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ABSTRACT

Background: Type 2 diabetes mellitus (DM) is a major risk factor for development of tuberculosis (TB), however
the underlying molecular foundations are unclear. Since lipids play a central role in the development of both DM
and TB, lipid metabolism may be important for TB-DM pathophysiology.

Methods: A 'H NMR spectroscopy-based platform was used to determine 225 lipid and other metabolic interme-
diates in plasma samples of healthy controls (n = 50) and patients with TB (n = 50), DM (n = 50) or TB-DM
(n=27).

Results: TB patients presented with wasting disease, represented by decreased amino acid levels including
histidine and alanine. Conversely, DM patients were dyslipidemic as evidenced by high levels of very low-
density lipoprotein triglycerides and low high-density lipoprotein cholesterol. TB-DM patients displayed
metabolic characteristics of both wasting and dyslipidemia combined with disease interaction-specific in-
creases in phospholipid metabolites (e.g. sphingomyelins) and atherogenic remnant-like lipoprotein parti-
cles. Biomarker analysis identified the ratios of phenylalanine/histidine and esterified cholesterol/
sphingomyelin as markers for TB classification regardless of DM-status.

Conclusions: TB-DM patients possess a distinctive plasma lipid profile with pro-atherogenic properties.
These findings support further research on the benefits of improved blood lipid control in the treatment

of TB-DM.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Type 2 diabetes mellitus (DM) is a major risk factor for tuberculosis
(TB) and triples the risk of developing active TB disease [1]. At present
approximately 15% of global TB cases can be attributed to DM comorbid-
ity [2]. Clinically, DM increases TB severity and impairs TB treatment [3],
while conversely TB hampers glycemic control [4]. DM impacts both
susceptibility to infection and progression towards active disease [1,5],
however the immunological processes involved are unclear [6]. The
number of DM patients in TB-endemic regions of Africa and Asia is pre-
dicted to rise significantly during the coming decades [7], and TB-DM
comorbidity is estimated to seriously affect TB and consequently gen-
eral global health. Therefore the TANDEM project seeks to optimize
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treatment and diagnosis of comorbid TB-DM and to understand its
causal mechanisms [8].

While DM is primarily characterized by hyperglycemia and insulin
resistance, it is often also associated with severe dyslipidemia as a result
of high dietary fat intake and deregulated hepatic lipid metabolism [9].
DM-associated high insulin levels stimulate de novo lipogenesis in he-
patocytes while failing to suppress lipolysis in insulin-resistant adipo-
cytes of DM patients, leading to increased free fatty acid flux to the
liver and overproduction of large triglyceride-rich very low-density li-
poprotein (VLDL) particles [10]. Diabetic dyslipidemia is defined as hav-
ing high levels of plasma triglycerides and/or cholesterol in combination
with low levels of high-density lipoprotein (HDL) cholesterol and is a
major risk factor for cardiovascular disease and atherosclerosis, which
often complicate DM.

In contrast to DM, TB is often associated with malnutrition and
wasting syndrome [11], and a low bodyweight is a risk factor for TB dis-
ease [12,13]. Additionally, TB leads to decreased body fat mass and
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levels of the adipocyte hormone leptin [14]. Interestingly, the causative
agent of TB, Mycobacterium tuberculosis (Mtb), has been shown to rely
heavily on host-derived lipids for its survival [15-17]. Mtb induces the
formation of lipid-loaded foamy macrophages, similar to the ones
found in atherosclerotic lesions, and exploits these cells as its primary
niche for replication. Several studies have identified high cholesterol
levels as risk factor for TB [18-20], and reducing cholesterol levels
using statins was beneficial in Mtb-infected macrophages, mice and pa-
tients through enhancing the bactericidal effect of first-line antibiotics
and phagosome maturation [21-25].

To identify potential differences in lipid metabolism, we compared
plasma lipid profiles of patients with TB-DM to those of patients with
TB or DM. To this end we determined plasma metabolic profiles [26]
in healthy controls (HC) and patients with TB, DM or TB-DM. We hy-
pothesized that the combination of these two diseases on seemingly op-
posite sides of the metabolic spectrum would result in distinctive
plasma lipid profiles, as well as novel biomarkers.

2. Materials & Methods
2.1. Ethics Statement/Patient Inclusion

This study was undertaken as part of a EU-funded collaborative pro-
ject (TANDEM) [8]. Patients (18-70 years) were enrolled in Cape Town,
South-Africa from six public health care clinics around Tygerberg Aca-
demic Hospital (Elsies River, Ravensmead, Uitsig, Adriaanse,
Durbanville, Fisantekraal). In total, 177 participants were included: 50
healthy community controls, 50 DM patients, 50 TB patients and 27
TB-DM patients. DM patients without TB were recruited from commu-
nity health centers/day hospitals in Elsies River and Durbanville and
previously diagnosed with DM according to WHO-criteria [27]. TB pa-
tients were screened for DM and classification was based on
hyperglycaemia (random plasma glucose > 200 mg/dL), HbAlc > 6.5%
and/or self-reported DM, in which case previous determination of ran-
dom plasma glucose levels was not repeated. From the patients in-
cluded in this study there is clinical evidence suggesting that one
participant has type 1 diabetes, whereas all other patients suffered
from type 2 diabetes. TB patients were identified based on positive
Xpert Mtb/RIF assay (Cephaid Inc., Sunnyvale, CA, USA), MGIT cul-
ture and Mtb confirmation. Participants were excluded if they were
HIV-positive, pregnant, on steroid therapy (in the last 6 months),
had a hemoglobin <10 g/L, presented with emphysema, chronic
bronchitis, asthma, steroid-induced DM, cancer or known alcohol
abuse. The study was approved by the Health Research Ethics Com-
mittee of the University of Stellenbosch, and conducted according
to the Helsinki Declaration and International Conference of Harmo-
nization guidelines. Written informed consent was obtained from
all participants.

2.2. Metabolic Profile Quantification by 'H-Nuclear Magnetic Resonance
(NMR) Spectroscopy

A high-throughput 'H NMR spectroscopy platform was used to de-
termine plasma metabolic profiles consisting of 225 parameters (Night-
ingale Health, Helsinki, Finland), including detailed concentrations and
compositions of 14 lipoprotein subclasses, fatty acids & glycerides,
amino acids and glycolytic molecules [28]. Methods regarding sample
preparation and measurement procedures were described previously
[26].

2.3. Statistical Analysis

For multivariate analysis, metabolite ratios were excluded. Metabo-
lites were log-transformed to correct for skewed distributions, with the
exception of lipoprotein particle concentrations for regression analysis
due to a substantial amount of zero measurements. Partial least squares

discriminant analysis (PLS-DA) modelling and hierarchical clustering
was used to visualize metabolic differences between the groups. Only
samples and measurements with <10% missing or zero values were con-
sidered for PLS-DA modelling. The optimal number of components was
determined based on estimated classification error rates calculated by
fivefold cross validation, which was repeated ten times. To illustrate
the differences between our individual groups (HC, TB, DM and TB-
DM patients), separate linear regression models were fitted for each
pairwise combination of groups while adjusting for age and sex. 98
measures of specific particle concentrations and compositions of 14 li-
poprotein subclasses were analyzed distinctly from the remaining pa-
rameters (44 metabolite subset, Supplementary Table S1). Next,
interaction-specific effects of TB-DM comorbidity were investigated by
fitting the following linear model:

Metabolite : By -+ 3;TB -+ 3,DM + B3 TB*DM + B4Age + BsSex + €

where TB = TB-status (true/false), DM = DM-status (true/false),
TB*DM = disease interaction effect, Age = age (years) and Sex = sex
(male/female).

Univariate biomarker analysis was performed to identify metabolic
measures with potential for TB diagnosis. Analysis was stratified by
DM-status (HC vs. TB, DM vs. TB-DM). Log-transformed data of the 44
metabolite subset was mean-centred, scaled to standard deviation
(SD) units and top 20 metabolite ratios based on p-values were calcu-
lated and added to the analysis. For each biomarker receiver operating
characteristic (ROC) curves were plotted and area under the curve
(AUC) values with 95% confidence interval (Cl) determined. Biomarker
analysis was performed using the online tool MetaboAnalyst 3.5 and
methodological details were published previously [29].

Statistical analysis of clinical characteristics was performed in
SPSS 23 (IBM) by one-way ANOVA (reported p-values are the out-
come of the F-test), independent samples t-test or chi-squared test.
Univariate analysis of absolute metabolite concentrations was done
in Graphpad Prism 7 by Kruskal-Wallis test with post-hoc Dunn's
test. PLS-DA and multiple linear regression analysis were performed
using R version 3.3.2. including the following packages: mixOmics
[30] version 6.3.0, limma [31] version 3.30.13 and phenotypicForest
[32] version 0.3.

3. Results
3.1. Clinical and Metabolic Characteristics of the Study Population

Patient characteristics are shown in Table 1. On average, DM patients
were older and had a higher BMI compared to the other groups. TB pa-
tients had a relatively low BMI, while this was comparable for TB-DM
patients and HC. All (non-TB) DM patients were on anti-diabetic
drugs, while this was the case for 55.6% of TB-DM patients. TB-DM pa-
tients not on treatment were newly diagnosed DM cases. In total, 177
participants were included in the study and their plasma metabolic pro-
files were determined using '"H NMR spectroscopy. Metabolite ratios
were excluded in the multivariate analysis to limit parameter interde-
pendence, resulting in a total of 142 variables.

Partial least square discriminant analysis (PLS-DA) (Fig. 1a) was per-
formed to visualize the metabolic differences between the four groups
based on the complete metabolic signature. The score plot of the first
two principal components (explaining 42% and 16% of total variance, re-
spectively) is depicted in Fig. 1a. TB-DM patients appeared largely
scattered over both single disease groups, implying significant meta-
bolic heterogeneity. To explore this further we compared TB, DM and
TB-DM patients by hierarchical clustering analysis (Fig. 1b). While the
majority of TB and DM patients each clustered together, TB-DM patients
were again dispersed throughout the two single disease groups, further
illustrating high inter-individual variation.
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Table 1
Patient clinical characteristics according to disease group (n = 177).
HC DM TB TB-DM p-Value
n=>50 n=>50 n=>50 n=27
Ethnicity: colored 48/50 (96%) 50/50 (100%) 47/50 (94%) 26/27 (96.3%) 0.414
Sex (male/female) 25/25 23/27 33/17 13/14 0.186
Age (years) 377 £9.2 51.6 £ 11.2 463 4+93 444 4+ 95 <0.001
BMI (kg/m?) 242 + 64 29.1 £5.8 19.1 £ 2.6 222452 <0.001
HbAlc (%) 53+ 04° 10.1 + 2.6¢ 5.5+ 04° 95+ 2.5° <0.001
Random blood glucose (mmol/L) 51412 133 +£5.1 6.1+ 16 8.6 + 4.9¢ <0.001
Previous TB (>1 year ago) na 13/50 (26%) 26/50 (52%) 7/27 (25.9%) 0.012
Smoking (currently) na 20/50 (40%) 47/50 (94%) 18/27 (66.7%) <0.001
Quantiferon positive 35/46 (76%) 41/48 (85%) na na 0.250
Time to positivity (days) na na 7.3 £4.5° 7.1 + 44 0.612
DM medication na 50/50 (100%) na 15/27 (55.6%) <0.001
Insulin 28/50 (56%) 5/27 (18.5%) 0.002
Metformin 45/50 (90%) 11/27 (40.7%) <0.001
Other 12/50 (24%) 5/27 (18.5%) 0.580
Statins 18/50 (36%) 4/27 (14.8%) 0.050
Years since DM diagnosis na na
<1 0/49 (0%) 14/27 (51.2%) <0.001
1-5 16/49 (32.7%) 3/27 (11.1%) 0.038
6-15 19/49 (38.3%) 7/27 (25.9%) 0.258
>15 14/49 (28.6%) 3/27 (11.1%) 0.080

Data is presented as percentage of total (%) or mean + SD, na = not available.
2 Point-of-care measurements.
b Lab measurements.

Data available from 48/50 patients.

Data available from 12/27 patients.

Data available from 35/50 patients.

Data available from 21/27 patients.

d

f
3.2. DM is Associated with Dyslipidemia while TB is Associated with
Wasting

We performed pairwise comparisons of all groups by multiple linear
regression analysis adjusting for age and sex. For each comparison the
FDR-corrected-log(p) values of 44 metabolic parameters are plotted
in circular histograms (Fig. 2a-e). Measures of size-specific (XS, S, M,
L, XL) lipoprotein particle concentrations (Fig. 2f-j), lipid composition
(Fig. S1b) and average lipoprotein diameter (Fig. S1a) were analyzed
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separately. Absolute concentrations or ratios of a subset of metabolites
are plotted in Fig. 3 (a-1). Metabolite means, standard deviations and
numbers of successful measurements are presented in Supplementary
Table S1, and raw measurement data can be found in Supplementary
Table S2.

First, we wanted to define the metabolic effects of DM and TB vs. HC
(Fig. 2b and c). As expected, the primary parameter associated with DM
was increased plasma glucose (p = 1.83E™'®; p-values reported here
are from multivariate analyses) (Fig. 2b). DM patients showed major

1.04 2.08

Biomarkers

Samples

Fig. 1. Discrimination of patient groups based on metabolic profiles. PLS-DA was used for discrimination of patient groups based on 'H NMR-spectroscopy plasma metabolites. Only
samples and variables with <10% missing or zero values were included, resulting in 107 parameters and 175 individuals (healthy = 49, DM = 49, TB = 50, TB-DM = 27). (a) Score
plot of the first two components of a PLS-DA model obtained from healthy controls (orange triangles), DM-only (blue circles), TB-only (grey plusses) and TB-DM patients (green
crosses). (b) Two-way hierarchical clustering analysis using Euclidean distance and Ward's method of DM-only (red), TB-only (blue) and TB-DM (green) patients.
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smaller plots. Up- and downregulated metabolites are indicated by red and blue bars, respectively, and the significance threshold (p = 0.05) is indicated by a dashed line.
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hallmarks of dyslipidemia, namely high levels of VLDL-triglycerides
(VLDL-TG) (p = 5.72E~7) (Fig. 3a), VLDL-cholesterol (VLDL-C) (p =
6.66E~*) and ApoB (p = 0.017), with low levels of HDL-C (p =
4.34E75) (Fig. 3b) and ApoA1l (p = 1.82E3), resulting in an increased
ApoB/ApoAT ratio (Fig. 3d). Correspondingly, DM patients displayed el-
evated plasma concentrations of VLDL particles (XXL to S) and lower
numbers of HDL particles (XL to M) (Fig. 2g). Furthermore, DM patients
had increased amounts of branched-chain amino acids (valine (p =
0.011), leucine (p = 0.093), isoleucine (p = 1.29E~%) (Fig. 3h)), a sub-
class of amino acids associated with insulin resistance [33], while gluta-
mine levels were lower (p = 5.50E~%) (Fig. 3g).

In contrast, TB patients presented with signs of wasting disease as
the majority of metabolites were decreased compared to HC (Fig. 2c).
Most notably, TB patients had low levels of amino acids (e.g. histidine
(p = 5.36E719) (Fig. 3e), glutamine (p = 7.38E~*) (Fig. 3g), alanine
(p = 1.29E)), serum cholesterol (p = 1.72E~*) and total fatty acids
(p = 1.32E72), including a prominent reduction in polyunsaturated
fatty acids (p = 3.36E~°), as well as decreased amounts of phospholipid
metabolites. Except for inflammation marker Gp (glycoprotein acetyla-
tion) (p = 4.12E~®) (Fig. 31), TB patients only displayed elevated levels
of two metabolites: phenylalanine (p = 3.07E~#) (Fig. 3f), an aromatic
amino acid, and p-hydroxybutyrate (p = 0.017) (Fig. 3k), a ketone
body. Intriguingly, the average low-density lipoprotein (LDL) particle
diameter was very significantly increased as a result of TB (Fig. S1a)
through a relative decrease in smaller (sizes M to S) LDL and HDL parti-
cles (Fig. 2h).

3.3. TB-DM Patients Display the Most Prominent Metabolic Characteristics
of Both Diseases

As DM and TB displayed divergent effects on plasma metabolite con-
centrations, we next compared the effect of TB-DM comorbidity with
the single disease states. Compared to DM (Fig. 2e), TB-DM patients

showed a similar metabolic signature as TB vs. HC, i.e. reduced levels
of amino acids (e.g. histidine (p = 8.87E~'") (Fig. 3e), alanine (p =
6.02E~%)) combined with increased concentrations of phenylalanine
(p = 8.57E™®) (Fig. 3f) and R-hydroxybutyrate (p = 0.013) (Fig. 3k). Al-
though serum cholesterol and total fatty acids were unaffected (p =
0.738 and 0.692 respectively), VLDL-TG levels were lower in TB-DM
compared to DM patients (p = 6.40E~>) (Fig. 3a), which is consistent
with a decreased amount of VLDL particles (XL to M) (Fig. 2j). Similar
to the TB group, the average LDL diameter was significantly larger
(Fig. S1a), which was also the case for HDL due to a relative increase
in larger (XL to L) vs. smaller (M to S) particles (Fig. 2j).

Importantly, TB-DM patients displayed major hallmarks of DM
when compared to the TB group (Fig. 2a), namely elevated plasma con-
centrations of glucose (p = 6.21E~%), VLDL-TG (p = 5.37E~) (Fig. 3a),
ApoB (p = 8.06E73), VLDL-C (p = 4.43E™%), total fatty acids (p =
5.37E~*) and branched-chain amino acids (valine (p = 0.016), leucine
(p = 0.016), isoleucine (p = 3.41E~3) (Fig. 3h)). Moreover, TB-DM co-
morbidity reduced glutamine levels even further compared to either TB
or DM alone (p = 0.036 and 7.19E~* respectively) (Fig. 3g). Similar to
DM, VLDL particle levels were elevated, accompanied by an additional
increase in LDL particles (M to S) (Fig. 2f).

3.4. TB-DM Interaction Increased Levels of Phospholipid Metabolites and
Atherogenic Lipoprotein Remnants

In addition to the pairwise comparison of all disease groups, we in-
vestigated whether TB-DM comorbidity resulted in disease
interaction-specific effects by adding an interaction term (TB*DM) to
the multiple linear regression model. Resulting FDR-corrected p-
values (Fig. 4) reflect changes in metabolite levels which were not ex-
plained by the effects of TB or DM alone. We identified a TB-DM
interaction-specific increase in phospholipid metabolite levels
(Fig. 4a), ie. sphingomyelins (p = 5.57E73) (Fig. 3i),
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phosphatidylcholine (p = 0.054), total cholines (p = 0.017) (Fig. 3j)
and phosphoglycerides (p = 0.079). Furthermore, TB-DM interaction
trended towards increased atherogenic lipoprotein remnants, XS VLDL
(p = 0.115) and IDL (p = 0.072), while decreasing the concentrations
of larger VLDL particles (Fig. 4b). This relative increase in remnant-like
particles is also apparent from our pairwise comparisons (Fig. 2f: TB-
DM vs TB-XS VLDL: p = 1.34E3, IDL: p = 0.101; Fig. 2j: TB-DM vs
DM-XS VLDL: p = 0.055, IDL: p = 0.055). Finally, the data suggest TB-
DM is associated with elevated LDL-TG concentrations when compared
to HC, TB or DM patients (Fig. 2d, a, e: p = 7.80E~3, 8.40E 3 and
7.18E73, respectively), which could be driven by a relative enrichment
of LDL particle TG content (Fig. S1c) due to diminished LDL lipolysis.

3.5. Histidine/Phenylalanine Ratio is a Potential Biomarker for TB Regard-
less of DM Status

We next performed univariate analyses using MetaboAnalyst 3.5 to
identify metabolic markers with potential to identify active TB regard-
less of DM-status. The top 20 metabolite ratios with the highest individ-
ual p-values were tested in conjunction with our 44 parameter set. To
compensate for potential overfitting, the analysis was stratified by

DM-status and only biomarkers with AUC values of >0.8 in both analy-
ses were considered (Table 2).

The histidine/phenylalanine ratio was the biomarker with the
highest accuracy for classifying TB-DM vs. DM (AUC: 0.957, 95% Cl:
0.895-0.993, Fig. 5a) and the second highest for TB vs. HC (AUC:
0.903, 95%Cl: 0.846-0.955, Fig. 5¢). Interestingly, a decreased ratio of es-
terified to free cholesterol (Fig. 3¢) also showed strong predictive power
for TB in both groups, with AUCs of 0.885 (95% CI: 0.815-0.938) and
0.902 (95% CI: 0.828-0.963) for TB and TB-DM respectively. The ratio
of esterified cholesterol/sphingomyelin was especially predictive of TB
in comorbidity patients (AUC: 0.933, 95% CI: 0.870-0.983, Fig. 5b), but
also apparent without DM (AUC: 0.854, 95%Cl: 0.776-0.928, Fig. 5d).
Many of the remaining overlapping markers involved ratios to the
non-specific inflammatory marker Gp, which was strongly elevated in
TB patients.

Finally, we investigated possible correlations between individual
metabolites and TB severity as signified by sputum culture time to pos-
itivity (TTP), a measure which reflects mycobacterial load. Univariate
analysis showed a trending inverse correlation between TTP and levels
of individual and total branched-chain amino acids, as well as the ke-
tone bodies acetoacetate and [3-hydroxybutyrate (Fig. S2a-f). However,

Table 2

Univariate biomarker analysis.
TB vs HC TB-DM vs DM
Biomarker AUC t-test 95% Cl Biomarker AUC t-test 95% CI
His/Gp 0.934 2.97E-17 0.888-0.971 His/Phe 0.957 3.88E—17 0.895-0.993
His/Phe 0.903 2.81E—14 0.846-0.955 EstC/SM 0.933 1.44E—12 0.870-0.983
His 0.888 8.52E—14 0.805-0.941 Serum-C/FreeC 0.903 2.10E—10 0.832-0.964
Serum-C/EstC 0.885 8.15E—11 0.821-0.943 EstC/FreeC 0.902 413E—10 0.828-0.963
Serum-C/FreeC 0.885 5.96E—12 0.809-0.942 Serum-C/EstC 0.902 1.82E—-09 0.830-0.961
EstC/FreeC 0.885 1.38E—11 0.815-0.938 His 0.901 1.22E—-12 0.823-0.971
Ala/Gp 0.876 9.02E—13 0.811-0.944 ApoB/Gp 0.897 2.79E—11 0.819-0.958
ApoB/Gp 0.871 1.20E—12 0.788-0.933 Ala/Gp 0.896 243E-12 0.803-0.967
EstC/SM 0.854 2.34E—10 0.776-0.928 His/Gp 0.895 3.97E—12 0.800-0.973
Ile/Gp 0.850 2.14E—10 0.771-0.922 Ile/Gp 0.894 1.42E—10 0.782-0.975
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Fig. 5. TB biomarker analysis. Biomarkers and ratios from the 44 metabolite set were used to identify TB status in DM-only (n = 50) vs. TB-DM (n = 27) (a, b) and in HC (n = 50) vs. TB-
only (n = 50) (c,d) patients. ROC curves for the histidine/phenylalanine (a, c) and esterified cholesterol/sphingomyelins (b, d) ratios are plotted. Individual patients are shown as dots in

accompanying boxplots with cut-off (dashed line).

these findings need to be corroborated in follow-up studies with greater
power.

4. Discussion

Although accumulating epidemiological evidence from recent and
older studies indicates a link between TB and DM, the underlying path-
ophysiological mechanisms remain elusive. Since lipids play important
roles in both diseases, we studied the impact of TB disease on host
lipid metabolism and analyzed how this relates to TB-DM comorbidity.
Our results show that plasma from patients with TB displayed signa-
tures of extensive wasting, represented by lower levels of amino acids,
cholesterol, fatty acids and phospholipid metabolites, while conversely
DM was associated with dyslipidemia. Plasma from TB-DM patients
showed the most prominent metabolic characteristics of both diseases,
i.e. wasting, exemplified by reduced concentrations of amino acids (his-
tidine, alanine, glutamine), and dyslipidemia in the form of high levels
of VLDL-TG and low HDL cholesterol. Although TB-DM-associated dys-
lipidemia was less severe than that of DM, the inter-individual hetero-
geneity was high. This could suggest that there are TB-DM patients in
whom the effects of wasting dominate over the DM-associated dyslipid-
emia, as well as patients with the opposite metabolic phenotype. Alter-
natively, it is possible that this inter-individual variation is the result of
differences in DM-duration, as the TB-DM group comprised a mix of
long-term diabetics and patients who were recently diagnosed with
DM (Table 1).

In addition to its overlapping effects with either TB or DM metabolic
profiles, we find that TB-DM comorbidity leads to a relative increase in
remnant-like plasma lipoprotein particles (XS-VLDL, IDL) which are
strongly associated with cardiovascular disease and atherosclerosis
|34]. The formation of remnant-like particles depends on the relative
contributions of lipoprotein lipase (LPL) and hepatic triglyceride lipase

(HTGL) to lipoprotein hydrolysis: the former initiates the cascade
through lipolysis of chylomicrons and nascent VLDL while the latter
preferentially converts smaller VLDL and IDL particles to LDL [35]. Fur-
thermore, both play roles in HDL metabolism and have been shown to
have opposing effects on HDL size [36]. The elevated amount of
remnant-like particles and LDL TG-enrichment indicate relatively de-
creased HTGL/LPL activity in TB-DM patients. This is further supported
by a reduction in smaller HDL particles (sizes M to S) in plasma from
both TB and TB-DM patients and the relative increase in LDL diameter
in both groups as a result of TB. Additionally, TB-DM interaction leads
to a specific increase in sphingomyelins and related phospholipid me-
tabolites. It has been demonstrated that hepatic sphingolipid synthesis
is increased under inflammatory conditions [37], specifically through
increased levels of the rate-limiting enzyme serine palmitoyltransferase
(SPT). High levels of circulating sphingomyelin are associated with cor-
onary artery disease as they increase the atherogenic potential of lipo-
proteins [38] and also function as a physiological inhibitor of HTGL
activity [39].

The ratio of histidine/phenylalanine in plasma was a potential bio-
marker for TB irrespective of DM-status. This result is congruent with
earlier metabolomic profiling of TB which reported changes in histidine
and/or phenylalanine metabolism in plasma [40] and urine [41], and
will require further validation in independent cohorts with larger sam-
ple sizes. It is possible that a decreased histidine/phenylalanine ratio re-
flects non-specific oxidative stress and/or inflammation as similar
changes were demonstrated in other inflammatory conditions, includ-
ing rheumatoid arthritis [42], sepsis [43], obesity [44] and cancer [45].
Furthermore, TB disease status was associated with a decreased ratio
of esterified to free cholesterol in plasma. Cholesterol esterification is
regulated by lecithin-cholesterol acyltransferase (LCAT), a liver-
produced enzyme which is bound to HDL particles in plasma. A possible
explanation for this shift is the ability of sphingomyelin to inhibit LCAT
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activity [46,47] as the esterified cholesterol/sphingomyelin ratio also
showed strong predictive power, particularly in TB-DM patients. Fur-
thermore, LCAT and HTGL levels were shown to be decreased during
the acute phase response, the early reaction of the body to infection or
inflammation, strengthening the notion that these enzymes could be
deregulated during TB. Taken together, our results support a model in
which the unique lipid profile of TB-DM patients is the outcome of the
interaction between DM-induced dyslipidemia and TB-induced changes
in lipoprotein metabolism.

We postulate that the pro-atherogenic phenotype of TB-DM patients
might contribute to TB susceptibility or reactivation. Some striking sim-
ilarities exist between the progression of TB and atherosclerosis. Pivotal
in both pathologies is the formation of lipid-loaded foamy macrophages
[15]. Mtb has been demonstrated to reprogram macrophage lipid me-
tabolism for its own benefit as it requires host-derived lipids as nutrient
source for survival and replication [48-51]. Interestingly, we find that
TB leads to increased plasma levels of B-hydroxybutyrate, a ketone
body which has been implicated in Mtb-induced intracellular lipid drop-
let formation [50]. A recent study showed that DM-associated dyslipid-
emia exacerbates the severity of caseous lung necrosis in TB patients
[52], supporting the hypothesis that aberrant lipid levels negatively af-
fect TB outcome. Paradoxically, others reported a DM-independent pro-
tective effect of high BMI on the risk of TB [13,53], however it has been
suggested that this association depends on the local TB incidence [54].
Regardless, it would be of great interest to compare lipid profiles in
obese TB patients with or without DM.

Some inherent weaknesses in study design will have to be addressed
in future follow-up studies as the overall statistical power was inade-
quate to control for all possible confounding factors. Firstly, differences
in both the DM and TB-DM populations could be related to the use of
anti-diabetic medication such as insulin, metformin or statins, all of
which affect glucose and lipid metabolism. Secondly, some of the ob-
served effects of TB and/or DM could have been driven by differences
in BMI and not by disease state as such. However, correcting for this
could obscure genuine metabolic effects induced by TB, DM or both
which are (partially) mediated through changes in energy expenditure
or storage and therefore reflected by the patients' BML Thirdly, it was
not possible to correctly control for differences in smoking habits as
this information was not available for the HC group. Finally, the studied
patient population was ethnically uniform, the majority being from the
Colored population of South Africa. It will be important to explore how
the results of this study translate to patient populations with different
ethnic backgrounds.

In conclusion, TB-DM comorbidity results in a distinctive lipid profile
with pro-atherogenic properties, including significantly elevated levels
of sphingomyelins and remnant-like lipoprotein particles. These results
will have to be validated in independent cohort studies, and simulta-
neous investigation of HTGL, LPL, SPT and LCAT activity is warranted.
Our findings may have therapeutic implications and encourage more
extensive studies into the possible beneficial effects of lipid-lowering
drugs on TB outcome in TB-DM patients. We suggest that after initiation
of antibiotic treatment TB-DM patients should receive life-style change
counseling, and it may be valuable to determine blood lipid profiles.
Statin or other lipid-lowering treatments could be started in case of ab-
errant lipid levels or existing cardiovascular malconditions. Further-
more, systematically determining TG and/or cholesterol levels at TB
diagnosis could help identifying patients at risk.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.05.011.
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