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Abstract

The apparent activation energy for the dissolution of spherical silicon particles in an aluminium matrix is analysed using a
numerical dissolution model in which local equilibrium at the particle—matrix interface is assumed. The model takes into account
long range diffusion, the temperature dependent solid solubility of silicon in aluminium, the shape of the particle, the finite cell
size in which the particle can dissolve and the statistical distribution of the particle size. It is shown that the apparent activation
energy can deviate substantially from the activation energy for diffusion, which is the rate controlling process. The model is
validated using isoconfigurational annealing experiments at various temperatures for a high purity Al-1.35 mass% Si alloy. An
excellent agreement between theory and experiments is obtained. With minor modifications the model can be adjusted to predict

the apparent activation energy of (spherical) particle dissolution in other binary systems too. © 1997 Elsevier Science S.A.,
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1. Introduction

Heat treatment of metals is often necessary to opti-
mise their mechanical properties both for further pro-
cessing and for final use. During the heat treatment the
metallurgical state of the material changes. This change
can either involve the phases being present or the
morphology of the various phases. Whereas the equi-
librium phases often can be predicted quite accurately
- from thermodynamic models, there are no general mod-
els for microstructural changes nor general models for
the kinetics of these changes. In the latter cases both
the initial morphology and the transformation mecha-
nisms have to be specified explicitly. One of these
processes, which is both of large industrial and scientific
interest and amenable to modelling, is the dissolution of
second phase particles in a matrix with a uniform initial
composition.

To describe this particle dissolution in solid media
several physical models have been developed, incorpo-
rating the effects of long-distance diffusion [1-3] and
non-equilibrium conditions at the interface [4,5]. The
long-distance diffusion models imply that the processes
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at the interface between particle and matrix proceed
infinitely fast. Therefore, these models provide an upper
boundary for the dissolution rate.

Whelan [1] considered particles dissolving in an infi-
nite medium using the stationary interface approxima-
tion. He derived an analytical solution of the diffusion
equation in an infinite medium for spherical co-ordi-
nates by the use of the Laplace-transformation in time.
The accuracy of the model increases with increasing
interparticle distance, i.e. with increasing cell size.

Baty, Tanzilli and Heckel [2] were the first authors to
apply a numerical method using a finite difference
method to evaluate the interface position as a function
of dissolution time. Their model is also applicable to
situations in which the interparticle distance is small,
i.e. when soft impingement occurs. Their model was
based on the assumption of local equilibrium at all
stages of the dissolution process. They applied their
numerical analysis to dissolving Al,Cu-particles in alu-
minium. The poor fit with the experimental data is
probably due to the interface reactions, which were not
incorporated into their numerical model.

Tundal and Ryum [3] considered the effects of a
finite cell size as well. They too applied a numerical
method using a finite difference method to predict the
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dissolution kinetics. Their model was based on the
assumption of local equilibrium during the entire disso-
lution process. They introduced a lognormal distribu-
tion for both the particle and cell size and showed that
macroscopic dissolution rates depend strongly on the
shape of the particle size distribution curve and interac-
tions between the neighbouring cells.

The effect of interfacial reactions on the rate of
particle dissolution in both infinite and finite media, i.e.
the dissolution of particles under non-local equilibrium
conditions, was examined by Vermolen and Van der
Zwaag [6]. It was shown that interfacial reactions can
have a significant effect on the dissolution rate and
hence on the solute concentration profiles in the matrix
during particle dissolution.

In all these articles the attention was focused on
describing the dissolution kinetics at a single transfor-
mation temperature and no attention was paid to the
apparent activation energy for particle dissolution as
determined from isoconfigurational annealing experi-
ments (i.e. annealing treatments aimed at dissolving a
certain fraction of the original particles present). It is
this apparent activation energy which is of great tech-
nological importance, a.o. for predicting the annealing
conditions required for homogenisation of as-cast Al-
alloy billets prior to hot extrusion.

The present article describes the apparent activation
energy for particle dissolution using a detailed particle
dissolution model in which the temperature dependent
solid solubility, the shape of the particle, the finite cell
size in which the particle can dissolve and the statistical
distribution of the particle size are taken into account.
As in other models [1-3] local equilibrium at the
particle—matrix interface is assumed at all times, i.e.
rate limiting interfacial reactions are excluded. The
model is of a general nature but the effects of the
various parameters in the model on the dissolution
kinetics are shown explicitly for the Al-Si system.
From the work by Tundal and Ryum [3] and our own
preliminary experiments [7] it can be concluded that in
the Al-Si system Si particle dissolution proceeds under
local equilibrium conditions. Furthermore, thermome-
chanical treatments can be designed to generate a mi-
crostructure of approximately spherical Si particles in
an aluminium matrix with a uniform Si concentration,
making the Al-1.35 mass% Si system an excellent sys-
tem to validate the model predictions.

2. Theory

The model used to determine the kinetics of particle
dissolution is based on several physical assumptions.
For completeness the physical assumptions and the
originating initial boundary value problem are sketched
first. Subsequently, the influence of each assumption in

the model on the apparent activation energy for particle
dissolution is shown.

2.1. The model

The model treats a binary system with limited solu-
bility of B-atoms in the a-phase (see Fig. 1(a)) and no
solubility of A-atoms in the f-phase (i.e ¢#/*=100%).
For compositions corresponding to the two phase re-
gion at the starting temperature Tj,;, the material with
an average composition c® is assumed to consist of
equally sized spherical S-phase particles of radius Ry, in
a uniform matrix consisting of an « phase of composi-
tion ¢™. Upon raising the temperature to the homogeni-
sation temperature Ty, the solubility of B in «
increases, provided Ty, is lower than the eutectic tem-
perature T.,, and the particle starts to dissolve. The
solubility at the homogenisation temperature is denoted
as ¢*?. Each f particle is assumed to dissolve in a
surrounding spherical cell of radius R.. The average
interparticle distance L can be used to calculate the
radius of the equivalent spherical cell in which the
particle dissolves:

/3
=73 _ e
R.=L in 1)

Assuming the total number of B-atoms in each cell to
be constant, net transfer of B-atoms between the cells is
excluded. This implies:

dc(R, 1)]dr="0 )

The assumption of local equilibrium at the «/f inter-
face yields boundary condition

¢(R(T), 1) = c# 3)

During dissolution B-atoms migrate away from the
interface. No diffusion inside the particle is assumed.
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Fig. 1. A schematic binary phase diagram (a) and a spherical particle
in a spherical cell (b).
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Application of Fick’s second law for a planar (m = 0),
cylindrical (m=1) and spherical (m=2) symmetry
yields:

YR(t)<r<R,
V>0

ée(r, t) D[a%(r, 1)

ot

+m dc(r, t)
ar? r or

4)

The diffusion coefficient, D (in m? s—!), is taken to
be independent of composition.

The initial boundary value problem, defined by Egs.
(2)—(4) has a solution, if and only if ¢(r, t) has continu-
ous derivatives at least up to the second derivative with
respect to r, at the interval R<r < R, and up to the
first derivative with respect to ¢ for all > 0. Moreover,
it can be proven that the solution of Eq. (4) is unique
[8]. As the number of B-atoms in the cell is constant, it
can be derived that:

dR(z) D Pa de(r, 1)
de B pﬁ Bl Pa Ma or rlR(r),
(M,g c M. c(R(1), 1)
V=0 : : &)

Here p, and p, are the densities of the pure phases «
and f density changes as a function of composition
have been neglected), M, and M, are the molar masses
of the pure phases « and £.

From Eq. (5) it follows that the value of dc(R, t)/ér
determines the value of dR(¢)/d:. Apparently, the
amount of B-atoms present in the immediate vicinity of
the dissolving particle governs the rate of the interface
velocity dR(z)/ds. The initial boundary value problem
thus defined falls into the class of Stefan problems with
a free boundary [9,10].

Summarising, the parameters in the model which
affect the dissolution kinetics are the diffusion coeffi-
cient D, the temperature dependent solubility, ¢*#, the
geometry of the system as defined by the shape of the
particle and the ratio of the particle to cell size. Fur-
thermore, as small particles are known to dissolve faster
than large particles, the initial particle size distribution
will have an effect on the apparent dissolution kinetics
too. The effects of these parameters are considered in
succession, using numerical values for the Al-Si system
where appropriate.

2.2. The activation energy for diffusion

The diffusion coefficient of silicon in aluminium is
given by an Arrhenius relation which has been experi-
mentally determined by Fujikawa [11], and which is
given by:

D =D, exp( - ——Qd}'g;‘“) (6)

For the system considered the activation energy for
diffusion of silicon in aluminium, Qgmrusion, 15 136 kJ
mol~"' and D,. equals 2.02 cm? s~ ', This contribution
to the activation energy of particle dissolution is re-
ferred to as the diffusional activation energy. The other
components of the activation energy are determined by
the refinement of the dissolution models by the step by
step incorporation of the different relevant aspects into
the dissolution model.

2.3. The activation energy due to the temperature
dependent solid solubility

The solid solubility of silicon in aluminium can be
obtained as a function of temperature from the binary
AlSij-phase diagram reported in literature [12]. To deter-
mine its effect on the dissolution kinetics, all contribu-
tions caused by geometry, finiteness and particle size
distributions have to be excluded. Therefore, the disso-
Jution of an infinite plate of finite thickness in an
infinite medium has been considered first. For this case
it can be derived that [5]:

(1l —y)%¢E3 . b — em
ry=_(4—k223_2---w1thk=w, £0) =&
and =0 )
%

In which ¢, is the time needed to dissolve the B-phase
into the a-phase such that the ratio between the final
and initial f-phase volume fraction equals y, ¢, and
(1) respectively are the initial and residual plate thick-
ness in m. ¢*# is the solid solubility of silicon in
aluminium in mass fraction, ¢#'* is the mass fraction of
silicon in the particle, which equals unity and ¢” is the
initial mass fraction of silicon in the aluminium rich
matrix (Fig. 1(b)).

Taking the logarithm of Eq. (7) yields:

In(z,) =2 1n(t%@> —In(D) (8)

In Eq. (8) only the factors k and D depend on
temperature, therefore Eq. (8) can be read as:

In(t,) = C—2 In(k) — Qﬂ;;i— (9)

Here C is a constant which is determined by the ratio
of the final and initial plate thickness. The effect of the
solid solubility ¢*/# is incorporated in the parameter .
Fitting the discrete values of the solid solubility, pro-
vided by Mondolfo [12] to a fourth order polynomial
with respect to the dimensionless reciprocal tempera-
ture, T,,,/7 one obtains:
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Fig. 2. The logarithm of the dissolution time (a) and the apparent
activation energy (b) as a function of the reciprocal temperature for
a flat plate dissolving in an infinite medium for three different values
of the initial Si concentration in the matrix with y =0.99.
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Where T is the absolute temperature in Kelvin and
T.,. is the eutectic temperature in Kelvin. The above
equation is valid over the temperature range 573 K <
T <850 K. Egs. (9) and (10) show a clear dependence
of the activation energy of particle dissolution on the
boundary conditions that are imposed by thermody-
namics. From Eq. (9) it also follows that for the case of
a flat infinite plate the activation energy for dissolution
does not depend on the fraction dissolved.

Fig. 2(a) displays the time required to reduce the
plate thickness to 99% of its initial thickness as a
function of the reciprocal temperature for three initial
matrix compositions. The asymptotic behaviour of the
dissolution time for high reciprocal temperatures is due
to the decrease of the solid solubility with decreasing
temperature such that the solid solubility, c*/, ap-
proaches to the initial mass fraction of Silicon in the
Aluminium rich phase, ¢. From Egs. (7) and (9) it can

(10)

be seen that there is a singularity at ¢*# = ¢™. Fig. 2(b)
displays the apparent activation energy for the same
initial conditions as used for calculating the curves in
Fig. 2(a). The figure shows that the activation energy is
more or less constant for temperatures well in excess of
_ the temperature at which ¢*# = c¢™. Even in this tem-
perature range the apparent activation energy (200-260

- —-kJ mol~1) is considerably larger than that for diffusion

of Si in Al (136 kJ mol~!) due to the temperature

. - dependence of the solid solubility. It can be shown that

the weak minimum in Fig. 2(b) is related to the polyno-
mial fit used to describe the solid solubility.

2.4. The activation energy due to the spherical
geometry of the particle

The next refinement of the dissolution model consists
of the consideration of the geometrical contribution to
the activation energy. To illustrate this effect, spherical

_ particles have been considered. The dissolution time of
- spherical particle in an infinitely large medium can be

determined by [1]:

<R2(t) +26R(0)/t + 2at>
In R2

</2a—b?

RW 4y
N,
and b=k£—

1
7 (11)

With the above equation, particle dissolution times
have been calculated as a function of the dissolution
temperature. Fig. 3(a) displays the logarithm of the
dissolution time as a function of the reciprocal temper-
ature for different residual particle volume fractions.
The initial matrix concentration, ¢”, was 0.06 mass%
for all curves. The apparent activation energy for the

~cases considered in Fig. 3(a) has been plotted in Fig.
3(b). As dissolution proceeds the particle area de-
creases. As a result of this, to dissolve a fixed volume of
the particle, the radial translation of the particle surface
required must increase. This explains the decrease of
the activation energy for the dissolution of a spherical
particle with proceeding dissolution as can be seen in
Fig. 3(b) for different residual fractions of the original
particle volume. The differential geometrical contribu-
tion to the apparent activation energy (Qqy) can be
defined as the energy needed to increase the dissolved
fraction of a spherical particle from 1 —yto 1 —y —dy.
y is the ratio of the residual and the initial volume
fraction of the particle. In other words, the differential
geometrical contribution to the activation energy is
related to the geometrical contribution to the apparent
activation energy as follows:

2
= — d—b— arctan with a =kD

/2a— b>
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Fig. 3. The logarithm of the dissolution time (a) and the apparent
activation énergy (b) as a function of the reciprocal temperature for
a sphere dissolving in an infinite medium for an initial matrix
concentration of 0.06 mass%. &gaa/Co=0.01 for various values of y.
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Differentiation of the activation energy with respect
to the fraction dissolved yields the differential activa-
tion energy. The differential geometrical contribution to
the apparent activation energy has been plotted as a
function of volume fraction dissolved in Fig. 4, for the
same set of input parameters as in Fig. 3.

400

0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 L0
¥ {fraction)

Fig. 4. The differential geotmetrical contribution to the apparent
activation energy as a function of the fraction dissolved for three
different temperatures and an initial matrix concentration of 0.06
mass%.
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Fig. 5. The logarithm of the dissolution time (a) and the apparent
activation energy (b) as a function of the reciprocal temperature for
a sphere dissolving, until a residual volume fraction of 0.90 has been
reached, for four R /R,-ratios. The initial matrix concentration was
0.06 mass%.

2.5. The activation energy due to the finite cell size

The alloy has been assumed to consists of a set of
discrete cells in each of which only one particle dis-
solves. To investigate the influence of the interaction
between diffusion fields, i.e. soft-impingement effects, a
finite difference discretisation technique has been used
to solve the diffusion equation with a moving boundary
and finite cell size [13]. The logarithm of the dissolution
time for a sphere until y =0.90 has been plotted as a
function of the reciprocal temperature in Fig. 5(a) for
different cell sizes taking into account the temperature
dependent solid sclubility. The initial matrix concentra-
tion, ¢, was 0.06 mass% and the initial particle radius,
R,, was 5 um for all curves. In Fig, 5(b) the activation
energy for the dissolution of a sphere until y=0.90
with respect to the reciprocal temperature has been
plotted using the same cell sizes as in Fig. 5(a). The
difference between the curves in Fig. 5(b)Fig. 3(b) can
be regarded as the contribution of the effects of soft-im-
pingement to the activation energy Qo impingement:
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2.6. The activation energy due to the statistical
distribution of the cell size

As shown in the previous paragraph the dissolution
kinetics depends on the size of the particle and the cell
in which it dissolves. Since in practice materials will
contain particles with a distinct size distribution, the
width of the distribution will affect the temperature
dependent dissolution kinetics and hence the apparent
activation energy. A commonly observed particle size
distribution is the log-normal distribution function
given by:

_ 2
F(R) = (In(R) — In(ptg.o) ) (13)

1
= ex

.\/E; ln(ogco)R p( 2(1n(ageo))2

In which pg., and o, respectively are the geometri-
cal mean and the geometrical standard deviation of the
particle size. In the calculations this distribution func-
tion has been replaced by an equivalent set of 100
particle size classes. In each class the cell size was taken
such that the average composition in each cell was
equal to the nominal composition.

In Fig. 6(a) the effect of the width of the geometrical
standard deviation of the particle size distribution, tak-
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Fig. 6. The logarithm of the dissolution time until a residual volume
fraction of 0.95 has been reached (a) and the apparent activation
energy (b), for an alloy with an initial silicon concentration in the
matrix of 0.26 mass% and a total silicon concentration of 1.35
mass%, as a function of the reciprocal temperature for different
standard deviations of the particle size distribution.

85

ing the average particle size constant, is shown. The
residual volume fraction, o, was 0.95 for all curves. All
particles dissolve in cells such that the initial matrix
concentration and the average concentration of B-
atoms are equal to 0.26 and 1.35 mass% respectively.
As the concentration of B-atoms equals 100 mass% in
the particle, there is a unique correspondence between
the cell size and the particle size.

~ The figure shows that the time required to dissolve
5% of the total particle volume clearly depends on the
width of the particle size distribution. As expected, the
effect of the width of the-distribution on the apparent
activation energy is negligible at sufficiently high tem-
peratures and only becomes significant for temperatures

.——where the average concentration equals the solid solu-

bility.

3. Validation of the model

The model is validated using a high purity Al-1.35
mass% Si alloy. The Al-Si system was selected on the
basis of the earlier work by Tundal and Ryum [3] from
which could be concluded that interfacial phenomena
have no effect on the dissolution kinetics, i.e. local
equilibrium prevails at all stages of the dissolution
process. This was confirmed by our preliminary isother-
mal dissolution experiments and measurement of the Si
concentration profile in the vicinity of Si particles after
partial dissolution [7].

e o obtain a microstructure which resembles the mi-

crostructure "assumed in the model, i.e. spherical Si

‘particles in an Al matrix with a uniform Si concentra-
material has been carried out prior to the dissolution
experiments. The experimental conditions during the
pre-treatment and subsequent dissolution experiments
are described below.

3.1. Pre-treatment
The Al-1.35 mass% Si alloy was obtained by melting

the appropriate mixture of 99.99% pure aluminium and
99.999% silicon and metal mould casting. Spectroscopic

- -analysis of the as-cast material revealed an average Si

- concentration of 1.35 mass% and a Fe concentration of
less than 0.005 mass%. No other trace elements were
found at concentration levels in excess of 0.005%.

After casting, the as-cast material was annealed dur-
ing 120 h at 840 K. To avoid surface oxidation the
alloy was contained in a stainless steel bag flushed with
de-oxidised nitrogen gas during this annealing treat-
ment. Optical observation of the annealed material,
using a Keller and Wilcox solution as etchant, revealed

" that almost all Si particles had dissolved, leaving a
homogeneous dendritic microstructure. To break up the
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Fig. 7. The temperature-time diagram for the thermal pre-treatment
of the experimental alloy.

dendritic microstructure and to generate large spherical
grains, a 6-pass cold rolling and intermediate recrys-
tallisation treatment was applied. The recrystallisation
temperature was 623 K with an annealing time of 1 h.

Following these deformation and recrystallisation
treatments the sample received a final heat treatment to
generate large spherical Si particles in an Al matrix of
uniform composition. This final treatment is shown in
Fig. 7. First, the sample was annealed for 4 h at 838 K
to dissolve any particles formed during the interpass
recrystallisation treatment. Subsequently, the sample
was cooled at a rate of 1 K h~! to a temperature of 803
K. This temperature is just below the temperature at
which 1.35 mass% Si will stay in solid solution. The
sample was annealed at this temperature for another 48
h. The slow cooling and the intermediate annealing
aimed at generating a low nucleation site density for Si
particle formation. Then, the sample was cooled to 673
K at a rate of 1 K h~!. This cooling rate and the
subsequent final annealing for 423 h at this temperature
was selected on the basis of a separate computer model,
to obtain a condition of a low but uniform Si concen-
tration in the matrix surrounding each Si particle in as
short a time as possible. After annealing at 673 K the
sample was air cooled to room temperature and the
sample was cut into smaller pieces.

The Si concentration profile around the Si particles
in the pre-treated material was measured using electron
microprobe analysis (EPMA). A typical result of such a
measurement is shown in Fig. 8. As shown in the figure
a uniform Si concentration of 0.26 mass% has been
obtained in the Al matrix. The apparent increase in Si
concentration in a small region near the interface is an
artefact due to the lateral dimension of the electron
beam (typically 2 mm). It should be pointed out that
this Si concentration in solid solution is considerably
higher than Si solubility at room temperature, which is
negligible. The Si concentration in solution is clearly
kinetically determined.

The Si particle size distribution and the total area
fraction of Si particles was determined using quantita-

tive optical microscopy techniques and a computerised
image analysis system (Leitz CBA 8000) on etched
samples. The recorded 2-D particle size distribution was
converted into the true 3-D particle size distribution
using the method outlined in [14]. The particle size
distribution in Table 1 resulted.

The particle size distribution resembles a log-normal
distribution (geometrical mean y=4.515 pym and geo-
metrical standard deviation ¢ = 1.64 um),

The initial volume fraction Si particles determined
metallographically is fi,;; = (1.37 3- 0.21) vol.%, which is
in agreement with the volume fraction calculated on the
basis of the overall composition and the Si concentra-
tion in solid solution determined by EPMA.

3.2. The iso-configurational experiments

Using the initial particle size distribution and the
initial Si concentration in the matrix as input parame-
ters in the model, the isothermal dissolution kinetics
could be calculated. From these calculations the times
required at each temperature to reach a certain fraction
of the total initial volume of Si particle (i.e. an iso-
configurational state) could be determined. A residual
fraction, y of 64% was selected as the target residual
fraction for the dissolution experiments. At this residual
volume fraction the experiments can be performed over
a wide temperature range within reasonable annealing
times, while the reduction in total particle volume can
be determined with sufficient experimental accuracy.

The appropriate isothermal annealing conditions
derived from the calculations which were used in the
experiments are listed in Table 2. Heating and cooling
times were of the order of 1 min and 10 s respectively
and can be ignored with respect to the annealing times.

Following the dissolution treatment the remaining
particle size distribution and the remaining particle
volume fraction were determined using the metallo-
graphic techniques just described. A surface layer of
approximately 1 mm was removed mechanically prior
to specimen preparation to get rid of any surface
reaction effects during homogenisation. The remaining

Si-concentration (mass %)
e =
00 [~
.

.
R R Y T RN L

0 10 20 30 ) 30 50
Distance (rom particie centre {um)

Fig. 8. The Si concentration profile in the matrix surrounding a
spherical particle as determined by EPMA for the pre-treated sample.



F.J. Vermolen et al. | Materials Science and Engineering A231 (1997) 80-89

87

Table 1

The actual particle size distribution present in the alloy

Size (um) 2 6 10 14

No. per mm? 1230 5720 1280 422 "

18
122

22 34 38

232

26
398

30
199

volume fraction silicon particles, fa.. » €Xperimentally
determined is also listed in Table 2.

4. Results

The results of the metallographic measurement of the
remaining total Si particle volumes at the four anneal-
ing temperatures are listed in Table 2 and are shown in

Fig. 9. An excellent agreement between the measured

and the intended residual volume fraction y =0.64 is
observed. The experimental data lead to an apparent
activation energy for particle dissolution of (280 £ 5) kJ
mol %

5. Discussion

The excellent agreement between experimental results
and theoretical predictions is in strong support of the
model presented, in particular as there are no (arbitrar-
ily) adjustable parameters in the model. As the time
required to dissolve a certain fraction of the Si particles
clearly depends on several other factors apart from the
dissolution temperature, it is instructive to examine the
influence of each of these factors on the annealing time
required using the range of annealing temperatures and
the alloy composition employed in the experiment. This
is shown in Fig. 10 which shows the dissolution times
required to reach y = 0.64 for various situations to be
just described. In the figure the conditions leading to
Vexperimentaty = 0.64 are indicated too. In all subsequent
calculations the Si concentration in the matrix was kept
at 0.26 mass%. Curve I in Fig. 10 applies to the case of
a single planar particle of finite thickness but of infinite
width dissolving in an infinite medium assuming the
solid solubility of Si in the matrix to be constant at
c%# = 0.655 mass%. This model clearly overestimates
the experimentally verified times required to reach the

Table 2
Isothermal annealing conditions and the residual volume fraction Si
particles determined experimentally

Temperature (K) Time (s) Sanar (vol.%) y (—)

783 - 1.2x10° 0.9340.26 0.68 +0.16
823 1.4 x10? 0.92 +£0.25 - 0.671+0.17
833 9.0x10? 0.88 +£0.21 0.64 +0.12
843 58x10% 0.88 +0.25 0.651£0.16

condition y = 0.64. Of course the degree of overestima-
tion depends strongly on the value of the solid solubil-
ity chosen. As in this case the diffusion is the only
temperature dependent factor, the apparent activation
energy for particle dissolution is constant and equal to
that for volume diffusion of Si in Al (136 kJ mo~1).
Curve II applies to the situation of curve I but taking
the solid solubility of Si in Al to be temperature depen-
dent (Eq. (10)). Due to the temperature dependence of
the solid solubility the slope of curve II is steeper than

“that of curve I and the activation energy is no longer

constant. However, the dissolution times required are
still overestimated considerably. Curve III applies to
the situation of curve II but taking the particle to be
spherical rather than planar. Due to the higher interfa-
cial area to particle volume ratio the dissolution is
significantly accelerated. For these conditions the disso-
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Fig. 9. The dissolution times for various iso-configurational states
versus the reciprocal temperature taking into account the initial
experimental particle size distribution. The squares indicate the an-
pealing conditions used in the experiment yielding y = 0.64 (a) and
the apparent activation energies (b).
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Fig. 10. Predicted dissolution times to obtain y =0.64 for various
model assumptions (see text). All parameter values as determined on
the experimental alloy. Squares indicate the conditions used in the
experiment.

lution times are underestimated, as can be expected for
the case of dissolution in an infinite medium. Curve IV
applies to the situation of curve III but taking into
account the finite cell size in which the particle dis-
solves. The soft impingement effects at the cell
boundary lead to an increase in the annealing time
required to reach the desired f,, value. It should be
pointed out that in the transition from the conditions
applying to curve III to those of curve IV the overall
composition changes. In the case of curve III the aver-
age composition of the system approaches the initial
matrix concentration (0.26 mass%), while in the condi-
tion of curve IV the average composition is taken to be
equal to the true alloy composition, 1.35 mass%. The
difference in average composition in the system explains
why the dissolution times according to curve III be-
come infinite at T = 653 K (the temperature at which
the solid solubility is 0.28 mass%) while those according
to curve IV do so at a temperature of 738 K (the
temperature at which the solid solubility is 0.655
mass%). The dissolution times according to curve IV
still underestimate the dissolution times required exper-
imentally but the apparent activation energy is already
predicted more or less correctly.

Finally, curve V describes the situation in which all
factors, including those of the particle size distribution,
are taken into account. At this degree of particle disso-
lution, a = 0.64, the width of the particle size distribu-
tion leads to a deceleration of the dissolution process,
in accordance with the results shown in Fig. 6, and a
perfect agreement between experimental and predicted
dissolution times is obtained. It is clear that all the
factors mentioned above should be taken into account
to predict the prevailing particle dissolution times and
apparent activation energy correctly.

The theoretical results presented earlier indicate that
the activation energy for dissolution of Si particles is by

no means a constant but depends on a large number of
parameters as well as the temperature range investi-
gated. Such a variable activation energy for a diffusion
phase transformation has also been observed and
analysed in other studies, such as that of Berkenpas
[15], who considered the case of simultaneous nucle-
ation and growth, and that of Biglari et al [16], who
considered the case of simultaneous precipitate forma-
tion and a phase transformation in the precipitate
formed. In those studies the overlap or transition be-
tween two different processes, i.e. two rate limiting
processes, was shown to be important in explaining the
variations in activation energy. In contrast, the present
case only deals with a single rate limiting process, the
long range diffusion of silicon.

Okuda et al [17,18] used both the diffusion equation
and Monte Carlo simulations to investigate the forma-
tion and dissolution of G.P. zones in binary Al-Zn-al-
loys. As the solubility of Al in Zn is not negligible, the
concentration profile in the precipitate delayed the dis-
solution kinetics considerably during the early stages.
This could contribute to the apparent activation energy
as well. Since the solubility of Al in Si is negligible, this
effect has not considered here.

Finally, although the model has been derived explic-
itly to describe the dissolution of Si particles in Alu-
minium, the model is applicable to any binary system
with partial solubility for at least one of the compo-
nents provided the temperature dependence of the mu-
tual solubilities is known and the reaction proceeds
under local equilibrium.

6. Conclusions

The dissolution kinetics of Si particles in an alu-
minium matrix can be described accurately by a model
which takes into account long range diffusion of sili-
con, the temperature dependence of the solid solubility
of silicon in aluminium, the shape of the particle, the
finite cell size in which the particle can dissolve and the
statistical distribution of the particle sizes. All factors
have a significant effect on the dissolution kinetics and
on the apparent activation energy for particle dissolu-
tion. The final apparent activation energy can deviate
considerably from that for the diffusion of silicon in
aluminium.
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