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A B S T R A C T

Solar farm installers generally struggle with the allocation of irradiance sensors throughout the plant area,
which are essential for monitoring purposes. Despite the existence of the International Electrotechnical
Commission guidelines for photovoltaic (PV) plant monitoring, no specific guidance is provided when it comes
to allocating sensors. This can be especially problematic for solar farms in hilly terrain. In this work, a software
tool is built to allocate horizontal and in-plane irradiance sensors. Additionally, advice on the optimum number
of sensors and the prevented error is provided based on the layout of the farm. The methodology consists of
calculating the irradiance at every point of the solar farm area and finding the one closest to the average.
This average is computed differently depending on the sensor type and monitoring purpose. A modification
of the BRL irradiance decomposition model is also proposed to reduce the bias of the original model. The
software has been applied to two case studies of existing solar farms in hilly areas in Greece and Germany,
showing its applicability for real case scenarios in different climates and geological landscapes. The runtime
of the software tool is mainly a function of solar farm size and the land morphology of its location.

This methodology has been only developed for monofacial fixed-tilted PV farms.
1. Introduction

With the increasing need for clean energy sources, more photo-
voltaic (PV) farms are being installed worldwide. These large-scale
installations prioritize the use of precise irradiance data. Therefore,
they typically measure the irradiance onsite by using both pyranome-
ters and working-class reference cells. The difference in operational
principles among these devices can result in noteworthy variations
in irradiance [1–3]. Moreover, these instruments have an inherent
uncertainty. The measurement uncertainty of pyranometers is around
1%, although in the field it can increase to 1.3 to 1.7% in economically
relevant hours of the day [4]. Accurate irradiance measurements are
key for the precise assessment of PV farm projects [2] and these
deviations can be considerably detrimental for some purposes.

The type of irradiance measured and the time resolution depends on
the purpose of these measurements [5–7]. One can distinguish between
global horizontal irradiance (GHI) and plane-of-array (POA) irradiance
𝐺𝑃 𝑂 𝐴 measurements. While the former is placed horizontally, the latter
is at the same inclination as the PV modules. Horizontal sensors are
employed to connect with satellite data or for forecasting purposes
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when measuring at high temporal resolutions. Forecasting can also be
performed with high-resolution POA sensors, which are also employed
for power loss analysis (PLA) on less than a daily basis and performance
ratio (PR) calculations on an annual basis. This latter variable can
be significantly affected by irradiance deviations [1], highlighting the
need for highly accurate irradiance measurements.

To reduce the uncertainty, the standard 61724-1:2021 from the
International Electrotechnical Commission (IEC) ‘‘serves as guidance
for monitoring system choices’’ [8]. This standard requires class A
pyranometer measurements of in-plane irradiance and GHI throughout
the plant. The standard also provides the number of sensors that
should be placed horizontally and in-plane depending on the PV plant
layout. Guidelines are also provided regarding the location of these
pyranometers:

• The location shall be chosen as representative.
• Shading on the sensor shall be avoided. If it occurs, it may only

be within a half hour from sunrise and sunset and it shall be
documented.
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Table of symbols :

Symbol Definition Unit

𝛼 Ground albedo –
𝑑𝑛 Day of the year –
𝐷𝑛 Normalized day of the year –
𝛥𝜖 Prevented measurement deviation W h/(m2y)
DHI Diffuse Horizontal Irradiance W∕m2

DNI Direct Normal Irradiance W∕m2

𝜖𝑑 Measurement deviation for minimizing daily bias Wh/(m2 y)
𝜖ℎ Measurement deviation for minimizing hourly bias Wh/(m2 y)
𝜖𝑦 Measurement deviation for minimizing yearly bias Wh/(m2 y)
𝐺ℎ𝑜𝑟 Horizontal irradiance considering obstructions W∕m2

𝐺𝑃 𝑂 𝐴 Plane of array irradiance W∕m2

𝐺𝑟𝑒𝑓 Reference irradiance W∕m2

𝛾 Angle of incidence of the PV modules ◦

GHI Global Horizontal Irradiance W∕m2

𝑘𝑑 Diffuse fraction –
𝑁𝑔 𝑝 Number of PV module groups in the farm –
𝑁𝑝𝑙 Number of planes in the farm –
𝑁𝑠 Number of irradiance sensors –
nMBE Normalized mean bias error –
nRMSE Normalized root mean squared error –
𝑅𝑑 Diffuse transposition factor –
rPMD Relative prevented measurement deviation –
SVF Sky View Factor –
𝑆⌣𝑉 𝐹 Weighted average SVF based on the number of modules per group –
o

c

p

e

• GHI sensors should be leveled to within 0.5◦. 𝐺𝑃 𝑂 𝐴 sensors should
be aligned with the intended plane within 0.5◦ tilt and 1◦ azimuth
angles.

These IEC guidelines can be however confusing due to the absence
of clarification on what constitutes a representative location. A metic-
lous allocation approach is crucial when planning the monitoring
nfrastructure, especially in PV farms with spatial differences in irradi-
nce due to altitude variations or horizon obstructions [9]. The usage of

few sensors or incorrectly allocated sensors can lead to, among others,
incorrect evaluations and fault assessments [5,6,10].

In the literature, some methods for sensor allocation have already
been proposed. In [9], an optimization algorithm was presented based
n minimizing the error induced by different cloud conditions. How-
ver, the proposed method was developed only for a flat rectangular
V plant with an unobstructed horizon. The results reported in [4],

show that the optimal sensor placement is away from the edges of
the PV farm and at roughly 25% and/or 75% across the module.
These results, however, were obtained for an unobstructed tracked
bifacial PV farm. Another allocation algorithm used an interpolated
irradiance map [11] which was obtained from the sensor data using
the Kriging interpolation technique [12]. However, the methodology
requires sensor data information hence it cannot be used before the
sensors are installed.

A workaround would be using satellite data, making ground-based
irradiance measurements redundant. However, satellite irradiance data
currently offers low spatial resolution and is less accurate than ground-
based measurements [13,14]. Therefore, most PV power plant commis-
ioners prefer using on-site irradiance sensors [15]. In conclusion, no
niversal and scalable algorithms exist for irradiance sensor allocation.

This work aims to fill this gap by developing a software tool
hat provides the optimal sensor allocation for PV farms considering
heir elevation profile. The irradiance is calculated at all the possible
ensor locations of the PV farm, and the most representative location is
roposed based on an error minimization process. The error definition
epends on the purpose of irradiance measurement. Additionally, ad-
ice on the optimal number of sensors is provided based on the layout
f the farm.

This work is structured as follows. The methodology of the software
is explained in detail in Section 2. The databases required for the
software are presented in Section 3. The main results consisting of
2 
the software overview and its application to two case studies are
presented in Section 4. These outcomes are discussed in Section 5
before concluding in Section 6.

2. Methodology

This section explains the methodology employed to determine the
ptimal sensor allocation. It assumes that the user knows the location

and layout of the future PV plant. The user can or cannot know how
the sensors will be used and the number of sensors to be placed.

So far, this methodology has been developed for monofacial fixed-
tilted PV farms. Nevertheless, a similar framework applies to the in-
reasingly widespread bifacial and/or tracking PV installations.

The strategy of the methodology consists of calculating the irra-
diance at each point of the PV plant area and selecting the most
representative points as those with values closest to the average. In
particular, it consists of the following steps, which are graphically
resented in Fig. 1:

1. Determine the sensor distribution amongst groups and planes.
2. Import Digital Surface Model (DSM) data.
3. Perform Sky View Factor (SVF) calculations for relevant plane-

of-arrays and interpolate grid.
4. Import GHI and albedo 𝛼.
5. Generate a 𝐺𝑃 𝑂 𝐴 map for the relevant plane-of-arrays using

an improved Boland–Ridley–Lauret (BRL) decomposition model
and the Perez transposition model [16].

6. Determine the reference irradiance 𝐺𝑟𝑒𝑓 and calculate the error
map for every sensor.

7. Suggest the best sensor locations.
8. Create output report including figures and tables.

In the following, each of these steps is thoroughly explained. How-
ver, before diving in, some assumptions need to be taken:

• Pyranometers are placed within the PV plant area, defined here
as the terrain to which the PV farm operator has access. Within
that terrain, all obstacles such as trees or water streams are
disregarded.

• POA sensors are always placed maximally 10 m away from the PV
group for which they measure. This step expands the boundaries
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Fig. 1. Flowchart of the methodology followed in this work. The trapezoids are user
inputs, the cylinders denote imported data, the rectangles are predefined algorithms,
and the parallelograms denote (intermediate) outputs.

of the PV group to increase accessibility with the assumption that
no significant alterations occur in this additional terrain.
PV group is defined here as a cluster of modules with the same
characteristics. To ensure that the sensors capture all the vari-
ability across the farm, the user-defined PV groups should be
selected by grouping modules that are expected to perform simi-
larly. For instance, by separating modules that could be subjected
to different shading levels or that are connected to different
inverters.
The difference between PV group and PV plant area is visible in
Fig. 14 for one of the case studies (marked with blue and red dots
and labeled as plant area and panel area, respectively).

• PV modules are evenly distributed within user-input PV groups.
• GHI and its decomposed components are spatially constant in the

whole PV plant (justified by the use of hourly averaged data).
• For computational efficiency, the SVF calculations for the PV pan-

els and the pyranometers are done at 1.5 m height, approximately
the middle point of modules from the ground [10].

• Albedo is spatially constant but temporally variant.

Section 2.1 starts by specifying the required inputs. The creation
of sky view factor and irradiance maps is explained in Sections 2.2
and 2.3, respectively. The core of the methodology, the error-based
minimization problem, is presented in Section 2.4. Section 2.5 elab-
orates on the tactic to find the optimal number of sensors for each
PV farm. Finally, outputs and performance indicators are described in
Section 2.6.

2.1. Inputs

The user inputs are:

1. Purpose of the irradiance sensors, which influences the sensor
type and its optimal spatial distribution. The defined purposes
are [5–7]:
3 
(a) PR: Yearly calculation of performance ratio using 𝐺𝑃 𝑂 𝐴.
(b) PLA, daily: Daily power loss analysis with 𝐺𝑃 𝑂 𝐴.
(c) PLA, real: Power loss analysis in real-time (hourly) with

𝐺𝑃 𝑂 𝐴.
(d) POA, for: Forecasting models using hourly 𝐺𝑃 𝑂 𝐴.
(e) Hor, for: Forecasting models using hourly 𝐺ℎ𝑜𝑟.
(f) Sat: Connection with satellite data via GHI.

where 𝐺ℎ𝑜𝑟 is the horizontal irradiance considering horizon ob-
structions, that is the irradiance measured by horizontally placed
pyranometers. It is different from satellite readings of GHI that
are based on a free horizon.
When selecting multiple data usages, the user is prompted to
rank them so the software tool prioritizes purposes in case of
conflicts.

2. PV farm location.
3. Location, tilt, and azimuth of modules, clustered into groups of

equal inclination.
4. PV plant capacity.
5. Number of sensors, if known.

2.2. Sky view factor

After defining the inputs, the sky view factor (SVF) is computed,
a parameter necessary to estimate the incident irradiance. The SVF is
defined as the portion of the sky visible from the PV module. It ranges
from 0 to 1 and is affected by the inclination of the module and altitude
differences in the terrain or horizon obstructions. Digital Surface Model
(DSM) data is employed to consider these terrain differences. This
data provides the height for equidistant points across an area. The
spatial resolution of the SVF map is therefore determined by that of the
DSM data. Linear interpolation can be employed to increase the spatial
resolution and with it the number of possible sensor locations. The SVF
is computed for the entire PV plant area obtaining an SVF map.

The calculation of the SVF is based on the work of Keijzer [17] and
further implemented in the work of de Jong [18]. The sky hemisphere
is divided into altitude bands and azimuth slices. The maximum ob-
structed altitude angle is determined for every azimuth slice. Only DSM
grid points at a distance lower than a certain radius of evaluation are
considered.

The number of altitude bands is already optimized in [17] to be 90,
but the azimuth slices and radius of evaluation are optimized here by
using data from the 3797 European solar parks that are registered in the
Global Power Plant Database (GPPD) [19] (see Fig. 2(a)). Fig. 2 shows
part of the results of the optimization process as a trade-off between
accuracy and computational resources. 30m-resolution DSM data from
Sentinel Hub is employed in this analysis [20].

The incremental increase in SVF is plotted against the number of
azimuth slices for all locations in Fig. 2(b). The results in the figure are
in line with what is expected: a higher amount of azimuth slices leads
to a more accurate and higher SVF. In this figure, one can also observe
how most existing solar plants are in areas without large local height
differences since most PV plants have an SVF of 0.97 or higher, and the
mean SVF is close to 0.999. 1080 azimuth slices are selected as optimal,
given that the SVF barely changes after this point. This corresponds to
an azimuth resolution of 0.3◦.

Using this optimized value, the SVF was computed for varying radii
of evaluation on four planes with different tilts. Fig. 2(c) illustrates the
mean change in SVF compared to the value at 250 m for the horizontal
plane. As expected, the SVF reduces with increased radius. A too-small
radius overestimates the SVF due to the underestimation of horizon
obstruction. The SVF decreases the most in the 500 m to 750 m range,
as most PV plants have few obstructions in their direct surroundings. At
large radii, only large hills, mountains, or high-rise buildings will have
a significant impact on the SVF. Similar behaviors were observed for
other tilted planes and orientations. Based on this analysis, an optimum
value of 2000 m was selected. It should be noted that these results are
obtained for the imported DSM data thus they may not apply to data
with different resolutions.
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Fig. 2. Optimization of SVF parameters for a horizontal plane for the GPPD European PV farms. (a) Location of the GPPD solar farms in cyan and of the Baseline Surface Radiation
Network (BSRN) meteorological stations in red squares with the corresponding labels. (b) Effect of increasing the azimuth slices. Each colored line corresponds to a PV farm of
the matching color as depicted on the map. (c) Mean change in SVF for increasing radii of evaluation compared to the SVF obtained with a radius of 250 m.
2.3. Irradiance maps

Once the SVF is available, the POA irradiance (𝐺𝑃 𝑂 𝐴) can be calcu-
lated. This represents the irradiance received by the modules. Several
inputs are required, including GHI, Diffuse Horizontal Irradiance (DHI),
Direct Normal Irradiance (DNI), the ground albedo 𝛼, the PV module
angles, and the solar angles. For definitions of these parameters, the
reader is referred to [21].

At every time step, the solar angles can be calculated from the
plant location [21]. The albedo is imported as explained in Section 3.3.
GHI can be imported as well (see Section 3.2), but obtaining DHI and
DNI measurements is challenging due to the need for costly equip-
ment. However, decomposition models can be employed to calculate
DHI from GHI. Subsequently, DNI can be derived using the closure
equation [22].

The decomposition step is typically the main source of uncertainty
in 𝐺𝑃 𝑂 𝐴 evaluation [23]. Therefore, insight into the best-performing
decomposition models is valuable. Despite the several comparisons be-
tween decomposition models in Europe available in the literature [24–
32], no model stands out.

Therefore, a comparison of the most common decomposition models
is performed in Appendix A. Among all the models tested, BRL proves
to be the overall best performer, exhibiting superior results in terms
of normalized root mean squared error (nRMSE) and an average bias.
The bias exhibits a seasonal pattern consistent across all models, with
an overprediction of the diffuse component in autumn and an under-
prediction in spring. This seasonal normalized mean bias error (nMBE)
trend is mitigated in this work for the BRL model through a Fourier-
mediated adjustment, resulting in the BRL-MvK model, a BRL tailored
for European climates.
4 
Once GHI, DHI, and DNI are obtained, 𝐺𝑃 𝑂 𝐴 can be computed. This
irradiance comprises three components: diffuse, direct, and ground-
reflected. Whereas the latter two can be calculated deterministically
using equations 18.18, 18.20, and 18.22 from [21], the diffuse com-
ponent is determined using a diffuse transposition factor 𝑅𝑑 [22].
Different sky diffuse models exist for calculating this diffuse fraction.
Comparison studies based in Europe [33–43] show that the Perez
model [16,44] is superior most often.

The time-varying 𝐺𝑃 𝑂 𝐴(𝑡) is calculated for each location of the
plant over two years. Since only two years are selected, the influence
of solar cycles, which have an 11-year periodicity, is not considered.
Nevertheless, their impact on yearly incident irradiance is minor and
can be disregarded. Since the 𝐺𝑃 𝑂 𝐴(𝑡) depends on the PV module
angles, this process is performed for every PV group or plane. When
horizontal sensors are to be placed, the process is repeated considering
a 0◦ tilt.

2.4. Error-based minimization problem

Once the irradiance maps are ready, the pyranometers can be
allocated. As mentioned in the introduction, the objective is to find the
most representative location. At that location, the irradiance time series
reflects the irradiance incident on the group of PV modules to which
the sensor is assigned. A representative time series can be defined as
a series in which the values are close to the reference time series at
each instant. Since each module in the group is subjected to a different
irradiance profile and all modules have the same weight, the reference
time series is defined as the mean irradiance.
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Using the time-dependent irradiance map, the reference irradiance
𝐺𝑟𝑒𝑓 (𝑡) is constructed by averaging the irradiance for each PV group at
every instant. That value is then compared to the calculated 𝐺𝑃 𝑂 𝐴(𝑡) for
every potential pyranometer location 𝑙 in the PV plant area 𝑙 ∈ 𝐿. 𝐿
is the number of possible locations in which a sensor can be placed.
𝐺𝑃 𝑂 𝐴,𝑙 is the POA irradiance at a location 𝑙. The location with the
minimal error is chosen as the most representative one. The error 𝜖𝑝,𝑙 is
calculated as the sum of the absolute differences for every time instant,
see Eq. (1). 𝑝 ∈ [ℎ, 𝑑 , 𝑦] as the error can be calculated on an hourly,
daily, or yearly basis. The time resolution of the error is determined by
the monitoring purpose, as the minimization problem is defined by the
period 𝑡 ∈ 𝑇 over which no bias should occur.

ar g min
𝑙∈𝐿

(

𝜖𝑝,𝑙
)

= ar g min
𝑙∈𝐿

(

∑

𝑡∈𝑇
|𝐺𝑃 𝑂 𝐴,𝑙(𝑡) − 𝐺𝑟𝑒𝑓 (𝑡)|

)

(1)

𝐺𝑟𝑒𝑓 varies depending on the sensor orientation and PV plant dis-
tribution. The following subsections explain the procedure for each
possibility.

Single group
First, the objective is to place an in-plane pyranometer representa-

tive of a group of PV modules that reside in a single area with identical
tilt and orientation (same plane). Assuming equal distribution across
the PV group, 𝐺𝑟𝑒𝑓 is the average across all irradiance time series within
the PV group, Eq. (2).

𝐺𝑟𝑒𝑓 (𝑡) = 1
𝐿

𝐿
∑

𝑙=1
𝐺𝑃 𝑂 𝐴,𝑙(𝑡) (2)

Multiple groups, same plane
In this second case, all PV modules have identical tilt and orien-

tation (same plane), but they are not clustered, therefore belonging
to multiple groups of modules. 𝐺𝑟𝑒𝑓 is defined as the average of the
irradiance of each group weighted by the number of modules in each
group. Eq. (3) expresses this weighted average, where 𝑁𝑔 𝑝 are the
number of groups in the PV farm, 𝑁𝑛 are the number of modules in
each group 𝑛, and 𝐿𝑛 is the number of locations in which a sensor can
be placed in group 𝑛.

𝐺𝑟𝑒𝑓 (𝑡) = 1
∑𝑁𝑔 𝑝

𝑛=1 𝑁𝑛 ⋅
∑𝑁𝑔 𝑝

𝑛=1 𝐿𝑛

𝑁𝑔 𝑝
∑

𝑛=1

𝐿𝑛
∑

𝑙=1
𝐺𝑃 𝑂 𝐴,𝑙(𝑡) ⋅𝑁𝑛 (3)

Since the spatial resolution of the imported data may not coincide
with the distance between PV modules, the possible sensor locations
𝐿𝑛 need to be considered. The schematic in Fig. 3 can help understand
this. A PV plant is represented by three groups of modules (𝑁𝑔 𝑝 = 3),
all with the same orientation. Sensor locations are marked by colored
dots: red for group 1, yellow for group 2, pastel pink for group 3, and
gray for boundaries. Considering this, 𝑁1 = 9, 𝑁2 = 5, and 𝑁3 = 12,
but 𝐿1 = 4, 𝐿2 = 3, and 𝐿3 = 8. In the software tool, some of these
boundaries would also be considered as pyranometer locations (as long
as they are within 10 m of a PV module) but they are discarded for ease
of understanding in this example.

Horizontal sensors
For the horizontal sensors, the following adaptations occur in the

minimization procedure:

• The SVF grid covers the whole plant area.
• 𝐺𝑃 𝑂 𝐴 is replaced by 𝐺ℎ𝑜𝑟 for a forecasting sensor and GHI for

a satellite connection sensor. This distinction is because local
differences should be included only for forecasting purposes.

• The hourly bias is always minimized.
5 
Fig. 3. Example of a PV farm sketch with 3 groups of PV modules and matrix of
sensors’ locations to help understand the calculation of 𝐺𝑟𝑒𝑓 .

Multiple sensors
When multiple sensors within the same plane and group are to be

placed, the minimization procedure changes:

1. The grid points that are within the lowest 10% of the error map
are identified.

2. Using k-means clustering [45], 𝑘 clusters are formed, where 𝑘 is
equal to the number of to-be-placed pyranometers.

3. The minimization is performed for each cluster.

If simply the 𝑘 best locations are chosen, all locations will be next
to or near the global minimum and thus spatially very close. k-means
clustering ensures that the pyranometer locations are spatially spread.

2.5. Number of sensors

If the user indicates no number of sensors, advice is generated by the
software considering no (financial) limitations. The rules are that when
at least one in-plane data usage is chosen, a sensor is advised for every
plane and an additional sensor per PV group. One sensor is advised
for each use of horizontal irradiance measurements. Fig. 4 graphically
summarizes this decision process.

The number of sensors advised by the software tool is from now on
referred to as the ideal number of sensors. The eventual distribution of
the ideal number of sensors 𝑁𝑠 when all future purposes are chosen is:

• 𝑁𝑠,𝑃 𝑂 𝐴,𝑝𝑙 = 𝑁𝑝𝑙

• 𝑁𝑠,𝑃 𝑂 𝐴,𝑔 𝑝 = 𝑁𝑔 𝑝
• 𝑁𝑠,ℎ𝑓 𝑜𝑟 = 1
• 𝑁𝑠,𝑠𝑎𝑡 = 1
Where 𝑁𝑝𝑙 stands for the number of planes in the PV plant (defined

as the unique combinations of tilt and orientation), 𝑁𝑠,ℎ𝑓 𝑜𝑟 denotes the
number of horizontal sensors for forecasting, and 𝑁𝑠,𝑠𝑎𝑡 denotes the
sensor for satellite connection.

When the user inputs a number of sensors that deviate from the
ideal, the following rules, implemented via nested if-else loops, ensure
the optimal distribution:

1. When 𝑁𝑠 = 1, and both in-plane and horizontal sensors are
required based on the data purposes, the in-plane sensor gets
priority if 𝑁𝑝𝑙 = 1. Otherwise, 𝑁𝑠,ℎ𝑓 𝑜𝑟 = 1.

2. When 𝑁𝑠 = 2, and more in-plane and horizontal sensors are
required to accomplish all intended data purposes, 𝑁𝑠,𝑃 𝑂 𝐴 = 1
and 𝑁 = 1, as long as it does not violate another rule.
𝑠,ℎ𝑓 𝑜𝑟
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Fig. 4. Flowchart illustrating how the advice for the number of horizontal and in-plane sensors follows from the foreseen data collection purposes as input by the user. The
trapezoids denote binary variables that indicate whether a certain data purpose is entered by the user. The subscripts in the figure denote the six data-gathering purposes.
3. When 𝑁𝑠 > 2 and one or two horizontal sensors are to be placed:
𝑁𝑠,ℎ𝑓 𝑜𝑟 > 0.

4. Distribution of in-plane sensors follows:

• 𝑁𝑠,𝑃 𝑂 𝐴,𝑝𝑙 = 𝑁𝑝𝑙 or 0 (all planes or no planes have a sensor).
• 𝑁𝑠,𝑃 𝑂 𝐴,𝑔 𝑝 = 𝑁𝑠,𝑃 𝑂 𝐴 −𝑁𝑠,𝑃 𝑂 𝐴,𝑝𝑙.
• In-plane group sensors are distributed based on the group

size.

5. When conflicts occur, the user-input priorities determine how
the pyranometers will be placed.

2.6. Performance indicators

Next to providing allocation advice, the software tool intends to
show the benefits of its use via performance indicators. The main used
performance indicator is the prevented measurement deviation (PMD)
𝛥𝜖𝑝 (see Eq. (4)). It indicates the accuracy improvement of the allocated
sensor compared to the worst-case location, thus it can be interpreted
as the prevented error made. It can be defined for every time resolution,
with 𝑝 ∈ [𝑦, 𝑑 , ℎ].
𝛥𝜖𝑝 = 𝜖𝑝,𝑙𝑤 − 𝜖𝑝,𝑙𝑏 (4)

where 𝑙𝑤 and 𝑙𝑏 are the worst-case and the advised sensor location,
respectively. These values are directly retrievable from the error map.

Another performance indicator is the relative PMD:

𝑟𝑃 𝑀 𝐷𝑝 =
𝐻 ⋅ 𝛥𝜖𝑝

𝐻 ′ ⋅
∑𝐻

ℎ=1 𝐺𝑟𝑒𝑓 (ℎ)
⋅ 100% (5)

With 𝐻 ′ = 8760 and 𝐻 the number of hourly time steps employed, as
the methodology is commonly performed for two years of data.

3. Databases

This section presents the databases needed for the software tool.
Section 3.1 justifies the selection of the digital surface model data.
Section 3.2 briefly presents the retrieval of the GHI satellite data, and
Section 3.3 explains the choice and preparation for the time-dependent
albedo data.

3.1. Digital surface model

The digital surface model (DSM) data is used in this work to
calculate the SVF. To access DSM data in the entirety of Europe and
to prevent bulk downloads of the height data, an online tool is chosen
that combines globally available DSM data: Sentinel Hub [20]. Sentinel
Hub is a big data satellite imagery service. Users can quickly and
easily access satellite data from complete archives using an application
programming interface (API). The Sentinel Hub service offers at least
30 m resolution DSM data for Europe.
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3.2. Global horizontal irradiance

Since the possibility of using an API and having a high resolu-
tion was a priority in this work, the PV-GIS database was selected
for importing historical measurements of GHI [46]. Using the BSRN
ground-based measurements [47], the PV-GIS imported satellite-based
measurements are validated for the year 2016. The RMSE is in the
range of 90 to 140 W∕m2 for all stations. The source of this inaccuracy
likely arises from the cumulative error propagation throughout all the
modeling steps. For this work, however, ensuring unbiased data is more
crucial than historical accuracy. The average absolute nMBE is only 3%
and that is considered good enough.

3.3. Time-dependent albedo

The effective ground albedo 𝛼 fluctuates during the day due to
the reflectivity of the ground being dependent on the incident an-
gle of radiation [48,49], and throughout the year due to vegetation
changes, snow coverage, and other factors [49,50]. When albedometers
are unavailable, satellite data can be used to determine the ground
albedo [51,52]. Nevertheless, the spatial resolution of this data is too
low to be used on a local scale. The available albedo databases with a
spatial resolution of up to 1 km sacrifice temporal resolution, but their
spatial resolution is still insufficient for local-scale applications [53].

Considering this, satellite data is used as a source of time-dependent
ground albedo. A resolution of one hour is needed, as the data will be
combined with the hourly GHI. The only database with hourly albedo
in Europe is the NASA POWER database [54]. The spatial resolution of
these albedo measurements is only 1◦ × 1◦, which is around 110 km ×
110 km. Although this is not a high spatial resolution, using a spatially
inaccurate time-dependent albedo is considered closer to reality than
assuming a constant albedo.

Many stochastic climatic processes induce a high variability in the
yearly albedo pattern. Therefore, as recommended by the literature [55,
56], hourly albedo data from 2017 until 2021 are averaged to create
one sample year of data.

4. Results

The developed methodology was implemented in Matlab in the form
of a software tool. Its code is available as supplemental material for this
article. The software is presented in Appendix B and a video is supplied
as additional material to showcase the usage of the tool. Its application
in two case studies is explored in Section 4.1. A simplification of the
current version of the software is explained in Section 4.2.
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Fig. 5. Satellite images of the solar park (a) in Kolindros (Greece) and (b) in Eisleben (Germany) used as case studies.
Source: Images from [58].
Fig. 6. Surface plots of the SVF map for the horizontal (a) and in-plane (b) sensors of the Kolindros case study. Please note that the gradient scales are tuned for each subfigure.
4.1. Case studies

This section presents the use of the tool on two existing PV plants
located in hilly terrain as case studies. For each of them, the resulting
pyranometer allocations are presented, together with all preliminary
results that have led to an informed decision on the most representative
locations.

The 6 MWp solar park in Kolindros, Greece, is situated close to the
mountain range where the mountain Olympos is. As seen in Fig. 5(a), it
is a solar park with only two groups of PV modules, oriented south. The
tilt is estimated to be 30◦ which is the optimal tilt for south-oriented
panels at that location [57].

The Solar Park Krughütte is a 29.1 MWp plant in Eisleben, Germany.
It consists of small groups of PV modules south- and southeast-oriented,
as seen in Fig. 5(b). The tilt is estimated to be 33◦, which is optimal
for that location [57].

4.1.1. Solar park in Kolindros
The tool starts by calculating the SVF for all grid points within

the possible sensor allocation area. Since the SVF depends on the tilt
and orientation, SVF maps are created for the horizontal plane and the
30◦-inclined and south-oriented plane. The results are shown in Fig. 6.
The SVF for horizontal planes and tilted planes decreases towards the
southern part of the PV plant. This is a direct result of the local height
differences in the PV plant, as the altitude is relatively low in the south
compared to the northwest corner. The tilted SVF is lower than the
horizontal one, as seen by the range of values of the color bars. For
horizontal planes, the SVF ranges between 0.98 and 0.995, while for
tilted planes, it varies from 0.895 to 0.93. The maximum difference in
SVF across the PV plant for the tilted plane is 0.035. Although a small
number, it can lead to noticeable 𝐺 differences over the year.
𝑃 𝑂 𝐴
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Using the SVF maps, 𝐺𝑃 𝑂 𝐴 maps are determined with the imported
GHI time series for the years 2018–2019. For every grid point, the error
is calculated. The error definition and time resolution depend on the
intended data usage, as explained in Section 2.4. Fig. 7 displays the
hourly error maps for horizontal sensors for forecasting and connection
with satellite purposes.

As seen in Fig. 7(a), the error for the sensor used for horizontal fore-
casting is minimal at a band of grid points that crosses diagonally the
PV plant (indicated by the red dashed line in the figure). Thus, the most
representative locations are clustered around this line. Fig. 7(b) shows
the error map for sensors that will measure close to GHI. Therefore, the
optimal point is found at locations where the horizontal SVF is closest
to unity.

Moving on now to the error map for in-plane sensors in Fig. 8,
the lowest error values are once again concentrated within a band
that diagonally traverses the PV plant from northwest to southeast.
The group sensors are placed using error maps for all separate groups,
created using the reference irradiance of that group.

The software tool was tested for the Kolindros case without in-
putting a predetermined number of sensors. The data usage input by
the user was prioritized as follows:

1. Daily power loss analysis
2. Forecasting using 𝐺𝑃 𝑂 𝐴
3. Forecasting using 𝐺ℎ𝑜𝑟
4. Connection to satellite data
The resulting monitoring infrastructure, therefore, needed in-plane

sensors, a horizontal sensor for measuring 𝐺ℎ𝑜𝑟, and a horizontal sensor
for measuring GHI. Three in-plane sensors were advised because there
are two groups and one plane in the PV plant. In conclusion: 𝑁𝑠 = 5.
The in-plane sensors were optimized using the yearly error since PR
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Fig. 7. Surface plots of the hourly error map for the horizontal sensors to be placed for (a) forecasting purposes and (b) satellite connection purposes in the Kolindros case study.
The red dashed line in (a) is included to help the eye identifying the band of points with minimal error.
Fig. 8. Surface plots of the daily error map for in-plane sensors in the Kolindros PV
plant.

calculations have the highest priority amongst the 𝐺𝑃 𝑂 𝐴 uses. The
locations of the sensors are shown in Fig. 9. These results are in line
with what is expected from the error and SVF maps. For instance, the
horizontal satellite sensor is positioned where neighboring obstacles
are minimal (highest SVF) while the horizontal forecasting sensor is
allocated in the middle of the farm, where SVF is a good representative
of the whole farm.

The hourly measurement deviations of the sensors (Eq. (4)) are
0.2 Wh∕m2y for the 𝐺ℎ𝑜𝑟 sensor, 3.2 Wh∕m2y and 4.5e−4 Wh∕m2y
for the group sensors, and 0.1 Wh∕m2y for the plane sensor. This is
a negligible measurement deviation which demonstrates the efficacy
of the allocation algorithm for these sensors. For the GHI sensor, the
measurement deviation is 1.1 kWh∕m2y. This is higher than for the
other sensors because the SVF at that location is not exactly unity,
leading to a deviation of GHI. This measurement deviation, however, is
still small compared to the annual incident irradiance of 3.2 MWh∕m2y,
which is the irradiance measured by a hypothetical horizontal sensor
placed on top of the PV farm with no horizon obstacles. The average
relative measurement deviation over all allocated sensors is 0.8%.
Although the measurement errors throughout the year are small, the
instantaneous relative measurement error can be up to three times
larger. The largest errors occur at hours with large DHI and low albedo.

When a predefined number of sensors lower than five was input, the
same locations for a part of the sensors in Fig. 9 were found:

• 𝑁𝑠 = 4: same results without the left group sensor (due to this
group being the smallest).

• 𝑁𝑠 = 3: same results without the group sensors.
• 𝑁𝑠 = 2: in-plane sensor and forecasting sensor (based on priority).
• 𝑁𝑠 = 1: only the in-plane sensor (based on priority).
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For 𝑁𝑠 > 5, the additional sensors are used as extra group sensors,
distributed amongst the two groups. The largest group always has an
equal or larger number of sensors than the smaller group. In Fig. 10,
𝑁𝑠 = 8 was used to observe the effect of the k-means clustering. As
expected, the group sensors are well distributed over the module area.
The fact that all minima in the error map are clustered around a line
leads to all cluster minima, and thus group sensors, are positioned
around that line as well.

4.1.2. Solar park Krughütte in Eisleben
For the second case study, since there are two distinct PV module

orientations, the SVF maps for the southeast- and south-oriented planes
are shown separately in Fig. 11. The SVF pattern results directly from
the DSM. The western (left) part of the PV plant is on a hill, up to 50 m
higher than the eastern part. This is reflected by a high SVF in the west
and a low SVF in the east. The maximum SVF differences seen within
planes are 0.02, significantly lower than at the Kolindros plant.

The resulting hourly error maps for horizontal sensors in the
Eisleben plant are seen in Fig. 12. The maximum measurement devi-
ation is 8 to 10 kWh∕m2y, over two times lower than in the Kolindros
case. This results from the lower SVF difference.

The error maps for allocating the southeast- and south-oriented in-
plane sensors at the Solar Park Krughütte are shown in Fig. 13. One
can observe a high correlation with the SVF maps shown in Fig. 11.

The assumed user input for prioritized data purposes is:

1. Real-time fault detection
2. Forecasting using 𝐺𝑃 𝑂 𝐴
3. Forecasting using 𝐺ℎ𝑜𝑟
4. Connection to satellite data

Due to these data purposes, the resulting monitoring infrastructure
needed in-plane sensors, a horizontal sensor for 𝐺ℎ𝑜𝑟, and a horizontal
sensor measuring GHI. Fourteen in-plane sensors were advised since
there are twelve groups and two planes in the PV plant. Overall, 𝑁𝑠 =
16. To have sixteen pyranometers in the PV plant might be unnecessary
and too expensive. Some groups can easily be combined into one larger
group with only one in-plane sensor. However, the software tool is
currently only capable of using panel groups as defined by the user. The
in-plane sensors are optimized using the hourly error since the real-time
PLA has the highest priority amongst the 𝐺𝑃 𝑂 𝐴 uses.

In Fig. 14, the advised sensor allocation in Eisleben is visualized.
The horizontal satellite sensor is at the maximum SVF location, the far
west of the solar park. The horizontal forecasting sensor is in the middle
of the plant as expected from Fig. 12(b), and the plane sensors are also
in line with the error maps in Fig. 13. Two group sensors appear as one
due to the close proximity of their group perimeters.
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Fig. 9. Allocation of five sensors as advised by the software tool for the Kolindros case study.

Fig. 10. Map of the allocation of eight sensors for the Kolindros case study.

Fig. 11. Surface plots of the SVF map for the (a) southeast-oriented and (b) south-oriented planes of the solar park Krughütte.

Fig. 12. Surface plots of the hourly error map for horizontal sensors to be placed for (a) forecasting purposes and (b) satellite connection purposes in the Eisleben PV plant.

Solar Energy 286 (2025) 113139 
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Fig. 13. Surface plots of the hourly error map for in-plane sensors of the (a) southeast-oriented and (b) south-oriented planes in the Eisleben PV plant.
Fig. 14. Allocation of sixteen sensors as advised by the software tool for the Eisleben case study.
The average relative prevented measurement bias of in-plane sen-
sors for this case study is 0.3%. This is lower than the Kolindros case,
as expected from the smaller local SVF differences in the Eisleben case.

After analyzing the two case studies, one can compare the results
with the IEC 61724 recommendations. Considering the size of the PV
farms, their guidelines suggest at least two horizontal irradiance sensors
and two in-plane ones. This recommendation is followed for the farm
in Kolindros, where the software suggests 5 sensors, but not for the
Krughütte farm where the software suggests 16 sensors. As already
mentioned, 16 sensors may be unnecessary and financially unfeasible.
However, having only 4 may be inaccurate considering that two distinct
orientations are present. That can lead to inaccuracies affecting the
operations of the PV farm.

4.2. Simplification

The sensor allocation was found to have a high dependency on the
SVF map. The horizontal satellite sensor is allocated at the point with
the highest SVF, and the other sensors are all allocated at the contour
lines of the SVF.

It has been proven mathematically in Appendix C, by exploring
the definition of the terms involved, that the minimization problem
of all the error functions reduces to Eq. (6). In the equation,

(

𝑆 𝑉 𝐹 is
the average SVF weighted by the number of modules per group. Thus
when the measurement deviations are minimized over all the locations,
the difference between the SVF of locations and the weighed SVF is
minimized. This equality means that the software tool does not have to
distinguish between the time resolution of the errors when minimizing.
This explains that all minimum errors are located along a contour line
with the value of the weighted average SVF on the map.
ar g min

𝑙∈𝐿

(

𝜖ℎ,𝑙
)

= ar g min
𝑙∈𝐿

(

𝜖𝑑 ,𝑙
)

= ar g min
𝑙∈𝐿

(

𝜖𝑦,𝑙
)

= min
𝑙∈𝐿

|𝛥𝑆 𝑉 𝐹𝑙|

𝛥𝑆 𝑉 𝐹𝑙 = 𝑆 𝑉 𝐹𝑙 −

(

𝑆 𝑉 𝐹
(6)
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Therefore, the whole allocation algorithm can be done based on
solely the SVF maps. For all planes and groups,

(

𝑆 𝑉 𝐹 can be calculated,
and the location at which the SVF is closest to this value is the
most representative. Since the horizontal sensor used for connection to
satellite data is placed at the highest SVF, the SVF map is also sufficient
here.

These simplifications are based on the assumptions that the GHI,
DHI, and DNI time series are location-independent, at least within the
geographical scope of the installation. Additionally, the found simplifi-
cation is based on the assumption that the albedo is spatially constant.
This is valid for the current input possibilities of the software tool.
Moreover, the simplification is valid only when the angle of incidence
amongst all modules is constant. That is true because, in the current
version of the software tool, all modules in a group are bound to be
equally tilted and oriented. When discontinuously tilted groups are
included as input options, the simplification no longer holds, and the
𝐺𝑃 𝑂 𝐴 and error maps should be included again. Finally, the behind-the-
horizon effect is neglected in the current algorithm. This implies that
the solar radiation when the sun is below the horizon is ignored, such
as during sunrise or sunset. If this is included in the software tool, an
extra location-dependent variable is added, making the simplification
invalid.

5. Discussion

The reported average relative prevented measurement bias for the
two presented case studies is below 1%. This value is lower than the
uncertainty of pyranometers, which can be 1.3 to 1.7% in economically
relevant hours of the day [4,59]. Therefore, one could question the
significance of this work. However, one also needs to consider that
the accuracy of the employed data, especially the DSM data, can
underestimate the bias. If more accurate terrain data was obtained,
for instance from a scanning drone [60], the height differences could
be more precisely captured and the detailed shading profiles could be
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included in the code. The former may also impact the variation in tilt
due to the terrain of the modules, assumed to be constant in the case
studies. The latter could be used to distinguish between the irradiance
profiles of the modules located at the edges of the plant compared to
those at the center. All of these aspects would impact the prevented
error.

The geographical scope of this work has been limited to Europe.
However, most of the methodology can be extended to other ge-
ographical regions by employing databases covering those regions.
The only point that requires special attention is the choice of the
irradiance decomposition model. Considering the importance of this
step in the methodology, an analysis similar to the one performed in
Appendix A should be undertaken before extending the software tool
o new regions.

Related to this latter point, the accuracy of the newly presented
RL-MvK model should be tested for other locations. It would be inter-
sting to observe whether the seasonal variation of the bias reported in

this work is present in regions outside of Europe.
Finally, the software tool should be upgraded to cover the increas-

ingly common bifacial and tracked PV systems. To achieve this, special
attention should be given to the estimation of the irradiance.

Out of the two, tracked PV systems may be the simplest to imple-
ent. The yearly energy yield should be calculated considering the

angles of the tracker instead of the irradiance on a fixed plane. If the
tracking mechanism is analytically implemented, this extension can be
relatively straightforward. More consideration is required for trackers
hat adjust the angles in real-time to maximize the overall irradiance
arvesting.

Bifacial systems may require an additional sensor to measure the
rear irradiance, therefore a sensor facing the ground. The guidelines
rovided in the IEC 61724 [8] could be used as a starting point when

adding this feature to the tool. Additionally, an accurate modeling of
the albedo should be included, that is not only time-dependent but
also location-dependent. However, the lack of available albedo data
may currently hinder this implementation. Efforts in the literature to
estimate the albedo from satellite data may help overcome this limita-
tion [61]. If the albedo is finally made location-dependent throughout
he farm, the algorithm simplification presented in Section 4.2 would

no longer hold.

6. Conclusion

In this work, an irradiance sensor allocation algorithm for Europe
as been proposed and implemented in the form of a software tool.
he strategy consists of finding representative sensor locations follow-

ng IEC guidelines. Additionally, the software proposes the optimum
umber of sensors in a PV farm based on the IEC guidelines and
he purpose of data usage and provides metrics to show the benefits
f using the developed software. In the process of the software tool
reation, several steps were optimized. By employing data from existing
arms, the optimum parameters for the sky view factor calculations
sing digital surface elevation data are found to be a radius of 2 km
nd an azimuth resolution of 0.3◦. Considering the high bias of the
rradiance decomposition models of the literature, a custom model has
een proposed which is based on the Perez model. The software was ap-
lied to two case studies of existing PV farms in hilly terrain. Although
he method has been currently developed for PV farms composed of
onofacial fixed PV modules with similar orientation (i.e. no East-West

onfiguration), the methodology can be extended to bifacial and/or
racking PV installations.
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Appendix A. Decomposition model comparison

Since no decomposition model stands out in the literature, a com-
arison was conducted to determine the most suitable one. The analysis

utilized all 12 European meteorological stations from the Baseline Sur-
face Radiation Network (BSRN) [47] (see Fig. 2(a) for their location).

he stations provide ground-based measurements of GHI, DHI, and
DNI, enabling the comparison of modeled values with measured ones.
BSRN combines data from numerous previously independent radiation

easurement stations globally. Given the diverse sources, no standard-
zed quality checks are applied. Thus, preliminary quality assessments,
ncluding the conversion to hourly resolution, are conducted on all
rradiance data. All hourly data points where the solar zenith exceeds
5◦ are discarded to prevent anomalies that occur at low solar altitude
ngles. This zenith limit was used for preparing the BSRN data and the
rradiance data of the software tool.

This study focuses on six widely used models: Erbs [62], DISC [63],
Reindl2 [64,65], BRL [66], Every [67], and Engerer [68,69]. For every
tation, the hourly time series D̂HI was calculated for each model using

the GHI of that station, and compared to the BSRN-measured DHI. All
these decomposition models use the clearness index to estimate the
iffuse fraction, which is related to the time of day. Some models also
ncluded other time-dependent variables such as the sun altitude in

Reindl2, the zenith angle in DISC, and apparent solar time in BRL,
Every, and Engerer. These latter three furthermore included continuity
in the model by including daily clearness index and persistence. The
erformance indicators are the normalized root mean squared error
nRMSE, Eq. (7)) and the normalized mean bias error (nMBE, Eq. (8)).

nRMSE = 𝐻
∑𝐻

ℎ=1 DHI

√

∑𝐻
ℎ=1(D̂HI − DHI)2

𝐻
(7)

nMBE = 𝐻
∑𝐻

ℎ=1 DHI

∑𝐻
ℎ=1(D̂HI − DHI)

𝐻
(8)

where 𝐻 is the number of hourly time instants. The results were
analyzed to identify the best decomposition model for hourly irradiance
data in Europe, see Fig. 15.

The nRMSE is notably higher for the BUD and SON stations com-
ared to the others. This can be attributed to the relatively poor data

quality of these stations. The BRL model outperforms all other models
in all stations except for the SON station, which had shown data
limitations due to the high altitude. The simple Erbs model outperforms
the bivariate models Reindl2 and DISC, the two least accurate models.
Therefore, increasing the complexity of Erbs, resulting in Reindl2 and
DISC, did not improve its performance. The Every and Engerer models
are adaptations of the BRL model. However, their nRMSE is higher than
he original model. For the Every model, the decreased performance
ould be due to the model being parameterized in Australia. The
ngerer model also showed decreased performance compared to the
RL model, possibly due to the model being designed for minute data
riginally.

Regarding the nMBE of the analysis, no model outperforms the
thers at all stations. However, on average, the Engerer model performs



A. Alcañiz et al. Solar Energy 286 (2025) 113139 
Fig. 15. nRMSE and nMBE of six decomposition models, shown for the twelve different datasets retrieved using the BSRN database. Refer to Fig. 2(a) for the location of the BSRN
station employed.
best, with an average absolute nMBE of 8.9% compared to the worst-
performing 14% for the DISC model and close to 11% for the remaining
models. Nevertheless, Engerer outperforms BRL in only seven out of
twelve stations. In contrast to the nRMSE results, Every and Engerer
models slightly surpass the preceding BRL model. Furthermore, the Erbs
outperforms its succeeding models DISC and Reindl2. All models highly
underestimate the diffuse fraction at the SON station, which could be
again due to the extremely high altitude of the station. This raises a
general concern for using decomposition models at high altitudes.

The performance analysis concludes that the Engerer model per-
forms best based on average nMBE. However, the BRL model is consid-
ered the overall best model, consequently outperforming other models
based on nRMSE and performing averagely based on the nMBE. In this
study, these results are assumed to apply to satellite irradiance data.
However, a note should be made that this conclusion is only robust
when hourly ground-based input irradiance is used.

In addition to examining annual metrics, seasonal variations were
investigated. The daily errors of all stations are averaged, leading to
an average nRMSE or nMBE for each day. When exploring the nRMSE
results (of which no figure is included), most models have their highest
accuracy in late autumn and early winter. However, no clear pattern
has been found since the Reindl2 and DISC models show different
seasonal behavior, and the similarities in the BRL, Every, and Engerer
model patterns probably emerge from their relation.

More interesting results are found when exploring the seasonal
pattern in nMBE shown in Fig. 16. All models overpredict the diffuse
component in autumn and underpredict it in spring. This bias pattern
also emerges when the same analysis is done at a station level (not
shown). It is hard to explain this behavior since most seasonal fluc-
tuations have extremes in winter and summer. Despite conducting a
comprehensive analysis of the seasonality of variables, the observed
nMBE pattern could not be explained.

While the origin of this seasonal bias remains unknown, compen-
sating for it can improve existing models. A correction factor can
be applied to a model with high nMBE to create a much better fit.
However, this approach does not apply to a model with a high nRMSE.
Based on the results, opting for the BRL model is recommended. To
compensate for the seasonal bias, a multiplication factor is introduced
to the BRL model:

D̂HI𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = D̂HI 1
nMBE𝑓 𝑖𝑡

(9)

By simply including the multiplication factor, the diffuse fraction 𝑘𝑑
(ratio of irradiance that is diffusely reflected) may exceed unity. This
is mitigated within the new model by capping all values of 𝑘 at 1.
𝑑

12 
Fig. 16. Average daily nMBE of six decomposition models for a dataset containing
irradiance data of twelve European BSRN stations. A seasonal bias pattern occurs with
negative bias in spring and positive bias in autumn.

Fig. 17. Daily nMBE averaged for all the BSRN stations of the BRL and BRL-MvK
model throughout a year.

The daily average nMBE curve for the BRL model was used to
determine the multiplication factor. A Fourier expansion with two
terms and a period of 365 days was used.

nMBE𝑓 𝑖𝑡 = 𝑎0 + 𝑎1 cos(𝐷𝑛)+𝑏1 sin(𝐷𝑛) + 𝑎2 cos(2 ⋅𝐷𝑛) + 𝑏2 sin(2 ⋅𝐷𝑛)

𝐷𝑛 =
𝑑𝑛 ⋅ 2𝜋
365

(10)

With 𝑎0 = 1.037, 𝑎1 = 0.02052, 𝑎2 = −0.02688, 𝑏1 = 0.1069, 𝑏2 =
−0.002202, and 𝑑𝑛 the day number in a calendar year. Using Eq. (10),
the seasonal nMBE pattern is mitigated using the compensating factor
as seen in Fig. 17. The new bias-compensated model is named the
BRL-MvK model.

The improvement of the model is also observed with the annual
nMBE of each station. The annual nMBE is shifted towards a more
positive bias for all stations (of which no figure is included), decreasing
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Fig. 18. GUI where the user is asked to draw the PV group areas (yellow) for the Solar
Park Krughütte in Eisleben, Germany. The already drawn blue area is the PV plant area.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the inter-station average of the absolute value of the annual nMBE
values from 11.2% to 10.6%. This shift results in improved model per-
formance for most (formerly) negative-biased stations and a decreased
performance for all formerly positive-biased stations. Kindly note that
Fig. 17 refers to the daily biased error averaged for all BSRN stations
while 10.6% refers to the mean absolute of the nMBE of the 12 stations.
The nRMSE of the BRL-MvK model outperforms the BRL model in all
stations and the mean is improved from 31.8% to 30.5%.

Appendix B. Software tool overview

The software tool initiates by prompting the user to input location
parameters:

• What is the central longitude [◦] and latitude [◦] of the PV plant
(with 4 decimal points of accuracy)?

• A square image is downloaded. How many km should the sides
be to include the full PV plant area?

• What is the capacity of the PV plant?

After which a prompt is generated confirming the input location of
the user using a map tile retrieved via Geoapify [70].

When the location is deemed correct, the perimeters of the PV plant
and the PV group area are defined. The user is asked to draw polygons,
as seen in Fig. 18. The blue area indicates the PV plant area and the
yellow areas are the PV groups area, which is provided per group.
Before being prompted to draw the areas, the user is asked whether
all PV modules in the plant are uniformly tilted and oriented. If so, the
following questions are asked:

• What is the azimuth orientation (deg) of the PV panels (E = 90◦,
S = 180◦, W = 270◦)?

• What is the tilt (deg) of the PV panels (flat = 0◦)?

If the modules are not uniformly tilted and oriented, the two latter
questions are asked for every group after drawing it.

Before defining the yellow group areas, the user is asked if all groups
have an equal number of solar panels. If so, the 𝑁 of each group is
𝑔 𝑝

13 
Fig. 19. GUI element where the user inputs the purpose of the data for future use.

Table B.1
Runtime of the different steps of the software tool for the two case studies.

Runtime [min] Kolindros Eisleben

Distribute sensors 0.0 0.0
Import data 0.4 0.4
Calculate SVF 4.5 19.9
Create irradiance maps 0.0 0.0
Create error maps 0.1 0.5
Suggest locations 0.0 0.0
Create report 0.6 1.0
Total 5.6 21.8

set to equal values. Otherwise, they are asked to input the number of
modules after each drawn PV group.

Afterward, the user is prompted to input the data purposes using
the GUI element shown in Fig. 19. If more goals are checked in the
GUI element, the user is asked to input the relative priority of each
purpose.

The last question is about the number of sensors to be allocated. If
the user does not input a predefined number of sensors, advice is given.

During the calculations, the user is updated on the progress and the
undertaken steps. The code is profiled to give insight into how time-
intensive the software tool is and what the speed-determining modules
are. Table B.1 provides the time profiling for the two case studies pre-
sented in Section 4.1. For the two case studies presented, the software
takes around 5.6 min for the 6 MWp solar park in Kolindros (Greece),
and 21.8 min for the 29.1 MWp solar park in Eisleben (Germany).
Although in general the higher the capacity, the longer the compu-
tational time, the capacity is not the sole indicator of computational
time demand. The total runtime of the software tool mostly depends on
the SVF calculations, for which the higher the local height differences,
the more time-intensive the computations become. The creation of the
output report and the data import are also time-intensive steps.

Appendix C. Algorithm simplification

The allocation algorithm is based on the minimization problem
in Eq. (1). Independently of the time resolution of the error, the
measurement deviations take the absolute difference between 𝐺𝑃 𝑂 𝐴,𝑙
and 𝐺𝑟𝑒𝑓 . For clarity, the definition of 𝐺𝑃 𝑂 𝐴,𝑙 is shown in Eq. (11).

𝐺𝑃 𝑂 𝐴,𝑙 = 𝑆 𝑉 𝐹𝑙 ⋅ 𝑅𝑑 ⋅𝐷 𝐻 𝐼 + (1 − 𝑆 𝑉 𝐹𝑙) ⋅ 𝛼 ⋅ 𝐺 𝐻 𝐼 +𝐷 𝑁 𝐼 ⋅ cos(𝛾) (11)

where 𝛾 is the angle of incidence onto the PV modules. 𝐺𝑃 𝑂 𝐴,𝑙, 𝑅𝑑 ,
DHI, DNI, GHI, and 𝛼 are time series but the time dependency has been
removed from this equation for ease of understanding.

The reference irradiance is the weighted average of the 𝐺𝑃 𝑂 𝐴 of
a certain area, as shown in Eq. (3). Since the reference irradiance is
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location-independent, it can be rewritten including the definition of
𝑃 𝑂 𝐴,𝑙:

𝐺𝑟𝑒𝑓 =

(

𝑆 𝑉 𝐹 ⋅𝑅𝑑 ⋅𝐷 𝐻 𝐼 + (1 − (

𝑆 𝑉 𝐹 ) ⋅ 𝛼 ⋅ 𝐺 𝐻 𝐼 +𝐷 𝑁 𝐼 ⋅ cos(𝛾) (12)

where

(

𝑆 𝑉 𝐹 is the weighted average of the SVF of all grid points inside
the PV group for which the sensor measures irradiance, Eq. (13).

(

𝑆 𝑉 𝐹 = 1
∑𝑁𝑔 𝑝

𝑛=1 𝑁𝑛 ⋅
∑𝑁𝑔 𝑝

𝑛=1 𝐿𝑛

𝑁𝑔 𝑝
∑

𝑛=1

𝐿𝑛
∑

𝑙=1
𝑆 𝑉 𝐹𝑙 ⋅𝑁𝑛 (13)

The simplification of 𝐺𝑟𝑒𝑓 only holds because DHI, DNI, GHI, 𝑅𝑑 ,
𝛼, and 𝛾 are all (assumed to be) spatially independent. Using this new
notation of 𝐺𝑟𝑒𝑓 , the following derivation can be done:
|𝐺𝑃 𝑂 𝐴,𝑙 − 𝐺𝑟𝑒𝑓 | = |𝑆 𝑉 𝐹𝑙 ⋅ 𝑅𝑑 ⋅𝐷 𝐻 𝐼 + (1 − 𝑆 𝑉 𝐹𝑙) ⋅ 𝛼 ⋅ 𝐺 𝐻 𝐼

−

(

𝑆 𝑉 𝐹 ⋅𝑅𝑑 ⋅𝐷 𝐻 𝐼 − (1 − (
𝑆 𝑉 𝐹 ) ⋅ 𝛼 ⋅ 𝐺 𝐻 𝐼| (14)

= |(𝑆 𝑉 𝐹𝑙 −

(

𝑆 𝑉 𝐹 ) ⋅ (𝑅𝑑 ⋅𝐷 𝐻 𝐼 − 𝛼 ⋅ 𝐺 𝐻 𝐼)| (15)

Eq. (15) holds for sums over all data points of in-plane and reference
irradiance time series of length 𝑇 . The minimization problem for the
three time resolutions of the measurement deviation can be rewritten
using 𝛥𝑆 𝑉 𝐹𝑙 = 𝑆 𝑉 𝐹𝑙 −

(

𝑆 𝑉 𝐹 :

ar g min
𝑙∈𝐿

(𝜖ℎ,𝑙) = ar g min
𝑙∈𝐿

𝐻
∑

ℎ=1
|𝛥𝑆 𝑉 𝐹𝑙 ⋅ [𝑅𝑑 (ℎ) ⋅𝐷 𝐻 𝐼(ℎ)

−𝛼(ℎ) ⋅ 𝐺 𝐻 𝐼(ℎ)]| ⋅ 𝐻
′

𝐻

(16)

ar g min
𝑙∈𝐿

(𝜖𝑑 ,𝑙) = ar g min
𝑙∈𝐿

𝐷
∑

𝑑=1
|𝛥𝑆 𝑉 𝐹𝑙

24
∑

ℎ𝑑=1
[𝑅𝑑 (ℎ𝑑) ⋅𝐷 𝐻 𝐼(ℎ𝑑)

−𝛼(ℎ𝑑) ⋅ 𝐺 𝐻 𝐼(ℎ𝑑)]| ⋅ 𝐻 ′

24 ⋅𝐷

(17)

ar g min
𝑙∈𝐿

(𝜖𝑦,𝑙) = ar g min
𝑙∈𝐿

𝑌
∑

𝑦=1
|𝛥𝑆 𝑉 𝐹𝑙

8760
∑

ℎ𝑦=1
[𝑅𝑑 (ℎ𝑦) ⋅𝐷 𝐻 𝐼(ℎ𝑦)

−𝛼(ℎ𝑦) ⋅ 𝐺 𝐻 𝐼(ℎ𝑦)]| ⋅ 1
𝑌

(18)

where ℎ ∈ 𝐻 , 𝑑 ∈ 𝐷, and 𝑦 ∈ 𝑌 are the hour, day, and year of each
time step, respectively. The last term normalizes to a yearly value, with
𝐻 ′ = 8760 being the hours per year.

All terms that are both inside the absolute signs and location inde-
pendent cancel out in the minimization problem. The fractions at the
nd of Eqs. (16), (17) and (18) cancel out because they are necessarily

a positive constant. Therefore, all minimization problems are reduced
o Eq. (6).

This simplification does not imply that the error maps are equal.
Differences occur when the time series inside the absolute brackets
from Eq. (16)–(18) have both negative and positive terms. This leads
o measurement deviations canceling out when different periods are
hosen to minimize bias. However, that condition rarely occurs, being
et in only 0.2% and 0.14% of the data points in the Kolindros

nd Eisleben case studies, respectively. This simplification has been
mplemented for these two case studies, and the difference in results
s negligibly small.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.solener.2024.113139. We provide addi-
tional resources to enhance the understanding and applicability of the
techniques presented in this article. A comprehensive video demon-
strates the functionality and usage of the developed software tool.
Additionally, the complete source code used to develop the software
tool is made available with the objective of promoting collaboration
and continuation of this work.
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