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ABSTRACT:

3D city models of the same region at multiple LODs are encumbered by the lack of links between corresponding objects across LODs.
In practice, this causes inconsistency during updates and maintenance problems. A radical solution to this problem is to model the
LOD of a model as a dimension in the geometric sense, such that a set of connected polyhedra at a series of LODs is modelled as a
single polychoron—the 4D analogue of a polyhedron. This approach is generally used only conceptually and then discarded at the
implementation stage, losing many of its potential advantages in the process. This paper therefore shows that this approach can be
instead directly realised using 4D combinatorial maps, making it possible to store all topological relationships between objects.

1. INTRODUCTION

3D city models of the same region are often created at multiple
levels of detail (LODs). This allows a user to choose the most
appropriate LOD for a given application, balancing the better
results that are obtainable using more detailed models with the
higher computational requirements that are necessary to obtain
them (Biljecki et al., 2014).

However, the creation of these models is a complex task that
needs to be performed continuously, as 3D city models need to
be kept up to date (Zlatanova and Holweg, 2004; Kolbe et al.,
2005). Given the large size and complexity of current 3D city
models, it can be very beneficial to have incremental updates to
the model which affect only a building and its immediate sur-
rounding area (Döllner et al., 2006). These can take place as
buildings and other city objects are built, modified and destroyed.

In order to apply such incremental update processes to 3D city
models at multiple LODs, links between related objects are cru-
cial. Given an object at a certain LOD, links usually point to
its incident and adjacent objects at the same LOD (i.e. the topo-
logical relationships that are most common in GIS), as well as
to its corresponding objects at other LODs, even when these ob-
jects are of different dimension (e.g. when a thin polyhedron in
a higher LOD is collapsed to a polygon in a lower LOD). These
links can then be used to propagate changes to other LODs (van
Oosterom and Stoter, 2010) or to apply consistency checks to new
or newly altered objects (Gröger and Plümer, 2011), among other
operations that are part of a robust update process.

However, in most of the data models used in GIS, these latter
links across LODs are either non-existent or limited to the use of
common IDs at the 2D or 3D object level. These simple schemes
are sufficient in the cases where the missing links can be deduced
geometrically, such as when there are identical geometries across
LODs, but as shown in Figure 1, it is possible that there are no
common geometries across LODs. Using only common IDs also
means that it is difficult to store complex correspondence rela-
tionships, such as an aggregation of multiple objects into one, or
those connecting the points, line segments and polygons on the
boundary of corresponding 2D or 3D objects.

Partly in response to these shortcomings, various authors have
proposed to model the LODs of a 3D model as another fully in-
dependent dimension in the geometric sense (van Oosterom and

Figure 1: Two LODs of a building footprint. Note that there are
no vertices, edges or faces with the same geometry in both LODs,
and that many primitives in the higher LOD are equivalent to a
single one in the lower LOD.

Stoter, 2010; Paul et al., 2011; Stoter et al., 2012), resulting in
a set of 0D–4D objects that can be modelled mathematically as
a 4D cell complex embedded in 4D space. This makes it pos-
sible to store all correspondences between the objects across all
LODs, even in arbitrarily complex situations, such as continuous
LODs1 (Döllner and Buchholz, 2005; van Oosterom and Meijers,
2014) or objects that move and change shape. A 3D building
that is normally modelled as different polyhedra across a series
of LODs is then modelled as a single polychoron, the 4D ana-
logue of a polyhedron, which is embedded in 4D space.

However, this integrated approach, which is presented in Sec-
tion 2, is normally only used conceptually and is then discarded
at the implementation stage. Most ‘4D GIS’ therefore store the
model as a series of minimally linked 2D/3D representations, just
as is done when a non-integrated approach is used (Raper, 2000;
van Oosterom and Meijers, 2014). Many of the advantages of the
integrated approach are thus unfortunately lost in practice.

As an alternative, we argue that it is possible to preserve all cor-
1As opposed to a set number of discrete LODs.
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respondences between the objects of every dimension directly as
a 4D cell complex (Arroyo Ohori et al., 2015c). In this paper
we show how this can be done in practice using nD combina-
torial maps (Damiand and Lienhardt, 2014). This dimension-
independent data structure, introduced briefly in Section 3, is
likely the best option for an integrated 4D GIS model at the
present time due to its compactness and the availability of effi-
cient libraries implementing them (Arroyo Ohori et al., 2015b),
such as CGAL2 and CGoGN3 (Kraemer et al., 2014).

Based on CGAL Combinatorial Maps, we show in Section 4 how
a 4D GIS using real multidimensional 0D–4D objects can be im-
plemented in practice, describing the main aspects of such a sys-
tem, including how real-world 4D objects can be created and ma-
nipulated. We finish with a discussion of the current and future
possibilities of a 4D GIS in practice in Section 5.

2. MODELLING THE LODS OF A 3D MODEL AS A 4D
CELL COMPLEX

In the general sense, it is possible to model any number of
parametrisable characteristics as dimensions in the geometric
sense. When the standard (two or three) spatial dimensions
are combined with other non-spatial ones modelled in this man-
ner, real-world 0D–3D entities are then modelled as higher-
dimensional objects embedded in higher-dimensional space.
These can then be directly stored using higher-dimensional data
structures, such as nD combinatorial maps. Although the ap-
proach can be applied with any type of characteristics, it is usu-
ally used with characteristics that are closely linked to space, such
as time (Raper, 2000) and scale (van Oosterom and Stoter, 2010).

This higher-dimensional spatial modelling approach is well
grounded in long-standing mathematical theories and offers inter-
esting possibilities in practice. Descartes (1637) already laid the
foundation for nD geometry by putting coordinates to space, al-
lowing the numerical description of geometric primitives and the
use of algebraic methods on them, theories of nD geometry were
developed by Riemann (1868) among others, and Poincaré (1895)
developed algebraic topology with a dimension-independent for-
mulation, stating that even if nD objects could not be [then] rep-
resented, they do have a precise topological definition, and conse-
quently properties that can be studied. From an application point
of view, 4D topological relationships between 4D objects provide
insights that 3D topological relationships cannot (Arroyo Ohori
et al., 2013), weather and groundwater phenomena cannot be ad-
equately studied in less than four dimensions (McKenzie et al.,
2001), and van Oosterom and Stoter (2010) argue that the inte-
gration of space, time and scale into a 5D model for GIS can
be used to ease data maintenance and improve consistency, as
algorithms could detect if the 5D representation of an object is
consistent and does not conflict with other objects.

Within this paper, we focus solely on modelling the LOD of a 3D
city model as an extra geometric dimension—in so far as it can be
used to store all topological relationships between related objects
across LODs. A set of connected 2D polygons at multiple LODs
are then stored as a single 3D polyhedron4, as is shown in Fig-
ure 2, and a set of connected 3D polyhedra at multiple LODs as
a single 4D polychoron. Notably, the correspondences between
equivalent objects across LODs are modelled as geometric prim-
itives, making it possible to perform geometric operations with

2http://doc.cgal.org/latest/Combinatorial_map
3http://cgogn.unistra.fr
4Separate polygons might become connected in different situations,

such as by being joined into a single one at one or more LODs.

Figure 2: Two LODs of a building footprint are stored as a sin-
gle polyhedron. Note that the correspondences between vertices,
edges and faces between the LODs are clearly indicated by the
vertical edges and faces.

them (e.g. extracting an intermediate LOD for visualisation pur-
poses) or to attach attributes to them, just as is done to other geo-
metric primitives.

In order to understand how the polychora in a 4D (3D+LOD)
setting look like, it is easier to first consider a 3D setting that
consists of two spatial dimensions and the LOD of the model as a
third dimension. In this setting, a polygon that is modelled at pre-
cisely one LOD (i.e. a point on the LOD axis) is still a polygon,
but one that is embedded in 3D space. The simplest volumetric
example occurs when a polygon is modelled identically along a
range of LODs, as is shown in Figure 3. In this case, the resulting

Figure 3: An unchanged building footprint at two LODs forms a
prism-shaped polyhedron.

polyhedron is a prism that consists of base and top faces with the
same geometry as the original polygon, which are orthogonal to
the LOD axis and represent the end points of the range. These
faces are joined by lateral quadrilateral faces, which are aligned
with the LOD axis and connect corresponding edges of the top
and bottom face.

When polygons are modelled differently at different LODs, the
resulting polyhedra can be arbitrarily more complex. However,
it is worth noting that applying many fundamental operations to
a polygon in the same 2D+LOD setting also result in similarly
easily-definable volumes. This is the case for all basic transfor-
mation operations or collapses of objects of any dimension, as is
shown in Figure 4 and Figure 5.
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(a) (b) (c)

Figure 4: Applying various transformations to a building footprint along the LOD axis: (a) translation, (b) rotation and (c) scale.

(a) (b)

Figure 5: Collapsing (parts of) a building footprint along the LOD axis: (a) an edge, (b) a face.

Moreover, all these volumetric cases (unchanged, transformed
and collapsed polygons) can be generated algorithmically in a
simple manner by using extrusion as a first step. A polygon that
is modelled identically along an LOD range can be created by
simply extruding the polygon along the range—a common oper-
ation in geometric modelling for which there are various avail-
able algorithms (Ledoux and Meijers, 2011). As a second step,
the transformations simply require applying the transformation to
the extruded vertices5, while the collapses require moving the un-
extruded vertices of the collapsed cell to a certain location (e.g.
the centroid of the edge or face). Degenerate edges and faces can
then be easily detected and removed, as all their vertices are in
the same location.

These cases are illustrative because they work in the same man-
ner in the 4D setting6, being easy to define and to generate al-
gorithmically. A prismatic polychoron—the 4D analogue of a
prism—can be constructed by extruding a polyhedron along a
range, which can be done using the algorithm described in Ar-
royo Ohori et al. (2015a). Figure 6 shows the result of extruding
the polyhedron in Figure 3, which is equivalent to a polyhedron
remaining unchanged along the LOD axis.

In a similar manner as the 3D cases, a prismatic polychoron can
also be easily modified to reflect a transformation or a collapse
that occurs along the LOD axis. Transforming a polyhedron
means applying the transformation to the unextruded vertices of
the polychoron. Collapsing an edge, face or volume means mov-
ing all of its vertices to the same location. Degenerate edges,
faces or volumes can be identified by checking whether all their
vertices are in the same location, and can therefore be easily re-
moved.

5If the bottom face of the extruded polygon represents it before the
transformation, this would mean transforming the vertices in its top face.

6In fact, they work in the same manner in any dimension.

3. ND COMBINATORIAL MAPS

Combinatorial maps is a data structure originally proposed by Ed-
monds (1960) to describe the 2D surfaces of 3D objects. Their ex-
tension to arbitrary dimensions is described by Lienhardt (1994)
for objects without boundaries (e.g. Rn or the ‘wrap-around’ sur-
faces around objects) and extended to objects with boundaries by
Poudret et al. (2007). They are able to describe subdivisions of
orientable quasi-manifolds—a specific combinatorial interpreta-
tion of the topological concept of a manifold. However, it is worth
noting that non-manifold objects can still be stored in a combina-
torial map by the use of non-manifold domains (Arroyo Ohori et
al., 2015b).

In order to give a more precise description of how we model 4D
objects, it is useful to start from the concept of a cell complex.
Intuitively, a cell complex is a structure made of connected cells,
where an i-dimensional cell (i-cell) is a topological object home-
omorphic to an i-ball (i.e. point, arc, disk, ball, etc.)7. Vertices are
thus 0-cells, edges are 1-cells, faces are 2-cells, volumes are 3-
cells, and so on. An i-cell can be used to model an i-dimensional
object, so considering only linear geometries, 1-cells are repre-
sentations of line segments, 2-cells of polygons, 3-cells of poly-
hedra, and 4-cells of polychora. A j-dimensional face (j-face) of
an i-cell is a j-cell, j ≤ i, that lies on the boundary of the i-cell.
Two i-cells are said to be adjacent if they have a common (i−1)-
face, and an i-cell and a j-cell, i 6= j, are said to be incident if
either is a face of the other.

Combinatorial maps are thus data structures that can be used to
represent cell complexes of any dimension and are composed of
combinatorial primitives called darts, which are equivalent to the
simplices in a simplicial decomposition8 of the input cell com-
plex. If we consider all the cells of the complex of dimension

7See Hatcher (2002) for a more rigorous definition.
8i.e. the vertices, edges, triangles, tetrahedra, etc. in an n-dimensional

combinatorial triangulation
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(a) (b) (c)

Figure 6: The polyhedron in Figure 3 can be extruded to 4D using the algorithm in Arroyo Ohori et al. (2015a). The result is a single
polychoron, whose faces are shown here in parts for clarity: (a) the faces in the two end volumes, (b) the lateral faces connecting
corresponding vertical edges, and (c) the top and bottom faces connecting corresponding horizontal edges. Not shown here are the 16
polyhedra that are formed from these faces.

two or higher as symbolic vertices, the simplicial decomposition
is computed by creating simplices formed by joining combina-
tions of cells of every dimension higher than zero, all of which
are incident to each other. Since every dart thus joins two of the
original vertices—in addition to vertices representing cells of ev-
ery dimension from two upwards—, an orientation is given to a
dart by specifying an order among the two original vertices.

As shown in Figure 7, darts in a 2D combinatorial map are
thus equivalent to combinatorial triangles defined by an incident
edge-face pair, which are then given an orientation. In 2D, darts
are also equivalent to the oriented half-edges in a typical half-
edge data structure, e.g. the DCEL (de Berg et al., 2008).

Higher-dimensional combinatorial maps are easiest to picture
from the point of view of the simplicial decompositions that are
similar to the 2D one in Figure 7a. As shown in Figure 8, in a
3D combinatorial map, darts are equivalent to tetrahedra defined
by an incident edge-face-volume triplet. Although 4D objects are
hard to picture, by analogy it is easy to see that a dart in a 4D
combinatorial map is a 4-simplex, which is defined by an inci-
dent edge-face-volume-4-cell 4-tuple.

The darts in a combinatorial map are connected by ordered re-
lations between them, which in an n-dimensional combinatorial
map are denoted by β1 to βn. These relations represent the adja-
cency relations between the simplices in the simplicial complex,
such that the βi relation of a dart d connects it to the adjacent sim-
plex that represents all the same cells except for the i-dimensional
one—equivalent to switching in a simplex the vertex representing
the i-cell for the i-cell of a neighbouring simplex. Since 1-cells
are only implicitly represented through two edge-connected ver-
tices, β1 connects a dart to the next dart within the face according
to the predefined order between the vertices. The other relations
of a dart (i.e. β2 and higher), which by definition share both of
the original vertices, βi always connects a dart to an oppositely-
oriented dart. For example, β2 connects a dart that represents
the same vertices and edge, but that represents the adjacent face
(which in the DCEL is commonly known as the twin).

4. STORING A 3D+LOD MODEL AS A 4D
COMBINATORIAL MAP

As a dart in an n-dimensional combinatorial map is connected to
n other darts using the ordered relations ranging from β1 to βn, it
is possible to navigate through all these links by storing them as a
n-tuple per dart. However, it is very inefficient to rotate through
all the darts of a face in order to get the previous dart of the face.
Because of this, storing the inverse of β1, i.e. β−1

1 , is desirable
as well. In this manner, both β1 and β−1

1 can be used to cycle
through a face in the clockwise and counterclockwise directions.

In our particular case of a 4D combinatorial map, given a dart d,
we therefore store a tuple of relations:(

β−1
1 (d), β1(d), β2(d), β3(d), β4(d)

)
.

A dart in an n-dimensional combinatorial map is a representa-
tion of two 0-cells and one cell of every dimension higher than
zero. Because of this, a dart also can be used to store the at-
tributes of all of its cells in the form of another ordered tuple, or
to keep links to external structures storing them if they are better
stored separately—which depends on the space needed to store
said attributes compared to the space needed to store the links. In
order to reduce the amount of storage that is required, it is possi-
ble to omit the attributes for one of the two 0-cells of the dart in
an ordered manner, omitting either always the first or always the
second 0-cell according to the predefined orientation of the com-
binatorial map. These can be obtained from any of their β-linked
neighbours as the first 0-cell of a dart is always the second 0-cell
of a β-linked neighbour due to the consistent orientation that is
set in a combinatorial map. Considering for a given dart d, ai(d)
links it to the attribute(s) of its i-cell, we can therefore similarly
store a tuple of attributes:

(a0(d), a1(d), a2(d), a3(d), a4(d)) .

Among all the attributes of the cells of all dimensions, those of
the 0-cells are particularly important. By embedding every vertex
at a location in space defined by a tuple of coordinates, it is pos-
sible to embed an abstract cell complex in space. In the case of a
4D cell complex, every vertex should have a location defined by
a point in 4D space, which is represented by tuple of coordinates
(x, y, z, l), where x, y and z are the coordinates of the point in
3D space, and l is a point on the LOD axis. However, it is im-
portant that the vertices of the cell complex are embedded in a
geometrically correct manner. The faces of the complex should
be coplanar and the volumes of the complex should lie on a flat
region of 3D space. That is, the points where their vertices are
embedded should lie on the subsets of space defined by a linear
combination of respectively two and three vectors.

In CGAL Combinatorial Maps, darts are already implemented as
individual primitives that store their relationships to other darts,
while the embeddings of the vertices as points in 4D space can
be handled through the Linear Cell Complex package. In order
to store other relevant attributes for the darts, as well as for cells
of every dimension, it is possible to do so by defining custom
Dart and Linear cell complex classes. Figure 9 shows a fully
dimension-independent example using simple integer IDs.

Based on such a custom Linear cell complex class, a 3D city
model can be loaded into a 3D cell complex incrementally (Ar-
royo Ohori et al., 2014). In our case, we use the OGR Simple
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(a) (b) (c)

Figure 7: A 2D combinatorial map representing three polygons. (a) The underlying simplicial complex, where every triangle consists of
two vertices (marked as 0) at either end of an edge and a symbolic vertex for every face (marked as 2). (b) The combinatorial map that
is generated by choosing a counterclockwise orientation for the polygons. (c) Same for the clockwise orientation. Darts are represented
by triangles in (a) and arrows in (b) and (c).

(a) (b) (c)

Figure 8: A 3D combinatorial map representation of a (a) cube consists of (b) 24 darts. (c) Each of these darts is defined by an incident
edge-face-volume triplet. In this case, they are the lower front edge (between the 0s), front face (2) and the only volume of the cube
(3). Note that there are also two possible orientations for such a map, which are not shown here.
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template <int d, class Refs >
struct Dart_with_id : public CGAL::Dart <d, Refs > {
public:

typedef CGAL::Dart <d, Refs > Dart;
typedef typename Refs:: size_type size_type;
static const size_type NB_MARKS = Refs:: NB_MARKS;
int id;

Dart_with_id () : Dart() {
id = -1;

}

Dart_with_id(int id) : Dart() {
this ->id = id;

}

Dart_with_id(const Dart& adart) : Dart(adart) {
id = -1;

}
};

template <unsigned int d>
struct Linear_cell_complex_items_with_id {

template <class LCC >
struct Dart_wrapper {

typedef CGAL:: Cell_attribute_with_point <LCC , int > Point_attribute_with_id;
typedef CGAL:: Cell_attribute <LCC , int > Attribute_with_id;

template <unsigned int attributes_to_add , class Result = CGAL::cpp11::tuple <> >
struct Linear_cell_complex_items_with_id_attributes;

template <class ... Result >
struct Linear_cell_complex_items_with_id_attributes <0, CGAL::cpp11 ::tuple <Result ...> > {

typedef CGAL::cpp11::tuple <Point_attribute_with_id , Result ...> tuple;
};

template <unsigned int attributes_to_add , class ... Result >
struct Linear_cell_complex_items_with_id_attributes <attributes_to_add , CGAL::cpp11::tuple <Result ...> > {

typedef typename Linear_cell_complex_items_with_id_attributes <attributes_to_add -1,
CGAL::cpp11::tuple <Attribute_with_id , Result ...> >::tuple tuple;

};

typedef Dart_with_id <d, LCC > Dart;
typedef typename Linear_cell_complex_items_with_id_attributes <d>:: tuple Attributes;

};
};

template <unsigned int d>
struct Linear_cell_complex_with_ids {
public:

typedef CGAL:: Linear_cell_complex <d, d, CGAL:: Linear_cell_complex_traits <d>,
Linear_cell_complex_items_with_id <d> > type;

};

Figure 9: Custom Dart with id and Linear cell complex with id classes. Dart with id stores an integer id per dart, while Lin-
ear cell complex with id stores an integer ID for every cell of every dimension. The latter is templated with the dimension d of
the cell complex, whereafter it is used to add integer attributes for every cell of dimension higher than zero. This example uses variadic
templates to show how it is possible to do this in a fully dimension-independent manner.
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Feature Library9 to read standard GIS data formats. Based on
the Simple Features specification (OGC, 2011), we read a dataset
face by face, creating a new dart per vertex of the face, embed-
ding it into its 3D coordinates using CGAL’s Point d nD data
type and assigning it a sequential ID. Every dart within the face
is then linked to and from the previously created one respectively
by their β−1

1 and β1 relationships, then the last dart of the face is
connected to the first one in the same manner. The face is then
assigned an ID based on its feature ID obtained through OGR.

The separate faces representing a single volume are then linked
together using the incremental construction method described in
Arroyo Ohori et al. (2014). Once the faces have been linked, it
is possible to assign sequential IDs to every edge (as doing so
earlier creates gaps in the numbering due to disconnected edges).
Finally, it is possible to assign an ID to the volume.

By associating every volume in the 3D cell complex with a scale
range along which it is a valid representation, the entire 3D cell
complex can be extruded to 4D. Note that the attributes of the
cells are preserved—an i-cell is always extruded into two i-cells
and an (i+1)-cell that lies between them, all of which can inherit
the attributes of the unextruded cell. The 4-cells at this stage
represent the prismatic polychora discussed in Section 2 and can
be used for further operations.

5. CONCLUSIONS

Modelling non-spatial characteristics as additional dimensions in
the geometric sense is a powerful technique. Applied to the level
of detail of a 3D city model, it enables the storage of arbitrar-
ily complex relationships between objects by keeping track of all
possible topological relationships. As this approach is generic,
the overarching methods presented in the paper is not only appli-
cable to the LOD of a model. It can be applied to to any char-
acteristic that is parametrisable, such as time (van Oosterom and
Stoter, 2010).

Combinatorial maps are likely the best option for an integrated
4D GIS model at the present time due to their compactness and
the availability of efficient libraries implementing them (Arroyo
Ohori et al., 2015b) In terms of space, a given cell complex stored
as a combinatorial map generally requires only half the combi-
natorial primitives compared to a generalised map (Lienhardt,
1994) or cell-tuple structure (Brisson, 1993). The libraries im-
plementing combinatorial maps significantly decrease the effort
that is needed to create and manipulate general 4D cell complexes
efficiently—something that only becomes more important due to
the so-called ‘curse of dimensionality’ (Bellman, 1957), where
the number of combinatorial elements on a higher-dimensional
representation can increase in size exponentially on the dimen-
sion.
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