
Master thesis
Embedded Systems

Software and Technology

ARC: Anchored Representation Clouds
for High-Resolution INR Classification

Joost Luijmes

A thesis submitted to the Delft University of Technology in partial fulfilment of the
requirements for the degree of Master of Science in Embedded Systems.

Delft University of Technology
The Netherlands
December, 2024

Joost Luijmes. ARC: Anchored Representation Clouds for High-Resolution INR Classification (2024)

Supervisors Dr. J.C. van Gemert
MSc. A.S. Gielisse

Thesis Committee Dr. J.C. van Gemert
Prof. Dr. E. Eisemann

i

I Acknowledgements

I would like to express my gratitude to my supervisors Jan van Gemert and Sander Gielisse. Thank you for
your invaluable guidance throughout this thesis. In our meetings, both formal and informal, I gained so much
insight in what meaningful research entails. This thesis often raised unexpected results but your drive to dig
deeper and find answers was always a source of motivation. In extension, I would like to thank Elmar Eisemann
for agreeing to be a part of the thesis committee. Lectures from both you and Jan on the intersection of
visual media and computer science inspired me to pursue this topic.

Many thanks go out to my family, especially my parents, who never doubted my pursuit of a MSc degree
at a university, a journey which seemed so daunting at first. Your love and support was always tangible to
me. Thank you Linsey, for being there in moments of joy, despair, and otherwise. I would not have managed
without your support.

Joost Luijmes,
Delft, December 2024

ii

Contents

I Acknowledgements ii

1 Introduction 1

2 Background 2
2.1 Machine Learning . 2
2.2 Neural Networks . 2

2.2.1 End-to-end Learning . 4
2.3 Training Mechanics . 4

2.3.1 Loss values . 4
2.3.2 Back-propagation . 5
2.3.3 Optimisers . 5
2.3.4 Epoch . 5

2.4 Training Considerations . 6
2.4.1 Train, validation and test data . 6
2.4.2 Overfitting and generalisation . 6

2.5 Convolutional Neural Networks . 6
2.5.1 Equivariance, invariance, robustness . 7

2.6 Transformers . 7
2.6.1 Attention . 8

2.7 Implicit Neural Representations . 8
2.7.1 Common INR architectures . 8
2.7.2 INRs for downstream use . 9

2.8 Data . 9
2.8.1 Point cloud data . 9
2.8.2 Image data . 10
2.8.3 Datasets . 10
2.8.4 Toy datasets . 11

3 Scientific article 14

1 Introduction

Image classification is a foundational computer vision problem that over the past 15 years has symbiotically
driven major advancements in the field of deep learning. However, unresolved challenges persist, particularly
with the growing prevalence of high-resolution images. These images demand significant computational
resources to process, whether they come from mobile phones, medical diagnostics, or autonomous vehicles.

Alongside image classification research, the advancement of computer vision has led to the emergence
of the Implicit Neural Representation (INR) [18, 14, 15]. An INR is a neural network which, given a pixel
coordinate, learns to output the corresponding colour. After learning how to reproduce the image, the INR
has effectively encoded the entire image inside its weights. In contrast to images, an INR can freely distribute
its capacity over the image content. This way, the INR allows for a compressed representation of the original
image.

This raises the question whether INRs can be used as alternative representations of images in image
classification tasks. By transforming our objective from image classification to INR classification, we may
mitigate the typical issues that image classifiers face. Current INR classifiers are limited to low-resolution
images and possess limited robustness against image translation. In finding a way to classify images outside of
image-space, we have developed a novel type of INR called ARC, paired with an associated INR classification
method. In brief, we transform images into point clouds, coupling the INR’s latent space to the image coor-
dinate space. This spatial locality provides several advantages, including improved interpretability, enhanced
data augmentation opportunities, and compatibility with point cloud classification methods, which serve as
indirect image classifiers.

The main findings in this thesis are presented in Chapter 3 in the form of a scientific paper in CVPR
format. Though the paper is a stand-alone work, Chapter 2 discusses foundational concepts and terminology
from the paper which the reader may find useful.

1

2 Background

2.1 Machine Learning

Like any other algorithm, a machine learning (ML) algorithm aims to produce relevant outputs when given
some inputs. For a regular algorithm, we would define a series of instructions that describe exactly how some
input becomes an output. In machine learning, things work differently. A structure is defined wherein variable
parameters affect how the input is manipulated. A change in these parameters will bring about a change to
the outputs of the algorithm. As such, in machine learning, one of the main objectives is to obtain a set of
parameters that enable the machine learning algorithm to perform optimally at its task.

How this set of parameters is found leads us to supervised machine learning. In supervised ML, we itera-
tively improve the parameters via a process called ‘training’ or ‘fitting’ whereby the ML algorithm seemingly
‘learns’ to produce better outputs each iteration in which the parameters are updated. The term supervised
refers to how the algorithm is given feedback; we let the algorithm compute an output given some input.
Then output is compared to the expected output, whereby we quantify the error. This error is then used to
update the parameters. In other words, we continually supervise the algorithm during its training phase. To
perform this supervision we need a dataset; a set of inputs and corresponding outputs with which we can
supervise and train the algorithm.

For instance, a dataset may be a collection of cat and dog images with corresponding labels. To humans
it is obvious which image we would classify as ‘dog’ or ‘cat’, but to the machine learning algorithm, all these
images are just sets of RGB pixels. When the data is labelled, the algorithm can receive useful feedback
allowing it to learn what image characteristics differ one set of pixels from another, and consequently, what
differentiates dogs from cats. The way such feedback leads to changes in the algorithm’s parameters is
described in Training Mechanics, page 4.

Machine learning is a broad field that embodies many types of algorithms and learning methods. In this
thesis, the scope is limited to a particular type of ML method named neural networks.

2.2 Neural Networks

Neural networks (NNs) are a class of machine learning algorithms. Put simply, an NN consists of many simple
functions that are chained together to form a complex composite function, parametrised by learnable param-
eters. A particular composition of functions is named an ‘architecture’. The architecture is typically fixed in
place, whereas the parameters will change during training. In the particular case where a set of parameters is
not iterated on during training, they are ‘frozen’.

The simple function that a typical neural network is built from, is a first-degree polynomial ax+b wrapped
in a non-linear function ϕ.

h(x) = ϕ(ax+ b) (1)

The parameters a and b are ‘trainable’, i.e. it is these parameters that will be updated throughout the neural
network training process (see Training Mechanics, page 4). ϕ is a non-linear function called the ‘activation
function’. The activation function is typically predefined and contains no trainable properties. Without ϕ, h
would be a linear function regardless of the values that parameters a and b attain. Linear functions are not
very flexible however, so for non-trivial tasks ϕ is required to obtain a useful NN.

h can easily be extended to multi-variable inputs and outputs.

h : Rdin 7→ Rdout h(x) = ϕ(Ax+ b) (2)

Where A ∈ Rdout×din is called the ‘weight’ matrix and b ∈ Rdout is called the ‘bias’ vector. Again, these are
the parameters that will be updated throughout the training process. h can now take in a vector, like an RGB
colour x ∈ R3 or an entire (but flattened) black-and-white image x ∈ RHeight·Width, producing a vector output
y ∈ Rdout . Eq. (2) describes a single ‘linear layer’ with an activation function ϕ. A common visualisation of a
linear layer is depicted in Fig. 1a, where an input vector x ∈ R2 is mapped to an output vector y ∈ R4. The
output of a single node, e.g . y0, is called an ‘activation’.

2

(a) A single linear
layer.

(b) The underlying operations hiding
beneath the typical depiction of a sin-
gle linear layer.

Figure 1: An illustration of h Eq. (2). A linear layer maps an input vector x ∈ R2 to an output vector y ∈ R4.

Though the representation of a neural network layer in Fig. 1a is commonplace in literature and education,
it hides some intricacies (Fig. 1b). Nodes denote a scalar value, like how the leftmost two nodes depict the
input vector x. The next layer of nodes, and the edges towards them, depict the application of h Eq. (2).
Edges represent multiplication with a value from the weight matrix A. A node depicts an activation: the
summation of incoming values followed by adding a bias term from the bias vector b and the subsequent
application of the activation function ϕ.

As alluded to at the start of this section, a neural network is formed when functions h (Eq. (2)) are
composed together. A simple neural network can hence be defined as fθ(x) = hL(hi−L(...(h2(h1(x))))).
Each layer has its own learnable weight and bias parameters, which are collectively referred to as the ‘weights’
of a network, or θ.

Straightforward chaining of linear layers creates a type of NN called a multi-layer perceptron (MLP). An
MLP mapping an input vector x ∈ R2 to an output vector y ∈ R4 is visualised in Fig. 2.

Figure 2: An MLP mapping x ∈ R2 to an output vector y.

Input data x is ‘fed’ into the first layer h1 of the neural network, producing an intermediary result. This
intermediary result then serves as the input to the second layer h2, and so on. When the final layer is reached,
the network’s output is a heavily transformed version of what was input into the neural network. This act
of propagating a unit of data from beginning to end is called a ‘forward pass’. Generally, adding more layers
to a network or increasing the nodes per layer increases an NN’s ability to model complex functions. This
ability is referred to as the ‘capacity’ of an NN. An NN with several layers makes for a ‘deep’ network, giving
rise to the term ‘deep learning’. The high-dimensional space that transforms the neural network input is also
referred to as the latent- or weight-space.

An MLP is a straightforward architecture and sufficiently powerful to solve complex tasks, such as classi-
fying digits from images. For this example, let us consider the MNIST dataset [12] of 60k images of single
handwritten digits from 0 to 9 inclusive. We need to somehow input a 2D image and obtain a single value
from the MLP. As the in- and outputs of the MLP must be vectors, the input image R28×28 is flattened to
R784. We can let the final layer map to a scalar output y ∈ R1, but this would imply that an image depicting
‘1’ is more similar to ‘0’ and ‘2’ than e.g . ‘7’. In contrast, an input image of a ‘1’ looks more like a ‘7’ than
either a ‘0’ or a ‘2’. In classification problems, it would be bad practice to imprint some type of ordering
into the classes. Instead, classification problems such as this one convert the label to a one-hot encoding
(Figure 3). For our MNIST classification task, the final layer of the network should now map to y ∈ R10,
which can be interpreted as the NN computing the likeliness of each class depicting the digit. On MNIST, a
simple MLP can obtain a classification accuracy of 97.2% [21].

3

Figure 3: Depiction of how a one-hot encoding is obtained. The image label serves as an index into a zero-
vector of length equal to the number of classes in the dataset.

2.2.1 End-to-end Learning

In the example of digit classification, we passed the entire image to the NN and expected it to learn why the
image denotes a particular digit. Which image features are relevant to decide the digit type is left entirely to
the NN. This is an example of end-to-end learning, whereby we do not explicitly tell the NN what features
to look for but instead trust the NN’s flexibility to learn these during training. Before deep learning took
on a prominent role in computer vision, classification systems would be provided with hand-crafted features
designed to capture relevant patterns in the input data such as edge detection, histogram of oriented gradients
(HOG), or scale-invariant feature transform (SIFT). These features were then fed into a separate classifier,
such as a support vector machine (SVM) or a decision tree, to perform the final classification. In end-to-end
learning, feature extraction and feature classification are intertwined. By optimising the NN to minimise a loss
function, the NN learns which features are relevant to the task at hand. For example, in digit classification,
the NN might learn that round strokes are common in images depicting 8s and 0s, whereas vertical strokes
pertain to 1s.

Notably, the topic of this thesis – INR classification – violates the end-to-end learning mechanism. This
is described in more detail in Implicit Neural Representations, page 8.

2.3 Training Mechanics

Training a neural network is performed by repeating the following procedure.

1. Perform a forward pass to compute the output ŷ

2. Compute the loss value L(ŷ,y)

3. Compute how each weight contributes to L(ŷ,y) using back-propagation

4. Update all weights proportional to their influence on L(ŷ,y) by following the optimiser’s rules

Steps 2, 3 and 4 will be expanded upon in this chapter.

2.3.1 Loss values

For a given input, an untrained network will likely produce an output ŷ that is far off of the ground truth label
y. The difference between ŷ and y can be quantified by a loss function L(ŷ,y). For instance, if ŷ, y ∈ R1,
the mean squared error (MSE) could be used.

L(ŷ, y) = (ŷ − y)2 (3)

If ŷ = y, the loss value is 0 i.e. the output could not be more correct. However, if ŷ deviates from y, the
error will grow quadratically, thereby punishing large deviations more than small deviations.

If ŷ,y ∈ Rn, n > 1, the multivariable MSE loss is defined as follows.

L(ŷ,y) = 1

n

n∑
i=1

(yi − ŷi)
2
=

1

n
∥ŷ − y∥22 (4)

What remains is how a loss value is converted into a meaningful change to the network’s parameters, such
that it improves on its task. The missing link between loss value and parameters back-propagation.

4

2.3.2 Back-propagation

Say we have performed a forward pass for a given input and have obtained an output. With the loss function,
the ‘goodness’ of this output is computed. How has each weight a of the NN contributed to this ‘goodness’?
The goal of back-propagation is to quantify this, so we can later update each weight into the right direction.
More specifically, how does a particular weight a affect ŷ, and consequently, the loss function L = (ŷ,y).
This study of change naturally leads to derivatives, or more specifically, partial derivatives as a is just one of
many weights that contribute to the loss.

The derivative of the loss function (abbreviated to L) with respect to a can be expressed as:

∂L

∂a
=

∂

∂a

1

n
∥fθ(x)− y∥22 (5)

where fθ(x) is the output of the neural network parametrised by θ where a ∈ θ.
Say a is not in the final layer of the NN, but instead in the second-to-last layer. a will not directly influence

ŷ and L but instead only affect the inputs of the final layer. This indirection naturally translates to the chain
rule of derivates:

∂L

∂a
=

∂L

∂z
· ∂z
∂a

(6)

where z represents any intermediate node between a and the loss value L. By recursively applying the chain
rule, back-propagation computes how changes in a ripple through the network and affect the loss. Back-
propagation Eq. (6) also enforces an order of operations: if a is a parameter in the first layer of the MLP,
all intermediary partial derivatives of the parameters between a and L are to be computed first. Whereas we
go forwards in the network during a forward pass, we go backwards during the back-propagation algorithm,
computing all partial derivates for each learnable parameter along the way. To generalise this to multi-
variable cases, we consider the partial gradient. For the sake of keeping the explanation simple, we omit this
step. Importantly, to compute the derivatives, we require the activation of each intermediate node that was
computed during the forward pass. This can lead to particularly high memory demands for large models, large
intermediate values, or large input data.

2.3.3 Optimisers

Informed by the back-propagation algorithm, the optimiser will update all the parameters to take a step in the
right direction and reduce the loss. The magnitude with which the parameters are updated is controlled by
the learning rate. This important hyperparameter affects how quickly, if at all, the NN converges to a set of
parameters that minimises the loss. Optionally, the learning rate can be altered during training by a learning
rate scheduler, benefitting convergence.

Different types of optimisers exist such as stochastic gradient descent (SGD) or Adam [9]. The Adam
optimiser is generally more robust than SGD against suboptimal choices for the learning rate [30]. A downside
of Adam is that it maintains state, occupying at least 2× the model size [28], which can be problematic for
large models. Nevertheless, Adam is the most used optimiser in INR literature, where model size is usually
not an issue.

2.3.4 Epoch

To summarise, as introduced at the beginning of this chapter, the following steps constitute a singular
improvement to the neural network parameters.

1. Performing a forward pass to compute output ŷ

2. Computing the loss value L(ŷ,y)

3. Computing the influence of all weights on l using back-propagation

4. Updating all parameters following the optimiser’s rules

This sequence represents a single improvement to the NN, referred to as a training step.
In practice, the above steps are rarely performed on a single input-output pair (x,y). Instead, training data

is divided into small subsets called mini-batches. A mini-batch is a small group of samples from the dataset
that are processed together during a single training step. Using mini-batches requires sufficient memory to
propagate multiple samples through the NN, and retain their activations for the optimiser step. However, the
loss and gradient are averaged over the batch dimension. Hence, by considering mini-batches, the gradient will

5

be more smooth compared to when each sample gets its own gradient. A large batch size reflects the gradient
over the whole dataset more accurately and make the training loss converge in fewer epochs. However, when
combatting overfitting (Overfitting and generalisation, page 6) a small batch size can be used on purpose, to
make the model generalise better to unseen data.

2.4 Training Considerations

2.4.1 Train, validation and test data

Consider a classification problem where we measure the NN’s performance by its classification accuracy. For
an appropriately sized NN and dataset, one may find that the NN will fairly quickly classify the entire dataset
without errors. It seems like the NN is performing outstandingly but we are likely observing overfitting. One
has to consider that an NN is very flexible and may just recall some unique spurious feature for each entry in
the dataset which tells the NN its class. Instead, to fairly assess how well the NN works, we must assess the
NN on data which it has not yet seen before. We typically set aside some training data as a validation set.
After each epoch on the training data, the NN is evaluated on the validation dataset. When overfitting, we
will observe that the train loss decreases whereas the validation loss increases which is similarly reflected in
the train and validation accuracy. This signifies that the NN is simply recalling spurious features about the
train data such that the train loss minimises but which bear no relevance to unseen data. In fairness, this
is a reasonable consequence of the objective function which requires the NN to minimise the training loss,
however, the resulting NN is not useful to us as it would be useless on new, unseen data. Instead, we tune
our model to perform well on the validation set. An issue is that, whilst we do not openly use the validation
set for training, we do use it to steer our design and tuning decisions. In a way, the validation set is used in
training the model as it influences it indirectly. For this reason, the test set exists. Like the validation set,
the test set is not used in training, but even more strictly, the test set must not inform any tuning decisions.
It provides an unbiased estimate of the model’s performance on unseen data.

2.4.2 Overfitting and generalisation

Overfitting is when the NN learns shortcuts rather than meaningful features to obtain a low loss. Subsequently,
the NN will perform very poorly on unseen data. This often stems from the model exploiting correlations or
biases in the training set rather than the true underlying structure of the data. For example, in the Waterbirds
dataset, models can mistakenly rely on the background, e.g . water or land, rather than the actual bird’s
features to classify images [20]. Instead, we want our model to generalise well to unseen data.

Regularisation To combat overfitting, so-called regularisation techniques are employed. These techniques
aim to make it somewhat more difficult for the model to overfit on the train set.

One class of regularisation techniques actively hinder the ability of the model to memorise the training
set. For example, ‘weight decay’ discourages large weights which lead to smoother and more generalisable
solutions. ‘Dropout’ is another such technique which temporarily disables a random subset of nodes during
each training step. Doing this, the model cannot rely on specific pathways i.e. features, encouraging it to
distribute its capacity over shared, meaningful features.

The second class of regularisation techniques is called ‘data augmentation’. Data augmentation generates
variations of the training samples. By e.g . flipping every image in our train dataset, we can double the dataset
size. Flipping an image generally keeps the label intact, so our augmented data remains valid. By exposing
the model to more varied data, it learns more robust features. Additionally, techniques such as CutMix [27]
work on a higher level; e.g . by splicing parts of different image samples together.

Both classes of regularisation techniques are often employed in tandem.

2.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a well-researched neural network architecture that is typically used
in image processing. CNNs have appealing parameter sharing and equivariance properties, which will be
expanded upon in this section.

Similar to how an MLP is built from linear layers, a CNN consists of convolutional layers. Whereas a
linear layer models interaction between all input values, a convolutional layer takes a localised approach by
means of a ‘kernel’. Taking the example of image processing, a kernel is a 2D matrix of learnable parameters
which is laid on top of the image, such that each value of the kernel overlaps with a pixel of the image. All
overlapping values are multiplied and averaged together, yielding a single scalar value that is placed in the

6

layer output to a corresponding pixel position. The kernel is then shifted with a stride of one pixel, where the
computation is repeated. By repeatedly moving the kernel and repeating the operation over the entire image,
we produce an output named the ‘feature map’. A single kernel might learn a single particular feature. To
enhance the flexibility of a CNN, we can introduce several kernels for each convolutional layer. That is, k
kernels, produce k feature maps. Note that only the pixels which the kernel overlaps can interact with each
other, i.e., convolution is a strictly local operation. This is beneficial in image analysis as pixels that are next
to each other generally carry more relevance than pixels on either side of an image. Still, it would be useful
to consider image features at a larger scale. To achieve this, we downsample the feature maps. This process
is referred to as pooling, and takes e.g . the maximum value of each group of 4 pixels in the feature map,
thereby aggregating 4 features into 1. When this aggregated feature is considered in a subsequent layer, that
layer is implicitly operating on the initial group of 4 features. By repeatedly pooling feature maps, we grow
the so-called receptive field of the convolutional layers, allowing us to model long-range dependencies in the
image content.

The number of parameters of a CNN is not inherently dependent on the image resolution, because the size
of convolutional kernels does not scale with the input resolution. However, high-resolution images still pose
challenges. For instance, a depicted object is spread out over more pixels, so relevant image features are spread
out accordingly. Additionally, on a larger image, a kernel must ‘travel’ further to cover the image, increasing
latency. While the kernel size remains fixed, the feature map dimensions scale with image size, and the
memory requirements grow accordingly. During training, every intermediate feature map must be stored for
back-propagation, leading to significantly higher memory consumption as input size increases. Consequently,
the computational cost, memory usage, and—indirectly—the number of parameters needed to process larger
receptive fields all escalate when working with high-resolution images.

2.5.1 Equivariance, invariance, robustness

Consider an image depicting a cat sitting in the bottom left corner and an NN that successfully labels this
image as ‘cat’. If we were to shift all pixels such that the cat is not positioned in the bottom left corner, we
would expect the NN to still classify the image as ‘cat’. The fact that the cat is now positioned elsewhere
does not influence the label we give the image. This refers to translation invariance, whereby a transformation
applied to the input does not affect the function output. More specifically,

T (f(x)) = f(x) (7)

where x is the input image, f a function and T a particular transformation.
Translation equivariance refers to the property that a transformation to the input is reflected in a trans-

formation to the output. That is,
f(T (x)) = T (f(x)) (8)

which we can observe in convolutional layers. If a particular image feature is shifted, the corresponding
convolutional layer’s feature map will shift accordingly. That is because the convolutional layer’s kernel will
be slid over the image feature regardless of its absolute position in the image, whereby the activations in the
feature map are shifted accordingly.

Robustness is a weaker property. A robust NN can handle certain perturbations in the input without
significant performance degradation. When a non-translation invariant NN is trained on many images whereby
the relevant features are shifted randomly, the NN will learn to be robust against it. However, it would be more
efficient if we did not have to teach this property to the NN. Unlike invariance and equivariance, robustness
does not imply that the NN will completely ignore the transformations it was exposed to during training.

2.6 Transformers

Like CNNs and MLPs, transformers are a particular neural architecture. Whereas an MLP stands out for
its simple linear layer, and CNNs for their convolutional layers, a transformer is set apart by their so-called
‘attention’ mechanism. Transforms are widely used in natural language processing [2] and have also been
successfully employed in image processing [5, 13].

One of the major advantages of transformers is their ability to handle input sequences of varying lengths.
Unlike MLPs, which require a fixed input size, or CNNs, constrained by their receptive fields, transformers
can process sequences of arbitrary lengths, such as paragraphs of text or long video frames. This adaptability
makes them very versatile.

7

2.6.1 Attention

Attention is the mechanism that powers transformers, enabling them to determine the relevance of parts of a
sequence from their context. The attention mechanism relies on three components: queries, keys, and values.
A query vector represents the item of interest, while key and value vectors represent the other elements in the
sequence. Attention computes the relationships between these components, weighting each key-value pair’s
relevance to the query. Mathematically, this is expressed as:

Attention(Q,K, V) = softmax(
QK⊤
√
dk

)V

where Q (queries), K (keys), and V (values) are produced by passing each sequence element through a
corresponding query, key and value linear layer. QK computes the similarity between the query and key value.√
dk, is a scaling factor that stabilises training, where dk is the dimension of the keys. The softmax operation

scales all values such that they sum to 1. The attention weights are then applied to the value vectors V . In
short, attention uniquely models how values in the input relate to each other given their context.

Local attention. Traditional attention mechanisms operate globally, modelling interactions between every
element in the input data. Local attention constrains the attention mechanism to focus only on a set
neighbourhood. This restriction significantly reduces computational complexity, and like the locality bias
in CNNs, can actually be harmonious with the data modality in question. Nevertheless, considering global
context remains important. Similar to CNNs, we can build up a receptive field whereby we pool features to
aggregate broader information. Subsequent local attention layers operate on the pooled features and thus
model long-range interactions.

2.7 Implicit Neural Representations

An Implicit Neural Representation (INR) is a neural network that is trained to represent a signal by mapping
signal coordinates to signal values. For example, an INR may be trained to map pixel coordinates to their
respective RGB values. During training, the INR is supervised by comparing the predicted colour to the
original signal colour at that pixel. Once trained, the entire signal can be reconstructed by querying the INR
at all signal coordinates, producing a reconstruction.

Put formally, an original signal can be represented as a mapping between discrete coordinates and discrete
signal value s : Ndin 7→ Ndout and is stored in memory as a set of linked input and output values {(xi ∈ Ndin |
s(xi) ∈ Ndout)}ni=1 where din = 2, dout = 3 for RGB images. An INR fθ : Rdin 7→ Rdout learns a continuous
function to replicate s(x) to the best of its ability.

Though the INR is trained on the discrete intervals where the signal is defined, the INR is inherently a
continuous function. This continuity enables us to query the INR at unseen coordinates, allowing for tasks like
image upscaling. In such tasks, the INR generalises to higher-resolution coordinates which exist in-between
the coordinates used to supervise the INR. The INR effectively fills in finer details that were not present in the
original signal [3]. The generalisation abilities of INRs are similarly leveraged in novel view synthesis, whereby
an INR captures the structure of a 3D scene by training on images from different viewpoints. Once trained, the
INR is prompted to generate views from new angles, producing photorealistic renders [15]. The examples of
super-resolution and view synthesis show that INRs possess powerful compression and generalisation abilities.

In this thesis, we train INRs to capture images. The quality of the INR reconstructions is quantified as
the peak signal-to-noise ratio (PSNR). When an INR produces reconstructions of a high enough PSNR, the
signal is seemingly captured inside the weights of the INR. We can then treat the INR as an alternative
representation of the original signal.

2.7.1 Common INR architectures

The principle of ‘let an NN fit to a signal’ does not prescribe a particular architecture. Early research therefore
used a simple MLP [15, 18] but found that this architecture produced blurry reconstructions. The tendency
of MLPs to learn low-frequency content is referred to as ‘spectral bias’ [24, 15] and had been identified before
its prominence in INR literature [19]. A way of solving this issue is by introducing harmonics; transforming
original values by sine functions of several frequencies. They can either be applied directly to the input
coordinates [24, 15] or be incorporated into the activation function as done in SIREN [23].

SIRENs [23] are a foundational INR architecture which are commonly used in INR classification [16, 29,
10, 8]. A SIREN is an MLP where sine functions are used as activation functions as opposed to the typical
ReLU activation function. If properly initialised, a SIREN mitigates spectral bias issues successfully.

8

Figure 4: Permutation symmetries. In a layer, a node can be swapped. This does not change the NN’s output
whatsoever but the underlying weight matrices undergo a permutation.

2.7.2 INRs for downstream use

If an INR is able to reconstruct a signal from its coordinates, it should be possible to elicit the original
signal’s characteristics by analysing the INR’s weight-space. If this can be done successfully, INRs can be
used as an alternative representation to the original signals, mitigating challenges associated with traditional
grid-based data such as images or voxel grids. Whereas we would usually classify image datasets, we now
consider INR datasets, whereby each INR represents a single image. It is natural to assume that an INR that
captures an image with high fidelity would be the best candidate for INR classification. However, there is no
straightforward link between reconstruction quality and the INR’s interpretability as both very low and very
high PSNR values result in a similarly poor classification accuracy when used in a classification task [17].

In INR classification literature, many works focus on analysing SIRENs. As SIREN is a derivative MLP, we
analyse the INR weight matrices and bias vectors. It is not obvious how such a weight-space can be processed.
Early approaches simply extract statistics about the weight matrices [6], or flatten the weights into vector
[4, 25], which are then processed by an NN. As NNs are flexible and the training process is stochastic, it is
possible that sets of different weights yield a similar reconstruction. It is up to the INR classifier to discern
between relevant and irrelevant weight-space features. A set of irrelevant weight-space differences is captured
in weight-space symmetries; transformations to the weight-space which affect the weight representation but
leave the INR function intact. INR classifiers which incorporate equivariance against such symmetries can
automatically rule out a set of irrelevant weight-space features. Increasing the amount of such equivariances,
increases the INR classification accuracy [16, 29, 10, 8]. One such symmetry is NN permutation, whereby two
nodes in a layer swap position (Figure 4). This changes the underlying weight matrices but does not affect
the NN function.

Beyond symmetries, similar signals may still be encoded by widely different weight-spaces. This is evident
in the overfitting issues which INR classifiers suffer from. A simple solution is fitting redundant INRs for
each image. This shows the classifier in what ways a weight-space may differ whilst representing the same
signal and leads to an increase in test accuracy [16, 1, 8]. Fitting redundant INRs from scratch can be a
resource-intensive process. Instead, augmenting INRs in the data-loading pipeline is preferred. In SIRENs,
such augmentation methods include perturbing weights with noise, transforming the first layer to resemble
image transformations, masking weights, and mixing INR instances [22, 16]. When applied to an INR, it
unclear how exactly the INR function i.e. the reconstruction is affected. Put simply, there is little intuition
involved in e.g . adding noise to an INR’s weights if we cannot understand how exactly these weights contribute
to the reconstruction.

2.8 Data

2.8.1 Point cloud data

Point clouds typically consist of a collection of points in three-dimensional space. Next to coordinates, each
point may contain additional features such as colour or surface normals. Point clouds are widely used to
represent geometry such as in LiDAR systems or depth cameras. Unlike images, points in a point cloud are

9

not distributed equidistantly. This has given rise to a unique set of point cloud classification models that
accommodate this property. Typical point cloud problems include assigning labels to individual points, e.g .
semantic segmentation, or whole point clouds, i.e. point cloud classification, as done in this thesis.

2.8.2 Image data

Images are a type of grid-based data; a data modality made up of equally sized elements. Whether or not
an image actually depicts a highly-detailed object or a blank canvas, in memory they are the same size. This
presents challenges to neural networks which process images. Especially in specific cases where small details
carry significant meaning, as is the case in the medical domain.

2.8.3 Datasets

MNIST. MNIST (Modified National Institute of Standards and Technology database) is a dataset of images
depicting handwritten digits and corresponding labels ranging from 0 to 9. All images are greyscale and
standardised to 28×28 pixels. 60k training images and 10k testing images are provided. A sample of the data
is shown in Figure 5. MNIST has historically been used in pivotal machine learning research [12]. Nowadays,
it is considered a low-complexity dataset without much challenge in the way of inter- and intraclass variability
or background noise. It is easy to obtain high test accuracies using modern deep learning techniques [7, 21].

Figure 5: Samples from the MNIST dataset with their respective labels.

Fashion-MNIST Fashion-MNIST (FMNIST) is a dataset that was inspired by MNIST but aims to pose
a more challenging task for classification algorithms [26]. Similar to MNIST, FMNIST contains greyscale
images of 28 × 28 pixels. 60k train images and 10k test images are provided. Samples from FMNIST are
shown in Figure 6.

Figure 6: Samples from the Fashion-MNIST dataset with their respective labels.

Imagenette Imagenette is a subset of Imagenet. The original Imagenet contains more than a million images
depicting 1,000 different classes [11]. Imagenette contains just 10 classes, of around 9.5k training images and
a predefined validation set of around 4k images. Notably, Imagenette images do not have a standard size.
As shown in Figure 7, image resolutions vary wildly. As this may pose issues in standard image classification
pipelines, Imagenette variants exist which have resized the image such that the shortest side is e.g . 320 pixels
long.

10

Figure 7: Samples from the Imagenette dataset with their respective labels and resolution Height×Width

2.8.4 Toy datasets

In academia and education, a toy problem is a purposefully simple problem that serves as a clear and unam-
biguous context in which a problem-solving technique can be demonstrated. The aim is to highlight particular
capabilities and properties of the technique rather than its aptitude at solving real-world problems.

In deep learning, the properties of a model can be aptly demonstrated using a toy dataset. For instance,
we may shift the hue of a dataset to strictly blue, red and green images to demonstrate a potential bias
towards any colour by the model.

11

References

[1] M. Bauer, E. Dupont, A. Brock, D. Rosenbaum, J. R. Schwarz, and H. Kim. Spatial functa: Scaling functa to
imagenet classification and generation. arXiv preprint arXiv:2302.03130, 2023.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners, 2020.

[3] Y. Chen, S. Liu, and X. Wang. Learning continuous image representation with local implicit image function. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8628–8638, 2021.

[4] L. De Luigi, A. Cardace, R. Spezialetti, P. Zama Ramirez, S. Salti, and L. Di Stefano. Deep learning on implicit
neural representations of shapes. In International Conference on Learning Representations (ICLR), 2023.

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[6] G. Eilertsen, D. Jönsson, T. Ropinski, J. Unger, and A. Ynnerman. Classifying the classifier: dissecting the weight
space of neural networks. ArXiv, abs/2002.05688, 2020.

[7] S. Greydanus and D. Kobak. Scaling down deep learning with mnist-1d, 2024.

[8] I. Kalogeropoulos, G. Bouritsas, and Y. Panagakis. Scale equivariant graph metanetworks. arXiv preprint
arXiv:2406.10685, 2024.

[9] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[10] M. Kofinas, B. Knyazev, Y. Zhang, Y. Chen, G. J. Burghouts, E. Gavves, C. G. Snoek, and D. W. Zhang. Graph
neural networks for learning equivariant representations of neural networks. arXiv preprint arXiv:2403.12143,
2024.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25, 2012.

[12] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[13] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision
transformer using shifted windows, 2021.

[14] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks: Learning 3d re-
construction in function space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[15] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: representing scenes
as neural radiance fields for view synthesis. Commun. ACM, 65(1):99–106, Dec. 2021.

[16] A. Navon, A. Shamsian, I. Achituve, E. Fetaya, G. Chechik, and H. Maron. Equivariant architectures for learning
in deep weight spaces. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 25790–25816. PMLR, 23–29 Jul 2023.

[17] S. Papa, R. Valperga, D. Knigge, M. Kofinas, P. Lippe, J.-J. Sonke, and E. Gavves. How to train neural
field representations: A comprehensive study and benchmark. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 22616–22625, 2024.

[18] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous signed distance
functions for shape representation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[19] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville. On the spectral
bias of neural networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5301–5310.
PMLR, 09–15 Jun 2019.

[20] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case generalization, 2020.

[21] Z. SE. (fashion-)mnist leaderboard. http://fashion-mnist.s3-website.eu-central-1.amazonaws.com,
2017.

[22] A. Shamsian, A. Navon, D. W. Zhang, Y. Zhang, E. Fetaya, G. Chechik, and H. Maron. Improved generalization
of weight space networks via augmentations. In Forty-first International Conference on Machine Learning, 2024.

[23] V. Sitzmann, J. N. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein. Implicit neural representations with
periodic activation functions. In arXiv, 2020.

12

http://fashion-mnist.s3-website.eu-central-1.amazonaws.com

[24] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T.
Barron, and R. Ng. Fourier features let networks learn high frequency functions in low dimensional domains.
NeurIPS, 2020.

[25] T. Unterthiner, D. Keysers, S. Gelly, O. Bousquet, and I. Tolstikhin. Predicting neural network accuracy from
weights. arXiv preprint arXiv:2002.11448, 2020.

[26] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms, 2017.

[27] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train strong classifiers
with localizable features. In Proceedings of the IEEE/CVF international conference on computer vision, pages
6023–6032, 2019.

[28] Y. Zhang, C. Chen, Z. Li, T. Ding, C. Wu, D. P. Kingma, Y. Ye, Z.-Q. Luo, and R. Sun. Adam-mini: Use fewer
learning rates to gain more, 2024.

[29] A. Zhou, K. Yang, K. Burns, A. Cardace, Y. Jiang, S. Sokota, J. Z. Kolter, and C. Finn. Permutation equivariant
neural functionals. Advances in neural information processing systems, 36, 2024.

[30] P. Zhou, J. Feng, C. Ma, C. Xiong, S. C. H. Hoi, et al. Towards theoretically understanding why sgd generalizes
better than adam in deep learning. Advances in Neural Information Processing Systems, 33:21285–21296, 2020.

13

3 Scientific article

The scientific article starts on the next page.

14

ARC: Anchored Representation Clouds for High-Resolution INR Classification

Joost Luijmes Alexander Gielisse Roman Knyazhitskiy Jan van Gemert
Delft University of Technology, The Netherlands

Abstract

Implicit neural representations (INRs) exhibit exceptional
compression and generalisation abilities that have enabled
striking progress across a variety of applications. These
properties have fuelled a growing interest in leveraging INRs
for traditional classification tasks as a memory-efficient al-
ternative representation of images, breaking the persistent
link between image resolution and associated resource costs.
Current INR classification methods face limitations such as
a restriction to low-resolution data and sensitivity to image-
space transformations. We attribute these issues to the em-
ployed INR architecture which lacks mechanisms for local
representation, thereby disregarding spatial structure within
the data and furthermore limiting their ability to capture
high-frequency details. In this work, we propose ARC: An-
chored Representation Clouds, a novel INR architecture that
explicitly anchors latent vectors in image-space. By introduc-
ing spatial structure to the latent vectors, ARC can capture
local image data which in our testing leads to state-of-the-art
implicit image classification of both low- and high-resolution
images and increased robustness against image-space trans-
lation.

1. Introduction

From novel view synthesis to inverse problems, implicit
neural representations (INRs) have enabled leaps in accuracy
across a variety of problems and domains due to their unique
data compression and generalisation capabilities [7, 9, 13, 18,
25, 36, 49, 61]. As such, interest has grown in whether INRs
can similarly enrich conventional computer vision tasks like
image classification; the focus of this research.

An INR is a neural network (NN) that learns a mapping
from coordinates in the signal’s domain to the signal’s val-
ues, e.g. from 2D pixel coordinates to RGB colours. After
training, the INR can reconstruct an approximation of the
original signal when queried on all signal coordinates, im-
plying that the signal is encoded inside the INR weights.
INRs are able to compress signals in a variety of domains
[10, 14, 21, 45, 48], and exhibit excellent generalisation
capabilities outside of the signal’s domain [3, 36, 60]. Al-

Figure 1. ARC anchors latent vectors directly in image coordi-
nate space, preserving the spatial image structure within the INR
weight-space. Once trained, ARC can be processed by a point cloud
classifier, effectively recasting the task of INR classification into
the domain of point cloud processing.

ternatively, INRs can be interpreted as an alternative view
of the original signal. An INR data modality can potentially
mitigate persistent issues associated with the original signal
modality.

In image classification, one such issue has to do with the
nature of the grid-based image modality. In grid-based data,
elements of equal size are positioned equidistantly over the
signal domain, e.g. RGB pixels in an image or occupancy
bits in a voxel grid. This uniform data representation re-
sults in memory costs that scale exponentially with signal
dimensionality and resolution. To make training on image
datasets feasible, images are typically downsampled, which
may eliminate the relevant features [19, 27] or lead to de-
creased performance [23, 51]. While these issues can be
mitigated [19, 27], an alternative data representation that
more efficiently encodes high-resolution data may offer a
more effective basis for resource-efficient learning, which
suggests INRs as a promising solution.

Current INR classification methods face several short-
comings [24, 26, 68]. First, these methods are only demon-

1

strated on low-resolution image datasets such as MNIST
[29], Fashion-MNIST [58], and CIFAR10 [28]. Second, the
employed INR architecture learns entirely different repre-
sentations under image-space transformations such as trans-
lation. Equivariance to the position of image features is a
fundamental property in traditional image classifiers [6, 63],
especially because higher-resolution image datasets allow
for less restricted object positions and present challenges in
terms of background noise [50]. Third, INR classifiers typi-
cally suffer from overfitting [24, 26, 46], with restricted data
augmentation methods to combat this [38, 46], or through
the resource-intensive process of fitting several redundant
INRs per image [1, 38, 46, 68].

In response to these issues, we introduce a novel type of
INR named ARC: Anchored Representation Clouds, along
with a flexible classification pipeline (Figure 1). ARC con-
sists of 1) an image-specific encoder which anchors a cloud
of latent vectors in the image coordinate space, and 2) an
MLP decoder that is shared among ARC instances. The en-
coder decouples the image domain from the MLP, allowing
local latent representations. This way, ARC retains local
image features, making it more robust against image trans-
lation and more capable of high-resolution implicit image
classification. Furthermore, as the latents can be positioned
freely, they can be anchored more densely in high-frequency
image regions, biasing model capacity towards complex re-
gions rather than having to encode the image globally. By
increasing the number of anchored latents, ARC can trivially
scale to larger image complexity. By converting images to
a set of ARCs, each image is effectively represented by a
cloud of latent vectors. This intuitively gives rise to the ap-
plication of point cloud architectures for downstream use,
along with intuitive and effective data augmentation methods
which eliminate the need for redundant INR fitting. To our
knowledge, this is the first work to utilise an INR’s entire
weight-space on a high-resolution dataset like Imagenette
[20], achieving a classification accuracy of 75.92%. Through
controlled experiments, we further demonstrate ARC’s ro-
bustness to image-space transformations and its ability to
capture high-resolution images.

Our contributions include:
• A novel INR architecture that anchors latent vectors in the

image coordinate space, preserving spatial locality.
• An accompanying classification pipeline that enables ef-

fective and intuitive weight-space augmentation methods.
• Enhanced robustness to image-space translations in INR

classification.

2. Related Work
Implicit neural representations. An implicit neural repre-
sentation (INR) [47] is a neural network trained to represent
a signal. Given a pixel coordinate as input, the INR aims to
produce the corresponding signal value as accurately as pos-

sible. By learning this mapping for all coordinates where the
signal is defined, the INR learns to capture the signal inside
its weights. Alternative names for implicit neural represen-
tations are neural fields [39, 56, 59], coordinate networks
[31, 34, 67] and coordinate-based neural representation [53].

The premise of INRs does not prescribe a particular archi-
tecture, prompting early work to assess the suitability of the
simple MLP [35, 36, 40]. Such models struggle to capture
the high-frequency components of the signal, a phenomenon
referred to as spectral bias which in this application results in
blurry image reconstructions [42, 47, 52]. This issue inspired
a large set of diverse solutions, such as transforming the in-
put using sinusoids [36, 52, 67], modifying the activation
function [5, 15, 33, 43, 44, 47] or by positioning learnable
elements in the signal coordinate space to represent local
image regions [2, 4, 16, 22, 30, 32, 34, 37, 41].

We posit that positioning learnable elements in signal
coordinate space can aid INR classification, as by coupling
latent information to local image regions, we retain image
structure in the latent space and the image features encoded
therein. Other methods which position latents freely in image
coordinate space, focus on improving the signal reconstruc-
tion quality [4, 16]. These methods hybridise INR methods
[4], and require intricate initialisation and latent decoding
schemes [4, 16]. In contrast, simplicity is a core design prin-
ciple in ARC; reducing computational complexity ensures
that fitting an entire image dataset remains efficient.

INR classification. INR literature typically emphasises
training and parameter efficiency [4, 10, 13, 21, 37], or
utilises INRs as a component in a broader method for their
compression and generalisation abilities [7, 9, 9]. In our ap-
proach, INRs are treated as singular units of data, where
they function as an alternative representation to images in a
classification task.

Interpreting an INR as a singular unit of data centres on
analysing its weights learned during the signal fitting process
to intuit the represented signal. Early works on weight-space
analysis studied characteristics of classification networks
from their flattened weight matrices [54] or their weights’
statistics [12]. Flattened representations remain in use as
low-dimensional embeddings are trained along with [1, 11],
or after [8], the INR fitting. These methods do not generalise
well to image classification [8, 24] or larger-scale classifica-
tion tasks [1] however. In the context of INRs however, a key
insight to process whole weight-spaces was to consider a neu-
ral network’s symmetries; transformations which alter the
weights but preserve the INR’s function [17]. Architectures
which incorporate equivariances to such symmetries signifi-
cantly increase INR classification accuracy [24, 26, 38, 69].
With ARC, we propose an architecture that anchors low-
dimensional latent embeddings in image-space. This ties the
learnt encodings directly to local image content, effectively

2

compressing an image into a latent point cloud. A similar
observation is made and implemented in a concurrent work
with an attention-based architecture [56]. Their method is
demonstrated across various domains but does not address
the shortcomings of INR classification concerning image
classification, such as confinement to low-resolution image
datasets and sensitivity to image-space translations.

Improving the interpretability of INRs. The flexibility
of NNs allows for wildly varying weight-spaces that faith-
fully capture a signal. This variability makes it difficult for
downstream models to capture consistent image features
across INR instances [24, 26, 46]. Previous work has shown
that establishing a form of alignment or ‘common ground’
among INRs improves classification accuracy. Such meth-
ods include sharing the INR weight initialisation [38, 39],
introducing shared learnable elements to the fitting process
[4, 16, 56], learning low-dimensional shifts to an established
INR base network [1, 11] or sharing a part of the INR over
all instances [55]. In this spirit, ARC shares a decoder over
the whole dataset, which is jointly pretrained on a subset of
the data and then frozen.

Even if INRs share a form of alignment, overfitting re-
mains a persistent issue in INR classification [24, 26, 46].
A limited set of weight-space augmentations are available
to combat this [38, 46]. Hence, INR classification methods
fit redundant INRs for each image in the dataset, which is a
resource-intensive task [1, 24, 38, 66, 68]. Instead, we can
leverage the unique weight-space of ARC to apply intuitive
data augmentation methods on-the-fly which we demonstrate
to be competitive in regularisation effectiveness to redundant
INR fitting, at a fraction of the computational cost.

3. Method
3.1. Preliminaries

The analysis presented in this chapter benefits from a more
rigorous formulation of the problem setting. We interpret
a sampled signal s as a set of equidistant discrete observa-
tions {(xi ∈ Ndin , s(xi) ∈ Ndout)}ni=1. For instance, an RGB
image would be a set of pixel locations (din = 2) with corre-
sponding RGB colours (dout = 3). An INR learns parameters
θ by supervising the mapping between the signal’s domain
and codomain fθ : Rdin 7→ Rdout , supervising on s(x). The
mean squared error (MSE) loss is used to supervise the INR.

As the main focus of this paper is on image classification,
we will forego the more general ‘signal’ terminology and
instead refer to images, pixels, colours, and so on throughout
this chapter.

3.2. ARC

ARC consists of an encoder and a decoder. The encoder is
composed of a cloud of latent vectors and retrieval logic to

Figure 2. When queried on an image coordinate x, ARC finds the
4 nearest latent vectors. These vectors, along with their relative
position to x, are concatenated into a long descriptive vector. The
decoder maps this vector to the corresponding RGB colour.

obtain the n nearest latent vectors for a given input coordi-
nate. These vectors are then concatenated and passed to the
decoder, which maps it to the signal’s codomain. A visuali-
sation of this process is shown in Figure 2 and is elaborated
upon in the remainder of this section.

Let us analyse in more detail how ARC maps a coordinate
to a colour. Given a coordinate x ∈ Rdin , Un retrieves the
n nearest anchored latents and their relative positions to x
from P = {(pi,wi)}ki=1. These latents and their relative
positions are concatenated. The concatenated vector is then
passed through the MLP decoder g, mapping it to an RGB
colour. ARC can be specified as follows.

fθ(x) =gψ(e(x)) ARC (1)

Rdin 7→ Rdout (2)

e(x) =Concat(Un(x)) Encoder (3)

(Rz × Rdin)n 7→ Rn·(z+din) (4)

gψ(vx) =MLPψ(vx) Decoder (5)

Rn·(z+din) 7→ Rdout (6)

Un(x) ={(∆pi,wi)}ni=1 Indexing function (7)

Rdin 7→ (Rdin × Rz)n (8)

P ={(pi,wi)}ki=1 Latent cloud (9)

where pi ∈ Rdin , wi ∈ Rz (10)

θ ={ψ, {wi}ki=1} Learnable parameters (11)

3.2.1 Encoder

The encoder consists of a cloud of learnable latent vectors
that are anchored in the image coordinate space (Eq. (9)), and
aggregation logic (Eq. (7)). The latent dimension z and the
number of latents anchored in the image are hyperparameters
which can be tuned to trade off memory footprint versus
reconstruction quality.

3

Latent vector positions. In determining the position of the
latent vectors, we follow [4, 30], whereby learnable elements
are positioned in signal-space near high-frequency content
so as to bias the model capacity to more difficult to encode
content. To this end, the latents’ positions are determined by
sampling the image gradient norm. The latents’ positions re-
main fixed. This way, the indexing function Un can cache the
index of nearest latents upon ARC initialisation, significantly
decreasing training latency.

Indexing and aggregation. Given an input coordinate x,
Un retrieves the n nearest latent vectors along with their
relative position to x. n can be any value but we found 4
nearest neighbours to be sufficiently expressive. In contrast
to other methods which predefine an interpolation function
to aggregate the latent vectors [4, 16], ARC defers to the
decoder to learn this from the latent vectors and relative
positions, similar to [3]. The latent vectors and their relative
positions are thus simply concatenated and fed to the decoder.
Consequently, we do not require Fourier features [4, 52],
which, in line with our design objectives, keeps the model
simple.

3.2.2 Decoder

The decoder is a simple MLP with ReLU activations, as op-
posed to more elaborate activation functions [4]. To align la-
tent vectors across different ARC instances, we let instances
share a single decoder. This decoder is pre-trained on a sub-
set of the data and then frozen for the remaining ARCs,
requiring all latent clouds to capture image features in an
aligned manner. Consequently, the memory cost of the de-
coder can be amortised across the whole dataset as only the
anchored latent cloud is required for classification.

3.3. Downstream processing

Due to its unique weight-space, ARC transforms the problem
of INR classification into point cloud classification. This
allows us to leverage well-studied downstream architectures
for ARC classification. No mechanisms against weight-space
equivariances are needed, in contrast to SIREN classifiers
[24, 26, 38].

Point Transformer v3. Any point cloud architecture that
supports arbitrary point feature dimensions can naturally
process ARCs. However, since the anchored latent vectors
encode local information, an architecture that emphasises
local interaction is preferred. To this end, we select Point
Transformer v3 (PTv3) [57], a state-of-the-art method that
performs local attention. When using PTv3, we provide it
only the learnt latent vectors. The latent positions are used
only for the relative positional encoding and pooling oper-
ations. PTv3 allows for a varying number of points within

Figure 3. Data augmentation techniques for ARCs. Noise, Mask-
ing, and ARCmix manipulate the latent cloud to enhance data
diversity, while Push, Rotate, and Flip change just the latent vec-
tor coordinates. These augmentations operate directly in the ARC
weight-space.

a batch, enabling ARCs to adjust the number of latents to
the image complexity. Note however that in this work we
follow [4] by letting the number of latent vectors be propor-
tional to image size. Modifications made to PTv3 for ARC
compatibility are discussed in Appendix A.

Data augmentation. We can leverage the unique weight
space of ARC to apply intuitive data augmentation methods
which we show to be almost as effective as using redundant
ARC instances in our experiments. These data augmentations
are applied ‘on-the-fly’ on the anchored representation cloud.
Figure 3 depicts the augmentation methods: Noise applies
random Gaussian noise to the latent content, Masking omits
a specified fraction of the points, Push, Rotate and Flip
only augment the latent vector coordinates within a single
ARC instance. Furthermore, ARCmix, a method inspired by
CutMix [62, 64], mixes two ARC by combining their latent
clouds.

4. Experiments
In our experiments, we compare INR classification pipelines.
In INR classification literature, the seminal SIREN ar-
chitecture remains the most prominent, and has seen in-
cremental classification improvements over recent years
[24, 26, 38, 68, 69]. We focus on two representative base-
lines: the foundational DWSnets [38] and the state-of-the-art
ScaleGMN [24]. Details of the experiments can be found in
Appendix D.

4.1. Experiment 1. High-resolution image classifi-
cation

How well do ARCs and existing INR classification pipelines
perform as image resolution increases? To answer this ques-
tion, we analyse INR classification accuracy on Fashion-
MNIST (FMNIST) [58] whereby we scale the image resolu-
tion by padding the images with zeroes to a 100× 100 and
1024× 1024 resolution (Figure 4). The toy datasets are then
converted into SIRENs and ARCs and classified by their
respective methods. The test accuracy is reported in Table 1.

4

Figure 4. Exp. 1: Left, a sample from the 1024 × 1024 padded
FMNIST dataset. Right, a zoomed in view of the depicted object.
The high-resolution of the image, transforms the relatively simple
task of FMNIST classification into a challenge for baseline INR
classification methods.

Side Length 28 100 1024 INR #param
increase

DWSNets 67.06⋄ 67.60 53.28 ×33
ScaleGMN 80.78⋄ 74.50 48.77 ×33
Ours 80.42 79.36 73.57 ×1

Table 1. Exp. 1: Test accuracy (%↑) on the padded FMNIST
datasets and the required increase in INR parameters (↓) to produce
recognisable reconstructions. The SIREN 1024× 1024 dataset is
a third of the size of the corresponding ARC dataset due to steep
fitting costs as a consequence of the increased number of parame-
ters. Entries marked with ⋄ are taken from their original publication
([24, 38]). Next to being a more parameter efficient representation,
our method is more resilient against increasing image size.

While both SIREN and ARC classification pipelines show
a degradation in classification accuracy, ARC is demonstra-
bly stronger. This difference can be attributed to how each
method handles increasing image resolution. A SIREN’s
input domain is fixed to [−1, 1]din , regardless of image
size. On higher resolutions, the number of pixels mapped
within [−1, 1]din grows, requiring SIRENs to produce higher
frequency outputs. Subsequently, spectral bias effects re-
emerge, resulting in overly smooth reconstructions. To miti-
gate this, the SIREN architecture is increased in width and
depth, yielding a ×33 increase in the number of parameters
between 100 × 100 and 1024 × 1024. This substantial in-
crease significantly increased fitting time, requiring us to
limit the SIREN dataset size to approximately a third of that
used for ARC. For ARC, the image resolution is decoupled
from the latent representation. Consequently, as image size
grows but image complexity remains low, the number of
latent vectors does not have to be adapted.

We continue our investigation into high-resolution im-
age INR classification with Imagenette [20]. Imagenette
is a dataset of natural images with a median resolution of
375× 500 and a maximum of 4268× 2912. As image com-
plexity increases, INR capacity must increase proportionally.
For ARC, this scaling is straightforward as we can simply
increase the number of anchored latent vectors. For SIRENs,
the scaling is performed in either the number of hidden layers
or the hidden dimension. Neither DWSnets nor ScaleGMN

Imagenette 320x
CenterCrop

Imagenette full
resolution

DWSnets 41.05 -
Ours 71.71 75.92

Table 2. Exp. 1: Validation accuracy (%↑) on Imagenette. ARC sets
a new watermark in classifying full-resolution image data through
their INR representation.

support variable SIREN architectures, so a fixed size must be
picked. This invariably leads to undercapacity or overcapac-
ity on a subset of the image data. To decrease discrepancies
that may arise from this, we use the prescaled dataset variant
Imagenette320 [20], and apply a centre-crop to standardise
all images to 320 × 320. These images are converted into
SIRENs and ARCs, and subsequently classified. This proce-
dure is additionally performed on the original, full-resolution
Imagenette dataset with ARCs. As no test set is provided,
we report validation accuracy in Table 2. We were not able
to train ScaleGMN on this dataset due to instability issues.
We go into more detail about ScaleGMN fitting difficulties
in Appendix D.

ARC demonstrates high classification accuracy on Im-
agenette. We hypothesise that this performance is due to
the higher resolution of Imagenette images, where relevant
features are distributed across larger regions of the image.
With latent vectors anchored in these regions, ARC can rep-
resent the features with greater precision and redundancy,
all while respecting the spatial integrity of these features.
This, in turn, enables PTv3 to learn a richer representation
and yield a high classification accuracy. The improvement
of ARC between the centre-crop and full-resolution sets can
be attributed to the resolution bias present in Imagenette
which may be exploited by the relative positional encoding
in PTv3. We found that a simple ReLU-MLP of dimensions
[2, 64, 64, 64, 10] can obtain a validation accuracy of up to
23.46% on Imagenette based on image dimensions alone.

4.2. Experiment 2. Image classification benchmarks

How does ARC compare to established INR classification
benchmarks? We follow other INR literature in using MNIST
[29], Fashion-MNIST [58], and CIFAR10 [28]. Results are
presented in Table 3. On low-complexity grey-scale datasets,
ARC performs similarly to current state-of-the-art meth-
ods. On the more complex CIFAR10 dataset, ARC obtains
state-of-the-art accuracy. CIFAR10 is more challenging than
MNIST and FMNIST, as objects are presented in natural
images, leading to background noise. We expect that image
features are better represented among ARC instances on
these more complex images, leading to superior accuracy
compared to SIRENs.

5

MNIST FMNIST CIFAR10

DWSnets [38] 85.71 ± 0.6 67.06 ± 0.3 -
NG-GNN [26] 91.40 ± 0.6 68.00 ± 0.2 36.04⋄ ± 0.44
NG-T [26] 92.40 ± 0.3 72.70 ± 0.6 -
ScaleGMN [24] 96.59 ± 0.2 80.78 ± 0.2 38.82 ± 0.1
Ours 92.69 ± 1.2 80.42 ± 0.4 58.47 ± 0.4

Table 3. Exp. 2: Test classification accuracy (%↑) on various image
classification datasets. We train our method on 3 different seeds
and report the mean and std. Entries marked with ⋄ are taken from
reproductions by [24]. ARC classification accuracy is similar to
baselines on low-complexity datasets and outperforms them on the
more complex CIFAR10 dataset.

#INRs per image 1 20

NG-GNN [26] 36.04⋄ 45.70⋄

ScaleGMN [24] 38.82 56.95
Ours 38.12 55.87

Table 4. Exp. 3: CIFAR10 test accuracy (%↑) after training on either
1 or 20 INRs per CIFAR10 image. No further data augmentation
is employed. Similar to the baselines, ARC classification accuracy
improves significantly when trained on redundant INRs. Entries
marked with ⋄ are taken from reproductions by [24].

4.3. Experiment 3. Data augmentation

In SIREN classification methods, an increasingly used tech-
nique to reduce overfitting is to generate redundant INRs
for each image in the dataset [1, 24, 38, 66, 68], but this
increases the resource-intensive INR fitting process. Are
ARC weight-space data augmentation methods as effective
as redundant INR fitting? To establish a baseline, we fit 20
ARCs per image on a 10k subset of CIFAR10. Without any
additional augmentations, PTv3 is trained on two conditions:
using a single ARC per image and using all 20 ARCs. We
report the test accuracy per image Table 4. ARC classifica-
tion accuracy is on par with the state-of-the-art which has
the advantage of being trained on the full CIFAR10 dataset.

We now ask, are data augmentation methods that operate
on the ARC weight-space (Figure 3) as effective as using
redundant INRs during training? We convert the entire CI-
FAR10 dataset to ARC instances and evaluate the different
data augmentation methods in Table 5. When comparing
the test accuracies obtained under weight-space data aug-
mentations to those obtained with redundant INR fitting
Table 4, we observe that our data augmentations do not fully
close the gap. In fact, as we leverage the entire CIFAR10 in
the weight-space augmentation experiments and just a 10k
subset in the redundant INR experiment, the gap may be
slightly larger. Regardless, our data augmentation methods
offer a compelling alternative that requires significantly less
computational resources and time to execute.

Latent
noise

Point
space

ARC
masking ARCmix Acc.

- - - - 38.12
✓ - - - 39.08
- ✓ - - 51.69
- - ✓ - 50.25
- - - ✓ 54.55
- - ✓ ✓ 54.56
- ✓ ✓ ✓ 50.34
✓ ✓ ✓ ✓ 51.03

Table 5. Exp. 3: Test accuracy (%↑) on different ARC augmenta-
tion methods. The ‘Point space’ column applies the push, flip and
rotation augmentation methods. Compared to fitting and training on
redundant INRs, these more efficient weight-space augmentations
yield competitive test accuracy.

4.4. Experiment 4. Feature locality

In this experiment we test our claim that the anchored la-
tent vectors of ARC represent local image features. If so,
applying a transformation to the ARC coordinates should
yield a similarly transformed reconstruction. Furthermore,
in classifying ARCs, the latent vector positions should prove
to be relevant. As a reminder, the absolute position of the
points is not given as a feature PTv3. Instead, PTv3 uses a
relative position encoding.

We first consider transformations on the ARC coordinates.
Given a trained ARC, we manipulate only the latent vector
positions. The index function cache is refreshed and a for-
ward pass is performed. In Figure 5, we perform several such
transformations and depict the resulting reconstructions. We
can indeed verify that transforming latent vector positions
yield correspondingly transformed reconstructions. If the
anchored latent represent local image content, it is possible
to mix ARCs. We can e.g. select parts of different ARCs
or simply stack them. To demonstrate this, two ARCs were
jointly trained with a shared decoder. As shown in Figure 6,
mixing these ARCs produces interesting reconstructions. As
the index function cache is refreshed, and image coordinates
retrieve their nearest latent vectors, they receive a mix of
latent features. Moreover, since the latent vectors are more
densely positioned on the image gradient, we can clearly
make up edges and other discontinuous jumps in the mixed
reconstruction. Mixing ARCs is leveraged in our ARCmix
data augmentation method.

We further investigate the significance of local feature
representations by considering their influence on ARC classi-
fication accuracy. For this experiment, we reuse the FMNIST
dataset that was padded to 100× 100 in Experiment 1. We
push the latent vectors of this dataset into a random direction
once, and use this data to 1) evaluate a regularly trained
PTv3 instance, and 2) train a PTv3 instance from scratch. In

6

Latents positions Reconstruction

Original

Shift

Rotate

Flip

Figure 5. Exp. 4: Each row depicts a transformation on the la-
tent vector positions. No other changes are made to the ARC. The
resulting reconstruction is displayed in the right column. The cor-
respondence between the latent cloud transformation and the new
reconstructions demonstrates how ARC encodes image features
locally.

Latent positions Reconstruction

Mask

Stack

Figure 6. Exp. 4: We demonstrate how mixing two ARC retains
their local image features. In the top row, latent vectors are masked
in a specific shape. In the bottom row, the latent clouds are stacked.
The ARCs were jointly trained with a shared decoder.

Train

Intact Pushed

Te
st Intact 79.32 51.79

Pushed 17.39 69.06

Table 6. Exp. 4: FMNIST test accuracy (%↑) if we push each latent
vector to a random position during either train or test time. Leaving
the latent positions intact yields the highest accuracy. Conversely,
training on displaced latent vectors leads to a drop in accuracy
when faced with intact ARCs, which we attribute to PTv3 learning
incorrect relationships in its relative positional encoding mecha-
nisms.

Centered Displaced

Figure 7. Exp. 5: Samples from the Centered and Displaced
datasets.

Table 6 we list the resulting test accuracies. Unsurprisingly,
not touching the latent vector positions leads to the high-
est test accuracy. When the regularly trained PTv3 instance
is evaluated on the randomly pushed ARC dataset, a large
drop in test accuracy ensues as the learned relative positional
encoding within PTv3 becomes meaningless. Conversely,
when we train on pushed ARC data, the classifier still works
relatively well. PTv3 builds up a global context through lay-
ers of local attention and pooling. We hypothesise that the
latent features are descriptive enough that, through pooling
alone, they are relatively informative. When evaluated on
intact ARCs, accuracy drops, which we attribute to PTv3
learning inconsistent or incorrect relationships in its rela-
tive positional encoding mechanisms due to the displaced
training data.

4.5. Experiment 5: Image translation robustness

For regular image classifiers, translation invariance means
that the classifier’s predictions are unaffected by shifts in
pixels. This runs counter to the typical use of INRs where
any change in the pixels should be accurately captured in the
reconstruction. An INR classifier should thus recognise that
a particular change in the INR weight-space stems from an
benign image shift.

As ARC learns local image features, we hypothesise that
the weight-space remains largely intact when fitting to a
shifted image, making the ARC classification pipeline more
robust to such transformations. To test this, we return to the
100×100 padded Fashion-MNIST objects, where, alongside
centred FMNIST objects (named Centered), we fit INRs to

7

Method Test on
Centered

Test on
Displaced

ScaleGMN 74.50 13.00
Ours, PTv3 79.36 47.61

Table 7. Exp. 5: Test accuracy (%↑) when trained on INRs of
Centered and evaluated on INRs of Displaced . SIREN-based
methods (ScaleGMN) experience a complete collapse in classifica-
tion accuracy due to significant differences in weight-space among
the datasets. ARC paired with PTv3 demonstrates improved robust-
ness. The drop in PTv3 is still significant enough to warrant extra
experiments.

randomly displaced FMNIST images (named Displaced),
depicted in Figure 7. SIRENs share the same initialisation,
while ARCs use the same decoder over all datasets. Both
ScaleGMN and PTv3 are trained on their respective INRs
of the Centered dataset, and subsequently evaluated on
Displaced INRs. Test accuracies are listed in Table 7. In
SIREN-based methods, evaluating on Displaced is almost
equivalent to random guessing, as the displaced FMNIST
images have induced a drastic change to the SIREN weight-
space. For ARC, we observe a much smaller, but still signif-
icant drop in generalising to Displaced ARCs. Like with
SIRENs, the shifted image content may have induced signifi-
cant differences to the latent content. However, an additional
cause may be at play, where PTv3 is overfitting to the ab-
solute positions of the ARC latent vectors. Although PTv3
does not explicitly use absolute latent positions, its pooling
and local attention mechanisms do rely on them. We test the
trained PTv3 model on Centered ARCs where the entire
latent cloud is shifted. In Table 8, this shift causes a signifi-
cant drop in accuracy degrades, confirming that PTv3 is not
translation invariant. We therefore also consider Point Trans-
former v1 (PTv1) which uses a simpler nearest neighbour
mechanism relying on relative position [65]. PTv1 shows no
significant changes in accuracy drop under the same condi-
tions as PTv3.

To address the issue of translation sensitivity, we retrain
PTv3 but randomly shift the ARCs during training. This
forces PTv3 to become more robust to absolute position dif-
ferences. When evaluated on Displaced , the accuracy drop
is significantly reduced compared to the original setup, as
shown in Table 9. With the increased robustness against abso-
lute position differences, the observed performance gap can
be attributed to latent content differences between Centered
and Displaced . PTv1 is also tested but shows significantly
weaker generalisation properties.

4.6. Experiment 6. Ablation

In this experiment, we ablate various aspects of ARC and
PTv3 to observe their impact on classification accuracy. For
each ablation, ARCs are fit on a subset of 10k CIFAR10
images.

No shift Shift

PTv3 79.32 57.87
PTv1 76.37 76.46

Table 8. Exp. 5: Impact of absolute latent position shifts on PTv3
and PTv1 test accuracy (↑%). PTv3 shows a substantial drop in ac-
curacy when the latent cloud is shifted, demonstrating its sensitivity
to absolute latent positions. PTv1 shows no noticeable accuracy
degradation which is in line with its relative position mechanisms.

Method Test on
Centered

Test on
Displaced

PTv3 78.58 62.78
PTv1 76.37 49.36

Table 9. Exp. 5: Test accuracy (↑%) when training PTv3 on
Centered with random latent cloud shifts. Naturally, training with
latent cloud shifts improves PTv3’s robustness to translation, and
allows to analyse the accuracy gap due to latent content differences
between Centered and Displaced . PTv1 had this property built-
in but shows significantly weaker generalisation across the datasets.

Latent normalisation Val. Acc.

None 52.67
Normalise Whole 54.58
Normalise Per-dim 58.68

Table 10. Exp. 6: Validation accuracy (%↑) under different latent
normalisation strategies. We show how normalising each latent di-
mension independently yields the highest increase in performance.

First, we compare latent vector normalisation techniques
and their impact on validation accuracy. Three normalisation
strategies are compared. None: where no normalisation is
applied, Normalise Whole: where the latent vectors are nor-
malised using a scalar mean and standard deviation which
are precomputed on a subset of the ARCs, and Normalise
Per-dim: where the mean and standard deviation are pre-
computed per latent dimension on a subset of the ARCs.
The effect of these techniques on test accuracy is listed in
Table 10. Generally, applying normalisation to the latent
vectors improves classification accuracy. This is in line with
findings in other INR classification literature [26, 38, 68, 69].
Furthermore, applying normalisation across individual latent
dimensions yields the highest improvement. This suggests
that capturing variations specific to each latent dimension
provides a more robust representation in classifying ARCs.
We hypothesise that certain latent dimensions specialise in
capturing distinct image features. This type of alignment
would be induced by sharing the decoder. A similar property
is introduced manually by means of harmonics of different
frequencies, which results in better INR reconstructions [4].

8

Latent dimension

8 16 32

#
L

at
en

ts 10 30.95 32.91 29.01
25 41.12 40.05 41.43
50 49.14 48.62 48.02

Table 11. Exp. 6: Validation accuracy (%↑) under different com-
binations of the number of latents versus the latent dimension.
Increasing the number of latents has a clear positive impact on
classification accuracy, whereas high latent dimensions provide
diminishing results, particularly when there are few latents.

Next, we explore the trade-off between the number of
latent vectors and the latent dimensionality of each latent
vector in ARC, and aim to analyse their impact on classi-
fication accuracy. We fit a subset of 10k CIFAR10 images
to each combination. In Table 11 the validation accuracies
which PTv3 converges to are listed. Accuracy improves sig-
nificantly as we increase the number of latent vectors in the
image. Conversely, increasing the latent dimension yields
diminishing returns on accuracy.

5. Conclusion

In this paper, we introduced ARC: Anchored Representation
Clouds, a novel type of INR that couples latent space and
image coordinate space. This allows ARC to leverage point
cloud classification architectures to obtain state-of-the-art
classification results and process image datasets that were
previously unattainable for INR-based classification meth-
ods. Additionally, the unique weight-space of ARC provides
efficient data augmentation techniques. We believe a key
advancement in INR classification entails the unification of
INR fitting and classification processes, which are currently
treated as distinct stages. End-to-end coupling of the INR
fitting and classification processes could lead to more com-
petitive classification performance compared to their image-
space counterparts whilst being more memory-efficient.

References
[1] Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosen-

baum, Jonathan Richard Schwarz, and Hyunjik Kim. Spatial
functa: Scaling functa to imagenet classification and genera-
tion. arXiv preprint arXiv:2302.03130, 2023.

[2] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Ju-
lian Straub, Steven Lovegrove, and Richard Newcombe. Deep
local shapes: Learning local sdf priors for detailed 3d recon-
struction. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXIX 16, pages 608–625. Springer, 2020.

[3] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning contin-
uous image representation with local implicit image function.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8628–8638, 2021.

[4] Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi
Yu, Junsong Yuan, and Yi Xu. Neurbf: A neural fields repre-
sentation with adaptive radial basis functions. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 4182–4194, 2023.

[5] Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and
Simon Lucey. Gaussian activated neural radiance fields
for high fidelity reconstruction and pose estimation. In Com-
puter Vision – ECCV 2022, pages 264–280, Cham, 2022.
Springer Nature Switzerland.

[6] Taco Cohen and Max Welling. Group equivariant convolu-
tional networks. In Proceedings of The 33rd International
Conference on Machine Learning, pages 2990–2999, New
York, New York, USA, 2016. PMLR.

[7] Elijah Cole, Grant Van Horn, Christian Lange, Alexander
Shepard, Patrick Leary, Pietro Perona, Scott Loarie, and Oisin
Mac Aodha. Spatial implicit neural representations for global-
scale species mapping. In International Conference on Ma-
chine Learning, pages 6320–6342. PMLR, 2023.

[8] Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pier-
luigi Zama Ramirez, Samuele Salti, and Luigi Di Stefano.
Deep learning on implicit neural representations of shapes.
In International Conference on Learning Representations
(ICLR), 2023.

[9] Johannes Dollinger, Philipp Brun, Vivien Sainte Fare Garnot,
and Jan Dirk Wegner. Sat-sinr: High-resolution species distri-
bution models through satellite imagery. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 10:41–48, 2024.

[10] Emilien Dupont, Adam Golinski, Milad Alizadeh, Yee Whye
Teh, and Arnaud Doucet. COIN: COmpression with implicit
neural representations. In Neural Compression: From Infor-
mation Theory to Applications – Workshop @ ICLR 2021,
2021.

[11] Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami,
Danilo Jimenez Rezende, and Dan Rosenbaum. From data to
functa: Your data point is a function and you can treat it like
one. In 39th International Conference on Machine Learning
(ICML), 2022.

[12] Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas
Unger, and Anders Ynnerman. Classifying the classifier:
dissecting the weight space of neural networks. ArXiv,
abs/2002.05688, 2020.

[13] Amer Essakine, Yanqi Cheng, Chun-Wun Cheng, Lipei
Zhang, Zhongying Deng, Lei Zhu, Carola-Bibiane Schönlieb,
and Angelica I Aviles-Rivero. Where do we stand with im-
plicit neural representations? a technical and performance
survey, 2024.

[14] Elizabeth Fons, Alejandro Sztrajman, Yousef El-Laham,
Alexandros Iosifidis, and Svitlana Vyetrenko. Hypertime:
Implicit neural representations for time series. In NeurIPS
2022 Workshop on Synthetic Data for Empowering ML Re-
search, 2022.

[15] Rui Gao and Rajeev K. Jaiman. H-siren: Improving implicit
neural representations with hyperbolic periodic functions,
2024.

9

[16] Simon Giebenhain and Bastian Goldlücke. Air-nets : An
attention-based framework for locally conditioned implicit
representations. In 2021 International Conference on 3D
Vision, 3DV 2021 : , virtual conference ; 1-3 December 2021
: proceedings, pages 1054–1064, Piscataway, 2021. IEEE.

[17] Charles Godfrey, Davis Brown, Tegan Emerson, and Henry
Kvinge. On the symmetries of deep learning models and their
internal representations. Advances in Neural Information
Processing Systems, 35:11893–11905, 2022.

[18] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Editing
3d scenes with instructions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19740–
19750, 2023.

[19] Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao, James E
Davis, and Joel H Saltz. Patch-based convolutional neural
network for whole slide tissue image classification. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 2424–2433, 2016.

[20] Jeremy Howard. Imagenette.
[21] Langwen Huang and Torsten Hoefler. Compressing multi-

dimensional weather and climate data into neural networks.
arXiv preprint arXiv:2210.12538, 2022.

[22] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang,
Matthias Nießner, Thomas Funkhouser, et al. Local im-
plicit grid representations for 3d scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6001–6010, 2020.

[23] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-
Miller, and Xinlei Chen. In defense of grid features for visual
question answering. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
10267–10276, 2020.

[24] Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Pana-
gakis. Scale equivariant graph metanetworks. arXiv preprint
arXiv:2406.10685, 2024.

[25] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann.
Decomposing nerf for editing via feature field distillation. Ad-
vances in Neural Information Processing Systems, 35:23311–
23330, 2022.

[26] Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen,
Gertjan J Burghouts, Efstratios Gavves, Cees GM Snoek,
and David W Zhang. Graph neural networks for learning
equivariant representations of neural networks. arXiv preprint
arXiv:2403.12143, 2024.

[27] Fanjie Kong and Ricardo Henao. Efficient Classification of
Very Large Images with Tiny Objects. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2374–2384, New Orleans, LA, USA, 2022.
IEEE.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[29] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

[30] Tianyang Li, Xin Wen, Yu-Shen Liu, Hua Su, and Zhizhong
Han. Learning deep implicit functions for 3d shapes with
dynamic code clouds. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

[31] David B Lindell, Dave Van Veen, Jeong Joon Park, and Gor-
don Wetzstein. Bacon: Band-limited coordinate networks
for multiscale scene representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 16252–16262, 2022.

[32] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances
in Neural Information Processing Systems, 33:15651–15663,
2020.

[33] Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng,
Zhan Ma, Yanwen Guo, and Xun Cao. Finer: Flexible
spectral-bias tuning in implicit neural representation by
variable-periodic activation functions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2713–2722, 2024.

[34] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R.
Chan, Marco Monteiro, and Gordon Wetzstein. Acorn: adap-
tive coordinate networks for neural scene representation. ACM
Trans. Graph., 40(4), 2021.

[35] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[36] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
representing scenes as neural radiance fields for view synthe-
sis. Commun. ACM, 65(1):99–106, 2021.

[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexander
Keller. Instant neural graphics primitives with a multiresolu-
tion hash encoding. ACM Trans. Graph., 41(4):102:1–102:15,
2022.

[38] Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya,
Gal Chechik, and Haggai Maron. Equivariant architectures
for learning in deep weight spaces. In Proceedings of the
40th International Conference on Machine Learning, pages
25790–25816. PMLR, 2023.

[39] Samuele Papa, Riccardo Valperga, David Knigge, Miltiadis
Kofinas, Phillip Lippe, Jan-Jakob Sonke, and Efstratios
Gavves. How to train neural field representations: A com-
prehensive study and benchmark. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22616–22625, 2024.

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[41] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pages 523–540. Springer, 2020.

[42] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In Proceedings of the 36th International Conference on Ma-
chine Learning, pages 5301–5310. PMLR, 2019.

10

[43] Sameera Ramasinghe and Simon Lucey. Beyond periodicity:
Towards a unifying framework for activations in coordinate-
mlps. In Computer Vision – ECCV 2022, pages 142–158,
Cham, 2022. Springer Nature Switzerland.

[44] Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha
Balakrishnan, Ashok Veeraraghavan, and Richard G Bara-
niuk. Wire: Wavelet implicit neural representations. In Conf.
Computer Vision and Pattern Recognition, 2023.

[45] Jonathan Richard Schwarz, Jihoon Tack, Yee Whye Teh,
Jaeho Lee, and Jinwoo Shin. Modality-agnostic variational
compression of implicit neural representations. In Proceed-
ings of the 40th International Conference on Machine Learn-
ing. JMLR.org, 2023.

[46] Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang,
Ethan Fetaya, Gal Chechik, and Haggai Maron. Improved
generalization of weight space networks via augmentations.
In Forty-first International Conference on Machine Learning,
2024.

[47] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman,
David B. Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. In arXiv,
2020.

[48] Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool,
and Federico Tombari. Implicit neural representations for
image compression. In Computer Vision – ECCV 2022, pages
74–91, Cham, 2022. Springer Nature Switzerland.

[49] Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg,
and Ulugbek S Kamilov. Coil: Coordinate-based inter-
nal learning for imaging inverse problems. arXiv preprint
arXiv:2102.05181, 2021.

[50] Gergely Szabó and András Horváth. Mitigating the bias of
centered objects in common datasets. In 2022 26th Inter-
national Conference on Pattern Recognition (ICPR), pages
4786–4792, 2022.

[51] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019.

[52] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. NeurIPS, 2020.

[53] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P Srinivasan, Jonathan T Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2846–2855, 2021.

[54] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier
Bousquet, and Ilya Tolstikhin. Predicting neural network
accuracy from weights. arXiv preprint arXiv:2002.11448,
2020.

[55] Kushal Vyas, Ahmed Imtiaz Humayun, Aniket Dashpute,
Richard G. Baraniuk, Ashok Veeraraghavan, and Guha Bal-
akrishnan. Learning transferable features for implicit neural
representations, 2024.

[56] David R Wessels, David M Knigge, Samuele Papa, Riccardo
Valperga, Sharvaree Vadgama, Efstratios Gavves, and Erik J
Bekkers. Grounding continuous representations in geometry:
Equivariant neural fields. arXiv preprint arXiv:2406.05753,
2024.

[57] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui
Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang Zhao.
Point transformer v3: Simpler faster stronger. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4840–4851, 2024.

[58] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms, 2017.

[59] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin,
Vincent sitzmann, and Srinath Sridhar. Neural fields in visual
computing and beyond. Computer Graphics Forum, 41(2):
641–676, 2022.

[60] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021.

[61] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing
of neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 18353–18364, 2022.

[62] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019.

[63] Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In Computer Vision – ECCV
2014, pages 818–833, Cham, 2014. Springer International
Publishing.

[64] Jinlai Zhang, Lyujie Chen, Bo Ouyang, Binbin Liu, Jihong
Zhu, Yujin Chen, Yanmei Meng, and Danfeng Wu. Point-
cutmix: Regularization strategy for point cloud classification.
Neurocomputing, 2022.

[65] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and
Vladlen Koltun. Point transformer, 2021.

[66] Zelin Zhao, Fenglei Fan, Wenlong Liao, and Junchi Yan.
Grounding and Enhancing Grid-based Models for Neural
Fields, 2024. arXiv:2403.20002 [cs].

[67] Jianqiao Zheng, Sameera Ramasinghe, Xueqian Li, and Si-
mon Lucey. Trading positional complexity vs deepness in
coordinate networks. In European Conference on Computer
Vision, pages 144–160. Springer, 2022.

[68] Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace,
Yiding Jiang, Samuel Sokota, J Zico Kolter, and Chelsea
Finn. Permutation equivariant neural functionals. Advances
in neural information processing systems, 36, 2024.

[69] Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie
Xu, Samuel Sokota, J Zico Kolter, and Chelsea Finn. Neural
functional transformers. Advances in neural information
processing systems, 36, 2024.

11

A. ARC implementation details
Provided with an image, the latent position are determined
by sampling image gradient norm. Like [4], the number
of latent vectors is proportional to the number of pixels in
the image. We experimented with different combinations
of the number of latents and latent dimension and found
that # latents = 0.05 · # image pixels, combined with a
feature dimension of z = 32 works well for most cases.
This configuration is used in all experiments, unless oth-
erwise noted. Like [4], the feature vectors are drawn from
U(−1e−4, 1e−4). Upon initialisation, the indexing function
Un caches the index and relative position to the n nearest
latent vectors. In all our experiments, we use a decoder of
size [n · (z+2), n · (z+2), dout]. The decoder is pre-trained
by jointly training 100 ARC instances, aggregating the loss
over all instance for each step. All our ARC instances, as
well as the pretrained decoder, are trained for 500 steps. In
fitting ARC we make use of mini-batching, whereby only
25% of the image coordinates are supervised each iteration.
We found that this makes qualitatively little difference in
reconstruction quality but makes fitting significantly faster.
An ADAM optimiser is used with a learning rate of 0.005.
We normalise images to [0,1] range.

B. Point Transformer v3 implementation details
Point Transformer v3 (PTv3) [57] is not intended to be used
outside of point-cloud tasks that are typified by a 3D coor-
dinate with optional features like colour or normals. Hence,
PTv3 requires a few tweaks in order to be compatible with
ARC. For instance, the latent coordinates are made three-
dimensional by appending a 0 to them. To make PTv3 suit-
able for classification tasks, we replace the standard upsam-
pling blocks by a global pooling layer, followed by a single
linear layer that maps the feature dimension to the number
of classes.

C. SIREN implementation details
Several of our experiments required custom SIREN datasets.
We aimed to follow DWSnets implementation but found it
to be erroneous compared to the regular SIREN specifica-
tion [47]. Specifically, a 0.5 offset is added to the network’s
output, the first layer does not follow the prescribed initiali-
sation scheme, and the bias layer is initialised to zero rather
than the prescribed weight initialisation. We found that these
errors are not readily apparent in low-resolution images such
as the ones commonly used in INR classification. In fitting
our larger resolution images, we observe heavy blurring in
the reconstruction Figure 8. We opted to use a correct SIREN
implementation instead.

We use default SIREN hyperparameters; ω0 = 30.0, no
final layer activation function, ADAM optimiser and learning
rate of 0.0005. The SIRENs are trained for 1000 steps.

Ground Truth
DWSnets
SIREN

Standard
SIREN

Figure 8. Comparison of 1024 × 1024 FMNIST objects recon-
structed using DWSnets’ SIREN implementation and a corrected
SIREN implementation. Rows depict (from top to bottom) the full
image, a zoomed-in view, and the FFT of the reconstruction. The
left column shows the original image, highlighting its increased
frequency content. From the FFTs, it is clear that spectral bias
phenomena re-emerge in the SIREN INRs.

D. Experiment details
ScaleGMN. In utilising the ScaleGMN baseline [24], it
proved to be rather unstable in training. The authors acknowl-
edge this issue and take measures such as layer normalisation
and skip connections to mitigate it. ScaleGMN is designed to
work on SIREN datasets introduced by the DWSnets paper
[38]. We found that a faulty SIREN implementation was used
in creating these datasets (Appendix C). The SIREN datasets
that we created therefore present an extra challenge as the
provided ScaleGMN settings were created with DWSnet-
SIRENs in mind. To quantify this error, we train ScaleGMN
using the provided MNIST settings on 10k SIRENs that we
fit ourselves. The resulting test accuracy is 88.89% after 71
epochs, which is 7.68% lower than the test accuracy which
the authors obtained 96.57% on the whole MNIST dataset.
We proceed to use ScaleGMN in our experiments where we
use our own SIREN datasets, but are aware of the possibly
suboptimal performance.

Toy datasets. In most experiments with toy datasets FM-
NIST was chosen as a basis. FMNIST poses a non-trivial
classification challenge for current methods [24, 26, 38] and
can easily be padded to increase the image size.

12

	Acknowledgements
	Introduction
	Background
	Machine Learning
	Neural Networks
	End-to-end Learning

	Training Mechanics
	Loss values
	Back-propagation
	Optimisers
	Epoch

	Training Considerations
	Train, validation and test data
	Overfitting and generalisation

	Convolutional Neural Networks
	Equivariance, invariance, robustness

	Transformers
	Attention

	Implicit Neural Representations
	Common INR architectures
	INRs for downstream use

	Data
	Point cloud data
	Image data
	Datasets
	Toy datasets

	Scientific article

