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Summary. Over the past several years, a number of metrics have been introduced
to characterize the topology of complex networks. We perform a statistical analysis
of real data sets, representing the topology of different real-world networks. First,
we show that some metrics are either fully related to other topological metrics or
significantly limited in the range of their possible values. Second, we observe that
subsets of metrics are highly correlated, indicating redundancy among them. Our
study thus suggests that the set of commonly used metrics is too extensive to con-
cisely characterize the topology of complex networks. It also provides an important
basis for classification and unification of a definite set of metrics that would serve
in future topological studies of complex networks.

1 Introduction

Complex network structures are common for a wide range of systems in nature
and society [3, 15, 32]. Although complex systems are extremely different in
their function, a proper knowledge of their topology is required to thoroughly
understand and predict the overall system performance. For example, in com-
puter networks, performance and scalability of protocols and applications,
robustness to different types of perturbations (such as failures and attacks),
all depend on the network topology. Consequently, network topology analysis,
primarily aiming at non-trivial topological properties, has resulted in the def-
inition of a variety of practically important metrics, capable to quantitatively
characterize certain topological aspects of the studied systems [1, 4, 30]. The
outcome, however, has a serious drawback that it does not ensure the mutual
dependence among the proposed metrics: given that new metrics are usually
principally intended at characterizing the systems under study, some metrics
either fully capture others or, at least, significantly limit the range of their
possible values. In this context, having an increasing number of metrics com-
plicates attempts to determine a definite metric-set that would form the basis
for analyzing any network topology [22].

In this paper we study the relationships between topological metrics, with
the aim of classifying a subset that would effectively characterize most real-
world networks. The classification of metrics in our study is based on statisti-
cal analysis methods. The presented methods reveal a clear relation between
topological metrics: a metric accounting for a certain network property seems
to be strongly associated with other metrics that to our knowledge has not
been previously reported as being trivial. This study thus establishes a path
towards the identification of a definite set of topological metrics that would
serve in future network topology analysis.
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The paper is organized as follows. Section 2 describes topological metrics
and the considered data sets, representing the topology of various complex sys-
tems. Section 3 analyses the relationship between topological metrics through
three different statistical methods. Section 4 summarizes our main results on
classification of the set of topological metrics.

2 Background

2.1 Topological metrics of networks

In this section we provide a set of topological metrics, which is considered
relevant in the networking literature [24]. A graph theoretic approach is used
to model the topology of a complex system as a network with a collection
of nodes and a collection of links that connect pairs of nodes. A network is
represented as an undirected graph G = (N ,L) with n = |N | nodes and
m = |L| links.

Basics

A network is connected if there exists a path between each pair of nodes.
When there is no path between at least one pair of nodes, a network is said
to be disconnected. A disconnected network consists of several independent
components. We use the number of zero eigenvalues of the Laplacian matrix1

to check the number of components2 a network has. In the remainder of this
paper, we only consider the networks formed by the largest connected compo-
nent of our real-world networks. The computation of the topological metrics
is thus restricted to those largest connected components.

Degree

Node degree describes the number of neighbors a node has. The node
degree distribution is the probability Pr(k) that a randomly selected node has
a given degree k. The number of links that on average connect to a node is
called the average node degree. The average node degree can be easily obtained
from the degree distribution through E[D] =

∑Dmax
k=1 k Pr(k), where Dmax is

the maximum degree in a given graph.
The joint degree distribution Pr(k, k′) is the probability that a randomly

selected pair of nodes has degrees k and k′. A summary metric of the joint
degree distribution is the average neighbor degree of nodes with a given degree
k. Another summary statistics that quantifies the correlation between pairs
of nodes is the assortativity coefficient r: assortative networks have r > 0
(disassortative, i.e. r < 0 resp.) and tend to have nodes that are connected to
nodes with similar (dissimilar resp.) degree [29].

Distance

The distance distribution Pr(h) is the probability that the length of
the shortest path (hopcount) between a random pair of nodes is h. From
the distance distribution, the average node distance is derived as E[H] =∑hmax

h=1 h Pr(h), where hmax is the largest hopcount between any pair of nodes.
hmax is also referred to as the diameter of a graph. On the other hand, the
1 The Laplacian matrix of a graph G with n nodes is an n× n matrix Q = ∆−A

where ∆ = diag(Di), Di is the nodal degree of node i ∈ N and A is the adjacency
matrix of G [26].

2 The multiplicity of 0 as an eigenvalue of the Laplacian matrix is equal to the
number of components a network has.
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eccentricity measures the longest path between a random pair of nodes. The
average node eccentricity is the average of eccentricities of all pairs of nodes.
Obviously, the maximum eccentricity equals hmax.

Clustering

The clustering coefficient cG(i) of a node i is the proportion of links be-
tween nodes within the neighborhood of a node i, divided by the maximum
number of links that could possibly exist between those neighbors. For an
undirected graph, a node i with degree di has at most di(di−1)

2 links among
the nodes within its neighborhood. In other words, the clustering coefficient is
the ratio between the number of triangles that contain node i and the number
of triangles that could possibly exist if all neighbors of i were interconnected
[31, 32]. The clustering coefficient for the entire graph is the average of clus-
tering coefficients of all nodes.

The rich-club coefficient [11] is a recently introduced metric that quantifies
how close subgraphs, spawned by the k largest-degree nodes, are to forming
a clique. The rich-club coefficient φ is the ratio of the number of links in
the subgraph induced by the k largest-degree nodes to the maximum possible
links between them k(k − 1)/2.

Centrality

Betweenness is a centrality measure of a node (link) within a graph: nodes
(links) that occur on many shortest paths between other node pairs have
higher node (link) betweenness than those that do not [17]. Average node
(link) betweenness is the average value of the node (link) betweenness over all
nodes (links).

Coreness

The k-core of a graph is a subgraph obtained from the original graph by
the removal of all nodes of degree less then or equal to k [7]. The node coreness
of a given node is the maximum k such that this node is still present in the
k-core but removed from the (k + 1)-core. The average node coreness is the
average value of the node coreness over all nodes.

Robustness

The second smallest eigenvalue of the Laplacian matrix [16] is called the
algebraic connectivity. The algebraic connectivity plays a special role in many
graph theory related problems (for surveys see e.g. [10, 13, 14, 27]). The most
important is its application to the robustness of a graph: the larger the alge-
braic connectivity is, the more difficult it is to cut a graph into independent
components. Two other connectivity metrics are directly related to the alge-
braic connectivity: 1) the link connectivity is the minimal number of links
whose removal would disconnect a graph, 2) the node connectivity is defined
analogously (nodes together with adjacent links are removed). The latter two
connectivity metrics provide worst case robustness to node and link failures
[16].

2.2 Data sources of real-world networks

We mostly have used publicly available data sets, representing the topology
of complex networks from a wide range of systems in nature and society,
i.e. technological, social, biological and linguistic. Technological system we
consider here include the following real-world networks:

• the Dutch road infrastructure [18];
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• a European national railway infrastructure;
• a European Internet Service Provider;
• a European city area power grid;
• the western states power grid of the United States [31];
• the air transportation network representing the world wide airport connec-

tions, documented at the Bureau of Transportation Statistics (http://www.bts.gov)
database, and the connection between United States airports [12];

• the Internet network at the autonomous [8] and the router [9] level.

Social systems include the following real-world networks:

• the network representing soccer players association to Dutch soccer team
[19];

• the network representing actor appearance in movies [2];
• the network representing collaboration among scientists [28].

Biological systems include the following real-world networks:

• the network representing frequent associations between dolphins [23];
• the network representing protein interaction of the yeast Saccharomyces

cerevisae [11, 20].

Linguistic systems include the following real-world networks:

• the network representing common adjacencies among words in English,
French and Spanish [25].

We provide in the Appendix a summary statistics of the topological metrics
for the considered real-world networks.

3 Statistical analysis of topological metrics

In this section, we rely on statistical analysis methods to give insight on the
relationships between metrics in real-world networks. In the first Subsection
3.1, we relate pairs of topological metrics by displaying their values as a col-
lection of points, each having one coordinate on a horizontal and one on a
vertical axis. In the second Subsection 3.2, we perform correlation analysis
to find out which of the metrics are redundant. In the third and final Sub-
section 3.3, we apply principal components analysis (PCA) to support the
classification of subsets of metrics that are highly correlated.

3.1 Visual comparison

Many complex networks are characterized by a power-law node degree dis-
tribution and a relatively short path between any two nodes. However, some
complex networks may lack both, the power-law as well as the small-world
character. Among the considered data sets, networks representing the topol-
ogy of various transportation systems and power-grids are those where the
two characteristics were not entirely encountered. In Figure 1, we show the
node degree distribution of networks that do not obey a power-law behavior.

The average node degree is the coarsest characteristic of node intercon-
nections. In complex networks the average node degree is typically small and
independent of the network size n. In Figure 2 we show respectively the re-
lationship between the link density and the number of nodes (and links) for
various complex networks. As expected, for increasing n, the link density tends
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Fig. 1. Real-world networks that do not obey a power-law degree distribution.

to zero and closely follows a power-law with exponent 1 (bottom of Figure 2).
The link density is thus inversely proportional to the number of nodes while
being inversely proportional to the square root of the number of links (top of
Figure 2). From this it follows that the number of links is proportional to the
number of nodes (not shown). Hence, in most complex networks, the classical
assumption that m = O(n) holds.
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Fig. 2. The link density as a function of the number of nodes and the number of
links in real-world networks.

Node correlations play an important role in the characterization of the
topology of complex networks. The most general approach to measure corre-
lation among nodes is by means of the assortativity coefficient. On the top
left scatter diagram in Figure 3 we show that disassortative networks, where
high-degree nodes preferentially attach to other high-degree nodes, tend to
be more clustered as their disassortativity increases. One should also notice
from the ellipse on the top left scatter diagram in Figure 3 that networks
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are typically assortative while having almost no clustering. The latter group
of networks is made of various transportation and power-grid infrastructures.
In addition, we observe that assortative networks, on average, have larger
distances between pairs of nodes. The relationship between the assortativity
coefficient and the average node distance is shown in the upper right scatter
diagram of Figure 3.

Recently, it has been shown that complex networks are also characterized
by the so called rich-club phenomenon [11]. The average distance between
pairs of nodes as a function of the rich-club coefficient (lower left scatter dia-
gram of Figure 3) yields that networks with smaller distance are much more
likely to have high-degree nodes that form tight and well-interconnected sub-
graphs. As a result, one might expect that for disassortative networks, having
on average smaller distance between pairs of nodes, the rich-club phenomenon
would be evident as well. Nevertheless, on the lower right scatter diagram of
Figure 3, we show that the rich-club phenomenon is not trivially related to the
mixing properties of networks. In other words, the rich-club phenomenon and
the mixing properties express different features that are not trivially related
or derived from each other.

On the other hand, topological metrics associated with a certain feature,
such as the shortest path length, are clearly related to each other. For example,
average distance between pairs of nodes increases as a function of average node
betweenness, verifying that networks that have many shortest paths between
pairs of nodes, on average, have higher node betweenness and distance. The
Internet Service Provider network is a good example of a network for which
high average distance between pairs of nodes results in high average node
betweenness (see summary statistics presented in the Appendix).
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Fig. 3. The relationship among topological metrics for various real-world networks

An important topological property, often ignored in the analysis of complex
networks, is coreness. Node coreness refers to the degree of closeness of each
node to a core of densely connected nodes, observable in the network [7]. In
Figure 4 we report the relationship between average node coreness and the
previously identified metrics. The average node coreness as a function of the
assortativity coefficient yields that social networks do not follow the generally
observed trend of networks being disassortative but having, on average, higher
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Fig. 4. The relationship among topological metrics for various real-world networks

node coreness. All three social networks are shown within an ellipse on the
top left scatter diagram of Figure 4. At the same time, networks with higher
average node coreness are more likely to have higher rich-club and clustering.
Finally, we observe that the average node coreness is directly related to the
average node degree. The former relationships are not surprising since on
average, higher average node degree means higher rich-club and clustering,
both for which we already perceived higher coreness.

Robustness to node and link failures is well captured by the algebraic con-
nectivity. In essence, the algebraic connectivity quantifies the extent to which
a network can accommodate an increasing number of node- and link-disjoint
paths. Figure 5 shows the relationships between the algebraic connectivity
and the previously identified metrics. The algebraic connectivity increases
with the average node degree, as networks with higher average degree are
better connected and consequently, are likely to be more robust. Contrary to
the literature [29] where it is shown that assortative networks are less vul-
nerable to both random failures and targeted attacks, we find the opposite
tendency. We observe that disassortative networks have larger algebraic con-
nectivity. The previous observation is most likely to be related to the hardness
to cut the graph into independent components. Moreover, the larger the al-
gebraic connectivity, the more networks seem to have a large rich-club and
hierarchical nature. This implies that they have more well-interconnected and
centrally-oriented nodes that occur on many shortest paths. Still, the average
node betweenness does not seem to be related to the robustness of a graph.

3.2 Correlation analysis

Correlation analysis aims at finding out linear relationships between variables.
Variables are in our case the topological metrics. From Figures presented in
the Appendix we derive a matrix whose columns are the different metrics and
the rows are the different real-world networks, denoted by X. We then com-
pute the correlation matrix of X, denoted by C. Matrix C is symmetric and
has 1’s elements on the diagonal. Each element (i, j) of C gives the correlation
coefficient between metrics i and j (rows i and j of X). The correlation co-
efficient c varies between -1 and 1, and indicates whether the two variables a
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Fig. 5. The relationship among topological metrics for various real-world networks

linearly correlated: positively if c ∼ 1, negatively if c ∼ −1, and uncorrelated
if c ∼ 0.

We are not interested in whether the correlation between two metrics is
positive or negative, but only how strongly two given metrics are numerically
related to each other. To ease the visualization, we show on Table 1 a sym-
bolic encoding version of the correlation matrix. Table 1 displays the lower
diagonal of the correlation matrix, using the following range of values and
coding characters:

• 0 ≤ |c| ≤ 0.3: ” ” (no correlation);
• 0.3 ≤ |c| ≤ 0.6: ”.” (mild correlation);
• 0.6 ≤ |c| ≤ 0.9: ”+” (significant correlation);
• 0.9 ≤ |c| ≤ 1: ”#” (strong correlation).

The metrics on Table 1 are identified by their number at the top of each
column, and by the name and number on the left of each row. As the correla-
tion matrix is symmetric, we show only the lower diagonal. First to be noticed
is that 58 among the 91 lower diagonal elements (not counting the diagonal)
have a correlation coefficient less than 0.3 in absolute value. Most metrics are
thus weakly correlated, indicating that most of them indeed reveal different
topological aspects of real-world networks. 21 among the 91 lower diagonal
elements correspond to mild correlations, i.e. 0.3 ≤ |c| ≤ 0.6. Only 12 among
the 91 lower diagonal elements correspond to strong correlations. Based on
existing correlations between metrics, we can identify the following clusters
(see also Figure 6):

• Distance cluster: average node distance, average node eccentricity, av-
erage node and link betweenness.

• Degree cluster: average degree, average node coreness and clustering
coefficient.

• Intra-connectedness cluster: link density, rich-club coefficient and al-
gebraic connectivity.

• Inter-connectedness cluster: average neighbor degree and assortativity
coefficient.

We labeled different metric clusters according to the type of topological in-
formation the group of metrics provides. Intra- and inter- connectedness refer
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Topological metrics 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of nodes (1) 1

Number of links (2) . 1

Link density (3) . 1

Average degree (4) . 1

Average neighbour degree (5) 1

Assortativity coefficient (6) + 1

Rich-club coefficient (7) . + . 1

Clustering coefficient (8) . . + . 1

Average node distance (9) . 1

Average node eccentricity (10) . # 1

Average node coreness (11) . # . + 1

Average node betweenness (12) . # # 1

Average link betweenness (13) . # # # 1

Algebraic connectivity (14) . . . . . + . . 1

Table 1. Correlation between topological metrics.

to the metrics characterizing the observed connectivity, respectively, within
and between a (sub)set of nodes in the network. All metrics within each clus-
ter are highly or partly topologically redundant. The 14 initial metrics can
thus be reduced to 6 (including the number of nodes and the number of
links) since 8 of them are redundant with those of the same cluster. Besides
the strength of the correlations within the groups, the correlation analysis
shows to what extent some metrics capture several topological properties of a
network at once. For example, the number of nodes and the algebraic connec-
tivity, both exhibit mild correlation to 8 other metrics. The number of nodes
is related to the number of links and all metrics within the distance and the
intra-connectedness clusters, while not related to metrics within the degree
or the inter-connectedness clusters. The algebraic connectivity, on the other
hand, is related to all metrics within the degree, intra-connectedness, and the
inter-connectedness clusters, but not to any metric in the distance cluster.

Fig. 6. A graph in which nodes are topological metric and links the correlations
that emerged from the correlation analysis. The corresponding values display the
strength of the correlation between pairs of metrics.
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3.3 Principal component analysis

Correlation analysis measures the strength of correlation between variables.
Understanding correlations, however, does not give insight about the number
of independent variables, possibly derived from the set of correlated variables.
In this context, correlated variables are the topological metrics. Principal com-
ponent analysis (PCA) [21] has proven to be useful for reducing the number
of variables (dimensionality) while retaining most of the original variability
in the data. The number of transformed, uncorrelated variables are called
principal components, which in decreasing order account for as much of the
variability in the data as possible.

Given a data set, denoted as a matrix X with the number of columns p as
the number of variables to be analyzed Xi, i = 1, . . . , p. Each variable has n
elements, hence X is a n× p matrix. PCA performs a rotation of this matrix
X such that

Y = A′X′ (1)

where A′ is an orthogonal matrix3. Y is the matrix of the rotated data,
it is a square matrix of order n. A is found by constraining the covariance
matrix of Y, CY = 1

n−1YY′, to be diagonalized. A symmetric matrix can be
diagonalized by the orthogonal matrix of its eigenvectors so that

CY =
1

n− 1
AΛA′ (2)

where Λ = XX′. A is selected so that its columns are the eigenvectors of Λ
and the principal components of X. The diagonal elements of CY give the
variance of X along each principal component.

The objective of PCA is to provide information about the minimal di-
mensionality, necessary to describe the data variability. The percentage of the
total data set variance that is captured by a given number of principal compo-
nents, is presented in Figure 7. The first principal component alone captures
76%, the first two components 94% and the first three components more than
99% of the total data set variance. PCA analysis showes that only 3 dimmen-
sions are enough to retain most of the original variability in the data. This,
however, does not imply that metrics that are not important for the main prin-
cipal components are unnecessary, but rather that they provide very specific
topological information which does not fundamentally craracterize different
networks.

The reason why PCA was able to drastically reduce the dimensionality
of the data set is because the principal components are a linear combination
of all the metrics. Accordingly, the first principal component is composed of
the two metrics, i.e. the number of links and the number of nodes. All other
metrics have a very small weight in the linear combination of this principal
component. In fact, the first principal component’s metrics are those missing
from the four clusters we identified in the correlation analysis, presented in
Subsection 3.2. The second principal component, besides the average node
distance and the average node eccentricity, is also mostly made of the number
of links and number of nodes. The third principal component is similar to
the second in terms of which metrics have the largest weights, but the sign
of the weights differs as the principal components form an orthogonal basis.
The fourth principal component, that captures a very small fraction of the
total variance, is made almost exclusively from the average neighbor degree.
PCA reveals that important metrics that characterize the variations in the
3 A matrix is orthogonal if A′A = I, where I is the identity matrix.
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topological metrics are the number of nodes and links and the metrics within
the distance and inter-connectedness clusters. Metrics within the degree and
intra-connectedness clusters are redundant with the number of nodes and the
number of links, since both the average degree and the link density can be
recovered from the former metrics.
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Fig. 7. Fraction of the variance captured by the principal components.

4 Discussions and Conclusion

In this paper, we have studied the relationships between topological metrics of
real-world networks. The visual analysis, presented in Subsection 3.1, revealed
the following relationships among topological metrics:

• The clustering coefficient increases with the increasing disassortativity. For
assortative networks this relation is not trivial.

• The average node distance increases with the increasing assortativity co-
efficient and decreases with the increasing rich-club coefficient. Conse-
quently, the assortativity coefficient decreases with the increasing rich-club
coefficient.

• The average node coreness increases with the increasing rich-club and clus-
tering coefficient while it decreases with the increasing assortativity coef-
ficient. Furthermore, it is directly related to the average node degree.

• The algebraic connectivity increases with the increasing average node de-
gree and the rich-club coefficient while it decreases with the increasing
assortativity coefficient. The algebraic connectivity is not related to the
average node betweenness.

The correlation analysis, presented in Subsection 3.2, resulted in several
highly-correlated clusters with the following topological metrics:

• Distance cluster: 1) the average node distance is strongly related to the
average node eccentricity, 2) the average node (link) betweenness to the
average node distance and hence 3) the average node (link) betweenness
to average node eccentricity;

• Degree cluster: 1) the average node degree is strongly related to the average
node coreness and 2) the average node coreness to the clustering coefficient;

• Intra-connectedness cluster: 1) the rich-club coefficient is strongly related
to the link density and 2) the algebraic connectivity to the rich-club coef-
ficient;
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• Inter-connectedness cluster: 1) the assortativity coefficient is strongly re-
lated to the average neighbor degree.

Our work showed that some topological metrics tend to be more correlated
than others. This observation implies redundancy between topological met-
rics. Consequently, we have identified a significantly smaller set of topological
metrics that is able to characterize real-world network’s structures. Further
work comprises studying the relationships between topological metrics in real-
world networks that are affected by various structural changes.
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Appendix: Summary statistics of topological metrics for
various real-world networks
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