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ARTICLE INFO ABSTRACT

Keywords: Soil classification is a means of grouping soils into categories according to a shared set of properties or char-

CPT acteristics that will exhibit similar engineering behaviour under loading. Correctly classifying site conditions is

Soil classification an important, costly, and time-consuming process which needs to be carried out at every building site prior to

Machine learning the commencement of construction or the design of foundation systems. This paper presents a means of auto-

ﬁI:uNral networks mating classification for fine-grained soils, using a feed-forward ANN (Artificial Neural Networks) and CPT
(Cone Penetration Test) measurements. Thus representing a significant saving of both time and money
streamlining the construction process. 216 pairs of laboratory results and CPT tests were gathered from five
locations across Northern Croatia and were used to train, test, and validate the ANN models. The resultant
Neural Networks were saved and were subjected to a further external verification using CPT data from the Veliki
vrh landslide. A test site, which the model had not previously been exposed to. The neural network approach
proved extremely adept at predicting both ESCS (European Soil Classification System) and USCS (Unified Soil
Classification System) soil classifications, correctly classifying almost 90% of soils. While the soils that were
incorrectly classified were only partially misclassified. The model was compared to a previously published
model, which was compiled using accepted industry standard soil parameter correlations and was shown to be a
substantial improvement, in terms of correlation coefficient, absolute average error, and the accuracy of soil
classification according to both USCS and ESCS guidelines. The study confirms the functional link between CPT
results, the percentage of fine particles FC, the liquid limit w;, and the plasticity index Ip, As the training database
grows in size, the approach should make soil classification cheaper, faster and less labour intensive.

1. Introduction

Soil classification is a means of grouping soils into categories ac-
cording to a shared set of properties or characteristics that exhibit si-
milar engineering behaviour under loading. Due to its natural forma-
tion, geological history, and particulate nature, amongst other features,
soil behaves differently than other engineering materials such as steel
or concrete. The engineering characteristics of soil (stiffness, perme-
ability, and strength) are dictated by particulate shape, size, micro-
structural composition, stress history, degree of saturation, and
weathering [17]. Traditionally soils were classified into cohesive (fine-
grained) or non-cohesive (granular or coarse-grained) soils based on
their particle size distributions. Granular soils were categorised ex-
clusively on the relative percentage mass of the different constitutive
particles, with increasing grain size determining the difference between
sand, gravel, cobbles, and boulders.

The fines content of a soil is determined by the percentage of soil by
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mass which passes through a 0.075 mm sieve. If the fines content ex-
ceeds some predetermined percentage of the soil, typically 50% but
maybe less depending on the soil classification system in use, the soil is
deemed to be Cohesive or Fine grained. Fine grained soils are classified
using relative percentage mass as above with additional hydrometer
tests to determine the relative percentage of Clays and Silts in the soil.
Finally, they are sub classified based on their consistency. Soil con-
sistency describes how a fine-grained soil holds together, describing its
transition from a solid through to a liquid as its water content is varied.
Two measures are typically used to describe soil consistency; namely
the Plastic Limit and the Liquid Limit. Moderately organic soils are
usually classified as cohesive soils while highly organic soils are clas-
sified separately as Peats.

A number of different soil classification procedures have been de-
veloped and remain in common use today. One of the most widely used
being the Unified Soil Classification System (USCS), which was a de-
velopment of Casagrande’s Airfield Classification System (ACS) and was
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developed in-line with the US standard [2]. In Europe classifications
such as the British Soil Classification System (BSCS) as detailed in [5]
and the Deutsches Institut fur Normung (DIN 2011) are commonly
used. However through the advent of EN ISO 14688-1:2002 [9], EN ISO
14688-2:2004 [10], and EN ISO 2013, the ISO (International Standards
Organisation) and CEN (Comité Européen de Normalisation), have de-
veloped new European standards for describing and identifying soils.
The application of different soil classification principles can result in
significant differences in the classification of a given soil.

As CEN members 33 European countries have pledged to introduce
and implement European standards through their national standards
authority. As such the soil classification system prescribed by the
Eurocode should be universally adopted across the European Union
moving forward. However to date, this has not been the case, as the
European standards provide classification principles, yet leave the in-
terpretation of these principles open, in the expectation that individual
countries will develop national classification systems based on these
principles. Until this has been accomplished practising engineers have
no choice but to continue used past standards. Recently Kovacevic et al.
[11] developed a European Soil Classification System (ESCS) in ac-
cordance with the soil classification principles outlined in EN ISO
14688-2 using the soil descriptors and symbols from EN ISO 14688-1.

Because of the somewhat laborious and time-consuming nature of
laboratory soil classification, a number of workers [23,24,8,15] have
developed soil classification charts based on Cone Penetration Tests
(CPT). Whilst CPTs do not directly measure soil properties the in-
stallation of the penetrometer is controlled by the soils strength and
stiffness parameters. The addition of pore pressure probes allows the
development and dissipation of pore pressures to be directly measured.
An advantage of using CPTs is they give near continuous measurement
with depth in a single probe location and do not require the use of
disturbed or remoulded laboratory samples to classify plasticity [15].
This is a significant advantage as the in-situ response to loading is
controlled by the depositional processes involved in its formation, the
stress history of the soil as well as numerous chemical and biological
processes. A disadvantage with the developed classification charts
which link CPTs to soil type is that these charts tend to be developed on
a regional basis and therefore may not be universally applicable.

This paper examines the application of Artificial Neural Networks
(ANN) for automatically determining ESCS and USCS soil classifications
using the CPT tip resistance, q. and sleeve friction, f; as inputs. Neural
networks were developed to predict (a) the percentage of fine particles in a
soil and (b) the consistency of the soil by predicting a soils liquid limit and
corresponding plasticity index. Where the plasticity index, I, is the liquid
limit minus the plastic limit and is the range of water contents over which
the soil exhibits plastic behaviour. 216 pairs of laboratory results (173 of
which had fines content and soil consistency measurements) and CPT tests
were gathered from five locations across Northern Croatia and were used to
train, test, and validate the machine learning models. The resultant Neural
Networks were stored and subjected to a further external verification using
CPT data from the Veliki vrh landslide, an entirely separate test site not used
in the model development. The model is seen to be extremely successful at
predicting both ESCS and USCS soil classifications for the fine-grained soils
encountered. Nevertheless, ANN based classification models have some
drawbacks, namely they are unable to predict Granular soils accurately as
they cannot consistently predict dso and d;, values based on CPT data alone
and they require a significant data set to initially train, test and validate the
model. The main advantages of the proposed approach applied to fine
grained soils, are the speed of classification and the prospect of increasing
model accuracy as more laboratory results/CPT test pairings become
available. The authors suggest the use of the method as a first pass filter to
determine likely ground conditions, while testing a small number of soil
samples in the laboratory for local verification. The results of which can
then be assimilated into the model to improve future accuracy, thus making
soil classification cheaper, faster and less labour intensive.
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2. CPT based soil classification methodologies

The Cone Penetration Test is an in-situ geotechnical test. It works by
pushing a specifically designed probe into the ground at a controlled
rate, while continuously measuring the tip resistance, shaft friction and
pore pressure (u) using sensors located on the probe. CPTs are fast,
reliable and output near continuous measurement profiles with depth.
Unfortunately, CPTs have noted poor performance in gravels and ce-
mented soils. Since the 1960s researchers have developed CPT based
soil classification systems. Begemann [4] noted that coarse grained soils
typically have a higher tip resistance, g, than fine grained soils, whilst
sleeve friction, f;, values can be comparable in both fine and coarse
grained soils with similar consistency. As a result, the ratio of the sleeve
friction to the tip resistance (friction ratio) of a soil at a given depth can
be used to distinguish soil type, with lower friction ratios being ex-
hibited by coarse grained soils. Begemann developed a classification
diagram showing this dependency where lines of constant friction ratio
serve as the boundary between different soil types.

Following the work of Begemann, a number of researchers have
developed CPT based soil classification charts. Sanglerat et al. [23]
proposed a classification chart which plotted q. versus friction ratio.
While Schmertmann [24] identified that the presence of pore water
pressure could affect soil classification and accounted for this effect in
his design chart. Douglas and Olsen [8] were the first to relate CPT
measurements to the USCS system diagrammatically. Robertson et al.
[19] introduced a correction factor to modify the tip resistance based
on the measured pore pressure, see Eq. (1).

q; =g + w(1-a) @

where q; is the corrected cone resistance, u, is the pore pressure mea-
sured behind the cone and a is the cone area:

Their study produced two classification charts one relating cor-
rected tip resistance to friction ratio and the second chart plotting
corrected tip resistance versus pore pressure ratio, By, see Eq. (2).

Uh—Ug
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2
where ugy and o, are the in-situ pore pressure and total vertical stress
respectively prior to CPT installation.

Robertson [15] noted that CPT classification charts tended to per-
form poorly at depths greater than 30 m, to rectify this discrepancy he
introduced normalised values for both tip resistance, Q, and sleeve
friction, Fr, see Egs. (3) and (4).

_ q[_o'vo
A= ®3)
E = J;

q;— 0w 4)

Robertson [16] further improved his classification chart using nor-
malised values of vertical effective stress. He also introduced the use of
the soil behaviour index I. to approximate the boundaries between
different soil types using an I, formulation from one of his earlier papers
[20]. Libric et al. [12] collated existing soil correlations allowing one to
describe and classify soil using only the sleeve friction and corrected tip
resistance from a CPT as these measurements are universally available.
They show the successful prediction of soil type using the USCS clas-
sification 72% of the time and achieve 76% success with ESCS. Das and
Basudhar [7] used self-organising maps and fuzzy clustering methods to
determine soil stratification from CPTs, using Robertson and Camp-
bellas [18] classification chart as a verification measure with both
methods proving promising.

3. Artificial neural networks

Artificial neural networks are an advanced machine learning



C. Reale et al.

technique developed by computational scientists [22,3,21] based on
how we perceive the human brain and nervous system to interpret in-
formation and perform calculations. Similar to real life brain neurons,
interconnected artificial neural elements work in unison, sharing in-
formation to develop an awareness of the relationship between dif-
ferent parameters in order to learn or emulate how a system functions.
The major advantage of neural networks is that, because of their
adaptability and learning capabilities, when supplied with sufficient
data they can learn how complex non-linear systems perform. Neural
networks can be used to perform regression analysis, classification
analysis, and predict future system response. They have also been uti-
lised for decision making purposes. Each neuron can be connected to
every other neuron and every interconnection between this neuron and
another receives a weighting. These weightings determine how the
neural network predicts and adapts. Neural networks train themselves
by mapping system inputs onto some output or outputs, this is achieved
by optimising the aforementioned weightings, until the neural network
reacts as the system does.

Neural networks are typically arranged into an input layer, a hidden
layer(s), and an output layer (see Fig. 1). The number of input and
output nodes are entirely problem dependant and are dictated by the
engineering problem in question. The number of hidden neurons
needed is a lot more uncertain and needs to be investigated on a pro-
blem by problem basis. If there are too many hidden neurons, then the
neural network will be slow and there is a risk of over-training. If there
are too few, the neural network will be too general and will not con-
sistently converge for unseen data. A two-layer feed forward neural
network with a sigmoid activation function for hidden neurons and a
linear activation function for output neurons was used in this example.
In a feed-forward neural network information only moves in one di-
rection from the input nodes through the hidden nodes to the output
nodes, i.e. it contains no loops or recursive programming.

In the learning phase, both the input and output data of the speci-
fied engineering problem is given. The weightings are then developed
within the hidden layer by the ANN without human consultation. The
goal of the training process is to minimise the error function by chan-
ging the individual neural weightings to attain the optimum neural
weightings which allow the neural network to replicate system re-
sponse. This process is shown in Eq. (5), where j represents an

Outputs

Output layer

Hidden layer

Input layer

Inputs

Fig. 1. General schematic of a feed forward artificial neural network.
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neuron inputs

individual neuron output

f(S)

nj

Fig. 2. Close up of an individual neuron and how it interacts with the neurons
around it.

individual neuron, wj represents the individual weighting between
input neuron i and hidden neuron j i.e. the factor by which every value
passing from node i to node j is multiplied. These weightings are then
summated at each node and a bias term wy; is added, See Eq. (6). An
activation function is then applied to this summation (S;) to generate
that individual neuron’s output, see Fig. 2. While in theory this can be
any function, the chosen function must always be continuously differ-
entiable in order to train the model using back propagation. The sig-
moid function is the activation function most commonly used in feed
forward neural networks and is shown in Eq. (6). The two layer feed
forward neural network used in this study was trained with the Le-
venberg-Marquardt backpropagation algorithm [14]. The Levenberg-
Marquardt algorithm interpolates between the Gauss-Newton and the
steepest descent algorithms. Effectively using the steepest descent al-
gorithm when far from a local minimum and a second order con-
vergence rate when near. While not guaranteed to find the true global
minimum, it is considered to be more robust than the Gauss-Newton
method alone.

n
S =D wylkj + W
i=1

)

1
14+e™

J) =

(6)

The training phase continues until the ANN is satisfied that it can
correctly model the system response or until all available training data
has been utilised. The ANN must then be validated using a new set of
input data, not used in the training phase. If the ANN can correctly
predict the outputs of this data, then it can be said to model the system
accurately. This should occur provided enough input and output data
has been provided during the training phase to allow the ANN to de-
termine the significance each individual parameter has on the outcome.

However, it is important to note that the training process may lead
to overfitting if there is insufficient training data and the network error
has been reduced too much [6]. In general, to prevent this from oc-
curring the number of weights in the network should be far less than the
number of training samples. The exact ratio is a topic of much discus-
sion with Maier and Dandy [13] suggesting 1 to 10 to be a suitable
ratio, while Amari et al. [1] suggest that overfitting is only present if the
number of training samples is less than 30 times the number of free
parameters. In geotechnical engineering, training datasets typically
don’t reach this size due to the relatively poor return on such an in-

vestment. The number of weights in a network is defined by Eq. (7).
w=({+1)H+ (H+ 10 7

where I is the number of inputs, H is the number of hidden layers and O
is the number of outputs.
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It is important that the network reacts similarly to new data during
testing and validation, i.e. that the network can generalise well. To
ensure this occurs early stopping criteria were implemented. The early
stopping criteria monitors the discrepancy between errors in the vali-
dation and test sets during the training process. Both errors should
decrease during the initial training phase, however as overfitting starts
to occur the validation set will typically become less accurate. When the
validation error increases for a set number of times in a row, in this case
6, then the training is stopped and the weights and biases that resulted
in the minimum validation error are taken.

Two neural networks were developed in this study the first neural
network termed NetFC was developed to predict the fines content of the
soil and the second neural network named NetLLPI was developed to
predict both the liquid limit of the soil and it’s corresponding plasticity
index. Both neural networks utilised three hidden layers. Both NetFC
and NetLLPI have two input nodes namely corrected tip resistance and
sleeve friction. NetFC has one output the fines content of the soil in
question, whilst NetLLPI has two output nodes the liquid limit and the
plasticity index of the respective soil. Using these three outputs a co-
hesive soil can be fully classified using either the USCS or the ESCS
systems. NetFC has 13 distinct weightings and NetLLPI 17 weightings.
216 samples exist for fines content, 173 of which have corresponding
plasticity index and liquid limit results. NetFC therefore has a sample
training size of 173, while NetLLPI has a sample training size of 138,
giving them a training sample size to weights ratio of 13.3 and 8.1
respectively. While, these values are considerably less than the 30 re-
commended by Amari they compare favourably with other
Geotechnical ANN studies whose ratios rarely exceed 5, a compilation
of such studies can be found in Table 10.7 in [6].

4. Description of test sites

Five test sites located across Northern Croatia were used to train,
validate and test the model. In total 216 pairs of CPT/ Laboratory test
pairs were collated from the test sites. A short overview of each test site
is given below.

4.1. Bid-Bosut irrigation canal

A 14,772 m long irrigation canal was excavated in Bid-Bosut, as part
of the 1st construction phase of the multi-purpose Danube-Sava canal.
The canal consists of a 7m deep stepped excavation with a 1:2 upper
slope and a 1:3 lower slope with a relatively wide berm in between. The
geotechnical site investigation at the site consisted of 12 m deep bore-
holes at 300 m centres with core classification and extraction of re-
presentative soil samples for lab tests (consistency levels, particle size
distributions, and direct shear tests). At 150 m intervals, 4 to 5m deep
trial pits were excavated along the canal route. Representative samples
were extracted from each pit and tested in the laboratory. Cone
Penetration Tests and standard penetration tests (SPT) were carried out
at each borehole together with two hold tests to measure pore pressure
dissipation on the CPT cone. 15 piezometers were installed to a depth of
8 m, to monitor trial pumping conducted in exploration wells. In total
75 pairs of laboratory tests and CPT results were obtained at the site.

4.2. Ilok port

The Danube-Sava canal, when completed, will connect the Danube
with the Adriatic. Following its construction, the town of Ilok will be
connected with both the North and Black Seas through the Rhine-Main-
Danube river system. Ilok port will be located on the right bank of the
Danube 1296.5 to 1297.0 km, downstream from the Ilok-Backa Palanka
Bridge, in the Danube inundation area. The geotechnical investigation
carried out at the site consisted of a total of 9 exploration wells with
continuous coring to a maximum depth of 30 m. Dynamic (SPT) and
static (CPTU) testing, geophysical testing using seismic refraction, multi
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channel analysis of surface waves (MASW), seismic static cone pene-
tration test (SCPT), together with laboratory tests. The site yielded 36
pairs of laboratory testing and CPT results.

4.3. Krsisée landslide

The KrsiS¢e landslide occurred on the southern slopes of the
Medvednica Mountain, in the MarkusSevec area, at an altitude of ap-
proximately 300 m. On KrsiSée street, an unstable slope was detected,
adjacent to house No. 43. Soil movement at the site occurs periodically
along the interface between the Clay and Marl materials, where excess
pore pressures develop during wet periods. Investigation work included
5 boreholes, with continuous coring to a maximum depth of 8 m, dy-
namic (SPT) and static (CPTU) testing, together with laboratory tests.
20 pairs of laboratory and CPT results were obtained at the site.

4.4. Mirogoj landslide

The Mirogoj landslide is located on the southern slope of the
Medvednica Mountain. Adjacent to the Mirogoj cemetery is a slope that
drops uniformly towards the north-east. The slope inclination in the
area affected by the landslide is between 20° and 25°. A total of 5
borings were made, with continuous coring to a depth of 8 m, dynamic
(SPT) and static (CPTU) testing was carried out in conjunction with
laboratory testing. 25 pairs of laboratory tests and CPTs were gathered
from the site.

4.5. Krematorij landslide

The Krematorij landslide is located east of Kameniti stol street, in
the Gornji grad - Medves$cak area, on the southern, more cavernous
slopes of the Medvednica mountain. The unstable area is located be-
tween 250 and 225m above sea level. The geotechnical investigation
carried out at the site comprised of 5 exploration wells with continuous
coring to a maximum depth of 12 m, dynamic (SPT) and static (CPTU)
testing, together with laboratory tests. 60 pairs of laboratory testing and
CPT results were obtained from the site.

5. Laboratory and neural network classification results

This section summarises the main results from the CPTs, laboratory
tests, and neural network classifications. The full laboratory results for
all 216 CPTs needed for classification can be found in the associated
Mendeley Data webpage. To visually represent the range in soil type
across the sites, the five test sites have been plotted on a Robertson
Classification chart, see Fig. 3. A full laboratory ESCS and USCS soil
classification was performed for all test points using the results from
Appendix Table Al in conjunction with the Classif program previously
developed by Zagreb University, the program is available publically
online at http://www.grad.unizg.hr/zavod_za_geotehniku. The Classif
program automatically classifies soils according to USCS and ESCS rules
and nomenclature, once it has been provided with the following para-
meters; fines content; plasticity index, and the liquid limit.

The total dataset, comprising of sleeve friction and corrected tip
resistance as inputs and fines content, plasticity index, and liquid limit
as outputs, was randomly split into the following proportions 80%,
10%, and 10%. The largest proportion, 80%, was used as the training
set. During training, both inputs and outputs were supplied to the
neural networks allowing them to learn the sensitivity of each in-
dividual parameter. The next 10% was used as a test set, during testing
only the inputs were supplied to the model. At the end of the testing
phase, the neural network system recalibrates itself based on the testing
results so that system inputs are more accurately mapped onto system
outputs. When the testing phase is completed the remaining 10%
known as the validation set was sent to the neural network. The outputs
from the validation set are compared to the actual outputs, see Figs. 4, 5
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Fig. 3. Robertson classification chart for the five test sites used in model de-
velopment.
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Fig. 6. Randomly selected validation dataset showing predicted versus mea-
sured Plasticity Index.

and 6. The regression coefficients achieved during validation were ex-
tremely good. An R? of 0.94 and was achieved when comparing mea-
sured and predicted fines contents. A similarly high linear regression
coefficient of 0.91 was obtained for the Liquid Limit with the Plastic
Limit performing slightly worse attaining a regression value of 0.79.
These neural weightings were saved and the entire data set inputted
blind. The resultant outputs were then compared to actual outputs.
The correlations achieved from the total dataset are shown in
Figs. 7-9 for the ANN predictions of Fines Content, Liquid Limit, and
Plasticity Index respectively. An R? of 0.85 was achieved between the
neural network predicted liquid limit and the measured value, while a
R? of 0.78 was achieved for the plasticity index. In reality, the de-
termination of soil consistency in a laboratory setting is highly sub-
jective (particularly in determining the plastic limit) and in many cases,
results are assumed based on a relatively small sub-sample. Despite this,
the correlations are statistically significant and rank far higher than
those achieved using accepted geotechnical correlations [12]. The ex-
tremely strong correlation of 0.95 between measured and predicted

100 -------- [ [ A T
- [R=095] | | |

I | | - Og @
S O (5

I | | RS O |

. I : : o} :
S I L RO :
A S o
g | GHFT o 3
S . < SIS beoennees s ;
LL F ! 1 1 1
— | © | | |
L K R

0 & i i i i i
0 20 40 60 80 100

FCmeasured (%)

Fig. 7. Correlation between ANN predicted fines content and measured value.
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Fig. 8. ANN predicted Liquid Limit and the laboratory measured value.
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Fig. 9. Measured plasticity index versus ANN predicted plasticity index.

fines content is particularly noteworthy. Significantly more spread was
observed in predictions at higher fines content than that seen at lower
fines content.

6. Further verification and discussion

To ensure that the developed neural network approach was viable
outside of the immediate study area, but within the same geologic re-
gion, an entirely separate test site in Northern Croatia, Veliki vrh, was
used as an external verification measure. Veliki vrh is a small shallow
translational landslide on the southern slopes of Medvednica mountain,
between Cuéerje and Vugrovec, which occurred between 205 and
225 m above sea level. The initial landslide transpired because of pore
pressure build up along the contact zone between the Clay and Marl
layers during heavy rainfall with additional movements detected fol-
lowing subsequent heavy rainfall events.

A site investigation consisting of 4 boreholes were drilled, with
continuous coring to a maximum depth of 12 m, dynamic (SPT) and
static (CPTU) testing were carried out in conjunction with laboratory
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Table 1
Results of CPT and laboratory tests at the VelikiVrh landslide.

GB/CPTU Num 2z [m] ¢ [MPa] f;[kPa] wy[%] Ip[%] FC [%]

B1/CPTU1 1 2.20 1.63 116.00 47.22 23.25 65.72
2 2.80 0.74 62.00 62.15 34.05 84.15
3 3.30 0.60 38.00 60.72 35.72 83.25
4 5.00 3.38 172.00 43.35 24.11 59.72

B2/CPTU2 5 2.10 1.55 93.00 44.56 23.21 61.83
6 2.80 0.79 72.00 69.95 37.21 85.16
7 3.60 0.62 55.00 72.07 38.12 89.25
8 4.40 1.29 69.00 51.24 29.15 79.22
9 5.60 1.12 90.00 66.83 36.55 90.25
10 6.60 1.51 101.00 65.23 35.58 83.88
11 7.20 1.58 96.00 59.22 35.55 81.00

B3/CPTU3 12 1.60 0.81 54.00 51.25 23.02 68.12
13 2.20 0.62 26.00 52.15 24.12 71.45
14 3.80 4.69 188.00 37.25 16.28 46.02
15 5.80 2.24 104.00 44.44 24.12 65.58

B 4/CPTU 4 16 1.80 2.04 122.00 41.15 19.25 49.32
17 2.20 1.99 84.00 36.25 18.67 48.25
18 3.10 4.99 193.00 35.55 15.55 44.15
19 3.70 6.59 203.00 28.25 12.35 37.26

tests. A total of 19 pairs of laboratory testing and CPT results were
obtained. Table 1 shows the results of the CPT and laboratory tests for
the site. Fig. 10 shows the Robertsons chart for the test site depicting
soils types varying from Clays through Silts to Sandy mixtures.

NetFc and NetLLPI were used to determine the fines content, the
liquid limit, and the plasticity index at the site using the g, and f; values
given in Table 1. Extremely good correlations between measured and
predicted values were achieved for all parameters. Correlations of
0.974, 0.983, and 0.991 were obtained for the measured versus pre-
dicted response for the liquid limit, the plasticity index and the fines
content respectively. Tables 2, 3, and 4 compare these correlation
coefficients and the average absolute error to that obtained using the
same data with the correlations developed by Libric et al. [12]. The
neural network approach performs better in all correlations, if only
marginally so. An interesting point of note, is the average absolute error
is much higher for the published correlations approach than for the
neural network approach. This suggests that while the approaches
predict similar mean trends there is significantly more data scatter
using the established soil correlations approach.

USCS and ESCS soil classifications were carried out using the Classif
program for the laboratory data, the neural network results, and the
results using the methodology from [12] respectively. The resultant soil
classifications using the USCS methodology are given in Table 5, while

1000
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Fig. 10. Robertson chart for Veliki vrh.
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Table 2
Comparison of regression values and average absolute errors for the prediction
of the percentage of fine particles FC.

Percentage of fine particles FC (%) Regression value R Average absolute error

Published correlation [12]
Neural network (NetFC)

0.9824
0.9914

13.24
1.74

Table 3
Comparison of regression values and average absolute errors for the prediction
of liquidity limit wy.

Liquidity limit wy, (%) Regression value R Average absolute error

0.9738
0.9743

7.21
2.67

published correlation [12]
neural network (NetLLPI)

Table 4
Comparison of regression values and average absolute errors for the prediction
of plasticity index Ip.

Plasticity index Ip (%) Regression value R Average absolute error

Published correlation [12]
Neural network (NetLLPI)

0.9697
0.9829

3.40
1.12

the ESCS results are shown in Table 6. In both tables the laboratory
classifications are assumed to be correct and accepted as the standard,
all soils which have been correctly classified are displayed in roman
font type, while all soils that are classified incorrectly are displayed in
bold font type. In both cases, the neural network approach performs
much better than the accepted soil correlation approach. The neural
network approach correctly predicts 89.47% (17/19) of soil classifica-
tions at Veliki vrh for both ESCS and USCS, while the approach by
Libric et al. which is based on established geotechnical parameter
correlations performs poorly only predicting 63.16% (12/19) of soil
classifications correctly. This large discrepancy in classification pre-
dictions is interesting when one considers that the correlation coeffi-
cients obtained by both approaches are broadly similar. However, there
is significantly more scatter in the soil correlations approach, albeit
relatively evenly dispersed scatter (particularly in the fines content),
which appears to be responsible for most of the incorrect classifications
as the published correlations seem to predict soils slightly more
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granular than in reality. Given the extremely strong fines content pre-
diction across all six sites, this appears unlikely to happen with the
neural network approach.

Another interesting point of note is that of the soils that were in-
correctly classified by the neural network approach, all were classified
into the next soil band, i.e. Clays of high plasticity were classified as
Clays of medium plasticity. While this is still an incorrect classification,
it is not a complete misclassification.

The results of this study would indicate that there is a strong
functional connection between CPT results, the percentage of fine
particles FC, liquid limit wy, and plasticity index Ip, for the samples
considered Thus partly confirming one of the underlying assumptions
of this research that the static cone penetration test could be directly
linked to the particle size distribution and soil consistency limits used in
standard soil classification.

7. Conclusion

This paper presents an application of neural networks for auto-
matically classifying soils according to ESCS and USCS guidelines. One
of the main advantages of such an approach is that it could be per-
formed instantaneously using an onsite computer removing the sig-
nificant time and monetary cost typically involved with classification.
The approach needs just the CPT shaft sleeve friction, f;, and cone tip
resistance, q., as inputs. Using these two parameters it predicts the fines
content, the liquid limit and the plasticity index of the soil in question.
Having obtained these three parameters it is possible to accurately
classify any fine grained soil in line with USCS and ESCS specifications.
This process can easily be automated.

The approach was developed using 216 pairs of CPT/ laboratory
results, which were gathered from five locations across Northern
Croatia and were used to train, test, and validate the machine learning
models. The resultant Neural Networks were saved and were subjected
to a further external verification using CPT data from the Veliki vrh
landslide. A test site, which the model had not previously been exposed
to. The neural network approach proved extremely adept at predicting
both ESCS and USCS soil classifications, correctly classifying almost
90% of soils. While the soils that were incorrectly classified were only
partially misclassified. The model was compared to a previously pub-
lished model, which was compiled using accepted industry standard
soil parameter correlations and was shown to be a substantial im-
provement, in terms of correlation coefficient, absolute average error,

Table 5
Comparison of the laboratory, existing CPT, and neural network classifications using the USCS on the Veliki vrh test site.
USCS - laboratory USCS - CPT NN USCS - CPT

Number Symbol Group name Symbol Group name Symbol Group name
1 CL Sandy lean clay CL Sandy lean clay SC Clayey sand
2 CH Fat clay with sand CH Fat clay with sand CH Fat clay with sand
3 CH Fat clay with sand CH Fat clay with sand CH Fat clay with sand
4 CL Sandy lean clay CL Sandy lean clay SC Clayey sand
5 CL Sandy lean clay CL Sandy lean clay SC Clayey sand
6 CH Fat clay with sand CH Fat clay with sand CH Fat clay with sand
7 CH Fat clay CH Fat clay CH Fat clay
8 CH Fat clay with sand CH Fat clay with sand CL Sandy lean clay
9 CH Fat clay CH Fat clay CH Fat clay with sand
10 CH Fat clay with sand CH Fat clay with sand CH Fat clay with sand
11 CH Fat clay with sand CH Fat clay with sand CH Fat clay with sand
12 CH Sandy fat clay CL Sandy lean clay CL Sandy lean clay
13 CH Fat clay with sand CL Sandy lean clay CL Sandy lean clay
14 SC Clayey sand SC Clayey sand SC Clayey sand
15 CL Sandy lean clay CL Sandy lean clay CL Sandy lean clay
16 SC Clayey sand SC Clayey sand SC Clayey sand
17 SC Clayey sand SC Clayey sand SC Clayey sand
18 SC Clayey sand SC Clayey sand SC Clayey sand
19 SC Clayey sand SC Clayey sand SC Clayey sand
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Table 6
Comparison of the laboratory and CPT soil classifications in line with the ESCS on the Veliki vrh landslide using neural networks.
ESCS - laboratory ESCS - NN ESCS CPT
Number Symbol Group name Symbol Group name Symbol Group Name
1 saCll Sandy clay of medium plasticity saCll Sandy clay of medium plasticity clsa Clayey sand
2 saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity
3 saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity
4 saCll Sandy clay of medium plasticity saCll Sandy clay of medium plasticity clsa Clayey sand
5 saCll Sandy clay of medium plasticity saCll Sandy clay of medium plasticity clSa Clayey sand
6 saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity
7 CIH Clay of high plasticity CIH Clay of high plasticity CIH Clay of high plasticity
8 saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity saClI Sandy clay of medium plasticity
9 CIH Clay of high plasticity CIH Clay of high plasticity saClH Sandy clay of high plasticity
10 saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity
11 saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity saClH Sandy clay of high plasticity
12 saClH Sandy clay of high plasticity saCll Sandy clay of medium plasticity saCll Sandy clay of medium plasticity
13 saClH Sandy clay of high plasticity saCll Sandy clay of medium plasticity saCll Sandy clay of medium plasticity
14 clsa Clayey sand clsa Clayey sand clsa Clayey sand
15 saClI Sandy clay of medium plasticity saClI Sandy clay of medium plasticity saCll Sandy clay of medium plasticity
16 clSa Clayey sand clSa Clayey sand clSa Clayey sand
17 clsa Clayey sand clsa Clayey sand clsa Clayey sand
18 clSa Clayey sand clSa Clayey sand clSa Clayey sand
19 SC Clayey sand SC Clayey sand SC Clayey sand

and accuracy of soil classification according to USCS and ESCS guide-
lines. An additional benefit of the model is that the accuracy improves
over time as more CPT and laboratory datasets are added to the data-
base.

ANN based soil classification models have some drawbacks, in
particular, any attempts this study made to classify Granular soils were
unsuccessful as it was not possible to consistently predict dso and dio
values based on CPT data alone (based on a statistically significant
sample size of 47 pairs of CPT/laboratory tests). These values are re-
quired to determine the uniformity coefficient ¢, and the curvature
coefficient ¢, which in turn determine how well graded the granular
particles are. While this is a substantial draw back, as it means this
approach is not universally applicable to all soil types, it is a problem
which is also encountered in existing correlations where low correlation
coefficients are frequently observed for these parameters. To date,
academic literature contains no relevant research that connects CPT
results with the necessary distinctive grain sizes djo, dsp, and dgo.
Furthermore, all CPT based soil classification charts to date fail to
provide diagrams that contain information on soil grading level.
Indeed, it may not be possible to conclusively determine the particle
size distribution of a soil based on tip resistance, sleeve friction, and
pore pressure alone. In support of this hypothesis is the work by
Tillmann et al. [25] who managed to get accurate correlations between
CPTs and distinctive grain sizes by equipping his probe with a number
of additional sensors to monitor the change in electrical resistance and
to measure neutron and gamma radiation. Using these sensors, it was
also possible to measure electric resistance p, the intensity of natural
gamma radiation v, soil bulk density p, and soil moisture content w at
various depths.

Another concern with using ANN is the black box nature of the
results, which makes proof of concept hard to verify. Whilst this is
obviously a concern the authors think that much of this can be miti-
gated by testing a small number of samples from every site in the la-
boratory for local verification. An additional benefit of this approach is
that the training database will grow in size over time making incorrect
classifications less likely to occur. Over time the approach should make
soil classification cheaper, faster and less labour intensive.

The study confirms the functional link between CPT results, the
percentage of fine particles FC, the liquid limit wy and the plasticity
index Ip. Thus, partially confirming the hypothesis of this research,
namely that the results of the static penetration test can be directly
linked to the particle size distribution and soil consistency limits used in
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standard soil classification. It should be noted that while the plasticity
index had the poorest ANN predictions, the means of determining soil
plasticity within a laboratory environment remains quite subjective and
results tend to differ greatly between practitioners, it can therefore not
be expected to produce as reliable results. As a final note, it is important
to point out that due to variations in regional geology a suitable
training database will have to be developed for each region to ensure
correct classification.
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