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Abstract

There are still important knowledge gaps regarding stability and safety of bicycle riding. Every year around
60,000 people need hospital treatment for single sided accidents in the Netherlands alone. Supporting the
need for understanding lateral bicycle dynamics.

One of the prominent disturbances on lateral bicycle and rider behaviour is pedalling. However, although
there is a good understanding of the determinants effecting the forward or propulsive behaviour of the bicycle
associated with pedalling, the effect on the lateral bicycle and rider behaviour is still poorly understood. This
study focusses on determining what the effect of pedalling is on the lateral behaviour of the bicycle-rider
system.

This determination is three fold. First the nature of the pedalling disturbance and parameters influencing
it is ascertained. This is used to develop a pedalling disturbance model which can be easily applied to any
dynamical bicycle-rider model, by applying harmonic external torques on the steering and roll of the bicycle.

Secondly the direct response of this pedalling disturbance of the bicycle-rider system is ascertained for a
variety of models and cycling conditions. This is achieved by applying the pedalling disturbance to multiple
bicycle-rider models for multiple cycling conditions. Methods, with various model complexity and solution
approaches, are evaluated. Based on this evaluation we propose a simple and effective method of analytically
obtaining a periodic solution based on a linearised time-invariant bicycle-rider system. This periodic solution
represents the open loop lateral bicycle response corresponding to the periodic pedalling disturbance.

Thirdly the overall effect of pedalling, the closed loop response, is ascertained using experimental data.
Specific cycling conditions are chosen to validate the open loop response of the model, since these cycling
conditions should be only minimally effected by control. The experimental data corresponding to other cy-
cling conditions are explored for parameter dependence and influence of control and upper body motions.

The nature of the pedalling disturbance is now understood. The pedalling disturbance is determined by
vertical and the forward acceleration of the left and right leg centre of mass, the leg mass, the hip width and
the cadence. This motion of mass promotes roll and yaw disturbances, where the yaw disturbance can be
translated to a steering disturbance by bicycle parameters defining yaw-steering coupling.

The direct lateral response and the overall lateral bicycle-rider behaviour due to pedalling are explored.
This uncovered parameter dependencies of the bicycle-rider system, differences due to rider upper body
movements, rider control and cycling conditions such as forward speed and cadence.

We developed and validated a simple method of ascertaining the direct effect of a pedalling disturbance
on the lateral behaviour of a bicycle-rider system. This is done by applying harmonic steering and roll
toques to an easily obtained time-invariant linearised bicycle model. Some bicycle-rider combinations exhibit
resonance behaviour due to pedalling within the normal cycling range, this model could be used to slightly
change bicycle design parameters such that this dangerous behaviour is avoided.
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1 Introduction

With the uncontrolled bicycle ’Whipple’ model well established (Meijaard et al., 2007; Kooijman and Schwab,
2009), it is now interesting to see how humans interact with and control the lateral dynamics of the bicycle.
Where we define the lateral dynamics in general terms as the roll (also know as lean) and steering motions
and the associated torques of the bicycle. Aside from satisfying a natural scientific curiosity, where could the
exploration of this interest lead us?

It would possibly lead us to better understand the important issues regarding stability and safety which
are present in for example slow cycling speeds or regarding high accident rates for the elderly population.
Within this area it is of special interest to understand why cyclists loose their balance, since one-sided bicycle
accidents (with no other traffic involved) are the major cause of bicycle injury. These single sided accidents
account for around 60% of the total of 140,000 bicycle accidents occuring every year in the Netherlands of
which around 65% requires hostpital treatment. Especially for the elderly population the long lasting health
effects as a result of a fall can be detremental and the percentage of single sided accidents increase up to
85%. (CBS; Kingma et al. (1997); Schepers et al. (2014); VeiligheidNL (2014); Scaramuzza et al. (2015))

It would also possibly lead us to the ability to personalize bikes to the proportions and capabilities of the
rider in order to increase sprint performance, efficiency or comfort. These have obvious interested parties
in the professional sports sector, but a personalized bike could also be tempting for the general cycling
enthusiast.

The research directions discussed above should be seen as so called ultimate goals, which are very entic-
ing, motivating and useful to keep in mind as a target on the horizon, but are not within reasonable reach
for 1 person within a half year of research (which is the natural constraint for defining a master graduation
research). Therefore it is necessary to identify small steps towards the possible ultimate goals.

There are already some steps taken towards understanding the human bicycle control. The energetics and
muscle coordination of pedalling have been extensively explored. The muscle excitation patterns (usually
as function of pedal angle) are investigated in previous research using a experimental (Neptune et al., 1997;
Ting et al., 1999) and/or a musculoskeletal modelling approach (Raasch et al., 1997; Neptune and Hull,
1998; Raasch and Zajac, 1999; Neptune et al., 2000; van Soest and Casius, 2000). These mostly involve
submaximal performance (Neptune et al., 1997; Neptune and Hull, 1998; Ting et al., 1999; Raasch and
Zajac, 1999; Neptune et al., 2000), also maximal start-up cycling (Raasch et al., 1997) and maximal sprint
cycling (van Soest and Casius, 2000) are investigated.

Experimental research identified the general behaviour and main bicycle rider control actions for laterally
stabilizing the bicycle (Kooijman et al., 2009; Moore et al., 2011). The bicycle rider applies a steering action
to the handlebars of the bicycle, which will influence the steering angle and thus the yaw of the front wheel.
The change in steering angle will promote a lateral movement of the bicycle, whereby the support point of
the bicycle is shifted towards the direction of the fall. This is the main method of controlling the lateral
stability of the bicycle and is usually called steering into the fall (Schwab and Meijaard, 2013). Moore et al.
(2011) were the first to establish significant lateral knee movement in low speed riding using a principle
component analysis on motion capture experiments. They determined an increase of lateral knee movement
with a decrease of forward speed seen for speeds of 5 km/h and below and proposed that it could be used as
a low speed bicycle stabilization action. Moore et al. (2011) also found four dominant upper body motions
during normal cycling; lean, bend, twist and bounce, which are dominantly present at a frequency coupled
to the cadence. These upper body and lateral knee motions are not observed or observed less when the
pedalling motion is not present.

A modelling approach is used to investigate dynamic behaviour, where steering and body lean control
actions are modelled and applied using various control strategies (Sharp and Limebeer, 2004; Schwab et al.,
2012, 2013). It is not clear if the rider controls the steering angle or the steering torque, although most rider
models apply steer torque control (Popov et al., 2010; Schwab and Meijaard, 2013). Body lean as a rider
control action has typically been modelled, mostly for motorcycles as well as bicycles, as a torque control
over a body lean hinge joint (Popov et al., 2010; Schwab and Meijaard, 2013). These models typically use
the Whipple model as a basis, which has a rigid rider attached to the bicycle frame.

The influence of a passive rider on the lateral dynamics is also investigated. Schwab et al. (2012) show
that rider posture can dramatically change the dynamical properties of the bicycle-rider system, by evalu-
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ating two different passive riding postures. They also show that the bicycle with a passive rider model is
fully controllable by either steer torque or by upper body lean torque, even though steer torque seems more
effective.

From this previous research it would seem that the most important parts of the dynamic stability, control
and energetics of the bicycle are now understood. But in fact there is an important knowledge gap, that could
greatly influence all these factors. Extensive research has been done to understand the control and energetics
of the propulsive pedalling action of the lower body, but this has been primarily done in the sagittal plane on
a stationary bicycle. The lateral stability of the bicycle-rider system has been thoroughly investigated using
a rigid rider and also using control and passive dynamics of the upper body. It is safe to assume however, as
experimental research also indicates, that the rider also influences the dynamics of the bicycle-rider system
by the propulsive pedalling action. The moving masses of the legs will perturb the system, which in turn will
likely increase the (steering) control effort and therefore the energetics of cycling. This perturbation could
also directly impact the riders safety, if the control of this perturbation is difficult.

Now the next step is therefore to investigate the dynamic behaviour of a total bicycle-rider system that
includes the propulsive pedalling action. This leads to the following comprehensive research question: ’What
is the influence of the rider’s propulsive pedalling action on the dynamic behaviour and control of the total
bicycle-rider system?’ This main research question is divided into smaller subquestions in order to be able
to further define the focus of this research. The subquestions are discussed with attention to what kind of
approach would suit the question best in Appendix A. The focus of this master graduation research lies with
the first subquestion:

’What is the effect of pedalling on the lateral behaviour of the bicycle-rider system?’

Here we are focussed on ascertaining the direct open loop response, where there is no control or lateral
upper body movements added to the system, and setting this in relation with normal closed loop cycling,
where there is control and a wide range of upper body movements. Answering this question is an important
first step, since understanding the influence of pedalling on the rider-bicycle behaviour in general can only
be done when we understand what system the rider needs to control. Herein the influence of the pedalling
action on the lateral dynamics of the bicycle is still poorly understood.

Moore et al. (2011) found a significant influence of pedalling on rider behaviour and lateral bicycle
behaviour using motion capture experiments on a large treadmill. It is, however, very difficult to explain
this influence due to complexities in rider and bicycle behaviour due to for instance bicycle dynamics, rider’s
posture control, rider’s bicycle-control and possible upper and lower body movement coupling.

Connors (2009) was the first to investigate the effect of pedalling using a modelling approach, specifically
for recumbent cycling, which is a special type of bicycle where the rider is in a horizontal (lying) position.
They used the benchmarked Whipple bicycle model (Meijaard et al., 2007) as basis for their own model by
adjusting the parameters to fit a recumbent bicycle. They added five rigid bodies, two for each leg and a
crank, and assumed that the movement of the legs was directly coupled to the movement of the rear wheel
through a gear ratio. They implemented a steering torque control that minimizes the steering torque, steering
angle, lean angle and the rate of change of these angles. It is not clear however if the human controller would
minimize these angles or would actually allow some oscillation around its neutral point when a oscillatory
disturbance is applied.(Connors and Hubbard, 2008; Connors, 2009) It is therefore difficult to ascertain the
value of the result of this study. Since the behaviour of a disturbance is not investigated without a controller,
it is difficult to separate the influence of the disturbance to the influence of the choice of the controller.

Therefore we are interested in what the influence is of this pedalling disturbance when there is no control
present (open loop dynamics). Since the exclusion of control would pose a great challenge in implementation
and safety using an experimental approach, a dynamic modelling approach is better suited to investigate
what the influence is of the pedalling disturbance assuming an uncontrolled bicycle.

A modelling approach means we need to model the disturbance caused by pedalling and apply this dis-
turbance to a dynamic bicycle-rider model. Herein it is important to realise that bicycle dynamics can
vary significantly with bicycle riding conditions such as forward speed, bicycle-rider parameters and posture
(Schwab and Meijaard, 2013). It is therefore unlikely that we can give a definitive answer on what the effect
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of pedalling is on the lateral dynamic bicycle behaviour which holds for all possible cases and conditions.
This study therefore focusses as it’s primary goal on developing a simple and effective method of applying
a pedalling disturbance to dynamic bicycle-rider models, which can be used to investigate specific cases and
conditions. This could also be used in future research for instance to investigate the pedalling disturbance in
a controlled system or investigate the coupling between pedalling and other rider movements. As secondary
goal, this study also explores the general direct influence of pedalling for normal cycling conditions and pa-
rameters for the civil cyclist and relates this to the overall influence of pedalling on bicycle-rider behaviour.

First the pedalling disturbance is modelled and investigated in Section 2. By doing so, we can effectively
answer the subquestion 1.(a) defined in Appendix A: ’What is the disturbance associated with pedalling?’
Here we will not only identify the nature of the disturbance, but also quantify it in such a way it can be used
as a simple method for applying pedalling disturbance to a bicycle-rider system.

Second the subquestion 1.(b) is addressed in Section 3: ’What is the direct effect of the pedalling dis-
turbance on the lateral dynamics of a bicycle-rider system?’. Here the pedalling disturbance is applied to
dynamic bicycle-rider models, where different analytical and numerical approaches are evaluated, to find a
simple and effective method of applying a pedalling disturbance. Here we also investigate the variation in
the open loop response of the disturbance for a normal range of cycling conditions and parameters.

Thirdly the subquestion 1.(c) is explored in Section 4: ’What is the nature of the coupling between steer-
ing and pedalling?’ Here we will use available experimental data by Moore et al. (2011). They performed
motion capture experiments during a wide range of cycling conditions on a large treadmill. Some of these
cycling conditions are expected to have a reasonable agreement with an open loop response, these are there-
fore used as a general validation of the open loop model behaviour proposed in the previous sections. Mainly,
the experimental data is used to relate the direct pedalling disturbance response found in Section 3 to the
overall response including upper body movements and control. With this we can explore the contribution of
these effects to the general behaviour.

In Section 5 we will present the overall conclusions corresponding to this study’s research question ’What
is the effect of pedalling on the lateral behaviour of the bicycle-rider system? ’. Here we will also present some
recommendation based on the findings of this study. This can be seen as some general ideas and methods that
could possibly lead to answering the main research question: ’What is the influence of the riders propulsive
pedalling action on the dynamic behaviour and control of the total bicycle-rider system? ’ Taking us a step
forward in the understand important issues regarding stability and safety.
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2 Pedalling Disturbance

The bicycle rider propels the bicycle by transmitting power from the muscle joint system of the legs to the
bicycle system. The associated joint torque is transmitted through the crank, the chain system and the rear
wheel as a propulsive force acting at the contact point between the ground and the rear wheel. In order
to generate this force the bicycle rider generates a force on the pedal, which is mainly directed vertically
down together with a smaller forward (anterior-posterior) element and even smaller lateral component, quan-
tified by Ruby et al. (1992). These pedal forces, together with the handle bar and saddle forces are the
action-reaction forces between between the bicycle and rider. These internal forces add work to the system
and influence the forward and lateral motions. In order to investigate the precise influence of these internal
forces, the dynamic behaviour can be investigated by determining and solving the equations of motion of the
entire bicycle-rider system. This approach is used in Section 3. In this section however, we are interested in
understanding the disturbance itself. Using d’Alembert’s principle we are able to determine and quantify the
pedalling disturbance and answer the subquestion 1(a): ’What is the disturbance associated with pedalling?’
Here we will not only identify the nature of the disturbance, but also quantify it in such a way it can be used
as a simple method for applying pedalling disturbance to a bicycle-rider system.

We can use d’Alembert’s principle (Fowles and Cassiday, 1999) by defining the d’Alembert inertial forces
to be in equilibrium with the external forces. Using this method we can view the inertia times the acceleration
of inertia as an external inertial force. In order to be able to determine the d’Alembert forces associated
with pedalling, we first need to model the leg kinematics in order to get the acceleration of the leg masses.
Also using the virtual power principle the Cartesian d’Alembert forces can be transformed to generalised
coordinates, used to define bicycle dynamics, the steering and the roll angle of the bicycle, in order to
ascertain the disturbance of the leg mass acceleration on the bicycle dynamics.

2.1 Method

As explained above, we want to know what the disturbance due to pedalling is. This means we are interested
in the leg kinematics (Section 2.1.1) and their associated inertial d’Alembert forces (Section 2.1.2). We need
to transform the Cartesian d’Alembert inertial forces to d’Alembert inertial torques about the generalised
coordinates, steering and roll, of the bicycle. This is done by using the virtual power principle. (Section
2.1.3).

2.1.1 Leg Kinematics

In order to estimate the influence of the pedalling action on the behaviour of the bicycle-rider system we
need the leg kinematics. The simplest way to model the leg kinematics, if we regard the main aspect of the
disturbance to be on the bicycle roll, is a sinusoidal up and down motion of the leg COM. However, to investi-
gate if other possible components of the pedalling disturbance need to be taken into account a more realistic
approach would be advised. Therefore a choice has been made to model the kinematics of the legs as a dual
3D four bar mechanism, which consists of both the legs together with the cranks and the bicycle frame part
between crank axis and the saddle (shown in Figure 2.1). The lower leg is taken as a rigid segment, since the
range of motion of the ankle is low (Bini et al., 2014). Also the lower and upper leg are constrained to move in
a plane parallel to the bicycle frame, since the lateral knee movement during pedalling is small (Ruby et al.,
1992), making the system fully determined as a function of cadence (ω = −θ̇A) if we assume isokinetic cycling.

The four bars are the crank (cr), the lower leg (ll), the upper leg (ul) and the axis (A) to saddle (C)
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Figure 2.1: Schematic of the leg kinematic and bicycle model. Left the centre of mass (COM) locations are
shown of the leg model segments in a frontal view. The middle schematic shows the connectivity of the leg
segments in 3D view using a cans representation. The right schematic shows the total bicycle-rider system
including bicycle variables roll φ, pitch θ, yaw ψ and steering δ and bicycle parameters wheelbase w, trail c
and steering angle λs. The left leg (leL) and right leg (riL) COM move in two parallel sagittal planes fixed
parallel to the bicycle frame. The leg kinematics are modelled as a dual 3D four bar mechanism: the crank
(cr), the lower leg (ll), the upper leg (ul) and the axis (A) to saddle (C) length as the base. The crank
angle θA(t) has a prescribed motion of θ̇At, where θ̇A is the constant negative of the cadence (θ̇A = −ω) and
θA = 0 is defined as the position where the right foot is in it’s most forward position. Also, the knee cannot
be extended beyond 180 degrees (θul ≥ θll), meaning the system kinematics are fully defined without adding
any degree of freedom to the system.

length as the base, where the motion is prescribed by the following constraint equations:

xA +

 lcr cos(θ̇At)
1
2 lhh

−lcr sin(θ̇At)

+

 lll cos(θrill)
0

−lll sin(θrill)

+

 lul cos(θriul)
− 1

2 lhh
−lul sin(θriul)

− xC = 0 (2.1)

xA +

 lcr cos(θ̇At+ π)
− 1

2 lhh
−lcr sin(θ̇At+ π)

+

 lll cos(θlell)
0

−lll sin(θlell)

+

lul cos(θleul)
1
2 lhh

lul sin(θleul)

− xC = 0 (2.2)

Where l is the segment length and θ is the segment pitch angle. These sets of equations have 2 unknowns (θll
and θul) and 2 non-trivial equations. These can be solved when also the extra condition is added that the
knee cannot be extended past a straight leg (θul ≥ θll), otherwise the system has two possible configuration
solutions.

The COM positions of the leg segments can be easily defined as a function of the now defined pitch angles
(for full derivation see Appendix B.1). The COM position of an entire leg (+ crank) xL can be formulated
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as the weighted average of the parts as follows (Winter, 1990):

xL =
mcrxcr +mcrxll +mulxul

mcr +mll +mul
(2.3)

The bicycle (xA & xC) and rider parameters (l & m) are consistent with parameters used for the passive
rider models (Moore et al., 2009; Schwab et al., 2012), which are based on the bicycles and anthropomorphic
data of the rider used in the experimental motion capture research (Moore et al., 2011) used in Section 4.
A standard crank length and mass of 0.17 m and 2 kg was taken respectively and the seat post length of
the Batavus Browser bicycle needed to be decreased to 0.19 m, since the value given in Moore et al. (2009);
Schwab et al. (2012) did not accommodate for a full crank rotation. These parameters are based on common
parameters for crank and seat height (van Soest and Casius, 2000; Wilson, 2004).

In general a standard value of 60 rpm (ω = 2π rad/s) is chosen as example for the cadence. This cadence
is chosen, since it is a reasonably common cadence for recreational cycling (Wilson, 2004). However other
cadences are also used to generate results to check if behaviour is consistent with expectations. Cadence
dependent behaviour is either captured in figures or formulas.

The leg motion corresponding to the leg kinematic model can be applied directly to a full non-linear
multibody dynamics bicycle-rider model, by adding elements that move as a function of cadence as discussed
in Section 3.1.2.1. However in this study we want to investigate the possibility to develop a simple method
of investigating the pedalling disturbance response. If the disturbance can be simplified in such a way that it
is compatible with a linearised bicycle model and analytic solution approaches it would greatly increase the
usability of the disturbance model. In order to investigate the dynamics and solve the system easily in an
analytic manner, the leg motion can also be modelled as a sinusoidal motion with the pedalling frequency
and an amplitude of the centre of mass (COM) corresponding to the leg model. Therefore we investigate a
possible simplification, a simplified COM path that follows a skew-elliptical motion which is a function of the
cadence frequency ω only.

xLsimple =

xLyL
zL

+

|XL(ω)| cos(ω t+ ϕXL(ω))
0

|ZL(ω)| cos(ω t+ ϕZL(ω))

 (2.4)

where the leg motion amplitude |XL| and phase ϕXL
can be obtained by transforming the leg motion xL

to frequency domain by applying a Fourier transform (for details on Fourier transform see Section 3.1.2.1.1)
and consequently picking the amplitude and phase information for the frequency corresponding to cadence
ω (= −θ̇A). Here the difference for the right leg and the left leg is π rad phase angle difference (ϕXleL

=
ϕXriL

+π rad). The error of this simplification is illustrated by calculating the normalised root mean squared
deviation NRMSD as an error percentage:

NRMSD =

√
1
N

∑N
n=1 (xL(n)− xLsimple(n))2

max(xL(n))−min(xL(n))
100% (2.5)

This is the standard expression for root mean squared deviation, however normalised with the range of the
signal and expressed as a percentage.

2.1.2 d’Alembert Inertial Forces

d’Alembert’s principle implicates that a dynamic system can be viewed as a system in equilibrium similar
to a static system by interpreting the acceleration of inertia as an inertial force which is a negative external
force. These d’Alembert inertial forces Fin = −Mẍ together with the (other) external forces f are then in
equilibrium. (Fowles and Cassiday, 1999; Greenwood, 2006)∑

f −Mẍ = 0 (2.6)∑
f + Fin = 0 (2.7)
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Applying this same principle to our model we can investigate the d’Alembert inertial forces FxL
(t) and

inertial torques TxL
(t) associated with the leg movement in all directions:

FxL
(t) = −

[
MLẍriL(t) +MLẍleL(t)

]
(2.8)

TxL
(t) = −

[
xriL(t)× [MLẍriL(t)] + xleL(t)× [MLẍleL(t)] + · · ·

Iulω̇riul(t) + Iulω̇leul(t) + Illω̇rill(t) + Illω̇lell(t) + Icrω̇ricr(t) + Icrω̇lecr(t)

]
(2.9)

Where ML is a 3 by 3 mass matrix with the leg mass mL on the diagonal, ẍril(t) and ẍleL(t) is the ac-
celeration vector of the right and left leg COM respectively and xriL(t) and xleL(t) are their corresponding
position vectors, Iul, Ill and Icr are the moment of inertia tensors of the upper leg, the lower leg and crank
respectively and ω̇riul, ω̇leul, ω̇rill, ω̇lell, ω̇ricr and ω̇lecr are rotational acceleration vectors of the right and
left upper leg, lower leg and crank respectively (see Figure 2.1 and Section 2.1.1 for leg kinematic model). In
the general case the inertial torques would also have ω× Iω components, but because the leg segments only
have a pitch rotational velocity (ωy(t); ωx = 0, ωz = 0), these terms disappear.

Using this approach the d’Alembert inertial forces calculated here are purely the disturbance caused by
the relative motion of the legs to the bicycle frame. Meaning that the d’Alembert inertial forces represent the
disturbance applied to the local Cartesian reference frame of the bicycle. The implications of this property
in bicycle model application are discussed in Section 3.1.2.2

2.1.3 Transformation to Generalised Coordinates: Virtual Power Principle

Since we are interested in the influence of the pedalling disturbance on the lateral dynamics of the bicy-
cle, it would be insightful to represent the Cartesian inertial forces and torques in terms of the generalised
coordinates used to describe the lateral dynamics of the bicycle. The established Whipple bicycle model,
benchmarked by Meijaard et al. (2007), is discussed in more detail in Section 3.1.1.1. According to this val-
idated model, if we assume constant forward speed the forward and lateral dynamics can be decoupled and
the lateral dynamics can be fully described by the generalised coordinates roll φ and steering δ (see Figure 2.1).

The virtual power corresponding to the pedalling disturbance δPL is the same expressed in generalised
coordinates as Cartesian coordinates (Greenwood, 2006). Therefore we can uncover the generalised inertial
forces fL by transforming the virtual power from Cartesian to generalised coordinates. We start by deriving
the virtual power of the Cartesian inertial torques TxL

by linking the Cartesian coordinates to the corre-
sponding angular velocities as depicted in Figure 2.1. This expression is equal to the virtual power expressed
in generalised coordinates.

δPL = TxL
δφ̇+ TyLδθ̇ + TzLδψ̇ (2.10)

= TφL
δφ̇+ TδLδδ̇ (2.11)

Note that the notation for the virtual variation δ an upright Greek delta symbol is used, where the only
slightly different notation for steering angle δ an italic Greek delta symbol is used. The generalised inertial
roll torque TφL

can be directly found as the inertial torque about the local x axis TxL
. The generalised

inertial steering torque TδL can be found by using kinematic relations between the bicycle coordinates θ̇, ψ̇
and δ̇ (Meijaard et al., 2007):

θ̇ = 0 (2.12)

ψ̇ =
cos(λs)

w
(vδ + cδ̇) (2.13)

which is determined by the bicycle geometry corresponding to the yaw-steering coupling, c the trail, w
the wheel base and λs the steering angle. These relationships can be understood as defining the vertical
and lateral velocity of the front wheel contact point Q as a function of pitch velocity żQ(θ̇) = wθ̇ = 0,

yaw velocity ẏQ(ψ̇) = −wψ̇, steering velocity ẏQ(δ̇) = −c cos(λs)δ̇ and forward speed and steering angle
ẏQ(v) = −δ cos(λs)v. Equations 2.12 and 2.13 can be used to transform 2.10 to generalised coordinates

δPL = TxL
δφ̇+ TzL

cos(λs)

w
cδδ̇ (2.14)
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Comparing equations 2.11 and 2.14 a generalized inertial force vector fL can be defined to include the roll
and steering torque.

fL =

[
TφL

TδL

]
=

[
TxL

1
w c cos(λs)TzL

]
(2.15)

2.2 Results and Discussion

The results and corresponding discussion is split into two main topics. First we cover the leg kinematics and
secondly the inertial torques and forces associated with pedalling.

2.2.1 Leg Kinematics

The modelled leg kinematics are visualized in Figure 2.2 and 2.3. The leg centre of mass (COM) trajectory
is followed very well by the skew-elliptical simplified motion, since the position is dominated by the cadence
frequency ω. The error (NRMSD) of this simplified skew-elliptical motion compared to the leg model is 2%
in forward direction and 3.6% in vertical direction. However looking at the speed and acceleration of the
simplified motion, a higher discrepancy is seen (Figure 2.3). It is interesting to understand why this occurs,
since the speed and acceleration determine the disturbance as momentum or inertial forces respectively. In
Figure 2.4 it is seen that higher frequencies have a larger relative amplitude for the speed and acceleration.
This increase of amplitude can be understood by looking at the signal as a superposition of multiple cosines
and taking the second derivative with respect to time:

xL(t) = XL(0) + |XL(ω)| cos(ωt+ ϕXL(ω)) + |XL(2ω)| cos(2ωt+ ϕXL(2ω)) . . . (2.16)

ẍL(t) = −|XL(ω)| (ω)2 cos(ωt+ ϕXL(ω))− |XL(2ω)| (2ω)2 cos(2ωt+ ϕXL(2ω)) . . . (2.17)

This explains why there is a relative change of amplitudes of n2 for a frequency of nω and why higher fre-
quency content is more visible in the acceleration signal. Precise numerical frequency information of the leg
movement XL(nω) can be found in Appendix D (Table D.1 corresponding to hybrid bicycle and Table ??
corresponding to city bicycle).

The dual four bar mechanism is off course a simplification of the true pedalling motion. The motion of this
model does not incorporate possible ankle angle, hip position and lateral knee motions. These assumptions
are deemed reasonable, since the influence of these motions in general are relatively small due to the small
deviations. Ruby et al. (1992) found a range of lateral knee motion of around 23 mm (SD 7 mm, 11 subjects,
22 cycles per subject), which would add to a lateral motion of around 11 mm to the centre of mass, which is
an order of magnitude lower than the vertical or forward range of motion of the centre of mass. This small
lateral component will add to the roll and yaw disturbance. The range of motion of the ankle is dependent
on seat height and individual differences (± 15o Brown et al. (1996); 10o - 25o Bini et al. (2014)). Small
ankle extensions are usually present in the downward part of the pedal stroke, this would slightly decrease
the vertical range of motion of the centre of mass, slightly decreasing the roll disturbance. Also small vertical
movements of the hip position are likely, due to the upper body bending seen during pedalling (Moore et al.,
2011). The hip goes slightly up and down in sync with the pedal motion, meaning that the vertical centre
of mass motion will slightly increase due to the hip motion. It could be that for individual cases or clinical
applications these numbers are larger. In that case these influences should be taken into account, possibly
by first identifying the leg motion using motion capture experiments.

Not only the motion of the four bar mechanism is a simplification, but also the mass distribution of
the segments is simplified. The length and inertia parameters for our leg kinematic model are based on
bicycle and rider parameters defined by Moore et al. (2009). For clarity and consistency, the same mass
distribution is used proposed by Moore et al. (2009), where the leg segments are modelled as cylinders
with homogeneous mass distribution. This is clearly a simplification on true human leg mass distribution.
We could use anthropomorphic parameters based on cadaveric studies in order to reduce this simplification
(Winter, 1990). This would mean that the upper leg COM is located closer to the hip (at distance 0.433 lul
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instead of 0.5 lul) and the lower leg COM is located further away from the knee (at distance 0.606 lll instead
of 0.5 lll). For reference the numerical frequency information of the leg movement XL(nω) corresponding
to these anthropomorphic parameters are also found in Appendix D for both bicycles. Comparing the
original consistent model, to the model using more accurate COM locations, an error of around 2% is
found corresponding to this homogeneous mass distribution assumption, where this assumption leads to an
overestimation of the amplitudes.
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Figure 2.2: The leg motion is modelled as a dual 3D four bar mechanism and as a simple skew-elliptical COM
path (COM only cadence frequency), shown in 3D view (left), side view (middle: sagittal plane) and front
view (right: frontal plane). The COM locations of the leg model segments and total system are indicated.
The simplified and dual four bar mechanism centre of mass (COM) paths are shown for comparison.
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Figure 2.3: The right leg position (top), speed (middle) and acceleration (bottom) in forward direction (left)
and vertical direction (right) as a function of crank angle, for cadence is 60 rpm (= 2π rad/s). Crank angle
is also a measure of time since we assume isokinetic cycling (ωt = −θA). The centre of mass of the four bar
mechanism (’leg model’) and the simple motion using only the cadence frequency are shown for comparison.
The axes for vertical direction are inverted, since the positive direction of the z-axis is vertical downwards.
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Figure 2.4: The amplitude of the position of the right leg COM as a function of frequency. For cadence is 60
rpm (= 2π rad/s = 1 Hz), bicycle parameters corresponding to the hybrid bicycle (Batavus Stratos).
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2.2.2 Inertial Forces and Generalised Torques
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Figure 2.5: d’Alembert forces, the so called inertial forces associated with the acceleration of inertia, for the
leg model and the simplified skew-elliptical COM motion as a function of crank angle, for cadence is 60 rpm
(= 2π rad/s = 1 Hz). Crank angle is also a measure of time since we assume isokinetic cycling (ωt = −θA).

In order to understand what the effective disturbance is, the d’Alembert inertial forces (Figure 2.5)
corresponding to these legs and simplified COM movements are investigated. The forward and vertical forces
of both the legs are dominated by the first even multiple of the cadence frequency (2ω), since the odd multiples
of the cadence frequency (1ω, 3ω, ...) cancel each other out since these are associated with an odd number
of πrad shifts:

FxL
=

∞∑
n=1

mL |XL(nω)| (nω)2

(
cos(nωt+ ϕXL(nω)) + cos(nω(t+ π/ω) + ϕXL(nω))

)
(2.18)

=

∞∑
n=2,4,6...

mL |XL(nω)| (nω)2 2 cos(nωt+ ϕXL(nω)) (2.19)

FzL =

∞∑
n=2,4,6...

mL |ZL(nω)| (nω)2 2 cos(nωt+ ϕZL(nω)) (2.20)

for full derivation see Appendix B.2. The physical interpretation of this algebraic derivation is that the
even frequencies are effected by constructive interference and the odd frequencies are effected by destructive
interference due to the phase difference of the right and left leg motion.
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Since the modelled movement of the simplified motion does not consist of any even multiples of the ca-
dence frequency, the d’Alembert forces of the right and left slider cancel each other out completely. This
should not present a large problem, since the leg movement forces should not have a large effect on the
overall lateral behaviour of the bicycle. The forces in forward direction will influence the forward speed by
introducing a small periodic component (total mass of around 90kg and peak force of around 12N makes
a peak acceleration of around 12/90=0.13m/s2). The forces in vertical direction will influence the ground
reaction forces by introducing a small periodic component (around 39N amplitude on 900N total weight).

Similarly the d’Alembert pitch torque will influence the ground reaction forces. However the roll and yaw
torques (Figure 2.6) will have a greater effect on the overall bicycle behaviour, since it will influence the roll
and steering, defining the lateral dynamic bicycle behaviour. Here the cadence frequency is dominant again,
since now not the odd multiples but the even multiples of the cadence frequency cancel each other out due
to the difference in minus sign between left and right:

TφL
=

∞∑
n=1

mL lhh/2 |ZL(nω)| (nω)2(cos(nωt+ ϕZ(nω))− cos(nω(t+ π/ω) + ϕZ(nω))) (2.21)

TφL
=

∞∑
n=1,3,5...

mL lhh |ZL(nω)| (nω)2 cos(nωt+ ϕZ(nω)) (2.22)

TψL
=

∞∑
n=1,3,5...

−mL lhh |XL(nω)| (nω)2 cos(nωt+ ϕX(nω)) (2.23)

where lhh is the hip to hip distance and the only difference in defining the yaw torque TψL
to the roll torque

TφL
is it uses the forward leg amplitude |XL(nω)| instead of the vertical leg amplitude |ZL(nω)| and has a

minus sign due to positive direction definitions. The pitch torque TθL cannot be easily simplified compared
to the general definition given in Section 2.1.2, since there is synchronous movement in x and z direction,
changing the lever arms for the torques corresponding to the inertial forces in x and z direction, also there are
rotational accelerations of the lower limb pitch angles (θ̈ul & θ̈ll) contributing to the pitch torque. However
when expressing this pitch torque TθL as a superposition of multiples of the cadence frequency (Appendix
B.2) it is clear that the odd multiples of the right and left leg cancel each other out similar to the forward
and vertical leg force.

It is clear that the yaw torque cannot be simply ignored, since it is in the same order of magnitude as the
roll torque (see Figure 2.6). Therefore, in order to understand the main disturbance on the lateral dynamics
caused by pedalling, we need to include the generalised inertial steering torque caused by the inertial yaw
torque:

TδL =
1

w
c cos(λs)

∞∑
n=1,3,5...

−mL lhh |XL(nω)| (nω)2 cos(nωt+ ϕX(nω)) (2.24)

Because the second multiple of the cadence frequency is cancelled out in the roll and yaw torque, the
simplified skew-elliptical motion gives a reasonably good fit by using only the cadence frequency. The error
(NRMSD) corresponding to this simplification is 3.4% for the roll torque and 8.2% for the steering torque for
a cadence of 60 rpm. This error is dependent on cadence and is determined by the amplitudes of the higher
cadence multiples.
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Figure 2.6: Cartesian d’Alembert torques, the so called inertial torques associated with the angular acceler-
ation of inertia, for the leg model and the simplified skew-elliptical motion as a function of crank angle, for
cadence is 60 rpm (= 2π rad/s). Crank angle is also a measure of time since we assume isokinetic cycling
(ωt = −θA).
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Figure 2.7: Generalised d’Alembert torques, the so called inertial torques associated with the generalised
angular acceleration of inertia, for the leg model and the simplified skew-elliptical motion as a function of
crank angle, for cadence is 60 rpm (= 2π rad/s). Crank angle is also a measure of time since we assume
isokinetic cycling (ωt = −θA).
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The inertial torques developed here correspond to parameter sets for a specific rider and two specific
bicycles. However these can be easily modified to be used for other riders, by changing the hip to hip width
and the leg mass in the inertial torques equations. If the leg length is different, the COM trajectory will
change. This could possibly be solved by scaling the amplitudes, or more accurately by solving the leg motion
defined by the derived constraint equations in Section 2.1.1. The inertial torques can also be modified to be
consistent with a wide range of other bicycles, by changing the orientation of the leg COM trajectory defined
by XL (values and model parameters given in Appendix D). As an example, for recumbent cycling the same
pedalling motion can be used, only the axis to saddle distance is orientated differently. To give a general
indication; if we would assume that the orientation is around 90o tilted, we could then swap the yaw and roll
torque contribution to the disturbance. This shows that in recumbent cycling the disturbance to the yaw
(and dependent on the kinematic coupling possibly also the steering) is greater than in normal cycling and
the disturbance to the roll is lower.

2.3 Conclusion

The disturbance on the lateral dynamics due to pedalling is caused by the vertical and the forward accelera-
tion of the left and right leg centre of mass. The vertical acceleration promotes an inertial torque disturbance
about the bicycle roll and the forward acceleration promotes an inertial torque disturbance about the steering
of the bicycle. These generalised inertial torques only contain odd multiples of the cadence frequency. Both
torques are proportional to the leg mass, the hip width and the cadence squared. The steering torque is
also proportional to the mechanical trail (c cos(λs)) and inverse proportional to the wheelbase ( 1

w ), which
are the parameters associated with yaw-steering coupling. The rest of the amplitude and phase behaviour is
dependent on the geometry of the lower limbs and the saddle to crank axis distance and orientation defining
the forward and vertical motion of the leg centre of masses.

The modelled forward and vertical motion of the leg centre of masses are based on a leg kinematic model
represented by the motion of a dual 4-bar mechanism, consisting the saddle to crank axis frame part as the
base, the cranks, upper and lower legs. The motion of the leg centre of mass can be represented by sinusoidal
motions containing the cadence frequency and it’s multiples. This can be approximated by using only the
cadence frequency, with an error in the times series of 2% in forward direction and 3.4% in vertical direction.
These simplified motions result in a simple representation of the disturbance as sinusoidal torques containing
only the cadence frequency, which can be easily applied on the steering and roll of a bicycle model.
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3 Open Loop Response:
Lateral Bicycle Behaviour due to Pedalling Disturbance

This section addresses the research question: ’What is the direct effect of the pedalling disturbance on the
lateral dynamics of a bicycle-rider system? ’ It has been established that pedalling has a significant influence
on bicycle and rider behaviour. This influence was quantified by Moore et al. (2011) using experiments by
capturing the motion of cyclists and their bicycle on a large treadmill under a wide range of test conditions.
They tested ’normal cycling’, where the rider propelled the bicycle by pedalling and a condition where the
bicycle was towed and the rider only had to control the balance of the bicycle. They found that several
types of upper body movements are somehow coupled to the pedalling action. They also found that a lot of
steering actions taking place around the pedalling frequency. However it is not clear to what extent these
movements are directly coupled to the rider motion, directly coupled to the disturbance and/or a result of
the rider controlling the disturbance.

In order to begin to understand the mechanisms behind this coupling between pedalling and lateral bicycle
and upper body motions, we can investigate the uncontrolled system where the upper body motions are not
biomechanically coupled to the pedalling motion and determine the influence on the lateral bicycle dynamics.
This influence of the disturbance on the uncontrolled bicycle behaviour is called open loop response and is
used to investigate the direct dynamical coupling. Using this method we can identify the system the bicycle
rider has to control, and take a step in better understanding bicycle riding behaviour.

In order to understand what the effect is of the pedalling disturbance (determined in Section 2) on the
dynamic bicycle behaviour, we need to apply this disturbance to an appropriate model. The benchmarked
Whipple bicycle model (Meijaard et al., 2007) is an obvious choice, since it is widely used and extensively
validated (Sharp, 2008; Popov et al., 2010; Schwab and Meijaard, 2013). This bicycle model is dependent
on the 25 bicycle design parameters and captures the dependence of forward speed. However this model
has a rigid rider attached to the bicycle frame simply by adding inertia to it. Schwab et al. (2012) has
shown that a more realistic passive rider, modelled as 9 rigid segments where the arms are attached to the
handlebars, can drastically change the stability behaviour. Therefore it would be interesting to investigate if
the behaviour due to the pedalling disturbance also changes depending on rider posture together with bicycle
design, forward speed and cadence. For specific cases and future research we would like to investigate the
possibility of a simple and effective disturbance application and solution method.

The dynamic bicycle-rider models and their implementation are discussed first. Then several methods
for solving responses to the pedalling disturbance are explained. The obtained lateral motions and their
amplitudes are investigated in time and frequency domain. These results are evaluated for different solution
methods and the dependence of model design and cycling conditions is discussed.

3.1 Method

In this method section we first cover the bicycle-rider models. The lower extremity part of the rider model
is based on the leg kinematic model proposed in Section 2. Here we cover the bicycle model part, the upper
body part of the rider model and the total model implementation.

Secondly we cover solution methods for the response of these bicycle-rider models to the pedalling dis-
turbance. Here we cover a numerical method for the comprehensive non-linear system, a simple analytic
method for the linearised system and a very simple conservation of angular momentum principle based
solution method.

Finally we cover the evaluation of the resulting lateral motions, their amplitudes, their time domain
behaviour and their frequency domain behaviour are compared for the different conditions, approaches,
models and simplifications thereof. The amplitude results are used to perform an error (or relative difference)
analysis for the model and solution methods and the effect of cycling conditions, posture and bicycle design
parameters.

April 19, 2016 15 of 128



The influence of pedalling on the lateral dynamics of cycling ® Patricia M. Baines

3.1.1 Bicycle-Rider Models

The Whipple bicycle model benchmarked by Meijaard et al. (2007) is used as the basis for the bicycle
model. The upper body of the bicycle rider is based on the passive upper body rider model by Schwab
et al. (2012). The lower body of the bicycle rider is based on the model defined in Section 2, which is a
kinematic representation of a dual 3D four bar mechanism prescribing an isokinetic motion. The parameters
used for the bicycle and rider correspond to the above mentioned experimental conditions by Moore et al.
(2011), using both bicycle types (hybrid and city bicycle) and with hands on the handlebars and hands free
cycling, in order to get an indication for the importance of system characteristics on lateral behaviour due
to pedalling.

3.1.1.1 Whipple Bicycle Model The Carvallo-Whipple (Carvallo, 1899; Whipple, 1899) bicycle model,
also known as simply the Whipple model, has been benchmarked by Meijaard et al. (2007). They reviewed
the bicycle stability literature and produced linearised equations of motion of the Whipple model. This
Whipple model has been extensively validated using experimental research (for forward speeds between 3
and 6 m/s) and widely used as basis for bicycle and motorcycle modelling (Sharp, 2008; Popov et al., 2010;
Schwab and Meijaard, 2013). It is therefore an obvious choice to use as basis for our own bicycle model.

The model consists of four rigid bodies or segments as shown in Figure 3.1, the rear wheel, the rear frame,
the front frame and the front wheel. These four segments are joined by constraints in such a way, that the
system has 7 degrees of freedom in configuration (see Figure 3.2); position in horizontal/transverse x, y-plane,
the yaw or heading ψ, the lean or roll φ, the pitch or angle of the rear wheel θR, the steering angle δ and the
pitch or angle of the front wheel θF . In this figure the pitch of the rear frame θB is also shown although this
is not a true degree of freedom, since both the wheels are constrained to the ground. Due to non-holonomic
non-slipping wheel contact constraints there are less degrees of freedom in velocity, these are parametrized
by ˙θR, φ̇ and δ̇ and (rear wheel, roll or lean and steering angular velocity).

These three degrees of freedom in velocity and thus acceleration mean that the system can be described
by three equations of motion. Meijaard et al. (2007) linearised these equations of motion around the neutral
reference point, straight ahead (δ = 0) and upright (φ = 0) at constant forward speed (v = −θ̇RrR). Due to
lateral symmetry in the system there is no coupling between the forward motion and the roll and the steer,
meaning that the equation of motion for the rear wheel rotation simply describes the rear wheel acceleration as
a function of propulsive force and bicycle parameters (inertia and wheel diameters). The other two equations
of motion, regarding roll and steering, are more interesting since they define the lateral movement of the
bicycle and thus the stability. They are two coupled linearised second-order, constant coefficient ordinary
differential equations where forward velocity v and gravitational acceleration g can be defined explicitly.

Mq̈ + vC1q̇ + [gK0 + (v)2K2]q = f (3.1)

where M is the generalized mass matrix, q = [φ(t), δ(t)]T is the generalized coordinate (roll and steering)
vector, vC1 is the generalized damping matrix which is linear in forward velocity, gK0 is the velocity in-
dependent and gravitational acceleration linear part of the generalized stiffness matrix, (v)2K2 is quadratic
in forward speed part of the generalized stiffness matrix and f = [Tφ(t), Tδ(t)]

T is the generalized external
force vector containing roll torque and steering torque. Here the vectors are time varying and the matrices
are constant which are defined in 25 bicycle design parameters in Meijaard et al. (2007). They give values
for the constant matrices together with a parameter set for the benchmark bicycle. (Meijaard et al., 2007)
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Figure 3.1: Wipple bicycle model parameters by Meijaard et al. (2007), the bicycle consists of four parts: the
rear wheel, the rear frame including a rigid rider body, the front frame and the front wheel. The model is
defined by the centre of mass locations of the four parts expressed in the x and z coordinate reference frame
and some other displayed parameters, where P is the origin of the coordinate frame, w is the wheel base, c
is the trail, λ is the tilt in the steer axis.

Figure 3.2: Wipple bicycle model configuration by Meijaard et al. (2007), depicting the degrees of freedom
of the bicycle; position in horizontal/transverse x, y-plane, the yaw ψ, the roll φ, the pitch of the rear frame
θB , the pitch of the rear wheel θR, the steering angle δ and the pitch of the front wheel θF .
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3.1.1.2 Passive Upper Body Rider Model In the Whipple bicycle model, the rider is modelled as
rigid attached inertia added to the rear frame of the bicycle. Schwab et al. (2012) has shown that a more
realistic passive rider, modelled as 9 rigid segments where the arms are attached to the handlebars, can
drastically change the stability behaviour. Therefore it would be interesting to investigate if the behaviour
due to the pedalling disturbance also changes depending on rider posture.

Schwab et al. (2012) has extended the original Whipple model with a passive upper body rider model
without adding any degrees of freedom to the system. This last fact is very useful for comparing behaviour
since the equation of motion can then be transformed to the same formulation as the linearised equation of
motion of the original model (Equation 3.1) and the same simple methods for determining stability can be
used. Two passive rider-bicycle models are developed for two distinct upper body rider postures corresponding
to two different types of bicycle. The first type corresponds to a hybrid bicycle (namely the Batavus Stratos
bicycle), where the handlebars are straight, the arms are stretched and the trunk is leaned forward (Figure
3.3(a)). The second type corresponds to a city bicycle (namely the Batavus Browser bicycle), where the
handlebars have a U-shape, the arms are flexed and the trunk is upright (Figure 3.3(b)). This posture and
bicycle type, is what we in Dutch call a grandmother bicycle (literal translation), where the hybrid bicycle
has a more ’sportive’ posture.

Figure 3.3: Passive upper body rider models from Schwab et al. (2012), depicting two rider postures: (a) a
rider with forward leaned trunk and stretched arms corresponding to a hybrid bicycle and (b) a rider with
an upright trunk and flexed arms corresponding to a city bicycle. In these models by Schwab et al. (2012),
the legs are modelled as inertia added rigidly to the rear frame of the bicycle.

3.1.1.3 Implementation of a new Multibody Dynamics Bicycle-Rider Model New bicycle-rider
models have been developed in a multibody dynamics software package in order to be able to investigate the
influence of the full leg movement disturbance. The models are based on the Whipple bicycle model (Section
3.1.1.1) in combination with rigid and passive upper body rider models by Schwab et al. (2012) (Section
3.1.1.2), with an extension of cranks and moving leg segments as described in Section 2.1.1. These four new
models correspond to two bicycles with both a hands free and a hands on the handlebar posture based on real
world bicycle-rider parameters used in the motion capture experiments Moore et al. (2011). These models
have been carefully designed to have the same number of degrees of freedom as the original Whipple model
(see Figure 3.4 for segment connectivity).

The models are used in both full non-linear and linearised form, since the linearised approach has com-
putational benefits especially for unstable solutions as is discussed in Section 3.1.2.2. However in order to be
able to validate the linearity assumption and the simplification of the pedalling disturbance as sinusoidal roll
and steering torques a full multibody dynamics model is also desired.

The models have been implemented in the multibody dynamics software package SPACAR (Jonker and
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Meijaard, 1990; van Soest et al., 1992), since it can easily be used to calculate linearised second order
differential equations and is also available as a toolbox for Matlab, which enhances usability and flexibility.

The new models are built up in three main stages. First the benchmark bicycle model is implemented.
As a verification step, the model is linearised and verified using the linearised matrices M , C1, K0 and K2

(Equation 3.1) provided in Meijaard et al. (2007) with double numerical precision.
In the second stage an upper body is added to the bicycle models as described in Schwab et al. (2012) as

well as the rider’s legs and the cranks. Where Schwab et al. (2012) added the leg inertia to the bicycle frame
inertia, since the legs are fixed to the frame segment, here the legs defined as separate segments in such a way,
that they could be easily adjusted to describe the pedalling motion in Section 2.1.1 (Figure 2.1). Applying
fixed legs and the bicycles and anthropomorphic parameters as in Schwab et al. (2012) (corresponding to
experimental set-up of Moore et al. (2011)), another verification step was made by linearising the system
again and comparing to the linearised matrices provided by A. L. Schwab (relative discrepancy of 1E-13).

Finally the leg motion was coupled to the cadence such that the leg motion corresponds to Section 2.1.1.
The leg segments motion was constrained as depicted in Figure 3.4 using hinge elements, carefully designed
not to under or over-constrain the system. The bicycle and anthropomorphic parameters as in Schwab et al.
(2012) needed to be adjusted slightly to accommodate for the leg motion. The given saddle height for the city
bicycle does not allow for a full circle motion of the pedal, since the leg is not long enough to reach the pedal
in the down position. The saddle height is positioned according to 0.96 trochanteric height and the crank
dimensions and mass have been added (following Section 2.1.1; van Soest and Casius (2000); Wilson (2004)).
The general motion was verified by visualising the nodal points by implementing a Matlab animation. Details
for the SPACAR model, such as element types and node numbers, can be found in Appendix B.

In order to be able to solve the system analytically, the models are also linearised. The system is linearised
around the equilibrium position (φ = 0, δ = 0, φ̇ = 0 & δ̇ = 0) and crank angle θA is zero, meaning that the
right foot is in the most forward position. The choice of putting the left or right foot forward is arbitrary,
however the horizontal crank position is marginally preferred as a linearisation configuration over for instance
the vertical crank position. This preference is based on left-right symmetry in vertical leg centre of mass
position. The configuration also corresponds to a low roll torque during the crank cycle (see Section 2),
making it a preferred initial condition for the system. Linearised matrices for these four models are created
corresponding to the second order differential equation (Equation 3.1) and can be found in Appendix B.
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Figure 3.4: Four full body passive rider models modified to include leg motion, showing segment connectivity
of the rider model. Cans depict hinge elements allowing rotation about can axis and constraining other
rotations. Ball and socket joints depicted at hand-handle bar contact and foot-pedal contact indicate free
rotations about all axes. The left two schematics show models corresponding to a hybrid bicycle (H: left,
the Batavus Stratos) and the right two schematics show models corresponding to a city bicycle (C: right,
the Batavus Browser). The upper body is either rigid (R: bottom), which has a rigid and free arms or
attached to the handlebars with straight attached arms (S: top left) or flexed attached arms (F: top right).
The bottom two models (HR & CR) look very similar due to the rigid upper body, however correspond to
different bicycles, recognisable by the different handle bar geometry.
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3.1.2 Solution Methods

The influence of the disturbance defined in Section 2 is investigated by applying inertial steering and roll
torques to the dynamical models or by actually prescribing leg segment motion coupled to cadence (pedalling
frequency). The system is solved for a wide range of forward speeds and cadences using three main different
approaches, with increasing model and solution method simplifications. These simplifications are applied
in order to investigate the possibility of developing a simplified method of determining the response of a
specific bicycle-rider system to the pedalling disturbance. The evaluation corresponding to this investigation
is discussed in Section 3.1.3.

The solution method that is covered first is mainly applied to the most comprehensive bicycle-rider and
disturbance model combination. This is the method of generating time series through numerically integrating
the equations of motion corrresponding to the full non-linear multibody dynamics model including prescribed
leg kinematics. This time signal is transformed to frequency domain using a discrete Fourier transform in
order to distil the periodic response corresponding to the periodic pedalling disturbance. This solution
method is also applied to a simpler bicycle-rider and disturbance model combinations; the non-linear and the
linear bicycle-rider model with applied roll and steering torques as pedalling disturbance (defined in Section
2).

The second solution method that is covered is an analytic method of solving an approximate linearised
system with applied sinusoidal generalised inertial torques. This entails solving the linearised equations of
motion of the bicycle-rider system which consists of two coupled second order differential equations in an
analytic manner. The corresponding solution consists of a particular solution part, which corresponds to the
periodic response to the periodic applied roll and steering torques, and a homogeneous solution part, which
corresponds to the transient response to the initial conditions. Here the particular part is used directly as
a measure for the influence due to the disturbance. Also the full time signal including transient solution
is transformed to frequency domain using a discrete Fourier transform so that we can compare this to the
numerical solutions discussed above.

Finally the solution method corresponding to the conservation of angular momentum principle is covered.
This is a further approximation which is based on the idea that the angular momentum associated with the
leg motion is in equilibrium with the bicycle angular momentum, the generalised momentum around the
bicycle roll and steering angles. This method neglects behaviour due to forward speed and gravity. For the
application of this solution method we use the mass matrix of the linearised bicycle-rider model and for the
disturbance we use the angular momentum associated with the leg COM forward and vertical velocity. Here
we use the velocity of the COM mass trajectory corresponding to the leg kinematic model as discussed in
Section 2 and the simplified skew-elliptical path only consisting of the cadence frequency.

3.1.2.1 Numerical Method: Solving a non-linear Multibody Dynamics Model Time series solu-
tions of the non-linear (and the linear) bicycle-rider models with applied pedalling disturbance are solved using
numerical time integration methods (also called ODE solvers). The non-linear multibody dynamics model is
solved using the built-in default integration algorithm in the SPACAR toolbox. This is a Shampine-Gordon
integration algorithm (Shampine and Gordon, 1975), which is a variable-step variable-order multi-step inte-
gration algorithm. This means that the predictor and corrector steps are of variable order and size, to ensure
given local tolerance specifications in an efficient manner. The local error tolerances are also set to default
(abstol = 1E-5, reltol = 1E-4).

The linear bicycle-rider models are also solved using numerical integration, however this primarily applied
as a verification step for the general application of the analytic solution method covered in Section 3.1.2.2.
This analytic solution method gives an exact solution of a linear model, without the introducing any numerical
integration error, however it is not applicable to non-linear models. For the numerical time integration of
the linear bicycle-rider models the standard built-in solver in Matlab is used in combination with the default
error tolerances (ode45, abstol = 1E-6, reltol = 1E-3). This algorithm is a variable step size, 4th-5th order
single step integration algorithm based on an explicit Runge-Kutta (Dormand and Prince, 1980).

These local error tolerances are very high if we would be interested in the specific configuration for an
unstable or chaotic system at a specific time corresponding to a long integration time duration, since the
local errors build up every step and can have a large impact on the configuration after a long period of time
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integration. However in this study we are interested in the periodic response to a periodic disturbance, where
the error on the amplitude determination is much lower than the error on determining a specific state at a
specific time. This means that numerical integration error is expected to have only a minor contribution on
the total errors of the solution method and simplifications combined, since error contributions due to simpli-
fications in model linearity or disturbance type are of a larger order of magnitude. Therefore a choice was
made not to lower the error tolerance, since this would greatly increase computational time per simulation,
and therefore limit the amount of cycling conditions that could be practically solved for.

Time solutions are generated for a wide range of cadences and forward speeds (ω = 0:0.5:4π rad/s, v =
0:0.4:10 m/s, in total 676 runs), in order to capture the response of system dependent on cycling conditions
(see Section 3.1.3.2 for variable range choice). A time period of up to 180 seconds was chosen, such that the
periodic solution component is clearly visible. For the unstable forward speed region the program (SPACAR
toolbox) gave an error message, if the bicycle ’fell down’, stopping the simulation. This error was caught and
the simulation was run iteratively using a smaller or larger time period until it could complete the simulation
for a maximal time domain. This means that for each of the 676 found solutions, the simulation had to be
repeated up to 12 times to find an appropriate integration time.

The time solutions are compared directly to each other. Also the periodic solution parts of the time
solutions are obtained, using a discrete Fourier transformation, which is covered next. The amplitudes
corresponding to the cadence is compared to each other and compared to the particular solution amplitude
for the linear system discussed in Section 3.1.2.2.1.

3.1.2.1.1 Periodic Solution: Fourier Analysis In the stable forward speed region, the time solu-
tion will converge to a periodic solution. In general terms this periodic solution has the same frequency as
the forcing frequency, which in our case means the cadence. The periodic solution can therefore easily be
distilled from the time solution by transforming the signal to the frequency domain by a Fourier transform
(fft function in Matlab) and subsequently picking out the amplitude and phase information at the cadence
peak.

However due to a phenomenon called leakage the found amplitude can be up to 36% lower than the real
value (Brandt, 2011). To understand when this phenomenon occurs and how to minimize it, we need to
understand how the Fourier transform works. Beginning with the basis for discrete Fourier transform is
(Brandt, 2011):

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N , for k = 0, 1, ..., N − 1 (3.2)

=

N−1∑
n=0

x(n) cos(2πkn/N)− j

N−1∑
n=0

x(n) sin(2πkn/N), for k = 0, 1, ..., N − 1 (3.3)

This comprises of a real and imaginary part, which gives the information about the amplitude and phase of
the corresponding frequency. How this resulting amplitude and phase relates to the time signal can be found
by rewriting the inverse discrete Fourier transform:

x(n) =
1

N

N−1∑
k=0

X(k)ej2πnk/N , for n = 0, 1, ..., N − 1 (3.4)

x(t) = X(0) +

N−1∑
k=1

|X(k)| cos(2πf(k)t+ ∠(X(k))), for t = 0,∆t, ..., T (3.5)

Where,

f(k) = k∆f (3.6)

= k
1

T
=

k

N∆t
=

k

N
fs (3.7)
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This basically means that the resolution of the frequency domain is dependent on the sampling frequency
fs and length of the time domain N . If the cadence frequency ω is not part of the discrete frequency do-
main, the amplitude of the cadence frequency is smeared over nearby frequencies, where the amplitude of
the closest frequency is up to 36% lower than the true amplitude of the ω. The cause of this error can also
be seen as the incorrect truncation of a continuous periodic signal (Brandt, 2011). For the stable forward
speed region, this problem is solved by tuning the sampling frequency and precise time domain over which
the Fourier transformation is taken, such that the periodic signal is truncated to contain an integer number
of whole periods. However for the unstable forward speed region this simple solution cannot be applied. The
underestimation due to leakage is therefore especially a problem for the unstable forward speed region, since
the length of the time domain is limited, because the bicycle will fall down and the simulation is forced to stop.

Another effect which is especially a problem in the unstable region is influence on the frequency ampli-
tudes due to the transients. As mentioned in Section 3.1.2.2 the time solution can be seen as a summation of
the transients and the periodic forcing part. In the unstable region the transients will dominate the periodic
forcing part corresponding to the cadence, meaning the amplitude of the ω could be greatly overestimated
by simply picking out the amplitude the frequency (closest to) the ω. An underestimation is also possible if
the transient and the periodic forcing part have a phase difference which can lead to destructive interference.
This effect can also be seen as an addition of two imaginary numbers, where the result can have a smaller
amplitude than either of the original numbers due to the angles in the complex plane.

In order to reduce the under and overestimation of the amplitude corresponding to the cadence frequency,
a window function is used to reduce the transients in the signal. Several window designs were tested on
performance (flat top, Blackman, Hanning (or Hann), Hamming), giving very similar results. Therefore the
choice of window design was made by referencing Brandt (2011), which recommends the Hanning window
as a broad purpose window. An added effect of Hanning-type windowing is that it also reduces the effect
due to leakage (See Figure 3.5) (Brandt, 2011). This Hanning window H(t) is applied to the time signal,
before transforming it to the frequency domain. The amplitudes in the frequency domain are multiplied by
a correction factor of AH = N∑N−1

n=0 H(n)
in order to compensate for the signal loss by the multiplication of the

window in time domain.
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Figure 3.5: Illustration of the method of Hanning windowing by Brandt (2011): ’Illustration of time-
windowing with a Hanning window. The window reduces the jumps at the ends of the repeated signal.
In (a) the signal is shown. In (b) is shown the Hanning window, in (c) the result of the multiplication of the
two. In (d) the result of calculating the spectrum with the Hanning window (solid) and without (dashed)
is shown.’ The amplitude can be corrected by multiplying the acquired frequency domain by a correction
factor, giving an amplitude signal with a maximum of 15% error due to leakage phenomenon instead of 36%
error.
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3.1.2.2 Analytic Method: Solving a System of Linearised Differential Equations A broadly
applied approximation of non-linear dynamical systems such as our bicycle-rider model, is linearisation. A
wide range of solution and system identification methods can only be applied to linear time-invariant systems.
It would therefore be valuable to identify the possibility of and the error associated with this simplification.
Linear systems can be solved analytically without introducing time integration errors. The periodic solution
corresponding to a harmonic disturbance can be easily and accurately obtained analytically without any
problems associated with the transient dominating the solution or leakage (Section 3.1.2.1.1).

The linearised bicycle-rider system is defined by a system of 2 coupled linearised second order differential
equations (Equation 3.1) and the pedalling disturbance is defined as the generalised inertial torques defined
in Section 2 by interpreting the acceleration of the leg masses as an external inertial roll and steering torque:

Mq̈ + vC1q̇ + [gK0 + (v)2K2]q = fL (3.8)

Where fL are the generalised inertial forces due to the leg acceleration disturbance defined in Equation 2.15,
2.22 and 2.24. These generalised inertial forces fL represent the d’Alembert inertial forces associated with
the disturbance caused by the relative motion of the legs to the bicycle frame. The acceleration of the leg
inertia in the global inertial reference frame is in fact an addition of terms caused by the acceleration and
angular velocity of the local reference frame and the acceleration of the leg with respect to the local frame
(Greenwood, 2006). In order to keep the effects of the leg’s global acceleration corresponding to the acceler-
ation and angular velocity of the bicycle (the local reference frame), the leg inertia should still be added to
the bicycle-rider model as inertia with a constant location in the local reference frame.

The response of a linear system to disturbance is determined by the eigenfrequencies and eigenmodes of the
system and the frequency content of the disturbance. The behaviour corresponding to the eigenfrequencies of
the system is called the homogeneous solution (qh) and the behaviour corresponding to the forcing frequency
is called the particular solution (qp). According to the superposition principle these solution parts can be
simply added to each other. (Stewart, 2003; Boyce and DiPrima, 2005)

q(t) = qp(t) + qh(t) (3.9)

Where qp(t) and qh(t) are a function of constant multipliers, which is specified in Sections 3.1.2.2.1 and
3.1.2.2.2 respectively. These constant multipliers can be solved by filling in the solution with it’s time
derivatives (q(t), q̇(t) and q̈(t)) in the linear second order differential equations and solving them for boundary
conditions (a.k.a initial conditions). For our case we assume that the roll and steering angles and angular
velocities are zero at zero time. (Stewart, 2003; Boyce and DiPrima, 2005). The implementation of the
analytic method was verified by using a build-in numerical integration solver of Matlab (ode45, abstol =
1E-6, reltol = 1E-3).

The benefit of this analytic method is that the periodic solution corresponding to the pedalling disturbance
and the transients corresponding to the homogeneous solution can be solved separately, meaning that the
influence of the disturbance is easily obtainable by solving the particular solution. This is especially valuable
in the so called unstable forward speed region. This is a region of forward speed where there are eigenvalues
of the system which have a positive real part, which effectively means that the bicycle will fall down if is it
perturbed from it’s equilibrium point, due to the divergent transient. In Figure 3.6 the eigenvalues are shown
for the benchmark model as an example for typical eigenvalue behaviour as a function of forward speed. In
the self-stable region the real part of the eigenvalues are negative, which means that the transient solution
will converge.

3.1.2.2.1 Periodic Solution: the Particular Solution The particular solution corresponding to
a periodic disturbance is a periodic function of the forcing frequency, which in our case is the cadence ω.
(Stewart, 2003; Boyce and DiPrima, 2005)

qp(t) = ap sin(ω t) + bp cos(ω t) (3.10)

q̇p(t) = ap ω cos(ω t)− bp ω sin(ω t) (3.11)

q̈p(t) = −ap ω2 sin(ω t)− bp ω2 cos(ω t) (3.12)
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Figure 3.6: Eigenvalues λ as a function of forward speed v of the linearised equation of motion for the
benchmark bicycle model from Meijaard et al. (2007). The real part of the eigenvalues are represented
by a solid line and the dashed line is the imaginary part of the eigenfrequency corresponding to the weave
eigenmode. This eigenmode is dominated by steering which is lagged with respect to a small lean component.
The eigenvalue corresponding to the capsize eigenmode has a small positive part for very high forward speed.
This eigenmode is dominated by the roll of the bicycle. The eigenvalue corresponding to the castering mode
is negative for the full speed range. This eigenmode has to do with front ground contact pursuit following,
which can be seen as the straightening of a swivel wheel. For medium to high forward speeds there is a
self-stable region, where all real parts of the eigenvalues are negative.

The initial conditions are used to solve for the constant mulitpliers ap(=

[
aφ
aδ

]
) and bp(=

[
bφ
bδ

]
). The roll and

steering amplitude can be easily calculated from these constants, since sines and cosines are perpendicular
by definition.

|q(t)| =
[
|φ(t)|
|δ(t)|

]
=

[√
a2
φ + b2φ√
a2
δ + b2δ

]
(3.13)

The superposition principle can also be applied here if the forcing term is a function of multiple frequencies,
for instance if we would like to add the higher multiples of the cadence frequency (ω & 3ω & ...).

fL =

∞∑
n=1,3...

mL lhh (nω)2

[
|ZL(nω)| cos(nωt+ ∠Z(nω))

− 1
w c cos(λ)

(
|XL(nω)| cos(nωt+ ∠X(nω))

)] (3.14)

qp(t) =

∞∑
n=1,3...

an sin(nωt) + bn cos(nωt) (3.15)

The solution parts corresponding to a single frequency qn(nωt) can be evaluated using only a part of the
forcing term fL(nω) to solve the constants an & bn separately and then adding the solution parts together
to get the total particular solution. This means that the amplitude of the disturbance corresponding to the
cadence frequency fully determines the amplitude of the dominant frequency of the total particular solution.
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The particular solutions are solved for a wide range of cadences and forward speeds with a higher resolution
compared to the full time solutions (numerical integration method and homogeneous solutions), since the
computational time was relatively low (ω = 0:0.124:4π rad/s, v = 0:0.1:10 m/s, in total 10302 combinations).

3.1.2.2.2 Transient Solution: the Homogeneous Solution The homogeneous solution is depen-
dent on the eigenmodes ξ and eigenfrequencies λ of the system. (Boyce and DiPrima, 2005)

qi(t) = ci e
<(λi)t (<(ξi) cos(=(λi)t) + =(ξi) sin(−=(λi)t)) for =(λi) ≥ 0 (3.16)

qi(t) = ci e
<(λi)t (<(ξi) sin(−=(λi)t)−=(ξi) cos(−=(λi)t)) for =(λi) < 0 (3.17)

qh(t) =

4∑
i=1

qi(t) (3.18)

Where the constant multipliers c1, c2, c3 and c4 can be solved by filling in the entire solution (Equation
3.9) into the second order differential equation and solving it again for initial conditions. Here it is clearly
seen that an eigenvalue with an imaginary part =(λi) has an oscillatory component and the real part of the
eigenvalue <(λi) determines the convergence or divergence of the transient solution part. Time solutions are
generated for a wide range of cadences and forward speeds (ω = 0:0.5:4π rad/s, v = 0:0.4:10 m/s, in total
676 runs), for periods of time such that the periodic solution component is clearly visible (180 s).

3.1.2.3 Simple Method: Conservation of Angular Momentum The simplest solution method used
to approximate the system response to the pedalling disturbance is the conservation of angular momentum
method. The principle of conservation of angular momentum states that when a system is not subjected
to an external torque or angular impulse, the sum of the angular momentum of the bodies in the system
remains constant. This can be formulated for a general system of rigid bodies as follows:

L =
∑
n

rn ×mnvn + Inωn = constant (3.19)

Where L is the angular momentum, rn is the position vector of the centre of mass of body n relative to the
pivot point, mn is the mass of body n, vn is the velocity vector of the centre of mass of body n, In is the
moment of inertia tensor of body n around the centre of mass and ωn is the rotational velocity vector of
body n. (Fowles and Cassiday, 1999)

In the case of our bicycle-rider model with pedalling motion, we assume that the generalised angular mo-
mentum associated with the leg velocity LL is in equilibrium with the generalised momentum Mq̇ associated
with the velocity of the generalised coordinates (φ̇ and δ̇).

Mq̇ +LL = constant (3.20)

Where M is the linearised mass matrix and q = [φ(t), δ(t)]T is the generalised coordinate (roll and steering)
vector both the same as in the second order differential equation (Equation 3.1). By comparing these equations
to the linearised second order differential equations (Equation 3.8 and realising that LL = −

∫
fLdt) it can be

seen that the approaches are very similar. The main simplification is that this method does not include the
bicycle behaviour corresponding to gravity and forward speed. The constant is solved by assuming that the
roll and steering angles deviate about the neutral angle. In order to derive the generalised leg momentum LL,
we first derive the Cartesian angular momentum LxL

and then transform it to generalised coordinates. This
method is similar to the method of deriving the Cartesian torques TxL

(Section 2.1.2) and then transforming
it to the generalised torques fL (Section 2.1.3).

LxL
(t) =

[
xriL(t)× [MLẋriL(t)] + xleL(t)× [MLẋleL(t)] + · · ·

Iulωriul(t) + Iulωleul(t) + Illωrill(t) + Illωlell(t) + Icrωricr(t) + Icrωlecr(t)

]
(3.21)

=

 1
2 lhhmL

(
żril(t)− żlel(t)

)
LyL

1
2 lhhmL

(
− ẋril(t) + ẋlel(t)

)
 (3.22)
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Since the moment of inertia tensors Ii are diagonal matrices and the angular velocity vectors ωi only have
a second entry corresponding to the pitch velocities θ̇i, these terms only contribute to the pitch angular
momentum LyL . The details of the pitch angular momentum LyL are not specified here, however in Appendix
B.2 the inertial pitch torque TyL is derived which can be used to gain insight in the terms since LyL =
−
∫
TyLdt. In order to transform the Cartesian angular momentum to generalised angular momentum we

first express the Cartesian angular momentum in terms of the bicycle parameters roll φ, pitch θ and yaw ψ.

LxL
=

LxL

LyL
LzL

 =

LφL

LθL
LψL

 (3.23)

then we can apply the transformation using the kinematic relations specified in Section 2.1.3 (θ̇ = 0 and
∂ψ̇

∂δ̇
= 1

w c cos(λs)):

LL =

[
LφL

LδL

]
=

[
LφL

1
w c cos(λs)LψL

]
(3.24)

=

[
1
2 lhhmL

(
żril(t)− żlel(t)

)
1
w c cos(λ) 1

2 lhhmL

(
− ẋril(t) + ẋlel(t)

)] (3.25)

Where lhh is the hip to hip length which is also a reasonable measure for pedal to pedal distance (Moore
et al., 2009), mL is the leg mass (Moore et al., 2009), żril(t) and żlel(t) is the vertical velocity (positive down)
and ẋril(t) and ẋlel(t) is the forward velocity of the right and left leg COM respectively. Where the same
kinematic relation used for transforming the inertial yaw torques to steering torques (Equation 2.13) are used
to transform the yaw momentum to a steering momentum.

This method is the simplest form of approximating the influence of the pedalling disturbance on the
behaviour of the bicycle. However when the generalized coordinates deviate from their equilibrium position
(q 6= [0, 0]T or q̇ 6= [0, 0]T ) which is inevitable due to the disturbance, the principle of conservation of
angular momentum does not hold any more. When there is a slight roll, the gravity force in fact causes
a small external torque around the pivot point. Also a slight deviation from either position or velocity of
the generalized coordinates together with a forward speed (v 6= 0) effectively also brings about a generalized
roll and steering torque (see Equation 3.1), which have to do with the lateral ground contact forces and
gyroscopic effects. This means that this approach will likely only give reasonable results for small deviations
around the equilibrium point. The error of these simplifications, is illustrated by making an estimation of
the contribution of these neglected influences (see Section 3.2.3.1 for details).

3.1.3 Data analysis: Parameter Dependence and Method Evaluation

The evaluation of the results are six fold, described in the evaluation points stated below. The first three
evaluation points correspond to the method evaluation, this is also schematically represented by Figure 3.7.
The last three evaluation points are focussed on ascertaining if the lateral bicycle behaviour due to pedalling
is dependent on parameters associated with bicycle design, posture and cycling conditions. With this analysis
we want to investigate the possibility of developing a simple method of applying a pedalling disturbance to
a bicycle-rider model, without loosing the response behaviour associated with these parameters and variables.

We want to identify errors/differences associated with and possibly validate:

1. Simplifications made to the full non-linear multibody dynamics model

a) Fixing leg inertia to rear frame of the bicycle
→ Compare non-linear model torques (T (ω, 3ω, 5ω)) to non-linear model pedalling

b) Linearisation around roll and steering angle (φ, δ)
→ Compare linear model torques (T (ω, 3ω, 5ω)) to non-linear model torques (T (ω, 3ω, 5ω))

c) Neglecting behaviour corresponding to forward speed (v = 0) and gravity (g = 0)
→ Compare conservation of angular momentum solution to particular solution
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2. Simplifications made to the pedalling disturbance

a) Multiple harmonic inertial torques on steering and roll (T (ω, 3ω, 5ω))
→ Compare non-linear model torques (T (ω, 3ω, 5ω)) to non-linear model pedalling

b) Neglecting higher cadence harmonics (T (ω))
→ Compare linear model torques (T (ω)) to linear model torques (T (ω, 3ω, 5ω))

3. Differences in solution approaches

a) Numerical time integration vs. analytical time solution approaches
→ Compare linear model numerical to analytic

b) Discrete Fourier transform vs analytical amplitude determination approach
→ Compare analytic to particular solution

4. Differences in cycling conditions

a) Forward speed and cadence combinations (v & ω)
→ Compare combinations of v & ω in grid to a reference value

5. Differences in rider posture

a) Hands free rigid upper body vs. hands on the handle bars passive upper body
→ Compare model HR to HS
→ Compare model CR to CF

6. Differences in bicycle design parameters

a) City bicycle vs. hybrid bicycle
→ Compare model CR to HR
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Figure 3.7: Model and solution method evaluation schematic. Arrows indicate model simplifications or
solution method introduced errors that are evaluated corresponding to the evaluation points defined. The
coloured lines indicate solution model combinations that are available for this evaluation, where the line style
indicates the solution method corresponding to this model combination.
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3.1.3.1 Model and Solution Method Evaluation For the first part of the evaluation we start by
analysing the general time, frequency and forcing response amplitude results corresponding to the different
solution approaches (for the four bicycle-rider models and for a range of forward speed & cadence combina-
tions). Then we ascertain the relative differences or errors associated with the methods and simplifications
by comparing the corresponding solution/model combinations proposed above in evaluation points 1-3. If
we include the sub-points, we find 7 method differences we want to evaluate for points 1-3. For these 7
sub-points we can see that 1(a) and 2(a) have the same proposed model-method combination to compare,
leaving 6 model-method combinations. This is because the simplification of the disturbance has a dual effect,
it simplifies the disturbance itself and it simplifies the model’s mass distribution. This simplification of the
mass distribution can also be seen as part the linearisation of the bicycle-rider model, since it does not only
entail linearisation around a specific coordination of the generalised coordinates, but also around a specific leg
configuration corresponding to a crank angle. Because this last effect is not a trivial part of the simplification,
this aspect is briefly explained by explaining it in terms of linearising the bicycle-rider system.

The analytic solution method discussed in Section 3.1.2.2 uses linearised equation of motion of the bicycle-
rider system. These linearised equations of motion represent the system well for small deviations around the
equilibrium point (upright and straight ahead). Although it is expected that the particular solution would
only have small periodic deviations around this configuration (φ < 0.1 rad & δ < 0.1 rad), the pedal motion
cannot be easily seen as a small motion around an equilibrium point. This would effectively mean that the
linearised matrices (M , C1, K0 and K2 in Equation 3.1) cannot be considered constant, but have harmonic
components. In order to investigate this effect we can compare the non-linear multibody dynamics models
with pedalling legs with the non-linear model with applied torques.

In order to quantitatively compare the 6 model-method combinations, we define a measure for disturbance
response and relative difference of this response. We use the amplitudes of the roll and steering angles
corresponding to the cadence (|φ(ω)| & |δ(ω)| respectively) as a measure of disturbance response. The
relative difference between the amplitudes corresponding to two model-method combinations is used as a
measure of difference or error:

RD1→2 =

∣∣∣∣ |φ1(ω)| − |φ2(ω)|
|φ1(ω)|

∣∣∣∣ 100% (3.26)

This represents the relative difference RD or error percentage associated with the simplification or method
case 2 compared to the reference case 1. This error calculation is also done for the steering angle in the same
manner. On the basis of this evaluation we choose a suitable solution method and proceed with the second
part of the evaluation.

3.1.3.2 Cycling Condition and Parameter Dependent Response For the second part we explore
the parameters and cycling conditions impacting the pedalling response results. Here we are interested in
ascertaining the general lateral bicycle behaviour due to pedalling for ’normal cycling’ and if it is dependent
on parameters associated with bicycle design, posture and cycling conditions. We do not expect to give a
concrete answer on what the effect is of the concerning parameters, more give an impression in what range
the response lies and if the bicycle design parameters, posture parameters and cycling conditions should be
taken into account for specific cases in future research.

For this evaluation we first ascertain the working range of civil cycling. In Figure 3.8 the total grid
corresponding to the forward speed and cadence combinations we use as simulation variables (ω = 0 to 4π
rad/s, v = 0 to 10 m/s) is depicted. The working range and the area of combinations corresponding to ’normal
cycling’ conditions are also visualised in Figure 3.8. During cycling the cadence is coupled to the forward
speed by a gear ratio, defined by the ratio between the number of teeth on the front and rear sprockets. A
gear ratio of 1 means there are as many front teeth as rear teeth and a gear ratio of 2 means there are twice
as many front teeth as rear teeth on the sprockets. Gear ratios of single gear bicycles usually have a gear
ratio somewhere between 2 and 2.5. Bicycles with multiple gears have a larger working range dependent on
the numbers of gears and their ratio, common gears range from a ratio of 1 till 4.

Commuters have an average cycling speed of 14 km/h depending on gender and age (CBS: Molnar (2002)).
However for favourable cycling conditions (flat straight cycling, good tyre pressure), higher speeds are possi-
ble with a medium effort. This speed is dependent on bicycle type, where the average forward speed for a city
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Figure 3.8: Gear ratios (GR: 1 till GR:4) shown as a function of forward speed and cadence and inside the
ellipse a rough indication is given of speed-cadence combinations corresponding to ’normal cycling’ conditions.

bicycle lies lower (100 Watt: 18.8 km/h) than for a hybrid bicycle type (100 Watt: 21.9 km/h; Fietsersbond:
Bakker (2011)). Normal cadences range from 50 rpm to 80 rpm for recreational and utility cycling. Both
these numbers can be much higher for recreational cycling on a racing bike, where sprint cycling (250 Watt)
could correspond to speeds up to 36 km/h and 120 rpm. We are interested in the differences in response
corresponding to normal cycling conditions, however to illustrate how the general behaviour changes outside
this region, a larger range of cycling conditions is chosen: a full grid from 0 to 120 rpm and 0 to 36 km/h
(ω = 0 to 4π rad/s, v = 0 to 10 m/s). A reference value of ω = 2π rad/s (60 rpm) and v = 5 m/s (18 km/h)
is arbitrarily chosen as a mid-value of the grid lying inside the ’normal cycling’ range.

For our evaluation we illustrate the pedalling disturbance response corresponding to the 4 different bicycle-
rider models. This will give an impression of the influence on response corresponding to bicycle design
parameters (a Hybrid and a City bicycle) and different postures. These postures are either rigid or passive
postures, where we are not (yet) interested in the active or posture control motion, but rather in the influence
of the mass distribution and connectivity. The rigid upper body rider model represents a no hands cycling
posture (HR and CR), and the two passive upper body rider models (HS and CF) represent two different
hands on the handle bars postures corresponding to the two bicycle types. The hybrid bicycle has a straight
arm posture and the city bicycle has flexed arms posture. Note that model HS and model CF correspond to
different postures and bicycle design parameters.

3.2 Results and Discussion

The results and discussion of this chapter are split in two general topics: Evaluation of the model and
solution methods and evaluation of the parameters and variables effecting the response corresponding to
’normal’ cycling.

The model and solution method evaluation has the largest contribution to the volume of this section.
First the results of the particular solution in combination with the time domain are shown and discussed
in Section 3.2.1. Section 3.2.2 focusses on the periodic and frequency domain results and discussion. Then
the results for the conservation of angular momentum is discussed in a separate section (3.2.3) and the
neglected momenta associated with this simplification is discussed in Section 3.2.3.1. Then we proceed with
the model and solution method evaluation by quantifying and discussing the relative differences corresponding
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to simplification steps or method differences in Section 3.2.4.
Finally in Section 3.2.5 the implications of the solutions corresponding to the different cycling conditions

and variety between the bicycle-rider models are illustrated and discussed.

3.2.1 Particular Solutions and Time Domain

The eigenvalues as a function of forward speed corresponding to the linearised bicycle-rider models are shown
in Figure 3.9. The models corresponding to the figures can be easily recognised by the little bicycle-rider
model schematic depicted bellow the figure. These eigenvalue figures give a good indication of how the
transient part of the time solution behaves as a function of forward speed. The homogeneous part of the
analytic solution corresponding to the linearised model, is determined by the eigenvalues, eigenmodes and
initial conditions of the system, where the rise and decay of the transient are determined by the real part of
the eigenvalue and the oscillatory component is determined by the imaginary part of the eigenvalue. This
means that these eigenvalue figures can directly give insight in the behaviour of the bicycle-rider system which
is added to the periodic response corresponding to the particular solution corresponding to the disturbance.

Here we can see that three out of the four models (HS, HR and CR) show very similar general behaviour
to the benchmark bicycle behaviour shown in Figure 3.6. In this figure also generally accepted names can be
found for the eigenmodes (weave, capsize and caster). For low speeds these three models have a positive real
part eigenvalue corresponding to the weave mode. The weave mode also exhibits an oscillatory component,
for the largest part of the forward speed range, which can be seen due the imaginary part of the eigenvalue.
These three models have a self-stable region for the medium to high speed range, where all the eigenvalues
have a negative real part. This self-stable speed range is very interesting to emphasize, since this forward
speed range represent cycling conditions where the periodic solution represents the steady state solution.
For the high speeds, the capsize eigenmode becomes unstable, with a low positive real part eigenvalue. The
eigenvalue plots closely correspond to the eigenvalue plots in Schwab et al. (2012), since the only physical
difference for the linearised system is the slight change in leg configuration.

The exception is the top right eigenvalue plot, which corresponds to the model CF. This model does not
have a self-stable speed range, meaning that the bicycle will fall down for all speeds. The main difference lies
in the eigenvalue behaviour corresponding to the capsize eigenmode. This eigenvalue has a positive real part
for low forward speeds. The other eigenvalues are only marginally different in behaviour. This eigenvalue
figure is not the same as the corresponding figure in Schwab et al. (2012). This is due to the fact that we had
to change the seat post length parameter (lower the saddle), in order to accommodate a full crank rotation
for the pedalling motion. If we keep the seat post length parameter the same as in Schwab et al. (2012), we
do find a very similar eigenvalue behaviour (shown in Appendix, Figure E.1)
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Figure 3.9: Eigenvalues λ as a function of forward speed v of the linearised equation of motion for all four
bicycle-rider models. The models are identified by the caption above and the little bicycle-rider schematic
below the figure. The real part of the eigenvalues are represented by a solid line and the dashed line is the
imaginary part of the eigenfrequency corresponding to the weave eigenmode, which has a positive part for
low to medium forward speeds. The eigenvalue corresponding to the capsize eigenmode has a small positive
part for very high forward speed. Medium to high forward speeds there is a self-stable region in three of the
four models, where all real parts of the eigenvalues are negative.

The particular solution for the 4 bicycle-rider models are shown in contour plots in Figure 3.10 till 3.17
on the left side. Here the roll or steering amplitudes are shown as a function of forward speed and cadence.

The isoline corresponding to the conservation of angular momentum solution is shown in the contour
plots. This is an isoline of the particular solution corresponding to the value of the conservation of angular
momentum solution. The contour plot of the angular momentum solution itself would be the same value for
all cadences and forward speed combinations. More on the behaviour and discussion corresponding to the
conservation of angular momentum solution can be found in Section 3.2.3

In general the roll and steering amplitudes are low for very low cadences. For normal forward cycling
speeds and cadences, the roll amplitude is around the 0.01 rad and the steering amplitude around the 0.02
rad. Except for model HS (hybrid bicycle straight arms) where the steering amplitude also is lower; around
0.01 rad. The models with a stable region, show a peak of the amplitudes at the forward speed where the
real part of the eigenvalue is zero and the cadence matches the imaginary part of the eigenvalue. This means
that the oscillatory weave mode is undamped and an excitation of this frequency will result in resonance.
The imaginary part of the weave eigenvalue and the stable region (where all the real parts of the eigenvalues
are negative) are shown in the figures for reference. The shape of the isolines seem to be effected by the
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oscillatory part of the weave eigenvalue, generally raising the amplitudes near this frequency.

On the right hand side some example time solutions are shown for different forward speeds corresponding
to the same gearing ratio (≈ 2.3 medium gearing ratio), generated using the various different methods. As we
expected from discussing the eigenvalue figures, in the stable region, the particular solution is representative
for the steady state solution, whereas in the unstable region the transient solution will diverge and the bicycle
will fall down, because there is no control present in the model. For high forward speeds, the time the bicycle
will take to fall down can be very long, since the real part of the capsize eigenvalue is very small positive,
meaning that there is a relatively small divergent transient present in the roll angle. For low forward speeds,
the bicycle will fall down quickly, since the real part of the weave eigenvalue is relatively large. For very low
speeds, the periodic component of the time solution is not even identifiable by eye, because the bicycle falls
down so quickly.

The model CF does not have a self-stable forward speed region, however the weave mode becomes stable
at 3.2 m/s. In Figures 3.12 and 3.13 we can see that after the weave mode becomes stable, there is only
a small positive capsize eigenvalue left and the bicycle stays up long enough for the periodic solution to be
visible in the time solution.

Speed-cadence combination number 3 of Figure 3.11 (model HS) seems to have a periodic part in the time
solution with a frequency other than the cadence frequency with a higher amplitude. Figure 3.18 shows time
solutions corresponding to the same forward speed and different cadences for model HS. Here a dominant
periodic frequency can be seen in all 6 time solution with a time period of around 3 seconds. This corresponds
to around the 1/3 Hz or 2/3 π rad/s ≈ 2.1 rad/s, which is the same frequency as the imaginary part of the
weave eigenvalue. It is visible that the time solutions oscillates about this weave signal with the cadence
frequency, where the amplitude is largest for number 5, as expected from the particular solution plot on the
left, since it is closest to the undamped weave frequency peak. Similar behaviour is seen for the hands free
models (see Figure 3.19 for model CR).

Overall the time solutions for the different methods are very similar, with some minor exceptions such
as speed-cadence combination number 4 for Figure 3.12. These usually small differences seem to be in the
transient, since the amplitude of the periodic signal looks the same, however in some cases this is maybe
better identified in frequency domain (Section 3.2.2). In Section 3.2.4 these relative differences between the
model and solution methods are identified and discussed. In Section 3.2.5 the implications of the solutions
corresponding to the different cycling conditions and variety between the model’s bicycle design parameters
and rider posture are discussed.
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Figure 3.10: Roll amplitude of the particular solution (left) and time solutions corresponding to other solution
methods (right), for model HS shown bottom left in figure. The six numbers corresponding to the six
plots on the right are indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence
combination belonging the time solution. The isoline corresponding to the amplitude of the conservation
of angular momentum solution is shown in the particular solution contour plot on the left for comparison;
the conservation of angular momentum solution itself is independent on forward speed and cadence. The
imaginary part of the weave eigenvalue and the self-stable region are shown for reference. The particular
solution left is the periodic cadence frequency component of the linear analytic time solution shown right,
by definition. The non-linear model is solved using prescribed leg motion as disturbance. The linear and
non-linear models are also solved using a multiple frequency torque disturbance.
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Figure 3.11: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model HS shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region are shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance. The linear and non-linear models are also solved
using a multiple frequency torque disturbance.

April 19, 2016 37 of 128



The influence of pedalling on the lateral dynamics of cycling ® Patricia M. Baines

Forward speed [km/h]

0 5 10 15 20 25 30 35

C
ad

en
ce

[r
p
m
]

0

20

40

60

80

100

120

Roll angle amplitude [rad]
as a function of forward speed and cadence

A
n
gl
e
[r
a
d
]

-0.1

0

0.1

2

A
n
gl
e
[r
ad

]

-0.1

0

0.1

3

A
n
gl
e
[r
ad

]

-0.1

0

0.1

4
A
n
gl
e
[r
ad

]

-0.1

0

0.1

5

A
n
g
le

[r
a
d
]

-0.05

0

0.05
1

Roll angle as a function of time

Time [s]
0 1 2 3 4 5

A
n
gl
e
[r
ad

]

-0.1

0

0.1

6

Forward speed [m/s]
0 2 4 6 8 10

C
ad

en
ce

[r
a
d
/s
]

0

2

4

6

8

10

12

6.4e-05 6.4e-050.00051 0.00051

0.0017

0.0017
0.0017

0.
00

41

0.0041

0.0041

0.0041

0.
00

8

0.
00

8

0.008

0.008

0.
01

4

0.
01

4

0.014

0.014

0.0033

0.0033

0.0033

0.0033

6

5

4

3

2

1

particular solution

conservation angular momentum solution

imaginary part of eigenvalue

non-linear numerical pedalling

non-linear numerical T (!; 3!; 5!)

linear numerical T (!; 3!; 5!)

linear analytic T (!)

Figure 3.12: Roll amplitude of the particular solution (left) and time solutions of other methods (right),
for model CF shown bottom left in figure. There is no stable region, however the weave mode is stable
from 3.2 m/s (real part of eigenvalue of weave mode is negative from 3.2 m/s). The imaginary part of the
weave eigenvalue and is shown for reference. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The particular solution left
is the periodic cadence frequency component of the linear analytic time solution shown right, by definition.
The non-linear model is solved using prescribed leg motion as disturbance. The linear and non-linear models
are also solved using a multiple frequency torque disturbance.
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Figure 3.13: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model CF shown bottom left in figure. There is no stable region, however the weave mode is stable
from 3.2 m/s (real part of eigenvalue of weave mode is negative from 3.2 m/s). The imaginary part of the
weave eigenvalue and is shown for reference. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The particular solution left
is the periodic cadence frequency component of the linear analytic time solution shown right, by definition.
The non-linear model is solved using prescribed leg motion as disturbance. The linear and non-linear models
are also solved using a multiple frequency torque disturbance.
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Figure 3.14: Roll amplitude of the particular solution (left) and time solutions of other methods (right), for
model HR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region are shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance. The linear and non-linear models are also solved
using a multiple frequency torque disturbance.
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Figure 3.15: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model HR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region are shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance. The linear and non-linear models are also solved
using a multiple frequency torque disturbance.
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Figure 3.16: Roll amplitude of the particular solution (left) and time solutions of other methods (right), for
model CR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region are shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance. The linear and non-linear models are also solved
using a multiple frequency torque disturbance.
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Figure 3.17: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model CR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region are shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance. The linear and non-linear models are also solved
using a multiple frequency torque disturbance.
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Figure 3.18: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model HS shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region are shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance. The linear and non-linear models are also solved
using a multiple frequency torque disturbance.
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Figure 3.19: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model CR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region are shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance. The linear and non-linear models are also solved
using a multiple frequency torque disturbance.
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3.2.2 Periodic Solutions and Frequency Domain

In Figure 3.20 till 3.27 periodic solutions are shown obtained from the Fourier transform of the time signal.
On the left the amplitudes corresponding to the cadence frequency are shown together with the particular
solution, on the right several examples are shown of the frequency domain, where also the particular solution
is indicated (same data and speed-cadence combinations as Figures 3.10 till 3.19).

In general the frequency domain of the linear models are dominated nearly completely by the transient
signal outside of the stable region (except for very low capsize eigenvalue condition). The non-linear models
still show some nice congruity with the particular solution for high forward speeds. Inside the stable region
all the methods show very similar results for the amplitude corresponding to the cadence, as expected from
the time signals. For low speeds, where the weave eigenmode is unstable, the frequency domain for the
non-linear models show high transient signal-noise and a low frequency domain resolution. This last problem
is due very small time domain, because the bicycle fell down quickly and the simulation ended.

The effect of the Hanning window can be seen nicely in for instance speed-cadence combination number
3 of Figure 3.20. Without the Hanning window, the frequency domain has a wide range of frequency content
and the amplitude of the cadence frequency lies lower than the neighbouring frequencies. This is due to
a phase difference between the transient and the periodic signal, exacting destructive interference. In the
frequency domain with the Hanning window two peaks are seen; the oscillatory weave frequency of around
1/3 Hz together with the cadence frequency, which now has a similar amplitude to the particular solution.

Figure 3.28, shows that the oscillatory weave frequency can be seen at the same frequency for combinations
of the same forward speed and that the cadence frequency peak shifts to lower frequencies, as expected from
the time domain solutions. The high amplitude corresponding to the oscillatory weave frequency is precisely
what we predicted by looking at the time signal. However, more peculiar frequency results are seen in Figure
3.29 in similar speed-cadence combinations for model CR (city bicycle hands free). Here the weave frequency
is easily recognised again by a constant frequency peak at the place where we would expect it from the
imaginary part of the eigenvalue. There is also a peak at the cadence frequency, where we would expect it.
However there are also other smaller peaks present, which seem to be multiples of the cadence and weave
frequency. The behaviour corresponding to the weave mode is seen for slightly different frequencies, when
comparing the non-linear model with pedalling and torques disturbance types. This behaviour in the non-
linear models is probably due to the non-linearity of the model, where it could be that the weave frequency
is not a constant, but can be seen as a summation of frequencies. This would mean that it is easier to create
a sort of resonance with periodic forcing. This phenomenon is seen for both the hands free bicycle-rider
models, for a small forward speed range, just below the self-stable range. This area corresponds to a low
positive real part of the oscillatory weave frequency.
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Figure 3.20: Roll amplitude of the particular solution and corresponding periodic solutions of other methods
(left) and angle as a function of frequency of other methods (right), for model HS shown bottom left in
figure. The six numbers corresponding to the six plots on the right are indicated on the roll angle amplitude
plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The imaginary
part of the weave eigenvalue and the self-stable region are shown for reference. The particular solution left
is the periodic cadence frequency component of the linear analytic time solution shown right, by definition.
The non-linear model is solved using prescribed leg motion as disturbance, shown with and without the
transformation using a Hanning window. The linear and non-linear models are also solved using a multiple
frequency torque disturbance.
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Figure 3.21: Steering amplitude of the particular solution and corresponding periodic solutions of other
methods (left) and angle as a function of frequency of other methods (right), for model HS shown bottom
left in figure. The six numbers corresponding to the six plots on the right are indicated on the steering angle
amplitude plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The
imaginary part of the weave eigenvalue and the self-stable region are shown for reference. The particular
solution left is the periodic cadence frequency component of the linear analytic time solution shown right,
by definition. The non-linear model is solved using prescribed leg motion as disturbance, shown with and
without the transformation using a Hanning window. The linear and non-linear models are also solved using
a multiple frequency torque disturbance.
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Figure 3.22: Roll amplitude of the particular solution and corresponding periodic solutions of other methods
(left) and angle as a function of frequency of other methods (right), for model CF shown bottom left in figure.
The six numbers corresponding to the six plots on the right are indicated on the roll angle amplitude plot on
the left, to indicate the speed-cadence combination belonging the frequency solution. The imaginary part of
the weave eigenvalue is shown for reference. No stable region, however capsize mode is stable from 3.2 m/s
(real part of eigenvalue of capsize mode is negative from 3.2 m/s). The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The non-linear
model is solved using prescribed leg motion as disturbance, shown with and without the transformation
using a Hanning window. The linear and non-linear models are also solved using a multiple frequency torque
disturbance.
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Figure 3.23: Steering amplitude of the particular solution and corresponding periodic solutions of other
methods (left) and angle as a function of frequency of other methods (right), for model CF shown bottom
left in figure. The six numbers corresponding to the six plots on the right are indicated on the steering
angle amplitude plot on the left, to indicate the speed-cadence combination belonging the frequency solution.
The imaginary part of the weave eigenvalue is shown for reference. No stable region, however capsize mode
is stable from 3.2 m/s (real part of eigenvalue of capsize mode is negative from 3.2 m/s). The particular
solution left is the periodic cadence frequency component of the linear analytic time solution shown right,
by definition. The non-linear model is solved using prescribed leg motion as disturbance, shown with and
without the transformation using a Hanning window. The linear and non-linear models are also solved using
a multiple frequency torque disturbance.
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Figure 3.24: Roll amplitude of the particular solution and corresponding periodic solutions of other methods
(left) and angle as a function of frequency of other methods (right), for model HR shown bottom left in
figure. The six numbers corresponding to the six plots on the right are indicated on the roll angle amplitude
plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The imaginary
part of the weave eigenvalue and the self-stable region are shown for reference. The particular solution left
is the periodic cadence frequency component of the linear analytic time solution shown right, by definition.
The non-linear model is solved using prescribed leg motion as disturbance, shown with and without the
transformation using a Hanning window. The linear and non-linear models are also solved using a multiple
frequency torque disturbance.
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Figure 3.25: Steering amplitude of the particular solution and corresponding periodic solutions of other
methods (left) and angle as a function of frequency of other methods (right), for model HR shown bottom
left in figure. The six numbers corresponding to the six plots on the right are indicated on the steering angle
amplitude plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The
imaginary part of the weave eigenvalue and the self-stable region are shown for reference. The particular
solution left is the periodic cadence frequency component of the linear analytic time solution shown right,
by definition. The non-linear model is solved using prescribed leg motion as disturbance, shown with and
without the transformation using a Hanning window. The linear and non-linear models are also solved using
a multiple frequency torque disturbance.
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Figure 3.26: Roll amplitude of the particular solution and corresponding periodic solutions of other methods
(left) and angle as a function of frequency of other methods (right), for model CR shown bottom left in
figure. The six numbers corresponding to the six plots on the right are indicated on the roll angle amplitude
plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The imaginary
part of the weave eigenvalue and the self-stable region are shown for reference. The particular solution left
is the periodic cadence frequency component of the linear analytic time solution shown right, by definition.
The non-linear model is solved using prescribed leg motion as disturbance, shown with and without the
transformation using a Hanning window. The linear and non-linear models are also solved using a multiple
frequency torque disturbance.
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Figure 3.27: Steering amplitude of the particular solution and corresponding periodic solutions of other
methods (left) and angle as a function of frequency of other methods (right), for model CR shown bottom
left in figure. The six numbers corresponding to the six plots on the right are indicated on the steering angle
amplitude plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The
imaginary part of the weave eigenvalue and the self-stable region are shown for reference. The particular
solution left is the periodic cadence frequency component of the linear analytic time solution shown right,
by definition. The non-linear model is solved using prescribed leg motion as disturbance, shown with and
without the transformation using a Hanning window. The linear and non-linear models are also solved using
a multiple frequency torque disturbance.
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Figure 3.28: Steering amplitude of the particular solution and corresponding periodic solutions of other
methods (left) and angle as a function of frequency of other methods (right), for model HS shown bottom
left in figure. The six numbers corresponding to the six plots on the right are indicated on the steering angle
amplitude plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The
imaginary part of the weave eigenvalue and the self-stable region are shown for reference. The particular
solution left is the periodic cadence frequency component of the linear analytic time solution shown right,
by definition. The non-linear model is solved using prescribed leg motion as disturbance, shown with and
without the transformation using a Hanning window. The linear and non-linear models are also solved using
a multiple frequency torque disturbance.
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Figure 3.29: Steering amplitude of the particular solution and corresponding periodic solutions of other
methods (left) and angle as a function of frequency of other methods (right), for model CR shown bottom
left in figure. The six numbers corresponding to the six plots on the right are indicated on the steering angle
amplitude plot on the left, to indicate the speed-cadence combination belonging the frequency solution. The
imaginary part of the weave eigenvalue and the self-stable region are shown for reference. The particular
solution left is the periodic cadence frequency component of the linear analytic time solution shown right,
by definition. The non-linear model is solved using prescribed leg motion as disturbance, shown with and
without the transformation using a Hanning window. The linear and non-linear models are also solved using
a multiple frequency torque disturbance.
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3.2.3 Conservation of Angular Momentum

The general behaviour of the bicycle over time is estimated using the conservation of angular momentum
principle as described in Section 3.1.2.3. This is done for the four bicycle-rider models, for different cadences
and for the two pedal disturbance types (modelled in Section 2.1.1).

The general bicycle behaviour corresponding to the two disturbance types is shown in Figure 3.30 (for
model HS). A result shown for a disturbance consisting only of a roll torque is also shown for comparison.
This last result does not follow the behaviour of the leg model very well, especially looking at the steering
angle results. However if the steering torque is added, the disturbance using only the cadence frequency does
follow the leg model result well, especially looking at the angle results. This means that the yaw momentum
component of the pedal disturbance has a substantial effect on the amplitude and the phase of the steering
angle.

When comparing the results corresponding to the different cadences it can be seen that although the
amplitude of the momentum itself will increase due to an increase in cadence, the amplitude of the roll and
steering will stay the same. This means that the amplitude results of the conservation of angular momentum
equations do not depend on forward speed or cadence, only on amplitude of the leg motion and the generalised
mass matrix of the model. This does seem very unlikely as the bicycle behaviour is known to be very forward
speed dependent, therefore we have a look at the validity of the simplifications of this model, before we go
on to the results of the other methods.
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Figure 3.30: Roll (left) and steering (right) angle (top) and angular velocity (bottom) estimated using
conservation of angular momentum principle using the mass parameters for model HS. The pedal disturbance
is modelled using a motion prescribed by a dual 3D four bar linkage (’leg model; ω = 2π & 4π rad/s’), a
simplified leg COM motion and a very simplified vertical leg COM motion (only roll torque) both prescribed
using only the cadence frequency of 60 rpm (= 2π rad/s)

3.2.3.1 Neglected Momenta In order to make an estimation of the validity of neglecting the external
forces due to gravity, ground contact and such, we investigate which of these terms are small compared to
the angular momentum terms used to estimate the roll and steering angular velocities and angles here. In
general the sum of all the generalized d’Alembert forces is equal to the time derivative of the momentum.
For our system this means that we can use the system of linearised second order differential equations to
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include all the momenta:

L =

∫ (
M q̈ + vC1 q̇ + [gK0 + (v)2K2] q − fL

)
dt (3.27)

The generalized d’Alembert forces corresponding to the pedal disturbance fL can be easily related to the
previously defined generalized momentum corresponding to the leg moment LL:

LL = −
∫
fLdt (3.28)

This leads to an expression very close to the one used (Equation 3.20), however with some extra terms which
were neglected in our simplified conservation of angular momentum assumption:

L = M q̇ + vC1 q + gK0

∫
q dt+ (v)2K2

∫
q dt︸ ︷︷ ︸

Neglected momenta

+LL (3.29)

In order for these conservation of angular momentum results generated here to be a reasonable representation
of the true behaviour the neglected terms should be much smaller than the angular momentum associated
with the moving legs (

(
vC1 q +

∫
gK0 q dt+

∫
(v)2K2 q dt

)
/LL << 1). If we temporally go with this as-

sumption and use the results we obtained here, we can check this assumption using the results we obtained.
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Figure 3.31: Neglected momenta as a ratio of the pedalling disturbance momentum for model HS corre-
sponding to roll (left) and steering (right). The area where all the neglected momenta terms are less than
a quarter of the pedalling disturbance momentum is filled in (top left corner). Also the gearing range is
depicted indicating the possible cadence and forward speed combinations in the normal operating range of
the bicycle. This corresponds to a range from gearing ratio 1 to 4, equivalent to 1 to 4 times as many front
sprocket teeth as rear sprocket teeth.

Figure 3.31 shows that the neglected momenta terms could only be regarded as negligible for very low
speeds in combination with reasonably high cadences. These forward speed-cadence combinations, do not lie
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in the normal operating range of the bicycle due to the set gearing of a bicycle. This is true for all the models,
where the figures can be found in Appendix F for the other models. Therefore the simplistic conservation of
angular momentum approach applied here does not provide a useful representation of the bicycle behaviour
due to the pedalling disturbance. It is not expected to give realistic amplitude results for ’normal cycling’
and cannot capture behaviour due to cycling conditions.

3.2.4 Evaluation of Model Simplifications and Solution Methods

In Figure 3.32 and 3.33 the relative difference (RD) is shown corresponding to the different evaluation points
presented in Section 3.1.3, corresponding the roll amplitude solutions of model HR and CF respectively. The
steering amplitude results and the results for the other two bicycle-rider models are not shown here, since they
show similar behaviour (see Appendix H). Here we discuss the errors associated with the solution methods
and model simplifications according to the same evaluation points. Most of the issues and behaviour have
all ready been discussed qualitatively in either the method section or in the previous result sections. In this
section we provide an overview according to the evaluation points (also indicated in the figures), where after
we give recommendations for future use based on error contribution.

1. Simplifications made to the full non-linear multibody dynamics model

a) Fixing leg inertia to rear frame of the bicycle
→ Compare non-linear model torques (T (ω, 3ω, 5ω)) to non-linear model pedalling
The simplification step corresponding to changing the disturbance type from moving leg segments to
two multiple harmonic torques as applied inertial forcing disturbance is dual; fixing the leg inertia and
simplifying the disturbance. Here we discuss the fixing of the leg inertia, which is thought to represent
the major determinant of the error contribution due to model simplifications.

The leg inertia is fixed to the rear frame, effectively changing time variant harmonic system proper-
ties to be time invariant. In a linearised system this same effect would be analogous to represent-
ing a summation of a constant mass matrix and harmonic terms by only the constant mass matrix:
M +

∑∞
n=1Mn(nωt) ≈M

In our bicycle-rider models, this fixing of the leg inertia might not only effect the generalised mass
characteristics, but also the generalised damping and the generalised stiffness (forward speed and grav-
itational acceleration effects on the generalised coordinates and their velocity). The change in system
characteristics from harmonic to constant has a typical contribution on the error of 0.1% up to 5% for
the self-stable region and low positive real part eigenvalues range. This simplification seems to mainly
change the behaviour corresponding to the oscillatory part of the weave eigennmode (also seen in fre-
quency domain). For the forward speed region, where the bicycle is highly unstable, the time result
is dominated by the transient. Here we see that the transient is impacted more by this simplification,
seen by the large erratic error behaviour typically ranging from 0.5% to 300%, making determination
of the error on the periodic forcing response difficult.

b) Linearisation around roll and steering angle (φ, δ)
→ Compare linear model torques (T (ω, 3ω, 5ω)) to non-linear model torques (T (ω, 3ω, 5ω))
Linearisation of the bicycle-rider model has a very low impact on the periodic forcing response, with
an associated error typically around 0.1% to 2.5%. The simplification of linearisation is reliable only
for small deviations around the equilibrium position, which means that in the self-stable region the
linearised and non-linear models show the same behaviour. Outside the self-stable region, the transient
diverges from small deviations around the equilibrium position, making the time signal very inaccurate
(error of >>1E100 %). However the particular part, corresponding to the response to the periodic
forcing of the system, is solved separately from the transient part (the homogeneous solution) and does
stay within the small deviations range, making it much more reliable than the transient part of the
time solution even outside the self-stable range.

c) Neglecting behaviour corresponding to forward speed (v = 0) and gravity (g = 0)
→ Compare conservation of angular momentum solution to particular solution
The conservation of angular momentum solution introduces a very large simplification to the model
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corresponding to an error ranging up to infinity. The error corresponding to this simplification is typi-
cally only small (2.5% to 10%) for very low forward speeds and very high cadences, a cycling condition
which is not feasable on a normal bicycle. In some cases a larger or different part of the error graph
shows good congruity between the particular solution and the angular momentum solution, than the
analysis of the neglected momenta in Section 3.2.3.1 would suggest. This should not be atributed to
the idea that the simplistic conservation of angular momentum approach is valid in a greater forward
speed-cadence region. It is more reasonable to assume that the neglected momenta cancel each other
out in such a way, that cannot be easily predicted without taking their effect into account. This method
does not capture any disturbance response behaviour due to cycling conditions and only very limited
behaviour due to bicycle design and posture parameters.

2. Simplifications made to the kinematic pedalling disturbance

a) Multiple harmonic inertial torques on steering and roll (T (ω, 3ω, 5ω))
→ Compare non-linear model torques (T (ω, 3ω, 5ω)) to non-linear model pedalling
We are interested in the lateral movement amplitude response of pedalling as disturbance. From this
standpoint the simplification of the disturbance from pedalling kinematics to steering & roll torques
is negligible. We basically only throw away higher cadence harmonics (≥ 7ω) of the torques, which
theoretically does not have any error contribution on the amplitude response corresponding to the
cadence frequency.

However if the interest and/or model design may change in the future, it is important to re-evaluate
this point, therefore it is important to note the following considerations. With this simplification we
throw away the effect on vertical wheel contact forces, which could be important if the wheel-ground
contact condition is made dependent on ground reaction forces. We also throw away the effect on
forward speed, since the harmonic forward inertial forces will add a slight variation on forward speed.
This could also introduce a very small error on the lateral behaviour, because this is forward speed
dependent.

b) Neglecting higher cadence harmonics (T (ω))
→ Compare linear model torques (T (ω)) to linear model torques (T (ω, 3ω, 5ω))
Throwing away the frequency content of the disturbance corresponding to the uneven multiples of the
cadence theoretically does not impact the response corresponding to the cadence frequency. This is
reflected very low error values in the self-stable region (typically 1E-5 to 1E-3%). The total forcing
response amplitude is dominated by the cadence frequency, so only the higher frequency content in the
response is lost due to this simplification.

3. Differences in solution approaches

a) Numerical time integration vs. analytical time solution approaches
→ Compare linear model numerical and analytic
Solving the linear system for time using a numerical integration algorithm introduces a relatively low
error contribution, showing a value of typically around 1E-4% in the stable forward speed region. This
error value is lower than the set relative local error tolerance and in the same order of magnitude as
the set absolute local error tolerance. This supports the idea that the accumulated integration error
over time has a smaller impact on amplitude determination compared to a specific configuration at a
specific time.

b) Discrete Fourier transform vs analytical amplitude determination approach
→ Compare particular solution and analytic
The error in self-stable region is typically around 1E-5% to 1E-8%. This was expected to be low,
since theoretically the steady state solution should only consist of the cadence frequency. This means
that the discrete Fourier transform is a very reliable method for the identification of the amplitude,
as long as the signal is not incorrectly truncated. However in the unstable forward speed range the
signal is dominated by the transient. For solutions corresponding to high positive value eigenvalues and

April 19, 2016 60 of 128



The influence of pedalling on the lateral dynamics of cycling ® Patricia M. Baines

low cadences, the bicycle even fell down before a single period corresponding to the periodic forcing
response could be completed. This unstable forward speed region typically shows error ranging up to
1E200%.

The behaviour of the non-linear bicycle-rider model is dominated by the transient signal for low forward
speed, due to the instability of the system, resulting in a high error when picking out the periodic forcing
part solution. Solving the non-linear system response takes a lot of computational time and effort, making
it an impractical modelling approach to use for a parameter/variable evaluation with a high dimension or
resolution.

The analytic particular solution method can be implemented easily and efficiently. This is especially true
for bicycle-rider models consisting of a rigid rider, since the bicycle design parameters (25 in total) can be
used to directly obtain the linearised matrices needed to define the system (Meijaard et al., 2007).

In Figure 3.34 the relative difference of the particular solution compared to the full non-linear pedalling
model solution is shown for all the four models, for the roll and the steering amplitudes. This shows that an
error of up to 5% is generally seen, in identification of pedalling disturbance amplitude response, corresponding
to the simplifications of linearising the system and assuming the system is time-invarient. A wide range of
system-identification and solution approaches are available for linear time-invarient (LTI) systems, making
this assumption a powerfull one.

In our case this assumption is reasonable, since we are interested in ascertaining the general lateral be-
haviour response for normal cycling conditions and normal bicycle and rider parameters. A quick peak at
the variation in amplitude response corresponding to the different bicycles, postures and cycling conditions
discussed in the next section (Figure 3.35) shows us that an error of 5% is small compared to the variation
of the behaviour we are interested in. Therefore we conclude that the particular solution of the linearised
bicycle-rider model perturbed using the simple inertial steering and roll torques defined in Section 2 is a use-
ful and simple tool to investigate the pedalling disturbance response corresponding to specific bicycle-rider
systems and/or cycling conditions.

For some cases however, the errors introduced by the simplification of the model and the disturbance are
too large. This could be for instance the case if only a very small area of the design parameter and/or variable
space is of interest. It could also for instance be the case if the exact frequency dependent behaviour of the
weave mode is of interest. This behaviour is seen to be influenced slightly (corresponding to ±5% error) by
the harmonic time varient properties of the system due the movement of the leg inertia as a function of crank
angle.

In the case that these model simplifications are not acceptable for the specific research line, careful consid-
eration should be taken into account to increase the reliability of the solution method. The solution method
used here is not suitable for a bicycle-rider system that falls down quickly (large instability behaviour), be-
cause the transient dominates the periodic forcing response behaviour. Two possible relatively easy solutions
is to only solve for the stable region or to add control to the system. However the stable region can be limited
and control changes the system properties. Another possibility that does not change system properties is to
use the theory of numerical continuation. This can be applied to non-linear unstable systems to find periodic
solutions (Doedel et al., 2003).

Doedel (1981) developed an open-source software package, based on numerical continuation and bifurca-
tion theory, called AUTO. This software is implemented in Fortran, where it is could possibly be used to
interface with SPACAR (also Fortran based). AUTO is also used as the foundation of a Matlab toolbox
called MATCONT. This package offers a very similar usage as the built-in Matlab ode-solvers, which also
could offer the possibility of easy integration with the Matlab SPACAR toolbox.

It is important to realise that the errors quantified here are solely the errors associated with the simplifi-
cations and solutions methods evaluated here. This means that we take behaviour defined by the non-linear
dynamic Whipple bicycle model as a golden standard, as it is the benchmarked model accepted widely by
the bicycle research community. However it is off course still only a model, with it’s own assumptions and
simplifications.

On of the main simplifications in the bicycle model is the rigid body assumption. In the model the rider
is rigidly attached to the rear frame, however the observed rider motions (Kooijman et al., 2009; Moore et al.,
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2011) are expected to greatly influence bicycle behaviour. Not only the rider is assumed to be rigid but also
the bicycle frame. This means that the model does not allow for the bicycle frame to bend and twist under
the applied disturbance. If the frame bends with the lateral motions, it would likely mean that the extreme
points of the bicycle will have a larger lateral displacement, than now attributed to the disturbance. Another
possibility is that there will be energy storage in the deformation of the frame. This will likely have an elastic
and a damping component. This damping component could possibly attenuate the lateral motions.

Another simplification in the Whipple bicycle model are the simplified contact conditions of the wheels
with the ground. In the basic benchmarked Whipple bicycle model, the contact condition is modelled as a
non slip purely rolling contact condition, without the presence of any tyre dynamics. This would mean for
instance in a simple case that, if the bicycle would stand still and the steering angle is changed, there would
not be any ground reaction torques due to the tyre friction on the road. In real life this friction torque would
obviously be present. Moore (2012) found a discrepancy of a factor of 2-3 in measured steering angle and the
amount of steering torque needed to drive the Whipple model in the same trajectory (Schwab et al., 2013).
For the Whipple model with added arm inertia similar to the passive rider model of Schwab et al. (2012),
the congruity with the model inputs (steering and roll torque) are even worse. This could be attributed to
measurement errors or model limitations. The magnitude of the steering torque necessary to steer a bicycle
is very low relative to the other forces on the front frame. This makes it very difficult to measure accurately.
But if the error is caused due to model limitations, this would mean that the steering angle results due to the
steering torque could be widely overestimated. It is proposed by Moore (2012) that a simple scrub torque
would likely improve the fidelity of the model, however they did not specify what the precise parameters
would be of this suggested scrub torque. An option to improve model accuracy would be to include tyre
dynamics (Pacejka, 2012).
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Figure 3.32: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of roll amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model HR. The self-stable speed region is indicated by a box and the imaginary
part of the eigenvalue of the weave eigenmode is indicated with a dashed line.
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Figure 3.33: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of roll amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model CF. This bicycle-rider model is not self-stable and the imaginary part of
the eigenvalue of the weave eigenmode is indicated with a dashed line.
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Figure 3.34: The relative differences, of the particular solution method compared to the non-linear pedalling
model, of roll and steering amplitude solutions, are depicted as a function of forward speed and cadence,
corresponding to all four bicycle-rider models. The self-stable speed region is indicated by a box and the
imaginary part of the eigenvalue of the weave eigenmode is indicated with a dashed line.
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3.2.5 Normal Cycling: Variation due to Parameters and Conditions

Figure 3.35 gives an overview of the roll and steering amplitude response to the pedalling disturbance for all
the cycling conditions and the four models. The working range and the area corresponding to normal cycling
is depicted. In general there are large variations in response seen for the variation of forward speed, cadence
and posture.

As a rule the roll amplitude is low for low frequencies and low speeds. The weave mode properties seems
to determine a large part of the roll response variation in forward speed and cadence. In general the steering
amplitude response is low for low cadences. There are some smaller variations seen in steering amplitude
response for the variation forward speed that can also be attributed to weave mode properties.

Model HS shows a lower roll response in the working range compared to the other models. The oscillatory
part of the weave frequency is lower for this model compared to the other models. Also the amplitude peak
corresponding to the resonance of the undamped oscillatory weave mode is further away (higher speed &
lower frequency) from the working range than for models HR and CR. The steering amplitude response is
higher for rigid upper body models (HR & CR) compared to the passive upper body rider models (HS & CF),
this probably due to the added inertia and generalised stiffness to the steering assembly. Smaller differences
in response are seen between the two bicycles (HR and CR).

Here we can see that the location of the undamped weave mode and the frequency of the imaginary part
of the weave eigenvalue in general will have a great influence on pedalling response. If there is a desire
to lower the pedalling response, due to undesired handling properties for instance, this knowledge could be
implemented in design choices. It would be advisable to adjust bicycle parameters, such that the bicycle-rider
system has an undamped weave frequency and an oscillatory weave frequency in general, further away from
the working range. This in general would mean a higher weave speed and a lower imaginary part eigenvalue.

In order to better visualize what these solutions and insights mean for the working range of the bicycle,
the behaviour for several common gear ratios (GR) are investigated (Figure 3.36). These gearing specific
plots can be seen as cross sections of the contour plots in Figure 3.35, where the location of GR 1 and GR 4
are shown. In general we can see low roll amplitude behaviour for low GRs, which increase with increasing
GR. The steering amplitude response does not show this general trend. Model HS does show a consistently
lower steering amplitude response as expected from seen behaviour in Figure 3.35. Both roll and steering
amplitude show a peak in GR 4 for the rigid upper body rider models, corresponding to proximity of the
undamped weave frequency. For some bicycle-rider cases this small peak could be much larger and true res-
onance could occur in the normal working range of the bicycle (see for instance benchmark results in Figure
G.8). This could possibly be solved by tuning bicycle parameters, or might even be solved post fabrication a
careful choice of gear ratios. The amplitudes for the four bicycle-rider models, amplitudes stay below 0.03 rad

In order to the ascertain the introduced error by neglecting cycling condition variables, rider posture
and bicycle design parameters, Figures 3.37 and 3.38 show the relative difference (RD) corresponding to the
evaluation points defined in Section 3.1.3.

We start by looking into the cycling condition variation (Figure 3.37). This error has some similarities to
the error associated with the conservation of angular momentum solution simplification, since this solution
neglected behaviour due to gravity and forward speed giving the same amplitude result for all cadences.
However here we illustrate what is the result of simplifying a single response value corresponding to a normal
speed and cadence, for the entire range of forward speeds and cadences. If we compare an arbitrarily chosen
reference value of v = 5 m/s (=18 km/h) and ω = 2π rad/s (= 60 rpm) to the rest of the normal cycling
speed range, we typically see that the error on the roll amplitude is much larger than the error on the steering
amplitude (RDφ ≈ 25%, RDδ < 10%). For some other areas of the working range, such as low cadence &
low forward speed, this error goes up to 100% for both roll and steering angle response.

Figure 3.38 illustrates the error introduced by using a rigid rider to ascertain the pedalling response of
a hands on the handlebars posture. For the hybrid bicycle the introduced error is very large (HR with
respect to HS; RDφ ≈ 75%, RDδ > 100%), especially for the steering angle amplitude. The flexed arms
posture corresponding to the city bicycle also has significant influence (CR with respect to CF; RD ≈ 20%).
The error introduced by using different bicycle design parameter can also be significant for relatively small
differences in bicycle design (CR with respect to HR; RDφ > 10%, RDδ > 5%). These errors due to posture
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and bicycles design parameters are the error values introduced by these specific cases as an illustration of
which parameters and variables should be taken into account. The exact error values would depend highly
on the specific cases that are compared. From this evaluation we can conclude that the pedalling disturbance
response differs with the varation of cycling conditions, posture and bicycle design paramters.

Here we only investigated the influence of forward speed and cadence, however other cycling conditions
would probably also affect the response. These could for instance be ground surface conditions, - inclination,
tyre pressure, bicycle maintenance, rider properties, windy weather, acceleration-deceleration, heading tasks
etc. The passive upper body rider models also capture only part of the passive influence on the bicycle. Here
the upper body models only represent the inertia added in a more realistic manner compared to the rigid rider
model in the Whipple model. However a real rider would have a much larger passive influence to the system.
Humans can for instance add passive stiffness and damping to the steering assembly (Doria and Tognazzo,
2014) and the upper body lean and yaw as passive posture control. The reflexive gains corresponding to
arm posture control can also vary significantly with disturbance frequency van der Helm et al. (2002). In
this study these passive effects and other effects such as lateral dynamics control and upper body movements
are not investigated. In Section 5.1 we will first explore these affects by comparing our model results to the
results of previous experimental research. After this we will discuss what steps could be taken in the future
to better understand a wider range of rider behaviour and their influence to the total system behaviour. Here
we will also clarify how this study can be used in future work.
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Figure 3.35: Roll and steering amplitudes [rad] as a function of forward speed and cadence corresponding
to all four linearised bicycle-rider models. The analytic particular solution method is used to generate the
results. The working range of cycling is indicated by two dashed gearing ratio lines and the normal cycling
region is indicated by an ellipse.

April 19, 2016 68 of 128



The influence of pedalling on the lateral dynamics of cycling ® Patricia M. Baines

Cadence [rpm]
0 50 100 150 200 250

A
m

p
li

tu
d

e
[o

]

0

0.5

1

1.5

Forward speed [km/h]
0 5 10 15 20 25 30 35

A
m

p
li

tu
d

e
[r

ad
]

0

0.01

0.02

0.03
GR:1

roll
steering
model HS
model CF
model HR
model CR

Cadence [rpm]
0 20 40 60 80 100 120 140

A
m

p
li

tu
d

e
[o

]

0

0.5

1

1.5

Forward speed [km/h]
0 5 10 15 20 25 30 35

A
m

p
li

tu
d

e
[r

ad
]

0

0.01

0.02

0.03
GR:2

Cadence [rpm]
0 10 20 30 40 50 60 70 80 90

A
m

p
li

tu
d

e
[o

]
0

0.5

1

1.5

Forward speed [km/h]
0 5 10 15 20 25 30 35

A
m

p
li

tu
d

e
[r

ad
]

0

0.01

0.02

0.03
GR:3

Cadence [rpm]
0 10 20 30 40 50 60 70

A
m

p
li

tu
d

e
[o

]

0

0.5

1

1.5

Forward speed [km/h]
0 5 10 15 20 25 30 35

A
m

p
li

tu
d

e
[r

ad
]

0

0.01

0.02

0.03
GR:4

Figure 3.36: Roll (solid lines) and steering amplitudes (dashed lines) function of forward speed and cadence
for a gear ratio of 1, 2, 3 and 4, for the four linearised bicycle-rider models (colours).
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Figure 3.37: The relative difference corresponding to evaluation point 4 (defined in Section 3.1.3) of roll and
steering amplitude solutions as a function of forward speed and cadence, corresponding to all four bicycle-
rider models. The cycling conditions are compared to a reference value, corresponding to 60 rpm and 5 m/s
(centre grid)
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Figure 3.38: The relative difference corresponding to evaluation points 5 & 6 (defined in Section 3.1.3) of roll
and steering amplitude solutions as a function of forward speed and cadence. The passive upper body rider
models are compared to the rigid upper body rider models in order to illustrate posture influence. The city
bicycle is compared to the hybrid bicycle to illustrate bicycle design parameters influence.
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3.3 Conclusion

In Section 2 two modelling approaches of the pedalling disturbance are developed. One is applicable to a non
linear multibody dynamics model which includes leg segments and it’s close approximation is applicable on
practically any dynamical bicycle-rider model, including a linearised model. In this section we developed and
evaluated methods for applying the developed pedalling disturbances to bicycle-rider systems and solving the
disturbance response.

Using the particular solution method, the periodic response can be easily found, independent of stability
characteristics of the bicycle-rider system. This method is found to be reliable and computationally efficient.
The particular solution method proposed here assumes a linearised time-invariant (LTI) system where the
pedalling disturbance is modelled as harmonic steering and roll torques (as defined in Section 2). This mod-
elling approach opens up a wide range system identification and solution tools which are only suitable for
LTI systems. The LTI assumption brings with it a relative error of up to 5%, mainly attributed to fact that
the position of the leg inertia is a function of time, introducing harmonic system properties.

The models and methods have been extensively cross verified. Also the basis of the bicycle-rider model
has a benchmarked bicycle model at it’s basis, of which the lateral dynamics have been validated using ex-
perimental approaches. However validation of the specific results for the lateral bicycle behaviour due to the
pedalling disturbance is not a simple matter, since cycling on a bicycle without controlling the system brings
with it large challenges in safety and experimental design. In Section 4 a comparison of the results of open
loop model developed here is compared to experimental results.

The bicycle roll and steering angles show motions which are directly coupled to the disturbance. For the
open loop model, the amplitudes of these motions are typically around 0.5◦ to 1◦ (≈ 0.01 to 0.02 rad) for
normal cycling speed and cadences. The amplitude response is found to be dependent on forward speed,
cadence, posture and bicycle design parameters.

We developed a simple method of applying a pedalling disturbance to an easily obtained linearised bicy-
cle model. The pedalling response is shown to exhibit dangerous resonance behaviour for some bicycle-rider
combinations within the normal cycling range. This method could used directly by bicycle designers to inves-
tigate the behaviour due to pedalling disturbance before the bicycle is fabricated and avoid such dangerous
behaviour. It is also very useful in future research (see Section 5.1).
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4 Closed Loop Response and Model Validation

This study so far has developed a method of identifying the lateral dynamic response of an uncontrolled
bicycle-rider system to a pedalling disturbance. This is part of a larger effort in the bicycle dynamics field to
better understand the bicycle-rider interaction in order to be able to improve safety and handling properties
of cycling. (Kooijman et al. (2009); Moore et al. (2011); Schwab et al. (2012, 2013); Vlakveld et al. (2015);
Kalsbeek (2016))

One of the motives, of starting this study’s specific line of research, was understanding experimental results
of Moore et al. (2011). They performed an extensive experimental study by cycling on a large treadmill and
capturing bicycle and rider motion. Multiple riders, postures, bicycles and cycling conditions were tested
often giving rise to as many questions as answers. They found and quantified a range of rider and bicycle
motions that were somehow coupled to pedalling. However what the function of these movements are or how
they exactly are coupled is not clear. It could be that they are a direct response to the pedalling disturbance,
they are a result of passive or active control methods, they somehow contribute to the pedalling performance,
they are somehow biomechanically coupled (through muscle-tendon attachments etc) or a combination of all
of some of these aspects.

Since it is not possible to simply switch off all but one of these aspects to identify it’s contribution in
an experimental set-up, we chose a modelling approach to identify the direct response to the pedalling dis-
turbance. This is a first step in understanding the coupling of the found bicycle and rider movements and
pedalling. In this section we will take a second step to by identifying the lateral motion bicycle motions for
the full motioned closed loop system. We will compare the behaviour of specific cycling conditions to the
open loop system as general validation of the developed model and investigate the influence of control and
upper body motions. In Section 5.1 we will explore possible next steps that could be taken to get a full
picture of the rider behaviour due to pedalling.

In this section we will use experimental results of previous research to identify the response of pedalling
on the steering and roll (lateral motions) of the bicycle. It is important to note that it is not reasonable
to expect that the developed modelling results directly agree with experimental results. This is because the
modelling results correspond to an uncontrolled system and normal cycling without controlling the bicycle
is not feasible. Here we will however compare the modelled uncontrolled system results with the measured
controlled system in order to ascertain the contribution of the direct pedalling disturbance to the total lateral
motion response. With this comparison we address the following research question: ’What is the nature of
the coupling between steering and pedalling?’.

We will compare our direct response results to the experimental results of Moore et al. (2011). This
data is available for open use and has a wealth of partly undiscovered and unpublished experimental results.
Moore et al. (2011) characterised the higher steering angle amplitude found at the pedalling frequency as
a ’steering action’. This implies that the rider had to take ’action’ for the steering angle change to occur,
however in Section 3 we found a significant response in the steering angle as a direct result of the disturbance.
It would therefore be interesting to investigate the contribution of the direct pedalling response to the overall
response of the lateral bicycle motions we see in real cycling.

This means that the investigation in this section is twofold. For some cycling conditions, such as hands
free cycling in the self-stable forward speed region, we expect the influence of the control actions to be very
small. This would mean that we also expect a better agreement with the open loop system for these cycling
conditions. These conditions where we expect a reasonable model agreement are ascertained and used for
model validation. If this validation step generates reasonable results, we can use the other cycling conditions
to get an impression what the contribution is of the direct response to the overall response. With this line
of questioning we could also possibly identify the behaviour that can and cannot be predicted by our simple
uncontrolled model, opening a path for recommendations and future work.

4.1 Method

The parameters and upper body postures we use in our four models correspond to the parameters and
upper body postures of a specific rider and two bicycles used in the experiments by Moore et al. (2011).
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The data corresponding to the model CF, city bicycle with flexed arms posture, was the only data pub-
lished in the original article (Moore et al., 2011), however all the experimental data is obtainable (at
https://github.com/moorepants). Two different bicycles were used, a hybrid bicycle (Batavus Stratos) and a
city bicycle (Batavus Browser), which have different associated rider postures (Figure 4.1). The cyclist rode
the bicycles with his hands on the handlebars and hands free. These postures correspond to the models HS
and HR for the hybrid bicycle and CF and CR for the city bicycle respectively (Figure 3.4). Also several
different forward speeds and gear ratio’s (with associated cadences) were tested. For some tests the bicycle
was towed (instead of a pedalling, the rider kept the legs still) to see the influence of pedalling on rider
behaviour. The motion of the rider and the bicycle was captured using 20 active markers on the rider and
11 markers on the bicycle (for location see Appendix C).

From these markers the front and rear frame orientations of the bicycle and the corresponding roll and the
steering angles are obtained following method defined in Moore et al. (2011). Methods defined in Section 3.1
are used to generate model results. Marker data from the right foot is used to synchronise the experimental
with model time results. This data is also transformed to the frequency domain (Section 3.1.2.1.1) in order
to obtain the cadence. The cadence is used together with the forward speed to generate specific matching
results using the non-linear pedalling model (Section 3.1.2.1) and the linearised torques model (analytic time
series and particular solution Section 3.1.2.2).

These experimental and modelling results are compared in time domain and frequency domain. The
roll and steering amplitudes corresponding to the cadence frequency are used as a measure for disturbance
response and the RD (relative difference, Section 3.1.3) is calculated of the model results compared to the
measurement results

Figure 4.1: Postures corresponding to the hybrid bicycle (left), the city bicycle (right), hands on the handle-
bars (top) and hands free cycling (bottom) corresponding to experimental data (Moore et al., 2011; Schwab
et al., 2012). These are represented by models HS, CF, HR and CR shown in Figure 3.4.
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4.1.1 Model Validation

The model we developed in Sections 2 and 3 is an open loop model (a model without control). We would
expect the open loop system to have the best agreement with the closed loop system for forward speeds in
general the self-stable forward speed range and above.

Our model is used to ascertain the direct response of pedalling on the lateral bicycle movements, it there-
fore does not include upper body movements associated with pedalling. The upper body is added to system
either as rigid attachment to the bicycle frame or as a mechanism attached to the handlebars effectively
attaching inertia to the front frame assembly. However the attached arms would also add passive stiffness
and damping properties to the handle bars. These properties are connected to biomechanical systems such
as connective tissue, passive elements of the muscle-tendon system, active elements through co-contraction
and muscle reflexes. Also the rider is thought to add more control to the system when the rider holds the
handlebars, this is seen in the measurements, as the rider was not able to ride the bicycle below 12 km/h.
Therefore the models corresponding to the hands free cycling condition (model HR and CR), would be best
suited to validate the direct pedalling response.

If we use these criteria, we can use 7 tests to compare the model results to the experimental results. These
tests correspond to the following cycling conditions:
4 tests for the system HR: v = {18.1, 20, 25, 30} km/h; ω = {84, 82, 88, 78} rpm
3 tests for the system CR: v = {20, 25, 30} km/h; ω = {77, 64, 70} rpm

4.1.2 Open Loop Compared to Closed Loop Response

When we have identified the model error for the direct open loop response, we can use the other models and
cycling conditions to estimate the contribution of the direct response to the overall response. This means
that the difference between the open loop modelled results and the full rider closed loop measurements that
cannot be attributed to a model error, can be seen as a measure for the overall behaviour that is not captured
by the contribution of direct response.

4.2 Results and Discussion

Table 4.1 shows the measurement and model roll and steering amplitudes for the cycling conditions proposed
for model validation. We see that the modelled amplitudes are in the same order of magnitude as the
measured amplitudes and are in some cases higher and in some cases lower. The relative difference varies a
lot with a median value of < 20% and range of around 30% & 80%. This relatively high variation around the
median error value could be in part by the low number of test used for comparison combined with the high
variability in the experiments due to other disturbances and human factors. With this in mind, the model
does capture the overall trend of the measurement data very well, where a larger scale experimental study
could possibly shed light on the contribution of variability in de experiments to the relative difference.

In Figure 4.2 through 4.5 we can see 6 example measured and modelled roll and steering angle results as a
function of time, for the systems HS through CR respectively. In general we see that our modelled result can
give good predictions of the measured signals. If we first look at the high speeds for the hands free systems,
we can recognise the cadence frequency as the dominant frequency in the measurement result. They seem
to be not only of a similar amplitude, but also phase compared to the modelled signal. We would expect
the model and the measurement to have the best agreement for these conditions, since the effect of control
should be small. This is because the system is stable, thus there is not a lot to control. Also the bicycle rider
cannot control the system very effectively without using steering as a direct input (Schwab et al., 2012). This
was also seen during the measurement, as low forward speeds were not obtainable for the hands free cycling
postures.

For low forward speeds tests, the experimental results for all the four systems show very erratic behaviour.
The amplitudes are large and the cadence frequency is not easily recognisable any more by eye.

Figures 4.6 to 4.9 show for the same 6 examples results of the roll and steering frequency domain for the
four systems. In general we can see large low frequency content for low forward speeds, which could indicate
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Table 4.1: Model validation. Roll φ and steering δ amplitudes at cadence frequency, corresponding to
cycling conditions used for open loop model validation. These are high forward speed cycling conditions,
corresponding to a stable weave mode, for the hands free cycling models and measurements. The difference
and the relative difference are also shown together with their mean and standard deviation value.

system HR system CR median (range)
Forward speed v [km/h] 18.1 20 25 30 20 25 30

Cadence ω [rpm] 84 82 88 78 70 64 77

Measurement |φ(ω)| [rad] 0.011 0.011 0.014 0.014 0.017 0.019 0.019
Model |φ(ω)| [rad] 0.009 0.011 0.013 0.017 0.011 0.016 0.016

Difference [rad] 1.8E-3 1E-4 7E-4 -2.8E-3 5.4E-3 3.0E-3 3.5E-3 1.8E-3 (8.1E-3)
RD [%] 16.1 1.2 5.3 20.0 32.6 15.7 18.0 16 (31)

Measurement |δ(ω)| [rad] 0.025 0.020 0.017 0.010 0.031 0.022 0.020
Model |δ(ω)| [rad] 0.021 0.021 0.021 0.018 0.022 0.022 0.021

Difference [rad] 4.8E-3 -7E-4 -3.7E-3 -8.3E-3 8.2E-3 4E-4 -5E-4 -5E-4 (1.7E-2)
RD [%] 18.8 3.3 21.8 83.0 26.8 1.8 2.5 19 (81)

the presence of low frequency noise and control actions. For higher forward speed, the frequency content is
much calmer and a clear peak is visible at the cadence frequency.

System HS and CF show peaks at the second multiple of the cadence that are not seen in the model
results, especially in the steering angle frequency content. This second multiple would appear in the response
if the pedalling motion is not completely symmetrical or if the upper body motions are disturbing the system
at that frequency. Moore et al. (2011) performed a principle component analysis on the measurement data
of system CF, showing ’longitudinal’ upper body movement with a ’small lateral component’ at the second
multiple of the cadence. This description sounds similar to an upper body twist motion, which would be
expected to result in a steering disturbance. With careful inspection all four systems show small peaks at
the third multiple of the cadence, which were predicted from the model results as part of the pedalling
disturbance (see Section 2).

The hands free posture systems and system HS seem to show the best agreement with the modelled open
loop response in the self-stable forward speed range. For low forward speeds the closed loop systems show
very large amplitudes at the cadence frequency and also surrounding low frequencies. For the other cycling
conditions the hands on the handlebars systems seem to have a smaller closed loop compared open loop
response, where the hands free postures show smaller differences which are both higher and lower response.

The typical value of the cadence response varies from 0.005-0.05 rad for both the roll as the steering
angle. Which is in the same general order of magnitude as the found open loop responses. However, the
general trend seen as function of forward speed is not the same. The direct pedalling response to the roll
angle generally decreases with decreasing forward speed, however in the overall response, this behaviour is
not seen. The direct pedalling response on the steering angle does not exhibit any general difference for low
forward speeds, however the overall behaviour show a large increase in steering response. This differences in
response is probably due to the large effect only a minor disturbance can have on an unstable system. The
time series open loop solutions also showed large exponentially increasing behaviour for low forward speeds
in steering and roll angles, supporting this idea.

The different system responses are difficult to compare to each other, since the experimental conditions
(forward speed and cadence) are not consistent. This is due to the different gear ratios in the two bicycles and
the inability to control certain speeds for the hands free cycling conditions. This means that it not reasonable
to quantify the differences in overall system response based on this available data. We can however explore
general trends.

In order to get a more complete overview, the angle amplitudes at the cadence frequency corresponding
to the 4 systems are shown in Figure 4.10 and the relative difference of the model results compared to the
measurement results are shown in Figure 4.11. We can see that the relative distance results for the hands
free systems is lower than the hands on handlebars systems. System CF, without self-stable region shows
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Table 4.2: Median and range of the relative difference of the modelled open loop results compared to the
measured closed loop results.

System HS System CF System HR System CR

median RD |φ(ω)| [%] 59 134 40 47
range RD |φ(ω)| [%] 254 710 80 56

median RD |δ(ω)| [%] 53 86 40 42
range RD |δ(ω)| [%] 208 925 80 58

the least agreement (see Table 4.2). This supports the general notion that the arms add not only inertia to
the steering assembly, but also stiffness, damping and/or control which can be either active or passive.

Another possibility is that the model parameters are not accurate enough to capture the system response
to the disturbance correctly. For model CF the seat post length that was given in Schwab et al. (2012) was
inconsistent with the given rider parameters and or other bicycle dimensions, since the saddle height was
too high to allow for a full crank rotation. Here a choice was made to adjust the set post height to 0.96
trochanteric (hip) height, however this small change drastically changed the eigenvalue plot (Figure 3.9 and
E.1). It could be equally possible that the given leg length was actually incorrect, or any other number of
parameters. The possible effect of an error in different bicycle and rider parameters is difficult to predict.

Another possible problem with the CF model is that the Batavus Browser bicycle, has reasonably low
and wide handlebars. Some films are also available of the experiments, where the upper body posture is
not always consistent with the traditional city bicycle posture. Instead of always cycling with flexed arms,
riders sometimes seem to switch between a straight arm and flexed arm posture. Also the handle bar width
is modelled to be the same as the shoulder to shoulder width, however the arms seem to be directed a bit
outwards. Both the lateral positioning of the hands and the straight versus flexed arm posture can have a
significant effect on model behaviour Schwab et al. (2012).

Another thing that should be noted is that the measurements themselves can have errors. The experimen-
tal design was based on ascertaining general cycling behaviour and rider motion. This experimental design
would probably change if open loop model validation would be the aim of the study. For instance, the marker
placement would be adjusted or another measurement system all together would be adopted or combined to
get accurate angle measurements, the number of repetitions per cycling condition would increase, in order to
obtain measurement variability, the rider’s upper body movements would be restricted or discouraged etc.

April 19, 2016 77 of 128



The influence of pedalling on the lateral dynamics of cycling ® Patricia M. Baines

Figure 4.2: Modelled open loop response compared to measured closed loop response for 6 example ex-
perimental conditions. The roll (left) and the steering angle (right) is shown as a function of time. The
experimental condition combinations are numbered and indicated in the particular solution contour plot
(top). The results correspond to system/model HS.
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Figure 4.3: Modelled open loop response compared to measured closed loop response for 6 example ex-
perimental conditions. The roll (left) and the steering angle (right) is shown as a function of time. The
experimental condition combinations are numbered and indicated in the particular solution contour plot
(top). The results correspond to system/model CF.
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Figure 4.4: Modelled open loop response compared to measured closed loop response for 6 example ex-
perimental conditions. The roll (left) and the steering angle (right) is shown as a function of time. The
experimental condition combinations are numbered and indicated in the particular solution contour plot
(top). The results correspond to system/model HR.
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Figure 4.5: Modelled open loop response compared to measured closed loop response for 6 example ex-
perimental conditions. The roll (left) and the steering angle (right) is shown as a function of time. The
experimental condition combinations are numbered and indicated in the particular solution contour plot
(top). The results correspond to system/model CR.
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Figure 4.6: Modelled open loop response compared to measured closed loop response for the same 6 example
experimental conditions as the time series solution in Figure 4.2. The amplitudes of roll (left) and the steering
angle (right) is shown as a function of frequency. The experimental condition combinations are numbered
and indicated in the particular solution contour plot (top). The results correspond to system/model HS.
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Figure 4.7: Modelled open loop response compared to measured closed loop response for the same 6 example
experimental conditions as the time series solution in Figure 4.3. The amplitudes of roll (left) and the steering
angle (right) is shown as a function of frequency. The experimental condition combinations are numbered
and indicated in the particular solution contour plot (top). The results correspond to system/model CF.
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Figure 4.8: Modelled open loop response compared to measured closed loop response for the same 6 example
experimental conditions as the time series solution in Figure 4.4. The amplitudes of roll (left) and the steering
angle (right) is shown as a function of frequency. The experimental condition combinations are numbered
and indicated in the particular solution contour plot (top). The results correspond to system/model HR.
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Figure 4.9: Modelled open loop response compared to measured closed loop response for the same 6 example
experimental conditions as the time series solution in Figure 4.5. The amplitudes of roll (left) and the steering
angle (right) is shown as a function of frequency. The experimental condition combinations are numbered
and indicated in the particular solution contour plot (top). The results correspond to system/model CR.
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Figure 4.10: Experimental closed loop pedalling response shown as a single circle corresponding to each
experimental condition, in relation with the closed loop modelled response. The colour of the inside of the
circle corresponds to the value of the amplitude of the closed loop response and the border colour of the
circle corresponds to the relation between the modelled open loop amplitude and the measured closed loop
amplitude.
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Figure 4.11: An overview of the relative difference is shown for the modelled open loop response compared
to the measured closed loop response.
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4.3 Conclusion

In Sections 2 and 3 we developed a linearised dynamics model for a pedalling disturbance and the lateral
bicycle response respectively. In this section this open loop model has been validated using experimental
motion capture data corresponding to hands free cycling on a large treadmill. This is done by comparing the
open loop model to the closed loop measurement results, corresponding to experimental conditions closest
to open loop, where the open loop bicycle-rider system is self-stable. For these cycling conditions there is
a good qualitative and quantitative agreement between model and measurement, with relative difference of
16% for the roll angle and 19% difference for the steering angle.

For other conditions and normal cycling with hands attached to the handle bars the congruity is still
reasonable. However the relative differences between the modelled open loop responses and the closed loop
measured responses are for some cases much higher depending on system and cycling condition. For normal
cycling on a city bicycle this median relative difference is the highest (up to 130%) mainly attributed large
effects of upper body movements, passive stiffness and control, but could also be in part by model(parameter)
inaccuracies.

In normal cycling we see broad low frequency behaviour attributed to control. We see a response in the
second multiple of the cadence frequency attributed to upper body motions. We also see a lower cadence
response for medium to high speeds compared to the modelled closed loop response. This is attributed to
passive and active stiffness, damping and/or control by the arms on the handle bars. Overall the amplitude
is higher for low forward speeds and for hands free cycling, attributed to the high instability of the system.
The cadence frequency response in normal cycling varies from 0.25◦ to 3◦ (≈0.005 to 0.05 rad) for the roll
and steering angle depending on cycling conditions and posture.
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5 Conclusions and Recommendations

The nature of the pedalling disturbance is now understood and we are able to predict size and frequency
by an simplified model. The direct lateral response and the overall lateral bicycle-rider behaviour due to
pedalling are explored. This uncovered parameter dependencies and differences due to rider properties and
behaviour.

We developed and validated a simple method of applying a pedalling disturbance to an easily obtained lin-
earised bicycle model. Some bicycle-rider combinations exhibit resonance behaviour due to pedalling within
the normal cycling range, this model could be used to slightly change bicycle design parameters such that
this dangerous behaviour is avoided. It could also be very useful in future research (see Section 5.1).

®We ascertained the nature of the pedalling disturbance and identified parameters influencing it.

The disturbance on the lateral dynamics due to pedalling is caused by the vertical and the forward acceler-
ation of the left and right leg centre of mass. The vertical acceleration promotes an inertial torque disturbance
about the bicycle roll and the forward acceleration promotes an inertial torque disturbance about the steering
of the bicycle. These generalised inertial torques only contain odd multiples of the cadence frequency. Both
torques are proportional to the leg mass, the hip width and cadence squared. The steering torque is also
proportional to the mechanical trail (c cos(λs)) and inverse proportional to the wheelbase ( 1

w ), which are
the parameters associated with yaw-steering coupling. The rest of the amplitude and phase behaviour is
dependent on the geometry of the lower limbs and the saddle to crank axis distance and orientation defining
the forward and vertical motion of the leg centre of masses.

®We developed a pedalling disturbance model which can be easily applied on bicycle rider systems.

The modelled forward and vertical motion of the leg centre of masses is based on a leg kinematic model
represented by the motion of a dual 4-bar mechanism, consisting the saddle to crank axis frame part as
the base, the cranks, upper and lower legs. The motion of the leg centre of mass can be represented by
sinusoidal motions containing the cadence frequency and it’s multiples. This can be approximated by using
only the cadence frequency, with an error in the times series of 2% in forward direction and 3.4% in vertical
direction. These simplified motions result in a simple representation of the disturbance as sinusoidal torques
containing only the cadence frequency, which can be easily applied on the steering and roll of a bicycle model.

®We developed an easy method for determining the direct lateral response of pedalling.

We developed a model to ascertain direct lateral response to the pedalling disturbance. This open loop
model, with direct disturbance applied, represents the system that needs to be controlled by the rider. We
evaluated a range of model and solution methods to estimate the direct response corresponding to the ped-
alling disturbance.

A full non-linear dynamics model of the bicycle-rider system can be combined with the full leg kinematic
model developed in this study. However, generating solutions for a non-linear model can be consuming in both
implementation as computational time. Accurately ascertaining periodic direct responses for a non-linear
unstable system presents difficulties due to dominant transient response.

The developed sinusoidal roll and steering torques, the close approximation the pedalling disturbance,
can be easily applied to a linearised bicycle-rider model. Using the particular solution method, the periodic
response can be easily found, independent of stability characteristics of the bicycle-rider system. This method
is found to be reliable and computationally efficient. The easy method proposed here assumes a linearised
time-invariant (LTI) system where the pedalling disturbance is modelled as harmonic steering and roll torques
(as defined in Section 2). This modelling approach opens up a wide range system identification and solution
tools which are only suitable for LTI systems. The LTI assumption brings with it a relative error of up to
5%, mainly attributed to fact that the position of the leg inertia is a function of time, introducing harmonic
system properties.
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®We validated the model using experimental data.

The models and methods have been extensively cross verified. Also the basis of the bicycle-rider model
has a benchmarked bicycle model at it’s basis, of which the lateral dynamics have been validated using
experimental approaches. However validation of the specific results for the lateral bicycle behaviour due to
the pedalling disturbance is not a simple matter, since cycling on a bicycle without controlling the system
brings with it large challenges in safety and experimental design. Here it is done by comparing the open
loop model to the closed loop measurement results, corresponding to experimental conditions closest to open
loop, which is hands free cycling at a self-stable forward speed on a large treadmill. This comparison gives a
median relative difference of 16% for the roll angle and 19% difference for the steering angle.

®We explored the relation between direct response and overall response in normal cycling.

The bicycle roll and steering angle shows motion which is directly coupled to the disturbance. The am-
plitudes of these motions directly coupled to the disturbance are typically around 0.5◦ to 1◦ (≈ 0.01 to 0.02
rad) for normal cycling speed and cadences. Where the overall response for normal forward speed ranges
from around 0.25◦ to 3◦ (≈0.005 to 0.05 rad) for both roll and steering angle.

The measured overall cycling frequency response shows signs of control and upper body movements. We
also see a lower cadence response for medium to high forward speeds compared to modelled direct response
for normal hands-on cycling. However for both hands on and hands free we see a higher cadence response
for low speeds for the closed loop response compared to the open loop response. The differences between the
open loop direct response and the normal closed loop response is mainly attributed to instability and control,
but also to model inaccuracies, upper body movements, passive joint properties and posture control.

®We identified variables influencing the direct and overall lateral response for normal cycling conditions.

Both the direct and the overall pedalling disturbance response is found to be dependent on forward speed,
cadence, posture and bicycle design parameters. However the dependency seen in the direct response is in
some cases different that the dependency seen in the overall response.

The direct roll response generally decreases with decreasing forward speed, however in the overall roll
response, this behaviour is not seen. The direct steering response does not exhibit any general difference for
low forward speeds, however the overall steering response shows a large increase in steering response for low
speeds. This difference is attributed to instability associated with low forward speed.

5.1 Future Work

This study has uncovered differences in direct modelled open loop response and overall measured responses.
In order to better understand the nature of these differences we could combine the pedalling bicycle-rider
model presented in this study and extend it with upper body motions, passive elements and control. This line
of research would not only clarify differences found here, but also could be used to answer research questions
previously formulated in Appendix A which are mainly based on observations by Moore et al. (2011).

First we will look at the possible steps in understanding the nature and effect of the upper body move-
ments. A wide range of possible functions could possibly be linked with the seen upper body motions. The
upper body movements are somehow connected to pedalling, since these movements are much less dominant
for cycling conditions without pedalling (Moore et al., 2011). These upper body movements could for instance
be linked with lateral balance control, aiding the pedalling performance, posture control and biomechanical
coupling with pedalling motion.

As a part of this line of research we supervised a bachelor project group, which did some promising first
findings in upper body movement aided pedalling performance (Dijkink et al., 2015). They found indications
that forward backward motions, called bounce by Moore et al. (2011), could be adopted by cyclists to
aid pedalling performance. A 3D musculoskeletal modelling approach could possibly used to identify the
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physiological grounds on which this observation is based. This same line of investigation could also identify
if there is a biomechanical coupling between the upper and lower segments which could explain (part of) the
upper body motions.

First we would like to explore functions associated with posture control and lateral dynamics control. The
reason for the added upper body motions could possibly be due to the lateral perturbations associated with
pedalling. For instance the upper body motions could be adopted to keep the head level (posture control)
or compensate for the pedalling disturbance as a kind of feed forward control. In order to investigate this
it would be interesting to first ascertain the frequency information of the various upper body motions (the
bend, twist and lean) in relation to the pedalling motion. With the amplitude and the phase known, a simple
first estimation could be made to see if the phase of the upper motions would relate to an added disturbance
or a compensation of the pedalling disturbance. A similar approach to the one applied in this study to in-
vestigate the effect of the pedalling motion, could be applied to investigate the effect of an upper body motion.

Another possible line of research could lead us to better understanding the bicycle control. We would like
to better understand the choice that is made between different control actions. Why does the lateral knee
movement action only appear in low speeds and only when pedalling? How do the physiological capabilities
of the human neuromusculoskeletal and sensory system effect controllability and control effort? How does
the choice between different control actions change, based on disturbance type? It would be reasonable to
expect that a disturbance that is predictable, such as a pedalling disturbance, could be controlled by feed
forward control. Disturbances that are not predictable could possibly be controlled using different strategies
depending on frequency content. Aside from providing some intrinsic or passive stiffness Doria and Tognazzo
(2014), humans controllers can also for instance adapt their reflex gains according to frequency content of a
disturbance if it is in the low to medium frequency range (van der Helm et al., 2002) or apply co-contraction
to increase joint stiffness in the case of high frequency disturbance types. How do the control strategies
change with different tasks and cycling conditions? Schwab et al. (2013) found that control strategies change
with forward speed, which was attributed to the change in task.

For the identification of control, a standard approach is to measure the systems response to a disturbance.
This measurement can be used to fit parameters of a modelled controller in order to identify the control
strategy and control gains. During cycling, pedalling is a naturally occurring disturbance which could possibly
be used in a system identification approach. If an impulse type disturbance is desired, it could still be
important to take the pedalling disturbance into account.
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List of Symbols

Roman symbols - lower case

f generalised external force vector

q generalised coordinates

qh homogeneous solution

qp particular solution

c trail

f frequency

fs sampling frequency

g gravitational acceleration

l length

m mass

n number of

r radius

t time

v forward speed

w wheel base

x forward direction

y lateral direction, right

z vertical direction, down

Roman symbols - upper case

C damping matrix

F Cartesian external force vector

I inertia tensor

K stiffness matrix

M mass matrix

R rotation matrix

H Hanning window

L angular momentum

N number of samples

O origin

P power

T length time series

T torque

W work

CF city bicycle flexed arms

CR city bicycle rigid upper body

HR hybrid bicycle rigid upper body

HS hybrid bicycle straight arms

C saddle point

P rear wheel contact point

Q front wheel contact point

Greek symbols

δ steering angle

λ eigenvalue

λs tilt steering axis

ω cadence

φ roll

ψ yaw

θ pitch

δ virtual/variation

ϕ angle in complex plane

ξ eigenmode

Subscripts

lhh hip to hip length

xmax maximum

xtan tangential

xA crank axis

xcr crank

xle left

xll lower leg

xL leg

xri right

xul upper leg
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A Research questions

What is the influence of the riders propulsive pedalling action on the dynamic behaviour and control of the
total bicycle-rider system? This main research question can be divided into smaller subquestions in order to be
able to further define the focus of this research. The subquestions are briefly discussed with attention to what
kind of approach would suit the question best. Here there are three main subdivisions for the approaches of
interest, namely experimental, dynamical modelling and biomechanical modelling, which also takes
the human physiology (e.g. musculoskeletal geometry, muscle characteristics and properties) into account.
The focus of this research lies with the first subquestion: ’What is the effect of pedalling on the lateral
dynamic bicycle behaviour assuming an uncontrolled system?’. Finally this research will touch upon the
third subquestion: ’What is the function of the rider’s upper body movements during cycling?’.

1. ’What is the effect of pedalling on the lateral dynamic bicycle behaviour assuming an uncontrolled
system?’

In order to better understand what system the human has to control, the dynamic behaviour of the
bicycle including a pedal disturbance (moving leg masses) needs to be investigated. Herein we are
interested in what the influence is of this disturbance when there is no control present. Since the
exclusion of control would pose a great challenge in implementation and safety for an experimental
approach, a dynamic modelling approach is better suited to the answer this question. The dynamic
behaviour of a bicycle, for instance the benchmarked Whipple bicycle (Meijaard et al., 2007) with rigid
rider or even a passive rider (Schwab et al., 2012), could be investigated when applying a suitable
disturbance.

(a) ’What is the disturbance associated with pedalling?’

This subquestion is discussed in detail in Section 2

(b) What is the direct effect of the pedalling disturbance on the lateral dynamics of a bicycle-rider
system?

This subquestion is discussed in detail in Section 3

(c) ’What is the nature of the coupling between steering and pedalling?’

Moore et al. (2011) shows a high steering angle amplitude at the pedal frequency. Is this high
steering angle amplitude at pedal cadence a direct result of the disturbance, a result of control
action or a combination of both? Moore et al. (2011) characterises this high steering amplitude
as a steering action, however this could be only part of the answer. If the steering amplitude is a
direct result of the disturbance and coupling between roll and steering angle of the bicycle could be
investigated using either a experimental, dynamical modelling or biomechanical modelling
approach. It would be interesting to investigate if this steering amplitude is higher due to the extra
control needed to compensate for the disturbance or if the steering angle amplitude would actually
be higher due to the disturbance and it is lower due to the damping effect of the control action of
the rider.

2. ’What is the function of the rider’s upper body movements during cycling?’

Experimental research shows that upper body movements are more prominent when the bicycle rider
pedals compared to when the bicycle is towed Moore et al. (2011). The trunk of the rider twists,
bends forward and sideways and leans laterally with a frequency coupled to the pedalling cadence. The
function of these movements are not fully understood. An insight to the possible function could be
made by investigating different aspects and possibilities associated with the upper body movements.

(a) ’Do the upper body movements add to or compensate for the leg disturbance?’

Using a dynamic model it could be investigated what upper body movements would in fact
compensate for the disturbance, possibly through some kind of optimization method. The feasibility
of these resulting upper body movements could be tested either by the use of a biomechanical model
or compared to experimental measurements.

Alternatively the upper body movements during pedalling could be recorded primarily using ex-
perimental approach. A dynamic model could be used to investigate the behaviour of the
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bicycle (similar to subquestion 1) with and without the addition of upper body movements in order
to compare the behaviour with and without the seen upper body movements.

(b) ’How does the task of balancing the bicycle influence the upper body movements associated with
pedalling?’

In order to better understand the function of the upper body movements it would be interesting
to see if the upper body movements are connected to the balancing task. For instance using
an experimental approach the upper body movements could be observed by comparing normal
cycling to cycling on a stationary bicycle.

(c) ’Are the upper body movements directly coupled to the leg movements?’

In order to better understand the upper body movements it would be interesting to investigate
the biomechanical coupling between the pedalling leg movements and upper body movements.
Possibly the functioning and structure of the musculoskeletal system contributes to this coupling.
It is plausible that the pelvis (or maybe even the spine) also moves or rotates as a direct result of
the active muscle contractions and inertial forces associated with pedalling. A three dimensional
musculoskeletal model including the legs and the trunk could be used to investigate the passive
effect of the pedalling action on the trunk movements.

(d) ’Could the upper body movements be aiding the pedalling performance?’

Besides passive upper body movements as discussed in subquestion 2c it could also be that the
rider actively moves their upper body in order to aid the pedalling performance. It could be that
the rider changes its upper body posture or moves their upper body forwards and backwards in
order to optimize the muscle length of a muscle spanning the hip joint according to its force-length
or force-velocity relationship. The rider could also possible rotate their pelvis in order to assist in
lifting their leg. These possibilities of active upper body movements in order to increase cycling
performance could be investigated using a biomechanical modelling approach as in subquestion
2c, or an experimental approach could also be applied. A rider’s performance could be measured
and compared where for instance some upper body movements are restricted or in fact encouraged.

3. ’What is the function of the lateral knee movements and why are they typically seen in very low speeds?’

Lateral knee movements are observed in low speeds of 5 km/h and below and Moore et al. (2011)
proposed that it could possibly be used as a low speed bicycle stabilization action. An interesting
observation is that if the bicycle rider does not pedal, but the bicycle is towed, the increasing lateral
knee movements for lower forward speeds is not observed. It is not clear however what conclusions can
be drawn from these observations due to the low number of subjects and observations in this study.
It would be interesting to investigate the functionality of this lateral knee movement for low speed
stabilization and cornering.

(a) ’Is there a coupling between lateral knee movements and pedalling?’

In a larger scale experimental study it could be investigated if there is a true difference in lateral
knee movements when the bicycle rider does or does not pedal. Also the general behaviour with
respect to forward speed or disturbances could possibly be identified in more detail.

(b) ’How are lateral knee movements used in cornering?’

It has been observed, in a casual setting, that the knees sometimes move lateral during cornering,
especially if the speed is high or the corner is tight. It would be interesting to determine the
prevalence of these lateral knee movements during cornering in an experimental study. Here it
would be interesting to investigate what aspects such as speed and cornering angle and duration
influence the behaviour.

Using a dynamical modelling approach functionality of lateral knee movements during cornering
could be investigated. Here the forces during a steady turn could be investigated, where the
influence of the lateral knee or upper body movement (both shift the center of gravity) are of
interest.

(c) ’What is the controllability for lateral knee movement and how does this change with forward
speed?’
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It would be interesting to see if the bicycle could theoretical be controlled using only lateral knee
movements using a dynamical modelling approach. It would also be interesting how the con-
trollability changes with forward speed. Possibly the modal controllability could be used to give a
measure of the effectiveness or difficulty of the control action as done for the steering action and
body lean action in combination of a passive rider in Schwab et al. (2012).

4. ’How does pedalling influence the bicycle rider’s choice between different control actions?’

Research has shown that the bicycle is controllable using different (combination of) control actions. It
is not fully understood how the bicycle rider chooses between the different possibilities. Investigating
the characteristics and capabilities of the different possible actions, could possibly shed some light on
how the rider chooses to control the bicycle. Subsequently the influence of the pedalling disturbance
could be investigated.

(a) ’How does dynamical controllability compare for the lateral knee movement, the body lean action
and/or the steering action?’

The controllability of the control actions as for the lateral knee movement discussed in subquestion
3c could be investigated using a dynamical modelling approach. Where the modal controllability
could be investigated as function of forward speed in order to give an indication if the choice between
control actions would likely depend on forward speed or not.

(b) ’In what way do the physiological capabilities effect controllability for the lateral knee movement,
the body lean action and/or the steering action?’

It is likely that physiological capabilities such as delay in reaction time due to neuromuscular
properties is different for the various control actions. Therefore it would be interesting to use a
biomechanical modelling approach in order to define the limitations and capabilities of the
control actions and investigate the influence on the controllability.

(c) ’How does the control effort compare for the lateral knee movement, the body lean action and/or
the steering action?’

It is thought that human are inherently lazy and that humans in some way try to optimize their
control effort when there are multiple control methods possible. What this control effort is, could
be defined in several ways. It would be interesting to apply different definitions of control effort and
investigate the differences between control actions. Depending on the definitions of control effort
used, a biomechanical and/or dynamical modelling approach would be applicable.

(d) ’How does the pedalling disturbance influence the control effort compared for the lateral knee
movement, the body lean action and/or the steering action?’

It would be interesting to in some way quantify the control effort needed to control the pedalling
disturbance. The influence of cadence on the control effort would be an interesting aspect of the
pedalling disturbance. Similar to subquestion 4c depending on the definitions of control effort used,
a biomechanical and/or dynamical modelling approach would be applicable.
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Figure B.1: Pedal disturbance visualized in a top, side and front view bicycle-rider schematic (transverse,
sagittal and frontal plane). Showing names of segments and hinges
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Figure B.2: SPACAR model visualized in a top, side and front view bicycle-rider schematic (transverse,
sagittal and frontal plane). Showing position node numbers.
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sagittal and frontal plane). Showing element types and numbers.
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The linearised matrices for the models corresponding to Figure 3.4.

M q̈ + vC1 q̇ + [gK0 + (v)2K2] q = f (B.1)

HS:

M =

[
87.931877425895138 2.339616241384371
2.339616241384371 0.664093946360865

]
(B.2)

C1 =

[
−0.000000000000018 39.121565684630056
−0.489133134732113 2.287316991742449

]
(B.3)

K0 =

[
−82.272183512820732 −2.650322167629509
−2.650322167629510 −0.963344735400068

]
(B.4)

K2 =

[
0.000000000000038 76.757780481550242
0.000000000000002 2.569130724497826

]
(B.5)

CF:

M =

[
95.989132934397517 1.310942631998618
1.310942631998618 0.445163608549845

]
(B.6)

C1 =

[
0.000000000000003 26.747934019121921
−0.449732670994970 1.123255142283839

]
(B.7)

K0 =

[
−86.484757626024262 −1.533471132193380
−1.533471132193379 −0.159421991189502

]
(B.8)

K2 =

[
−0.000000000000038 71.793424399431728
−0.000000000000001 1.398999802577024

]
(B.9)

HR:

M =

[
86.372365648886202 2.090336681637755
2.090336681637755 0.280347822207299

]
(B.10)

C1 =

[
−0.000000000000010 37.598475969351171
−0.489133134732113 1.607271698865928

]
(B.11)

K0 =

[
−81.445637690855648 −2.341783931373640
−2.341783931373640 −0.680761725783457

]
(B.12)

K2 =

[
−0.000000000000076 75.995147626871145

0 2.284450323677391

]
(B.13)

CR

M =

[
94.775551048722065 1.544632245453181
1.544632245453181 0.251156295922915

]
(B.14)

C1 =

[
−0.000000000000017 26.322539639992179
−0.449732670994970 1.072143825122140

]
(B.15)

K0 =

[
−85.851035901776569 −1.801203353821006
−1.801203353821006 −0.700891364044618

]
(B.16)

K2 =

[
−0.000000000000038 71.272661505973232

0 1.619009628770652

]
(B.17)
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B.1 Extra derivations: Leg Kinematics

Section 2.1.1 describes the kinematic model for the legs associated with the pedal action disturbance. Here
the segment COM positions are given as a function of pitch angles corresponding to Figure 2.1.

xricr = xA +

 1
2 lcr cos(θ̇At)

1
4 lhh

− 1
2 lcr sin(θ̇At)

 (B.18)

xrill = xA +

 lcr cos(θ̇At)
1
2 lhh

−lcr sin(θ̇At)

+

 1
2 lll cos(θrill)

0
− 1

2 lll sin(θrill)

 (B.19)

xriul = xA +

 lcr cos(θ̇At)
1
2 lhh

−lcr sin(θ̇At)

+

 lll cos(θrill)
0

−lll sin(θrill)

+

 1
2 lul cos(θriul)

0
− 1

2 lul sin(θriul)

 (B.20)

xlecr = xA +

 1
2 lcr cos(θ̇At+ π)

− 1
4 lhh

− 1
2 lcr sin(θ̇At+ π)

 (B.21)

xlell = xA +

 lcr cos(θ̇At+ π)
− 1

2 lhh
−lcr sin(θ̇At+ π)

+

 1
2 lll cos(θlell)

0
− 1

2 lll sin(θlell)

 (B.22)

xleul = xA +

 lcr cos(θ̇At+ π)
− 1

2 lhh
−lcr sin(θ̇At+ π)

+

 lll cos(θlell)
0

−lll sin(θlell)

+

 1
2 lul cos(θleul)

0
− 1

2 lul sin(θleul)

 (B.23)

B.2 Extra derivations: ’d Alembert Forces

Here extra derivation are shown in order to understand why the odd multiples of the cadence frequency (nω)
disappear in the ’d Alembert forces associated with the acceleration of both the leg masses.

FL =

∞∑
n=1

mL |XL(nω)| (nω)2(cos(nωt+ (ϕXL(nω))
T ) + cos(nω(t+ π/ω) + (ϕXL(nω))

T )) (B.24)

FL =

∞∑
n=1

mL |XL(nω)| (nω)2(cos(nωt+ (ϕXL(nω))
T ) + cos(nωt+ nπ + (ϕXL(nω))

T )) (B.25)

FL =

∞∑
n=1,3,5...

mL |XL(nω)| (nω)2(cos(nωt+ (ϕXL(nω))
T ) + cos(nωt+ nπ + (ϕXL(nω))

T )) + ...

∞∑
n=2,4,6...

mL |XL(nω)| (nω)2(cos(nωt+ (ϕXL(nω))
T ) + cos(nωt+ nπ + (ϕXL(nω))

T )) (B.26)

FL =

∞∑
n=1,3,5...

mL |XL(nω)| (nω)2(cos(nωt+ (ϕXL(nω))
T )− cos(nωt+ (ϕXL(nω))

T )) + ...

∞∑
n=2,4,6...

mL |XL(nω)| (nω)2(cos(nωt+ (ϕX(nω))
T ) + cos(nωt+ (ϕXL(nω))

T )) (B.27)

FL =

∞∑
n=2,4,6...

mL |XL(nω)| (nω)2 2 cos(nωt+ (ϕXL(nω))
T ) (B.28)

where |XL(nω)| =

|XL(nω)|
|YL(nω)|
|ZL(nω)|

 and (ϕXL(nω))
T =

[
ϕXL(nω) ϕYL(nω) ϕZL(nω)

]
, where XL(nω) is the

frequency domain of the leg centre of mass position as a function of time xL(t) at the n multiple of the
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cadence ω. Numerical values for the corresponding amplitudes and angles can be found in Table D.1. The
same principle is applied to the pitch torque TyL :

TyL =−
(
− xL(t)mLz̈L(t) + zL(t)mLẍ(t)− xL(t+ π/ω)mLz̈L(t+ π/ω) + zL(t+ π/ω)mLẍ(t+ π/ω) + ...

Iulθ̈ul(t) + Illθ̈ll(t) + Icr θ̈cr(t) + Iulθ̈ul(t+ π/ω) + Illθ̈ll(t+ π/ω)

)
(B.29)

TyL =

∞∑
n=1

mL

(
ZL(0)−XL(0)

)
|XL(nω)||ZL(nω)|(nω)2

(
cos(nωt+ ϕXL(nω)) cos(nωt+ ϕZL(nω)) + ...

cos(nωt+ π + ϕXL(nω)) cos(nωt+ π + ϕZL(nω))

)
+ ...

Iul|Θul(nω)|(nω)2(cos(nωt+ ϕΘul(nω)) + cos(nωt+ π + ϕΘul(nω))) + ...

Ill|Θll(nω)|(nω)2(cos(nωt+ ϕΘll(nω)) + cos(nωt+ π + ϕΘll(nω))) (B.30)

TyL =

∞∑
n=2,4,6...

mL

(
ZL(0)−XL(0)

)
|XL(nω)||ZL(nω)|(nω)22 cos(nωt+ ϕXL(nω)) cos(nωt+ ϕZL(nω)) + ...

Iul|Θul(nω)|(nω)22 cos(nωt+ ϕΘul(nω)) + Ill|Θll(nω)|(nω)22 cos(nωt+ ϕΘll(nω)) (B.31)

where XL(0) is the same as the average leg position x(t).
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C Measurement details
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Figure C.1: Markers location corresponding to experimental data used for validation (Moore et al., 2011).
The motion of the marker locations were captured using an Optotrak Certus motions capture system, which
uses active marker tracking. A wide range of experimental conditions were tested.
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D Extra Results: Leg Motion

Table D.1: Amplitude ([m]) and phase ϕ ([rad]) of the frequency domain of the leg movement XL in for-
ward direction XL and vertical down direction ZL, for the cadence frequency ω and 5 multiples thereof,
corresponding to four parameter sets. Hybrid bicycle corresponds to the Batavus Stratos seat tube angle
(λst = 75o

180oπ rad) and length (lsp + lst = 0.675 m); City bicycle corresponds to the Batavus Browser seat

tube angle (λst = 68.5o

180o π rad) and length (was lsp + lst = 0.77 m however changed to 0.72 m to accommo-
date a full crank rotation) (Moore et al., 2009; Schwab et al., 2012). Leg and crank length was for all the
models the same (lul = lll = 0.46 m, lcr = 0.17 m), as was leg and crank mass (mul = 0.1mBr = 7.2 kg,
mll = 0.061mBr = 4.392 kg, mcr = 0.2 kg). Mass distribution was homogeneously distributed over the seg-
ment in the original model (O), in the (W) models the anthropomorphic (cadaveric study based) distribution
was used, where the hip to upper leg COM length is lhul = 0.433lul and the knee to lower leg COM length
is lkll = 0.606lll.

Hybrid bicycle (O) Hybrid bicycle (W) City bicycle (O) City bicycle (W)

|XL(ω)| 6.8259476656324e-02 6.7036764095302e-02 6.4252452341344e-02 6.2676121374346e-02
|XL(2ω)| 3.4106520950128e-03 2.8528304119950e-03 6.5351118320257e-03 5.4662760260574e-03
|XL(3ω)| 1.6700544798569e-03 1.3969124018222e-03 2.5420187189442e-03 2.1262644524396e-03
|XL(4ω)| 9.4547451035010e-05 7.9083951155161e-05 4.5614432734313e-04 3.8154064766861e-04
|XL(5ω)| 9.1430720645033e-05 7.6476970731822e-05 2.4366885388220e-04 2.0381613176774e-04
|ZL(ω)| 1.0118961617754e-01 9.6237579627533e-02 1.0750314542041e-01 1.0187075009023e-01
|ZL(2ω)| 1.0302033582842e-02 8.6171071958647e-03 9.9362312047217e-03 8.3111328191147e-03
|ZL(3ω)| 1.1680883439239e-03 9.7704423043196e-04 1.1703737957297e-03 9.7895589020704e-04
|ZL(4ω)| 3.3807744093797e-04 2.8278393053560e-04 3.8305693065541e-04 3.2040689899071e-04
|ZL(5ω)| 5.3916956822366e-05 4.5098687834464e-05 9.5985359560070e-05 8.0286685722051e-05
ϕXL(ω) 6.6798096398621e-01 5.5571047853977e-01 8.1608359332365e-01 6.7468341457395e-01
ϕXL(2ω) -4.1757205447342e-01 -4.1757205447342e-01 1.2492162245544e-01 1.2492162245544e-01
ϕXL(3ω) -6.1095270756397e-01 -6.1095270756398e-01 -3.4987377096903e-01 -3.4987377096903e-01
ϕXL(4ω) 2.3267791778159e+00 2.3267791778160e+00 -1.9408258800042e+00 -1.9408258800042e+00
ϕXL(5ω) 3.0213870394282e+00 3.0213870394286e+00 -2.8352403356811e+00 -2.8352403356812e+00
ϕZL(ω) -1.8870790488577e+00 -1.8478804871292e+00 -1.7520992633349e+00 -1.7306357905351e+00
ϕZL(2ω) -1.0994568367078e+00 -1.0994568367078e+00 -1.0318955251126e+00 -1.0318955251126e+00
ϕZL(3ω) 1.1722573093763e+00 1.1722573093763e+00 2.1449382600272e+00 2.1449382600272e+00
ϕZL(4ω) 2.6395106431901e+00 2.6395106431900e+00 2.6071534948521e+00 2.6071534948521e+00
ϕZL(5ω) -1.3660176668061e+00 -1.3660176668067e+00 2.9950547344237e-01 2.9950547344252e-01
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Figure D.1: Pitch angle, angular velocity and angular acceleration for the crank the lower leg and the upper
leg, for a cadence of 60 rpm (= 2π rad/s)

E Extra Results: Eigenvalues Original Parameters Model CF
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Figure E.1: Eigenvalues λ as a function of forward speed v of the linearised equation of motion for a bicycle-
rider model CF, but then with original seat post length parameter. This change was necessary in our model,
because the leg length and seat post length were inconsistent, meaning that the legs could not make a full
pedal circle. The plot corresponds to Figure 5(b) in Schwab et al. (2012), since the only physical difference
is the slight modification of the leg configuration.

F Extra Results: Neglected Momenta using Conservation of An-
gular Momentum Method
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Figure F.1: Neglected momenta as a ratio of the pedalling disturbance momentum for a city bicycle (Batavus
Browser) with flexed arms attached to the handlebars. The area were all the neglected momenta terms are
less than a quarter of the pedalling disturbance momentum are filled in (top left corner). Also the gearing
range is depicted indicating the possible cadence and forward speed combinations. This ranges from gearing
ratio 1 till 4, equivalent to 1 till 4 times as many front sprocket teeth as rear sprocket teeth.

April 19, 2016 110 of 128



The influence of pedalling on the lateral dynamics of cycling ® Patricia M. Baines

Forward speed [m/s]
0 2 4 6 8 10

C
a
d
en

ce
[r
p
m

]

0

20

40

60

80

100

120

0.
25

0.
25

0.250.250.25

0.
25

0.
25

Neglected roll momenta ratio

Ratio of neglected term and pedal disturbance
0.01 0.1 0.25 0.5 0.75 1

Forward speed [m/s]
0 2 4 6 8 10

C
a
d
en

ce
[r
p
m

]

0

20

40

60

80

100

120

0.
25

0.
25

0.250.250.25

0.
25

0.
25

Neglected steering momenta ratio

gearing range (gearing ratio 1:4)
all neglected terms < 0.25jLLj
j(vC1q)j=jLLj
j(gK0

R
qdt)j=jLLj

j(v2K2

R
qdt)j=jLLj

Ratio of neglected term and pedal disturbance
0.01 0.1 0.25 0.5 0.75 1

Figure F.2: Neglected momenta as a ratio of the pedalling disturbance momentum for the hybrid (Batavus
Stratos) bicycle, with rigid rider. The area were all the neglected momenta terms are less than a quarter
of the pedalling disturbance momentum are filled in (top left corner). Also the gearing range is depicted
indicating the possible cadence and forward speed combinations. This ranges from gearing ratio 1 till 4,
equivalent to 1 till 4 times as many front sprocket teeth as rear sprocket teeth.
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Figure F.3: Neglected momenta as a ratio of the pedalling disturbance momentum for the city (Batavus
Browser) bicycle, with rigid rider. The area were all the neglected momenta terms are less than a quarter
of the pedalling disturbance momentum are filled in (top left corner). Also the gearing range is depicted
indicating the possible cadence and forward speed combinations. This ranges from gearing ratio 1 till 4,
equivalent to 1 till 4 times as many front sprocket teeth as rear sprocket teeth.
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G Extra Results: Time Solutions
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Figure G.1: Roll amplitude of the particular solution (left) and time solutions of other methods (right), for
model HS shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region is shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The linear and
non-linear models are also solved using a multiple frequency torque disturbance. And the non-linear model
is solved using prescribed leg motion as disturbance.
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Figure G.2: Roll amplitude of the particular solution (left) and time solutions of other methods (right),
for model CF shown bottom left in figure. There is no stable region, however the weave mode is stable
from 3.2 m/s (real part of eigenvalue of weave mode is negative from 3.2 m/s). The imaginary part of the
weave eigenvalue and is shown for reference. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The particular solution left
is the periodic cadence frequency component of the linear analytic time solution shown right, by definition.
The linear and non-linear models are also solved using a multiple frequency torque disturbance. And the
non-linear model is solved using prescribed leg motion as disturbance.
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Figure G.3: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model CF shown bottom left in figure. There is no stable region, however the weave mode is stable
from 3.2 m/s (real part of eigenvalue of weave mode is negative from 3.2 m/s). The imaginary part of the
weave eigenvalue and is shown for reference. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The particular solution left
is the periodic cadence frequency component of the linear analytic time solution shown right, by definition.
The linear and non-linear models are also solved using a multiple frequency torque disturbance. And the
non-linear model is solved using prescribed leg motion as disturbance.
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Figure G.4: Roll amplitude of the particular solution (left) and time solutions of other methods (right), for
model HR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region is shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The linear and
non-linear models are also solved using a multiple frequency torque disturbance. And the non-linear model
is solved using prescribed leg motion as disturbance.
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Figure G.5: Steering amplitude of the particular solution (left) and time solutions of other methods (right),
for model HR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region is shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The linear and
non-linear models are also solved using a multiple frequency torque disturbance. And the non-linear model
is solved using prescribed leg motion as disturbance.
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Figure G.6: Roll amplitude of the particular solution (left) and time solutions of other methods (right), for
model CR shown bottom left in figure. The six numbers corresponding to the six plots on the right are
indicated on the roll angle amplitude plot on the left, to indicate the speed-cadence combination belonging
the time solution. The isoline corresponding to the amplitude of the conservation of angular momentum
solution is shown in the particular solution contour plot on the left for comparison; the conservation of
angular momentum solution itself is independent on forward speed and cadence. The imaginary part of the
weave eigenvalue and the self-stable region is shown for reference. The particular solution left is the periodic
cadence frequency component of the linear analytic time solution shown right, by definition. The linear and
non-linear models are also solved using a multiple frequency torque disturbance. And the non-linear model
is solved using prescribed leg motion as disturbance.
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Figure G.7: Roll (left) and steering (right) amplitude of the particular solution of the linear second order
differential equation (Eq. 3.1) for the benchmark bicycle model (Meijaard et al., 2007) as a function of
forward speed and cadence. The amplitude is in rad, the forward speed is shown in m/s and km/h and the
cadence in rad/s and rpm. The result of using the principle of Conservation of Angular Momentum (CAM)
is shown using a slightly thicker bourgandy isoline, with a filled 25% error region surrounding it. There is a
maximum point seen at the forward speed (4.29 m/s) corresponding to an undamped eigenvalue (see Figure
3.6), where the real part is zero and the imaginary part is the resonance frequency corresponding to the
cadence (3.43 rad/s) of the maximum point.
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Figure G.8: Amplitude results for roll and steering assuming constant gear ratios, for the hands-free pedalling
rider on the benchmark model
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H Extra Results: Model Simplifications and Solution Method Eval-
uation
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Figure H.1: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of roll amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model HS. The self-stable speed region is indicated by a box and text and the
imaginary part of the eigenvalue of the weave eigenmode is indicated with a dashed line.
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Figure H.2: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of steering amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model HS. The self-stable speed region is indicated by a box and text and the
imaginary part of the eigenvalue of the weave eigenmode is indicated with a dashed line.
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Figure H.3: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of steering amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model CF. This bicycle-rider model is not self-stable and the imaginary part of
the eigenvalue of the weave eigenmode is indicated with a dashed line.
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Figure H.4: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of roll amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model CR. The self-stable speed region is indicated by a box and text and the
imaginary part of the eigenvalue of the weave eigenmode is indicated with a dashed line.
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Figure H.5: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of steering amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model CR. The self-stable speed region is indicated by a box and text and the
imaginary part of the eigenvalue of the weave eigenmode is indicated with a dashed line.
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Figure H.6: Model simplifications and solution method evaluation corresponding to points defined in Section
3.1.3. The relative difference of roll amplitude solutions is depicted as a function of forward speed and
cadence, corresponding to model HR. The self-stable speed region is indicated by a box and text and the
imaginary part of the eigenvalue of the weave eigenmode is indicated with a dashed line.
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