls back on the EV
charge scheduling algorithm that has been discussed in the previous section.

4.5.1 Requirements

We have created requirements for the V2H/V2G algorithm. These require-
ments have to be met first before the V2H/V2G execution can actually be
done. They are as follows:

1. Algorithm started when SoC is known
An important element of the V2H/V2G algorithm is knowing the SoC
of the EV. The SoC is not known for every hour of the day. We
know what the SoC is of the EV at the beginning of a charge session.
The V2H/V2G will be started precisely at the beginning of the charge
session.
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2. EV discharge efficiency
The discharge efficiency (η) of the EV battery is set to 88%. This
discharge efficiency is a value that has been achieved by [17] in their
hardware architecture for discharging the EV for V2H usage. The
discharge rate of each EV is dependent on its charge rate:

discharge rate = η · charge rate (4.4)

3. Prevent EV charging when electricity prices are too high
The average electricity price used from the dataset is 4 c/kWh. We
define 8 c/kWh as the threshold when the grid’s supply does not meet
the demand. When the price is higher than this boundary, EV char-
ging is prohibited. We want to prevent the EV from charging during
expensive hours and then executing V2H/V2G during cheap hours.

4. Algorithm run when occupancy is true
The algorithm can only be run when the occupancy is true. If the
occupancy is false, the occupants have left the house with the EV. As
with the EV charge scheduling algorithm, the assumption is made that
during the midnight hours of 00:00 to 05:00 occupancy is always true.

5. Time period restriction [17:00 - 05:00]
We have made the decision to restrict the execution of V2H/V2G al-
gorithm only in the time period of 17:00 to 05:00. If a car is charged
in the morning or in the afternoon, the chances are much higher that
the car will need to be used again. It is in these instances very in-
convenient for the user to have the battery of the EV used for other
purposes than driving. During the restricted time period, the chances
are much smaller that the user leaves the house in that time period.

6. EV charged fully by 05:00
The V2H/V2G algorithm cannot be run forever, since the car still has
to be used during the day. We decided that V2H/V2G may be run
unrestricted during the restricted time period, but the EV has to be
fully charged by 05:00. The car needs to be fully charged up in the
morning when the user needs it.

7. SoC threshold
During the execution of V2H/V2G, the battery of the EV is discharged
for powering the home or sending the energy back to the grid. However,
it can be inconvenient for the user if the battery is depleted too much
to make an emergency ride if needed. That is why it is important to
have a SoC threshold. The EV battery may not be depleted more than
the threshold.
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4.5.2 Fallback methodology

Requirement 4 to 7 are requirements that are checked during the execution
of the V2H/V2G algorithm. If one of these requirements are not met, the
V2H/V2G resorts to either one of the two types of EV charge scheduling.
The first one is the normal EV charge scheduling as defined in the previous
section. The second one is the modified EV charge scheduling.

Modified EV charge scheduling is executed when the SoC threshold was
too low to be used for V2H/V2G execution. The biggest difference between
modified EV charge scheduling and normal EV charge scheduling is that in
the modified version, the goal is to charge the car as quickly as possible so
that SoC is above the SoC threshold. The modified version is not going to
try to charge it to 100%. The max length of the flexibility window is set to
4 in this case. With a window of 4, the V2H/V2G execution is postponed
up to 4 hours when the SoC does not satisfy the threshold value.

The flow diagram of the modified EV scheduling can be seen in Figure
4.8. The steps of the modified version are as follows:

1. Check length of window
The first step is to check whether there is a flexibility window with
a sufficient length created. This flexibility window can be created
during a previous session of modified EV charge scheduling. All hours
that are less than the start hour are removed from the window. If
the resulting length of window is equal to zero, continue to step 2.
Otherwise, continue to step 3.

2. Create flexibility window
A flexibility window is created with a length of 4 and with the start
hour as starting hour of the window.

3. Schedule in first hour if possible
Depending on the objective, check whether it is possible to schedule
in the first hour. If it is possible to schedule charging of the car of the
car in the first hour, this will be executed.

4. Remove first hour from window
Regardless of whether it was possible to schedule anything in the first
hour of the flexibility window, the first hour will be removed from
the window, since this hour will not be relevant anymore when the
modified EV charge scheduling is rerun in the next hour.

4.5.3 Steps of the algorithm

Knowing all the requirements of the V2H/V2G scheduling algorithm and
the fallbacks when the requirements are not met, the steps of the V2H/V2G
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Figure 4.8: Flow diagram of the modified EV charge scheduling

algorithm can finally be introduced. The flow diagram of this algorithm
can be seen in Figure 4.9. The variable current hour is used in this flow
diagram. This algorithm is an iterative process that checks the requirements
at current hour. After each hour, current hour will be incremented to
repeat the process for the next hour. The steps are as follows:

1. Check time period restriction
The algorithm is started when a charge session starts. The first thing
that has to be checked is whether the V2H/V2G scheduling algorithm
may be continued. If the time period is in the time range of 17:00 to
05:00, the algorithm may continue to step 2. Otherwise, it resorts to
normal EV charge scheduling.

2. Check occupancy
In this step, verification is done whether occupancy is True for cur-
rent hour. If this is True, the algorithm may proceed to step 3.
Otherwise, the iterative process is exited and we check what the de-
ficiency is according to the current SoC. This deficiency is given as
input to step 1 so that this deficiency can be corrected during the
next charge session. Afterwards, the algorithm is terminated.

3. Check hours needed to fully charge
According to the requirements, the EV needs to be fully charged by
05:00. In this step we check how many hours are needed to charge
the EV to 100%. This is expressed as hours needed. If the sum of
current hour and hours needed is greater or equal to 05:00, the
iterative process is exited and normal EV charge scheduling will be
started. This is done in order to avoid the EV having a SoC lower
than 100% by 05:00. Otherwise, step 4 may be entered.

4. Check SoC threshold
A SoC threshold is a threshold which the SoC of the EV may not cross.
The EV must always have a sufficiently charged battery, so the driver
can always make unexpected trips if possible. If the SoC is lower than
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the SoC threshold for current hour, the EV needs to be charged.
This is done in modified EV charge scheduling. If the SoC is higher
than the threshold, the V2H/V2G step may be entered.

5. V2H/V2G
V2H operation is executed when all the above checks have been met.
The amount of energy sent from the battery to the household may not
deplete the EV’s battery to a percentage lower than SoC threshold.

V2G is operated when there is a mismatch between the supply and
demand of electricity. V2H will not be operated. When the demand
is higher than the supply, the electricity prices will increase. In order
to aid the grid with its supply, V2G will be executed. The monetary
compensation for the EV owner will be 20% of the current price at
which V2G is operated.

6. Next hour preparation
In this step, we check how much has been charged or discharged of the
EV’s battery and calculate the new SoC. Since the current iterative
process is completed for current hour, we increment this variable
with 1, so that step 2 can be re-entered for the next hour.

4.5.4 Special scenario for midnight

The V2H/V2G algorithm also has two special scenarios that have to be
accounted for. The first scenario concerns the midnight occupancy. In
Step 2 of the V2H/V2G scheduling algorithm the occupancy is checked for
current hour. During the midnight period of 00:00 to 05:00, the occupancy
is always True.

For the second scenario, the algorithm checks whether there is a deficiency
of the SoC at midnight. If there is a deficiency, the EV needs to be charged
to 100% so that it can be used again the next day. In the case that there
is a deficiency by midnight, the normal EV charge scheduling will be run to
ensure that the battery is fully charged.

4.6 Metrics

In order to measure how well we are predicting when to charge the EV, we
introduce the metric of miss rate of scheduled hours. Using the flexibility
window, the algorithm chooses to schedule the EV during certain hours
according to certain objectives. If the EV is scheduled to charge at an hour
in which there are no occupants in the house, this scheduled charge session
cannot occur. In this case, rescheduling needs to take place to correct for
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Figure 4.9: Flow diagram of the V2H/V2G algorithm

this missed scheduled hour. The miss rate is defined as:

miss rate =
missed hours

scheduled hours
(4.5)

Another metric that will be used to measure how well the algorithm is
performing is: relative savings. We define two types of relative savings: one
is the savings on the EV charging bill, and the other is the savings on the
overall electricity bill (including EV charging). These relative savings are
calculated as follows:

relative savings =
billoriginal − billnew

billoriginal
(4.6)
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where billoriginal is the bill without the implemented algorithms and billnew
is the bill with the implementation of the algorithms.

4.7 Conclusion

We have defined a flexibility window which contains hours in which the
EV can be charged. The determination of which hours of the flexibility
window is chosen, depends on the objectives. We have defined three ob-
jectives: cost minimization, comfort maximization and joint comfort. These
objectives can be chosen by the user to prioritize the comfort, the cost
savings or a combination of these two. The two algorithms that we have de-
signed are EV charge scheduling algorithm and V2H/V2G algorithm. These
two algorithms use the flexibility window in order to make a decision when
to charge the EV depending on the objectives. The V2H/V2G algorithm
has the variables SoC boundary and price boundary that determines when
V2H/V2G gets executed. These two algorithms give the users the freedom
to prioritize their preferences: extra savings that can be achieved or the
security that they can use their EV in an emergency.
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Chapter 5

Results and evaluation

This chapter discusses the results of the modeling and the results of the
algorithms. Based on these results, certain decisions are going to be made
how to tweak the model and which optimum configurations can be selected
for the algorithms.

5.1 Results of system modeling

This section describes all the steps that have been taken to achieve the end
result for the modeling of the system. First, the dataset has been studied
to see what kind of information can be retrieved. The next step is to put
all the information through a clustering algorithm to get clustered results.
Depending on the clustered results, the occupancy and EV charge sessions
property are extracted. Afterwards, using these two properties a model is
created based on two temporal metrics.

5.1.1 Results from Pecan Street dataset

The dataset of Pecan Street provides a lot of granular data of households
and their electricity usage. Data from the year of 2014 was collected for
all these households. However, not all the available households can be used
for this project. We made the following two requirements when selecting
households out of the database:

• Households must own an (H)EV

• More than 250 days of EV charging data must be available

Accounting for these two requirements to ensure that only households with
an EV were chosen and that there is enough EV charging data to work with,
a total of 65 households were selected for this thesis.

The dataset also provides metadata about the households. Part of the
metadata can be seen in Figure 5.1. The most useful metadata that can be

45
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used later on in this research are the number of occupants in the household
and on which days the occupants are at home. These can prove to be quite
useful for the occupancy property. The metadata is not available for all
households, since not all households have opted in to fill in their personal
information.

Figure 5.1: Partial metadata of the households

The households that were used from the database all owned either an EV
or HEV. 33% of the cars were EVs and the other 66% were HEVs. All the
EVs have their own battery capacity and their own charge rate depending on
the type of charger that is installed in the household. The types of chargers
and amount of households that have this charger can be seen in Table 5.1.
The amount of (H)EVs that have a certain battery capacity can be seen in
Table 5.2.

charger type [kW] household share [%]

3.3 83

5 7

6.6 10

Table 5.1: Percentage of households that own a certain charger type

battery capacity [kWh] (H)EV share [%]

7.6 3

17.1 69

24 21

70 7

Table 5.2: Percentage of EVs that have a certain battery capacity

5.1.2 Clustered results

The machine-learning software package Weka [33] was used to get the clustered
results of the two datasets that were extracted from the database. In Figure
5.2 the clustered results of household power usage can be seen. The clustered
results of the EV charging usage can be seen in Figure 5.3. Hourly data was
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used for both of these properties. The sample numbers seen in these figures
represent each hour of the year for all households. The y axis represents
household power usage. Each point corresponds to a certain cluster, de-
termined by the clustering algorithm.

For the household power usage 6 clusters were identified, while for the
EV charging usage 4 clusters were identified. The means of the first three
clusters for each set can be seen in Table 5.3. From these clustered values,
a mapping can be made to True/False states for the occupancy and charge
session property. A boundary will have to be determined in order to distin-
guish cluster values will be mapped to a True/False state. The means for
cluster 0 and cluster 1 for both datasets seem to be sufficiently separated
that they can be used as the boundary states for the occupancy and charge
session properties. This will be explored more in depth in further sections.

Figure 5.2: Clustered results of the household energy usage

cluster mean(EV charge)[kW] mean(household power)[kW]

0 0.01 0.37

1 1.29 1.17

2 2.51 2.25

Table 5.3: The means of each cluster value for the two datasets

5.1.3 Extraction of occupancy property

The two properties that have to be extracted from the clustered results are
the household occupancy and the active charge sessions on an hourly basis.
These two properties are True/False states. The clustered results of the
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Figure 5.3: Clustered results of the EV charging usage

two datasets of household power usage and EV charge sessions have to be
mapped to these True/False states of their respective properties. In this
section, only the occupancy property will be discussed.

The means of clustered values of household power usage can be seen in
Table 5.3. The means of cluster 0 and cluster 1 for household power usage
seem to be sufficiently separated that they can constitute as a boundary
value. Cluster 0 should then constitute the off state and everything higher
than cluster 0 should then be the on state. However, this may not always be
the case, since some households might use more power than others. These
households could need a higher occupancy boundary value. In the previous
section three assumptions were made in terms of the occupancy property.
They will be tested to see whether they are valid in this section.

Assumption 1

A boundary value of 0 to map True/False occupancy satisfies all conditions

occupancyh =

{
False, if clustered value = 0

True, otherwise
(5.1)

The hourly power usage and clustered values of a household with dataid 114
for Jan 21 2014 can be seen in Figure 5.4. The household energy usage spikes
up in the morning, around 13:00 and in the evening. This corresponds nicely
with the clustered values. The clustered values of 0 indicate that there is no
occupancy. Cluster values higher than 0 indicate that there is occupancy.
In this instance, the assumption 1 does hold up.
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Figure 5.4: Household power usage and clustered result for dataid 114

In Figure 5.5, a different hourly power usage and clustered values of house-
hold 9776 can be seen for Jan 28 2014. In this figure we can see that the state
of no occupancy is defined by cluster 2 and not by cluster 0. Everything
higher than cluster 2 at a certain hour indicates there there is occupancy in
the household. So assumption 1 that cluster 0 can be used as the boundary
value to determine occupancy is not valid.

Figure 5.5: Household power usage and clustered result for dataid 9776

Assumption 2

The days on which households have indicated that they are at home, requires
higher boundary values since their baseline electricity usage on these days
is higher.

occupancyh =

{
False, if clustered value <= boundary value

True, otherwise
(5.2)

From the metadata extracted from the households, there are days on which
some households are at home and some days on which they are not at home.
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This is personal occupancy information that the people of the household
have filled in for the survey. The occupancy boundary value should be
higher on days that occupants have indicated that they spent a significant
portion of the work day at home.

We are going to look specifically at household 5357. Household 5357 has
indicated that they are at home on Monday, Wednesday and Thursday. In
Figure 5.6 the hourly power usage and clustered values for Monday Jan 13
and Tuesday Jan 14 can be seen. Monday is the day on which someone is
at home and Tuesday is supposed to be the day when no one is at home as
indicated from the metadata. However, when carefully looking at the two
days in Figure 5.6a and 5.6b both their baseline boundary values would be
0. Starting from the morning around 4 AM the household electricity usage
goes up and the pattern for the whole day is more or less the same for both
days. Since someone is supposed to be at home on Monday, we assumed
that the baseline electricity usage would be higher. This would result in a
higher occupancy boundary value. This assumption is not valid as we can
see in this case.

(a) Monday Jan 13 2014

(b) Tuesday Jan 14 2014

Figure 5.6: Hourly household power usage and clustered values for household
5357
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Assumption 3

The higher the number of occupants in the household, the higher the bound-
ary value has to be set to determine occupancy.

occupancyh =

{
False, if clustered value <= boundary value

True, otherwise
(5.3)

Another bit of information that can be extracted from the household metadata
is the number of occupants in a household. The assumption is that the more
occupants there are, the more electricity is going to be used. That would en-
tail that the occupancy boundary value should be higher, since the baseline
electricity usage is also higher.

Let’s take a look at the following two households and their respective
number of occupants:

• Household 6941: 4 occupants

• Household 8197: 2 occupants

Looking at the number of occupants for those two households, the household
with 4 occupants should have a higher electricity usage overall and thus have
a higher occupancy boundary value. In Figure 5.7 two graphs can be seen.
One for household with 4 occupants and the other one with 2. When we look
at the graph with 4 occupants, we see that the overall electricity usage is
low and that a boundary occupancy value of 0 can be used. For all clustered
values above 0, there is occupancy in the household. This is not something
we would expect, since the number of occupants is quite high. If we look at
Figure 5.7b for the household with 2 occupants we see a different situation.
The overall electricity usage is actually higher than that of the household
with 4 occupants. In this instance, the boundary value would have to be set
to 1 to accurately convey the household occupancy. We conclude that the
assumption that more occupants result in a higher boundary value is not
valid.

Baseline boundary value

We have seen that the three assumptions that were made concerning the oc-
cupancy boundary value are not valid. Every household differs a bit. There
are household that use a lot of electricity and there are household that use
less electricity. This electricity usage did not always depend on the number
of occupants in the household, neither did specific days of occupancy play
a significant role. So using metadata is not a good predictor to higher elec-
tricity usage on certain days. Thus, the occupancy boundary value has to
be determined in a different way. One common characteristic of all house-
holds is that their electricity usage during night time all drop to their lowest
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(a) Household 6941 with 4 occupants

(b) Household 8197 with 2 occupants

Figure 5.7: Power usage and clustered results for household 6941 and 8197

clustered values. The lowest clustered values for each household is differ-
ent. The corresponding lowest clustered value during this time period can
hence be used as the boundary value. Each household would have its own
boundary value.

The methodology to do this is to extract two months of data for all the
households and specifically look at time periods from 00:00 to 04:00. The two
months that were chosen are January and February. In that time period of 4
hours we look at which clustered value occurs the most often. The clustered
value that occurs the most often is then the occupancy boundary value of
the household. The reason for choosing the months January and February
is because in these two months the electricity usage is lower compared to
the summer months. The higher electricity usage may skew the boundary
value during the midnight hours, since during those hours the AC must
be turned on to cause the electricity usage baseline to be higher during
midnight. However, during the summer months when there is no occupancy,
the clustered value does drop to the boundary value as determined.

5.1.4 Extraction of charge session property

Putting the hourly EV charge data through the clustering algorithm pro-
duced 4 clusters. The means of cluster 0 and cluster 1 are 0.01 and 1.29,
respectively. They are sufficiently separated that cluster value 0 can be used
as a boundary value to determine whether a charge session is active or not.
The reason for this simplicity in determining this property is because the EV
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is either charging or it is not charging. When a charge session is active, the
charger delivers immediately the maximum power output that is possible to
the EV. This property active charge for hour h can be represented with
the following equation:

active chargeh =

{
False, if clustered value = 0

True, otherwise
(5.4)

In Figure 5.8, the EV charge usage and clustered results can be seen for
household 545 on Jan 27 2014. The periods in which a charge session occurs
can be clearly seen, and the clustered results also reflect this. Cluster 0
nicely represents periods of inactivity and all values above also reflect that
the charge activity is active during the other periods. So Equation 5.4 is
valid.

Figure 5.8: EV charge usage and EV clustered results for household 545

5.1.5 Modeling the household

In order to discuss the results of the household modeling, this section will be
split into two parts. The occupancy probability and charge probability are
going to be discussed. Afterwards, the results of the transient probability
will be discussed.

Occupancy probability

We are first going to discuss the occupancy probability. The occupancy
probability is split up into two versions. One for the workday and one for
the weekend. These two versions are calculated for the whole period of
2014. We first want to see the distribution of the occupancy probability for
all households. We use box plots for this. The result of this can be seen in
Figure 5.9. There is not a significant difference between the box plots of the
occupancy probability of the workday and that of weekends. In both cases
we see that the occupancy probability decreases during the midnight and
during the day it increases again with a peak in the evening. The biggest
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difference between these two is that during the morning hours around 5 AM,
the workday probability is higher than during the weekend. The increase in
probability in the weekends occurs around 9 AM and 10 AM.

(a) Box plot for the occupancy probability during workdays

(b) Box plot for the occupancy probability during weekends

Figure 5.9: Box plots for the each hour of the occupancy probability during
the year of 2014

We calculated the occupancy probability for all the households for a all of
2014. Since there can be seasonal differences between certain months, taking
such a big period of one year can skew the occupancy probability. We want
to see whether there is a significant difference between certain seasons in the
occupancy probability. If this is the case, the occupancy probabilities may
have to be split up into seasonal occupancy probabilities. The following 4
seasons were defined with the corresponding months:

• Winter: Dec, Jan, Feb

• Spring: Mar, Apr, May

• Summer: Jun, Jul, Aug
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• Fall: Sep, Oct, Nov

The two extremes would be winter and summer. In Figure 5.10 the box
plots for the two extremes can be seen. We can see that the distribution of
the occupancy probabilities move up during the summer months. The dis-
tribution of the probability to be at home during the evening hours is very
much concentrated near 100%. During morning hours, the occupation dis-
tribution of the summer months is much more varied. There is considerable
difference between these two seasons that it would be a good idea to further
split the occupancy probability into 4 parts. One for each season. This step
would make the occupancy probabilities for a specific month much more
representative than having one occupancy probability that is represented
for all the workdays/weekend of all months.

(a) Box plot for winter occupancy probability during workdays

(b) Box plot for the summer occupancy probability during weekends

Figure 5.10: Box plots for the each hour of the occupancy probability for
two extremes
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Charge probability

We checked the charge probability for different periods. We have already
defined a workweek and weekend charge probability. The period that is used
for the calculation of these two probabilities is the whole year of 2014. In
Figure 5.11, we can see only see the hourly box plots of the hours during
daytime. During the midnight hours, the probability to charge the car is
very low and is thus not of that much interest. When we compare the two
figures we see that during the workdays the probability to charge the car
is much higher than during the weekend. This is especially true during the
evening hours. In the weekends, the overall probability to charge the car is
lower. This is most probably attributed to the fact that EVs are not used
that much during weekends.

(a) Box plot for charge probability during workdays

(b) Box plot for charge probability during weekend

Figure 5.11: Box plots for specific hour of the charge probability for the year
2014

In Figure 5.11, the data of the whole year of 2014 is used. We would also
like to look at whether there is a significant difference between the charging
behavior of summer and winter. The box plots for the summer and winter
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periods of charge behavior can be seen in Figure 5.12. The time periods of 10
AM till midnight can be seen in this Figure. We can see that there is hardly
any difference in the charging behavior between the summer and the winter.
People’s driving and thus charging behavior do not change depending on
the season. The occupancy probability was split up into 4 seasons. It is not
necessary to split up the charge probability into 4 seasons too. However, in
this case, we made the decision to include the 4 seasons in the analysis of
charge probability. This dataset does not show a discernible difference in
the charging behavior between these two seasons at their extremes, but a
different dataset that may be used in the future might have this difference.
The distinction of 4 season is kept for the charge probability, in order to
facilitate a better transition to a different dataset, if needed.

(a) Box plot for charge probability during
workdays of summer 2014

(b) Box plot for charge probability dur-
ing workdays of winter 2014

Figure 5.12: Box plots for specific hours of the charge probability for summer
and winter 2014

Transient probability for occupancy

There are two state transitions that can be studied for the transient prob-
ability for occupancy. The two state transitions are 0 → 1 and 1 → 0. In
this thesis, we are only concerned with the state transition of 1→ 0 1.

As discussed in the previous section on the occupancy probability, there
are differences in the power usage of households from season to season. We
are going to take a look at this in depth. Figure 5.13 shows box plots of
the occupancy transient probability for the state transition 1 → 0 for the
summer and winter periods. One big noticeable difference from this figure is
the hour at which people go to bed. The assumption is that during evening
hours, people will switch off their devices before going to bed. This switching
off of devices will contribute to the state transition of 1→ 0. In the winter
periods, the probability of transition 1→ 0 occurring is much higher during
the evening hours. However, during the summer months, in which people

1Only the transition 1→0 is used for the flexibility window
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usually have a lot of vacation days, the state transition occurs much later.
It occurs during the midnight hours around 2 AM.

(a) Box plot for occupancy transient probability during winter

(b) Box plot for occupancy transient probability during summer

Figure 5.13: Box plots for occupancy transient probabilities for winter/sum-
mer for transition of True → False

Evaluation of system model

The biggest challenge in determining the occupancy of a household, was
determining the occupancy boundary value. At which value would you deem
a household to be present and not present. We have made three assumptions
and each assumption would have to be valid in all situations. If there is a
situation in which it is not valid, it will not be used. We have seen through
testing, that all three assumptions were not always valid. We have decided to
determine the occupancy boundary value by looking at the idle energy usage
of each household. This idle energy usage is specified as the time period in
which people are sleeping from 00:00 to 0:40. From this idle energy usage,
the baseline boundary value is extracted. Each household is unique and
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this method is therefore the best way to determine the occupancy boundary
value.

We have determined different temporal metrics and have seen that it is
necessary to split up the occupancy and EV charging behavior metrics into
weekdays and weekends. Furthermore, it is necessary to also have seasonal
metrics, since the occupancy behavior does change form season to season.
This is not the case for the EV charging behavior.

5.2 Results of algorithm

In this section we are going to discuss the results of the algorithm and what
design decisions have been made to achieve the final configuration of the
algorithms. We will first discuss the results of the EV charge scheduling
algorithm. Afterwards, the results of V2H/V2G algorithm are going to be
discussed.

5.2.1 EV charge scheduling algorithm

The EV scheduling algorithm consists of elements that can be tweaked.
Each adjustment in these elements results in a different configuration of the
algorithm. The elements that can be tweaked are as follows:

• occupancy boundary value of flexibility window
This boundary value determines how much the flexibility window can
be expanded. The range of this boundary value is [0-1]. If the bound-
ary value is low, the algorithm will become very strict and create the
minimum flexibility window that is needed. If the boundary value is
high, the algorithm will become less strict and create a bigger flexib-
ility window.

• algorithm objective
We have defined three types of objectives in the previous chapter.
The objectives are cost minimization, comfort maximization and joint
objective. The comfort maximization and joint objective have weights
that can be changed to prioritize certain preferences.

We have defined two metrics to measure the performance of the algorithm:
miss rate and relative savings. These two metrics will be studied to see how
each configuration of the EV charge scheduling algorithm performs.

The approach to studying the performance of the algorithm is to first
choose a certain objective with specific weights, if necessary. For this chosen
objective, the occupancy boundary value for the flexibility window will be
varied from 0 to 1 in steps of 0.1 to see how this affects the relative savings
and the miss rate.



60 CHAPTER 5. RESULTS AND EVALUATION

We will first look at the objective of cost minimization. In Figure 5.14,
we can see the graph for the relative savings of the EV bill and miss rate for
different occupancy boundary values. We see that for low values of boundary
value, the relative savings is around 12% and the miss rate is close to 0%.
As the boundary value increases, the relative savings and miss rate increase
too. At a certain point, both the values of relative savings and the miss rate
start to saturate. The value for which the relative savings saturate is 27.6%
and that of miss rate is 11.1%.

Definition of attributes

There are various configurations for the EV scheduling algorithm that can be
tested. Studying all the graphs for each configuration can be cumbersome.
To aid this, we will extract two attributes for each metric from the graph.
The first one is the saturation value. The horizontal line at which the
value of the metric does not increase anymore will be called the saturation
value. The second attribute is the saturation point. The point on the x
axis where the value of the metric is 90% of its saturation value is defined as
the saturation point. The saturation point is basically the boundary value
at which the metric starts to saturate.

Figure 5.14: Graph showing the relative savings and miss rate for different
boundary values

Different configurations

Now that we have defined the two attributes, it becomes easier to compare
the different configurations of the EV scheduling algorithm. All the various
configurations can be seen in Table 5.4. The configurations in which the
objective is comfort maximization and joint objective have a comfort level
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function with 4 weights. The weights that were attributed can also be seen in
this table. The saturation point and the saturation value of relative savings
and miss rate are also included in this table.

When we study Table 5.4 in depth, we see that for the cost minimization
objective the relative savings that can be achieved is the highest (27.6%),
but the miss rate is also the highest (11.2%). The metric, relative savings,
does saturate much earlier than the miss rate. Relative savings saturate at
a boundary value of 0.29 and the miss rate at 0.36. If you would choose an
occupancy boundary value at which you can have maximum relative savings,
it would be for the boundary value 0.29. The miss rate at that boundary
value is 9.4%. It would be 2% lower than the maximum miss rate.

Let’s take a look at the results for the comfort maximizing objective.
When we start with the equal weights, we see that the max relative savings
is 11.2% and max miss rate is 5.9%. When we prioritize user’s preferences
by giving woccup and/or wcharge higher weights, the savings actually go down
by around 2%. We would expect the miss rate to go down also, since we
are prioritizing user’s preferences. But the max miss rate for all comfort
maximizing objective hover around 6%. It is only when we prioritize the
price (wprice) and midnight charging (wmidnight) that the relative savings go
up, while the max miss rate stays at 6%.

The last objective that we have to look at is the joint objective. The
joint objective prioritizes different things depending on the price boundary.
What gets prioritized is as follows:

prioritize

{
prices, if price comfort ≤ 0.8

user’s preferences, otherwise
(5.5)

We have set the price comfort boundary to 0.8. This corresponds to 32
cents/kWh. In Table 5.4, we can see what the weights are for when user’s
preferences are prioritized. In all cases when the prices are prioritized, wprice

gets a weights of 2 and the rest of the weights get a weight of 1. We see that
the relative savings that can be achieved with joint objective is between 7%
and 9%.

Another observation can be made concerning the miss rate saturation
level. If the objective is either comfort maximization or joint objective,
regardless of the weights, the saturation value of miss rate for all the con-
figurations is all around 6%. The saturation point for miss rate is also the
same for all these configurations. Regardless of higher weights for woccup

and/or wcharge, the miss rate does not go down.

Evaluation of the different configurations

The three objectives of cost minimization, comfort maximization and joint
objective are defined to prioritize which hours the EV should be charged.
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savings saturation miss rate saturation

objective wprice woccup wcharge wmidnight sat point value [%] sat point value [%]

cost min 0 0 0 0 0.29 27.6 0.36 11.2

comfort max 1 1 1 1 0.24 11.2 0.19 5.9

comfort max 1 2 1 1 0.19 9.1 0.19 6.1

comfort max 1 1 2 1 0.21 8.6 0.19 5.9

comfort max 1 2 2 1 0.19 7.1 0.19 6.1

comfort max 1 1 1 2 0.26 12.1 0.19 5.9

comfort max 2 1 1 1 0.22 12.3 0.19 5.9

comfort max 2 1 1 2 0.25 13 0.19 5.9

joint 1 1 2 1 0.22 8 0.19 5.9

joint 1 2 1 1 0.2 9 0.19 6.1

joint 1 2 2 1 0.2 6.9 0.19 6.1

Table 5.4: Different configurations for EV charge scheduling algorithm

We see that if the objective is cost minimization, we can achieve maximum
relative savings, but the miss rate is higher.

We initially thought that a good trade-off would be to use comfort max-
imization in which occupancy and charge probability can be prioritized. The
assumption is that prioritizing these two properties would reduce the satur-
ation value of the miss rate, but we see that regardless of what configuration
of comfort maximization is chosen, the saturation level of miss rate for all
them is around 6%. The same pattern can be seen for the joint objective.

The flexibility window is used in all three objectives. But the objectives do
not dictate how wide the window should be. The occupancy boundary value
dictates how wide the window should be. Since the occupancy boundary
determines the length of the window, the users’ preferences 2 are already
taken into account. In all three objectives, the flexibility window takes the
occupancy boundary into account to determine the likelihood of someone to
be at home. After the flexibility window is created, we have various time
slots in the flexibility window. Each time slot has relatively high chances of
occupancy, depending on the strictness of the occupancy boundary value.
This is the reason why in the case of the comfort maximizing and joint
objective, the miss rate is the same for all the different configurations. The
saturation point at which the miss rate starts to saturate, is also the same
for all the configurations.

Because of the design in which the flexibility window already takes user’s
preferences into account, it defeats the purpose for having a comfort max-
imizing and joint objective. It will have negligible effect on the end result
to reduce the miss rate.

The proposed solution is to only use the cost minimization objective.
One way in which user’s preferences can be taken into account is playing
with the occupancy boundary value used for the flexibility window. If the
user wants to prioritize their preferences, thus minimizing the miss rate, a

2Only the probability to leave the home is taken into account. The charge probability
is not taken into account.
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lower occupancy boundary value will be chosen. If the user wants to have a
higher relative savings, they can choose a higher occupancy boundary value
to achieve that. Achieving higher relative savings is also accompanied by a
higher miss rate. A good trade-off between relative savings and miss rate is
to choose the boundary value of 0.1. In this instance, the relative savings is
18.5% and the miss rate is 3%.

An observation of Figure 5.14 for the cost minimization objective is that
the savings do not start at 0% for boundary value of 0. The savings start at
12%. The reasons for this is because the flexibility window is allowed to be
expanded to the fullest during midnight resulting in more savings. Another
reason for this is because choosing to charge more during 1 hour instead of
spreading the charging over 2 hours can have an effect on the savings.

5.2.2 V2H/V2G scheduling algorithm

The V2H/V2G scheduling algorithm also has various elements that can be
tweaked. One thing that will not be tweaked, is the objective when EV
charge scheduling is executed in this algorithm. The objective will always
be cost minimization since this is the best objective as determined in the
previous section. The elements that can be tweaked for V2H/V2G algorithm
are as follows:

• occupancy boundary value of flexibility window

• SoC threshold
The SoC threshold is the minimum SoC that is required for the (H)EV.
The SoC may not drop below the SoC threshold.

• price boundary
The price boundary is what is needed for V2G. V2G will only be
executed when the current price for electricity is higher than the price
boundary. If this is the case, it signals that the supply of the electricity
is struggling and executing V2G is needed.

By varying the values of these elements, we can see how this affects the
relative savings and miss rate of the algorithm. The relative savings in this
V2H/V2G section concerns the relative savings that can be achieved on the
whole electricity bill including EV charging.

V2H configuration

We first start by solely looking at V2H execution. We vary the SoC threshold
from 0% to 100% and for each SoC threshold we check the miss rate and
the relative savings for different boundary values. For each SoC threshold,
we extract the saturation value of miss rate and relative savings. The result
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of this can be seen in Figure 5.15. As the SoC boundary is increased, the
saturation value of relative savings decreases and that of miss rate increases.

A good trade-off that can be achieved between relative savings and miss
rate is by choosing a SoC boundary of 60%. The saturation value of relative
savings is 9.9% and that of miss rate is 6.4%. However, as the miss rate
saturates much later than relative savings, choosing the occupancy boundary
value wisely can result in a lower miss rate. By choosing the saturation point
of relative savings as occupancy boundary value, we will achieve a miss rate
of 5.2% while keeping relative savings at 9.9%.

Figure 5.15: V2H: Saturation values of miss rate and relative savings for
different SoC boundaries

V2H/V2G configuration

For the V2G configuration, we can vary the SoC boundary, occupancy
boundary value and price boundary. We decided to choose a SoC boundary
where a good trade-off can be achieved between relative savings and miss
rate. This happens at a SoC boundary of 60%. This results in a saturation
values for relative savings of 9.9% and miss rate of 6.4%. This trade-off is
chosen for V2H/V2G configuration in order to simplify the analysis and see
whether this trade-off can be improved further by varying the price bound-
ary.

In Figure 5.16, the saturation values of miss rate and relative savings can
be seen for different values of price boundary. The price boundary is varied
between 5 c/kWh to 50 c/kWh. We see that the relative savings is the
highest when price boundary is equal to 5. The relative savings at that
point is 10.8%. For higher values of the price boundary, the relative savings
saturate at 10%. The relative savings ranges between 10% and 10.8% for
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different values of price boundary. The miss rate hardly changes and stays
stable at around 6%.

Figure 5.16: V2H/V2G: Saturation values of miss rate and relative savings
for different price boundaries

Evaluation of V2H and V2H/V2G

We will first evaluate the configuration of only V2H. By increasing the SoC
boundary, less capacity of the EV battery can be used for V2H execution.
As a result, the relative savings decrease. On the other hand, the miss
rate will increase, as repetitive charging and discharging of the battery will
occur more often at higher SoC boundaries. The increased frequency of the
repetitive charge and discharge of the battery, will cause a higher miss rate.

Studying Figure 5.15 of the V2H configuration in depth, we see that rel-
ative savings range between 8% and 11.3%. There is not a big variability in
this range. The reason for this is because around 90% of the (H)EVs have
a battery of either 17.1 or 24 kWh. If the dataset contained (H)EVs with
a bigger battery capacity, the relative savings that could be achieved would
have a bigger range for different SoC boundaries.

For V2H/V2G operation, we used a SoC boundary of 60%. We saw that
only for very low price boundaries does the relative savings increase. In fact,
the relative savings only range between 10% and 10.8%. There are hardly
any extra savings that can be gained from V2G. The pricing dataset that
was used for this thesis, had relatively stable electricity prices with hardly
any pricing spikes. If there were more pricing spikes, the relative savings
could have been higher. However, the electricity company would not want
the user to earn too much money from V2G execution, since V2G execution
happens at a monetary loss for the electricity company.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

In this thesis we considered the charging of EVs. Once the EVs become
prevalent, they will indeed put huge stress on the power plants or generation
and supply systems. The proposed a way to handle this by considering
the cost of the energy and comfort level together to make a sustainable
system. The idea is to use the periods of low energy usage to charge EVs.
Furthermore, the EVs could also be used as power sources, to benefit from
them during high demand of energy. This way the power plants would see
almost a constant demand and usage, in the long run, making them more
efficient.

We can conclude that shifting EV charging is beneficial for the user. The
algorithm for scheduling EV charging can achieve relative savings of up to
27%. However, the miss rate will be 11.1%. By choosing the occupancy
boundary value wisely, we can achieve a relative savings up to 18.5% and
reduce the miss rate to 3%. It is up to the user to choose the value of the
occupancy boundary. If a lower boundary value is chosen, a lower miss rate
will be prioritized. If a higher boundary value is chosen, the relative savings
will be prioritized. This will empower the user based on his/her requirement.

If we compared the result of this algorithm with the research done by
Brush, et al., [18], we see that they achieved a relative savings of 12.5%
by shifting EV charging completely to midnight without considering the
discomfort caused to the users. Our algorithm is able to achieve higher
relative savings while taking user’s preferences into account. Even when the
EV charge algorithm of presented in this thesis is with strict constraint of
0% miss rate, it can achieve a relative savings of 11%.

We have designed three different objectives to aid the decision making
for choosing which hours to schedule the EVs. However, we saw that the

67
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comfort maximization objective and joint objective hardly had any effect on
the miss rate. We deemed these two objectives that takes user’s preferences
into account ineffective. The reason for this is because, during the creation of
the flexibility window, the user’s preferences will be taken into account. The
occupancy boundary value determines the length of the flexibility window.
These two objectives would be useful if there were no flexibility windows in
the design or if all flexibility windows had a fixed length.

The V2H implementation only used the cost minimization objective. We
see that the maximum relative savings of 11% can be achieved when the SoC
boundary is 0%. However, this means that the EV cannot be used at all for
driving and decreases the lifespan of the battery. A trade-off is to choose
a SoC boundary of 60%. At this boundary value, the maximum relative
savings are 9.9% and the miss rate is 6.4%.

We also considered V2G. The V2G implementation was integrated with
V2H. To simplify the many configurations that were possible with V2H/V2G,
we decided to choose a SoC boundary at which a good trade-off can be
achieved between relative savings and miss rate. This happens at a SoC
boundary of 60%. V2G was only executed when the current electricity price
exceeds the price boundary. The only element that is variable here is the
price boundary. We tested V2H/V2G implementation for different price
boundaries to see what the maximum value of relative savings and miss rate
would be. We saw that the relative savings and miss rate hardly change at
all. This happens because the pricing dataset which was used has relatively
stable electricity prices. There were hardly any price surges. More price
surges would have benefited the user cost wise.

A non-intrusive method was introduced to create a model of the house-
hold’s electricity usage and EV charging behavior. This model looks at en-
ergy data collected by smart meters and does not require bluetooth beacons
or GPS trackers. The V2H/V2G algorithm combined with EV charge schedul-
ing takes user preferences into account to perform well on either relative
savings or miss rate. The user has the final decision whether a high relative
savings or low miss rate should be achieved.

6.2 Future Work

We still need to find a better way to integrate more of the preferences of
the users during creating the flexibility window. Exploring the V2H/V2G
implementation without a flexibility window for EV charge scheduling can
also be a good approach. In this case, the comfort maximization and joint
objectives will play a big role in a windowless scheduling policy.

Another point of improvement is to integrate concepts of game theory con-
cerning the cooperative and non-cooperative interaction between the three
actors in this thesis: household, grid and EV. The EV battery is the single
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resource that has to be shared among all three of them.
The needs from the standpoint of the electricity companies could also

be explored more in depth. As more RES are integrated into the grid,
the intermittent nature of RES will have to be taken into account. More
elaborate schemes could be designed for shaving off the peak power demand
on the grid and improving the constrained power supply.
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Pedrosa, Carlos Couto, and João L Afonso. Bidirectional battery char-
ger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technolo-
gies. In Industrial Electronics Society, IECON 2013-39th Annual Con-
ference of the IEEE, pages 5934–5939. IEEE, 2013.

[17] David P Tuttle, Robert L Fares, Ross Baldick, and Michael E Webber.
Plug-in vehicle to home (v2h) duration and power output capability.
In Transportation Electrification Conference and Expo (ITEC), 2013
IEEE, pages 1–7. IEEE, 2013.

[18] AJ Brush, John Krumm, Sidhant Gupta, and Shwetak Patel.
Evhomeshifter: evaluating intelligent techniques for using electrical
vehicle batteries to shift when homes draw energy from the grid. In
Proceedings of the 2015 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, pages 1077–1088. ACM, 2015.



BIBLIOGRAPHY 73

[19] Xiaochen Zhang and Santiago Grijalva. An advanced data driven model
for residential electric vehicle charging demand. In Power & Energy
Society General Meeting, 2015 IEEE, pages 1–5. IEEE, 2015.

[20] Byung-Gook Kim, Shaolei Ren, Mihaela van der Schaar, and Jang-Won
Lee. Bidirectional energy trading and residential load scheduling with
electric vehicles in the smart grid. IEEE Journal on Selected Areas in
Communications, 31(7):1219–1234, 2013.

[21] Sangdon Park, Joohyung Lee, Sohee Bae, Ganguk Hwang, and
Jun Kyun Choi. Contribution-based energy-trading mechanism in mi-
crogrids for future smart grid: A game theoretic approach. IEEE Trans-
actions on Industrial Electronics, 63(7):4255–4265, 2016.

[22] Amir-Hamed Mohsenian-Rad, Vincent WS Wong, Juri Jatskevich,
Robert Schober, and Alberto Leon-Garcia. Autonomous demand-side
management based on game-theoretic energy consumption scheduling
for the future smart grid. IEEE transactions on Smart Grid, 1(3):320–
331, 2010.

[23] Peter Richardson, Damian Flynn, and Andrew Keane. Optimal char-
ging of electric vehicles in low-voltage distribution systems. IEEE
Transactions on Power Systems, 27(1):268–279, 2012.
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